Science.gov

Sample records for earth tides effect

  1. Earth tides

    SciTech Connect

    Harrison, J.C.

    1984-01-01

    Nineteen papers on gravity, tilt, and strain tides are compiled into this volume. Detailed chapters cover the calculation of the tidal forces and of the Earth's response to them, as well as actual observations of earth tides. Partial Contents: On Earth tides. The tidal forces: Tidal Forces. New Computations of the Tide-Generating Potential. Corrected Tables of Tidal Harmonics. The Theory of Tidal Deformations. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth, Deformation of the Earth by Surface Loads. Gravimetric Tidal Loading Computed from Integrated Green's Functions. Tidal Friction in the Solid Earth. Loading Tides Versus Body Tides. Lunar Tidal Acceleration from Earth Satellite Orbit Analysis. Observations: gravity. Tidal Gravity in Britain: Tidal Loading and the Spatial Distribution of the Marine Tide. Tidal Loading along a Profile Europe-East Africa-South Asia-Australia and the Pacific Ocean. Detailed Gravity-Tide Spectrum between One and Four Cycles per Day. Observations: tilt and strain. Cavity and Topographic Effects in Tilt and Strain Measurement. Observations of Local Elastic Effects on Earth Tide Tilts and Strains.

  2. Dynamic ocean-tide effects on Earth's rotation

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  3. Effects of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.

    1996-01-01

    The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.

  4. The Earth Tides.

    ERIC Educational Resources Information Center

    Levine, Judah

    1982-01-01

    In addition to oceans, the earth is subjected to tidal stresses and undergoes tidal deformations. Discusses origin of tides, tidal stresses, and methods of determining tidal deformations (including gravity, tilt, and strain meters). (JN)

  5. Effects of dynamic long-period ocean tides on changes in Earth's rotation rate

    SciTech Connect

    Nam, Y.S.; Dickman, S.R. )

    1990-05-10

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the authors define the zonal response function k of the solid earth-ocean system as the ratio, in the frequency domain, of the tidal change in Earth's rotation rate to the tide-generating potential. Amplitudes and phases of k for the monthly, fortnightly, and 9-day lunar tides are estimated from 2 1/2 years of very long baseline interferometry UTI observations (both 5-day and daily time series), corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988a, 1989a), the authors predict amplitudes and phases of k for an elastic earth-ocean system. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of k by about 1%. However, agreement with the observed k is best achieved for all three tides if the predicted tide amplitudes are combined with the much larger satellite-observed ocean tide phases; in these cases the dynamic tidal effects reduce k by up to 8%. Finally, comparison between the observed and predicted amplitudes of k implies that anelastic effects on Earth's rotation at periods less than fortnightly cannot exceed 2%.

  6. Barometric and Earth Tide Correction

    Energy Science and Technology Software Center (ESTSC)

    2005-11-10

    BETCO corrects for barometric and earth tide effects in long-term water level records. A regression deconvolution method is used ot solve a series of linear equations to determine an impulse response function for the well pressure head. Using the response function, a pressure head correction is calculated and applied.

  7. The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    1993-01-01

    The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.

  8. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    NASA Technical Reports Server (NTRS)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  9. Effect of Long-Period Ocean Tides on the Earth's Polar Motion

    NASA Technical Reports Server (NTRS)

    Gross, R. S.; Chao, B. F.; Desai, S. D.

    1997-01-01

    The second-degree zonal tide raising potential is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans.

  10. On the effect of ocean tides and tesseral harmonics on spacecraft flybys of the Earth

    NASA Astrophysics Data System (ADS)

    Acedo, L.

    2016-09-01

    The so-called flyby anomaly has encouraged several authors to analyze in detail the minor perturbative contributions to the trajectory of spacecraft performing a flyby manoeuvre. This anomaly consist of an unexplained increase or decrease of the asymptotic velocity of the spacecraft after a flyby of the Earth in the range of a few mm per second. Some order of magnitude estimations have been performed in recent years to dismiss many possible conventional effects as the source of such an anomaly but no explanation has been found yet. In this paper we perform a study of the perturbation induced by ocean tides in a flybying spacecraft by considering the time dependence of the location of the high tide as the Moon follows its orbit. We show that this effect implies a change of the spacecraft velocity of a few micrometers per second. We also consider the coupling of tesseral harmonics inhomogeneities and the rotation of the Earth and its impact of the spacecraft outgoing velocity. Significant corrections to the observed asymptotic velocities are found in this case but neither their sign nor their magnitude coincide with the anomalies. So, we can also rule this out as a conventional explanation.

  11. The effect of error in theoretical Earth tide on calibration of borehole strainmeters

    USGS Publications Warehouse

    Langbein, John

    2010-01-01

    Since the installation of borehole strainmeters into the ground locally distorts the strain in the rock, these strainmeters require calibration from a known source which typically is the Earth tide. Consequently, the accuracy of the observed strain changes from borehole strainmeters depends upon the calibration derived from modeling the Earth tide. Previous work from the mid-1970s, which is replicated here, demonstrate that the theoretical tide can differ by 30% from the tide observed at surface-mounted, long-baseline strainmeters. In spite of possible inaccurate tidal models, many of the 74 borehole strainmeters installed since 2005 can be “calibrated”. However, inaccurate tidal models affect the amplitude and phase of observed transient strain changes which needs to be considered along with the precision of the data from the inherent drift of these borehole instruments. In particular, the error from inaccurate tidal model dominates the error budget in the observation of impulsive, sub-daily, strain-transients.

  12. How do earth tides affect astronomers?

    NASA Technical Reports Server (NTRS)

    Sasao, T.

    1978-01-01

    Earth tides affect astronomical observations of the Earth's rotation in the following two ways: (1) verticals are deflected; and (2) the polar moment of inertia of the Earth is changed causing periodic variations in the rotation rate. The diurnal and semidiurnal tides and nutation were examined in periodic variations. Results indicate little change occured in the polar motions. Nutation observations were disturbed rather seriously by the diurnal tides.

  13. (abstract) Effect of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, R. S.; Chao, B. F.; Desai, S.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and extensively examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported.

  14. Ocean tide models for satellite geodesy and Earth rotation

    NASA Technical Reports Server (NTRS)

    Dickman, Steven R.

    1991-01-01

    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  15. Tide effects removed from well tests

    SciTech Connect

    Aase, E.P.B.; Jelmert, T.A.; Vik, S.A.

    1995-05-01

    To avoid distorted data when analyzing well pressure tests of permeable offshore reservoirs, one needs to account for periodic ocean tidal stress. Quartz-crystal bottom hole pressure recorders provide a high resolution of reservoir pressure but also measures pressure fluctuations from tidal effects during well testing. Periodic oscillations in the reservoir pressure are due to the three mechanisms: solid earth tide; barometric tide/effect; and ocean tide. The paper uses sample data from an offshore reservoir to illustrate how tide effects can be identified in the data and the correction procedure to use to remove these effects.

  16. Global Earth Response to Loading by Ocean Tide Models

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  17. Nonlinearity in rock - Evidence from earth tides

    NASA Technical Reports Server (NTRS)

    Agnew, D. C.

    1981-01-01

    The earth is sinusoidally stressed by tidal forces; if the stress-strain relation for rock is nonlinear, energy should appear in an earth tide record at frequencies which are multiples of those of the larger tidal lines. An examination of the signals to be expected for different nonlinear deformation laws shows that for a nonlinear response without dissipation, the largest anomalous signal should occur at twice the forcing frequency, whereas for nonlinear laws involving dissipation (cusped hysteresis loops) the anomalous signal will be greatest at three times this frequency. The size of the signal in the dissipative case depends on the amount by which dissipation affects the particular response being measured. For measurements of strain tides this depends on whether dissipation is assumed to be present throughout the earth or localized around the point of measurement. An analysis of 5.7 years of strain tide records from Pinon Flat, California, shows a small signal at twice the frequency of the largest (M2) tide.

  18. Fracture characterization using Earth tide analysis

    NASA Astrophysics Data System (ADS)

    Burbey, Thomas J.

    2010-01-01

    SummaryWells tapping confined aquifer systems are known to commonly produce water-level fluctuations caused by strain-induced Earth tides. In this investigation, a straightforward methodology is presented for quantifying the specific storage and secondary porosity of a fractured fault-zone aquifer system using Earth tides. Water-level and barometric pressure head data are smoothed and then filtered to remove low frequency responses. The resulting tidal signals are used in the program BAYTAP-G to yield amplitude and phase shifts of all the major tidal groups. The resulting tidal parameters can be used to compute the time-dependent volumetric strain caused by the M 2 and O 1 tides. Stress-strain hysteresis loops are produced when the reduced water levels are compared to the volumetric strain induced by these tides. For amplification factors near unity (representing the ratio of pressure response to tidal loading in the fracture to water-level response in the well) the slopes of the loops represent the specific storage of the fracture. The barometric efficiency and specific storage can then be used to estimate a secondary porosity and other parameters of the aquifer system. This analysis was carried out at the Fractured Rock research Site (FRS) in the Blue Ridge Physiographic Province in Floyd County, Virginia.

  19. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii.

    USGS Publications Warehouse

    Dzurisin, D.

    1980-01-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs. 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.-Author

  20. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii

    SciTech Connect

    Dzurisin, D.

    1980-11-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.

  1. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  2. Fortnightly Ocean Tides, Earth Rotation, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard; Egbert, Gary

    2012-01-01

    The fortnightly Mf ocean tide is the largest of the long-period tides (periods between 1 week and 18.6 years), but Mf is still very small, generally 2 cm or less. All long-period tides are thought to be near equilibrium with the astronomical tidal potential, with an almost pure zonal structure. However, several lines of evidence point to Mf having a significant dynamic response to forcing. We use a combination of numerical modeling, satellite altimetry, and observations of polar motion to determine the Mf ocean tide and to place constraints on certain global properties, such as angular momentum. Polar motion provides the only constraints on Mf tidal currents. With a model of the Mf ocean tide in hand, we use it to remove the effects of the ocean from estimates of fortnightly variations in length-of-day. The latter is dominated by the earth's body tide, but a small residual allows us to place new constraints on the anelasticity of the earth's mantle. The result gives the first experimental confirmation of theoretical predictions made by Wahr and Bergen in 1986.

  3. What can earth tide measurements tell us about ocean tides or earth structure?

    NASA Technical Reports Server (NTRS)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  4. Estimating Hydraulic Properties of the Floridan Aquifer System by Analysis of Earth-Tide, Ocean-Tide, and Barometric Effects, Collier and Hendry Counties, Florida

    USGS Publications Warehouse

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied. An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem. A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the

  5. Observing atmospheric tides in Earth rotation parameters with VLBI

    NASA Astrophysics Data System (ADS)

    Girdiuk, Anastasiia; Böhm, Johannes; Schindelegger, Michael

    2015-04-01

    In this study, we assess the contribution of diurnal (S1) and semi-diurnal (S2) atmospheric tides to variations in Earth rotation by analyzing Very Long Baseline Interferometry (VLBI) observations. Particular emphasis is placed on the dependency of S1 and S2 estimates on varying settings in the a priori delay model. We use hourly Earth rotation parameters (ERP) of polar motion and UT1 as determined with the Vienna VLBI Software (VieVS) from 25 years of VLBI observations and we adjust diurnal and semi-diurnal amplitudes to the hourly ERP estimates after disregarding the effect of high-frequency ocean tides. Prograde and retrograde polar motion coefficients are obtained for several solutions differing in processing strategies (with/without thermal deformation, time span of observations, choice of a priori ERP model and celestial pole offsets) and we compare the corresponding harmonics with those derived from atmospheric and non-tidal oceanic angular momentum estimates.

  6. Constraints on Energy Dissipation in the Earth's Body Tide From Satellite Tracking and Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Eanes, Richard J.; Lemoine, Frank G.

    1992-01-01

    The phase lag by which the earth's body tide follows the tidal potential is estimated for the principal lunar semidiurnal tide M(sub 2). The estimate results from combining recent tidal solutions from satellite tracking data and from Topex/Poseidon satellite altimeter data. Each data type is sensitive to the body-tide lag: gravitationally for the tracking data, geometrically for the altimetry. Allowance is made for the lunar atmospheric tide. For the tidal potential Love number kappa(sub 2) we obtain a lag epsilon of 0.20 deg +/- 0.05 deg, implying an effective body-tide Q of 280 and body-tide energy dissipation of 110 +/- 25 gigawatts.

  7. Interpretation of earth tide response of three deep, confined aquifers

    SciTech Connect

    Narasimhan, T.N.; Kanehiro, B.Y.; Witherspoon, P.A.

    1984-03-10

    The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. Moreover, since specific storage S/sub s/ quantifies a drained behavior of the porous medium, one cannot directly estimate S/sub s/from earth tide response. Except for the fact that barometric changes act both on the water surface in the well and on the aquifer as a whole while stress changes associated with earth tides act only in the aquifer, the two phenomena influence the confined aquifer in much the same way. In other words, barometric response contains only as much information on the elastic properties of the aquifer as the earth tide response does. Factors such as well bore storage, aquifer transmissivity, and storage coefficient contribute to time lag and damping of the aquifer response as observed in the well. Analysis shows that the observation of fluid pressure changes alone, without concurrent measurement of external stress changes, is sufficient to interpret uniquely earth tide response. In the present work, change in external stress is estimated from dilatation by assuming a reasonable value for bulk modulus. Earth tide response of geothermal aquifers from Marysville, Montana. East Mesa, California; and Raft River Valley, Idaho, were analyzed, and the ratio of S/sub 3/ to porosity was estimated. Comparison of these estimates with independent pumping tests show reasonable agreement.

  8. The Global S_1 Tide in Earth's Nutation

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Einšpigel, David; Salstein, David; Böhm, Johannes

    2016-05-01

    Diurnal S_1 tidal oscillations in the coupled atmosphere-ocean system induce small perturbations of Earth's prograde annual nutation, but matching geophysical model estimates of this Sun-synchronous rotation signal with the observed effect in geodetic Very Long Baseline Interferometry (VLBI) data has thus far been elusive. The present study assesses the problem from a geophysical model perspective, using four modern-day atmospheric assimilation systems and a consistently forced barotropic ocean model that dissipates its energy excess in the global abyssal ocean through a parameterized tidal conversion scheme. The use of contemporary meteorological data does, however, not guarantee accurate nutation estimates per se; two of the probed datasets produce atmosphere-ocean-driven S_1 terms that deviate by more than 30 μ as (microarcseconds) from the VLBI-observed harmonic of -16.2+i113.4 μ as. Partial deficiencies of these models in the diurnal band are also borne out by a validation of the air pressure tide against barometric in situ estimates as well as comparisons of simulated sea surface elevations with a global network of S_1 tide gauge determinations. Credence is lent to the global S_1 tide derived from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and the operational model of the European Centre for Medium-Range Weather Forecasts (ECMWF). When averaged over a temporal range of 2004 to 2013, their nutation contributions are estimated to be -8.0+i106.0 μ as (MERRA) and -9.4+i121.8 μ as (ECMWF operational), thus being virtually equivalent with the VLBI estimate. This remarkably close agreement will likely aid forthcoming nutation theories in their unambiguous a priori account of Earth's prograde annual celestial motion.

  9. Earth tides, volcanos and climatic change

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Harrington, R. S.; Giles, J.; Browning, I.

    1976-01-01

    The effect of variations in tidal stresses on the earth caused by the sun and moon on volcanic activity and climate is investigated. A statistically significant correlation is found between the derivatives of the envelopes of peak tidal stresses at high northern latitudes and the mean temperature of the Northern Hemisphere as reflected in oxygen isotope ratios in the Greenland ice cap. It is suggested that variations in tidal stresses cause changes in the amount of stratospheric dust produced by volcanic activity, which affects the thickness of the stratospheric dust veil and the atmospheric radiation balance. For a simple model, periodic variations in tidal stress account for 13% of the variance in the ice-core temperature record.

  10. Transforming Instructional Designs in Earth Science (TIDES)

    NASA Astrophysics Data System (ADS)

    McWilliams, H.; McAuliffe, C.; Penuel, W.

    2008-12-01

    An enduring challenge in Earth system science education has been to prepare teachers to teach for deep understanding of subject matter. Standards and trade textbooks are often too broad to allow for in-depth treatment of specific topics, and many teachers have had limited exposure to how to plan instruction for the core concepts of Earth system science they are expected to teach. High-quality curriculum materials do exist that provide young people with opportunities to explore concepts in depth and to experience the inquiry process. At the same time, few programs provide teachers with the necessary skills and knowledge to enact and adapt those materials to the unique circumstances of their classrooms and schools. Our interdisciplinary team of curriculum and staff developers, researchers, and district personnel developed a program focused on preparing teachers to use a principled approach to curriculum adaptation in Earth system science. In this program, teachers learned how to use the Understanding by Design (UbD) approach developed by Grant Wiggins and Jay McTighe to organize and adapt materials from an expert-designed curriculum. As part of the program, teachers learn to select or modify materials from the curriculum based on how likely the materials are to develop so-called "enduring understandings" of concepts in the district standards. Teachers also learn how to apply the approach in incorporating materials from other sources besides the expert-designed curriculum, which can include their textbook and materials they design on their own or with colleagues. Third, teachers learn how to collect and interpret evidence of student understanding by designing or adapting performance tasks that call for students to apply knowledge acquired during the unit to solve a problem or complete a project. Evidence from a randomized controlled trial indicates the program we created is effective in improving the quality of teacher assignments and in improving student achievement

  11. Body tides on an elliptical rotating earth

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.

    1978-01-01

    The complete tidal response of an elliptical, rotating, elastic Earth is found to contain small displacements which do not fit into the conventional Love number framework. Corresponding observable tidal quantities (gravity, tilt, strain, Eulerian potential, etc.) are modified by the addition of small latitude dependent terms.

  12. Patterns of earthquakes and the effect of solid earth and ocean load tides at Mount St. Helens prior to the May 18, 1980, eruption

    SciTech Connect

    McNutt, S.R.; Beavan, R.J.

    1984-05-10

    Seismographs near Mount St. Helens Volcano recorded an earthquake swarm lasting nearly 2 months prior to the May 18, 1980, eruption. The earthquakes are divided into four classes based on station CPW (..delta.. = 116 km) seismogram characteristics: (1) events with Sv:P amplitude ratio > 3 and dominant frequency > 3 Hz; (2) events with Sv:P ratio between 1 and 3 and dominant frequency > 2 Hz; (3) events similar to characteristic 2 but with a strong (probably surface wave) phase just after the S phase; and (4) events with frequencies between 1 and 2 Hz lacking a clear S phase. The seismicity pattern for each of the four classes is unique. Solid earth stress and strain tides were calculated at the average hypocentral depth of 4 km. Stress and strain tides induced by ocean loading were also calculated; their amplitudes are typically 20-40% those of the solid earth tides at the location of Mount St. Helens. A weak but significant correlation exists between the latter two classes of events and the tides for a time interval of about 5 days preceding the first onset of volcanic tremor and about 5 days thereafter. The polarity of the correlation is opposite for the two classes of events. In each case, the phase of the correlation changes systematically with time, the changes coinciding with the onset of tremor on March 31 and with a pronounced decrease in earthquake energy release rate on April 3. There are no significant correlations between the tides and the number of events or energy release of these two classes of earthquakes during any other interval between March 20 and May 18, 1980. The first two classes of events show no evidence of significant tidal correlation at any time during the study period. 20 references, 8 figures, 2 tables.

  13. Earth tides observed by gravimeter and GPS in Juneau, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Sato, T.; Miura, S.; Ohta, Y.; Fujimoto, H.; Sun, W.; Larsen, C.; Heavner, M.; Kaufman, A. M.; Freymueller, J. T.

    2007-12-01

    We have analyzed the gravity data obtained at the Egan Library of University of Alaska, Southeast (UAS) and the GPS data obtained at a PBO site in Juneau, and we compared the obtained tidal amplitudes and phases with those estimated from the predicted tides including both effects of the body tide and ocean tide. To improve the accuracy in prediction, we also computed the regional ocean tide model in Southeastern Alaska (SE-AK). Our comparison results suggest; (1) By taking into account the ocean tide effect including the regional ocean tide model, the amplitude differences between the observation and the predicted body tide is remarkably reduced for both the gravity and displacement tides (e.g. for the M2 constituent, 8.04 microGal to 0.02 microGal (1 microGal=1E-8 m/s/s), and 2.43 cm to the order of 0.01 cm for the vertical displacement), (2) The PPP method (Zumberge et al., 1997) used to extract the tidal signals from the original GPS time series works well to recover the tidal signals. Although the GPS analysis results still contain the noises which may be considered to be the meteorological effects, we may conclude that the GPS observation surely detects the tidal signals with the sub cm accuracy or better for some of the tidal constituents. The viscoelastic effect in gravity tides is estimated to be the order of 0.05 ?Gal for the M2 constituent in Juneau. The magnitude is equivalent to the analysis error for our gravity data. Increasing the accuracy of calibration of the gravimeter and the regional ocean model in SE-AK is needed to constrain the Earth's viscoelastic response to the tidal force tightly.

  14. Response of well aquifer systems to earth tides: problem revisited

    USGS Publications Warehouse

    Hsieh, P.A.; Bredehoeft, J.D.; Rojstaczer, S.A.

    1988-01-01

    Re-examines Bredehoeft's analysis of earthtide response of water wells. Narasimhan et al suggest that Bredehoeft's analysis is internally inconsistent, that one cannot directly estimate the specific storage, which characterizes the drained behavior of a porous medium, from earth tide response, which is an undrained phenomenon. Here it is shown that Bredehoeft's analysis is internally consistent, and that it is possible to determine the specific storage from undrained loading. -from Authors

  15. Tidal Tomography: Constraining Long-Wavelength Deep Mantle Structure Using Earth's Body Tide Signal

    NASA Astrophysics Data System (ADS)

    Lau, H. C. P.; Yang, H. Y.; Tromp, J.; Mitrovica, J. X.; Davis, J. L.; Latychev, K.

    2014-12-01

    Luni-solar gravitational forcing drives the Earth's body-tide response over periods ranging from 8 hours to 18.6 years, a timespan that extends far beyond the seismic band. A finite volume numerical study of body tides in the semi-diurnal (SD) band by Latychev et al. (2008; EPSL) demonstrated that aspherical density and elastic structure inferred from seismic tomography perturbed the radial crustal displacement response by ~1 mm, a level at which they can be observed with modern space-geodetic inferences of body tide signals (Yuan et al., 2012; EPSL). Thus, site-specific estimates of the body-tide response to the known luni-solar forcing potentially provides a new, independent and powerful method for probing long-wavelength, deep mantle structure. To this end, we have used advances in seismic free oscillation theory to derive a new normal mode treatment of the SD body tide response of an aspherical, rotating and anelastic Earth. The accuracy of the theory is demonstrated by benchmarking our body tide predictions against both finite volume treatments of aspherical structure and previous theoretical and observational constraints on the effects of anelasticity. We begin by summarizing these results, as well as a series of synthetic tests that indicate that the body tide response is particularly sensitive to long wavelength, deep mantle structure - a sensitivity that is ideal for investigating the elastic and density structure of the two large low shear velocity provinces (LLSVPs) that exist below the Pacific and southern Africa. Finally, we also present results from a first tidal analysis of the integrated density of the LLSVPs and discuss the implications of these results for the ongoing debate concerning the relative size of thermal and chemical effects on these structures, their net buoyancy and longevity.

  16. Linear and nonlinear interactions between the earth tide and a tectonically stressed earth

    NASA Technical Reports Server (NTRS)

    Beaumont, C.

    1978-01-01

    In the vincinity of earthquake focal regions, conditions may not be equal. Crustal rocks stressed to more than approximately 0.6 of their failure strength exhibit material properties over and above that of linear elasticity. Interactions between the earth tide and crustal rocks that are under high tectonic stress are discussed in terms of simple phenomenological models. In particular, the difference between a nonlinear elastic model of dilatancy and a dilatancy model that exhibits hysteresis is noted. It is concluded that the small changes in stress produced by the earth tide act as a probe of the properties of crustal rocks. Observations of earth tide tilts and strains in such high stress zones may, therefore, provide keys to the constitutive properties and the tectonic stress rate tensor of these zones.

  17. Geodynamic Effects of Ocean Tides: Progress and Problems

    NASA Technical Reports Server (NTRS)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  18. Electrodynamic System of Earth in Moon and Solar Tides Investigation

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Isakevich, Valiriy

    Since 2000 there has been working the united system of monitoring of electrical and geomagnetic fields of ELF range of the atmosphere boundary surface layer at the spaced apart stations: Vladimir State physical experimental ground; the station of RAS Institute of Sun and Earth physics at Lake Baikal; the station in Paratunka (Kamchatka); the station in Obninsk. There has been developed a programme-analytical system (PAS) to investigate signal structures in spectral and time series, caused by geophysical and astrophysical processes based on the method of eigen vectors. There has been developed a programme and analytical system to investigate the signal structure in the spectral and time series caused by geophysical processes. There has been estimated the amplitude and investigated the properties of the Earth atmosphere boundary layer electrical field components localized spectrally at the frequencies of the moon and solar tides. There has been exposed a method of determination of relative and absolute amplitudes of the main components of the eigen series. There has been investigated coherence of the spectral components at the frequencies of solar and moon tides. The work is carried out with supporting of RFFI № 14-07-97510, State Task to Universities on 2014-2016.

  19. Measurement of the Earth tides with a MEMS gravimeter.

    PubMed

    Middlemiss, R P; Samarelli, A; Paul, D J; Hough, J; Rowan, S; Hammond, G D

    2016-03-31

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz(1/2)): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth's crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz(1/2) only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers--found in most smart phones--can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays. PMID:27029276

  20. Comments on "Fortnightly Earth rotation, ocean tides, and mantle anelasticity" by R.D. Ray and G.D. Egbert

    NASA Astrophysics Data System (ADS)

    Dickman, S. R.

    2013-03-01

    Ray & Egbert use Earth rotation observations and ocean tide models to infer the extent of mantle anelasticity at a fortnightly period. However, their preferred fortnightly tide model, which was obtained through a frictional recalibration procedure, exhibits unusually intense tidal currents; these may be a consequence of Ray & Egbert having considered only a limited range of bottom friction strength. The extent of anelasticity is deduced from the tide's effect on the length of day; but their estimate is rendered uncertain because the possibility that the tide model does not conserve global ocean mass has not been addressed. Finally, their quantification of anelasticity, which uses a power law model of the dependence of Q on frequency, might yield a more consistent mantle Q at the fortnightly period if their tide model employed greater bottom friction. For all these reasons their inferences of mantle anelasticity should be considered preliminary.

  1. Effects of lunar-solar tides in the variations of geophysical fields at the boundary between the Earth's crust and the atmosphere

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.; Spivak, A. A.; Kharlamov, V. A.

    2012-02-01

    Extraterrestrial forcing of natural environmental processes by gravitational interaction between the Sun, the Moon, and the Earth is considered. Based on the instrumental data, the main periodical components and cycles are identified in the time variations of some geophysical fields at the boundary between the Earth's crust and the atmosphere. Correlation analysis shows that the lunar-solar tides are the key factor responsible for diurnal and quasi-biweekly variations in the ground electric field, radon emanation, water level in wells, and microseismic vibrations. The tidal influence on the various-scale movements of the blocks of the Earth's crust is analyzed. In the context of the vertical, lateral, and rotational motion of crustal blocks, which is very important for the platforms, a new, precession-like type of displacements is revealed. These movements develop as a result of the nonsynchronous tidal responses of the block and the adjacent interblock gaps or tectonic structures whose strength and strain properties are different in different directions.

  2. Measurement of the Earth tides with a MEMS gravimeter

    NASA Astrophysics Data System (ADS)

    Middlemiss, R. P.; Samarelli, A.; Paul, D. J.; Hough, J.; Rowan, S.; Hammond, G. D.

    2016-03-01

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz1/2): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth’s crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz1/2 only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers—found in most smart phones—can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

  3. Subsurface Tiltmeter Observations of Solid Earth Tides and Rock Excavation in Northeastern Illinois

    NASA Astrophysics Data System (ADS)

    Lancelle, C.; Volk, J.; Fratta, D.; Wang, H. F.

    2013-12-01

    Tiltmeter arrays in the Main Injector Neutrino Oscillation Search (MINOS) Near Detector Hall at Fermilab and the Lafarge - Conco Mine record solid earth tides and mechanical unloading due to excavation. The arrays are located approximately 100 meters underground in the Galena-Platteville dolomite in Northeastern Illinois. Just off of the MINOS Near Detector Hall a new cavern was excavated to house the Off-axis Neutrino Appearance Experiment (NOvA) program near detector. The recorded excavation response in the MINOS Near Detector Hall due to the NOvA cavern excavation is approximately thirteen times a point-load estimated response calculated using laboratory-determined properties. This discrepancy is likely due to variations in Young's Modulus in the rock in a field versus laboratory scale, although seasonal effects causing long term trends in the data could be part of this response. Amplitudes of measured solid earth tides differ from the amplitudes of theoretical solid earth tides by up to 40 percent for both arrays. This is likely due to a local heterogeneity or discontinuity.

  4. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  5. The influence of ocean and solid earth parameters on oceanic eigenoscillations, tides and tidal dissipation

    NASA Astrophysics Data System (ADS)

    Zahel, Wilfried

    A model of tidal waves and normal modes in a hemispherical ocean is given with the dependent variables expanded in terms of spherical harmonics to investigate the influence of ocean- and solid-earth parameters on the quantities relevant to secular variations in earth rotation. Comparisons with the results obtained by realistic models considering loading and self-attraction and being forced by the tidal potential solely, show that principal features of the tides in the North Pacific, total rates of energy dissipation and contents, and specific loading and self-attraction effects in the ocean also appear when the hemispherical model is applied. For individual near-resonance tidal constituents the rate of tidal power can be reduced or enhanced by more than a factor two, thus indicating the possibility of important consequences of solid earth response for variations in earth rotation.

  6. Numerical simulation of short period Earth rotation variations induced by ocean tides

    NASA Astrophysics Data System (ADS)

    Goss, Andreas; Schindelegger, Michael; Seitz, Florian

    2016-04-01

    The Dynamic Model for Earth Rotation and Gravity (DyMEG) has been used in several previous studies for the numerical simulation of Earth rotation (polar motion and length-of-day) on time scales from seasons to decades. Our current activities aim at the extension of the model and its application for the simulation of high frequency Earth rotation signals with periods of a few hours up to several days. This requires several model adaptations, such as the incorporation of additional excitation mechanisms as well as the identification and implementation of an appropriate numerical integrator. Here we particularly focus on the effect of ocean tides as they - due to their strictly periodic signal characteristics - provide a good possibility to evaluate the performance of the model and to detect potential computational problems. Secondary effects due to atmospheric and non-tidal oceanic influences are incorporated as well. We validate the simulated polar motion and length-of-day time series against hourly GNSS (Global Navigation Satellite System) data and conventional ocean tide routines of the IERS (International Earth Rotation and Reference Systems Service).

  7. Polar motion and earth tides from Beacon Explorer C

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, D. E.; Smith, D. E.; Dunn, P. J.

    1973-01-01

    Seventeen months of laser tracking of the Beacon Explorer C spacecraft by a Goddard Space Flight Center laser system were analyzed. The amplitude and phase of the solid-earth and ocean-tide perturbations of the orbit and the variation in latitude of the tracking station were determined. From an analysis of the orbital inclination obtained from 6 hour data spans the tidal perturbations of the orbit were found to have a magnitude equivalent to a second degree Love number, k sub 2, of 0.245 with a phase lag of about 3.2 degrees. These numbers are in complete agreement with values obtained previously from a much shorter data span, although k sub 2, is lower than the value derived from seismic data. This discrepancy is probably due to the influence of the oceans on the satellite result. After removing the tidal perturbations the residuals in inclination were of order 0.04 arcseconds. This implies that the variation in latitude of the station was being determined during the 17 months period with an rms deviation of about 1.4 meters with respect to the smoothed Bureau International de l'Heure values.

  8. Strong correlation of major earthquakes with solid-earth tides in part of the eastern United States

    USGS Publications Warehouse

    Weems, R.E.; Perry, W.H., Jr.

    1989-01-01

    East of the eastern American continental divide and south of lat. 42.5??N, moderate to large historic earthquakes correlate strongly with times of high and low solid-earth tides. This effect is most pronounced when solar declination lies between 17??N and 17??S. Significant correlation also exist between major earthquakes, time of day, lunar declinations, and lunar phase. -Authors

  9. Global charts of ocean tide loading effects

    SciTech Connect

    Francis, O.; Mazzega, P. )

    1990-07-15

    Global ocean tide loading charts of the radial displacement, the potential divided by g (gravity acceleration), and the gravity effect have been computed using the 11 constituents M{sub 2}, S{sub 2}, N{sub 2}, K{sub 2}K{sub 1}, O{sub 1}, P{sub 1}, Q{sub 1}, M{sub f}, M{sub m}, S{sub s a} of Schwiderski's tidal model. These new charts have a resolution of 1{degree}{times}1{degree} on the continents as well as on the oceanic area. A description of Farrell's convolution method to compute the loading effects is given, and an estimate of the numerical errors leads to the conclusion that these global charts have a precision better than 2.5% independent of the accuracy of Schwiderski's maps. The current approximation of the loading effects by a proportionality relation with the local oceanic tides is also compared with Farrell's convolution method. Departures of several centimeters systematically appear, in particular over the continental shelves. The authors then show that the maps of the oceanic tides deduced from satellite altimetry could be corrected for the loading effect by an iterative computational procedure based on their algorithm of Farrell's convolution.

  10. A normal mode treatment of semi-diurnal body tides on an aspherical, rotating and anelastic Earth

    NASA Astrophysics Data System (ADS)

    Lau, Harriet C. P.; Yang, Hsin-Ying; Tromp, Jeroen; Mitrovica, Jerry X.; Latychev, Konstantin; Al-Attar, David

    2015-08-01

    Normal mode treatments of the Earth's body tide response were developed in the 1980s to account for the effects of Earth rotation, ellipticity, anelasticity and resonant excitation within the diurnal band. Recent space-geodetic measurements of the Earth's crustal displacement in response to luni-solar tidal forcings have revealed geographical variations that are indicative of aspherical deep mantle structure, thus providing a novel data set for constraining deep mantle elastic and density structure. In light of this, we make use of advances in seismic free oscillation literature to develop a new, generalized normal mode theory for the tidal response within the semi-diurnal and long-period tidal band. Our theory involves a perturbation method that permits an efficient calculation of the impact of aspherical structure on the tidal response. In addition, we introduce a normal mode treatment of anelasticity that is distinct from both earlier work in body tides and the approach adopted in free oscillation seismology. We present several simple numerical applications of the new theory. First, we compute the tidal response of a spherically symmetric, non-rotating, elastic and isotropic Earth model and demonstrate that our predictions match those based on standard Love number theory. Second, we compute perturbations to this response associated with mantle anelasticity and demonstrate that the usual set of seismic modes adopted for this purpose must be augmented by a family of relaxation modes to accurately capture the full effect of anelasticity on the body tide response. Finally, we explore aspherical effects including rotation and we benchmark results from several illustrative case studies of aspherical Earth structure against independent finite-volume numerical calculations of the semi-diurnal body tide response. These tests confirm the accuracy of the normal mode methodology to at least the level of numerical error in the finite-volume predictions. They also demonstrate

  11. The influence of ocean and solid earth parameters on oceanic eigenoscillations, tides and tidal dissipation

    NASA Astrophysics Data System (ADS)

    Zahel, Wilfried

    A model of tidal waves and normal modes in a hemispherical ocean is given with the dependent variables expanded in terms of spherical harmonics and with the objective to investigate in particular the influence of ocean and solid Earth parameters on the quantities relevant to secular variations in Earth rotation. Comparisons with the results obtained by realistic models considering loading and self-attraction and being forced by the tidal potential solely, show that principal features of the tides in the North Pacific, total rates of energy dissipation and contents, and specific loading and self-attraction effects in the ocean also appear when the hemispherical model is applied. Computing the normal modes which determine tidal resonances and computing the response to Y2-1 and Y2-2 spherical harmonic tidal potentials over a broad range of periods yields essential effects of loading and self-attraction in the ocean within the complete range of realistic parameter values. For individual near-resonance tidal constituents the rate of tidal power, e.g., can be reduced or enhanced by more than a factor two, thus indicating the possibility of important consequences of solid Earth response for variations in Earth rotation.

  12. A study on variation in position of an Indian station due to solid earth tides

    NASA Astrophysics Data System (ADS)

    Ghosh, Jayanta Kumar; Pathak, Shray

    2015-04-01

    In many geodetic analyses, it is important to consider the effect of earth tide on the instantaneous position of a station and its subsequent influence on the computation and interpretation of time series of coordinates as well as related data products. The tidal effect and temporal variations in the position of the IGS (International Global Navigational Satellite Systems [GNSS] Service) stations at Hyderabad (India), Ankara (Turkey) and Beijing Fangshan (China), due to solid earth tides has been studied. Surface tidal displacement of the station has been computed on daily basis for a month, based on the concept of gravity. Further, mean daily coordinates of the station been computed using static precise point positioning (PPP) method for a month. Results show that the station undergoes temporal displacements and its coordinates vary continuously within a day and all the days in the month. The maximum range in vertical displacement of the station has been found to be about 48 cm in a day over a period of a month and that along the north and east directions is respectively 8 cm and 14 cm. This is the maximum range but the mean value in the vertical displacement is 6 cm and along north and east is 1.7 cm and 0.09 cm, respectively. The ranges in variation in the mean value of geodetic latitude, longitude, and height of the station have been found to be 1.23, 2.73, and 3.52 cm, respectively. Further, it has been found that the tidal oscillations follow some periodicity, and thus need to be studied independently for all stations.

  13. Loading effect of a self-consistent equilibrium ocean pole tide on the gravimetric parameters of the gravity pole tides at superconducting gravimeter stations

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Ducarme, Bernard; Sun, Heping; Xu, Jianqiao

    2008-05-01

    The gravimetric parameters of the gravity pole tide are the amplitude factor δ, which is the ratio of gravity variations induced by polar motion for a real Earth to variations computed for a rigid one, and the phase difference κ between the observed and the rigid gravity pole tide. They can be estimated from the records of superconducting gravimeters (SGs). However, they are affected by the loading effect of the ocean pole tide. Recent results from TOPEX/Poseidon (TP) altimeter confirm that the ocean pole tide has a self-consistent equilibrium response. Accordingly, we calculate the gravity loading effects as well as their influence on the gravimetric parameters of gravity pole tide at all the 26 SG stations in the world on the assumption of a self-consistent equilibrium ocean pole tide model. The gravity loading effect is evaluated between 1 January 1997 and 31 December 2006. Numerical results show that the amplitude of the gravity loading effect reaches 10 -9 m s -2, which is larger than the accuracy (10 -10 m s -2) of a SG. The gravimetric factor δ is 1% larger at all SG stations. Then, the contribution of a self-consistent ocean pole tide to the pole tide gravimetric parameters cannot be ignored as it exceeds the current accuracy of the estimation of the pole tide gravity factors. For the nine stations studied in Ducarme et al. [Ducarme, B., Venedikov, A.P., Arnoso, J., et al., 2006. Global analysis of the GGP superconducting gravimeters network for the estimation of the pole tide gravimetric amplitude factor. J. Geodyn. 41, 334-344.], the mean of the modeled tidal factors δm = 1.1813 agrees very well with the result of a global analysis δCH = 1.1816 ± 0.0047 in that paper. On the other hand, the modeled phase difference κm varies from -0.273° to 0.351°. Comparing to the two main periods of the gravity pole tide, annual period and Chandler period, κm is too small to be considered. Therefore, The computed time difference κL induced by a self

  14. Kingdom of the Tides.

    ERIC Educational Resources Information Center

    Carter, Samuel, III

    Areas of discussion are the history of tides, the forces which exert an influence upon the earth's tides, the behavior of tides as modified by terrestrial features, "freak" behavior of tides, the marine life which inhabits tidal areas, the manner in which tides have helped to shape the course of history, how tides affect our lives on a day to day…

  15. Ocean tidal effects on Earth rotation

    NASA Astrophysics Data System (ADS)

    Gross, Richard S.

    2009-12-01

    Tidal forces due to the tide-raising potential deform the solid and fluid regions of the Earth, causing the Earth's inertia tensor to change, and hence causing the Earth's rate of rotation and length-of-day to change. Because both the tide-raising potential and the solid Earth's elastic response to the tidal forces caused by this potential are well-known, accurate models for the effects of the elastic solid body tides on the Earth's rotation are available. However, models for the effect of the ocean tides on the Earth's rotation are more problematic because of the need to model the dynamic response of the oceans to the tidal forces. Hydrodynamic ocean tide models that have recently become available are evaluated here for their ability to account for long-period ocean tidal signals in length-of-day observations. Of the models tested here, the older altimetric data-constrained model of Kantha et al. (1998) is shown to still do the best job of accounting for ocean tidal effects in length-of-day, particularly at the fortnightly tidal frequency. The model currently recommended by the IERS is shown to do the worst job.

  16. Overview of Aerosolized Florida Red Tide Toxins: Exposures and Effects

    PubMed Central

    Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.

    2005-01-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins. PMID:15866773

  17. Tides of the British Seas

    ERIC Educational Resources Information Center

    Sandon, Frank

    1975-01-01

    Examines the gravitational effects and the way that local conditions interact with these effects to produce the tides characteristic of the British seas. Presents some effects of tides including the possibility of harnessing tidal energy and the effect of tidal friction on the use of the earth as a clock. (GS)

  18. High-frequency Earth rotation variations deduced from altimetry-based ocean tides

    NASA Astrophysics Data System (ADS)

    Madzak, Matthias; Schindelegger, Michael; Böhm, Johannes; Bosch, Wolfgang; Hagedoorn, Jan

    2016-06-01

    A model of diurnal and semi-diurnal variations in Earth rotation parameters (ERP) is constructed based on altimetry-measured tidal heights from a multi-mission empirical ocean tide solution. Barotropic currents contributing to relative angular momentum changes are estimated for nine major tides in a global inversion algorithm that solves the two-dimensional momentum equations on a regular 0.5° grid with a heavily weighted continuity constraint. The influence of 19 minor tides is accounted for by linear admittance interpolation of ocean tidal angular momentum, although the assumption of smooth admittance variations with frequency appears to be a doubtful concept for semi-diurnal mass terms in particular. A validation of the newly derived model based on post-fit corrections to polar motion and universal time (Δ UT1) from the analysis of Very Long Baseline Interferometry (VLBI) observations shows a variance reduction for semi-diurnal Δ UT1 residuals that is significant at the 0.05 level with respect to the conventional ERP model. Improvements are also evident for the explicitly modeled K_1 , Q_1 , and K_2 tides in individual ERP components, but large residuals of more than 15 μ as remain at the principal lunar frequencies of O_1 and M_2 . We attribute these shortcomings to uncertainties in the inverted relative angular momentum changes and, to a minor extent, to violation of mass conservation in the empirical ocean tide solution. Further dedicated hydrodynamic modeling efforts of these anomalous constituents are required to meet the accuracy standards of modern space geodesy.

  19. Earthquake Weather: Linking Seismicity to Changes in Barometric Pressure, Earth Tides, and Rainfall

    NASA Astrophysics Data System (ADS)

    West, J. D.; Garnero, E.; Shirzaei, M.

    2015-12-01

    It has been widely observed that earthquakes can be triggered due to changes in stress induced by the passage of surface waves from remote earthquakes. These stress changes are typically on the order of a few kiloPascals and occur over time spans of seconds. Less well investigated is the question of whether triggering of seismic activity can result from similar stress changes occurring over periods of hours or days due to changing barometric pressure, rainfall, and Earth tides. Past studies have shown a possible link between these stress sources and slow earthquakes in Taiwan (Hsu et al., 2015). Here, we investigate the relationship between seismicity and changing barometric pressure, Earth tides, and rainfall for four regions of the western United States where regional seismic networks provide high-quality seismic catalogs over relatively long time periods: Southern California, Northern California, the Pacific Northwest, and Utah. For each region we obtained seismic catalogs from January 2001 through September 2014 and acquired hourly data for barometric pressure and rainfall across the regions from the National Climatic Data Center. The vertical stress time series due to Earth tides was computed for the location of each weather station in the study areas. We summed the stresses from these 3 sources and looked for variations in seismicity correlated to the stress changes. We show that seismicity rates increase with increasing magnitude of stress change. In many cases the increase in seismicity is larger for reductions in vertical stress than it is for stress increases. We speculate that the dependency of seismic rate on combined vertical stress is acting through a combination of two mechanisms: (1) Reduced stresses reduce the normal force on faults, triggering failure in critically-stressed faults. (2) Increased stresses may similarly reduce the normal force on faults due to increases in pore pressure induced in the fault region.

  20. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-03-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1-0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  1. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, S.; Riley, F.S.

    1990-01-01

    The response to Earth tides is strongly governed by a dimensionless aquifer frequency Q???u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q???u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q???u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q???u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. -from Authors

  2. Towards Tidal Tomography: Using Earth's Body-Tide Signal to Constrain Deep-Mantle Density Structure

    NASA Astrophysics Data System (ADS)

    Lau, Harriet; Yang, Hsin-Ying; Davis, James; Mitrovica, Jerry; Tromp, Jeroen; Latychev, Konstantin

    2015-04-01

    Luni-solar forcings drive long wavelength deformation at timescales ranging from 8 hours to 18.6 years. We propose that globally distributed GPS estimates of this deformation within the semi-diurnal band provide a new and independent constraint on long-wavelength deep mantle structure. A particular target of "tidal tomography" is the buoyancy structure of LLSVPs, which constitute a large volumetric fraction of the mantle. Constraining this structure is the key to understanding the longevity of the LLSVPs, and indeed the evolution of the entire mantle and Earth system. To this end, we begin by reporting on the development of a new normal-mode theory, based on relatively recent advances in free oscillation seismology, which is capable of predicting semi-diurnal body tides on a laterally heterogeneous, rotating and anelastic Earth. We next present the results of a suite of benchmark tests involving comparisons with predictions based on both classical tidal Love number theory for 1-D Earth models and finite-volume simulations that incorporate 3-D elastic and density structure. We find that body tide deformation is most sensitive to long wavelength, deep mantle structure, and, in particularly, to shear wave velocity and density structure. When combined with results from seismological datasets, this sensitivity provides a powerful tool to investigate the buoyancy structure of the LLSVPs. For example, adopting a variety of seismic tomography models a priori, we perform an extensive parameter search to determine misfits between model predictions based on the new theory and GPS-derived estimates of the semi-diurnal body tide displacements. Preliminary results, focusing only on density structure, have indicated that the observations are best fit when the LLSVPs have a bulk density greater than average mantle, in broad agreement with previous inferences based upon seismic normal mode inversions. In follow-up work, we have mapped out trade-offs related to the adopted seismic

  3. Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate

    USGS Publications Warehouse

    Vidale, J.E.; Agnew, D.C.; Johnston, M.J.S.; Oppenheimer, D.H.

    1998-01-01

    Because the rate of stress change from the Earth tides exceeds that from tectonic stress accumulation, tidal triggering of earthquakes would be expected if the final hours of loading of the fault were at the tectonic rate and if rupture began soon after the achievement of a critical stress level. We analyze the tidal stresses and stress rates on the fault planes and at the times of 13,042 earthquakes which are so close to the San Andreas and Calaveras faults in California that we may take the fault plane to be known. We find that the stresses and stress rates from Earth tides at the times of earthquakes are distributed in the same way as tidal stresses and stress rates at random times. While the rate of earthquakes when the tidal stress promotes failure is 2% higher than when the stress does not, this difference in rate is not statistically significant. This lack of tidal triggering implies that preseismic stress rates in the nucleation zones of earthquakes are at least 0.15 bar/h just preceding seismic failure, much above the long-term tectonic stress rate of 10-4 bar/h.

  4. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    USGS Publications Warehouse

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-01-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  5. Observational evidences for the propagation speed of gravity from Earth tides

    NASA Astrophysics Data System (ADS)

    Tang, Keyun; Wen, Wu; Hua, Changcai; Chi, Shunliang; You, Qingyu; Yu Yu, Dan

    2012-08-01

    Gravitational field is the only universal force which constrains the existing and moving ways of everything in our universe. There are several contradictious ideas on the propagation of gravity. Newton ’s law of gravitation is a theory of instantaneous action at a distance (IAD model); it believes that the speed of gravity is infinite. Einstein’s relativity assumes that the speed of the gravity should be finite, and the gravitational waves travel at the speed of light. However physicists have not yet found any reasonable method to measure the propagation speed of gravity. Here we show direct observational evidences to prove that the gravity travels at the speed of light. Tang found that the current model of the Earth tide implies a hypothesis that the gravity travels at the speed of light (TSL model), because the positions in the model are apparent positions; by comparison among the theoretical models and the observation curves, we further found that TSL mod el is very close to the observations, and IAD model is relatively far away to the observations. Furthermore, we have solved the propagation equation of gravity derived by Tang, with the observation data of Earth tides from Tibet and Xinjiang of China, after the correction of phase lag due to inelasticity of the Earth, and found that the speed of gravity is 0.96 to 1.09 times the speed of light with relative errors of about 5%. It may provide strong evidences to show that the speed of gravity is the same as the speed of light.

  6. The influence of formation material properties on the response of water levels in wells to Earth tides and atmospheric loading

    USGS Publications Warehouse

    Rojstaczer, S.; Agnew, D.C.

    1989-01-01

    The water level in an open well can change in response to deformation of the surrounding material, either because of applied strains (tidal or tectonic) or surface loading by atmospheric pressure changes. Under conditions of no vertical fluid flow and negligible well bore storage (static-confined conditions), the sensitivities to these effects depend on the elastic properties and porosity which characterize the surrounding medium. The hydraulic diffusivity which governs pressure diffusion in response to surface loading is slightly smaller than that which governs fluid flow in response to applied strain. Analysis of the static-confined response of five wells to atmospheric loading and Earth tides gives generally reasonable estimates for material properties. -from Authors

  7. Review of Florida Red Tide and Human Health Effects

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Walsh, Cathy J.; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M.; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G.

    2010-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue—one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152

  8. Review of Florida Red Tide and Human Health Effects.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Walsh, Cathy J; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G

    2011-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152

  9. The synthetical elastic characteristic parameters of earth tide and its abnormal precursor evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Bin; Jiang, Jun; Li, Xu-Dong; Li, Hui

    1998-07-01

    This paper intends to analyze synthetically a physical property of the crust using tidal observations. We regarded Love number that can describe both micro deformation and elasticity of the crust in tidal observation as a physical and mechanical parameter. Synthetically inverse and calculate Love number on the earth surface using actual tide data included tidal linear strain, plane strain, volumetric strain, tilt, gravity and water level. Research seismic mechanical process and its precursory abnormality of a region based on the variation of Love number. In this paper, a feasible way and method to synthetically calculate the second-step Love number on the earth surface is discussed and determined by tidal theory. Love number h 2 in the boundary region of Sichuan and Yunnan province is practically calculated using tidal observations, and the precursory anomalous variation of the Lijiang earthquake (M s=7.0, February 9, 1996) is analyzed. The result shows that large-scale Love number anomaly in the Sichuan-Yunnan region began from 1994. The anomaly moves from south to southeast, north and northwest in the region, and the epicenter is an anomalous empty. Finally, the anomalous area was concentrated to Lijiang and Yongsheng located northwestern Sichuan-Yunnan region on December 1995, and the epicenter area in future is drawn out clearly.

  10. What Causes Tides?

    ERIC Educational Resources Information Center

    Donovan, Deborah

    2004-01-01

    The phenomenon of tides has a faraway source. This rise and fall of the water level over a period of several hours is a result of the gravitational pull of the Moon and the Sun on Earth's oceans. Tides exhibit predictable cycles on daily, monthly, and yearly scales. The magnitude of the tides is dependent on the position of the Earth and Moon in…

  11. Influence of ocean tides on the diurnal and semidiurnal earth rotation variations from VLBI observations

    NASA Astrophysics Data System (ADS)

    Gubanov, V. S.; Kurdubov, S. L.

    2015-05-01

    The International astrogeodetic standard IERS Conventions (2010) contains a model of the diurnal and semidiurnal variations in Earth rotation parameters (ERPs), the pole coordinates and the Universal Time, arising from lunisolar tides in the world ocean. This model was constructed in the mid-1990s through a global analysis of Topex/Poseidon altimetry. The goal of this study is to try to estimate the parameters of this model by processing all the available VLBI observations on a global network of stations over the last 35 years performed within the framework of IVS (International VLBI Service) geodetic programs. The complexity of the problemlies in the fact that the sought-for corrections to the parameters of this model lie within 1 mm and, thus, are at the limit of their detectability by all currently available methods of ground-based positional measurements. This requires applying universal software packages with a high accuracy of reduction calculations and a well-developed system of controlling the simultaneous adjustment of observational data to analyze long series of VLBI observations. This study has been performed with the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences. Although the results obtained, on the whole, confirm a high accuracy of the basic model in the IERS Conventions (2010), statistically significant corrections that allow this model to be refined have been detected for some harmonics of the ERP variations.

  12. The use of the Earth tide-seismicity compliance parameter maps for earthquake risk mitigation

    NASA Astrophysics Data System (ADS)

    Arabelos D. N.; Contadakis, M. E.; Vergos, G.; S. Spatalas

    2016-04-01

    Applying the Hi(stogram)Cum(ulation) method, which was introduced recently by Cadicheanu, van Ruymbecke and Zhu (2007), we analyze the series of the earthquakes occurred in the last 50 years in seismic active areas of Greece, i.e. the areas (a) of the Mygdonian Basin(Contadakis et al. 2007), (b) of the Ionian Islands (Contadakis et al. 2012 ) and (c) of the Hellenic Arc (Vergos et al. 2015 ) . The result of the analysis for all the areas indicate that the monthly variation of the earthquake frequency is in accordance with the period of the tidal lunar monthly and semi-monthly (Mm and Mf) variations and the same happens with the corresponding daily variations of the frequencies of earthquake occurrence with the diurnal luni-solar (K1) and semidiurnal lunar (M2) tidal variations. In addition the confidence level for the identification of such period accordance between earthquakes occurrence and tidal periods varies with seismic activity, i.e. the higher confidence level corresponds to time periods with stronger seismic activity. These results are in favor of a tidal triggering process on earthquakes when the stress in the focal area is near the critical level (Vidale 1998). Based on these results, we consider the confidence level of earthquake occurrence - tidal period accordance, which we call "earth tide-seismicity compliance parameter p", as an index of tectonic stress criticality for earthquake occurrence and we construct maps of p's over all the area of Greece for each year from 1964 on. It is seen that these maps indicate roughly the seismic active areas. Thus these maps, as well as those of narrower time windows, may be used in earthquake hazard estimation

  13. The pole tide in deep oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  14. The use of the Earth tide-seismicity compliance parameter maps for earthquake risk mitigation

    NASA Astrophysics Data System (ADS)

    Contadakis, Michae lE.; Arabelos, Demetrios N.; Vergos, George; Spatala, pyrousS

    2016-04-01

    Applying the Hi(stogram)Cum(ulation) method, which was introduced recently by Cadicheanu, van Ruymbecke and Zhu (2007), we analyze the series of the earthquakes occurred in the last 50 years in seismic active areas of Greece, i.e. the areas (a) of the Mygdonian Basin(Contadakis et al. 2007), (b) of the Ionian Islands (Contadakis et al. 2012) and (c) of the Hellenic Arc (Vergos et al. 2015) . The result of the analysis for all the areas indicate that the monthly variation of the earthquake frequency is in accordance with the period of the tidal lunar monthly and semi-monthly (Mm and Mf) variations and the same happens with the corresponding daily variations of the frequencies of earthquake occurrence with the diurnal luni-solar (K1) and semidiurnal lunar (M2) tidal variations. In addition the confidence level for the identification of such period accordance between earthquakes occurrence and tidal periods varies with seismic activity, i.e. the higher confidence level corresponds to time periods with stronger seismic activity. These results are in favor of a tidal triggering process on earthquakes when the stress in the focal area is near the critical level. Based on these results, we consider the confidence level of earthquake occurrence - tidal period accordance,wich we call 'earth tide-seismicity compliance parameter p", as an index of tectonic stress criticality for earthquake occurrence and we construct maps of p's over all the area of Greece for each year from 1964 on. It is seen that these maps indicate roughly the seismic active areas. Thus these maps, as well as those of narrower time windows, may be used in earthquake hazard estimation. References: Cadicheanu, N., van Ruymbeke, M andZhu P.,2007:Tidal triggering evidence of intermediate depth earthquakes in Vrancea zone(Romania), NHESS 7,733-740. Contadakis, M. E., Arabelos, D. N., Spatalas, S., 2009, Evidence for tidal triggering on the shallow earthquakes of the seismic area of Mygdonia basin, North Greece

  15. Astronomical tides and earthquakes

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Mao, Wei; Huang, Yong

    2001-03-01

    A review on the studies of correlation between astronomical tides and earthquakes is given in three categories, including (1) earthquakes and the relative locations of the sun, the moon and the earth, (2) earthquakes and the periods and phases of tides and (3) earthquakes and the tidal stress. The first two categories mainly investigate whether or not there exist any dominant pattern of the relative locations of the sun, the moon and the earth during earthquakes, whether or not the occurrences of earthquakes are clustered in any special phase during a tidal period, whether or not there exists any tidal periodic phenomenon in seismic activities, By empasizing the tidal stress in seismic focus, the third category investigates the relationship between various seismic faults and the triggering effects of tidal stress, which reaches the crux of the issue. Possible reasons to various inconsistent investigation results by using various methods and samples are analyzed and further investigations are proposed.

  16. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbanfalva Geodynamic Observatory, Hungary

    SciTech Connect

    Mentes, Gy.

    2010-07-15

    In May 1990, a quartz tube extensometer was installed in the Sopronbanfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093{+-}0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  17. Perigean Spring Tides and Apogean Neap Tides in History

    NASA Astrophysics Data System (ADS)

    Olson, Donald W.

    2012-01-01

    On January 4, 1912 - almost exactly 100 years ago - both a full Moon and a lunar perigee occurred, with these two events separated by only a few minutes of time and with the Earth near perihelion. The resulting lunar distance (356,375 km) on that date stands as the closest approach of the Moon to the Earth in an interval of more than 1400 years. The centennial of this extreme lunar perigee is an appropriate time to consider the effect of lunar distance on the range of ocean tides. At most ocean ports, spring tides of increased range occur near new and full Moon. If a lunar perigee falls near new or full Moon, then perigean spring tides of even greater range are possible. Conversely, if a lunar apogee falls near first quarter or last quarter Moon, then apogean neap tides of unusually reduced range can occur. Examples of perigean spring tides include a near-coincidence of lunar perigee and new Moon in December 1340 that may be related to a plot device in Chaucer's "The Franklin's Tale,” a Canterbury tale that describes an extreme high tide covering the rocks on the coast of Brittany in "the cold and frosty season of December.” Another example, the disaster known as the Bristol Channel Flood, occurred shortly after a lunar perigee and new Moon in January 1607. A German U-boat employed an exceptionally high perigean spring tide shortly after the new Moon of October 1939 to enter Scapa Flow by an unexpected route and sink the HMS Royal Oak. An apogean neap tide prevailed during the amphibious assault of the U. S. Marines at Tarawa in November 1943, making the eventual victory more costly because the landing craft were unable to reach the island and instead grounded on the surrounding reef.

  18. Tide generator

    SciTech Connect

    Feltenberger, B.D.

    1981-06-16

    A tidewater power system consisting of a high tide reservoir and a low tide reservoir. The high tide reservoir has an inlet adapted to be supported at high tide level and an outlet with a water wheel and generator between the outlet of the high tide reservoir and the low tide reservoir. The low tide reservoir has an outlet at the low tide level. The outlet from the high tide reservoir is adjustable to control the flow rate and the high tide reservoir can be closed at high tide to retain water for use over a period of time.

  19. Analysis of star pair latitudes. [earth tides tesseral harmonics, and polar wandering

    NASA Technical Reports Server (NTRS)

    Graber, M. A.

    1978-01-01

    Star pair latitude observations forming the basis for the pole positions reported by the International Polar Motion Service (IPMS) are processed to produce a mean pole position. However, the time series of raw observations contains high frequency information which is lost in the calculation of the mean pole. Analysis of 2931 star pair observations reveals a possible large excitation at one cycle per solar day. The average power level in the frequency band of the tesseral tides is seen to be high, although the peaks do not occur at the expected tidal frequencies.

  20. Ocean tide loading effects on 24 hour GPS height estimates and resulting time series

    NASA Astrophysics Data System (ADS)

    Penna, N. T.; Stewart, M. P.

    2003-04-01

    GPS data from continuously operating GPS receivers are usually made available on a daily basis in 24 hour data files, so it is convenient for the user to adopt 24 hour data processing sessions. Time series are often then formed from the discrete 24 hour solutions, used for such applications as crustal deformation monitoring or high quality coordinate determination. When heights are estimated, ocean tide loading is a systematic error source that must be considered. Since the principal ocean tide loading effects have periods close to 12 and 24 hours respectively, it has been suggested from previous works that if models for ocean tide loading are not applied when processing GPS data as 24 hour sessions, at worst a small increase in the variance of the height time series will result. This paper further investigates the effects of ocean tide loading on 24 hour GPS height estimates and resulting time series, by considering a year of both simulated and real data from sites in Australia, at which the ocean tide loading effects differ substantially. The effect of each of the individual constituents is also considered. The role of the tropospheric delay mitigation strategy is addressed, regarding the effect on the height estimates when ocean tide loading effects are modelled or ignored.

  1. Effects of thermal tides on the Venus atmospheric superrotation

    NASA Astrophysics Data System (ADS)

    Takagi, M.; Matsuda, Y.

    2007-08-01

    A nonlinear dynamical model on the sphere has been constructed to investigate a generation mechanism of the Venus atmospheric superrotation by the thermal tides. By using the solar heating exciting the diurnal and semidiurnal tides, the atmospheric superrotation extending from the ground to 80 km is generated. The vertical distributions of the mean zonal flow obtained in our numerical experiments are similar to the observations. The maximum velocity of the mean zonal flow reaches about 60-100 m/s near the cloud top level. A linear theory proposed by Takagi and Matsuda (2006) suggests that the atmospheric superrotation obtained in the present study is generated and maintained by the momentum transport associated with the thermal tides. Namely, the downward transport of zonal momentum associated with the downward propagating semidiurnal tide excited in the cloud layer induces the mean zonal flow opposite to the Venus rotation in the lowest layer adjacent to the ground. Surface friction acting on this counter flow provides the atmosphere with the net angular momentum from the solid part of Venus.

  2. Effect of Tides On Sea Ice Deformation and Growth Rate

    NASA Astrophysics Data System (ADS)

    Hutchings, J.; Heil, P.; Hibler, W. D.

    Due to high ice strength in present formulations of non-linear plastic sea ice dynamic models, the relatively small tides in the Arctic Basin produces little relative motion. However, recent work with a stand alone sea ice model including a more realistic for- mulation of ice-ocean coupling [Heil & Hibler, accepted] has produced more realistic inertial motion in agreement with observations. With such improved model physics, we expect tidal motion of the ice pack to have a more pronounced effect on simulated periodic lead opening and closing, enhancing winter ice growth rate. To investigate this process, tidal forcing [Kowalik 1998] is included in the momentum balance of a stand alone sea ice model [Heil & Hibler, accepted]. The model includes a modi- fied coulombic rheology, hourly interpolated NCEP reanalysis atmospheric forcing, climatological cloud fraction [Gorshkov,1980] , oceanic currents and heat flux from Polyakov et al. [1998] and inertial embedding as Hibler et al. [1998]. Arctic sea ice is simulated for the period 1948-2000 and compared to a control without tidal forcing. It is investigated how tidal motion and inertial motion interact. As the inertial period is close to the major semi-diurnal tidal period we expect ice deformation in tidally active regions (such as the Barents Sea) to be amplified through inertial resonance. The tidal influence on ice mass balance is estimated. The interannual variability of ice mass is examined to show how tidal influence differs between years of high Arctic Oscillation (AO) index, when ice divergence is increased and trans-polar transport widened, and low AO index, when the Arctic high dominates and convergent motion prevails.

  3. O1, P1, N2 models of the global ocean tide on an elastic earth plus surface potential and spherical harmonic decompositions for M2, S2, and K1

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1982-01-01

    The models of M2, S2, and K1 presented in Parke and Hendershott (1980) are supplemented with models of O1, P1, and N2. The models satisfy specified elevation boundary conditions and are generated by fighting a small number of test functions to island data. Maps are presented of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each new component. Maps of the tidal potential seen by an observer fixed to the surface of the solid earth are also presented for all six constituents. Spherical harmonic coefficients up to order four and the rms magnitude of the coefficients to order fifteen are presented for each constituent. The rms magnitudes of the P1 and K1 coefficients normalized by their respective equilibrium amplitudes are compared to determine the effect of the diurnal core resonance.

  4. The IERS Special Bureau for Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, B. F.; Desai, S. D.

    2002-01-01

    The Global Geophysical Fluids Center of the International Earth Rotation Service (IERS) comprises 8 special bureaus, one of which is the Special Bureau for Tides. Its purpose is to facilitate studies related to tidal effects in earth rotation. To that end it collects various relevant datasets and distributes them, primarily through its website at bowie.gsfc.nasa.gov/ggfc/tides. Example datasets include tabulations of tidal variations in angular momentum and in earth rotation as estimated from numerical ocean tide models and from meteorological reanalysis products. The web site also features an interactive tidal prediction "machine" which generates tidal predictions (e.g., of UT1) from lists of harmonic constants. The Special Bureau relies on the tidal and earth-rotation communities to build and enlarge its datasets; further contributions from this community are most welcome.

  5. Effects of Ocean Tide Models on Gnss-Estimated Ztd and Pwv in Turkey

    NASA Astrophysics Data System (ADS)

    Gurbuz, G.; Jin, S.; Mekik, C.

    2015-12-01

    Global Navigation Satellite System (GNSS) observations can precisely estimate the total zenith tropospheric delay (ZTD) and precipitable water vapour (PWV) for weather prediction and atmospheric research as a continuous and all-weather technique. However, apart from GNSS technique itself, estimations of ZTD and PWV are subject to effects of geophysical models with large uncertainties, particularly imprecise ocean tide models in Turkey. In this paper, GNSS data from Jan. 1st to Dec. 31st of 2014 are processed at 4 co-located GNSS stations (GISM, DIYB, GANM, and ADAN) with radiosonde from Turkish Met-Office along with several nearby IGS stations. The GAMIT/GLOBK software has been used to process GNSS data of 30-second sample using the Vienna Mapping Function and 10° elevation cut-off angle. Also tidal and non-tidal atmospheric pressure loadings (ATML) at the observation level are also applied in GAMIT/GLOBK. Several widely used ocean tide models are used to evaluate their effects on GNSS-estimated ZTD and PWV estimation, such as IERS recommended FES2004, NAO99b from a barotropic hydrodynamic model, CSR4.0 obtained from TOPEX/Poseidon altimetry with the model FES94.1 as the reference model and GOT00 which is again long wavelength adjustments of FES94.1 using TOPEX/Poseidon data at 0.5 by 0.5 degree grid. The ZTD and PWV computed from radiosonde profile observations are regarded as reference values for the comparison and validation. In the processing phase, five different strategies are taken without ocean tide model and with four aforementioned ocean tide models, respectively, which are used to evaluate ocean tide models effects on GNSS-estimated ZTD and PWV estimation through comparing with co-located Radiosonde. Results showed that ocean tide models have greatly affected the estimation of the ZTD in centimeter level and thus the precipitable water vapour in millimeter level, respectively at stations near coasts. The ocean tide model FES2004 that is the product of

  6. Literature Review of Florida Red Tide: Implications for Human Health Effects.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Squicciarini, Dominick; Backer, Lorrie C; Clark, Richard; Abraham, William; Benson, Janet; Cheng, Yung Sung; Johnson, David; Pierce, Richard; Zaias, Julia; Bossart, Gregory D; Baden, Daniel G

    2004-04-01

    Florida red tides are a natural phenomenon caused by dense aggregations of single cell or several species of unicellular organisms. Patches of discolored water, dead or dying fish, and respiratory irritants in the air often characterize these algal blooms. In humans, two distinct clinical entities, depending on the route of exposure, are associated with exposure to the Florida red tide toxins (particularly the brevetoxins). With the ingestion of brevetoxin-contaminated shellfish, neurotoxic shellfish poisoning (NSP) presents as a milder gastroenteritis with neurologic symptoms compared with other marine toxin diseases such as paralytic shellfish poisoning (PSP) or ciguatera fish poisoning. With the inhalation of the aerosolized red tide toxins (especially the brevetoxins) from the sea spray, respiratory irritation and possibly other health effects are reported in both humans and other mammals (Baden 1995, Fleming 1998a, Fleming 1998b, Fleming 1999a, Bossart 1998, Asai 1982, Eastaugh 1989, Pierce 1986, Music 1973, Temple 1995, Anderson 1994).This paper reviews the literature on the known and possible human health effects of exposure to the Florida red tides and their toxins. The review includes discussion of the red tide organisms and their toxins, as well as the effects of these toxins on both wild and laboratory animals as they relate to possible human health effects and exposures. PMID:20411030

  7. Literature Review of Florida Red Tide: Implications for Human Health Effects

    PubMed Central

    Kirkpatrick, Barbara; Fleming, Lora E.; Squicciarini, Dominick; Backer, Lorrie C.; Clark, Richard; Abraham, William; Benson, Janet; Cheng, Yung Sung; Johnson, David; Pierce, Richard; Zaias, Julia; Bossart, Gregory D.; Baden, Daniel G.

    2010-01-01

    Florida red tides are a natural phenomenon caused by dense aggregations of single cell or several species of unicellular organisms. Patches of discolored water, dead or dying fish, and respiratory irritants in the air often characterize these algal blooms. In humans, two distinct clinical entities, depending on the route of exposure, are associated with exposure to the Florida red tide toxins (particularly the brevetoxins). With the ingestion of brevetoxin-contaminated shellfish, neurotoxic shellfish poisoning (NSP) presents as a milder gastroenteritis with neurologic symptoms compared with other marine toxin diseases such as paralytic shellfish poisoning (PSP) or ciguatera fish poisoning. With the inhalation of the aerosolized red tide toxins (especially the brevetoxins) from the sea spray, respiratory irritation and possibly other health effects are reported in both humans and other mammals (Baden 1995, Fleming 1998a, Fleming 1998b, Fleming 1999a, Bossart 1998, Asai 1982, Eastaugh 1989, Pierce 1986, Music 1973, Temple 1995, Anderson 1994). This paper reviews the literature on the known and possible human health effects of exposure to the Florida red tides and their toxins. The review includes discussion of the red tide organisms and their toxins, as well as the effects of these toxins on both wild and laboratory animals as they relate to possible human health effects and exposures. PMID:20411030

  8. Modeling the effect of tides and waves on benthic biofilms

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Fagherazzi, S.

    2012-12-01

    We propose a simple model for growth of benthic biofilm subject to variable hydrodynamic disturbances and with a biofilm-dependent erodibility (biostabilization). Model results show that, for disturbances with equal intensity, the biofilm is eroded or not depending on its current biomass, which is a function of the past evolution trajectory. Because of the finite time needed for a biofilm to develop, both the intensity and frequency of periodical disturbances, such as tidal currents, determine whether the biofilm can approach its equilibrium biomass. Spring-neap tidal modulation favors biofilm development, since the reduction of the current shear stress associated with neap tides allows biofilm growth, thus increasing biostabilization and the biofilm's likelihood to withstand the subsequent energetic spring tides. On the other hand, diurnal tidal modulations are negative for biofilm development, because the diel biofilm growth is almost negligible. Under stochastic disturbances associated with wind waves, there are two most-likely states for the biofilm biomass: either close to zero or close to the equilibrium value, depending on wave intensity. If biostabilization is reduced or eliminated, the probability of intermediate values for biofilm biomass becomes also significant. The role of biostabilization is hence to exacerbate the probability of the end-member states. Finally, because of the nonmonotonic relationship between water depth and wave induced bed stresses, only extremely shallow and deep areas favor biofilm persistence. If light attenuation with depth is considered, deep water becomes unsuitable for biofilm growth when water turbidity is high.

  9. High tides and rising seas: potential effects on estuarine waterbirds

    USGS Publications Warehouse

    Erwin, R.M.; Sanders, G.M.; Prosser, D.J.; Cahoon, D.R.

    2006-01-01

    Coastal waterbirds are vulnerable to water-level changes especially under predictions of accelerating sea-level rise and increased storm frequency in the next century. Tidal and wind-driven fluctuations in water levels affecting marshes, their invertebrate communities, and their dependent waterbirds are manifested in daily, monthly, seasonal, annual, and supra-annual (e.g., decadal or 18.6-yr) periodicities. Superimposed on these cyclic patterns is a long-term (50?80 yr) increase in relative sea-level rise that varies from about 2?4 + mm/yr along the Atlantic coastline. At five study sites selected on marsh islands from Cape Cod, Massachusetts to coastal Virginia, we monitored marsh elevation changes and flooding, tide variations over time, and waterbird use. We found from longterm marsh core data that marsh elevations at three of five sites may not be sufficient to maintain pace with current sea-level rise. Results of the short-term (3?4 yr) measures using surface elevation tables suggest a more dramatic difference, with marsh elevation change at four of five sites falling below relative sea-level rise. In addition, we have found a significant increase (in three of four cases) in the rate of surface marsh flooding in New Jersey and Virginia over the past 70?80 yr during May?July when waterbirds are nesting on or near the marsh surface. Short-term, immediate effects of flooding will jeopardize annual fecundity of many species of concern to federal and state agencies, most notably American Black Duck (Anas rubripes), Nelson?s Sharp-tailed Sparrow (Ammodramus nelsoni), Saltmarsh Sharp-tailed Sparrow (A. caudacutus), Seaside Sparrow (A. maritima), Coastal Plain Swamp Sparrow (Melospiza georgiana nigrescens), Black Rail (Laterallus jamaicensis), Forster?s Tern (Sterna forsteri), Gull-billed Tern (S. nilotica), Black Skimmer (Rynchops niger), and American Oystercatcher (Haemotopus palliatus). Forster?s Terns are probably most at risk given the large proportion of their

  10. High tides and rising seas: Potential effects on estuarine waterbirds

    USGS Publications Warehouse

    Erwin, R.M.; Sanders, G.M.; Prosser, D.J.; Cahoon, D.R.

    2006-01-01

    Coastal waterbirds are vulnerable to water-level changes especially under predictions of accelerating sea-level rise and increased storm frequency in the next century. Tidal and wind-driven fluctuations in water levels affecting marshes, their invertebrate communities, and their dependent waterbirds are manifested in daily, monthly, seasonal, annual, and supra-annual (e.g., decadal or 18.6-yr) periodicities. Superimposed on these cyclic patterns is a long-term (50-80 yr) increase in relative sea-level rise that varies from about 2-4 + mm/yr along the Atlantic coastline. At five study sites selected on marsh islands from Cape Cod, Massachusetts to coastal Virginia, we monitored marsh elevation changes and flooding, tide variations over time, and waterbird use. We found from long-term marsh core data that marsh elevations at three of five sites may not be sufficient to maintain pace with current sea-level rise. Results of the short-term (3-4 yr) measures using surface elevation tables suggest a more dramatic difference, with marsh elevation change at four of five sites falling below relative sea-level rise. In addition, we have found a significant increase (in three of four cases) in the rate of surface marsh flooding in New Jersey and Virginia over the past 70-80 yr during May-July when waterbirds are nesting on or near the marsh surface. Short-term, immediate effects of flooding will jeopardize annual fecundity of many species of concern to federal and state agencies, most notably American Black Duck (Anas rubripes), Nelson's Sharp-tailed Sparrow (Ammodramus nelsoni), Saltmarsh Sharp-tailed Sparrow (A. caudacutus), Seaside Sparrow (A. maritima), Coastal Plain Swamp Sparrow (Melospiza georgiana nigrescens), Black Rail (Laterallus jamaicensis), Forster's Tern (Sterna forsteri). Gull-billed Tern (S. nilotica), Black Skimmer (Rynchops niger), and American Oystercatcher (Haemotopus palliatus). Forster's Terns are probably most at risk given the large proportion of their

  11. Occupational Exposure to Aerosolized Brevetoxins during Florida Red Tide Events: Effects on a Healthy Worker Population

    PubMed Central

    Backer, Lorraine C.; Kirkpatrick, Barbara; Fleming, Lora E.; Cheng, Yung Sung; Pierce, Richard; Bean, Judy A.; Clark, Richard; Johnson, David; Wanner, Adam; Tamer, Robert; Zhou, Yue; Baden, Daniel G.

    2005-01-01

    Karenia brevis (formerly Gymnodinium breve) is a marine dinoflagellate responsible for red tides that form in the Gulf of Mexico. K. brevis produces brevetoxins, the potent toxins that cause neurotoxic shellfish poisoning. There is also limited information describing human health effects from environmental exposures to brevetoxins. Our objective was to examine the impact of inhaling aerosolized brevetoxins during red tide events on self-reported symptoms and pulmonary function. We recruited a group of 28 healthy lifeguards who are occupationally exposed to red tide toxins during their daily work-related activities. They performed spirometry tests and reported symptoms before and after their 8-hr shifts during a time when there was no red tide (unexposed period) and again when there was a red tide (exposed period). We also examined how mild exercise affected the reported symptoms and spirometry tests during unexposed and exposed periods with a subgroup of the same lifeguards. Environmental sampling (K. brevis cell concentrations in seawater and brevetoxin concentrations in seawater and air) was used to confirm unexposed/exposed status. Compared with unexposed periods, the group of lifeguards reported more upper respiratory symptoms during the exposed periods. We did not observe any impact of exposure to aerosolized brevetoxins, with or without mild exercise, on pulmonary function. PMID:15866778

  12. Zonal concentration of some geophysical process intensity caused by tides and variations in the Earth's rotation velocity

    NASA Astrophysics Data System (ADS)

    Levin, B.; Domanski, A.; Sasorova, E.

    2014-01-01

    We analyzed what kind of fundamental physical phenomena can be responsible for the generation of the anomalous latitudinal zones of the seismic activity, and the hotspots, and some other geophysical processes. The assessment of tidal effect contribution to the earthquake preparation process is discussed. A disk model of the Earth's rotation was proposed. The model is acceptable for the homogeneous Earth and for the heterogeneous one. The disk model explains the nucleation of two maximums of the gradient of the moment of inertia over latitude with respect to the Equator. Effects of the variations in the Earth's rotation angular velocity were estimated and the possible features caused by the rotation velocity instability were described. The variations in the relative velocity of the Earth's rotation (dimensionless value ν ≈ (T - P)/P) are approximately equal upon the average to 10-8, where T is the observed length of day for the Earth, and P is the astronomical day. These variations lead to the occurrence of the additional energy estimated as 1020 J. The authors proposed the hypothesis of a pulsating geoid based on effects of the Earth's rotation features, and tidal forces, and conception of critical latitudes in the solid Earth. This hypothesis may highlight the phenomenon of zonal intensification of some geological processes in the solid Earth (the seismic activity, and hotspot location, and major ore deposit locations).

  13. Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the earth

    USGS Publications Warehouse

    Sonett, C.P.; Kvale, E.P.; Zakharian, A.; Chan, M.A.; Demko, T.M.

    1996-01-01

    The tidal rhythmites in the Proterozoic Big Cottonwood Formation (Utah, United States), the Neoproterozoic Elatina Formation of the Flinders Range (southern Australia), and the Lower Pennsylvanian Pottsville Formation (Alabama, United States) and Mansfield Formation (Indiana, United States) indicate that the rate of retreat of the lunar orbit is d??/dt k2 sin(2??) (where ?? is the Earth-moon radius vector, k2 is the tidal Love number, and ?? is the tidal lag angle) and that this rate has been approximately constant since the late Precambrian. When the contribution to tidal friction from the sun is taken into account, these data imply that the length of the terrestrial day 900 million years ago was -18 hours.

  14. A long-term stable equilibrium for synchronous binaries including tides and the byorp effect

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2011-04-01

    We present theoretical evidence for the existence of a long-term stable equilibrium solution for synchronous binary asteroids accounting for mutual body tides, the binary YORP (BYORP) effect and dynamics. Synchronous binary asteroid systems consist of a rapidly spinning primary and a tidally-locked secondary, analogous to the Earth-Moon system. Tidal evolution of these systems leads to growth in the semi-major axis. Evolution from the BYORP effect can lead to both contraction and growth of the semi-major axis. There are two scenarios for joint evolution of a synchronous binary when both effects are considered: expansive and opposing evolution. During joint expansive evolution, both effects grow the semi-major axis. The system will either grow to the Hill sphere and disrupt if tidally dominated, or the mutual orbit will be de-stabilized due to runaway eccentricity growth if BYORP dominated. During joint opposing evolution, tidal and BYORP evolution act to evolve the system to a stable equilibrium. The location of this equilibrium to first order depends on just the tidal parameters, specific tidal dissipation number Q and the tidal Love number k, as well as the BYORP shape coefficient. If the observed population of small (0.1 - 10 km diameter), synchronous binaries are assumed to be in this static configuration, then our analysis shows that a monolithic geophysical model is not satisfactory, whereas the ``rubble pile'' model proposed by Goldreich & Sari (2009) is sufficient to prevent runaway eccentricity growth. The existence of this equilibrium and a secondary shape model built from observations enables direct study of asteroid geophysics through tidal theory. The existence of this equilibrium would be confirmed by a lack of migration in observational tests for the BYORP effect. Goldreich, P. & R. Sari, ApJ, 691:54-60 (2009)

  15. Monthly and Fortnightly Tidal Variations of the Earth's Rotation Rate Predicted by a TOPEX/POSEIDON Empirical Ocean Tide Model

    NASA Technical Reports Server (NTRS)

    Desai, S.; Wahr, J.

    1998-01-01

    Empirical models of the two largest constituents of the long-period ocean tides, the monthly and the fortnightly constituents, are estimated from repeat cycles 10 to 210 of the TOPEX/POSEIDON (T/P) mission.

  16. Initial Evaluation of the Effects of Aerosolized Florida Red Tide Toxins (Brevetoxins) in Persons with Asthma

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Dalpra, Dana; Tamer, Robert; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William; Clark, Richard; Zhou, Yue; Henry, Michael S.; Johnson, David; Van De Bogart, Gayl; Bossart, Gregory D.; Harrington, Mark; Baden, Daniel G.

    2005-01-01

    Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic

  17. Effects of tide cycles on habitat selection and habitat partitioning by migrating shorebirds

    USGS Publications Warehouse

    Burger, J.; Howe, M.A.; Hahn, D.C.; Chase, J.

    1977-01-01

    We studied assemblages of feeding shorebirds in three intertidal habitats on the coast of New Jersey during August to document how species segregates patially both among and within habitats and to determine the effects of tidal cycles on these patterns. The habitats were a sandy beach facing the ocean proper (outer beach), a sandy beach on the mainland side of a barrier island (inner beach), and a small mudflat adjacent to a Spartina alternifiora salt marsh. We were able to identify several microhabitats on the outer beach and mudflat. Most speciesfe d in more than one habitat, but only two, Charadrius semipalmatus and Calidris canutus, used all three habitats regularly. Within habitats, most species exhibited strong preferences for the wettest areas, but we found differences among species in degrees of preference. The least amount of partitioning occurred on the inner beach, where birds crowded into a small zone near the water's edge and had frequent agonistic encounters suggesting intense competition. Shorebird feeding activity was partly a function of tide time: each habitat had a characteristic temporal pattern of use by shorebirds related to tide time rather than diel time; within habitats, we found species-characteristic feeding activity rhythms that were also a function of tide time. Feeding by most species peaked during the first 2 hours after low tide on the outer beach and mudflat. The results are discussed in terms of feeding strategies and interspecific competition.

  18. Earth-Tide Derived Aquifer Properties in Fractured Granite: Results from a Groundwater Monitoring Well Network in the Peninsular Ranges Batholith

    NASA Astrophysics Data System (ADS)

    Weinberger, J. L.; Quinlan, P. T.; Tartakovsky, D. M.

    2014-12-01

    Fractured rock aquifers are difficult to characterize because of the three dimensional spatial heterogeneity of the fracture networks. Aquifer properties cannot be determined from a single borehole and traditional aquifer tests are difficult to design and analyze without prior knowledge of the subsurface permeability distribution. Using passive monitoring of the water level responses to tidal strains in wells allows for characterization of the aquifer over greater spatial extent and can be used to guide the design and implementation of aquifer tests. In this study, the water level response to tidal strains measured in over 20 groundwater wells, spaced irregularly over an approximately 48 km2 area, was used to estimate the specific storage and transmissivity of the surrounding granite aquifer. The water level data were corrected to remove barometric pressure effects before the amplitude and phase shifts for the O1 and M2 components of the tidal potential were calculated. Systematic differences in the calculated aquifer characteristics were observed. The differences correlate with the density of fractures observed in borehole geophysical logs. The aquifer properties derived from the earth-tide analysis were compared to those derived from aquifer tests conducted at two of the wells analyzed. The two methods yielded similar results.

  19. Weight, gravitation, inertia, and tides

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  20. Tides and Decadal Variability

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2003-01-01

    This paper reviews the mechanisms by which oceanic tides and decadal variability in the oceans are connected. We distinguish between variability caused by tides and variability observed in the tides themselves. Both effects have been detected at some level. The most obvious connection with decadal timescales is through the 18.6-year precession of the moon's orbit plane. This precession gives rise to a small tide of the same period and to 18.6-year modulations in the phase and amplitudes of short-period tides. The 18.6-year "node tide" is very small, no more than 2 cm anywhere, and in sea level data it is dominated by the ocean's natural Variability. Some authors have naively attributed climate variations with periods near 19 years directly to the node tide, but the amplitude of the tide is too small for this mechanism to be operative. The more likely explanation (Loder and Garrett, JGR, 83, 1967-70, 1978) is that the 18.6-y modulations in short-period tides, especially h e principal tide M2, cause variations in ocean mixing, which is then observed in temperature and other climatic indicators. Tidally forced variability has also been proposed by some authors, either in response to occasional (and highly predictable) tidal extremes or as a nonlinear low-frequency oscillation caused by interactions between short-period tides. The former mechanism can produce only short-duration events hardly more significant than normal tidal ranges, but the latter mechanism can in principle induce low-frequency oscillations. The most recent proposal of this type is by Keeling and Whorf, who highlight the 1800-year spectral peak discovered by Bond et al. (1997). But the proposal appears contrived and should be considered, in the words of Munk et al. (2002), "as the most likely among unlikely candidates."

  1. A UNIFIED THEORY FOR THE EFFECTS OF STELLAR PERTURBATIONS AND GALACTIC TIDES ON OORT CLOUD COMETS

    SciTech Connect

    Collins, Benjamin F.; Sari, Re'em

    2010-11-15

    We examine the effects of passing field stars on the angular momentum of a nearly radial orbit of an Oort cloud comet bound to the Sun. We derive the probability density function of the change in angular momentum from one stellar encounter, assuming a uniform and isotropic field of perturbers. We show that the total angular momentum follows a Levy flight, and determine its distribution function. If there is an asymmetry in the directional distribution of perturber velocities, the marginal probability distribution of each component of the angular momentum vector can be different. The constant torque attributed to Galactic tides arises from a non-cancellation of perturbations with an impact parameter of order the semimajor axis of the comet. When the close encounters are rare, the angular momentum is best modeled by the stochastic growth of stellar encounters. If trajectories passing between the comet and the Sun occur frequently, the angular momentum exhibits the coherent growth attributed to the Galactic tides.

  2. Effect of Tide on Sound Propagation in the Shelf Zone of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Bondar', L. F.; Bugaeva, L. K.; Rutenko, A. N.

    2000-09-01

    Experimental and numerical studies of the effect of surface and internal tides on 315-Hz sound waves propagating along fixed paths, 260 m to 23 km in lengths, oriented across the shelf of the Sea of Japan, are discussed. The measurements are performed using self-contained radio-hydroacoustic receiving stations, which are equipped with hydrophones and scalar-vector receivers, and two vertical acoustic-hydrophysical measuring systems. For the sound signals propagating along the longer paths, the intensity fluctuations are shown to loose their linear relation to the tide-caused changes in the waveguide parameters because of the refraction by the sound speed inhomogeneities induced by different hydrodynamic processes. However, it is established that the phase variations can serve as quantitative indicators of the integral changes in the waveguide parameters.

  3. Effects of tides on Riverine and Glacial freshwater transport in the Arctic Ocean.

    NASA Astrophysics Data System (ADS)

    Luneva, Maria; Aksenov, Yevgeny; Harle, James; Holt, Jason

    2016-04-01

    In this study we use a novel pan-Arctic sea NENO-shelf ice-ocean coupled model, to examine the effects of tides, river runoff and vertical mixing schemes on sea ice and the mixing of water masses. Several 20-year long (1990-2010) simulations were performed: with explicitly resolved tides and without any tidal dynamics, with climatology river runoff, Dai et al. ,2009 database and freshwater source from melting Greenland glaciers. We examine also three different turbulent closures structural functions, based on the k-epsilon version of the Generic Length Scale Model: by Canuto group (2001) and two by Kantha and Clayson (1994, 2004). The results have been compared with sea ice volume and concentration trends and temperature and salinity profiles from World Ocean Database . We compared the following characteristics: potential energy anomalies, depth of halocline, mixed layer depth , salinity at the subsurface layer.

  4. Florida Red Tide Toxins (Brevetoxins) and Longitudinal Respiratory Effects in Asthmatics.

    PubMed

    Bean, Judy A; Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Nierenberg, Kate; Reich, Andrew; Cheng, Yung Sung; Wanner, Adam; Benson, Janet; Naar, Jerome; Pierce, Richard; Abraham, William M; Kirkpatrick, Gary; Hollenbeck, Julie; Zaias, Julia; Mendes, Eliana; Baden, Daniel G

    2011-09-01

    Having demonstrated significant and persistent adverse changes in pulmonary function for asthmatics after 1 hour exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols, we assessed the possible longer term health effects in asthmatics from intermittent environmental exposure to brevetoxins over 7 years. 125 asthmatic subjects were assessed for their pulmonary function and reported symptoms before and after 1 hour of environmental exposure to Florida red tide aerosols for upto 11 studies over seven years. As a group, the asthmatics came to the studies with normal standardized percent predicted pulmonary function values. The 38 asthmatics who participated in only one exposure study were more reactive compared to the 36 asthmatics who participated in ≥4 exposure studies. The 36 asthmatics participating in ≥4 exposure studies demonstrated no significant change in their standardized percent predicted pre-exposure pulmonary function over the 7 years of the study. These results indicate that stable asthmatics living in areas with intermittent Florida red tides do not exhibit chronic respiratory effects from intermittent environmental exposure to aerosolized brevetoxins over a 7 year period. PMID:22053149

  5. Understanding Earth's Albedo Effect

    ERIC Educational Resources Information Center

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  6. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure

    PubMed Central

    Kirkpatrick, Barbara; Fleming, Lora E; Bean, Judy A; Nierenberg, Kate; Backer, Lorraine C; Cheng, Yung Sung; Pierce, Richard; Reich, Andrew; Naar, Jerome; Wanner, Adam; Abraham, William M; Zhou, Yue; Hollenbeck, Julie; Baden, Daniel G

    2010-01-01

    Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide. Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols. PMID:21499552

  7. The Effects of Thermal Tides and Dust on Traveling Waves in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, H.; Toigo, A. D.; Richardson, M. I.

    2014-12-01

    Observations show that traveling waves with zonal wavenumber k = 3 correlate closely with the development of frontal / flushing dust storms which are important in the Martian dust cycle. Previous modeling work suggests that both the polar hood [Barnes et al., 2014] and the cap edge dust storms [Wang et al., 2013] have the potential to enhance these waves. In this presentation, we investigate the case of cap edge dust further, focusing on the following results. We will show that the relative strength of the traveling waves depends not only on the time, geolocation, height and variable under consideration, but also on the analysis method. For near surface temperature which is observable by spacecraft, the spectral and time averaged wave power can lead to a different answer than the monochromatic wave power. In particular, in the presence of cap edge dust, the modeled zonal wavenumber k = 3 can dominate the traveling wave spectra at times. In the presence of cap edge dust in the model, the enhancement of the k = 3 traveling waves is accompanied by pronounced increase of the diurnal tide. To test the effect of thermal tides on traveling waves, we have performed sensitivity runs where the insolation is replaced by the diurnally averaged value. We find that the amplitude of the k = 3 traveling waves are greatly reduced without thermal tides. Detailed analyses of the relationship between the waves will be presented.

  8. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Bean, Judy A; Nierenberg, Kate; Backer, Lorraine C; Cheng, Yung Sung; Pierce, Richard; Reich, Andrew; Naar, Jerome; Wanner, Adam; Abraham, William M; Zhou, Yue; Hollenbeck, Julie; Baden, Daniel G

    2011-01-01

    Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide.Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols. PMID:21499552

  9. Variation of the Earth tide-seismicity compliance parameter the last 50 years for the seismic area of Evoikos, Greece

    NASA Astrophysics Data System (ADS)

    Contadakis, Michael E.; Arabelos, Demetrious N.; Vergos, George; Spatalas, Spyrous

    2015-04-01

    seismic area of Mygdonia basin, North Greece, in Terrestrial and Stellar Environment, eds.D. Arabelos, M.E.Contadakis, C.Kaltsikis, I.Tziavos,Ziti Press Thessaloniki,Greece,pp 223-235 Contadakis, M. E.,Arabelos, D.N., Spatalas, S.D., 2012, Evidence for tidal triggering for the earthquakes of the Ionian geological zone, Greece, Annals of Geophysics, Vol. 55, No. 1, p. 73-81 Vergos, G., Arabelos, D. N., Contadakis, M. E., 2012, Evidence for Tidal triggering on the earthquakes of the Hellenic Arc, Greece., Geoph.Res.Abs, Vol 14,2325 Contadakis, M.E,Arabelos, D.N.,Vergos, G.,Spatalas, S.D.,2014, Variation of the Earth tide-seismicity compliance parameter during the recent seismic activity of Fthiotida, Greece, EGU General Assembly 2014 1121

  10. King Tide floods in Tuvalu

    NASA Astrophysics Data System (ADS)

    Lin, C.-C.; Ho, C.-R.; Cheng, Y.-H.

    2013-05-01

    The spatial and temporal distributions of sea level rise present regional floods in some certain areas. The low-lying island countries are obviously the spots affected severely. Tuvalu, an atoll island country located in the south-west Pacific Ocean, is suffering the devastating effects of losing life, property, and intending migration caused by floods. They blame the regional flooding to King Tide, a term used but not clearly identified by Pacific islanders. In this study, we clarify what King Tide is first. By the tide gauge and topography data, we estimated the reasonable value of 3.2 m as the threshold of King Tide. This definition also fits to the statement by National Oceanic and Atmospheric Administration (NOAA) of King Tide occurring once or twice a year. In addition, We cross validate the 19 yr data of tide gauge and satellite altimeter (1993-2012), the correlation coefficient indicates King Tide phenomenon is considerable connected to warm water mass. The 28 King Tide events revealed the fact that flooding can be referenced against spring tide levels, so can it be turned up by warm water mass. The warm water mass pushes up sea level; once spring tide, storm surge, or other climate variability overlaps it, the rising sea level might overflow and so has been called "King Tide" for the floods in Tuvalu. This study provides more understanding of the signals of King Tide and an island country case study of regional sea level rise.

  11. Determination of the Earth's pole tide Love number k2 from observations of polar motion using an adaptive Kalman filter approach

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Kirschner, S.; Neubersch, D.

    2012-09-01

    The geophysical interpretation of observed time series of Earth rotation parameters (ERP) is commonly based on numerical models that describe and balance variations of angular momentum in various subsystems of the Earth. Naturally, models are dependent on geometrical, rheological and physical parameters. Many of these are weakly determined from other models or observations. In our study we present an adaptive Kalman filter approach for the improvement of parameters of the dynamic Earth system model DyMEG which acts as a simulator of ERP. In particular we focus on the improvement of the pole tide Love number k2. In the frame of a sensitivity analysis k2 has been identified as one of the most crucial parameters of DyMEG since it directly influences the modeled Chandler oscillation. At the same time k2 is one of the most uncertain parameters in the model. Our simulations with DyMEG cover a period of 60 years after which a steady state of k2 is reached. The estimate for k2, accounting for the anelastic response of the Earth's mantle and the ocean, is 0.3531 + 0.0030i. We demonstrate that the application of the improved parameter k2 in DyMEG leads to significantly better results for polar motion than the original value taken from the Conventions of the International Earth Rotation and Reference Systems Service (IERS).

  12. The influence of barometric pressure fluctuations, earth tides and rainfall loading on fluid pressures in coastal plain aquifers, Burke County, Georgia

    SciTech Connect

    Benson, S.M.; Moore, J.; Daggett, J.; Snipes, D.S. . Dept. of Earth Sciences)

    1993-03-01

    High precision pressure measurements from several aquifers in the top 225 m of coastal plain sediments reveal that barometric pressure fluctuations, earth tides and rainfall loading create pressure fluctuations on the order of tens of centimeters. If not correctly identified, erroneous conclusions regarding the magnitude of pressure communication within and across aquifers during pumping tests may be inferred. Aquifer pressure data with an equivalent resolution of 0.1 mm change in water level were measured in 4 wells over a 10 day period at the USGS Miller's Pond Test Site. During this time, barometric pressures fluctuated by the equivalent of 20 cm of water. Aquifer pressures mimicked these changes, with corresponding barometric efficiencies ranging from 0.59 for the deepest well (215 to 224 m) to 0.73 for the shallowest (136 to 145 m). After removing barometric influences from the pressure data, periodic pressure fluctuations of 2 cm were observed. These correlate well with fluctuations in the earths gravitational field created by planetary motion. A twelve component earth tide model was used to calculate the magnitude of the gravitational fluctuations and provide a quantitative basis for comparing them to observed aquifer pressure fluctuations. Additionally, three rainfall events caused rapid and relatively large increases in aquifer pressures. Up to 4 cm increase in the aquifer pressure accompanied the heaviest rains. The pressures increased concurrent to the rains and decayed slowly to background levels over a several day period, indicating a loading response instead of an infiltration induced pressure increase. The relatively large magnitude of these influences, compared to the small changes induced by leakage across confining layers requires careful consideration in the data analysis.

  13. On the effects of wind and tides on the hydrodynamics of a shallow mediterranean estuary

    NASA Astrophysics Data System (ADS)

    Hearn, Clifford J.; Robson, Barbara J.

    2002-12-01

    A study is made of the effect of wind and tides on the hydrodynamics of the shallow inner basins of mediterranean estuaries. The paper includes a case study of Harvey Estuary in southwestern Australia where salinity and temperature data exist for 11 years during the 1980s and 1990s when that estuary experienced massive annual blue-green algal blooms. An analysis is made of salt exchange through the channels that join estuarine basins of this class to either the ocean or, as in the case of Harvey Estuary, to another shallow estuarine basin. A detailed three-dimensional numerical model is also implemented for the basin of Harvey Estuary. It is concluded that exchange through the channel is dominated by the (mainly diurnal) tides, despite the general micro-tidal nature of this class of estuary, although the efficiency of this process is found to be controlled by the length of the channel. Wind set-up in the basin also produces channel exchange and for Harvey Estuary this is about 20% of the exchange due to tides. Baroclinic flow through the channel is also capable of producing significant exchange but this is suppressed by the tidal currents in the channel except immediately after riverflow. Salt transport along the basins of this class of estuary is mainly driven by the longitudinal density gradient and the strength of this process is controlled by vertical mixing from the wind. However, there is also significant salt transport from wind-induced advection, the effect of which changes seasonally with the direction of the salt gradient.

  14. Calculating Rotating Hydrodynamic and Magnetohydrodynamic Waves to Understand Magnetic Effects on Dynamical Tides

    NASA Astrophysics Data System (ADS)

    Wei, Xing

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.

  15. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach

    NASA Astrophysics Data System (ADS)

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.

    2016-05-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  16. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach.

    PubMed

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W

    2016-05-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency. PMID:27203312

  17. Environmental exposures to Florida red tides: Effects on emergency room respiratory diagnoses admissions

    PubMed Central

    Kirkpatrick, Barbara; Fleming, Lora E.; Backer, Lorraine C.; Bean, Judy A.; Tamer, Robert; Kirkpatrick, Gary; Kane, Terrance; Wanner, Adam; Dalpra, Dana; Reich, Andrew; Baden, Daniel G.

    2010-01-01

    Human exposure to Florida red tides formed by Karenia brevis, occurs from eating contaminated shellfish and inhaling aerosolized brevetoxins. Recent studies have documented acute symptom changes and pulmonary function responses after inhalation of the toxic aerosols, particularly among asthmatics. These findings suggest that there are increases in medical care facility visits for respiratory complaints and for exacerbations of underlying respiratory diseases associated with the occurrence of Florida red tides. This study examined whether the presence of a Florida red tide affected the rates of admission with a respiratory diagnosis to a hospital emergency room in Sarasota, FL. The rate of respiratory diagnoses admissions were compared for a 3-month time period when there was an onshore red tide in 2001 (red tide period) and during the same 3-month period in 2002 when no red tide bloom occurred (non-red tide period). There was no significant increase in the total number of respiratory admissions between the two time periods. However, there was a 19% increase in the rate of pneumonia cases diagnosed during the red tide period compared with the non-red tide period. We categorized home residence zip codes as coastal (within 1.6 km from the shore) or inland (>1.6 km from shore). Compared with the non-red tide period, the coastal residents had a significantly higher (54%) rate of respiratory diagnoses admissions than during the red tide period. We then divided the diagnoses into subcategories (i.e. pneumonia, bronchitis, asthma, and upper airway disease). When compared with the non-red tide period, the coastal zip codes had increases in the rates of admission of each of the subcategories during the red tide period (i.e. 31, 56, 44, and 64%, respectively). This increase was not observed seen in the inland zip codes. These results suggest that the healthcare community has a significant burden from patients, particularly those who live along the coast, needing emergency

  18. Pulsating Mantle Hypothesis "PMH" and its Applications on Apparent Solar Day Length Variations, Geodynamo and Plate Tectonics Theories, Tide, Earth's Axis Tilted and Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Gholibeigian, H.; Amirshakarami, A.

    2012-12-01

    In this hypothesis, two phenomena; Inner Core Dislocation (ICD) and Outer Core Bulge (OCB) have appeared inside the Earth due to unbalanced gravitational attraction of the Sun and the Moon, and consequently the mantle is under diurnal cyclic pulsating load by it. In the other words, the inner core's center and axis (Earth's magnetic axis) do not crossed or overlapped on the Earth's center and axis (geographic axis) and distance between these two centers vary permanently in magnitude and direction. See Fig 1,2. ( C is geo-center, C' is inner core's center and always CC'>>0 ). These two phenomena which have diurnal, monthly and yearly cycles, have generated hydro-magneto-thermo-mechanical load including high kinetic energy which produces forced convection system in the outer core and pressurizes the mantle from its bottom. In this paper, we briefly discuss the six scientific results and applications of the hypothesis which are derived from ICD&OCB 1- Cause of apparent solar day length variations, and its overlapping with ICD&OCB variations spectrum, Fig 2, as the first observable factor for proving the PMH. In this section we use data for apparent solar day length variations in year 1998, and Figure's sheet is the same equatorial sheet, minimum of length day is in September 16 which is 24h-21.3 sec., as we can see the length of the ICD&OCB's vector which is result of the Sun and Moon's gravity forces, is minimum but in Dec. 22 which length day is 24h+29 sec, its vector is bigger 2- Generation and diurnal variation of the Earth's magnetic field and its overlapping with ICD&OCB variation as the second observable factor for proving the PMH. In this section we develop the Geodynamo Theory. 3- The ICD&OCB as the main engine of the tectonic plate's motion is discussed. In this section we develop the Plate Tectonics Theory. 4- How four Earth's systems; ICD&OCB, Sun's thermal energy, Sun and Moon's gravity forces interact and work together for generation of tide. 5- Eight

  19. Revisiting the pole tide for and from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Desai, Shailen; Wahr, John; Beckley, Brian

    2015-12-01

    Satellite altimeter sea surface height observations include the geocentric displacements caused by the pole tide, namely the response of the solid Earth and oceans to polar motion. Most users of these data remove these effects using a model that was developed more than 20 years ago. We describe two improvements to the pole tide model for satellite altimeter measurements. Firstly, we recommend an approach that improves the model for the response of the oceans by including the effects of self-gravitation, loading, and mass conservation. Our recommended approach also specifically includes the previously ignored displacement of the solid Earth due to the load of the ocean response, and includes the effects of geocenter motion. Altogether, this improvement amplifies the modeled geocentric pole tide by 15 %, or up to 2 mm of sea surface height displacement. We validate this improvement using two decades of satellite altimeter measurements. Secondly, we recommend that the altimetry pole tide model exclude geocentric sea surface displacements resulting from the long-term drift in polar motion. The response to this particular component of polar motion requires a more rigorous approach than is used by conventional models. We show that erroneously including the response to this component of polar motion in the pole tide model impacts interpretation of regional sea level rise by ± 0.25 mm/year.

  20. Modelling the 2013 Typhoon Haiyan storm surge: Effect of waves, offshore winds, tide phase, and translation speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.

    2015-12-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  1. Analyze satellite-tracking laser data in order to study satellite ephemerides, solid-Earth and ocean tides and laser system performance

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1981-01-01

    The decrease in the semimajor axis of Lageos is considerably larger than expected. Gravitational effects, reference system effects, solar radiation pressure, Earth albedo pressure, neutral atmospheric drag, the Poynting Robertson Effect, and electrodynamic effects were used in explaining the observations. Quick look data provided are used to determine the Earth's polar motion and length of day. This process is routine, and provides these geophysical data every five days.

  2. Numerical study of the effects of mangrove areas and tidal flats on tides: A case study of Darwin Harbour, Australia

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Xiao Hua; Williams, David; Sidhu, Harvinder; Song, Dehai

    2012-06-01

    The tidal dynamics of Darwin Harbour, Australia, are simulated using a finite volume coastal ocean model. The calibrated model agreed well with the observed sea surface elevation and current velocity. Results indicate that the harbor's hydrodynamics are driven mainly by the tides, with wind and river inputs playing only small roles. The M2 tide is dominant, with amplitude 1.7 m and peak current speed 3.0 m s-1. Sensitivity tests using the model indicate that the mangrove areas and tidal flats play crucial roles in modulating tidal amplitudes and phases in the embayments, especially for the shallow water tides such as M4. Removal of the mangrove areas and tidal flats from Darwin Harbour would dampen the M2 amplitude due to decreased shoaling effects but generate a 75.0% greater M4 amplitude in parts of the harbor. Mangrove areas and tidal flats also affect tidal asymmetry through the changing amplitudes and phases of mainly the M2 and M4 tides. In Darwin Harbour, tidal asymmetry, measured by elevation and current skewness, would increase by up to 100% if the mangrove areas were removed. If the tidal flats were removed as well, the increase would be 120%. Therefore, reclamation of the mangrove areas and tidal flats may cause sediment siltation as a result of increased flood dominance. Although this study is site-specific, the model and our findings have a wider applicability to the effects of mangrove areas and tidal flats on tides and sediment transport in harbors and estuaries.

  3. Earth albedo effects in the motion of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Lala, P.

    Different models of the earth albedo values and geographical distribution are compared. Effects of the local cloud cover on the satellite perturbing acceleration are investigated. Resulting changes of the satellite orbit obtained by the method of numerical integration in the spherical coordinate system are given. It is shown that a sufficiently sensitive microaccelerometer on board a special satellite could significantly improve existing models of the earth albedo.

  4. Interpreting and analyzing King Tide in Tuvalu

    NASA Astrophysics Data System (ADS)

    Lin, C.-C.; Ho, C.-R.; Cheng, Y.-H.

    2014-02-01

    The spatial and temporal distribution of sea-level rise has the potential to cause regional flooding in certain areas, and low-lying island countries are severely at risk. Tuvalu, an atoll country located in the southwest Pacific Ocean, has been inundated by this regional flooding for decades. Tuvaluans call this regional flooding phenomenon King Tide, a term not clearly defined, blaming it for loss of life and property in announcing their intention to migrate. In this study, we clarified and interpreted King Tide, and analyzed the factors of King Tide in Tuvalu. Using tide gauge and topographical data, we estimated that 3.2 m could be considered the threshold of King Tide, which implied half of the island of Tuvalu was flooded with seawater. This threshold is consistent with the finding of the National Oceanic and Atmospheric Administration that King Tide events occur once or twice a year. We surveyed 28 King Tide events to analyze the factors of regional flooding. Tide gauge and satellite altimeter data from 1993 to 2012 were cross-validated and indicated that the King Tide phenomenon is significantly related to the warm-water effect. Warm water contributed to the King Tide phenomenon by an average of 5.1% and a maximum of 7.8%. The height of King Tide is affected by the combined factors of spring tide, storm surge, climate variability, and, significantly, by the warm-water effect.

  5. Effect of Lunar Phases, Tides, and Wind Speed on the Abundance of Diptera Calliphoridae in a Mangrove Swamp.

    PubMed

    Batista-da-Silva, J A

    2014-02-01

    Abiotic factors, such as lunar phases and tides, have a significant effect on insect development. Reproduction and immature development are usually interlinked to these abiotic factors. The tide is at its highest levels at full moon or new moon, hindering the feeding of the immature or causing their drowning. The oviposition by adult females is also compromised on these days because much of the available food is submerged. Another important abiotic factor is the wind, which displaces odoriferous particles in the air. Wind speed and direction are important elements to indicate potential sources of food for insects. I report on the effects of lunar phases, tides, and wind speed on the Calliphoridae fauna in mangrove swamps. The different species collected were identified, and the predominant species in the area were quantified. A total of 1,710 flies were collected over a 1-year period. Six Calliphoridae flies, Chloroprocta idioidea (Robineau-Desvoidy), Chrysomya megacephala (Fabricius), Chrysomya albiceps (Wiedemann), Chrysomya putoria (Wiedemann), Cochliomyia macellaria (Fabricius), and Lucilia eximia (Wiedemann) were collected. Data indicated that lunar phases have a significant effect on the abundance of C. albiceps (r = 0.39, p < 0.01), and that the variation of the tides also affected the abundance of C. putoria (r = 0.40, p < 0.00), C. macellaria (r = 0.41, p < 0.00), and C. idioidea (r = 0.31, p < 0.04). The wind speed, however, did not affect these species. PMID:27193403

  6. The human health effects of Florida red tide (FRT) blooms: an expanded analysis.

    PubMed

    Hoagland, Porter; Jin, Di; Beet, Andrew; Kirkpatrick, Barbara; Reich, Andrew; Ullmann, Steve; Fleming, Lora E; Kirkpatrick, Gary

    2014-07-01

    Human respiratory and digestive illnesses can be caused by exposures to brevetoxins from blooms of the marine alga Karenia brevis, also known as Florida red tide (FRT). K. brevis requires macro-nutrients to grow; although the sources of these nutrients have not been resolved completely, they are thought to originate both naturally and anthropogenically. The latter sources comprise atmospheric depositions, industrial effluents, land runoffs, or submerged groundwater discharges. To date, there has been only limited research on the extent of human health risks and economic impacts due to FRT. We hypothesized that FRT blooms were associated with increases in the numbers of emergency room visits and hospital inpatient admissions for both respiratory and digestive illnesses. We sought to estimate these relationships and to calculate the costs of associated adverse health impacts. We developed environmental exposure-response models to test the effects of FRT blooms on human health, using data from diverse sources. We estimated the FRT bloom-associated illness costs, using extant data and parameters from the literature. When controlling for resident population, a proxy for tourism, and seasonal and annual effects, we found that increases in respiratory and digestive illnesses can be explained by FRT blooms. Specifically, FRT blooms were associated with human health and economic effects in older cohorts (≥55 years of age) in six southwest Florida counties. Annual costs of illness ranged from $60,000 to $700,000 annually, but these costs could exceed $1.0 million per year for severe, long-lasting FRT blooms, such as the one that occurred during 2005. Assuming that the average annual illness costs of FRT blooms persist into the future, using a discount rate of 3%, the capitalized costs of future illnesses would range between $2 and 24 million. PMID:24727069

  7. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Technical Reports Server (NTRS)

    Wahr, John

    1993-01-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  8. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Astrophysics Data System (ADS)

    Wahr, John

    1993-03-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  9. Simulation of the effects of proposed tide gates on circulation, flushing, and water quality in residential canals, Cape Coral Florida

    USGS Publications Warehouse

    Goodwin, Carl R.

    1991-01-01

    Decades of dredging and filling of Florida's low-lying coastal wetlands have produced thousands of miles of residential tidal canals and adjacent waterfront property. Typically, these canals are poorly flushed, and over time, accumulated organic-rich bottom materials, contribute to an increasingly severe degraded water quality. One-dimensional hydrodynamic and constituent-transport models were applied to two dead-end canal systems to determine the effects of canal system interconnection using tide gates on water circulation and constituent flushing. The model simulates existing and possible future circulation and flushing conditions in about 29 miles of the approximately 130 miles of tidally influenced canals in Cape Coral, located on the central west coast of peninsular Florida. Model results indicate that tidal water-level differences between the two canal systems can be converted to kinetic energy, in the form of increased water circulation, but the use of one-way tide gate interconnections. Computations show that construction of from one to four tide gates will cause replacement of a volume of water equivalent to the total volume of canals in both systems in 15 to 9 days, respectively. Because some canals flush faster than others, 47 and 21 percent of the original canal water will remain in both systems 50 days after start of operation of one and four tide gates, respectively. Some of the effects that such increased flushing are expected to have include reduced density stratification and associated dissolved-oxygen depletion in canal bottom waters, increased localized reaeration, and more efficient discharge of stormwater runoff entering the canals.

  10. Restoration and recovery of hurricane-damaged mangroves using the knickpoint retreat effect and tides as dredging tools.

    PubMed

    Bashan, Yoav; Moreno, Manuel; Salazar, Bernardo G; Alvarez, Leonardo

    2013-02-15

    In 2001, a hurricane moved a large sand dune, blocking the sole outlet channel of a mangrove. In the absence of daily tidal flow, the two ponds containing the mangrove vegetation evaporated, the secondary drainage channels were lost, and a salt crust formed on the bed of the ponds. The mangrove lost most of its trees and the remaining suffered from osmotic shock that led to defoliation. Restoration involved creating a knickpoint retreat (waterfall retreat effect) and tidal flow as a dredging mechanism to restore the outlet and form secondary channels in the ponds. During a very low tide, we deepened the mouth of the outlet channel by 1 m below high tide level to form a small waterfall when high tides receded. During successive tides, this one-step knickpoint deteriorated and formed a series of low rapids. With a steep gradient, the rapids retreated upstream into the ponds, first reopening the outlet channel and then carving new secondary channels in the pond mud flat. The excavation process of the outlet channel was repeated three times and was sufficient to effectively improve the hydrology of the entire pond system; allowing adequate flooding and draining of the mangrove ponds. Hydrology analysis tested by the Engelund-Hansen sediment transport formula established that the output of sediment from the ecosystem is greater than the input of sand into the mangroves. This is keeping the main channel continuously open. After eight years, tidal flow continues to keep the channels open; the salt crust has disappeared; the trees have recovered, and a large area of new vegetation has emerged. PMID:23333638

  11. Tides and deltaic morphodynamics

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, Piret

    2016-04-01

    Tide-dominated and tide-influenced deltas are not widely recognized in the ancient record, despite the numerous modern and Holocene examples, including eight of the twelve modern largest deltas in the world, like the Ganges-Brahmaputra, Amazon, Chang Jiang, and Irrawadi. Furthermore, tide-dominated or tide-influenced deltas are suggested to be more common in inner-shelf or embayment settings rather than close to or at a shelf edge, primarily because wave energy is expected to be higher and tidal energy lower in outer shelf and shelf-edge areas. Thus, most shelf-edge deltas are suggested to be fluvial or wave dominated. However, there are ancient examples of tide-influenced shelf-edge deltas, indicating that the controls on tidal morphodynamics in deltas are not yet well understood. This paper asks the following questions: (1) How do tides influence delta deposition, beyond creating recognizable tidal facies? (2) Does tidal reworking create specific geometries in delta clinoforms? (3) Does tidal reworking change progradation rates of deltas? (4) Is significant tidal reworking of deltas restricted to inner-shelf deltas only? (5) What are the conditions at which deltas may be tidally influenced or tide-dominated in outer-shelf areas or at the shelf edge? (6) What are the main morphodynamic controls on the degree of tidal reworking of deltas? The paper utilizes a dataset of multiple ancient and modern deltas, situated both on the shelf and shelf edge. We show that beyond the commonly recognized shore-perpendicular morphological features and the recognizable tidal facies, the main effects of tidal reworking of deltas are associated with delta clinoform morphology, morphodynamics of delta lobe switching, delta front progradation rates, and the nature of the delta plain. Strong tidal influence is here documented to promote subaqueous, rapid progradation of deltas, by efficiently removing sediment from river mouth and thus reducing mouth bar aggradation and fluvial delta

  12. EFFECTS OF RED TIDE (KARENIA BREVIS) ON PISCIVOROUS BIRDS IN SARASOTA BAY, FLORIDA

    EPA Science Inventory

    Red tide will cause changes in the abundance and distribution of fishes, which will be accompanied by changes in the patterns of habitat use by birds. Birds will be affected by exposure to brevetoxin via their prey and they will also face decreased availability of prey during...

  13. Effects of Tide Stage on the Use of Salt Marshes by Wading Birds in Rhode Island

    EPA Science Inventory

    To determine how tide stage affects wading bird abundance, behavior, and foraging in three Narragansett Bay salt marshes (RI), we conducted surveys at 10-min intervals—across the full tidal range—during six days at each marsh in July/September of 2006. The wading bird community ...

  14. EVALUATION OF THE EFFECTS ON BENTHIC ORGANISMS FROM CLAY FLOCCULATION OF RED TIDE ORGANISMS

    EPA Science Inventory

    Evaluating the feasibility of controlling red tide using clay flocculation is part of an ECOHAB-funded project. One aspect for the feasibility and future application of clays is the determination of potential negative environmental impacts. The removal of toxin-containing dinofl...

  15. Variation of the Earth tide-seismicity compliance parameter during the recent seismic activity in Fthiotida, central Greece

    NASA Astrophysics Data System (ADS)

    Arabelos, Dimitrios N.; Contadakis, Michael E.; Vergos, Georgios; Spatalas, Spyrous

    2016-01-01

    Based on the results of our previous studies concerning the tidal triggering effect on the seismicity in Greece, we consider the confidence level of earthquake occurrence - tidal period accordance as an index of tectonic stress criticality, associated with earthquake occurrence. Then, we investigate whether the recent increase in the seismic activity at Fthiotida in Greek mainland indicates faulting maturity and the possible production a stronger earthquake. In this paper we present the results of this investigation

  16. New ERP predictions based on (sub-)daily ocean tides from satellite altimetry data

    NASA Astrophysics Data System (ADS)

    Madzak, Matthias; Böhm, Sigrid; Böhm, Johannes; Bosch, Wolfgang; Schuh, Harald

    2013-04-01

    A new model for Earth rotation variations based on ocean tide models is highly desirable in order to close the gap between geophysical Earth rotation models and geodetic observations. We have started a project, SPOT (Short Period Ocean Tidal variations in Earth Rotation), with the goal to develop a new model of short period Earth rotation variations based on one of the best currently available empirical ocean tide models obtained from satellite altimetry. We employ the EOT11a model which is an upgrade of EOT08a, developed at DGFI, Munich. As EOT11a does not provide the tidal current velocities which are fundamental contributors to Earth rotation excitation, the calculation of current velocities from the tidal elevations is one of three main areas of research in project SPOT. The second key aspect is the conversion from ocean tidal angular momentum to the corresponding ERP variations using state-of-the-art transfer functions. A peculiar innovation at this step will be to consider the Earth's response to ocean tidal loading based on a realistic Earth model, including an anelastic mantle. The third part of the project deals with the introduction of the effect of minor tides. Ocean tide models usually only provide major semi-diurnal and diurnal tidal terms and the minor tides have to be inferred through admittance assumptions. Within the proposed project, selected minor tidal terms and the corresponding ERP variations shall be derived directly from satellite altimetry data. We determine ocean tidal angular momentum of four diurnal and five sub-daily tides from EOT11a and apply the angular momentum approach to derive a new model of ocean tidal Earth rotation variations. This poster gives a detailed description of project SPOT as well as the status of work progress. First results are presented as well.

  17. Effects of tides, vertical discretization schemes and runoff variability on a pan-Arctic Ocean simulation.

    NASA Astrophysics Data System (ADS)

    Luneva, Maria; Holt, Jason; Harle, James; Liu, Hedong

    2013-04-01

    The results of a recently developed NEMO-shelf pan-Arctic Ocean model coupled with LIM2 ice model are presented. This pan Arctic model has a hybrid s-z vertical discretization with terrain following coordinates on the shelf, condensing towards the bottom and surface boundary layer, and partial step z-coordinates in the abyss. This allows (a) processes near the surface to be resolved (b) Cascading (shelf convection), which contributes to the formation of halocline and deep dense water, to be well reproduced; and (c) minimize pressure gradient errors peculiar to terrain following coordinates. Horizontal grid and topography corresponds to global NEMO -ORCA 0.25 model (which uses a tripolar grid) with seamed slit between the western and eastern parts. In the Arctic basin this horizontal resolution corresponds to 15-10km with 5-7 km in the Canadian Archipelago. The model uses the General Length Scale vertical turbulent mixing scheme with (K- ɛ) closure and Kantha and Clayson type structural functions. Smagorinsky type Laplacian diffusivity and viscosity are employed for the description of a horizontal mixing. Vertical Piecewise Parabolic Method has been implemented with the aim to reduce an artificial vertical mixing. Boundary conditions are taken from the 5-days mean output of NOCS version of the global ORCA-025 model and OTPS/tpxo7 for 9 tidal harmonics . For freshwater runoff we employed two different forcings: a climatic one, used in global ORCA-0.25 model, and a recently available data base from Dai and Trenberth (Feb2011) 1948-2007, which takes in account inter-annual variability and includes 1200 river guages for the Arctic ocean coast. The simulations have been performed for two intervals: 1978-1988 and 1997-2007. The model adequately reproduces the main features of dynamics, tides and ice volume/concentration. The analysis shows that the main effects of tides occur at the ice-water interface and bottom boundary layers due to mesoscale Ekman pumping , generated

  18. Europa Tide Movie

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for Europa Tide Movie

    In this movie Europa is seen in a cutaway view through two cycles of its 3.5 day orbit about the giant planet Jupiter. Like Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Unlike on Earth, however, this ocean is deep enough to cover the whole moon, and being far from the sun, the ocean surface is globally frozen over. Europa's orbit is eccentric, which means as it travels around Jupiter, large tides, raised by Jupiter, rise and fall. Jupiter's position relative to Europa is also seen to librate, or wobble, with the same period. This tidal kneading causes frictional heating within Europa, much in the same way a paper clip bent back and forth can get hot to the touch, as illustrated by the red glow in the interior of Europa's rocky mantle and in the lower, warmer part of its ice shell. This tidal heating is what keeps Europa's ocean liquid and could prove critical to the survival of simple organisms within the ocean, if they exist.

  19. Partitions and vertical profiles of 9 endocrine disrupting chemicals in an estuarine environment: Effect of tide, particle size and salinity.

    PubMed

    Yang, Lihua; Cheng, Qiao; Lin, Li; Wang, Xiaowei; Chen, Baowei; Luan, Tiangang; Tam, Nora F Y

    2016-04-01

    Phenolic endocrine disrupting chemicals (EDCs) in an estuarine water column in a depth profile of five water layers (0.05 D, 0.20 D, 0.60 D, 0.80 D and 0.90 D, D = Depth, 10.7 ± 0.7 m) and their corresponding environmental parameters (tide, salinity and particle size) were investigated over a year. Water sample from each layer was further separated into three fractions, which were dissolved, coarse (SPM-D, Φ ≥ 2.7 μm) and fine (SPM-F, 2.7 μm > Φ ≥ 0.7 μm) suspended particulate matters. Most of EDCs in the water column were presented in the dissolved fraction. Vertical profiles of salinity fluctuations showed that the upper water layer was most influenced by upstream flow. Estriol (E3), mestranol (Mes) and 17α-ethynylestradiol (EE2) concentrations were significantly higher in ebb tide than in flood tide, indicating that EDCs mainly came from terrestrial source, the upstream flow. Dissolved EDCs also exhibited high levels in the surface layer (0.05 D) due to the upstream source and atmosphere deposition, followed by the bottom layer (0.90 D) owing to the re-suspension of EDCs-containing sediment. Compared to the dissolved phase, the contents of BPA, Mes and EE2 in the solid phase were affected by particle size and exhibited a trend of SPM-F > SPM-D > sediment. On the other hand, the concentrations of octylphenol (OP) and t-nonylphenol (NP), the degradation products from common nonionic surfactants, in sediment were higher than those in suspended particles, and NP concentration was higher in flood tide than that in ebb tide. For both SPM-D and SPM-F, their corresponding EDCs concentrations were negatively related to SPM concentrations due to particle concentration effect (PCE). Owing to the "salting-out effect", salinity pushed EDCs from dissolved fraction to particulate or sedimentary phase. PMID:26736056

  20. The effect of tides on sea ice, temperature and salinity fields in the Arctic Ocean on multi-decadal scales.

    NASA Astrophysics Data System (ADS)

    Luneva, Maria; Harle, James; Holt, Jason; Aksenov, Yevgeny

    2014-05-01

    The effects of tides on the hydrographical fields and sea-ice on multi-decadal timescales (from 1978-2007) has been examined using a newly developed Arctic Ocean NEMO-shelf-ice coupled model of moderate (10-15km) resolution, which explicitly simulates tides and processes in the benthic boundary layer. The model realistically reproduces the tides, which can be extremely strong on the Arctic shelf, with amplitudes reaching 4.4m in the Hudson Strait, 2-3m in the White Sea and above 1m in the Canadian Archipelago. It also accurately predicts the sea ice volume trends over this period, when compared with PIOMAS results, and demonstrates a stronger reduction in ice volume (by ~15%) and extent (by ~5%) in comparison with simulations without tides. By including tides in the Arctic simulation we find: (i) a decrease in ice thickness from 0.1 to 1m in Central Arctic, and up to 2m in the Canadian Archipelago; (ii) ice melting and thinning is accompanied by an increase in average surface salinity by 2PSU and changes of river freshwater pathways; (iii) cooling of the upper 300m of the Arctic Ocean in comparison with non-tidal simulations. We hypothesize that tidal mixing and advection support the supply of heat from warm Atlantic waters through the strongly stratified halocline layer. It has been found that tidal effects on the water mass structure are regionally localised, but subsequent can be transported across the entire basin. We discuss the following physical mechanisms for tidal influence: (a) increased vertical mixing near the bottom layer and on the ice-ocean interface; (b) opening and closing of leads in the sea ice in summer time altering the solar radiation flux to water below, thus affecting the ocean heat content and amount of ice melt ; (c) opening and closing of leads in the sea ice during winter leading to an increase the heat loss from the ocean to atmosphere, with subsequent ice production and brine rejection; (d) increased mixing in the pycnocline and at the

  1. Allelopathic effects of macroalga Corallina pilulifera on the red-tide forming alga Heterosigma akashiwo under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Wang, Renjun; Tang, Xuexi

    2016-03-01

    Over the past few years, harmful algal blooms (HABs), such as red tides, have been frequently observed in coastal zones worldwide. The natural allelopathic interactions among macroalgae and red tide microalgae can alter the structure and succession of aquatic ecosystems. We investigated the influence of four environmental factors (temperature, salinity, light, and pH) on the allelopathic effects of the macroalgae Corallina pilulifera on red-tide forming Heterosigma akashiwo under laboratory conditions. Each of the factors had four levels: temperature (15, 20, 25, and 30°C), salinity (10, 20, 30, and 40), light (20, 100, 200 and 400 μmol/(m2•s)), and pH (5.5, 7, 8.5, and 10. Two-factor experiments were designed for each two environmental factors, with six combination treatments (temperature-salinity, temperature-light, temperature-pH, salinity-light, salinity-pH, and light-pH). Results showed that the allelopathic effect was significantly influenced by temperature, salinity, light, and pH. As single factors, the low temperature (15°C), low salinity (10), high-intensity light (400 μmol/(m2•s)), and high pH (10) treatments substantially enhanced the allelopathic effect. The strongest allelopathic effect of C. pilulifera on H. akashiwo was observed under the following treatments: 15°C and salinity of 40, 25°C and pH 10, 25°C with medium- to high-intensity light at 200-400 μmol/(m 2 •s), 400 μmol/(m2•s) and salinity of 10, 400 μmol/(m2•s) and pH 10, and pH 10 with a salinity of 40.

  2. Management and conservation of San Francisco Bay salt ponds: Effects of pond salinity, area, tide, and season on pacific flyway waterbirds

    USGS Publications Warehouse

    Warnock, N.; Page, G.W.; Ruhlen, T.D.; Nur, N.; Takekawa, J.Y.; Hanson, J.T.

    2002-01-01

    Throughout the world, coastal salt ponds provide habitat for large numbers and diversities of waterbirds. San Francisco Bay contains the most important coastal salt pond complexes for waterbirds in the United States, supporting more than a million waterbirds through the year. As an initial step in attempting to understand how the anticipated conversion of salt ponds to tidal marsh might affect the Bay's bird populations, the number of birds using salt ponds on high and low tides was counted during the winter months of 1999/00 and 2000/01. Behavior and habitat use of birds in these ponds were assessed, and the effects of tide cycle, pond salinity, and pond area on bird use were examined. We recorded 75 species of waterbirds in surveys of salt ponds in the South Bay from September 1999 to February 2001, totaling over a million bird use days on high tide. Shorebirds and dabbling ducks were the most abundant groups of birds using the salt ponds. Waterbird numbers and diversity were significantly affected by the salinity of ponds in a non-linear fashion with lower numbers and diversity on the highest salinity ponds. With the exception of ducks and Eared Grebe (Podiceps nigricollis), tide height at the Bay significantly affected bird numbers in the salt ponds with ponds at high tides having higher numbers of birds than the same ponds on low tides. Considerable numbers of birds fed in the salt ponds on high and low tides, although this varied greatly by species. Habitat use varied by tide. Management recommendations include maintaining ponds of varying salinities and depths. Restoring salt ponds to tidal marsh should proceed with caution to avoid loss of waterbird diversity and numbers in San Francisco Bay.

  3. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  4. The magnetic tides of Honolulu

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Rigler, E. J.

    2013-12-01

    We review the phenomenon of time-stationary, periodic quiet-time geomagnetic tides. These are generated by the ionospheric and oceanic dynamos, and, to a lesser-extent, by the quiet-time magnetosphere, and they are affected by currents induced in the Earth's electrically conducting interior. We examine historical time series of hourly magnetic-vector measurements made at the Honolulu observatory. We construct high-resolution, frequency-domain Lomb-periodogram and maximum-entropy power spectra that reveal a panorama of stationary harmonics across periods from 0.1 to 10000.0-d, including harmonics that result from amplitude and phase modulation. We identify solar-diurnal tides and their annual and solar-cycle sideband modulations, lunar semi-diurnal tides and their solar-diurnal sidebands, and tides due to precession of lunar eccentricity and nodes. We provide evidence that a method intended for separating the ionospheric and oceanic dynamo signals by midnight subsampling of observatory data time series is prone to frequency-domain aliasing. The tidal signals we summarize in this review can be used to test our fundamental understanding of the dynamics of the quiet-time ionosphere and magnetosphere, induction in the ocean and in the electrically conducting interior of the Earth, and they are useful for defining a quiet-time baseline against which magnetospheric-storm intensity is measured.

  5. The magnetic tides of Honolulu

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, Erin Joshua

    2013-01-01

    We review the phenomenon of time-stationary, periodic quiet-time geomagnetic tides. These are generated by the ionospheric and oceanic dynamos, and, to a lesser-extent, by the quiet-time magnetosphere, and they are affected by currents induced in the Earth's electrically conducting interior. We examine historical time series of hourly magnetic-vector measurements made at the Honolulu observatory. We construct high-resolution, frequency-domain Lomb-periodogram and maximum-entropy power spectra that reveal a panorama of stationary harmonics across periods from 0.1 to 10000.0-d, including harmonics that result from amplitude and phase modulation. We identify solar-diurnal tides and their annual and solar-cycle sideband modulations, lunar semi-diurnal tides and their solar-diurnal sidebands, and tides due to precession of lunar eccentricity and nodes. We provide evidence that a method intended for separating the ionospheric and oceanic dynamo signals by midnight subsampling of observatory data time series is prone to frequency-domain aliasing. The tidal signals we summarize in this review can be used to test our fundamental understanding of the dynamics of the quiet-time ionosphere and magnetosphere, induction in the ocean and in the electrically conducting interior of the Earth, and they are useful for defining a quiet-time baseline against which magnetospheric-storm intensity is measured.

  6. Effect of spring-neap tide and evaporation on the salt dynamics in estuarine marshes

    NASA Astrophysics Data System (ADS)

    Zhang, Chenming; Shen, Chengji; Xin, Pei; Li, Ling

    2016-04-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore-water and salt in a vertical cross section perpendicular to a tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore-water from the unsaturated soil surface with salt left in, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, salinity and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the potential evaporation rate, tidal signals, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period under a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains below solubility. Coarse soils tend to have more intensified seepage flow and hence less pore-water salinity than fine soils. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water table is maintained while tidal inundation absent. On the contrary, the supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  7. The effects of artificially impounded water on tide gauge measurements of sea level over the last century

    NASA Astrophysics Data System (ADS)

    Haberling, S.; Zhang, Y.; Rothacher, M.; Geiger, A.; Clinton, J. F.

    2011-12-01

    Tide gauge measurements spanning the last century reveal global scale and regionally varying changes in sea level. These changes are comprised of signals from a number of natural and anthropogenically forced processes, including ongoing glacial isostatic adjustment, mass flux from polar ice sheets and glaciers, thermosteric effects, and variability in patterns of ocean circulation. We present a new analysis of sea-level changes arising from the impoundment over the last century of more than 6,100 km3 of water (plus estimates of seepage into surrounding soils) in ~6,800 reservoirs around the globe (Chao et al., Science, 2008; Fiedler & Conrad, Geophys. Res. Lett., 2010). In particular, we extend the analysis of Fiedler & Conrad (2010) by adopting a database that includes an additional ~30% of water impoundment. Our calculations are based on a gravitationally self-consistent theory that incorporates the full suite of gravitational, rotational and (elastic) deformational effects on sea level (Kendall et al., Geophys. J. Int., 2005). The signal associated with impoundment at each reservoir is characterized by a sea level fall that is ~30% higher than the globally averaged (eustatic) value of the impoundment. In contrast, in the near field, sea level rises in response to both deformational and gravitational effects with an amplitude that is roughly an order of magnitude greater than the eustatic amplitude. We present global maps of the total sea-level change associated with the reservoirs, and report on an effort to detect the impoundment signal at individual tide gauges.

  8. Microorganism dynamics during a rising tide: Disentangling effects of resuspension and mixing with offshore waters above an intertidal mudflat

    NASA Astrophysics Data System (ADS)

    Guizien, Katell; Dupuy, Christine; Ory, Pascaline; Montanié, Hélène; Hartmann, Hans; Chatelain, Mathieu; Karpytchev, Mikhaïl

    2014-01-01

    Resuspension of microphytobenthic biomass that builds up during low tide has been acknowledged as a major driver of the highly productive food web of intertidal mudflats. Yet, little is known about the contribution to pelagic food web of the resuspension of other microorganisms such as viruses, picoeukaryotes, cyanobacteria, bacteria, nanoflagellates, and ciliates, living in biofilms associated with microphytobenthos and surficial sediment. In the present study, a novel approach that involves simultaneous Lagrangian and Eulerian surveys enabled to disentangle the effects of resuspension and mixing with offshore waters on the dynamics of water column microorganisms during a rising tide in the presence of waves. Temporal changes in the concentration of microorganisms present in the water column were recorded along a 3 km cross-shore transect and at a fixed subtidal location. In both surveys, physical and biological processes were separated by comparing the time-evolution of sedimentary particles and microorganism concentrations. During a rising tide, sediment erosion under wave action occurred over the lower and upper parts of the mudflat, where erodibility was highest. Although erosion was expected to enrich the water column with the most abundant benthic microorganisms, such as diatoms, bacteria and viruses, enrichment was only observed for nanoflagellates and ciliates. Grazing probably overwhelmed erosion transfer for diatoms and bacteria, while adsorption on clayed particles may have masked the expected water column enrichment in free viruses due to resuspension. Ciliate enrichment could not be attributed to resuspension as those organisms were absent from the sediment. Wave agitation during the water flow on the mudflat likely dispersed gregarious ciliates over the entire water column. During the rising tide, offshore waters imported more autotrophic, mainly cyanobacteria genus Synechococcus sp. than heterotrophic microorganisms, but this import was also heavily

  9. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  10. Effects of tides on the quasi-steady upwelling-downwelling regimes and water mass exchange between the Arctic and Atlantic Oceans.

    NASA Astrophysics Data System (ADS)

    Luneva, Maria; Harle, James

    2016-04-01

    Astronomical tides are strong in the regions of the Arctic shelf and GIN Seas, with amplitudes reaching up to 4.4m in the Hudson Strait, 2-3m in the White Sea and greater than 1m in the Canadian Archipelago. If nonlinear friction is present, at the sea bed or within a stratification water column, periodical motions transfer energy to shear stresses with a substantial non-periodic component. Over bottom topography, anomalous bottom shear stress generates vorticity and vertical motions, resulting in either an ageostrophic circulation or geostrophic upwelling/downwelling of isopycnals. Using a pan-Arctic and a North Atlantic ocean-ice model, both of which explicitly resolve tides, we examine the effects of tides on the vertical motions generated by Ekman pumping near the sea bed and at the ice-ocean interface, and the stretching and tilting of vorticity. We found that tides significantly increase the intensity of vertical upwellings and downwelling regimes near the shelf break. We extend the semi-geostrophic two dimensional Eliassen -Sawyer equation and three-dimensional omega-equation to take into account the effects of tides. We also discuss the application of the equations for the analysis of watermass transformations and dense water overflow in the main gateways between the Atlantic and Arctic Oceans : Fram Strait, Yermak Plateau, Barents Sea shelf break, Denmark Strait and Faroe Channel.

  11. A numerical model of nonmigrating diurnal tides between the surface and 65 km

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth S.; Leovy, Conway B.

    1995-01-01

    Observations of surface pressure and middle atmosphere temperatures and winds indicate that a substantial nonmigrating component is present in the diurnal tide. The nonmigrating tides, which propagate with a zonal phase speed that is different from the earth's rotation, are attributed to the diurnal heating of geographically fixed sources. In this study we utilize a classical tidal model to examine the propagation characteristics of diurnal tides. The global fields of tropospheric sensible, radiative, and latent heating used to drive the model are supplied from summer and winter diurnal climatologies of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2). A novel aspect of this study is the focus on the relative importance of the nonmigrating components. The classical model successfully reproduces many observed features of the low-latitude diurnal surface pressure tides. In the middle atmosphere, the simulated migrating (or sun-synchronous) tide shows qualitative agreement with November-March Limb Infrared Monitor of the Stratosphere (LIMS) observations. Tropospheric solar heating is clearly the dominant driving force for the migrating tide, with secondary contributions from boundary-layer sensible heating and tropospheric latent heat release. The leading modes of the zonal mean tide are also driven chiefly by tropospheric solar heating. The higher-order modes of the zonal mean and eastward propagating tides may be attributed to the joint effects of tropospheric solar heating, sensible heating, and latent heat release. The LIMS and other data reveal features that cannot be explained or examined within the context of the classical model used in the present study. These include upward phase propagation, vertical attenuation, and temporal variations in the migrating diurnal tide.

  12. Stratospheric Sudden Warming Effects on the Ionospheric Migrating Tides during 2008-2010 observed by FORMOSAT-3/COSMIC

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lin, C.; Chang, L. C.; Liu, H.; Chen, W.; Chen, C.; Liu, J. G.

    2013-12-01

    In this paper, ionospheric electron densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the ionosphere during 2008-2010. The tidal analysis indicates that the amplitudes of the zonal mean and major migrating tidal components (DW1, SW2 and TW3) decrease around the time of the SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Meanwhile consistent enhancements of the SW2 and nonmigrating SW1 tides are seen after the stratospheric temperature increase. In addition to the amplitude changes of the tidal components, well matched phase shifts of the ionospheric migrating tides and the stratospheric temperatures are found for the three SSW events, suggesting a good indicator of the ionospheric response. Although the conditions of the planetary waves and the mean winds in the middle atmosphere region during the 2008-2010 SSW events may be different, similar variations of the ionospheric tidal components and their associated phase shifts are found. Futher, these ionospheric responses will be compared with realistic simulations of Thermosphere-Ionosphere-Mesophere-Electrodynamics General Circulation Model (TIME-GCM) by nudging Modern-Era Retrospective analysis for Research and Applications (MERRA) data.

  13. Improvement of ocean loading correction on gravity data with additional tide gauge measurements

    NASA Astrophysics Data System (ADS)

    Neumeyer, Juergen; del Pino, Jorge; Dierks, Olaf; Sun, He-Ping; Pflug, Hartmut

    2005-08-01

    Because a gravimeter records the sum of all gravity variations associated with mass redistribution in its near and far surrounding the investigation of a single special gravity effect (e.g. Earth tides or core modes) requires the reduction of all other effects from the data. In our study, we are dealing with the ocean loading effect. High-precision tidal gravity and atmospheric pressure observations are carried out at the station Rio Carpintero in combination with tide gauge measurements at the coast of Santiago de Cuba. The gravity data are subjected to atmospheric pressure and ocean loading corrections with different oceanic tidal models. In order to test the efficiency of the different ocean loading corrections the gravity data are analysed for various tidal waves and the determined Earth tide parameters are compared with model parameters. Additionally, tide gauge measurements are analysed and used for improving the ocean loading correction on gravity data. The results show that present-day global oceanic tidal models, e.g. NAO99b and FES2002 in combination with the ocean loading calculation program (LOAD97), are not sufficient for a complete correction of this effect. With our approach, the discrepancies between the observed Earth tide parameters and those from theoretical prediction for main waves in diurnal and semidiurnal tidal bands are further reduced when taking into account the tide gauge data recorded offshore. After additional removal of oceanic signals, based on the tide gauge data, the analysed Earth tide parameters are closer to the Wahr-Dehant model. The improvement is up to 4% and the noise is reduced from 20 nm/s 2 to 10 nm/s 2 within the examined period range of 10-1500 min. Therefore, high-precision gravity measurements (e.g. with Superconducting Gravimeters), especially for stations near the coastal lines, should take into account tide gauge measurements for the ocean loading correction. With improved ocean loading correction and reduced noise

  14. A survey of the theory of the Earth's rotation

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1981-01-01

    The theory of the Earth's rotation and the geophysical phenomena affecting it is examined. First principles are reviewed and the problem of polar motion and UT1 variations is formulated in considerable generality and detail. The effects of Earth deformations and the solid Earth tides are analyzed.

  15. The effect of tides and eddies on the hydrophysical fields in the NEMO-shelf Arctic Ocean model.

    NASA Astrophysics Data System (ADS)

    Luneva, M. V.

    2012-04-01

    We present the results of the coupled ocean-ice NEMO-shelf pan-Arctic model, which is still under development. The model has generalized s-z partial step vertical coordinates and horizontal resolutions of 1/16o and 1/32o in the rotated system of coordinates. The model explicitly resolves tides (8 tidal harmonics), has advanced vertical mixing schemes (generalized length scale turbulence closure model) and monotonic, low diffusive Piecewise Parabolic Method for vertical advection. The model reasonably reproduces tidal dynamics, ice formation. We examine the following effects of tides on the low -frequency components of hydro-physical fields : tidal Reynolds stresses, bottom shear stresses , lateral and vertical salt and heat fluxes. We have found, that the effects of advection (tidal Reynolds stresses) on the slow varying component of currents are relatively small. The additional component of bottom shear stresses, induced by tides, strongly affects the low-frequency component of currents on the shelves and shelf breaks. These effects can be considered as additional "tidal bottom wind shear " stresses, which act as an external forcing, driving the current, rather than damping it. As the typical spatial length-scales of tidal currents variability is much smaller than atmospheric wind length scales , these "tidal wind stresses" create very strong bottom Ekman pumping, reaching magnitudes of 0.1 -1 mm/s for monthly averages. The important features of the Arctic ocean circulation are narrow jets, following along the bottom topography slopes (topostrophic currents). These currents are assumed to be eddy-driven ("Neptune effect"). Traditionally, topostrophic currents are assumed to be proportional to local topography slope and dependent on one empirical length scale parameter. Idealised theory, developed for the Zapiola Anticyclone in a tropical region predicts that these strong , nearly barotropic currents , following bottom topography contours, are driven by the

  16. The ultimate high tide

    SciTech Connect

    Dean, R.G. )

    1990-01-01

    This paper discusses the possible coastal impacts of a rise in sea level. Control measures that are available to coastal communities are emphasized, including pumping of seawater into the ground, replenishing beach sand, protection or moving of potable-water intakes, elevating roadways, and building dikes. Economics will determine which, if any, measures are reasonable at a particular site. There is an upward trend in the mean CO{sub 2} concentration and predictions about the greenhouse effect are creating a rising tide of concern.

  17. Regional ocean tide loading modelling around the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Benavent, M.; Arnoso, J.; Montesinos, F. G.

    2009-12-01

    We developed a new 1/12° resolution oceanic tide model in the complex region that surrounds the Iberian Peninsula. The model, named IBER01, allows us to obtain more accurate tidal loading computations for precise geodetic and gravimetric observations in this area. The modelling follows the scheme of data assimilation (coastal tide gauge, bottom pressure sensors and TOPEX/Poseidon altimetry) into a hydrodynamical model, which is based on two-dimensional barotropic depth averaged shallow-water equations. Detailed bathymetry data and quadratic bottom friction with a specific drag coefficient for the region have been considered. Improved ocean load maps for the Iberian Peninsula are obtained for eight harmonic constituents (Q1, P1, O1, K1, N2, M2, S2 and K2), after computing the load effect (Newtonian attraction and elastic contribution) using IBER01 and six present-day global oceanic tide models for comparison. The results achieved verify the quality of the new model. Our ocean loading computations reduce considerably the discrepancies between the theoretical Earth tide parameters and those from observations at the level of 0.3%.

  18. Tides and Modern Geodesy

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    In modem high-precision geodesy, and especially in modem space geodesy, every measurement that one makes contains tidal signals. Generally these signals are considered noise and must somehow be eliminated. The stringent requirements of the latest space geodetic missions place severe demands on tidal models. On the other hand, these missions provide the strongest data for improving tidal models. In particular, TOPEX/POSEIDON altimetry and LAGEOS laser ranging have improved models to such an extent that new geophysical information about the ocean and the solid Earth are coming to light. Presumably GRACE intersatellite ranging data will also add to this information. This paper discusses several of these new geophysical results, with special emphasis given to the dissipation of tidal energy. Strong constraints have recently been placed on the partitioning of energy dissipation among the ocean, atmosphere, and solid earth and between the deep and shallow ocean. The dissipation in deep water is associated with internal tides and has potentially important implications for understanding the ocean's thermohaline circulation.

  19. Solar Cycle Variability in Mean Thermospheric Composition and Temperature Induced by Atmospheric Tides

    NASA Astrophysics Data System (ADS)

    Jones, M., Jr.; Forbes, J. M.; Hagan, M. E.

    2015-12-01

    Vertically-propagating atmospheric thermal tides whose origins lie in Earth's lower atmosphere are now widely recognized as one of the dominant "meteorological" drivers of space weather. Many prior research efforts have focused on documenting and understanding the role that dissipating tides play in determining the longitudinal and seasonal variability associated with lower thermospheric winds, temperature, and constituent densities. However, considerably less attention has focused on understanding the potential solar cycle variability in the mean thermospheric state induced by the tides. In this paper we utilize the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), forced with observationally-based tides at the model lower boundary from the Climatological Tidal Model of the Thermosphere (CTMT, from Oberheide et al. [2011]), to elucidate how the dissipating tides induce variations of up to 30 K in the zonal-mean thermosphere temperature between solar minimum and maximum. Numerical experiments are performed for the month of September and for solar minimum, medium, and maximum conditions in order to quantify the solar cycle variability associated with the different terms in the thermodynamic energy, major and minor neutral constituent continuity equations. Our analysis indicates that solar cycle variability in neutral temperatures results from a combination of net eddy heat transport effects and tidal modulation of net nitric oxide (NO) cooling. The chemical and dynamical pathways through which dissipating tides affect mean NO cooling differently at solar minimum and maximum are diagnosed.

  20. Stratospheric Tides and Data Assimilation

    NASA Technical Reports Server (NTRS)

    Swinbank, R.; Orris, R. L.; Wu, D. L.

    1999-01-01

    In the upper stratosphere, the atmosphere exhibits significant diurnal and semi-diurnal tidal variations, with typical amplitude of about 2K in mid-latitudes. In this paper we examine how well the tidal variations in temperature are represented by the Goddard Geodesic Earth Orbiting Satellite (GEOS-2) data assimilation system. We show that the GEOS-2 atmospheric model is quite successful at simulating the tidal temperature variations. However, the assimilation of satellite temperature soundings significantly damps the simulated tides. The reason is because the tides are not well represented by the satellite retrievals used by the assimilation system (which have a typical tidal amplitude of around 1K). As a result of this study, we suggest improvements that should be made to the treatment of satellite soundings by the assimilation system.

  1. The magnetic tides of Honolulu

    NASA Astrophysics Data System (ADS)

    Love, Jeffrey J.; Rigler, E. Joshua

    2014-06-01

    We review and analyse the phenomenon of time-invariant, periodic geomagnetic tides. These are generated by the deterministic physics of the ionospheric and oceanic dynamos, and, to a lesser extent, by the solar-quiet magnetosphere, and they are affected by currents induced in the Earth's electrically conducting interior. Using a long historical time-series of hourly magnetic vector measurements made at the Honolulu observatory, we construct high-resolution, frequency-domain power spectra across periods from 0.1 to 10 000.0 d using maximum-entropy and Lomb periodogram algorithms. Recognizing that harmonics corresponding to fundamental forcing periods can, themselves, have amplitude and phase modulation driven by other forcing harmonics, we identify solar-diurnal tides and their annual and solar-cycle sideband modulations, lunar semidiurnal tides and their solar-diurnal sidebands, and tides due to precession of lunar eccentricity and nodes. In contrast to reports by other investigators, we cannot identify tidal signals that might be related to the 22-yr Hale cycle, the Chandler wobble and the quasi-biennial oscillation. Using a least-squares algorithm to estimate the amplitudes and phases of individual tidal constituents, we construct synthetic model time-series that are representative of geomagnetic tidal variation. The signals summarized in this report can be used to test fundamental understanding of the dynamics of the solar-quiet ionosphere and magnetosphere, the ocean and the electrically conducting interior of the Earth, and they can be used to specify a quiet-time baseline against which magnetospheric storm disturbance can be measured.

  2. Tides at the east coast of Lanzarote Island

    NASA Astrophysics Data System (ADS)

    Benavent, M.; Arnoso, J.; Vélez, E. J.

    2012-04-01

    The main goal of this work is the study of the ocean tides at the east coast of Lanzarote (Canary Islands). We have analyzed time series of tide gauge and bottom pressure observations available in the region and we have made a further comparative validation with recent global and local ocean tide models. Lanzarote island shows singular features, with regard its volcanic structure and geomorphological properties and, also, concerning the characteristics of the ocean tides in the surrounding waters. For this reason, this region experiences a great interest in Geodesy and Geodynamics. Particularly, an accurate modelization of the ocean tides is of great importance to correct with high accuracy the effect of the ocean over the multiple geodetic measurements that are being carried out in the Geodynamic Laboratory of Lanzarote, LGL (Vieira et al., 1991; 2006). Furthermore, the analysis of tide gauge and bottom pressure records in this area is of great importance to investigate sea level variations, to evaluate and quantify the causes of these changes and the possible correlation with vertical movements of the Earth's crust. The time series of sea level and bottom pressure data considered in this work are obtained at two different locations of the island and, in each of them, using several sensors at different periods of time. First location is Jameos del Agua (JA) station, which belongs to the LGL. This station is placed in the open ocean, 200 meters distant from the northeastern coast of the island and at 8 meters depth. The observations have been carried out using 3 bottom pressure sensors (Aanderaa WLR7, SAIV TD301A and Aqualogger 210PT) at different periods of time (spanning a total of six years). Second location is Arrecife (AR) station, which is 23 km south of JA station. In this case, the sea level data come from a float tide gauge belonging to the Instituto Español de Oceanografía, installed at the beginning of the loading bay, and a radar tide gauge from the

  3. Tide operated power generating apparatus

    SciTech Connect

    Kertzman, H. Z.

    1981-02-03

    An improved tide operated power generating apparatus is disclosed in which a hollow float, rising and falling with the ocean tide, transmits energy to a power generator. The improvement comprises means for filling the float with water during the incoming tide to provide a substantial increase in the float dead weight during the outgoing tide. Means are further provided to then empty the float before the outgoing tide whereby the float becomes free to rise again on the next incoming tide.

  4. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine. The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra

  5. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide.

    The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine.

    The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington

  6. Stratospheric sudden warming and lunar tide

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Kosch, Michael

    2016-07-01

    A stratospheric sudden warming is a large-scale disturbance in the middle atmosphere. Recent studies have shown that the effect of stratospheric sudden warnings extends well into the upper atmosphere. A stratospheric sudden warming is often accompanied by an amplification of lunar tides in the ionosphere/theremosphere. However, there are occasionally winters when a stratospheric sudden warming occurs without an enhancement of the lunar tide in the upper atmosphere, and other winters when large lunar tides are observed without a strong stratospheric sudden warming. We examine the winters when the correlation breaks down and discuss possible causes.

  7. Florida Red Tide Perception: Residents versus Tourists

    PubMed Central

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E.; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C.; Tanga, Elvira; Dalpra, Dana R.; Kirkpatrick, Barbara

    2010-01-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide. PMID:20824108

  8. Florida Red Tide Perception: Residents versus Tourists.

    PubMed

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C; Tanga, Elvira; Dalpra, Dana R; Kirkpatrick, Barbara

    2010-09-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide. PMID:20824108

  9. Pole tide in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Medvedev, I. P.; Rabinovich, A. B.; Kulikov, E. A.

    2014-03-01

    The pole tide, which is driven by the Chandler Wobble, has a period of about 14 months and typical amplitudes in the World Ocean of ˜0.5 cm. However, in the Baltic Sea the pole tide is anomalously high. To examine this effect we used long-term hourly sea level records from 23 tide gauges and monthly records from 64 stations. The lengths of the series were up to 123 years for hourly records and 211 years for monthly records. High-resolution spectra revealed a cluster of neighboring peaks with periods from 410 to 440 days. The results of spectral analysis were applied to estimate the integral amplitudes of pole tides from all available tide gauges along the coast of the Baltic Sea. The height of the pole tide was found to gradually increase from the entrance (Danish Straits, 1.5-2 cm) to the northeast end of the sea. The largest amplitudes—up to 4.5-7 cm—were observed in the heads of the Gulf of Finland and the Gulf of Bothnia. Significant temporal fluctuations in amplitudes and periods of the pole tide were observed during the 19th and 20th centuries.

  10. Effect of the fluid core on changes in the length of day due to long period tides

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Smith, M. L.; Sasao, T.

    1981-01-01

    The long period luni-solar tidal potential is known to cause periodic changes in the earth's rotation rate. It is found that the effect of a dissipationless fluid outer core is to reduce the amplitudes of these tidal perturbations by about 11 percent. When the fluid core effect is added to Agnew and Farrell's (1978) estimate of the effect of an equilibrium ocean, the result is in accord with observation. The effects of dissipative processes within the fluid core are also examined. Out-of-phase perturbations are found which could be as large as about 10 ms at 18.6 yr. It is concluded, however, that the poorly understood decade fluctuations in the earth's rotation rate will prohibit observation of this effect.

  11. Tides and tsunamis

    NASA Technical Reports Server (NTRS)

    Zetler, B. D.

    1972-01-01

    Although tides and tsunamis are both shallow water waves, it does not follow that they are equally amenable to an observational program using an orbiting altimeter on a satellite. A numerical feasibility investigation using a hypothetical satellite orbit, real tide observations, and sequentially increased levels of white noise has been conducted to study the degradation of the tidal harmonic constants caused by adding noise to the tide data. Tsunami waves, possibly a foot high and one hundred miles long, must be measured in individual orbits, thus requiring high relative resolution.

  12. Students' Understanding of Tides.

    ERIC Educational Resources Information Center

    Viiri, Jouni

    2000-01-01

    Reports the findings of research into students' understanding of tides. Students from secondary school and pre-service primary school teacher trainees were chosen as subjects and their understanding was assessed by questionnaire. (Author/CCM)

  13. Atmospheric Tides over the Pyrenees. Observational study and numerical simulation

    NASA Astrophysics Data System (ADS)

    Diaz de Argandoña, Javier; Ezcurra, Agustin; Saenz, Jon; Campistron, Bernard; Ibarra-Berastegi, Gabriel; Saïd, Frederique

    2010-05-01

    Atmospheric tides refer to the oscillations in the atmosphere whose periods are integral fractions of a day. In some magnitudes (e.g. temperature), these oscillations are quite evident but in others, such as the pressure in the midlatitudes, they are usually masked by the greater variations produced during the transient pass of synoptic weather systems. The main forcing agent for these oscillations, as opposed to ocean tides, is not the solar or lunar gravity pull, but the daily variations in solar insolation and the thermal effect derived from it. The main components of the solar atmospheric tides are the semidiurnal, with a 12-hour period, and the 24-hour period component or diurnal tide. The global scale tides are usually referred to as migrating tides, and are the result of a gravity wave which travels westerly with the apparent motion of the sun. Nevertheless, a significant part of the tide can be related to local characteristics, and this part is considered as the non-migrating component of the tide. Barometric tides around the Pyrenees mountain range are analyzed by means of ground synoptic stations data recorded during one year, ground data from PYREX experiment and the CRA/LA VHF wind profiler installed in the North of the range. Tides are decomposed in their diurnal and semidiurnal components. Diurnal tides show a strong non migrating component and are very dependent on local conditions. Semidiurnal tides are more homogeneous and present a north-south asymmetry, also noted in the Alps. This cross-range asymmetry seems to be related to some interference effect caused by the mountain range in the migrating semidiurnal tide wave. The diurnal component asymmetry presents a very strong seasonal variation, so its cause must be probably related to thermal local conditions. A three month simulation carried out with NCAR's WRF limited area model reproduces this asymmetry and some of the features of the observed tides.

  14. MST radar detection of middle atmosphere tides

    NASA Technical Reports Server (NTRS)

    Forbes, J. M.

    1983-01-01

    Meteorological and dynamical requirements pertaining to the specification of middle atmosphere tides by the MST radar technique are outlined. Major issues addressed include: (1) the extraction of tidal information from measurements covering a fraction of a day; (2) the ramifications of transient effects (tidal variability) on the determination and interpretation of tides; (3) required temporal and spatial resolutions and; (4) global distributions of MST radars, so as to complement existing MST, meteor wind, and partial reflection drift radar locations.

  15. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach.

    PubMed

    Yang, Jie; Graf, Thomas; Herold, Maria; Ptak, Thomas

    2013-06-01

    Coastal aquifers are complex hydrologic systems because many physical processes interact: (i) variably saturated flow, (ii) spatial-temporal fluid density variations, (iii) tidal fluctuations, (iv) storm surges overtopping dykes, and (v) surface runoff of storm water. The HydroGeoSphere model is used to numerically simulate coastal flow dynamics, assuming a fully coupled surface-subsurface approach, accounting for all processes listed above. The diffusive wave approximation of the St. Venant equation is used to describe surface flow. Surface flow and salt transport are fully coupled with subsurficial variably saturated, variable-density flow and salt transport through mathematical terms that represent exchange of fluid mass and solute mass, respectively. Tides and storm surges induce a time-variant head that is applied to nodes of the surface domain. The approach is applied to real cases of tide and storm surge events. Tide simulation results confirm the existence of a recirculating zone, forming beneath the upper part of the intertidal zone. By monitoring the exchange fluid flux rates through the beach, it was found that the major inflow to the aquifer takes place at the upper part of the intertidal zone, which explains the formation of the recirculating zone. The recirculating zone is forming particularly during rising tide. Results from a storm surge simulation show that plume fingers develop below the flooded land surface. Natural remediation by seaward flowing freshwater is relatively slow, such that reducing the salt concentration in the aquifer down to drinking water standards takes up to 10 years. PMID:23603354

  16. A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control.

    PubMed

    Wu, Ying; Lee, Yew; Jung, Seul-Gi; Kim, Minju; Eom, Chi-Yong; Kim, Si Wouk; Cho, Hoon; Jin, Eonseon

    2014-05-01

    Thiazolidinedione (TD) derivatives have been found to have an algicidal effect on harmful algal bloom microalgae. In this study, 75 TD derivatives were synthesized and analyzed for algicidal activity. Among these synthetic TDs, 18 TD derivatives showed specific algicidal activity on two strains belonging to the classes Raphidophyceae (Chattonella marina and Heterosigma akashiwo) and Dinophyceae (Cochlodinium polykrikoides). Two strains belonging to Bacillariophyceae (Navicula pelliculosa and Phaeodactylum EPV), one strain belonging to Dinophyceae (Amphidinium sp.), and a Eustigmatophycean microalga (Nannochloropsis oculata) showed less sensitivity to the TD derivatives than the other two phyla. The most reactive TD derivative, compound 2 (TD118), was selected and tested for morphological and physiological changes. TD118 effectively damaged the cell membrane of C. marina, H. akashiwo and C. polykrikoides. The O₂ evolution and photosystem II efficiency (F(v)/F(m)) of C. marina, H. akashiwo and C. polykrikoides were also severely reduced by TD118 treatment. Amphidinium sp., N. pelliculosa, Phaeodactylum EPV and N. oculata showed less reduction of O₂ evolution and the F(v)/F(m) by TD118. These results imply that the species-specific TD structure relationship may be due to structural and/or physiological differences among microalgal species. PMID:24374490

  17. Mapping Hurricane Rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  18. Co-Seismic Mass Displacement and its Effect on Earth's Rotation and Gravity

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Gross, R. S.

    2004-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the "shaking" that is the earthquake, leaves behind permanent (step-function-like) displacements in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field. The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross. The calculation uses the normal mode summation scheme, applied to over twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Centroid Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies, conspiring to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to "nudge" the Earth rotation pole towards approx. 140 deg.E, roughly opposite to the observed polar drift direction. Currently, the Gravity Recovery And Climate Experiment (GRACE) is measuring the time-variable gravity to high degree and order with unprecedented accuracy. Our results show that great earthquakes such as the 1960 Chilean or 1964 Alaskan events cause gravitational field changes that are large enough to be detected by GRACE.

  19. Co-Seismic Mass Dislocation and Its Effect on Earth's Rotation and Gravity

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    1999-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the "shaking" that is the earthquake, leaves behind permanent (step-function-like) dislocations in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field (in terms of spherical harmonic Stokes coefficients). The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results. The calculation uses the normal mode summation scheme, applied to 15,814 major earthquakes that occurred during 1976-1998, according to source mechanism solutions given by the Harvard Central Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies. For example, earthquakes conspire to decrease J(sub 2) and J(sub 22) while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to "nudge" the Earth rotation pole towards about 140 degree E, roughly opposite to the observed polar drift direction. The geophysical significance and implications will be further studied.

  20. Co-Seismic Mass Dislocation and its Effect on Earth's Rotation and Gravity

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Gross, R. S.

    2002-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the shaking that is the earthquake, leaves behind permanent (step-function-like) dislocations in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field (in terms of spherical harmonic Stokes coefficients). The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross (1987). The calculation uses the normal mode summation scheme, applied to nearly twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Central Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies. For example, earthquakes conspire to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to nudge the Earth rotation pole towards approximately 140 degrees E, roughly opposite to the observed polar drift direction. The geophysical significance and implications will be further studied.

  1. Groundwater dynamics in a coastal aquifer: combined effects of tides and beach morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, L.; Erler, D.

    2013-12-01

    The interaction between fresh groundwater and seawater, driven by oceanic oscillations and the inland hydraulic head gradient, has been shown to affect the pore water characteristics, which in turn influence the fate of contaminants in coastal aquifers. We show here that beach morphology interacting with the tidal force can also modulate nearshore groundwater flow and solute transport. Detailed field investigations were combined with numerical simulations to examine the groundwater dynamics in a carbonate-sandy intertidal aquifer on the tropical island of Rarotonga, Cook Islands. Groundwater salinity values revealed different salinity distributions under conditions of different beach profiles, inland heads and tidal signals. Fresh groundwater was also found to discharge around an intertidal beach slope break (located in the middle region of intertidal zone). This suggests that the interplay of beach morphology and tidal forcing may play an important role in groundwater flow and solute transport near the shore. The numerical models enabled quantitatively analysis of the effects of beach morphology on groundwater circulations and solute pathway. We found that (1) the groundwater discharge location is largely controlled by beach morphology in connection with the tidal force; (2) under particular conditions, the groundwater flow pattern is very sensitive to the beach slope breaks. In particular, the beach slope break combined with the tidal oscillation can induce local circulation cells. These results further demonstrate the complexity of nearshore groundwater systems and have implications for future studies of nutrients transport and transformations associated with SGD.

  2. Waves: Internal Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.

  3. Mapping hurricane rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, C.; Mason, R.R., Jr.; Blanchard, S.F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.

  4. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  5. Application of database technology to red tide remote sensing

    NASA Astrophysics Data System (ADS)

    Leng, Xiuhua; Zhang, Jie; Ma, Yi; Zhang, Hongliang

    2003-05-01

    The red tide spectrum database is the basis and prerequisite for red tide hyperspectral remote sensing, a technical support for the field investigation on red tide and the main technical measure for red tide data management and application. The data in the database mentioned in this paper come mainly from the red tide mesocosm experiment, and include the simultaneously collected biological, chemical, hydrographic and meteorological data besides the spectrum data of red tide dominant species. The database has not only the conventional functions for data query, retrieval and plotting, but also the algorithmic functions for the ground object spectrum data processing in the Visual FoxPro system environment and the biological information extraction using the ground object spectrum data. This system is not only an effective application system for detecting the red tide organism, identifying the red tide dominant species and analyzing the characteristic amount of red tide organism, but also a powerful tool for the marine environmental protection and the red tide disaster reduction in the future.

  6. Impact of atmospheric tides simulated in a chemistryclimate model on sub-diurnal variations in UT1

    NASA Astrophysics Data System (ADS)

    Kadow, C.; Dobslaw, H.; Matthes, K.; Thomas, M.

    2012-12-01

    Sub-diurnal variations in Earth rotation parameters as obtained from time-series of space geodetic observations contain substantial variability even after correcting for the effects of oceanic tides. These residuals are in particular apparent at frequencies of 1, 2 and 3 cycles per solar day, where atmospheric tides, principally excited by water vapor absorption and ozone heating in the middle atmosphere, are known to occur. By means of hourly data of the chemistry-climate model WACCM, the potential of atmospheric tides on the excitation of UT1 variations is re-assessed. Tidal signals are separated into migrating and non-migrating zonal waves for individual height levels. Only standing waves of wavenumber zero are found to be effective in exciting UT1 variations, which are subsequently discussed in terms of their characteristic surface pressure and vertically varying wind amplitudes.

  7. Long-Period Tidal Variations of the Earth's Rotation Rate

    NASA Technical Reports Server (NTRS)

    Desai, S.; Gross, R.; Wahr, J.

    1999-01-01

    Long-period tidal variations of the Earth's rotation rate are caused by the redistribution of mass associated with the respective elastic solid Earth tides, the ocean tide heights, and the anelasticity of the Earth's mantle, and by the relative angular momentum associated with the long-period ocean tide currents.

  8. Tides of global ice-covered oceans

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2016-08-01

    The tides of an ice-covered ocean are examined using a Cartesian representation of the elastic and fluid equations. Although unconstrained by any observations, the ocean tides of a Neoproterozoic "snowball" Earth could have been significantly larger than they are today. Time-mean tidal-residual circulations would then have been set up that are competitive with the circulation driven by geothermal heating. In any realistic configuration, the snowball Earth would have had an ice cover that is in the thin shell limit, but by permitting the ice thickness to become large, more interesting ice tidal response can be found, ones conceivably of application to bodies in the outer Solar System or hypothetical exoplanets. Little can be said concerning a reduction in tidal dissipation necessary to avoid a crisis in the history of the lunar orbit.

  9. Ocean Tide Loading Computation

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    2005-01-01

    September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.

  10. Dynamic Elastic Tides

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack; Meyer, Jennifer

    2016-04-01

    This is an exploration of dynamic tides on elastic bodies. The body is thought of as a dynamical system described by its modes of oscillation. The dynamics of these modes are governed by differential equations that depend on the rheology. The modes are damped by dissipation. Tidal friction occurs as exterior bodies excite the modes and the modes act back on the tide raising body. The whole process is governed by a closed set of differential equations. Standard results from tidal theory are recovered in a two-timescale approximation to the solution of these differential equations.

  11. Temperature tides determined with meteor radar

    NASA Astrophysics Data System (ADS)

    Hocking, W. K.; Hocking, A.

    2002-09-01

    A new analysis method for producing tidal temperature parameters using meteor radar measurements is presented, and is demonstrated with data from one polar and two mid-latitude sites. The technique further develops the temperature algorithm originally introduced by Hocking (1999). That earlier method was used to produce temperature measurements over time scales of days and months, but required an empirical model for the mean temperature gradient in the mesopause region. However, when tides are present, this temperature gradient is modulated by the presence of the tides, complicating extraction of diurnal variations. Nevertheless, if the vertical wavelengths of the tides are known from wind measurements, the effects of the gradient variations can be compensated for, permitting determination of temperature tidal amplitudes and phases by meteor techniques. The basic theory is described, and results from meteor radars at Resolute Bay (Canada), London (Canada) and Albuquerque (New Mexico, USA) are shown. Our results are compared with other lidar data, computer models, fundamental tidal theory and rocket data. Phase measurements at two mid-latitude sites (Albuquerque, New Mexico, and London, Canada) show times of maximum for the diurnal temperature tide to change modestly throughout most of the year, varying generally between 0 h and 6 h, with an excursion to 12 h in June at London. The semidiurnal tide shows a larger annual variation in time of maximum, being at 2 4 h in the winter months but increasing to 9 h during the late summer and early fall. We also find that, at least at mid-latitudes, the phase of the temperature tide matches closely the phase of the meridional tide, and theoretical justification for this statement is given. We also demonstrate that this is true using the Global Scale Wave Model (Hagan et al., 1999). Median values for the temperature amplitudes for each site are in the range 5 to 6 Kelvin. Results from a more northern site (Resolute Bay) show

  12. Tides in Titan

    NASA Technical Reports Server (NTRS)

    Rappaport, Nicole J.

    1997-01-01

    Tides raised in Titan by Saturn give rise to a static and a periodic deformation; both will be measured with Doppler tracking during the CASSINI Tour of the Saturnian System. The latter deformation is due to the significant eccentricity of Titan's orbit and has a frequency equal to the orbital angular velocity of Titan.

  13. Ocean tide energy converter

    SciTech Connect

    Rainey, D.E.

    1980-06-24

    A tide motor energy source includes a tidal piston with a valved chamber. The piston drives a hydraulic ram to generate electrical power through a pressure accumulator and hydraulic motor. The ram can be locked hydraulically to enable the tidal piston to be held fixed at a desired elevation and the valves in the chamber permit it to be filled with water or air. The piston with its chamber filled with air at its low tide position and then released for controlled ascent while submerged acts as a submerged float for driving the ram upwardly while the tide runs in during one phase of its operation. The piston with its chamber filled with water while locked at its highest position as the tide begins to run out, and then released to fall under control, acts as a weight suspended in air after the water level drops below the piston for driving the ram downwardly during the second phase of its operation. The rising and falling motion of the tidal piston is used as the energy source.

  14. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  15. Precise Comparisons of Bottom-Pressure and Altimetric Ocean Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2013-01-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets : the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free corenutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  16. On the influence of the surface and body tides on the motion of a satellite. [earth geophysical aspects of orbit perturbations

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1973-01-01

    Some geophysical aspects of the tidal perturbations in the motion of artificial satellites are investigated and a system of formulas is developed that is convenient for computation of the tidal effects in the elements using a step-by-step numerical integration.

  17. TEACHING PHYSICS: The tides - a neglected topic

    NASA Astrophysics Data System (ADS)

    Härtel, Hermann

    2000-01-01

    The lunar tides are generated by the movement of the Earth through the non-homogeneous gravitational field of the Moon while circling around the centre of mass of the Moon and Earth and simultaneously rotating around its own axis. This truly dynamic system is difficult to explain when the explanation is restricted to print media. Computer simulations, where these processes can be visualized directly, can be used to add value, thus opening new paths for a more distinct analysis and increased learning results.

  18. Artificial tide generation and its effects on the water environment in the backwater of Three Gorges Reservoir

    NASA Astrophysics Data System (ADS)

    Sha, Yukun; Wei, Yongping; Li, Weipeng; Fan, Jihui; Cheng, Genwei

    2015-09-01

    Since the water impounding of the Three Gorges Reservoir (TGR) in 2003, the water stage in the backwater region increased from 65 m before water impounding to 145 m, and the velocity of the stream flow decreased significantly. The outflows of the tributaries that flow into TGR were also obstructed by the backwater. Stopping the stream flow prevented the pollutants from diffusing and transporting themselves into the water body, hence polluting the water in several tributaries. The authors proposed an artificial tide generation approach to solve this problem. The man-made flood peak in the downstream and the waves of the water stage in the upstream of the TGR can be produced by operating hydropower generators daily to deal with peak-and-bottom variations in the electricity demand. These waves will propagate upwards and form artificial tides in the backwater area. The water stage variation will intensify the flow exchange between the main stem and the tributaries as well as enhance the diffusion of pollutants, which will subsequently decrease the eutrophication of the water body in the outlet of branches as well as relieve the algal bloom problem in the region. The daily operations in the reservoir were simulated and tested by using the proposed hydrodynamic model of TGR. The hydropower operation for the peak load of electricity demand will produce artificial tides in the backwater area of TGR as well as increase the water stage variation from 0.30 m to 0.50 m within a day. This periodic fluctuation of water stage waves will intensify the water exchange between the main reach of Changjiang (Yangtze River) and its tributaries with an additional inflow or outflow of up to 300-500 m3/s, which is equivalent to the average discharge of these tributaries during the summer. The artificial tide generation can enhance the internal exchange of backwater as well as improve the water environment condition in the backwater area. This operation approach provides a new technology

  19. Variation of the Earth tide-seismicity compliance parameter the last 50 years for the west site of the Aegean Volcanic Arc, Greece

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Arabelos, D. N.; Vergos, G.; Spatalas, S.

    2015-07-01

    Based on the results of our studies for the tidal triggering effect on the seismicity of the Hellenic area, we consider the confidence level of earthquake occurrence - tidal period accordance as an index of tectonic stress criticality for earthquake occurrence and we check if the recent increase in the seismic activity at the west site of the Aegean Volcanic Arc indicate faulting maturity for a stronger earthquake. In this paper we present the results of this test which are positive.

  20. Polar Motion Constraints on Models of the Fortnightly Tide

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)

    2002-01-01

    Estimates of the near-fortnightly Mf ocean tide from Topex/Poseidon satellite altimetry and from numerical solutions to the shallow water equations agree reasonably well, at least in their basin-scale features. For example, both show that the Pacific Ocean tide lags the Atlantic tide by roughly 30 degrees. There are hints of finer scale agreements in the elevation fields, but noise levels are high. In contrast, estimates of Mf currents are only weakly constrained by the TP data, because high-wavenumber Rossby waves (with intense currents) are associated with relatively small perturbations in surface elevation. As a result, a wide range of Mf current fields are consistent with both the TP data and the hydrodynamic equations within a priori plausible misfit bounds. We find that a useful constraint on the Mf currents is provided by independent estimates of the Earth's polar motion. At the Mf period polar motion shows a weak signal (both prograde and retrograde) which must be almost entirely caused by the ocean tide. We have estimated this signal from the SPACE2000 time series, after applying a broad-band correction for atmospheric angular momentum. Although the polar motion estimates have relatively large uncertainties, they are sufficiently precise to fix optimum data weights in a global ocean inverse model of Mf. These weights control the tradeoff between fitting a prior hydrodynamic model of Mf and fitting the relatively noisy T/P measurements of Mf. The predicted polar motion from the final inverse model agrees remarkably well with the Mf polar motion observations. The preferred model is also consistent with noise levels suggested by island gauges, and it is marginally consistent with differences observed by subsetting the altimetry (to the small extent that this is possible). In turn, this new model of the Mf ocean tide allows the ocean component to be removed from Mf estimates of length of day, thus yielding estimates of complex Love numbers less contaminated by

  1. Long-period perturbations in Starlette orbit and tide solution

    SciTech Connect

    Cheng, M.K.; Shum, C.K.; Eanes, R.J.; Schutz, B.E.; Tapley, B.D. )

    1990-06-10

    Continuous and dynamically consistent orbits have been computed using satellite laser ranging (SLR) data to Starlette for one-year period during 1976 and 1977 and the three-year period from 1983 through 1985. A low degree and order ocean tide solution, consisting of a total of 66 tidal parameters from 14 tidal constituents, was obtained in a combined solution using both the one-and three-year Starlette orbits. Yearly values for the second-degree annual tides, S{sub a}, which produce seasonal variations on the Starlette node, were obtained also. These variations were found to have year-to-year fluctuations of more than 25% about the mean value and produced significant long-period perturbations in the Starlette orbit. The Starlette tide solution is in good agreement with the Schwiderski tide solutions and with other satellite solutions, including multi-satellite tide solutions. The average uncertainties are approximately 0.1 cm for the estimated semidiurnal and diurnal tides and 0.4 cm for the long-period tides. The discrepancies of effective k{sub 2} inferred from the Starlette tide solution and other tide solutions are less than 0.01. The tide solutions were evaluated using orbit fits of a three-year LAGEOS and a one-year Starlette long arc. The results indicate that the Starlette tide solution produces significantly improved orbit fits for both LAGEOS and Starlette. The uncertainties for the estimated tide model coefficients were used to predict tidal errors for the LAGEOS orbit and were found to be consistent with the apparent tidal errors present in this orbit. The computed secular change in the Moon's mean motion due to tidal dissipation is {minus}24.8 {plus minus} 0.8 arc second/century{sup 2}, which is in good agreement with the results obtained from other investigations.

  2. Observations and simulations of the ionospheric lunar tide: Seasonal variability

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.

    2014-07-01

    The seasonal variability of the ionospheric lunar tide is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. The present study focuses on the seasonal variability of the lunar tide in the ionosphere and its potential connection to the occurrence of stratosphere sudden warmings (SSWs). COSMIC maximum F region electron density (NmF2) and total electron content observations reveal a primarily annual variation of the ionospheric lunar tide, with maximum amplitudes occurring at low latitudes during December-February. Simulations of the lunar tide climatology in TIME-GCM display a similar annual variability as the COSMIC observations. This leads to the conclusion that the annual variability of the lunar tide in the ionosphere is not solely due to the occurrence of SSWs. Rather, the annual variability of the lunar tide in the ionosphere is generated by the seasonal variability of the lunar tide at E region altitudes. However, compared to the observations, the ionospheric lunar tide annual variability is weaker in the climatological simulations which is attributed to the occurrence of SSWs during the majority of the years included in the observations. Introducing a SSW into the TIME-GCM simulation leads to an additional enhancement of the lunar tide during Northern Hemisphere winter, increasing the lunar tide annual variability and resulting in an annual variability that is more consistent with the observations. The occurrence of SSWs can therefore potentially bias lunar tide climatologies, and it is important to consider these effects in studies of the lunar tide in the atmosphere and ionosphere.

  3. Testing the Effect of Life on Earth's Functioning: How Gaian is the Earth System?

    NASA Astrophysics Data System (ADS)

    Kleidon, A.

    2002-05-01

    The Gaia hypothesis of Lovelock attempts to describe the emergent effects of life on Earth system properties and functioning at the planetary scale. It states that the resulting effects of life are such that it maintains habitable, or even optimal, conditions throughout Earth?s history. But what is habitable, or optimal? What is good for one species, may be bad for another. Problems associated with this important, but ill-defined hypothesis make it difficult to test. In order to address these problems and make the concept of Gaia testable, I give a precise definition of terms. Since carbon is the basic building block for life on Earth, I define the benefit of environmental conditions for life by their effect on the long-term mean global gross uptake of carbon by the biota. With this definition, environmental conditions which are more favorable to life or enhance life are those that lead to a higher value of GPP. Based on these definitions, I put forward four null hypotheses, describing increasing beneficial effects of life on the conditions of Earth, ranging from an ?Antigaian? to an ?optimising Gaian? null hypothesis. I use climate model simulations of a ?Desert World? and present day conditions to evaluate these hypotheses. I list some indications for rejection of all but one hypothesis, and conclude that life has indeed a strong tendency to affect Earth in a way which enhances the overall benefit, that is, carbon uptake.

  4. Investigating earthquake cycle vertical deformation recorded by GPS and regional tide gauge stations in California

    NASA Astrophysics Data System (ADS)

    Hardy, S.; Konter, B.

    2013-12-01

    Geodetic and tide gauge measurements of vertical deformation record localized zones of uplift and subsidence that may document critical components of both long and short-period earthquake cycle deformation. In this study, we compare vertical tide gauge data from the Permanent Service for Mean Sea Level (PSMSL) and vertical GPS data from the EarthScope Plate Boundary Observatory (PBO) for 10 approximately co-located station pairs along coastal California from Point Reyes, CA to Ensenada, Mexico. To compare these two datasets, we first truncate both datasets so that they span a common time frame for all stations (2007 - 2012). PSMSL data are treated for both average global sea level rise (~1.8 mm/yr) and global isostatic adjustment. We then calculate a 2-month running mean for tide gauge and a 1-month running mean for GPS datasets to smooth out daily oceanographic or anthropologic disturbances but maintain the overall trend of each dataset. As major ocean-climate signals, such as El Nino, are considered regional features of the Pacific Ocean and likely common to all California tide gauge stations, we subtract a reference sea level record (San Francisco station) from all other stations to eliminate this signal. The GPS and tide gauge data show varying degrees of correlation spanning both 3-month and 4-year time-scales. We infer that the slope of vertical displacements are largely controlled by interseismic motions, however displacements from major earthquakes are evident and are required to explain some of the unique signatures in the tide gauge and GPS data. Specifically, we find that stations from both datasets in Southern California show an anomalous trend since the 2010 Baja California earthquake. To further investigate this trend and others, we compare these data to vertical motions estimated by a suite of 3-D viscoelastic earthquake cycle deformation models. Long-term tide gauge time series are well simulated by the models, but short-term time series are not as

  5. Tidal Locking Of The Earth

    NASA Astrophysics Data System (ADS)

    Koohafkan, Michael

    2006-05-01

    The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.

  6. Effects of spraying rare earths on contents of rare Earth elements and effective components in tea.

    PubMed

    Wang, Dongfeng; Wang, Changhong; Ye, Sheng; Qi, Hongtao; Zhao, Guiwen

    2003-11-01

    Rare earth (RE) fertilizer is widely applied in China to increase the yield and the quality of crops including tea. However, the effects of spraying RE fertilizer on the contents of rare earth elements (REE) and effective components in tea are unknown. The results from basin and field experiments show that the values of the REE concentrations in new shoots of tea plants and the concentration of REE in the soil (REE/REEs) either from control basins or from treatment basins were smaller than those in other parts of tea plant and similar between control and treatment. The longer the interval between spraying RE fertilizer and picking the shoots of tea plants, the less the effects from spraying. About 80% summation operator REE (the sum of the concentrations of 15 REE) in tea, whether it came from spraying or not, was insoluble in the infusion. About 10% the soluble REE of summation operator REE in tea infusion was bound to polysaccharide, and the amount of REE bound polysaccharide decreased over time. At least a 25 day safety interval is needed between spraying and picking if the microelement fertilizer is used, in order to enhance tea output and to ensure tea safety. PMID:14582968

  7. Effects of river discharge and high-tide stage on salinity intrusion in the Weeki Wachee, Crystal, and Withlacoochee River estuaries, southwest Florida

    USGS Publications Warehouse

    Yobbi, D.K.; Knochenmus, L.A.

    1989-01-01

    The Weeki Wachee, Crystal, and Withlacoochee Rivers are coastal streams flowing into the Gulf of Mexico that may be affected by either future surface water or groundwater withdrawals. Reduction of river discharge will affect the upstream extent of saltwater intrusion in the rivers; however, under certain reduced low-flow discharges, the estimated change in upstream extent of saltwater intrusion is on the order of several tenths of a mile and frequently is within the range of predicted error. Data on flow, tides, and salinity describe the physical characteristics of the Weeki Wachee, Crystal, and Withlacoochee River systems. Vertical and longitudinal salinity profiles indicate that salinity of the rivers increases downstream and varies substantially at any given location. The Weeki Wachee River system is the best mixed of the three. The Crystal River system exhibited the next best mixed system, and the Withlacoochee River system exhibited the most variation in its salinity regime. The daily maximum upstream extent of salinity intrusion is described by multiple linear-regression analysis based on daily mean streamflow of each river and high-tide stage of the gulf. The equations are used to show the effects of discharge on the daily maximum upstream extent of salinity intrusion in the rivers. (USGS)

  8. Effects of desiccation and salinity on the outbreak of a green tide of Ulva pertusa in a created salt marsh along the coast of Osaka Bay, Japan

    NASA Astrophysics Data System (ADS)

    Yamochi, Susumu

    2013-01-01

    Field surveys and laboratory experiments were conducted to examine the effect of desiccation and salinity on the outbreak of a green tide of Ulva pertusa at Osaka Nanko bird sanctuary. Reduction of biomass of Ulva spp. was observed at stations where the exposure rate to air was from 30 to 40%. In addition, the exposure rate of 30-40% to air showed no negative impacts on the biomass of benthic microalgae, infauna and non-motile epibenthos. Laboratory experiments revealed that photosynthetic activity of U. pertusa decreased when exposed to air for 4-7 h at 25-35 °C. Salinity decreases from 30 to 25 or 20 accompanied with exposure to air drastically reduced the rate of photosynthesis of this species. These results suggest the possibility of controlling a green tide of U. pertusa without serious physico-ecological damage to benthic microalgae, infauna and non-motile epibenthos by a combination of exposure to air with low salinity.

  9. DEVELOPMENT AND EVALUATION OF A RUBBER "DUCK BILL" TIDE GATE

    EPA Science Inventory

    A unique 54 in. diameter "duckbill" rubber tide gate (RTG) was designed, fabricated, and installed in a typical New York City tide gate chamber. The operation of the RTG was observed over two years. The RTG was very effective in preventing the inflow of tidal waters and generally...

  10. Earth tides, global heat flow, and tectonics

    USGS Publications Warehouse

    Shaw, H.R.

    1970-01-01

    The power of a heat engine ignited by tidal energy can account for geologically reasonable rates of average magma production and sea floor spreading. These rates control similarity of heat flux over continents and oceans because of an inverse relationship between respective depth intervals for mass transfer and consequent distributions of radiogenic heat production.

  11. Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

    SciTech Connect

    Hutchings, Jennifer; Joseph, Renu

    2013-09-14

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project will facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.

  12. GPS estimates of ocean tide loading in NW-France: determination of ocean tide loading constituents and comparison with a recent ocean tide model

    NASA Astrophysics Data System (ADS)

    Vergnolle, M.; Bouin, M.-N.; Morel, L.; Masson, F.; Durand, S.; Nicolas, J.; Melachroinos, S. A.

    2008-05-01

    Ocean loading effects cause 3-D displacements large enough to affect space geodesy measurements either at the subdiurnal periods or at longer time scales by the means of spurious signals. GPS measurements, in turn, could provide local improvements of the models in coastal areas if their ability to precisely monitor such rapid displacements is assessed. In this paper, we use 105 days of continuous GPS measurements collected in 2004 in the French Brittany and Cotentin region to investigate: (1) the precision achieved by the GPS analysis on measuring 3-D subdiurnal displacements and amplitude and phase of the tidal constituents, (2) the quality of the most recent ocean tide model FES2004 in such a complex coastal context. Indeed, in this area, tide amplitudes are among the largest in the world (up to 16 cm of loading displacements on the vertical component) and are believed to show strong shallow-water tides. From a state of the art GPS analysis using the scientific GAMIT software over 2-h sessions, we test two independent strategies for the realization of the reference frame. The position time series are then compared with the displacements predicted by the FES2004 model applied on an elastic Earth model. The two sets of results are consistent with each other at the same level of agreement than with the predicted displacements, namely 3-5 mm on the horizontal components, 10 mm on the vertical. This assesses the capability of this technique for measuring 3-D ocean tide loading deformation. We validate the FES2004 model in the Brittany area, even though it slightly (2-7 mm) underestimates the three components amplitudes. With a harmonic analysis of the observed position time series, we obtain nevertheless an agreement at a submillimetre level for the M2, N2, O1, Q1 tidal constituents and at a millimetre level for the K1 and S2 tidal constituents. Moreover, we can extract a significant M4 load signal at the 95 per cent confidence level from the GPS time series at the

  13. ISEA (International geodetic project in SouthEastern Alaska) for rapid uplifting caused by glacial retreat: (4) Gravity tide observation

    NASA Astrophysics Data System (ADS)

    Sato, T.; Miura, S.; Sun, W.; Kaufman, A. M.; Cross, R.; Freymueller, J. T.; Heavner, M.

    2006-12-01

    The southeastern Alaska shows a large uplift rate as 30 mm/yr at most, which is considered to be closely related to the glacial isostatic adjustment (GIA) including two effects of the past and present-day ice melting (Larsen et al., 2004). So, this area is important to improve our knowledge of the viscoelastic property of the earth and to consider the global changes. Combing the displacement and gravity observations is useful to constrain the model computation results for GIA (Sato et al., 2006). In order to progress the previous work by the group of Univ. Alaska, Fairbanks (UAF), an observation project by Japan and USA groups was started in 2005 (Miura et al., this meeting). Under this project, June 2006, the continuous GPS measurements started (M. Kufman et al., this meeting) and the absolute gravity (AG) measurements were conducted (W. Sun et al., this meeting). Precise correction for the effect of ocean tide loading is one of the key to increase the observation accuracy of the GPS and gravity observations, especially for the AG measurement. Thanks for the satellite sea surface altimeters such as TOPEX/Poseidon and Jason-1, the accuracy of global ocean tide models based on these data has been much improved, and its accuracy is estimated at a level better than 1.3 cm as a RMS error of the vector differences of the 8 main tidal waves (Matsumoto et al., 2006). However, on the other hand, it is known that the southeastern Alaska is a place that shows a large discrepancy among the proposed global ocean tide models mainly due to a complex topography and bathymetry of the fjord area. In order to improve the accuracy of the ocean tide correction, we started the gravity tide observation at Juneau from June 2006. Two kinds of gravimeters are used for the observation. Sampling interval of the data is at every 1 min. We analyzed the 1 month data from the beginning of the observation and compared the tidal analysis results with the model tide including both effects of the

  14. Impact of sea level rise on tide gate function.

    PubMed

    Walsh, Sean; Miskewitz, Robert

    2013-01-01

    Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America. PMID:23379951

  15. Tides of the Caribbean Sea

    SciTech Connect

    Kjerfve, B.

    1981-05-20

    Analysis of tidal characteristics from 45 gauge locations indicates that the Caribbean Sea has a microtidal range, for the most part between 10 and 20 cm. The tide is primarily either mixed semidiurnal or mixed diurnal but a substantial section from Puerto Rico to Venezuela experiences diurnal tides. Empirical charts of six component tides (M/sub 2/, S/sub 2/, N/sub 2/, K/sub 1/, O/sub 1/, and P/sub 1/) show local detail of phase and amplitude. Each of the semidiurnal component tides is characterized by anticlockwise rotating amphidromes centered in the eastern Caribbean. There is evidence of strong radiational forcing of the S/sub 2/ tide in the south-western Caribbean. The diurnal component tides are largely uniform in both phase and amplitude for most of the western and central Caribbean. However, the diurnal phases increase rapidly towards the northwest and the Yucatan Channel.

  16. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng (Editor)

    1995-01-01

    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  17. Orthogonal stack of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  18. Detecting the red tide based on remote sensing data in optically complex East China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Pan, Delu; Mao, Zhihua; Tao, Bangyi; Liu, Qiong

    2012-09-01

    Red tide not only destroys marine fishery production, deteriorates the marine environment, affects coastal tourist industry, but also causes human poison, even death by eating toxic seafood contaminated by red tide organisms. Remote sensing technology has the characteristics of large-scale, synchronized, rapid monitoring, so it is one of the most important and most effective means of red tide monitoring. This paper selects the high frequency red tides areas of the East China Sea as study area, MODIS/Aqua L2 data as the data source, analysis and compares the spectral differences in the red tide water bodies and non-red tide water bodies of many historical events. Based on the spectral differences, this paper develops the algorithm of Rrs555/Rrs488> 1.5 to extract the red tide information. Apply the algorithm on red tide event happened in the East China Sea on May 28, 2009 to extract the information of red tide, and found that the method can determine effectively the location of the occurrence of red tide; there is a good corresponding relationship between red tide extraction result and chlorophyll a concentration extracted by remote sensing, shows that these algorithm can determine effectively the location and extract the red tide information.

  19. Tide gate valve

    SciTech Connect

    Raftis, S. G.

    1985-01-08

    A tide gate check valve in which at least three converging sides are provided at a tapered region of a flexible sleeve, so that on reverse back pressure build-up of fluid, reverse fluid flow is prevented, while the valve sleeve does not invert or collapse. The present configuration features embedded reinforcing elements for resisting inversion or collapsing when the back pressure builds up. This feature is especially important for large-sized conduits of 36'' or 72'' diameter, or even larger, such as are common in storm sewer applications.

  20. How much do tides affect the circulation of the Mediterranean Sea? From local processes in the Strait of Gibraltar to basin-scale effects

    NASA Astrophysics Data System (ADS)

    Naranjo, C.; Garcia-Lafuente, J.; Sannino, G.; Sanchez-Garrido, J. C.

    2014-09-01

    The effects of tidal forcing on the exchange flow through the Strait of Gibraltar and the circulation in the near-field region are revisited with a regional numerical model. Also a basin-scale model run is conducted in a first attempt to assess the impact of these local processes on the Western Mediterranean thermohaline circulation. In the Strait of Gibraltar, tides are found to (1) increase the exchange flow volume transport, (2) modify the hydrological properties of Atlantic inflowing waters through the enhancement of mixing, and (3) facilitate the drainage of Mediterranean deep water. In the far-field, the model reveals that these local processes can favor deep convection in the Gulf of Lion. Some thoughts are provided offering possible explanations.

  1. Ocean tide loading displacements in western Europe: 2. GPS-observed anelastic dispersion in the asthenosphere

    NASA Astrophysics Data System (ADS)

    Bos, Machiel S.; Penna, Nigel T.; Baker, Trevor F.; Clarke, Peter J.

    2015-09-01

    GPS-observed vertical ocean tide loading displacements show in Cornwall, southwest England, and in Brittany, northwest France, discrepancies of 2-3 mm with predicted values based on the isotropic Preliminary Reference Earth Model for the main tidal harmonic M2, yet in central Europe the agreement is better than 0.5 mm. By comparison of ocean tide models and validation with tide gauge observations, we demonstrate that the uncertainties in the former are too small to cause this disagreement. Furthermore, we find that different local models of the crust and different global elastic reference models derived from seismological observations can only reduce the observed discrepancies to 1-2 mm, which still exceeds the GPS observational uncertainty of 0.2-0.4 mm. It is customary to use the elastic properties of the Earth as given by seismic models. Previously, there has been insufficient evidence to determine how to modify these properties during the transformation from seismic to tidal frequencies to account for possible anelastic dispersion in the asthenosphere, and so this effect has been ignored. If we include this effect, then our discrepancies reduce further to 0.2-0.4 mm. This value is of the same order as the sum of the remaining errors due to uncertainties in the ocean tide models and in the GPS observations themselves. This research provides evidence in western Europe of a reduction of around 8-10% of the seismic shear modulus in the asthenosphere at tidal frequencies. In addition, we find that the asthenosphere absorption band frequencies can be represented by a constant quality factor Q.

  2. Effect of tides, river flow, and gate operations on entrainment of juvenile salmon into the interior Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.

    2015-01-01

    Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to

  3. Turning the tide: effects of river inflow and tidal amplitude on sandy estuaries in laboratory landscape experiments

    NASA Astrophysics Data System (ADS)

    Kleinhans, Maarten; Braat, Lisanne; Leuven, Jasper; Baar, Anne; van der Vegt, Maarten; van Maarseveen, Marcel; Markies, Henk; Roosendaal, Chris; van Eijk, Arjan

    2016-04-01

    Many estuaries formed over the Holocene through a combination of fluvial and coastal influxes, but how estuary planform shape and size depend on tides, wave climate and river influxes remains unclear. Here we use a novel tidal flume setup of 20 m length by 3 m width, the Metronome (http://www.uu.nl/metronome), to create estuaries and explore a parameter space for the simple initial condition of a straight river in sandy substrate. Tidal currents capable of transporting sediment in both the ebb and flood phase because they are caused by periodic tilting of the flume rather than the classic method of water level fluctuation. Particle imaging velocimetry and a 1D shallow flow model demonstrate that this principle leads to similar sediment mobility as in nature. Ten landscape experiments recorded by timelapse overhead imaging and AGIsoft DEMs of the final bed elevation show that absence of river inflow leads to short tidal basins whereas even a minor discharge leads to long convergent estuaries. Estuary width and length as well as morphological time scale over thousands of tidal cycles strongly depend on tidal current amplitude. Paddle-generated waves subdue the ebb delta causing stronger tidal currents in the basin. Bar length-width ratios in estuaries are slightly larger to those in braided rivers in experiments and nature. Mutually evasive ebb- and flood-dominated channels are ubiquitous and appear to be formed by an instability mechanism with growing bar and bifurcation asymmetry. Future experiments will include mud flats and live vegetation.

  4. Effects of Fe and Mn on the growth of a red tide dinoflagellate Scrippsiella trochoidea (Stein) Loeblch III

    NASA Astrophysics Data System (ADS)

    Qin, Xiao-Ming; Zhou, Jing-Zhong; Qian, Pei-Yuan

    1997-06-01

    Batch culture experiments were conducted with a red tide dinoflagellate Scrippsiella trochoidea (Stein) Loeblch III collected from Jiaozhou Bay, Shangdong, China. Growth rates and oellular Chl—a were measured in media with iron and manganese ion concentrations controlled at different levels using EdTA-trace metal buffer systems. Cell density increased 3.2 times to 6.5 times over the range of lowest (0 mol/L) to highest (10-5 mol/L) iron and manganese ion concentrations. The range of cell density response was much lower than the range of total available iron and manganese, which was >100—fold that of Fe. This nonlinear relationship indicates that the cells adapt to make more efficient use of iron and manganese under limiting conditions. The cellular Chl—a content maximized after 3 days incubation and then decreased gradually under either iron or manganese limitation conditions. It indicated that the algae gained higher photosynthesis ability when transferred to a new environment. Growth responses to iron and manganese limitation can be both modeled according to the equation of Monod. The half—saturation constant for growth, k, is 4.6×10-8 mol/L for Fe and 5.1×10-8 mol/L for Mn. Our results showed that the iron availability in Jiaozhou Bay does not limit the growth of S. trochoidea.

  5. [Illumination's effect on the growth and nitrate reductase activity of typical red-tide algae in the East China Sea].

    PubMed

    Li, Hong-mei; Shi, Xiao-yong; Ding, Yan-yan; Tang, Hong-jie

    2013-09-01

    Two typical red-tide algae, Skeletonema costatum and Prorocentrum donghaiense were selected as studied objects. The nitrate reductase activity (NRA) and the growth of the two algae under different illuminations through incubation experiment were studied. The illumination condition was consistent with in situ. Results showed that P. donghaiense and S. costatum could grow normally in the solar radiation ranged from 30-60 W x m(-2), and the growth curve was "S" type. However, when solar radiation was below 9 W x m(-2), the two alga could hardly grow. In the range of 0-60 W x m(-2), three parameters (NRAmax, micro(max), Bf) increased with the increasing of light intensity, indicating that the light intensity can influence the grow of alga indirectly through influencing the nitrate reductase activity. The micro(max) and NRAmax in unite volume of Skeletonema costatum were higher than those of Prorocentrum donghaiense, indicating that Skeletonema costatum can better utilize the nitrate than Prorocentrum donghaiense. PMID:24288981

  6. Lunar and Solar Torques on the Oceanic Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin Fong

    1998-01-01

    A general framework for calculating lunar and solar torques on the oceanic tides is developed in terms of harmonic constituents. Axial torques and their associated angular momentum and earth-rotation variations are deduced from recent satellite-altimeter and satellite-tracking tide solutions. Torques on the prograde components of the tide produce the familiar secular braking of the rotation rate. The estimated secular acceleration is approximately -1300 sec/century(sup 2) (less 4% after including atmospheric tides); the implied rate of change in the length of day is 2.28 milliseconds/century. Torques on the retrograde components of the tide produce periodic rotation variations at twice the tidal frequency. Interaction torques, e.g. solar torques on lunar tides, generate a large suite of rotation-rate variations at sums and differences of the original tidal frequencies. These are estimated for periods from 18.6 years to quarter-diurnal. At subdaily periods the angular momentum variations are 5 to 6 orders of magnitude smaller than the variations caused by ocean tidal currents.

  7. Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Wang, Renjun; Xiao, Hui; Wang, You; Zhou, Wenli; Tang, Xuexi

    2007-10-01

    Allelopathic effects of several concentrations of fresh tissue and dry powder of three macroalgae, Ulva linza, Corallina pilulifera and Sargassum thunbergii, on the red tide microalga Prorocentrum donghaiense were evaluated in microcosms. Preliminary studies on the algicidal effects of one aqueous and four organic solvent extracts from the macroalgae on the microalga were carried out to confirm the existence of allelochemicals in the tissues of the macroalgae. The effects of macroalgal culture medium filtrate on P. donghaiense were investigated using initial or semi-continuous filtrate addition. Furthermore, the potential effects of the microalga on these three macroalgae were also tested. The results of the microcosm assay showed that the growth of P. donghaiense was strongly inhibited by using fresh tissues and dry powder of the three macroalgae. Both aqueous and methanol extracts of the macroalgae had strong growth inhibitory effects on P. donghaiense, while the other three organic solvent extracts (acetone, ether and chloroform) had no apparent effect on its growth; this suggested that the allelochemicals from these three macroalga had relatively high polarities. The three macroalgal culture medium filtrates exhibited apparent growth inhibitory effect on the microalgae under initial or semi-continuous addition, which suggested that the cells of P. donghaiense are sensitive to the allelochemicals. In contrast, P. donghaiense had no apparent effect on the growth of the macroalgae in coexistence experiment.

  8. Detrimental Effects of Extreme Solar Activity on Life on Earth

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Glocer, Alex; Jackman, Charles

    2015-07-01

    Solar Coronal Mass Ejections (CMEs), the most energetic eruptions in the Solar System, represent large-scale disturbances forming with the solar corona and are associated with solar flares and Solar Energetic Particles (SEP) events. Current Kepler data from solar-like stars suggest that the frequency of occurrence of energetic flares and associated CMEs from the Sun can be as high as 1 per 1500 years. What effects would CME and associated SEPs have on Earth's habitability? We have performed a three-dimensional time-dependent global magnetohydrodynamic simulation of the magnetic interaction of such a CME cloud with the Earth's magnetosphere. We calculated the global structure of the perturbed magnetosphere and derive the latitude of the open-closed magnetic field boundary. We used a 2D GSFC atmospheric code to calculate the efficiency of ozone depletion in the Earth's atmosphere due to SEP events and its effects on our society and life on Earth.

  9. Lunar and Solar Torques on the Oceanic Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.

    1998-01-01

    Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.

  10. Effects of currents and tides on fine-scale use of marine bird habitats in a Southeast Alaska hotspot

    USGS Publications Warehouse

    Drew, Gary S.; Piatt, John F.; Hill, David J.

    2013-01-01

    Areas with high species richness have become focal points in the establishment of marine protected areas, but an understanding of the factors that support this diversity is still incomplete. In coastal areas, tidal currents—modulated by bathymetry and manifested in variable speeds—are a dominant physical feature of the environment. However, difficulties resolving tidally affected currents and depths at fine spatial-temporal scales have limited our ability to understand their influence the distribution of marine birds. We used a hydrographic model of the water mass in Glacier Bay, Alaska to link depths and current velocities with the locations of 15 common marine bird species observed during fine-scale boat-based surveys of the bay conducted during June of four consecutive years (2000-2003). Marine birds that forage on the bottom tended to occupy shallow habitats with slow-moving currents; mid-water foragers used habitats with intermediate depths and current speeds; and surface-foraging species tended to use habitats with fast-moving, deep waters. Within foraging groups there was variability among species in their use of habitats. While species obligated to foraging near bottom were constrained to use similar types of habitat, species in the mid-water foraging group were associated with a wider range of marine habitat characteristics. Species also showed varying levels of site use depending on tide stage. The dramatic variability in bottom topography—especially the presence of numerous sills, islands, headlands and channels—and large tidal ranges in Glacier Bay create a wide range of current-affected fine-scale foraging habitats that may contribute to the high diversity of marine bird species found there.

  11. Effects of Earth Encounters on the Rotational Properties of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Chit Siu, Ho; Keane, James T.; Moskovitz, Nicholas; Binzel, Richard P.

    2015-11-01

    The effects of Earth encounters on the physical properties of near-Earth objects (NEOs) have been shown to be significant factors in their evolution. Previous studies have examined the effects of these encounters on reflectance spectra, and effects such as spin state and shape changes have been studied for specific asteroids and through simulation. In this study, archive data from previous NEO surveys were used to investigate rotational frequencies as a function of minimum orbit intersection distance (MOID), which we use as a proxy for Earth encounter likelihood.When comparing objects of similar sizes, we find a highly significant difference in the dispersion of rotational frequency (p < 0.01; significant at a >99% confidence level) between NEO populations that were likely to have had an Earth encounter and those that are less likely to have had such an encounter. The encounter/non-encounter distinction is found at a dividing MOID value of 1 lunar distance (LD). These results were robust to changes in the size of the moving average window, as well as to removal of the smallest objects from the encounter population and the largest objects from the non-encounter population, which would be most strongly affected by a known size/spin period bias where smaller objects tend to have shorter periods. There was no statistically significant difference in the mean rotation rates of encounter and non-encounter objects, however, indicating that encounters cause greater dispersion, but do not preferentially spin objects up or down at a detectable level. Recent modeling work also lends credibility to the idea that NEO interactions with the Earth-Moon system as a whole may be leading to the dispersion difference boundary at 1 LD (Keane et al. 2015, DPS).

  12. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms

    PubMed Central

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2009-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure. This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period. These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken. PMID:20161425

  13. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms.

    PubMed

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2010-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken. PMID:20161425

  14. Effect of equinoctial precession on geosynchronous earth satellites

    NASA Astrophysics Data System (ADS)

    Gurfil, P.

    The long-periodic effects of the equinoctial precession on geosynchronous Earth orbit satellites are investigated. The equations of motion in a reference frame that coprecesses with the Earth are developed, and the resulting variational equations are derived using mean classical orbital elements. The Earth gravitational model includes the J_2 and J_3 zonal harmonics, which induce the equinoctial precession due to the lunisolar gravitational torque. It is shown that the ever-growing lifetime and mass of geosynchronous Earth orbit satellites render the equinoctial precession a significant factor, which should be taken into account during mission design, as it affects north-south stationkeeping maneuvers. The equilibria of the variational equations including the zonal harmonics and the equinoctial precession are investigated and a class of stable frozen orbits which are equinoctial precession invariant is derived.

  15. Influence of Earth's Shadowing Effects on Space Debris Stability

    NASA Astrophysics Data System (ADS)

    Hubaux, C.

    2013-08-01

    In this work, we present results about the stability of near geosynchronous space debris characterized by high area-to-mass ratios. We extend previous studies by considering the influence of the Earth's shadow on the short-and long-term time evolutions. To assess the orbits stability, we use the Global Symplectic Integrator (GSI) [18] which consists in the symplectic integration of both Hamiltonian equations of motion and variational equations. The solution of the variational equations is then used to compute the Mean Exponential Growth factor of Nearby Orbits (MEGNO) chaos indicator. The effects of the Earth's shadow are analyzed using the adapted conical and cylindrical Earth's shadowing models introduced by [10]. Our stability study shows that the Earth's shadow greatly affects the global behaviour of space debris orbits by increasing the size of chaotic regions around the geostationary altitude.

  16. Forbush Effects on the Martian Surface and Earth's Poles

    NASA Astrophysics Data System (ADS)

    Posner, A.; Guo, J.; Heber, B.; Wimmer-Schweingruber, R. F.; Zeitlin, C.; Zheng, Y.; MacNeice, P. J.; Odstrcil, D.; Rastaetter, L.; Steigies, C. T.; Andrews, J. P.; Appel, J. K.; Beaujean, R.; Berger, L.; Boettcher, S. I.; Brinza, D. E.; Bullock, M.; Burmeister, S.; Cucinotta, F.; Dresing, N.; Drews, C.; Ehresmann, B.; Epperly, M. E.; Hassler, D.; Herbst, K.; Kim, M. H. Y.; Kohler, J.; Kühl, P.; Lohf, H.; Martin-Garcia, C.; Müller-Mellin, R.; Neal, K.; Rafkin, S. C.; Reitz, G.; Smith, K. D.; Tyler, Y.; weigle, G., II

    2015-12-01

    We analyzed MSL/RAD observation of Forbush effects on the surface of Mars over a full Mars year from landing through the Mars opposition period in 2014. For the extended Mars opposition phase we compared the observed Forbush effects with those identified at Earth's south pole utilizing observations of the South Pole neutron monitor. Identification of the drivers of Forbush effects, recurrent and transient solar wind structures in the inner heliosphere, is aided by WSA-ENLIL simulations. We show that a remarkable correlations of count rates of (secondary) cosmic rays at Mars' surface and at the Earth's south pole is established for a minimum duration of 6 months around the Mars opposition, in particular when time shifted with propagation and/or corotation delays of the drivers of cosmic ray decreases in the solar wind. Moreover, the magnitude of Forbush effects on Mars is larger statistically than the equivalent near Earth's poles.

  17. Arctic Ocean tides from GRACE satellite accelerations

    NASA Astrophysics Data System (ADS)

    Killett, B.; Wahr, J.; Desai, S.; Yuan, D.; Watkins, M.

    2011-11-01

    Models are routinely used to remove the effects of global ocean tides from GRACE data during processing to reduce temporal aliasing into monthly GRACE solutions. These models have typically been derived using data from satellite altimeters such as TOPEX/Poseidon. Therefore the Arctic ocean components of tide models are not constrained by altimetry data, potentially resulting in errors that are likely to alias into monthly GRACE gravity fields at all latitudes. Seven years of GRACE inter-satellite accelerations are inverted to solve for corrections to the amplitude and phase of major solar and lunar ocean tides at latitudes north of 50°N using a mascon approach. The tide model originally applied to our data was FES2004, truncated to maximum degree lmax = 90. Simulations are performed to verify that our inversion algorithm works as designed. Uncertainty estimates are derived from tidal solutions on land, and by subtracting two independent solutions that each use 3.5 years of data. Features above the noise floor in the M2, K1, S2, and O1 solutions likely represent errors in FES2004. Errors due to truncating the spherical harmonic expansion of FES2004 are too small, and errors in the land mask model (needed to transform sea surface heights into mass) only affect coastal areas and do not produce similar relative amplitudes for any examined tides. In the oceans north of 50°N, these residuals tend to reduce the FES2004 amplitudes for M2, K1, S2, and O1. Reductions in the variance of accelerations not used in our inversion suggest that our results can be used to improve GRACE processing.

  18. Spectroscopic analysis of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly global tide-gage sea-level data are fitted to numerically generated tidal data in order to search for the 18.6-yr lunar nodal tide and 14-month pole tide. Both of these tides are clearly evident, with amplitudes and phases that are consistent with a global equilibrium response. The ocean's response to atmospheric pressure is studied with the least-squares fit technique. Consideration is given to the global rise in sea level, the effects of postglacial rebound, and the possible causes of the enhanced pole tides in the North Sea, the Baltic Sea, and the Gulf of Bothnia. The results support O'Connor's (1986) suggestion that the enhanced pole tide in these regions is due to meteorological forcing rather than a basin-scale resonance. Also, the global average of the tide-gage data show an increase in sea level over tha last 80 yr of between 1.1 and 1.9 mm/yr.

  19. Instability of some divalent rare earth ions and photochromic effect

    NASA Astrophysics Data System (ADS)

    Egranov, A. V.; Sizova, T. Yu.; Shendrik, R. Yu.; Smirnova, N. A.

    2016-03-01

    It was shown that the divalent rare earth ions (La, Ce, Gd, Tb, Lu, and Y) in cubic sites in alkaline earth fluorides are unstable with respect to electron autodetachment since its d1(eg) ground state is located in the conduction band which is consistent with the general tendency of these ions in various compounds. The localization of doubly degenerate d1(eg) level in the conduction band creates a configuration instability around the divalent rare earth ion that leading to the formation of anion vacancy in the nearest neighborhood, as was reported in the previous paper [A. Egranov, T. Sizova, Configurational instability at the excited impurity ions in alkaline earth fluorites, J. Phys. Chem. Solids 74 (2013) 530-534]. Thus, the formation of the stable divalent ions as La, Ce, Gd, Tb, Lu, and Y (PC+ centers) in CaF2 and SrF2 crystals during x-ray irradiation occurs via the formation of charged anion vacancies near divalent ions (Re2+va), which lower the ground state of the divalent ion relative to the conductivity band. Photochromic effect occurs under thermally or optically stimulated electron transition from the divalent rare earth ion to the neighboring anion vacancy and reverse under ultraviolet light irradiation. It is shown that the optical absorption of the PC+ centers due to d → d and d → f transitions of the divalent rare-earth ion.

  20. M2 world ocean tide from tide gauge measurements

    SciTech Connect

    Francis, O.; Mazzega, P. )

    1991-06-01

    An empirical model of the M2 oceanic tide has been computed form the harmonic constants of a subset of deep sea and coastal tide gauge measurements. The optimal interpolation of these data based on inverse theory' uses a priori covariance functions deduced from a global hydrodynamical model. The inverse solution, produced with its associated error maps and samples of error spectra, is surprisingly good when compared to in situ data and to a hydrodynamical model.

  1. M2 World Ocean tide from tide gauge measurements

    NASA Astrophysics Data System (ADS)

    Francis, O.; Mazzega, P.

    An empirical model of the M2 oceanic tide has been computed from the harmonic constants of a subset of deep sea and coastal tide gauge measurements. The optimal interpolation of these data based on “inverse theory” uses a priori covariance functions deduced from a global hydrodynamical model. The inverse solution, produced with its associated error maps and samples of error spectra, is surprisingly good when compared to in situ data and to a hydrodynamical model.

  2. GPS and Tide Gauge Constraints on Subsidence and Relative sea Level Rise Along the US East Coast

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Wdowinski, S.; Dixon, T. H.; Harrison, C. G.

    2007-12-01

    Relative sea level change has two distinct components, absolute sea level variation and movement of Earth's crust. The movement of the crust can sometimes bias estimation of absolute sea level change as inferred by tide gauge data. We employ high accuracy GPS measurements (Sella et al., 2007) to detect movement of the crust in eastern North America, primarily reflecting areas that are affected by Glacial Isostatic Adjustment (GIA). In particular, these data define the collapse of the "peripheral bulge". We compare the GPS data to relative sea level change as recorded by tide gauges. We use all tide gauge stations along the east coast of North America that have more than 60 years of data, and estimate the rate of relative sea level rise using a model that accounts for annual, semi-annual and decadal signals in the time series. The GPS data show regions with subsidence rate > 2mm/year between Virginia and South Carolina, ~1900--2500km away from the uplift center in Hudson Bay. Tide gauge data in these areas show about 4mm/year relative sea level rise. The inferred global sea level rise rate is about 2mm/year. Thus, land subsidence in these regions effectively doubles the relative sea level rise rate and the corresponding natural hazard.

  3. Tides in Giant Planets

    NASA Astrophysics Data System (ADS)

    Stevenson, David J.

    2015-11-01

    The arrival of Juno at Jupiter in less than a year necessitates analysis of what we can learn from the gravitational signal due to tides raised on the planet by satellites (especially Io but also Europa). In the existing literature, there is extensive work on static tidal theory (the response of the planet to a tidal potential whose time dependence is ignored) and this is what is usually quoted when people refer to tidal Love numbers. If this were correct then there would be almost no new information content in the measurement of tidally induced gravity field, since the perturbation is of the same kind as the response to rotation (i.e., the measurement of J2, a well-known quantity). However, tides are dynamic (that is, k2 is frequency dependent) and so there is new information in the frequency dependent part. There is also (highly important) information in the imaginary part (more commonly expressed as tidal Q) but there is no prospect of direct detection of this by Juno since that quadrature signal is so small. The difference between what we expect to measure and what we can already calculate directly from J2 is easily shown to be of order the square of tidal frequency over the lowest order normal mode frequency, and thus of order 10%. However, the governing equations are not simple (not separable) because of the Coriolis force. An approximate solution has been obtained for the n =1 polytrope showing that the correction to k2 is even smaller, typically a few percent, because the tidal frequency is not very different from twice the rotation frequency. Moreover, it is not highly sensitive to structure in standard models. However, the deep interior of the planet may be stably stratified because of a compositional gradient and this modifies the tidal flow amplitude, changing the dynamic k2 but not the static k2. This raises the exciting possibility that we can use the determination of k2 to set bounds on the extent of static stability, if any. There is also the slight

  4. Tides in Colliding Galaxies

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain; Renaud, Florent

    Long tails and streams of stars are the most noticeable traces of galaxy collisions. However, their tidal origin was recognized only less than 50 years ago and more than 10 years after their first observations. This review describes how the idea of galactic tides has emerged thanks to advances in numerical simulations, from the first simulations that included tens of particles to the most sophisticated ones with tens of millions of them and state-of-the-art hydrodynamical prescriptions. Theoretical aspects pertaining to the formation of tidal tails are then presented. The third part turns to observations and underlines the need for collecting deep multi-wavelength data to tackle the variety of physical processes exhibited by collisional debris. Tidal tails are not just stellar structures, but turn out to contain all the components usually found in galactic disks, in particular atomic/molecular gas and dust. They host star-forming complexes and are able to form star-clusters or even second-generation dwarf galaxies. The final part of the review discusses what tidal tails can tell us (or not) about the structure and the content of present-day galaxies, including their dark components, and explains how they may be used to probe the past evolution of galaxies and the history of their mass assembly. On-going deep wide-field surveys disclose many new low-surface brightness structures in the nearby Universe, offering great opportunities for attempting galactic archeology with tidal tails.

  5. Atmospheric pressure forced oceans and their effects on Earth's Rotation: a TOPEX data approach

    NASA Astrophysics Data System (ADS)

    Dey, N.; Dickman, S. R.

    2014-12-01

    Dey & Dickman [2010] showed (using a theoretical model) that the oceanic response to atmospheric pressure forcing depends on the frequency and spatial pattern of the forcing. We have developed an observational Green's function approach to determine the frequency- and spatially dependent sea-level response using satellite altimetric data. We applied it to 12 years of TOPEX sea-surface height (SSH) observations smoothed over a 4° × 8° grid at 3 day intervals and corrected for tides, winds, annual signals and secular trends. Wiener filtering, generalized for complex time series, was used to isolate pressure forced SSH within each gridbox. In most of the gridboxes, that SSH, after accounting for the forcing, showed a spatial and spectral dependence - a significant departure from the "inverted barometer" response. The oceanic currents associated with the response were calculated from a spherical harmonic relation between current velocities and SSH [Dickman 1991]. The rotational effects (polar motion and change in Earth's spin rate) of the pressure forced SSH & associated currents - with the pressure forcing accounted for, these are essentially Green's functions - were calculated at specific periods and interpolated to other periods. The rotational effects calculated here are dominated by the pressure-forced SSH and show a strong frequency dependence & significant departures from an inverted barometer excitation. The pressure forced SSH is effective in exciting both prograde & retrograde polar motion at periods of ~ 6 days, and prograde polar motion at periods of 10 - 15 days. Compared to the theoretical approach, our work finds that the prograde component shows higher amplitude and less spatial variability, whereas the other components are ~ similar in amplitude & spatial variability. When these Green's functions are combined with any time span of pressure data, they generate the total excitation for that time span. We will discuss the results for various spans of

  6. Low-earth-orbit effects on strength of glasses

    NASA Technical Reports Server (NTRS)

    Wiedlocher, David E.; Tucker, Dennis S.; Nichols, Ron; Kinser, Donald L.

    1992-01-01

    The effects of a 5.8-y exposure to low-earth-orbit environment upon the mechanical properties of five commercial glasses and a low-expansion-coefficient glass-ceramic have been examined. The radiation components of the earth-orbit environment did not degrade the mechanical strength of the samples examined within the limits of experimental error. Statistical problems arising from the low frequency of micrometeorite or space debris impacts upon the samples precluded statistically valid measurement of impacted sample strengths. Upper bounds for the magnitude of the impact event damage upon the strengths for impacted samples have been determined.

  7. The Runaway Greenhouse Effect on Earth and other Planets

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  8. Recent Earth Oblateness Variations: Unraveling Climate and Postglacial Rebound Effects

    NASA Astrophysics Data System (ADS)

    Dickey, Jean O.; Marcus, Steven L.; de Viron, Olivier; Fukumori, Ichiro

    2002-12-01

    Earth's dynamic oblateness (J2) has been decreasing due to postglacial rebound (PGR). However, J2 began to increase in 1997, indicating a pronounced global-scale mass redistribution within Earth's system. We have determined that the observed increases in J2 are caused primarily by a recent surge in subpolar glacial melting and by mass shifts in the Southern, Pacific, and Indian oceans. When these effects are removed, the residual trend in J2 (-2.9 x 10-11 year-1) becomes consistent with previous estimates of PGR from satellite and eclipse data. The climatic significance of these rapid shifts in glacial and oceanic mass, however, remains to be investigated.

  9. The effects of general relativity on near-earth satellites

    NASA Technical Reports Server (NTRS)

    Ries, J. C.; Watkins, M. M.; Tapley, B. D.; Huang, C.

    1990-01-01

    Whether one uses a solar system barycentric frame or a geocentric frame when including the general theory of relativity in orbit determination for near-earth satellites, the results should be equivalent to some limiting accuracy. The purpose of this paper is to clarify the effects of relativity in each frame and to demonstrate their equivalence through the analysis of three years of laser tracking data taken on the Lageos satellite. It is demonstrated that the simpler formulation in the geocentric frame is adequate for the purpose of near-earth satellite orbit determination. A correction to the conventional barycentric equations of motion is shown to be required.

  10. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.