Science.gov

Sample records for earth-trailing heliocentric orbit

  1. One class of heliocentric orbits

    NASA Astrophysics Data System (ADS)

    Kramer, E. N.

    1994-12-01

    Using the catalog data of radio, television, and photographic observation of faint meteors, a new class of orbits (C-orbits) is defined. For the C-orbits the angle between the ecliptic plane and the line of apsides corresponds to the condition sin2 beta greater than 0.4 and the aphelion distance q' less than 4 A.U. The origin of corresponding meteor particles is associated with the disintegration of long-period or nearly parabolic cometary nuclei and with a long-time Poynting-Robertson (P-R) deceleration. Secular gravitational perturbations from the planets vary within a wide range of the eccentricity e, inclination i and perihelion distance q for the C-orbits; the perihelion argument can not go out from the extreme value 90 +/- 50.8 or 270 +/- 50.8 degrees. The superposition of secular gravitational perturbations (mainly from Jupiter) and P-R effect on the C-orbits leads to a slowly persistent decreasing of the semimajor axis, cyclically increasing of e up to unity and decreasing of q down to zero. The collision probabilities of particles for C-orbits with the Earth is more then two times less than the one for usual orbits. Therefore, we conclude that the C-orbits are characteristic for relatively small (submillimetric) particles. They can form a certain source of the dust cloud around the Sun.

  2. Optimum rendezvous transfer between coplanar heliocentric elliptic orbits using solar sail

    NASA Astrophysics Data System (ADS)

    Rao, P. V. S.; Ramanan, R. V.

    1992-12-01

    A convenient formulation is presented for determining the effect of terminal orbit eccentricities on the steering profile of a sail spacecraft for time-optimal rendezvous transfer between coplanar heliocentric orbits. The problem is reduced to that of solving a two-point boundary value problem for a system of seven ordinary differential equations. The system is solved using the controlled random search optimization technique.

  3. Temporary Capture of Planetesimals by a Planet from Their Heliocentric Orbits

    NASA Astrophysics Data System (ADS)

    Suetsugu, Ryo; Ohtsuki, Keiji; Tanigawa, Takayuki

    2011-12-01

    When planetesimals encounter a planet, they can be temporarily captured by the planet's gravity and orbit about it for an extended period of time before escaping from the planet's vicinity. Such a process may have played an important role in the origin of irregular satellites or the dynamical evolution of short-period comets. Using three-body orbital integration, we study the temporary capture of planetesimals by a planet from their heliocentric eccentric orbits. We examine the dependence of the orbital characteristics during temporary capture as well as the rate of capture on the pre-capture heliocentric orbital parameters. We find that typical orbital size and direction of revolution around the planet change depending on planetesimals' initial eccentricity and energy. When initial eccentricity is so small that Kepler shear dominates the relative velocity between planetesimals and the planet, temporary capture typically occurs in the retrograde direction in the vicinity of the planet's Hill sphere, while large retrograde capture orbits outside the Hill sphere are predominant for large eccentricities. Long prograde capture occurs in a very narrow range of planetesimal eccentricity and energy. We obtain the rate of temporary capture of planetesimals and find that the rate of long capture increases with increasing eccentricity at low and high eccentricities, but decreases with increasing eccentricity in intermediate values of eccentricity. We also examine the dependence of capture rate on the duration of capture and find an approximate power-law dependence.

  4. Lessons Learned from Natural Space Debris in Heliocentric Orbit: An Analogue for Hazardous Debris in Earth Orbit

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, Hanying; Connors, Martin; Lai, Hairong; Delzanno, Gian Luca

    Interplanetary Field Enhancements (IFEs) were discovered almost 30 years ago in the PVO magnetic-field records. Our current understanding is that IFEs result from interactions between solar wind and clouds of nanometer-scale charged dust released in interplanetary collisions. These charged dust clouds are then accelerated by the solar wind and moving away from the Sun at near solar wind speed and detected by spacecraft in heliocentric orbit. The dynamics of the debris in heliocentric orbit is analogous to that mankind has placed into Earth orbit. There are lessons here that are worth exploring. The IFE formation hypothesis was supported by the discovery of co-orbiting materials associated with asteroid 2201 Oljato: IFE rate peaked when Oljato was close and IFE occurrence clustered in the longitudes near which the orbit of Oljato intersects the orbital plane of Venus. A followed up study with Venus Express observations suggested that the co-orbiting materials dissipated in 30 years. An important aspect of this evolution is that at collisional speeds of 20 km/s, a small body can destroy one 106 times more massive. This destruction of large debris by small debris could also be important in the evolution of the terrestrial debris. At 1AU, based on ACE and Wind observations, IFEs have a significant cluster in the longitude range between 195 and 225. Thus we use the same IFE technique to identify the parent Near-Earth Objects of co-orbiting materials which should be responsible for those IFEs. There are more than 5000 JPL documented NEOs whose ecliptic plane crossings are near to or inside the Earths orbit and whose orbital periods are less than five years. By comparing their trajectories, we find that the asteroid 138175 is a good candidate for the parent body. This asteroid orbits the Sun in a 5.24 inclined elliptical orbit with a period of 367.96 days. Its descending node is at about 206, where the IFE occurrence rate peaks. We also find that there is a spread of the IFE rate around the descending node, indicating that the co-orbiting materials have significant dispersion about the asteroids orbit. In summary, orbiting debris in orbits intersecting at high speeds can destroy itself quite efficiently, but with a long timescale. In deep space, this process is a step on the path between the asteroidal source population and the creation of solar system dust. This may be true for Earth-orbiting debris as well.

  5. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  6. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  7. Probes to the Inferior Planets - A New Dawn for NEO and IEO Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth's?

    NASA Astrophysics Data System (ADS)

    Grundmann, J. T.; Mottola, S.; Drentschew, M.; Drobczyk, M.; Kahle, R.; Maiwald, V.; Quantius, D.; Zabel, P.; Van Zoest, T.

    2011-11-01

    With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence. Several missions to Venus and Mercury are planned to follow in this decade. Increased interest in the inferior planets is accompanied by several missions designed to study the Sun and the interplanetary medium (IPM) from a position near or in Earth orbit, such as the STEREO probes and SDO. These augment established solar observation capabilities at the Sun-Earth L1 Lagrangian point such as the SOHO spacecraft. Thus, three distinct classes of spacecraft operate or observe interior to Earth's orbit. All these spacecraft carry powerful multispectral cameras optimized for their respective primary targets. MESSENGER is scheduled to end its six-year interplanetary cruise in March 2011 to enter Mercury orbit, but a similarly extended cruise with several gravity-assists awaits the European Mercury mission BEPICOLOMBO. Unfortunately, the automatic abort of the orbit insertion manoeuvre has also left AKATSUKI (a.k.a. Venus Climate Orbiter (VCO), Planet-C) stranded in heliocentric orbit. After an unintended fly-by, the probe will catch up with Venus in approximately six years. Meanwhile, it stays mostly interior to Venus in a planet-leading orbit. In addition to the study of comets and their interaction with the IPM, observations of small bodies akin to those carried out by outer solar system probes are occasionally attempted with the equipment available. The study of structures in the interplanetary dust (IPD) cloud has been a science objective during the cruise phase of the Japanese Venus probe AKATSUKI from Earth to Venus. IPD observations in the astronomical H-band (1.65 μm) are supported by its IR2 camera down to 1.5 μW/m2sr in single 2 minute exposures. In the same setting, point sources of 13 mag can be detected. Obviously, a number of large asteroids exceed this threshold. The EARTHGUARD-I study, completed in 2003 by the DLR Institute of Planetary Research and Kayser-Threde under ESA contract, proposed a dedicated steerable 020...35 cm telescope and CCD camera payload on a probe to the inner solar system, to detect Near-Earth and Inner-Earth Objects (NEOs, IEOs) in favourable opposition geometry. A ride- share on a Mercury orbiter and a dedicated low-thrust propulsion spacecraft to a heliocentric 0.5 AU orbit were studied. A similar-sized telescope is presently being developed for the ASTEROIDFINDER satellite of DLR. Therefore, the technical feasibility of a number of asteroid observation scenarios involving spacecraft and targets interior to Earth's orbit is assessed based on the latest available spacecraft information and asteroid population models. A rough estimate of the required effort in terms of ground-based spacecraft operations and on-board resources is given for selected representative scenarios.

  8. Kepler's winding Path to true Heliocentrism

    NASA Astrophysics Data System (ADS)

    Bialas, Volker

    The paper concerns the evolution of concepts by Johannes Kepler from Aristotelian conception of the Universe to Heliocentrism. Already as young Magister in Tubingen Kepler has taken an active part in Physical disputations of the candidates and has defended the doctrines of Copernik (1). In the Mysterium Cosmographicum he refers the planetary distances no longer to the center of the earth's orbit, but to the center of the true sun. But just by working out his Astronomia Nova Kepler succeeds in creating a strictly heliocentric astronomy as his handwriting Manuscripts give detailed information (2). Notes: 1) fragmentum orations de motu terrae. In Keppler Gesammelte werke Vol. 20.1, Munich 1988, p. 147-149 2) Commentaria in Theoriam Martis. Edition in: Kepler Gessamelete Werke Vol. 20.2 (in preparation)

  9. Simulations of the Solar Orbiter spacecraft interactions with the Solar wind at different heliocentric distances: effects on SWA-EAS measurements

    NASA Astrophysics Data System (ADS)

    Guillemant, S.; Genot, V. N.; Matéo Vélez, J.; Sarrailh, P.; Louarn, P.; Maksimovic, M.; Owen, C. J.; Hilgers, A. M.

    2013-12-01

    This presentation focuses on numerical simulations of the Solar Orbiter spacecraft/plasma interactions performed with the Spacecraft Plasma Interaction System (SPIS) software (http://dev.spis.org/projects/spine/home/spis/). This toolkit aims at modelling spacecraft-plasma interactions, based on an electrostatic 3-D unstructured particle-in-cell plasma model. New powerful SPIS functionalities were recently delivered within the extension of the software: SPIS-Science (ESA contract). This version revolutionizes spacecraft/plasma interactions as users are now able to model and configure plasma instrument such as Langmuir probes or particle detectors taking into account instrument characteristics like geometry, materials, energy ranges and resolution, output frequency, field of view ... In the validation context of SPIS-Science functionalities, a simulation campaign was carried out, including several cases of the ESA Solar Orbiter mission. The results presented here specifically focus on particle measurements through the modelling of the Solar Wind Analyzer - Electron Analyzer System instrument (SWA-EAS). Simulations of the spacecraft in different environments have been performed and extensively analysed. A detailed analysis will be presented concerning 1/ the satellite charging and, in particular, differential potentials on the dielectric surfaces of the Solar panels and the High Gain Antenna, which may severely affect low energy EAS measurements, 2/ the surrounding plasma behaviour : potential barriers for secondary and photoelectrons of about -5 V around the vehicle are indeed observed at the mission perihelion of 0.28 AU from the Sun and 3/ a quantification of biases on EAS measurements due to the combined effects of surface potentials, ion wake, and potential barriers. This work proposes a general framework to prepare the analysis of the future Solar Orbiter measurements.

  10. A Space weather information service based upon remote and in-situ measurements of coronal mass ejections heading for Earth. A concept mission consisting of six spacecraft in a heliocentric orbit at 0.72 AU

    NASA Astrophysics Data System (ADS)

    Ritter, Birgit; Meskers, Arjan J. H.; Miles, Oscar; Rußwurm, Michael; Scully, Stephen; Roldán, Andrés; Hartkorn, Oliver; Jüstel, Peter; Réville, Victor; Lupu, Sorina; Ruffenach, Alexis

    2015-02-01

    The Earth's magnetosphere is formed as a consequence of interaction between the planet's magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past 40 years with the intention of understanding and forecasting solar behavior. One of these phenomena in particular, Earth-bound interplanetary coronal mass ejections (CMEs), can significantly disturb the Earth's magnetosphere for a short time and cause geomagnetic storms. This publication presents a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic field's orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the aforementioned CME properties. The obtained data can additionally be used for updating scientific models. This update is the mission's secondary objective. In-situ measurements are performed using a Solar Wind Analyzer instrumentation package and fluxgate magnetometers, while for remote measurements coronagraphs are employed. The proposed instruments originate from other space missions with the intention to reduce mission costs and to streamline the mission design process. Communication with the six identical spacecraft is realized via a deep space network consisting of six ground stations. They provide an information service that is in uninterrupted contact with the spacecraft, allowing for continuous space weather monitoring. A dedicated data processing center will handle all the data, and then forward the processed data to the SSA Space Weather Coordination Center which will, in turn, inform the general public through a space weather forecast. The data processing center will additionally archive the data for the scientific community. The proposed concept mission allows for major advances in space weather forecasting time and the scientific modeling of space weather.

  11. Solar Sail Optimal Orbit Transfers to Synchronous Orbits

    NASA Technical Reports Server (NTRS)

    Powers, Robert B.; Coverstone, Victoria; Prussing, John E.; Lunney, Bryan C. (Technical Monitor)

    1999-01-01

    A constant outward radial thrust acceleration can be used to reduce the radius of a circular orbit of specified period. Heliocentric circular orbits are designed to match the orbital period of Earth or Mars for various radial thrust accelerations and are defined as synchronous orbits. Minimum-time solar sail orbit transfers to these synchronous heliocentric orbits are presented.

  12. Ancient Greek Heliocentric Views Hidden from Prevailing Beliefs?

    NASA Astrophysics Data System (ADS)

    Liritzis, Ioannis; Coucouzeli, Alexandra

    2008-03-01

    We put forward the working hypothesis that the heliocentric, rather than the geocentric view, of the Solar System was the essential belief of the early Greek philosophers and astronomers. Although most of them referred to the geocentric view, it is plausible that the prevalent religious beliefs about the sacred character of the Earth as well as the fear of prosecution for impiety (asebeia) prevented them from expressing the heliocentric view, even though they were fully aware of it. Moreover, putting the geocentric view forward, instead, would have facilitated the reception of the surrounding world and the understanding of everyday celestial phenomena, much like the modern presentation of the celestial sphere and the zodiac, where the Earth is at the centre and the Sun makes an apparent orbit on the ecliptic. Such an ingenious stance would have set these early astronomers in harmony with the dominant religious beliefs and, at the same time, would have helped them to 'save the appearances', without sacrificing the essence of their ideas. In Hellenistic and Roman times, the prevailing view was still the geocentric one. The brilliant heliocentric theory advanced by Aristarchos in the early third century B.C. was never established, because it met with hostility in Athens - Aristarchos was accused of impiety and faced the death penalty. The textual evidence suggests that the tight connection which existed between religion and the city-state (polis) in ancient Greece, and which led to a series of impiety trials against philosophers in Athens during the fifth and fourth centuries B.C., would have made any contrary opinion expressed by the astronomers seem almost a high treason against the state.

  13. Analytical control laws of the heliocentric motion of the solar sail spacecraft

    NASA Astrophysics Data System (ADS)

    Gorbunova, Irina; Starinova, Olga

    2014-12-01

    The heliocentric motion of the solar sail spacecraft is described in classical Keplerian elements. The flat of solar sail with an ideal reflection coefficient is considered. The spacecraft performs a noncoplanar motion with the sun gravity and the light pressure. Disturbances of other celestial bodies gravity are not considered. We have received analytical terms for laws to control a solar sail, which ensure constancy or maximum rate of change of the Keplerian elements. To confirm the results correctness, we simulated the solar sail spacecraft. The spacecraft's initial orbit coincides with the average Earth orbit relative to the Sun. Authors developed a program complex to simulated the planar heliocentric movement and obtained results for motion simulation of flights to Mars and Venus. The results were compared with the simulation results obtained using the Pontryagin maximum principle.

  14. Proof-of-Concept Trajectory Designs for a Multi-Spacecraft, Low-Thrust Heliocentric Solar Weather Buoy Mission

    NASA Technical Reports Server (NTRS)

    Muller, Ronald; Franz, Heather; Roberts, Craig; Folta, Dave

    2005-01-01

    A new solar weather mission has been proposed, involving a dozen or more small spacecraft spaced at regular, constant intervals in a mutual heliocentric circular orbit between the orbits of Earth and Venus. These solar weather buoys (SWBs) would carry instrumentation to detect and measure the material in solar flares, solar energetic particle events, and coronal mass ejections as they flowed past the buoys, serving both as science probes and as a radiation early warning system for the Earth and interplanetary travelers to Mars. The baseline concept involves placing a mothercraft carrying the SWBs into a staging orbit at the Sun-Earth L1 libration point. The mothercraft departs the L1 orbit at the proper time to execute a trailing-edge lunar flyby near New Moon, injecting it into a heliocentric orbit with its perihelion interior to Earth s orbit. An alternative approach would involve the use of a Double Lunar Swingby (DLS) orbit, rather than the L1 orbit, for staging prior to this flyby. After injection into heliocentric orbit, the mothercraft releases the SWBs-all equipped with low-thrust pulsed plasma thrusters (PPTs)-whereupon each SWB executes a multi-day low-thrust finite bum around perihelion, lowering aphelion such that each achieves an elliptical phasing orbit of different orbital period from its companions. The resulting differences in angular rates of motion cause the spacecraft to separate. While the lead SWB achieves the mission orbit following an insertion burn at its second perihelion passage, the remaining SWBs must complete several revolutions in their respective phasing orbits to establish them in the mission orbit with the desired longitudinal spacing. The complete configuration for a 14 SWB scenario using a single mothercraft is achieved in about 8 years, and the spacing remains stable for at least a further 6 years. Flight operations can be simplified, and mission risk reduced, by employing two mothercraft instead of one. In this scenario: the second mothercraft stays in a libration-point or DLS staging orbit until the first mothercraft has achieved nearly 180 separation from the Earth. The timing of the second mothercraft's subsequent lunar flyby is planned such that this spacecraft will be located 180 from the first mothercraft upon completion of its heliocentric circularization maneuvers. Both groups of satellites then only have to spread out over 180 to obtain full 360 coverage around the Sun.

  15. An Heliocentric Telecommunication Data Relay Satellite (HTDRS) Network for deep space missions

    NASA Astrophysics Data System (ADS)

    Cledassou, R.

    2002-01-01

    All interplanetary missions have two common problems which constrain a lot the spacecrafts : telecommunications data rates and volumes, orbit knowledge. In the following decade numerous exciting missions will be launched towards Mars (2 rovers in 2003 and one Mars Express Orbiter, an Orbiter in 2005, 2 orbiters and one Lander in 2007, ...) and towards other planets (Europa, Pluto, ...). These numerous missions will overload the Deep Space Network, making it difficult to perform telecommunications and orbit determination. In particular the Mars missions like Mars Reconnaissance Orbiter demand a tremendous amount of telemetry (Gbytes per day). Some other like the Mars Sample Return mission demands a high accuracy on orbit determination to target the arrival conditions to the planets (Landers or aerocapture Orbiters). Given this, we will propose in this paper to establish an heliocentric telecommunication relay satellites constellation, which would help to solve these problems. We will show, in the frame of Mars missions, what could be such a constellation, its telecommunications capacity as well as its possible use to perform VLBI thus increasing highly the orbit knowledge. In addition we will propose a way to position them around the Sun and finally see what could be its use for other Deep Space missions.

  16. Solar wind stream structure at large heliocentric distances Pioneer observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1987-01-01

    Time profiles and histograms of plasma data from Pioneers 10 and 11 are examined for the period between 1975 and 1983. During this time, Pioneer 10 traveled between a heliocentric distance of 8.7 and 30.4 AU. The velocity structure of the solar wind at these heliocentric distances is found to have one of two distinct forms: approximately 70 percent of the time the solar wind has a nearly flat velocity profile. Occasionally, this flat velocity profile is accompanied by quasi-periodic variations in density and in thermal speed consistent with the concept that the 'corotating interaction regions' which are produced by the interaction of high- and low-speed streams at intermediate heliocentric distances are replaced by 'pressure regions' in the outer heliosphere. The remaining 30 percent of the time the solar wind is marked by large (50-200 km/s) long-term (30-120 days) shifts in the average solar wind velocity.

  17. Differential impact cratering of Saturn's satellites by heliocentric impactors

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki

    2016-02-01

    Saturnian satellites are thought to have been struck by two different types of impactors: those with heliocentric origins and those with planetocentric origins. Many of the impacts are suggested to come from planetocentric debris, while many crater count studies assume an ecliptic comet origin when determining the ages of the surfaces. To assess the contribution of planetocentric impactors, this study examines the global distribution and apex-antapex asymmetry of impact craters on Rhea and Iapetus. The results demonstrate that the craters of Rhea (more than 20 km in diameter) and Iapetus (more than 30 km in diameter) show an apex-antapex asymmetry. This suggests that most of the large craters are formed from heliocentric impacts. In contrast, the craters less than 20 km in diameter seem to show no asymmetry. Possible explanations for this are either planetocentric impactor origins or saturation with impact craters.

  18. A photometric and dynamic study of comet C/2013 A1 (Siding Spring) from observations at a heliocentric distance of ~4.1 AU

    NASA Astrophysics Data System (ADS)

    Andrienko, Yu. S.; Golovin, A. V.; Ivanova, A. V.; Reshetnik, V. N.; Kolesnik, S. N.; Borisenko, S. A.

    2016-03-01

    An analysis is presented for the photometric data on comet C/2013 A1 (Siding Spring) from observations at a large heliocentric distance (~4.1 AU). Comet C/2013 A1 (Siding Spring) displays intense activity despite the relatively large heliocentric distance. The morphology of the comet's coma is analyzed. The following parameters are measured: the color indices V-R, the normalized spectral gradient of the reflectivity of the comet's dust S', and the dust production rate Afρ. A numerical simulation is performed for the evolution of the comet's orbit after a close encounter with Mars. The most probable values are obtained for the Keplerian orbital elements of the comet over a hundred-year period. The comet's orbit remains nearly parabolic after passing the orbits of all the Solar System planets.

  19. CCD-photometry of comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Mueller, Beatrice E. A.

    1992-01-01

    CCD imaging and time series photometry are used to determine the state of activity, nuclear properties and eventually the rotational motion of cometary nuclei. Cometary activity at large heliocentric distances and mantle evolution are not yet fully understood. Results of observations carried out at the 2.1 telescope on Kitt Peak April 10-12 and May 15-16, 1991 are discussed. Color values and color-color diagrams are presented for several comets and asteroids. Estimations of nuclear radii and shapes are given.

  20. Heliocentric distance dependence of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.

    1977-01-01

    Recent and ongoing planetary missions have provided extensive observations of the variations of the Interplanetary Magnetic Field (IMF) both in time and with heliocentric distance from the sun. Large time variations in both the IMF and its fluctuations were observed. These are produced predominantly by dynamical processes in the interplanetary medium associated with stream interactions. Magnetic field variations near the sun are propagated to greater heliocentric distances, also contributing to the observed variablity of the IMF. Temporal variations on a time-scale comparable to or less than the corotation period complicate attempts to deduce radial gradients of the field and its fluctuations from the various observations. However, recent measurements inward to 0.46 AU and outward to 5 AU suggest that the radial component of the field on average decreases approximately as r to the minus second power, while the azimuthal component decreases more rapidly than the r to the minum first power dependence predicted by simple theory. This, and other observations, are discussed.

  1. On the Provability of Heliocentrism. I. Ole Roemer and the Finite Speed of Light

    NASA Astrophysics Data System (ADS)

    Sterken, Christiaan

    2007-10-01

    This paper describes observational support of heliocentrism during the late Renaissance. Initiated by Galileo's clues from telescopic sightings, the first indirect quantitative support for the heliocentric doctrine resulted from accurate eclipse timings of the , made possible by breakthroughs in technology (telescope optics and the pendulum clock) and driven by the quest for longitude at sea and on land. The resulting discovery of Olaus Roemer that the velocity of light is finite, is an indirect argument supporting heliocentrism.

  2. 67P/Churyumov-Gerasimenko: start of activity and heliocentric light curve

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Bramich, D.; Boehnhardt, H.; Barrera, L.

    2012-09-01

    Comets are believed to be widely unmodified remnants from the formation of the solar system; their study can give important insights into the conditions prevailing at the time of the planetary system formation. After the success of the Giotto mission to comet 1P/Halley, the European Space Agency (ESA) approved in the early nineties a new space mission with a comet as main target: Rosetta, which will rendezvous with come 67P/Churyumov-Gerasimenko (67P/C-G) in 2014. 67P/C-G is a Jupiter family comet with orbital period of 6.56 years. Due to repeated encounters with Jupiter, the orbital evolution of 67P/C-G is chaotic. The last encounter in February 1959 occurred at a distance of only 0.0518 AU and produced drastic changes in perihelion distance, eccentricity, inclination, orbital period and possibly led to its discovery in 1969. After 67P/C-G was selected as target comet of Rosetta mission, observational campaigns and theoretical investigations were performed in order to establish a detailed portrait of 67P/C-G in preparation of the rendezvous with the spacecraft ([1], [2], [3], [4]). Here we present ground-based observations of 67P/CG obtained between July 2007 and March 2008 at ESO VLT using the FORS2 instrument. The comet was moving inbound, from 4.6 AU to 3.4 AU. The orbital arc covered by our observation is the same where 67P/C-G will be in 2014 when the rendezvous with the Rosetta spacecraft will take place, thus of highly interest for mission planning. Since the comet's activity around perihelion has shown similar behaviour during the last three orbital passages, it is fair to assume that the comet's behavior at large heliocentric distance has not changed from one orbital revolution to the other, leading us to expect that during its approach to 67P/CG, Rosetta will find the same conditions detected during our observations. A considerable difficulty in observing 67P/C-G during the past years has been its position against crowded fields towards the galactic centre for much of this time (Fig. 1 - top). The 2007/8 data presented here was particularly difficult, and the comet will once again be badly placed for Earth based observations in 2014/5. We made use of the technique of Difference Image Analysis (as implemented in the DanDIA software, [5]), which is commonly used in variable star and exoplanet research, to remove background sources and extract images of the comet (Fig. 1 - bottom). We determined that the comet became active during the period November 2007 - March 2008, at a distance of 4.1-3.4 AU from the Sun. The comet will reach this distance, and probably become active again, in April- September 2014. To investigate the longer period activity cycle of the comet we compiled the heliocentric light curve of the comet, making use of images of 67P/C-G taken during the last three apparitions taken from the ESO archive. A preliminary light curve is shown in 2. This information will be used for planning observing campaigns, both from the ground and using OSIRIS on board Rosetta.

  3. Variation of Magnetic Flux Ropes With Heliocentric Distance

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Mulligan, T.; Anderson, B. J.

    As the magnetic flux ropes in interplanetary coronal mass ejections move away from the Sun, their thickness expands and the field strength drops. This radial variation has been measured statistically by Bothmer and Schwenn with Helios. On occasion spacecraft are sufficiently radially aligned during the passage of an ICME that this expansion can be determined for a single structure. Two such occasions occurred with ACE and NEAR on July 12-16, 2000 and August 13-15, 2000. In accord with the statistical results from Helios, we find that the axial field for the first rope (the Bastille Day event) decreased as R^-1.4 and the poloidal field as R^-1.2 and as R^-1.8 and R^- 1.3 for the second rope. The thickness of the ropes increased from 0.50 to 0.86 AU over a distance of 0.76 AU and from 0.34 to 0.58 AU over 0.72 AU respectively. These results confirm that even when in quasi force-free magnetic balance magnetic ropes expand with heliocentric distance. Such an evolution is a natural consequence of the motion of the flux tube if it is rooted to the Sun even if the twist and magnetic flux content of the tube remain constant since the poloidal field must decrease as the tube moves outward.

  4. Heliocentric trajectory analysis of Sun-pointing smart dust with electrochromic control

    NASA Astrophysics Data System (ADS)

    Mengali, Giovanni; Quarta, Alessandro A.

    2016-02-01

    A smart dust is a micro spacecraft, with a characteristic side length on the order of a few millimeters, whose surface is coated with electrochromic material. Its orbital dynamics is controlled by exploiting the differential force due to the solar radiation pressure, which is obtained by modulating the reflectivity coefficient of the electrochromic material within a range of admissible values. A significant thrust level can be reached due to the high values of area-to-mass ratio of such a spacecraft configuration. Assuming that the smart dust is designed to achieve a passive Sun-pointing attitude, the propulsive acceleration due to the solar radiation pressure lies along the Sun-spacecraft direction. The aim of this paper is to study the smart dust heliocentric dynamics in order to find a closed form, analytical solution of its trajectory when the reflectivity coefficient of the electrochromic material can assume two values only. The problem is addressed by introducing a suitable transformation that regularizes the spacecraft motion and translates the smart-dust dynamics into that of a linear harmonic oscillator with unitary frequency, whose forcing input is a boxcar function. The solution is found using the Laplace transform method, and afterwards the problem is generalized by accounting for the degradation of the electrochromic material due to its exposition to the solar radiation. Three spacecraft configurations, corresponding to low, medium and high performance smart dusts, are finally used to quantify the potentialities of these advanced devices in an interplanetary mission scenario.

  5. Pioneer 10 observation of the solar wind proton temperature heliocentric gradient

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Wolfe, J. H.

    1978-01-01

    Solar wind isotropic proton temperatures as measured out to 12.2 AU heliocentric distance by the Ames plasma analyzer aboard Pioneer 10 are presented as consecutive averages over three Carrington solar rotations and discussed. The weighted least-squares fit of average temperature to heliocentric radial distance, R, yields the power law R sup -.52. These average proton temperatures are not correlated as well with Pioneer 10's heliocentric radial distance (-.85) as are the corresponding average Zurich sunspot numbers R sub z (-.95). Consequently, it is difficult to isolate the spatial gradient in the Pioneer 10 solar wind proton temperatures using that data alone.

  6. Mariner 4 - A study of the cumulative flux of dust particles over a heliocentric range of 1-1.56 AU 1964-1967

    NASA Technical Reports Server (NTRS)

    Alexander, W. M.; Bohn, J. L.

    1974-01-01

    Between December 1964 and December 1967, the Mariner 4 dust particle experiment obtained data concerning the distribution of minute zodiacal dust cloud particles over a heliocentric range of 1-1.56 AU. The first measurement was over the complete heliocentric range, while the two additional measurements were made between 1.1 and 1.25 AU in 1966, and between 1.2 and 1.5 AU in 1967. The initial results of these measurements presented the mean cumulative flux for the respective data periods. The results of a detailed study and comparison of the three measurements are presented, with particular emphasis on the variation of the flux as a function of heliocentric range. A small, but statistically significant, increase in the flux is observed between 1.15 and 1.4 AU. The initial reports showed a lower cumulative flux for the latter two measurements. However, a detailed analysis containing corrections for spacecraft attitude indicate that all three measurements yield similar results, and that the particles detected were in low inclination orbits.

  7. Radar Surveys of Meteoroid Orbits

    NASA Astrophysics Data System (ADS)

    Baggaley, W. J.

    1995-01-01

    Radar facilities providing routine measurements of the heliocentric orbits of meteoroids are valuable in providing a data-base of the orbital characteristics of the solar system small body population in the mass range about 10-2 down to 10-6 g. Such an orbital information background is essential for an understanding of the evolutionary processes of this component. An outline is presented of orbit-finding systems; their inherent limitations and associated selection effects with some emphasis given to the on-going southern hemisphere routine survey provided by the AMOR facility which provides orbits down to a limiting magnitude ˜ +13.

  8. No evidence for a decrease of nuclear decay rates with increasing heliocentric distance based on radiochronology of meteorites

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Wieler, Rainer

    2014-03-01

    It has been argued that the decay rates of several radioactive nuclides are slightly lower at Earth's aphelion than at perihelion, and that this effect might depend on heliocentric distance. It might then be expected that nuclear decay rates be considerably lower at larger distances from the sun, e.g., in the asteroid belt at 2-3 AU from where most meteorites originate. If so, ages of meteorites obtained by analyses of radioactive nuclides and their stable daughter isotopes might be in error, since these ages are based on decay rates determined on Earth. Here we evaluate whether the large data base on nuclear cosmochronology offers any hint for discrepancies which might be due to radially variable decay rates. Chlorine-36 (t1/2 = 301,000 a) is produced in meteorites by interactions with cosmic rays and is the nuclide for which a decay rate dependence from heliocentric distance has been proposed, which, in principle, can be tested with our approach and the current data base. We show that compilations of 36Cl concentrations measured in meteorites offer no support for a spatially variable 36Cl decay rate. For very short-lived cosmic-ray produced radionuclides (half-lives < 10-100 days), the concentration should be different for meteorites hitting the Earth on the incoming vs. outgoing part of their orbit. However, the current data base of very short-lived radionuclides in freshly fallen meteorites is far from sufficient to deduce solid constraints. Constraints on the age of the Earth and the oldest meteorite phases obtained by the U-Pb dating technique give no hints for radially variable decay rates of the α-decaying nuclides 235U or 238U. Similarly, some of the oldest phases in meteorites have U-Pb ages whose differences agree almost perfectly with respective age differences obtained with "short-lived" radionuclides present in the early solar system, again indicating no variability of uranium decay rates in different meteorite parent bodies in the asteroid belt. Moreover, the oldest U-Pb ages of meteorites agree with the main-sequence age of the sun derived from helioseismology within the formal ˜1% uncertainty of the latter. Meteorite ages also provide no evidence for a decrease of decay rates with heliocentric distance for nuclides such as 87Rb (decay mode β-) 40K (β- and electron capture), and 147Sm (α).

  9. THE DISTRIBUTION OF QUIET-SUN MAGNETIC FIELDS AT DIFFERENT HELIOCENTRIC ANGLES

    SciTech Connect

    Orozco Suarez, D.; Katsukawa, Y.

    2012-02-20

    This paper presents results from the analysis of high signal-to-noise ratio spectropolarimetric data taken at four heliocentric angles in quiet-Sun internetwork regions with the Hinode satellite. First, we find that the total circular and total linear polarization signals vary with heliocentric angle, at least for fields with large polarization signals. We also report changes on the Stokes V amplitude asymmetry histograms with viewing angle for fields weaker than 200 G. Then, we subject the data to a Milne-Eddington inversion and analyze the variation of the field vector probability density functions with heliocentric angle. Weak, highly inclined fields permeate the internetwork at all heliocentric distances. For fields weaker than 200 G, the distributions of field inclinations peak at 90 Degree-Sign and do not vary with viewing angle. The inclination distributions change for fields stronger than 200 G. We argue that the shape of the inclination distribution for weak fields partly results from the presence of coherent, loop-like magnetic features at all heliocentric distances and not from tangled fields within the field of view. We also find that the average magnetic field strength is about 180 G (for 75% of the pixels) and is constant with heliocentric angle. The average vertical and horizontal magnetic field components are 70 and 150 G. The latter (former) is slightly greater (smaller) near the limb. Finally, the ratio between the horizontal and vertical components of the fields ranges from {approx}1 for strong fields to {approx}3.5 for weak fields, suggesting that the magnetic field vector is not isotropically distributed within the field of view.

  10. Pioneer and voyager observations of the solar wind at large heliocentric distances and lattitudes

    SciTech Connect

    Gazis, P.R.; Mihalov, J.D.; Barnes, A.; Lazarus, A.J.; Smith, E.J.

    1989-03-01

    The Pioneer 10, 11, and Voyager 2 spacecraft are well suited for exploring spatial gradients in the distant solar wind. Between 1984 and 1986 Pioneer 11 and Voyager 2 were located at nearly the same heliocentric distance (approx. =20 AU) and longitude but were widely separated in latitude; Pioneer 11 was at a heliographic latitude of greater than or equal to15/sup 0/ while Voyager 2 was near the solar equator. Pioneer 10 was located near the solar equator but at a considerably greater heliocentric distance (approx. =40 AU). IMP observations at 1 AU provide an inner heliosphere baseline.

  11. From Pythagoreans to Kepler: the dispute between the geocentric and the heliocentric systems

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Danezis, E.; Manimanis, V. N.; Kalyva, E.-M.

    2002-06-01

    Some ancient Greek philosophers and thinkers questioned the geocentric system and proposed instead a heliocentric system. The main proponents of this view - which was seen as heretical at the time - are believed to have been the Pythagoreans Philolaos, Heraclides, Hicetas, and Ecphantos, but mainly Aristarchos of Samos, who placed the Sun in the position of the "central fire" of the Pythagoreans. The geocentric system, reworked by Claudius Ptolemaeus (Ptolemy), was the dominant one for centuries, and it was only during the sixteenth century that the Polish monk-astronomer, Copernicus, revisited the ancient Greek heliocentric views and became the new champion of the theory that we all accept today.

  12. VizieR Online Data Catalog: Heliocentric radial velocities in Abell 376 (Proust+, 2003)

    NASA Astrophysics Data System (ADS)

    Proust, D.; Capelato, H. V.; Hickel, G.; Sodre, L., Jr.; Lima Neto, G. B.; Cuevas, H.

    2003-06-01

    A total of 71 velocities has been obtained from our observations. Table 1 lists positions and heliocentric velocities for 73 individual galaxies in the cluster including data from Wegner et al. (1999, Cat. ) and from Postman and Lauer (1995, Cat. ). (1 data file).

  13. Heliocentric distance and temporal dependence of the interplanetary density-magnetic field magnitude correlation

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.

    1990-01-01

    The Helios, IMP 8, ISEE 3, ad Voyager 2 spacecraft are used to examine the solar cycle and heliocentric distance dependence of the correlation between density n and magnetic field magnitude B in the solar wind. Previous work had suggested that this correlation becomes progressively more negative with heliocentric distance out to 9.5 AU. Here it is shown that this evolution is not a solar cycle effect, and that the correlations become even more strongly negative at heliocentric distance larger than 9.5 AU. There is considerable variability in the distributions of the correlations at a given heliocentric distance, but this is not simply related to the solar cycle. Examination of the evolution of correlations between density and speed suggest that most of the structures responsible for evolution in the anticorrelation between n and B are not slow-mode waves, but rather pressure balance structures. The latter consist of both coherent structures such as tangential discontinuities and the more generally pervasive 'pseudosound' which may include the coherent structures as a subset.

  14. The trend of production rates with heliocentric distance for comet P/Halley

    NASA Technical Reports Server (NTRS)

    Fink, Uwe

    1994-01-01

    Comet P/Halley was observed spectroscopically in the wavelength range 5200-10,400 A during 10 observing runs, roughly a month apart from 1985 August 28 to 1986 June 6. The observations span a heliocentric distance from 0.73 to 2.52 AU. This data set is analyzed to determine the course of the production rate with heliocentric distance for C2, NH2, CN, and the continuum. The effect of changing the Haser scale lengths and their heliocentric distance dependence is examined. The production rate ratios to water change only in a minor way, but the absolute values of the production rates are more severely affected. Fluorescent efficiencies, or g-factors for the CN red system are calculated, and band intensity ratios for NH2 and CN are presented. Using presently available fluorescence efficiencies and Haser scale lengths, mixing ratios for the parents of C2, CN, and NH2 with respect to water are: 0.34 +/- 0.07%, 0.15 +/- 0.04%, and 0.13 +/- 0.05%. It is found that these mixing ratios are essentially constant over the heliocentric distance range of the observations, implying a rather uniform nucleus and uniform outgassing characteristics, although there are indications of smaller scale day-to-day variations. The results provide strong observational confirmation that water evaporation controls the activity of the comet over the distance range studied. Continuum values Af rho are determined, and their ratios to QH2O are found to have a clear dependence with heliocentric distance approximately r(exp -1.0) with a post-perihelion enhancement. No correlation of the production rate ratios with light curve of P/Halley were found, nor was there any correlation of the C2 or CN production with the dust.

  15. On the Provability of Heliocentrism. II. Leon Foucault and the Rotation of the Earth

    NASA Astrophysics Data System (ADS)

    Sterken, Christiaan

    2007-10-01

    This paper deals with the experimental provability of heliocentrism from the scientific Renaissance in the beginning of the 17th century, till the Industrial Revolution of the 1850s. Foucault's famous pendulum demonstration is documented. We underline the importance of high accuracy of observations, the interdependence of hypotheses and theories, the impact of technological breakthroughs, the role of serendipity, the importance of fast and accurate publishing, and the need for precise science communication and teaching.

  16. Neptune's story. [Triton's orbit perturbation

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Murray, N.; Longaretti, P. Y.; Banfield, D.

    1989-01-01

    It is conjectured that Triton was captured from a heliocentric orbit as the result of a collision with what was then one of Neptune's regular satellites. The immediate post-capture orbit was highly eccentric. Dissipation due to tides raised by Neptune in Triton caused Triton's orbit to evolve to its present state in less than one billion years. For much of this time Triton was almost entirely molten. While its orbit was evolving, Triton cannibalized most of the regular satellites of Neptune and also perturbed Nereid, thus accounting for that satellite's highly eccentric and inclined orbit. The only regular satellites of Neptune that survived were those that formed well within 5 Neptune radii, and they move on inclined orbits as the result of chaotic perturbations forced by Triton.

  17. Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1992-01-01

    Using a simple model for outgassing from a small flat surface area, the sublimation rates of carbon monoxide and carbon dioxide, two species more volatile than water ice that are known to be present in comets, are calculated for a suddenly activated discrete source on the rotating nucleus. The instantaneous sublimation rate depends upon the comet's heliocentric distance and the Sun's zenith angle at the location of the source. The values are derived for the constants of CO and CO2 in an expression that yields the local rotation-averaged sublimation rate as a function of the comet's spin parameters and the source's cometocentric latitude.

  18. CONSTRAINING THE DUST COMA PROPERTIES OF COMET C/SIDING SPRING (2013 A1) AT LARGE HELIOCENTRIC DISTANCES

    SciTech Connect

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnham, Tony L.; A'Hearn, Michael F.; Mutchler, Max J.; Lisse, Carey M.; Delamere, W. Alan E-mail: nalin@psi.edu E-mail: farnham@astro.umd.edu E-mail: mutchler@stsci.edu E-mail: alan@delamere.biz

    2014-12-10

    The close encounter of comet C/2013 A1 (Siding Spring) with Mars on 2014 October 19 presented an extremely rare opportunity to obtain the first flyby quality data of the nucleus and inner coma of a dynamically new comet. However, the comet's dust tail potentially posed an impact hazard to those spacecraft orbiting Mars. To characterize the comet at large heliocentric distances, study its long-term evolution, and provide critical inputs to hazard modeling, we imaged C/Siding Spring with the Hubble Space Telescope when the comet was at 4.58, 3.77, and 3.28 AU from the Sun. The dust production rate, parameterized by the quantity Afρ, was 2500, 2100, and 1700 cm (5000 km radius aperture) for the three epochs, respectively. The color of the dust coma is (5.0 ± 0.3)%/100 nm for the first two epochs, and (9.0 ± 0.3)%/100 nm for the last epoch, and reddens with increasing cometocentric distance out to ∼3000 km from the nucleus. The spatial distribution and the temporal evolution of the dust color are most consistent with the existence of icy grains in the coma. Two jet-like dust features appear in the northwest and south-southeast directions projected in the sky plane. Within each epoch of 1-2 hr, no temporal variations were observed for either feature, but the position angle of the south-southeastern feature varied between the three epochs by ∼30°. The dust feature morphology suggests two possible orientations for the rotational pole of the nucleus, (R.A., decl.) = (295° ± 5°, +43° ± 2°) and (190° ± 10°, +50° ± 5°), or their diametrically opposite orientations.

  19. Probing the structure of the interplanetary dust cloud using the AMOR meteoroid orbit radar

    NASA Astrophysics Data System (ADS)

    Galligan, D. P.; Baggaley, W. J.

    2001-11-01

    The Advanced Meteor Orbit Radar (AMOR) routinely determines the heliocentric orbits of Earth-impacting dust particles. Radar meteoroid orbital distributions have a number of inherent biases. This paper details a work in progress whose aim is to determine and correct these biases on the data set of ~5×105 meteoroid orbits provided by AMOR between 1995 - 1999. Interim orbital distributions corrected for some of the identified biases are presented. These illustrate the importance of careful correction of the data set.

  20. Maximizing Utility for Ares V - Unpressurized Cargo and Secondary Missions for Heliocentric Observations

    NASA Astrophysics Data System (ADS)

    Gonzales, Andrew; Mink, Ronald; Khazanov, George

    2010-05-01

    Heliophysics seeks to understand the influence of the Sun throughout the solar system and, in particular, its connection to the Earth and the Earth's extended space environment. The launch vehicle options for heliophysics missions have been reduced over recent years, causing the implementation of many proposed missions to be no longer viable. The current near-term launch options for future heliophysics missions limit the capability and frequency of missions. A recent NASA study has identified a means of accommodating Unpressurized Caro (UPC) on Ares V in addition to the primary lander payload. The UPC study included systems, mechanical, thermal and avionics engineering as well as the definition of preliminary concepts of operation. Preliminary trajectory studies were completed to understand the capability of UPC payloads on the Ares V to reach multiple inner solar system destinations, including missions that perform heliocentric observations. Requirements for including the capability to launch UPC payloads from Ares V are being developed for the Constellation Program This work expands the utility of the United States' next generation of Heavy Lift launch vehicles. Heliocentric mission planners will be able to receive early data and open up communications channels to utilize these new and expanded UPC services.

  1. Observed and real orbital dispersion within meteoroid streams

    NASA Astrophysics Data System (ADS)

    Hajduková, Mária

    2014-01-01

    The present paper, based on a statistical analysis of orbits obtained from video meteors, shows the orbits' distribution within the meteoroid streams with heliocentric velocities close to the parabolic limit. The high proportion of hyperbolic orbits among the corresponding meteor showers was used to deduce the contribution of the real orbital dispersion within the stream, because an excess of a heliocentric velocity of a stream meteoroid over the parabolic value can be regarded entirely as the result of measuring errors. Four meteor showers, April Lyrids, Perseids, Orionids, and Leonids, were selected for this analysis. The orbital dispersion within the investigated meteoroid streams, based on the distribution of their reciprocal semimajor axes, obtained from different catalogues, were compared. It was shown that the major part of the observed differences in the semimajor axes within meteoroid streams from the European Video Meteor Network data is indeed due to measuring errors.

  2. Spitzer Orbit Determination During In-orbit Checkout Phase

    NASA Technical Reports Server (NTRS)

    Menon, Premkumar R.

    2004-01-01

    The Spitzer Space Telescope was injected into heliocentric orbit on August 25, 2003 to observe and study astrophysical phenomena in the infrared range of frequencies. The initial 60 days was dedicated to Spitzer's "In-Orbit Checkout (IOC)" efforts. During this time high levels of Helium venting were used to cool down the telescope. Attitude control was done using reaction wheels, which in turn were de-saturated using cold gas Nitrogen thrusting. Dense tracking data (nearly continuous) by the Deep Space network (DSN) were used to perform orbit determination and to assess any possible venting imbalance. Only Doppler data were available for navigation. This paper deals with navigation efforts during the IOC phase. It includes Dust Cover Ejection (DCE) monitoring, orbit determination strategy validation and results and assessment of non-gravitational accelerations acting on Spitzer including that due to possible imbalance in Helium venting.

  3. Solar wind stream evolution at large heliocentric distances - Experimental demonstration and the test of a model

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Hundhausen, A. J.; Bame, S. J.

    1976-01-01

    A stream propagation model which neglects all dissipation effects except those occurring at shock interfaces, was used to compare Pioneer-10 solar wind speed observations, during the time when Pioneer 10, the earth, and the sun were coaligned, with near-earth Imp-7 observations of the solar wind structure, and with the theoretical predictions of the solar wind structure at Pioneer 10 derived from the Imp-7 measurements, using the model. The comparison provides a graphic illustration of the phenomenon of stream steepening in the solar wind with the attendant formation of forward-reverse shock pairs and the gradual decay of stream amplitudes with increasing heliocentric distance. The comparison also provides a qualitative test of the stream propagation model.

  4. The heliocentric evolution of cometary infrared spectra - Results from an organic grain model

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.; Sagan, Carl; Mumma, Michael J.

    1989-01-01

    An emission feature peaking near 3.4 microns that is typical of C-H stretching in hydrocarbons and which fits a simple, two-component thermal emission model for dust in the cometary coma, has been noted in observations of Comets Halley and Wilson. A noteworthy consequence of this modeling is that, at about 1 AU, emission features at wavelengths longer than 3.4 microns come to be 'diluted' by continuum emission. A quantitative development of the model shows it to agree with observational data for Comet Halley for certain, plausible values of the optical constants; the observed heliocentric evolution of the 3.4-micron feature thereby furnishes information on the composition of the comet's organic grains.

  5. A Synoptic Analysis of the Change from the Geocentric to the Heliocentric Conception of the Solar System.

    ERIC Educational Resources Information Center

    Wilson, Roosevelt L.

    The changes which occurred in man's view of the solar system from the time of Ptolemy to that of Galileo are presented. Contained is a brief review of the chain of events which resulted in the acceptance of a heliocentric system. Ptolomy's theory is described and a diagram illustrates the paths of the epicycle of Mars according to his geocentric

  6. A Synoptic Analysis of the Change from the Geocentric to the Heliocentric Conception of the Solar System.

    ERIC Educational Resources Information Center

    Wilson, Roosevelt L.

    The changes which occurred in man's view of the solar system from the time of Ptolemy to that of Galileo are presented. Contained is a brief review of the chain of events which resulted in the acceptance of a heliocentric system. Ptolomy's theory is described and a diagram illustrates the paths of the epicycle of Mars according to his geocentric…

  7. Telemetry coding study for the international magnetosphere explorers, mother/daughter and heliocentric missions. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1973-01-01

    A convolutional coding theory is given for the IME and the Heliocentric spacecraft. The amount of coding gain needed by the mission is determined. Recommendations are given for an encoder/decoder system to provide the gain along with an evaluation of the impact of the system on the space network in terms of costs and complexity.

  8. Heliocentric Potential (HCP) Prediction Model for Nowscast of Aviation Radiation Dose

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Kim, Kyung-Chan; Dokgo, Kyunghwan; Choi, Enjin; Kim, Hang-Pyo

    2015-03-01

    It is well known that the space radiation dose over the polar route should be carefully considered especially when the space weather shows sudden disturbances such as CME and flares. The National Meteorological Satellite Center (NMSC) and Korea Astronomy and Space Science Institute (KASI) recently established a basis for a space radiation service for the public by developing a space radiation prediction model and heliocentric potential (HCP) prediction model. The HCP value is used as a critical input value of the CARI-6 and CARI-6M programs, which estimate the aviation route dose. The CARI-6/6M is the most widely used and confidential program that is officially provided by the U.S. Federal Aviation Administration (FAA). The HCP value is given one month late in the FAA official webpage, making it difficult to obtain real-time information on the aviation route dose. In order to overcome this limitation regarding time delay, we developed a HCP prediction model based on the sunspot number variation. In this paper, we focus on the purpose and process of our HCP prediction model development. Finally, we find the highest correlation coefficient of 0.9 between the monthly sunspot number and the HCP value with an eight month time shift.

  9. Substantial outgassing of CO from comet Hale-Bopp at large heliocentric distance.

    PubMed

    Biver, N; Rauer, H; Despois, D; Moreno, R; Paubert, G; Bockelée-Morvan, D; Colom, P; Crovisier, J; Gérard, E; Jorda, L

    1996-03-14

    When comet C/1995 O1 (Hale-Boop) was discovered, at a distance of seven astronomical units from the sun, it was more than one hundred times brighter than comet Halley at the same distance. A comet's brightness is derived from the reflection of sunlight from dust grains driven away from the nucleus by the sublimation of volatile ices. Near the sun, sublimation of water ice (a main constituent of comet nuclei) is the source of cometary activity; but at its current heliocentric distance, Hale-Boop is too cold for this process to operate. Other comets have shown activity at large distances, and in the case of comet Schwassmann-Wachmann 1, carbon monoxide has been detected in quantities sufficient to generate its observed coma. Here we report the detection of CO emission from Hale-Boop, at levels indicating a very large rate of outgassing. Several other volatile species were searched for, but not detected. Sublimation of CO therefore appears to be responsible for the present activity of this comet, and we anticipate that future observations will reveal the onset of sublimation of other volatile species as the comet continues its present journey towards the sun. PMID:8600385

  10. Analysis of the interplanetary magnetic field observations at different heliocentric distances

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga

    2013-04-01

    Multi-spacecraft measurements of the interplanetary magnetic field (IMF) from 0.29 AU to 5 AU along the ecliptic plane have demonstrated systematic deviations of the observed IMF strength from the values predicted on the basis of the Parker-like radial extension models (Khabarova, Obridko, 2012). In particular, it was found that the radial IMF component |Br| decreases with a heliocentric distance r with a slope of -5/3 (instead of r-2 expansion law). The current investigation of multi-point observations continues the analysis of the IMF (and, especially, Br) large-scale behaviour, including its latitudinal distribution. Additionally, examples of the mismatches between the expected IMF characteristics and observations at smaller scales are discussed. It is shown that the observed effects may be explained by not complete IMF freezing-in to the solar wind plasma. This research was supported by the Russian Fund of Basic Researches' grants Nos.11-02-00259-a, and 12-02-10008-K. Khabarova Olga, and Obridko Vladimir, Puzzles of the Interplanetary Magnetic Field in the Inner Heliosphere, 2012, Astrophysical Journal, 761, 2, 82, doi:10.1088/0004-637X/761/2/82, http://arxiv.org/pdf/1204.6672v2.pdf

  11. Formation and evolution of a circumterrestrial disk Constraints on the origin of the moon in geocentric orbit

    NASA Technical Reports Server (NTRS)

    Herbert, Floyd; Davis, Donald R.; Weidenschilling, Stuart J.

    1986-01-01

    A data base of about 25,000 numerically integrated trajectories of earth-encountering planetesimals is used to study the angular momentum problem of forming the moon out of material captured into a circumterrestrial disk from heliocentric orbits. Mass-orbital element distributions of incoming planetesimals are combined with this data base to calculate, as a function of distance from earth, the net geocentric specific angular momentum of disk-encountering material on heliocentric orbits. Results suggest that a permanent disk population is not possible.

  12. Determination of the Value of the Heliocentric Gravitational Constant (GM⊙) from Modern Observations of Planets and Spacecraft

    NASA Astrophysics Data System (ADS)

    Pitjeva, E. V.

    2015-09-01

    The history of estimation of the heliocentric gravitational constant is given. Initially the value of GM⊙ was based on the mean period of motion of the Earth around the Sun, then on estimation of the value of the astronomical unit, and finally the modern value of GM⊙ is determined with the extraordinarily high accuracy, GM⊙ = 132 712 440 042 ± 10 (km3/s2), while fitting ephemerides to high-precision radar observations.

  13. Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Welter, Gary L.

    2012-01-01

    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions.

  14. Data catalog series for space science and applications flight missions. Volume 1A: Brief descriptions of planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Cameron, W. S. (Editor); Vostreys, R. W. (Editor)

    1982-01-01

    Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.

  15. Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James

    2007-01-01

    This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF's orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.

  16. Identification of satellites possibly active during the IMS and their orbital configurations. [International Magnetospheric Study

    NASA Technical Reports Server (NTRS)

    Vette, J. I.; Hilberg, R. H.; Teague, M. J.

    1976-01-01

    A survey has been made to identify presently operating as well as planned spacecraft which may contribute measurements of the magnetosphere or interplanetary medium during the IMS. The total set consists of 25 scientific earth-orbiting, 9 heliocentric, and 17 communication, navigation or meteorological spacecraft, which carry environmental monitoring experiments. The orbital elements of each are displayed. In addition, techniques for the display of positions in various orbits are presented to illustrate how interesting configurations can be determined during the IMS. The positions of presently orbiting heliocentric spacecraft are shown at various intervals with respect to the nominal interplanetary magnetic field spiral and the earth. Plots of the latest ISEE-A orbit in solar magnetospheric co-ordinates are presented to determine neutral-sheet crossing.

  17. Orbital acrobatics in the Sun-Earth-Moon system

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert W.; Dunham, D. W.; Hsu, S. C.

    1986-01-01

    Unconventional trajectory techniques for space missions in the Sun-Earth-Moon system, including libration-point orbits, gravity-assist maneuvers, and Earth-return trajectories are reviewed. The ISEE-3/ICE flight experience is used to illustrate the utility of libration-point orbits called halo-orbits. Five lunar gravity-assist maneuvers used by the ISEE-3/ICE spacecraft are discussed. The final lunar swingby sent the spacecraft into a heliocentric trajectory that will eventually intercept Comet Giacobini-Zinner. As an example of the Earth-return trajectory concept, a proposed mission that includes flybys of three comets and two asteroids is described.

  18. Properties of interplanetary dust from infrared and optical observations. I - Temperature, global volume intensity, albedo and their heliocentric gradients

    NASA Astrophysics Data System (ADS)

    Dumont, R.; Levasseur-Regourd, A.-C.

    1988-02-01

    The method of the 'nodes of lesser uncertainty' developed by Dumont and Levasseur-Regourd (1985) for retrieval of local information on the properties of interplanetary dust medium was used for determinations on thermal emission of interplanetary dust. The techniques applicable for the thermal case are presented, and results on temperature, global volume intensity, and albedo are derived from the available observations of optical scattering and thermal emission. The method allowed the retrieval of various parameters of the interplanetary dust cloud at 1 AU heliocentric distance, as well as their gradients in a 0.5-1.5 AU range.

  19. The spectral behavior of P/Halley at large heliocentric distance in light of the Giotto/Vega results

    NASA Technical Reports Server (NTRS)

    Belton, M. J. S.; Spinrad, H.; Wehinger, P. A.; Wyckoff, S.; Yeomans, D. K.

    1987-01-01

    This paper presents the results of the preperihelion spectroscopic observations of the P/Halley comet, conducted with the Mayall 4 m telescope/CRYOCAM combination on Kitt Peak when the comet was between 8.8 and 5.6 AU from the sun. The V magnitudes and the (g - r) and (V - R) color indices, derived from the five spectra obtained between October 10, 1983, and February 4, 1984, showed a trend to increasing redness with decreasing heliocentric distance. However, the (V - R) color of the comet while near 8 AU was anomalous in that it was significantly bluer than the sun. Tentative interpretation of this phenomenon is presented.

  20. Organic ices in the coma of comet C/2012 S1 (ISON) at heliocentric distances greater than 4 AU?

    NASA Astrophysics Data System (ADS)

    Tozzi, Gian-Paolo; Faggi, Sara; Brucato, John R.; Bruni, Ivan; Licandro, Javier; Mazzotta Epifani, Elena; Meech, Karen; Mottola, Stefano; Watanabe, Makoto

    2014-11-01

    Comet C/2012 S1 (ISON) was monitored during its approach to the inner solar system, when the comet passed from a heliocentric distance of 6.0 to 4.3 AU. As many other Oort cloud comets at their first approach to the Sun, also comet ISON exhibited a systematic over population of grains in the inner part of the coma, as revealed by the ΣAf function (Tozzi et al., 2007, A&A 476, 979). So far this effect has been interpreted as due either to a short timescale variation of activity (outbursts), or long timescale variation of activity associated with very low escape velocity of the grains or with sublimating grains. In the presentation we will show that the most likely explanation of the phenomena is the sublimation of icy CO2 grains. We will discuss also the implication of CO2 production rates by this distributed source on the whole gas production rates of the comet at so large heliocentric distances.

  1. Video Orbits of the Geminids

    NASA Astrophysics Data System (ADS)

    Hajdukova, M.

    2014-07-01

    Geminid meteoroids, observed by the video technique, were analysed with the aim of determining the actual dispersion of their reciprocal semimajor axes 1/a within the stream. Orbits were selected from the European Video Meteor Network Database, EDMOND, (Kornos et al., 2013), from the SonotaCo Shower Catalogue (SonotaCo, 2009), and from the Czech Catalogue of Video Meteor Orbits (Koten et al., 2003). The observed orbital dispersion, including the measurement errors, was compared with that obtained from the precisely-reduced photographic orbits of Geminids from the IAU Meteor Data Center (Lindblad et al., 2003). In this paper, we concentrate on the influence of errors on the orbital dispersion. The size and distribution of observational errors determined from the long-period meteoroid streams (Hajdukova 2013), were applied to determine the real dispersion within this short-period meteoroid stream. The observed dispersions, described by the median absolute deviation in terms of 1/a, range from 0.041 to 0.050 1/au. The deviation of the median reciprocal semimajor axis from the parent (3200) Phaethon, obtained from Japanese video orbits, is 0.009 1/au, and that from the EDMOND data 0.01 1/au. This deviation obtained from the photographic orbits of the IAU Meteor Data Center was significantly greater (Hajdukova 2009). Similar results were obtained from the Czech Video Orbits Catalogue, where the value is 0.05 1/au. The investigation showed that semimajor axes of meteor orbits in both the SonotaCo and EDMOND datasets are systematically biased as a consequence of the method used for the video orbit determination, probably because corrections for atmospheric deceleration were either incorrectly made or were not done at all. Thus, the determined heliocentric velocities are underestimated, and the semimajor axes medians shifted towards smaller values. The observed distributions in 1/a from these video data become biased towards higher values of 1/a. The orbits of the Geminid meteoroids, with aphelia far inside the orbit of Jupiter, indicate that the gravitational effects of the other outer planets are negligible. Therefore, the structure of the Geminid meteoroid stream is dominated by the initial spread of meteoroid orbits. The deviations which may have accumulated since the formation of the stream can hardly exceed a few thousandths in 1/a (Kresakova, 1974). This study demonstrates that the original orbital dispersion can be smeared by larger observational and measurement errors. This fact has to be taken into consideration when studying the fine structure of the stream.

  2. Multi-revolution transfer for heliocentric missions with solar electric propulsion

    NASA Astrophysics Data System (ADS)

    Quarta, Alessandro A.; Mengali, Giovanni; Aliasi, Generoso

    2015-01-01

    An extension of the classical method by Alfano, for the analysis of optimal circle-to-circle two-dimensional orbit transfer, is presented for a deep space probe equipped with a solar electric primary propulsion system. The problem is formulated as a function of suitable design parameters, which allow the optimal transfer to be conveniently characterized in a parametric way, and an indirect approach is used to find the optimal steering law that minimizes the required propellant mass. The numerical results, obtained by solving a number of optimal control problems, are arranged into contour plots, characterized by different and well-defined behaviors depending on the value of the initial spacecraft propulsive acceleration, the final orbit radius, and the thruster's specific impulse. The paper presents also a semi-analytical mathematical model for preliminary mission analysis purposes, which is shown to give excellent approximations of the (exact) numerical solutions when the number of revolutions of the spacecraft around the Sun is greater than five. An Earth-Mars cargo mission has been thoroughly investigated to validate the proposed approach. In this case, assuming a propulsion system with a specific impulse of 3000 s (comparable to that installed on the Deep Space 1 spacecraft), the results obtained with the semi-analytical model coincide, from an engineering point of view, with the numerical solutions both in terms of total mission time (about 8.3 years) and propellant mass fraction required (about 17.5%). By decreasing the value of the specific impulse, the differences between the results from the semi-analytical model and the numerical simulations tend to increase. However, good results are still possible if the number of revolutions of the spacecraft around the Sun is close to an integer number.

  3. Kepler Stars with Multiple Transiting Planet Candidates

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    NASA's Kepler spacecraft was launched into an Earth-trailing heliocentric orbit in March of 2009. Kepler is designed to conduct a statistical census of planetary system properties using transit photometry. Among the most exciting early results from Kepler are target stars found to have photometric signatures that suggest the presence of more than one transiting planet. Individual transiting planets provide information on the size and orbital period distributions of exoplanets. Multiple transiting planets provide additional information on the spacing and flatness distributions of planetary systems. Results to d ate and plans for future analysis will be presented.

  4. Orbital evolution modeling of Damocloides

    NASA Astrophysics Data System (ADS)

    Guliyev, Rustam; Churyumov, Klim; Kovalenko, Nataliya

    In this paper we performed the task of orbital evolution modeling for 93 currently known Damocloids, 1 Gyr backward and forward in time, using the integration package SWIFTER. The package includes seven integration technics. We choosed the SyMBA integrator (Symplectic Massive Body Algorithm), which allows to handle close approaches between test particles and planets. We included the Sun, the eight planets, and Pluto as massive bodies in our simulation. The initial state vectors for test particles and planets were taken from HORIZONS JPL service. The timestep of integration was 7.305 days. The calculations were stopped when the particle reached heliocentric distance 5000 AU. The value is close to the inner boundary of the Oort cloud. It is shown, that dynamical lifetime of the population is about 1-10 myr. We present the Damocloids orbital parameters distributions and discuss the results of the simulation for Damocloids inclinations changes with time. Our results show that the dynamic lifetime of Damocloids population is about 106-107 years. Population of Damocloids retains highly inclined orbits during the integration time into the past and into the future. Thus, the population of Damocloids may indeed represent the dynamical relationship of comets on inclined orbits (Halley-type comets) with a hypothetical spherical Oort Cloud. Some of evolutionary tracks allow transition from retrograde motion to direct and vice versa (e.g.Dioretsa asteroid (20461)). However, for large periods of time, due to close encounters with the giant planets, the simulation results should be considered only statistically.

  5. Characteristics of the motion of coronal mass ejections and related shocks depending on the heliocentric distance

    NASA Astrophysics Data System (ADS)

    Fainshtein, V. G.; Egorov, Ya. I.

    2015-12-01

    The 3D characteristics of the coronal mass ejection (CME) body and shock at different distances ( R) from the Sun's center have been determined for several fast halo CMEs based on data from the Large Angle and Spectrometric Coronagraph Experiment (LASCO): the positions of the CME body boundary and the related shock on their axes, the directions and velocities of these points, the distance between a shock and the CME body boundary Δ R( R), and the difference between the velocities of these structures Δ V( R) and their angular dimensions. It was shown that the character of variations in the positions and velocities of the CME body boundary and a shock differs at different distances. The dependences of parameter [Δ R/ R cme]( R), where R cme is the curvature radius of the CME body boundary on the CME axis, were constructed. The obtained dependence was compared with the Δ R/ R cme ( M A ( R)) dependence. Here M A is the Alfvén Mach number. The relation of Δ R/ R cme to M A was obtained by Russell and Mulligan (2002) for shocks in the Earth's orbit. A comparison of [Δ R/ R cme]( R) performed in two ways makes it possible to conclude that shocks related to a CME body are piston-like, with the CME body as a piston, at least at a distance of R > 10 R 0 ( R 0 is the solar radius).

  6. Program manual for HILTOP, a heliocentric interplanetary low thrust trajectory optimization program. Part 1: User's guide

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1974-01-01

    A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.

  7. The Orbital Design of Alpha Centauri Exoplanet Satellite (ACESat)

    NASA Technical Reports Server (NTRS)

    Weston, Sasha; Belikov, Rus; Bendek, Eduardo

    2015-01-01

    Exoplanet candidates discovered by Kepler are too distant for biomarkers to be detected with foreseeable technology. Alpha Centauri has high separation from other stars and is of close proximity to Earth, which makes the binary star system 'low hanging fruit' for scientists. Alpha Centauri Exoplanet Satellite (ACESat) is a mission proposed to Small Explorer Program (SMEX) that will use a coronagraph to search for an orbiting planet around one of the stars of Alpha Centauri. The trajectory design for this mission is presented here where three different trajectories are considered: Low Earth Orbit (LEO), Geosynchronous Orbit (GEO) and a Heliocentric Orbit. Uninterrupted stare time to Alpha Centauri is desirable for meeting science requirements, or an orbit that provides 90% stare time to the science target. The instrument thermal stability also has stringent requirements for proper function, influencing trajectory design.

  8. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the Lunar Atmosphere Dust Environment Explorer (LADEE) Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Loucks, Michael; Carrico, John

    2014-01-01

    The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).

  9. Nuclear-electric reusable orbital transfer vehicle

    NASA Astrophysics Data System (ADS)

    Jaffe, Leonard D.

    1988-10-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined that utilize electric propulsion supported by the nuclear reactor's power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the orbital transfer vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925-km altitude, 28.5-deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an orbital maneuvering vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO for transfer by OMV to the Shuttle. OTV propellant is resupplied, and the ion thrusters are replaced, by the OMV before each sortie to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg, with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo or by changing to mercury propellant.

  10. Nuclear-electric reusable orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.

    1988-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined that utilize electric propulsion supported by the nuclear reactor's power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the orbital transfer vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925-km altitude, 28.5-deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an orbital maneuvering vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO for transfer by OMV to the Shuttle. OTV propellant is resupplied, and the ion thrusters are replaced, by the OMV before each sortie to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg, with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo or by changing to mercury propellant.

  11. Ulysses observations of solar energetic particle events at large heliocentric distances close to the ecliptic in 1992 and 2003

    NASA Astrophysics Data System (ADS)

    Heber, B.; Struminsky, A.; Kallenrode, M.-B.; Muller-Mellin, R.; Klassen, A.; Kunow, H.

    The Ulysses spacecraft, launched in October 1990, observed two solar energetic particle events in the declining phase of solar cycle 22 in 1992. The spacecraft was close to the ecliptic at a heliocentric distance of about 5.2 AU. The Earth-Sun-Spacecraft angle was about 120 degree. 11 years and one solar cycle later, Ulysses was at approximately the same location in the heliosphere, when a solar energetic particle event was detected. We identified for all three particle events possible X-ray flares. In all three cases the time-profile of 38-125 MeV protons measured by KET are similar during the first 70 hours. We determined 1) a delay of 11-12 hours with respect to the X-ray event, and 2) a flat maximum intensity registered 25-30 hours later. This first fact implies particle path length of more than 12 AU. Because of the similarity of these three events the same particle propagation mechanism occurred during different interplanetary conditions. Later in the event the time profiles are modified due to propagating disturbances or additional solar particle injections.

  12. Semi-weekly monitoring of the performance and attitude of Kepler using a sparse set of targets

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Hema; Jenkins, Jon M.; Li, Jie; Girouard, Forrest R.; Twicken, Joseph D.; Caldwell, Douglas A.; Allen, Christopher; Bryson, Stephen T.; Klaus, Todd C.; Cote, Miles T.; Stroozas, Brett A.; Hall, Jennifer R.; Ibrahim, Khadeejah

    2010-07-01

    The Kepler spacecraft is in a heliocentric Earth-trailing orbit, continuously observing ~160,000 select stars over ~115 square degrees of sky using its photometer containing 42 highly sensitive CCDs. The science data from these stars, consisting of ~6 million pixels at 29.4-minute intervals, is downlinked only every ~30 days. Additional low-rate Xband communications contacts are conducted with the spacecraft twice a week to downlink a small subset of the science data. This paper describes how we assess and monitor the performance of the photometer and the pointing stability of the spacecraft using such a sparse data set.

  13. Extrasolar Planetary Imaging Coronagraph (EPIC)

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2009-01-01

    EPIC is a NASA mission being studied to detect and characterize Jovian and superEarth planets, and, the dust/debris disks surrounding the parent star. It will be launched into a heliocentric Earth trailing orbit and operate for 5 years. EPIC would operate over the wavelength range of 480 - 960 nm with spectral resolutions of R < 50 and employs a visible nulling coronagraph (VNC) to suppress the starlight, yielding contrast ratios of greater than 9 orders of magnitude. We will discuss the science mission, and its role in the search for habitable planets.

  14. Advanced Meteor Orbit Radar observations of interstellar meteoroids

    NASA Astrophysics Data System (ADS)

    Baggaley, W. Jack

    2000-05-01

    The Advanced Meteor Orbit Radar (AMOR) facility is providing an extensive data base of both the geophysical (atmospheric trajectory and velocity, height, ionization characteristics, etc.) parameters and astronomical parameters (heliocentric orbital elements, etc.) of Earth-impacting meteoroids of limiting particle radius 20 μm. This continuous operation multi-station complex provides an incisive probe of interplanetary dust orbital characteristics. Close calibration using meteoroid stream orbital elements delineated by other techniques (photographic, video, TV) permits robust dynamical information to be established. This unique technique allows the identification of the source geometry of the influx of extra-solar system particles: a general background influx from southern ecliptic latitudes exists with enhanced areas that appear to be discrete sources. The dominant compact directional inflow appears from the direction of the main-sequence debris-disk star β Pictoris.

  15. Orbital cellulitis

    MedlinePlus

    ... Haemophilus influenzae B) vaccine. The bacteria Staphylococcus aureus , Streptococcus pneumoniae , and beta-hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and can lead ...

  16. Orbital pseudotumor

    MedlinePlus

    ... called the orbit. The orbit is the hollow space in the skull where the eye sits. The ... of the visual system. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, PA: ...

  17. A numerical investigation of planetesimal collision trajectories with a Moon accumulating in Earth orbit

    NASA Technical Reports Server (NTRS)

    Cox, L. P.

    1984-01-01

    In the scenario of lunar origin in which the Moon is assumed to have accreted most of its mass while in orbit about the Earth, ismals on the accrea knowledge of the relative impact rates of heliocentric planetting Earth and Moon is essential for any attempt to establish dynamical constraints on lunar origin. Numerical integrations of the regularized equations of motion for four bodies (Sun, Earth, Moon, planetismal) were done. A planetismal impact trajectory was calculated by assuming that the planetismal has hit the surface of the Moon at an assumed location, traveling in an assumed direction, and with an assumed impact speed. Next, the equations of motion were numerically integrated backward in time in order to determine from where the planetismal has come. In this way those volumes in heliocentric orbital element space which contribute trajectories that directly impact the Moon.

  18. On reflecting boundary behind the Earth's orbit at propagation of fast particles from solar flares

    NASA Technical Reports Server (NTRS)

    Nishkovskikh, A. S.; Filippov, A. T.

    1985-01-01

    The flares of solar cosmic rays (SCR) associated with the presence of shocks in interplanetary magnetic field and with their propagation at significant heliocentric distances were always of great interest. Some events and problems concerning the peculiarities of propagation of flare CR in the interplanetary medium are considered. The distinguishing feature of such events is the presence of shock front behind the Earth's orbit having formed either directly in the process of shock generation on the Sun or at large heliocentric distances as a result of the interaction of fast and slow quasistationary recurrent solar wind (SW) streams. Based on the experimental material it is shown that the significant nonlinear disturbances in IMF behind the Earth's orbit can yield the occurrence of the additional SCR flux from shock front region as a result of the interaction of flare flux with shock and a partial reflection from it.

  19. Numerical investigation of planetesimal collision trajectories with a Moon accumulating in Earth orbit

    SciTech Connect

    Cox, L.P.

    1984-01-01

    In the scenario of lunar origin in which the Moon is assumed to have accreted most of its mass while in orbit about the Earth, planetasimals on the accretion knowledge of the relative impact rates of heliocentric planetting Earth and Moon is essential for any attempt to establish dynamical constraints on lunar origin. Numerical integrations of the regularized equations of motion for four bodies (Sun, Earth, Moon, planetismal) were done. A planetismal impact trajectory was calculated by assuming that the planetismal has hit the surface of the Moon at an assumed location, traveling in an assumed direction, and with an assumed impact speed. Next, the equations of motion were numerically integrated backward in time in order to determine from where the planetismal has come. In this way those volumes in heliocentric orbital element space which contribute trajectories that directly impact the Moon.

  20. 67P/Churyumov-Gerasimenko: Photometry And Spectroscopy Of The Rosetta Target Comet At Large Heliocentric Distance

    NASA Astrophysics Data System (ADS)

    Tubiana, Cecilia; Drahus, M.; Boehnhardt, H.; Barrera, L.; Ortiz, J.; Schwehm, G.; Schulz, R.

    2007-10-01

    ESA's Rosetta spacecraft will rendezvous with the Jupiter family comet 67P/Churyumov-Gerasimenko in 2014. Here, we present such results from visible imaging and spectroscopy of 67P observed with the ESO Very Large Telescope in June 2004, May 2006 and August 2006, when the comet was at r ≥ 4.9 AU. A good knowledge of the activity and dust environment of 67P/Churyumov-Gerasimenko far from the Sun is essential for the planning of the rendezvous approach of the Rosetta spacecraft. Moreover, these observations contribute to improve our knowledge about the activity and dust environment of short period comets at large heliocentric distances. On May 2006 the full rotational light curve was obtained in the R filter and the rotational period of 12.82 h has been determined. We also estimate the shape and size of the comet's nucleus, together with colors and the slope of the reflectance spectra. The comet has an effective radius of 2.3 km and an axis ratio ≥ 1.33 +/- 0.03. The nucleus colors are slightly redder than the Sun, in agreement with the ones obtained from the spectra of the comet, which show a reddening of 10%/100 nm. At the time of the observation, 67P/Churyumov-Gerasimenko was at phase angle between 0.5° and 1.5°, an interesting range to assess the opposition affect of the comet. The June 2004 observations were dedicated to the detection and characterization of the comet's dust trail. It is clearly visible in the images, with an extension larger than 153", a width of about 8” and a surface brightness in R filter of 28 mag/arcsec^2. The trail has been detected also in the May 2006 images. At all observing epochs the nucleus profile resembles the ones of a point source, indicating that no coma is present around the nucleus.

  1. The Infrared Activity of Comet P/Halley 1986 III at Heliocentric Distances from 0.6 to 5.92 AU

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Hanner, M. S.; Homich, A. A.; Tokunaga, A. T.

    2005-11-01

    We present an analysis of the combined infrared data for comet 1P/Halley 1986 III acquired by Gehrz and Ney, Hanner and coworkers, Tokunaga and coworkers, Green and coworkers, Ryan and Campins, and Bregman and coworkers. This database, the largest single body of infrared photometric data for any comet, spans a wavelength range from 0.7 to 23 μm and describes the activity of P/Halley at heliocentric distances from 0.6 to 5.92 AU. Coverage of the thermal infrared spectrum was obtained for heliocentric distances from 0.6 to 2.8 AU. The quantitative corrections and calibration procedures required to intercompare the individual data sets are described. Long-term trends in the heliocentric dependence of P/Halley's grain color temperature, silicate emission optical strength, average grain albedo, apparent luminosity, and infrared monochromatic fluxes are discussed. The normalized thermal infrared flux varied as r-2.2 preperihelion and r-2.1 postperihelion in accord with the slope of the water production rate, indicating a general correlation between dust and gas production. Large-amplitude short-term (hours) fluctuations in all the observable quantities were seen in small apertures; these changes correlated with gas production rates and the presence of jets. Changes in JHK colors and the incomplete correlation between superheat and silicate feature strength imply variability in the grain composition, as well as in the size distribution. Based on a comparison of infrared data, comet Hale-Bopp (C/1995 O1) ejected a much higher relative abundance of submicron grains than Halley, and this pattern persisted to larger heliocentric distances.

  2. Analysis and interpretation of CCD data on P/Halley and physical parameters and activity status of cometary nuclei at large heliocentric distance

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Mueller, Beatrice

    1991-01-01

    The scientific objectives were as follows: (1) to construct a well sampled photometric time series of comet Halley extending to large heliocentric distances both post and pre-perihelion passage and derive a precise ephemeris for the nuclear spin so that the physical and chemical characteristics of individual regions of activity on the nucleus can be determined; and (2) to extend the techniques in the study of Comet Halley to the study of other cometary nuclei and to obtain new observational data.

  3. A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS

    SciTech Connect

    Savani, N. P.; Shiota, D.; Kusano, K.; Vourlidas, A.; Lugaz, N.

    2012-11-10

    We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, {Delta}, as a fraction of the CME radial half-width, D {sub OB} (i.e., {Delta}/D {sub OB}). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; {rho} {sub u}/{rho} {sub d}) measured across the bow shock. The DR coefficient, k {sub dr}, which is the proportionality constant between the relative standoff distance ({Delta}/D {sub OB}) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 {+-} 0.1 is more appropriate for small heliocentric distances (<30 Rs) which corresponds to the spherical geometry of a magnetosphere presented by Seiff. As the CME propagates its cross section becomes more oblate and the k {sub dr} value increases linearly with heliocentric distance, such that k {sub dr} = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k {sub dr} = 1.8 {+-} 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.

  4. Spitzer Space Telescope in-orbit checkout and science verification operations

    NASA Technical Reports Server (NTRS)

    Linick, Sue H.; Miles, John W.; Gilbert, John B.; Boyles, Carol A.

    2004-01-01

    Spitzer Space Telescope, the fourth and final of NASA's great observatories, and the first mission in NASA's Origins Program was launched 25 August 2003 into an Earth-trailing solar orbit. The observatory was designed to probe and explore the universe in the infrared. Before science data could be acquired, however, the observatory had to be initialized, characterized, calibrated, and commissioned. A two phased operations approach was defined to complete this work. These phases were identified as In-Orbit Checkout (IOC) and Science Verification (SV). Because the observatory lifetime is cryogen-limited these operations had to be highly efficient. The IOC/SV operations design accommodated a pre-defined distributed organizational structure and a complex, cryogenic flight system. Many checkout activities were inter-dependent, and therefore the operations concept and ground data system had to provide the flexibility required for a 'short turn-around' environment. This paper describes the adaptive operations system design and evolution, implementation, and lessons-learned from the completion of IOC/SV.

  5. Orbit Functions

    NASA Astrophysics Data System (ADS)

    Klimyk, Anatoliy; Patera, Jiri

    2006-01-01

    In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space En are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space En. Orbit functions are solutions of the corresponding Laplace equation in En, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.

  6. Pupils Produce their Own Narratives Inspired by the History of Science: Animation Movies Concerning the Geocentric-Heliocentric Debate

    NASA Astrophysics Data System (ADS)

    Piliouras, Panagiotis; Siakas, Spyros; Seroglou, Fanny

    2011-07-01

    In this paper, we present the design and application of a teaching scenario appropriate for 12-years-old pupils in the primary school aiming to a better understanding of scientific concepts and scientific methods, linking the development of individual thinking with the development of scientific ideas and facilitating a better understanding of the nature of science. The design of the instructional material supporting this scenario has been based on the study of the history of astronomy and especially on: (a) The various theories concerning the movement of Earth, our solar system and the universe. (b) Key-stories highlighting the evolutionary character of scientific knowledge as well as the cultural interrelations of science and society. The design of the teaching scenario has focused on the participation of pupils in gradually evolving discourses and practices encouraging an appreciation of aspects of the nature of science (e.g. the role of observation and hypothesis, the use of evidence, the creation and modification of models). In this case, pupils are asked to produce their own narratives: animation movies concerning the geocentric-heliocentric debate inspired by the history of science, as the animation technique presents strong expressional potential and currently has many applications in the field of educational multimedia. The research design of this current case study has been based on the SHINE research model, while data coming from pupils' animation movies, questionnaires, interviews, worksheets, story-boards and drawings have been studied and analyzed using the GNOSIS research model. Elaborated data coming from our analysis approach reveal the appearance, transformation and evolution of aspects of nature of science appreciated by pupils and presented in their movies. Data analysis shows that during the application pupils gradually consider more and more the existence of multiple answers in scientific questions, appreciate the effect of culture on the way science functions and the way scientists work as well as the effect of new scientific interpretations that replace the old ones in the light of new evidence. The development of pupils' animation movies carrying aspects of the history of astronomy with a strong focus on the understanding of the nature of science creates a dynamic educational environment that facilitates pupils' introduction to a demanding teaching content (e.g. planet, model, retrograde motion) placing it in context (key-stories from the history of science) and at the same time offers to pupils the opportunity to engage their personal habits, interests and hobbies in the development of their science movies.

  7. Low cost transfer into useful sun-synchronous orbits at Mars

    NASA Technical Reports Server (NTRS)

    Glickman, R. E.; Stuart, J. R.

    1981-01-01

    Mars oblateness has been found to provide sun-synchronous orbits, including orbits with stationary apsides, similar to those used at earth. A low mass and low data rate complement of scientific instruments placed in such orbits can provide exciting planetary investigations such as the Mars Orbiter Water Mission described herein. Use of a modest Shuttle kickstage (PAM-A) and existing spacecraft hardware makes this mission low-cost. A preliminary mission and spacecraft design is described. The major emphasis of the paper is on the mechanics of heliocentric transfer for the 1986 and 1988 launch opportunities, Martian sun-synchronous orbit geometries, injectable mass capabilities, and methods of achieving these scientifically useful orbits.

  8. Spitzer Space Telescope mission design

    NASA Technical Reports Server (NTRS)

    Kwok, Johnny H.; Garcia, Mark D.; Bonfiglio, Eugene; Long, Stacia M.

    2004-01-01

    This paper gives a description of the mission design, launch, orbit, and navigation results for the Spitzer space telescope mission. The Spitzer telescope was launched by the Delta II Heavy launch vehicle into a heliocentric Earth trailing orbit. This orbit is flown for the first time and will be used by several future astronomical missions such as Kepler, SIM, and LISA. This paper describes the launch strategy for a winter versus a summer launch and how it affects communications. It also describes how the solar orbit affects the design and operations of the Observatory. It describes the actual launch timeline, launch vehicle flight performance, and the long term behavior of the as flown orbit. It also provides the orbit knowledge from in-flight navigation data.

  9. In-Flight Operation of the Dawn Ion Propulsion System Through Orbit Capture at Vesta

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.; Mikes, Steven C.

    2011-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta -II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. Onboard the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide most of the ?V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer among Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer among Ceres science orbits. The first 80 days after launch were dedicated to the initial checkout of the spacecraft which was followed by about ten months of full-power thrusting leading to a Mars gravity assist in February 2009 that provided 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. Deterministic thrusting for heliocentric transfer to Vesta resumed in June 2009 and was concluded with orbit capture at Vesta in July 2011. IPS was operated for approximately 23,400 hours, consumed approximately 250 kg of xenon, and provided a delta-V of approximately 6.7 km/s to achieve orbit capture at Vesta. IPS performance characteristics are very close to the expected performance characteristics based on analysis performed pre-launch. The only significant problem to have occurred over the almost four years of IPS operations in flight was the temporary failure of a valve driver board in DCIU-1, resulting in a loss of thrust of approximately 29 hours. Thrusting operations resumed after switching to DCIU-2, and power cycling conducted after orbit capture indicates DCIU-1 is completely operational. After about three weeks of survey operations IPS will be used to maneuver the spacecraft as needed for science operations including orbit transfers. After approximately one year of science operations IPS will then be used for escape from Vesta and begin thrusting for cruise to Ceres with a planned arrival date at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through orbit capture and the start of science operations at Vesta.

  10. Heliocentric Distance of Coronal Mass Ejections at the Time of Energetic Particle Release: Revisiting the Ground Level Enhancement Events of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Using the kinematics of coronal mass ejections (CMEs), onset time of soft X-ray flares, and the finite size of the pre-eruption CME structure, we derive the heliocentric distane at which the energetic particles during the ground level enhancement (GLE) events of Solar Cycle 23. We find that the GLE particles are released when the CMEs reach an average heliocentric distance of approx.3.25 solar radii (Rs). From this we infer that the shocks accelerating the particles are located at similar heights. Type II radio burst observations indicate that the CMEs are at much lower distances (average approx.1.4 Rs) when the CME-driven shock first forms. The shock seems to travel approx.1.8 Rs over a period of approox.30 min on the average before releasing the GLE particles. In deriving these results, we made three assumptions that have observational support: (i) the CME lift off occurs from an initial distance of about 1.25 Rs; (ii) the flare onset and CME onset are one and the same because these are two different manifestations of the same eruption; and (iii) the CME has positive acceleration from the onset to the first appearance in the coronagraphic field of view (2.5 to 6 Rs). Observations of coronal cavities in eclipse pictures and in coronagraphic images justify the assumption (i). The close relationship between the flare reconnection magnetic flux and the azimuthal flux of interplanetary magnetic clouds justify assumption (ii) consistent with the standard model (CSHKP) of solar eruption. Coronagraphic observations made close to the solar surface indicate a large positive acceleration of CMEs to a heliocentric distance of approx.3 Rs before they start slowing down due to the drag force. The inferred acceleration (approx.1.5 km/s/s) is consistent with reported values in the literature.

  11. The Hot Orbit: Orbital Cellulitis

    PubMed Central

    Chaudhry, Imtiaz A.; Al-Rashed, Waleed; Arat, Yonca O.

    2012-01-01

    Orbital cellulitis is an uncommon condition previously associated with severe complications. If untreated, orbital cellulitis can be potentially sight and life threatening. It can affect both adults and children but has a greater tendency to occur in the pediatric age group. The infection most commonly originates from sinuses, eyelids or face, retained foreign bodies, or distant soources by hematogenous spread. It is characterized by eyelid edema, erythema, chemosis, proptosis, blurred vision, fever, headache, and double vision. A history of upper respiratory tract infection prior to the onset is very common especially in children. In the era prior to antibiotics, vision loss from orbital cellulitis was a dreaded complication. Currently, imaging studies for detection of orbital abcess, the use of antibiotics and early drainage have mitigated visual morbidity significantly. The purpose of this review is to describe current investigative strategies and management options in the treatment of orbital cellulitis, establish their effectiveness and possible complications due to late intervention. PMID:22346113

  12. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  13. Data catalog series for space science and applications flight missions. Volume 1A: Descriptions of planetary and heliocentric spacecraft and investigations, second edition

    NASA Technical Reports Server (NTRS)

    Cameron, Winifred Sawtell (Editor); Vostreys, Robert W. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also included.

  14. On the evolution of satellite orbits under the action of the planet's oblateness and attraction by its massive satellites and the sun

    NASA Astrophysics Data System (ADS)

    Vashkov'yak, M. A.; Vashkov'yak, S. N.; Emel'yanov, N. V.

    2015-07-01

    The problem of the joint influence of the oblateness of a central planet and attraction by its most massive (or main) satellites and the Sun on the orbital evolution of a satellite with a negligible mass is considered. For an arbitrary angle between the equatorial plane of the planet and the plane of its heliocentric orbit, the evolution equations have been derived in the planeto-equatorial elements of the satellite orbit. Integrable cases of the evolution problem are described. The influence of Uranus's main satellites on the orbital evolution of its real and hypothetical satellites has been revealed through numerical calculations and analytical estimations.

  15. End-of-life disposal of libration point orbit missions: The case of Gaia

    NASA Astrophysics Data System (ADS)

    Armellin, Roberto; Rasotto, Mirco; Di Lizia, Pierluigi; Renk, Florian

    2015-08-01

    This work investigates end of life disposal options for libration point orbit missions. Three different options are presented: the first one considers spacecraft's re-entry in Earth's atmosphere, the second one concerns the impact on the Moon, whereas the third one consists in the injection of the spacecraft into a heliocentric graveyard orbit. The disposal design is formulated as a multi-objective optimization problem in order to take into account other goals in addition to propellant consumption minimization. The disposal of Gaia mission is used as test case throughout the paper.

  16. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  17. The Jacobi constant for a cometary orbiter

    NASA Astrophysics Data System (ADS)

    Mysen, E.; Aksnes, K.

    2005-11-01

    The Jacobi constant of a probe under the gravitational attraction of a rotating irregular body is rederived for excited, but free rigid rotation of the central mass. A related Tisserand-like quantity is found to be sufficiently conserved for it to qualify as a pseudo-integral. The quantity's near constancy is shown to imply that certain regions in the space of the probe's cometocentric orbital elements are forbidden. In particular, based solely on this analysis, it is seen how collision with the comet nucleus is best avoided if the initial probe velocity lies in the plane normal to the nucleus' rotational spin. A conclusion which is of relevance to the Rosetta mission where the lander Philae is to be delivered by Rosetta in a possibly close prograde, and therefore probably shape unstable, orbit. At the comet's heliocentric distance when the lander is delivered, radiation and radial outgassing pressure do not significantly affect these conclusions for a nominal target nucleus in a worst-case scenario. The latter effect is seen to somewhat decrease the impact risk of prograde trajectories, making the more stable retrograde orbits slightly less safe.

  18. Öpik-type collision probability for high-inclination orbits: Targets on eccentric orbits

    NASA Astrophysics Data System (ADS)

    Pokorný, Petr; Vokrouhlický, David

    2013-09-01

    Traditional evaluation of collision probability between two bodies on bound heliocentric or planetocentric orbits include assumptions that are often only an approximation of their real motion. In particular, these approaches require (i) the orbital eccentricity and inclination of both target and projectile long-term constant, and (ii) their longitude of ascending node and argument of pericenter precessing uniformly in time. Both conditions (i) and (ii) are satisfied for orbits with very small eccentricities and inclinations only. When either of these two elements is large, a tidal perturbation by planets, or the Sun in a planetocentric configuration, makes these elements oscillate in a correlation with the non-linear evolution of the secular angles. Vokrouhlický et al. (Vokrouhlický, D., Pokorný, P., Nesvorný, D. [2012]. Icarus 219, 150-160) developed an approach which allows the orbit of the projectile undergo such a general secular evolution. An assumption of the circular orbit of the target, however, was a significant drawback of their method. Here, we extend Vokrouhlický et al.’s work to allow a general eccentric and precessing orbit of the target (assuming though fixed orbital plane in space). We test predictions of our new approach, as well as previous theories, against a direct numerical integration and estimate their validity. A particular run is performed for E-belt projectiles impacting terrestrial planets. We conclude a surprisingly good correspondence of the directly obtained impact record from the numerical simulation and the estimate from our theory. Based on these results, we infer that the crater density from E-belt projectiles on Mercury should be roughly comparable (or only slightly larger) to that on our Moon.

  19. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  20. Space-based Search for Transiting Exoplanets Orbiting Bright Stars

    NASA Astrophysics Data System (ADS)

    Tsvetanov, Zlatan

    At the current stage of research transiting planets hold the key to advancing our knowledge of exoplanets as they are the only targets that allow determination of many of the key plane-tary parameters. Because the employed techniques are differential (either photometry or spec-troscopy) and the planet is significantly fainter the host star the dominant limitation is simply the number of photons. This puts a very high premium on transiting planets with bright parent stars. The ExoPlanet Task Force recognized the high value of planets transiting bright stars and identified the need to perform a wide area space-based transit survey. In this presentation I will describe a program that addresses the ExoPTF recommendation by using the output of one of the instruments on the currently operating space mission STEREO. STEREO is the third mission in NASA's Solar Terrestrial Probes program. It uses two nearly identical spacecrafts -one on an Earth-leading orbit and one on an Earth-trailing orbit -each equipped with a suit of five small telescopes to provide a stereoscopic view of the coronal mass ejections (CME) as they propagate away from the Sun. As each of these telescopes observes a portion of the heliospehre, they also image the star field in the background. For the purposes of this study we will consider only the images obtained by the HI-1 instruments. Other instruments, although showing the stellar background as well, do not have the data output suitable for a search for transiting exoplanets. This project described here has the potential of delivering a number of very high value targets for follow-up studies with a wide range of facilities, both ground-based and space-based. It will provide a complete survey of all bright stars (<10m) for 18% of the sky. The photometric data series have the sensitivity to detect all transiting hot-Jupiters and other gas giants with periods up to ˜20 days and even some Neptune size planets orbiting bright and/or late type stars. On the extreme bright end, the survey is sensitive to some super-Earth size planets, but the available number of target stars is small. In my presentation I will describe the capabilities and limitations of the project, will demon-strate the utility of the HI-1 images for searching for transiting exoplanets, and will describe the existing data for several RV discovered planets.

  1. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  2. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-05-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  3. Nuclear reactor power for an electrically powered orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  4. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  5. Orbital Mechanics.

    ERIC Educational Resources Information Center

    Dalton, Joel B.

    Three computer programs are presented that allow the high school student to explore and understand the physical forces involved in orbital flight at a greater depth than is usually possible. For each program, introductory material is given including the physics and mathematics involved. This is followed by the computer program in BASIC language.…

  6. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-09-01

    We take an overview of recently developed methods for studying single particle orbits in accelerators and discuss some physics underlying those which involve Lie operators. It will be further argued that object-oriented programming provides the appropriate computing strategy in which to model accelerators and to implement these techniques.

  7. Five new and three improved mutual orbits of transneptunian binaries

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Noll, K. S.; Nimmo, F.; Roe, H. G.; Buie, M. W.; Porter, S. B.; Benecchi, S. D.; Stephens, D. C.; Levison, H. F.; Stansberry, J. A.

    2011-06-01

    We present three improved and five new mutual orbits of transneptunian binary systems (58534) Logos-Zoe, (66652) Borasisi-Pabu, (88611) Teharonhiawako-Sawiskera, (123509) 2000 WK 183, (149780) Altjira, 2001 QY 297, 2003 QW 111, and 2003 QY 90 based on Hubble Space Telescope and Keck II laser guide star adaptive optics observations. Combining the five new orbit solutions with 17 previously known orbits yields a sample of 22 mutual orbits for which the period P, semimajor axis a, and eccentricity e have been determined. These orbits have mutual periods ranging from 5 to over 800 days, semimajor axes ranging from 1600 to 37,000 km, eccentricities ranging from 0 to 0.8, and system masses ranging from 2 × 10 17 to 2 × 10 22 kg. Based on the relative brightnesses of primaries and secondaries, most of these systems consist of near equal-sized pairs, although a few of the most massive systems are more lopsided. The observed distribution of orbital properties suggests that the most loosely-bound transneptunian binary systems are only found on dynamically cold heliocentric orbits. Of the 22 known binary mutual orbits, orientation ambiguities are now resolved for 9, of which 7 are prograde and 2 are retrograde, consistent with a random distribution of orbital orientations, but not with models predicting a strong preference for retrograde orbits. To the extent that other perturbations are not dominant, the binary systems undergo Kozai oscillations of their eccentricities and inclinations with periods of the order of tens of thousands to millions of years, some with strikingly high amplitudes.

  8. The chemistry of C2 and C3 in the coma of Comet C/1995 O1 (Hale-Bopp) at heliocentric distances rh ≥ 2.9 AU

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Rauer, H.; Boice, D. C.; Huebner, W. F.

    2005-11-01

    The extraordinary activity of comet C/1995 O1 (Hale-Bopp) made it possible to observe the emission bands of the radicals C2 and C3 in the optical wavelengths range at heliocentric distances larger than 3 AU. Based on these observations, we perform an analysis of the formation of C2 and C3 in a comet coma at large heliocentric distances. We present the most complete chemical reaction network used until today, computing the formation of C2 and C3 from C2H2, C2H6, and C3H4 as their parent molecules. The required photodissociation rates of C_3H2 and C3 had to be derived based on the observations. The spatial distributions of C2 and C3 calculated with the chemical model show good agreement with the observations over the whole range of heliocentric distances covered in this work. Based on the production rates for C2H2, C2H6, and C3H4, abundance ratios are obtained for heliocentric distances rh ≥ 3 AU. In comet Hale-Bopp, C2H2 and C2H6 were measured directly by infrared observations only at heliocentric distance rh ≤ 3 AU (Dello Russo et al. 2001). The model presented here greatly extends the heliocentric distance range over which hydrocarbons can be studied in the coma of comet Hale-Bopp. We discuss possible indications of these abundance ratios for the formation region of comet Hale-Bopp.

  9. The Plasma Environment in Comets over a Wide Range of Heliocentric Distances: Application to Comet C/2006 P1 (McNaught)

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Jia, Y.-D.; Gombosi, T.; Toth, G.; Rubin, M.

    2015-08-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.

  10. The Plasma Environment in Comets Over a Wide Range of Heliocentric Distances: Application to Coment C/2006 P1 (McNaught)

    NASA Astrophysics Data System (ADS)

    Shou, Yinsi; Combi, Michael; Jia, Yingdong; Gombosi, Tamas; Toth, Gabor; Rubin, Martin

    2015-11-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses. The work at the University of Michigan was supported by the NASA Planetary Atmospheres grant NNX14AG84G.

  11. Orbit and dynamic origin of the recently recovered Annama's H5 chondrite

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, Josep M.; Lyytinen, Esko; Gritsevich, Maria; Moreno-Ibáñez, Manuel; Bottke, William F.; Williams, Iwan; Lupovka, Valery; Dmitriev, Vasily; Kohout, Tomas; Grokhovsky, Victor

    2015-05-01

    We describe the fall of Annama meteorite occurred in the remote Kola Peninsula (Russia) close to Finnish border on 2014 April 19 (local time). The fireball was instrumentally observed by the Finnish Fireball Network. From these observations the strewnfield was computed and two first meteorites were found only a few hundred metres from the predicted landing site on 2014 May 29 and 30, so that the meteorite (an H5 chondrite) experienced only minimal terrestrial alteration. The accuracy of the observations allowed a precise geocentric radiant to be obtained, and the heliocentric orbit for the progenitor meteoroid to be calculated. Backward integrations of the orbits of selected near-Earth asteroids and the Annama meteoroid showed that they rapidly diverged so that the Annama meteorites are unlikely related to them. The only exception seems to be the recently discovered 2014UR116 that shows a plausible dynamic relationship. Instead, analysis of the heliocentric orbit of the meteoroid suggests that the delivery of Annama onto an Earth-crossing Apollo-type orbit occurred via the 3:1 mean motion resonance with Jupiter or the nu6 secular resonance, dynamic mechanisms that are responsible for delivering to Earth most meteorites studied so far.

  12. Orbital evolution of impact ejecta from Mars

    NASA Astrophysics Data System (ADS)

    Wetherill, G. W.

    1984-03-01

    The orbital evolution of material ejected from Mars into heliocentric orbits is investigated, with emphasis on the origin of the shergottite, nakhlite, and chassignite achondrites. Two models are considered. In the first, meteorite-size bodies are ejected directly from Mars. In the second, the ejecta are approximately 15 m diameter bodies, that are subsequently fragmented by collisions in space. In both cases about 35 percent of the objects that will ever reach earth do so within 10 m y. For the small body model, it is found that about 0.03 percent of the Mars crater ejecta must be accelerated to the Mars escape velocity; the large body model requires an efficiency of 0.4 percent. The results indicate that meteorites originating as small bodies should dominate the terrestrial flux of Mars ejecta. This is in general agreement with data from SNC meteorites. The yield of meteorites from Mercury is found to be at least a factor of 100 lower than from Mars.

  13. Orbital Evolution of Impact Ejecta from Ganymede

    NASA Astrophysics Data System (ADS)

    Alvarellos, Jose Luis; Zahnle, Kevin J.; Dobrovolskis, Anthony R.; Hamill, Patrick

    2002-11-01

    We have numerically computed the orbital evolution of ˜10 3 particles representing high-speed ejecta from Gilgamesh, the largest impact basin on Ganymede. The integration includes the four Galilean satellites, Jupiter (including J2 and J4), Saturn, and the Sun. The integrations last 100,000 years. The particles are ejected at a variety of speeds and directions, with the fastest particles ejected at 1.4 times the escape speed vesc≡ 2GM G/R G of Ganymede. Ejecta with speeds v<0.96 vesc follow suborbital trajectories. At v˜0.96 vesc there is a transition characterized by complex behavior suggestive of chaos. For v>0.96 vesc, most particles escape Ganymede and achieve orbits about Jupiter. Eventually most (˜71%) of the jovicentric particles hit Ganymede, with 92% of these hitting within 1000 years. The accretion rate scales as 1/ t. Their impact sites are randomly distributed, as expected for planetocentric debris. We estimate that most of the resulting impact craters are a few kilometers across and smaller. The rest of the escaping ejecta are partitioned as follows: ˜3% hit Io; ˜10% hit Europa; ˜13% hit Callisto; 2% reach heliocentric space; and less than ˜1% hit Jupiter. Only two particles survived the entire 10 5-year integration. Ejecta from large impact events do not appear to be a plausible source of large craters on the Galilean satellites; however, such ejecta may account for the majority of small craters.

  14. Orbital Effects on Mercury's Escaping Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Schmidt, Carl A.; Wilson, Jody K.; Baumgardner, Jeffrey; Mendillo, Michael

    2009-01-01

    We present results from coronagraphic imaging of Mercury's sodium tail over a 7 deg field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (R(sub m)) in length, or a full degree of sky. However, no tail was observed extending beyond 120 R(sub m) during the January 2008 MESSENGER Fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury's heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury's escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 x 10(exp 23) atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury's sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury's magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury's sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.

  15. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  16. On-orbit assembly and servicing of future space observatories

    NASA Astrophysics Data System (ADS)

    Lillie, C. F.

    2006-06-01

    NASA's experience servicing the Hubble Space Telescope, including the installation of optical elements to compensate for a mirror manufacturing error; replacement of failed avionics and worn-out batteries, gyros, thermal insulation and solar arrays; upgrades to the data handling subsystem; installation of far more capable instruments; and retrofitting the NICMOS experiment with a mechanical cryocooler has clearly demonstrated the advantages of on-orbit servicing. This effort has produced a unique astronomical observatory that is orders of magnitude more capable than when it was launched and can be operated for several times its original design life. The in-space operations capabilities that are developed for NASA's Exploration Program will make it possible to assemble and service spacecraft in space and to service them in cis-lunar and L2 orbits. Future space observatories should be designed to utilize these capabilities. This paper discusses the application of the lessons learned from HST and our plans for servicing the Advanced X-ray Astrophysical Observatory with the Orbital Maneuvering Vehicle and the Space Station Freedom Customer Servicing Facility to future space observatories, such as SAFIR and LifeFinder that are designed to operate in heliocentric orbits. It addresses the use of human and robotic in-space capabilities that would be required for on-orbit assembly and servicing for future space observatories, and describes some of our design concepts for these activities.

  17. On the dynamical stability of the Rosetta orbiter. I.

    NASA Astrophysics Data System (ADS)

    Mysen, E.; Aksnes, K.

    2006-09-01

    The Rosetta probe is to monitor, from a bound orbit, its primary target comet 67P/Churyumov-Gerasimenko for extended periods of time. As a preliminary assessment of the challenges involved, the strengths of the effects which perturb the spacecraft's cometocentric Keplerian trajectory are evaluated. It is found that in our adopted nominal scenario, where the CO outgassing rate is set to one tenth of its upper limit, motion could be considered regular a long time after rendezvous. Furthermore, in this weak limit, gravity perturbations have a negligible destabilizing effect on the shape of the orbit, while the secular impact risk under the effect of radiation pressure is minimized by placing the orbit in the plane normal to the cometocentric direction of the Sun, with a low initial eccentricity. The comet's heliocentric distance for probe escape for an orbit started in the solar plane-of-sky, however, is seen to be dependent on the initial semi-major axis only, and linearly so. In order to calculate the dynamical effects of outgassing, a radially directed, asymmetric and periodically time-varying pressure field is adopted. Accordingly, it is shown that specific field asymmetries, related to the tendency of the outgassing field to "remember" the direction of comet motion, represent the extreme scenarios as far as orbital stability for the full problem is concerned.

  18. The improvement of the Pluto orbit using additional new data

    NASA Astrophysics Data System (ADS)

    Girdiuk, A.

    2015-08-01

    Observational series of the Pluto dwarf planet have started since 1913. At this moment observations have covered only a third of the Pluto orbit, therefore, the Pluto orbital elements are defined with insufficient accuracy. A growing number of observations leads to the improvement of the accuracy of the orbit determination. The database of the Pluto's observations was expanded with the help of about 350 observations during 1930-1996 obtained at the Pulkovo Observatory, and about 5500 observations (1995-2013) including occultation data from Brazilian colleagues obtained at the European Southern Observatory and the Pico dos Dias Observatory, and the new analyzed 469 historical photographic observations archived at Lowell Observatory. The new cross-platform software ERA-8 has been developed in IAA RAS and has been used for implementation of all mathematical procedures for constructing Pluto orbit. The modern ephemerides (EPM2011, EPM2013, DE430, DE432, INPOP13c) are chosen for comparison of the ephemeris positions: equatorial coordinates and heliocentric distance. The main result of the work - construction of ephemerides EPM2014a is a significant improvement of the Pluto's orbit using additional observations.

  19. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  20. The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 AU heliocentric distance range inbound

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Snodgrass, C.; Hainaut, O.; Tubiana, C.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Besse, S.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Ferri, F.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Gutiérrez-Marques, P.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; López-Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Thomas, N.; Vincent, J. B.; Della Corte, V.; Fitzsimmons, A.; Faggi, S.; Jehin, E.; Opitom, C.; Tozzi, G.-P.

    2016-03-01

    Context. The ESA Rosetta spacecraft, currently orbiting around comet 67P/Churyumov-Gerasimenko, has already provided in situ measurements of the dust grain properties from several instruments,particularly OSIRIS and GIADA. We propose adding value to those measurements by combining them with ground-based observations of the dust tail to monitor the overall, time-dependent dust-production rate and size distribution. Aims: To constrain the dust grain properties, we take Rosetta OSIRIS and GIADA results into account, and combine OSIRIS data during the approach phase (from late April to early June 2014) with a large data set of ground-based images that were acquired with the ESO Very Large Telescope (VLT) from February to November 2014. Methods: A Monte Carlo dust tail code, which has already been used to characterise the dust environments of several comets and active asteroids, has been applied to retrieve the dust parameters. Key properties of the grains (density, velocity, and size distribution) were obtained from Rosetta observations: these parameters were used as input of the code to considerably reduce the number of free parameters. In this way, the overall dust mass-loss rate and its dependence on the heliocentric distance could be obtained accurately. Results: The dust parameters derived from the inner coma measurements by OSIRIS and GIADA and from distant imaging using VLT data are consistent, except for the power index of the size-distribution function, which is α = -3, instead of α = -2, for grains smaller than 1 mm. This is possibly linked to the presence of fluffy aggregates in the coma. The onset of cometary activity occurs at approximately 4.3 AU, with a dust production rate of 0.5 kg/s, increasing up to 15 kg/s at 2.9 AU. This implies a dust-to-gas mass ratio varying between 3.8 and 6.5 for the best-fit model when combined with water-production rates from the MIRO experiment.

  1. Correlation of Kuiper Belt Object Colors With Orbital Properties: Gray Objects In Hot Orbits

    NASA Astrophysics Data System (ADS)

    Tegler, S. C.; Romanishin, W.; Consolmagno, G.

    2003-05-01

    In our continuing BVR photometric survey of Kuiper belt objects (KBOs), we find that certain dynamical classes of KBOs exhibit very distinctive surface colors. In our data, 17 of 20 objects on large-inclination and large-eccentricity orbits with aphelion distances larger than 70 AU (a dynamically hot population) exhibit gray, B-R < 1.5, surface colors. In contrast, 21 of 21 classical KBOs on small-inclination and small-eccentricity orbits with perihelion distances larger than 40 AU (a dynamically cold population) exhibit red surface colors, B-R > 1.5. Finally, we find 22 Centaurs divide into two very different color populations, gray and red. These observations are consistent with a primordial origin of KBO surface colors based on their original heliocentric distance. Gray objects may have formed closer to the Sun in regions subject to orbital perturbations by an outward migrating Neptune, resulting in hot orbits. Red objects formed farther from the Sun and would be only partly perturbed by Neptune (contributing to the Centaur population). The furthest objects (red surfaces, cooler orbits) would remain unperturbed. Our observations were taken using CCD cameras on the Keck I 10-m telescope on Mauna Kea, Hawaii, the University of Arizona 2.3-m telescope on Kitt Peak, Arizona, and the Vatican Advanced Technology 1.8-m Telescope on Mt. Graham, Arizona. We thank the NASA Planetary Astronomy Program for support of our work (NAG5-12694) and the NASA Keck, Steward Observatory, and Vatican Observatory Time Allocation Committees for consistent allocation of telescope time.

  2. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  3. Fast Geometric Method for Calculating Accurate Minimum Orbit Intersection Distances (MOIDs)

    NASA Astrophysics Data System (ADS)

    Wiźniowski, T.; Rickman, H.

    2013-06-01

    We present a new method to compute Minimum Orbit Intersection Distances (MOIDs) for arbitrary pairs of heliocentric orbits and compare it with Giovanni Gronchi's algebraic method. Our procedure is numerical and iterative, and the MOID configuration is found by geometric scanning and tuning. A basic element is the meridional plane, used for initial scanning, which contains one of the objects and is perpendicular to the orbital plane of the other. Our method also relies on an efficient tuning technique in order to zoom in on the MOID configuration, starting from the first approximation found by scanning. We work with high accuracy and take special care to avoid the risk of missing the MOID, which is inherent to our type of approach. We demonstrate that our method is both fast, reliable and flexible. It is freely available and its source Fortran code downloadable via our web page.

  4. Mission Steering Profiles of Outer Planetary Orbiters Using Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    Radioisotope Electric Propulsion (REP) has the potential to enable small spacecraft to orbit outer planetary targets with trip times comparable to flyby missions. The ability to transition from a flyby to an orbiter mission lies in the availability of continuous low power electric propulsion along the entire trajectory. The electric propulsion system s role is to add and remove energy from the spacecraft s trajectory to bring it in and out of a heliocentric hyperbolic escape trajectory for the outermost target bodies. Energy is added and the trajectory is reshaped to rendezvous with the closer-in target bodies. Sample REP trajectories will be presented for missions ranging for distances from Jupiter orbit to the Pluto-Kuiper Belt.

  5. Metis aboard the Solar Orbiter space mission: Doses from galactic cosmic rays and solar energetic particles

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Fabi, Michele; Grimani, Catia; Antonucci, Ester

    2016-03-01

    The aim of this work is to calculate the dose released by galactic cosmic rays (GCRs) and solar energetic particles (SEPs) in the polarimeter of the Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph [1] aboard the Solar Orbiter. This investigation is performed with a Monte Carlo method by considering the role of SEP events of proper intensity at a heliocentric distance from the Sun averaged along the spacecraft orbit. Our approach can be extended to other space missions reaching short distances from the Sun, such as Solar Probe Plus. This study indicates that the deposited dose on the whole set of polarimeter lenses and filters during ten years of the Solar Orbiter mission is of about 2000 Gy. For cerium treated lenses, a dose of 106 Gy of gamma radiation from a 60Co source causes a few percent transmittance loss.

  6. The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-08-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  7. Small orbits

    NASA Astrophysics Data System (ADS)

    Borsten, L.; Duff, M. J.; Ferrara, S.; Marrani, A.; Rubens, W.

    2012-04-01

    We study both the large and small U-duality charge orbits of extremal black holes appearing in D=5 and D=4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated “moduli spaces.” After recalling N=8 maximal supergravity, we consider N=2 and N=4 theories coupled to an arbitrary number of vector multiplets, as well as N=2 magic, STU, ST2 and T3 models. While the STU model may be considered as part of the general N=2 sequence, albeit with an additional triality symmetry, the ST2 and T3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit nonzero elements of rank 3, respectively. Finally, we also consider minimally coupled N=2, matter-coupled N=3, and pure N=5 theories.

  8. Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury

    NASA Astrophysics Data System (ADS)

    Winslow, Reka M.; Lugaz, Noé; Philpott, Lydia C.; Schwadron, Nathan A.; Farrugia, Charles J.; Anderson, Brian J.; Smith, Charles W.

    2015-08-01

    We use observations from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, in orbit around Mercury, to investigate interplanetary coronal mass ejections (ICMEs) near 0.3 AU. MESSENGER is the first spacecraft since Helios 1 and 2 in the 1980s to make in situ measurements of the interplanetary medium at heliocentric distances < 0.5 AU. As such, it presents a unique opportunity for observing the innermost heliosphere. It also allows for observations of ICMEs well within 1 AU to study their evolution as they expand and propagate outward, interacting with the solar wind. We catalog ICME events observed by the MESSENGER Magnetometer between 2011 and 2014 and present statistical analyses of ICME properties at Mercury. In addition, using existing data sets of ICMEs at 1 AU, we investigate key ICME property changes from Mercury to 1 AU. We find good agreement with previous studies for the magnetic field strength dependence on distance, and we also find evidence that ICME deceleration continues past the orbit of Mercury. This paper describes the database of ICMEs from MESSENGER orbital observations around Mercury, which is publicly available through the supporting information (Table S1) associated with this manuscript and the Virtual Energetic Particle Observatory. Our ICME database will prove particularly useful for multipoint spacecraft studies of recent ICMEs, as well as for model validation of ICME properties.

  9. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  10. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  11. Transfer orbit determination accuracy for orbit maneuvers

    NASA Astrophysics Data System (ADS)

    Pinheiro, Mery Passos

    This work intends to show the accuracy of the orbital elements determined during transfer orbit as a function of data span, as well as the feasibility of performance maneuvers. The orbit estimator used is a weighted least squares algorithm. The observation vector is composed of angle data (azimuth and elevation) and range data and are from the Astra IC mission. The state vector is either propagated by Brower model or numerical integration (for small eccentricities and inclination). The complete software to determine the orbit has been developed by Hughes Aircraft and been used for all Hughes satellite mission.

  12. NASA's Spitzer Space Telescope's Operational Mission Experience

    NASA Technical Reports Server (NTRS)

    Wilson, Robert K.; Scott, Charles P.

    2006-01-01

    New Generation of Detector Arrays(100 to 10,000 Gain in Capability over Previous Infrared Space Missions). IRAC: 256 x 256 pixel arrays operating at 3.6 microns, 4.5 microns, 5.8 microns, 8.0 microns. MIPS: Photometer with 3 sets of arrays operating at 24 microns, 70 microns and 160 microns. 128 x 128; 32 x 32 and 2 x 20 arrays. Spectrometer with 50-100 micron capabilities. IRS: 4 Array (128x128 pixel) Spectrograph, 4 -40 microns. Warm Launch Architecture: All other Infrared Missions launched with both the telescope and scientific instrument payload within the cryostat or Dewar. Passive cooling used to cool outer shell to approx.40 K. Cryogenic Boil-off then cools telescope to required 5.5K. Earth Trailing Heliocentric Orbit: Increased observing efficiency, simplification of observation planning, removes earth as heat source.

  13. Manned Venus Orbiting Mission

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1967-01-01

    Manned orbiting stopover round trips to Venus are studied for departure dates between 1975 and 1986 over a range of trip times and stay times. The use of highly elliptic parking orbits at Venus leads to low initial weights in Earth orbit compared with circular orbits. For the elliptic parking orbit, the effect of constraints on the low altitude observation time on the initial weight is shown. The mission can be accomplished with the Apollo level of chemical propulsion, but advanced chemical or nuclear propulsion can give large weight reductions. The Venus orbiting mission weights than the corresponding Mars mission.

  14. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  15. Preliminary orbital parallax catalog

    NASA Technical Reports Server (NTRS)

    Halliwell, M.

    1981-01-01

    The study is undertaken to calibrate the more reliable parallaxes derived from a comparison of visual and spectroscopic orbits and to encourage observational studies of other promising binaries. The methodological techniques used in computing orbital parallaxes are analyzed. Tables summarizing orbital data and derived system properties are then given. Also given is a series of detailed discussions of the 71 individual systems included in the tables. Data are listed for 57 other systems which are considered promising candidates for eventual orbital parallax determination.

  16. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  17. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is

  18. Orbital-Lifetime Program

    NASA Technical Reports Server (NTRS)

    Orr, L. H.

    1986-01-01

    Orbital Lifetime Program (OL) analyzes long-term motion of Earthorbiting spacecraft at altitudes of up to 2,500 km. Models perturbations to orbit caused by solar-radiation pressure, atmospheric drag, and gravitational effects of Sun, Moon, and oblate Earth. Used to predict orbital lifetime and decay rate of satellites. OL written in FORTRAN 77.

  19. Orbital effects on Mercurys escaping sodium exosphere

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl A.; Wilson, Jody K.; Baumgardner, Jeffrey; Mendillo, Michael

    2010-05-01

    We present results from coronagraphic imaging of Mercury's sodium tail over a 7 field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (R m) in length, or a full degree of sky. However, no tail was observed extending beyond 120 R m during the January 2008 MESSENGER fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury's heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury's escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 10 23 atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury's sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury's magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury's sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.

  20. Nozomi Cis-Lunar Phase Orbit Determination

    NASA Technical Reports Server (NTRS)

    Ryne, Mark; Criddle, Kevin

    2000-01-01

    Japan's Institute of Space and Astronautical Science (ISAS) launched Nozomi, its first mission to the planet Mars using the newly developed M-V launch vehicle on July 3, 1998. Scientific objectives of the mission are to study the structure and dynamics of the Martian upper atmosphere and its interaction with the solar wind. Nozomi is a cooperative mission between ISAS and the National Aeronautics and Space Administration (NASA). The NASA contribution includes navigation and tracking services provided by the Jet Propulsion Laboratory (JPL). The spacecraft also serves as an engineering demonstration of basic technology for planetary exploration. One of the new technologies was a unique trajectory, developed by ISAS, which used solar gravitational perturbations at the weak stability boundary as an aid to achieve an Earth-Mars transfer orbit. This trajectory saves approximately 120 m/s of Delta V compared to direct hyperbolic insertion and is considered an enabling technology for the mission. Nozomi was the first spacecraft to employ this trajectory and provided on-orbit validation of the technique. The trajectory was achieved by initially placing the spacecraft in a highly elliptical cis-lunar phasing orbit. Six maneuvers were performed during this period to correct injection errors and target an outbound lunar swingby in September 1998. The gravity assist from the lunar swingby raised apogee to the vicinity of the weak stability boundary. After three more targeting maneuvers, Nozomi performed an inbound lunar swingby followed immediately by a powered Earth swingby in late December 1998. A 420 m/s Trans Mars Insertion (TMI) burn at the final Earth periapsis was intended to place the spacecraft on a heliocentric trajectory leading to Mars orbit insertion in October 1999. Orbit determination for Nozomi is performed in parallel by both ISAS and the Multi-Mission Navigation (MMNAV) group at JPL. This was an advantage for the mission because each group would generate solutions based on data collected from their respective tracking networks. Spacecraft events, such as sequence uplinks and maneuvers, were generally scheduled during passes at the Usuda tracking station in Japan. As a result, maneuver design and reconstruction was derived from MMNAV solutions based on JPL tracking data obtained immediately prior to or following maneuvers. Data was also exchanged between ISAS and MMNAV so orbit determination could be performed on joint data sets in support of critical targeting late in the cis-lunar phase. In this paper, information regarding the MMNAV orbit determination effort for the first six months of the mission is presented. The spacecraft trajectory is characterized first, followed by a discussion of the orbit determination estimation procedure and models. Results from selected orbit solutions are presented and compared against reconstructed trajectories. One area of emphasis in this paper is orbit determination in the vicinity of the weak stability boundary. Precise navigation was necessary to target the second lunar swingby and the powered Earth swingby. Delivery accuracy of 150 m was required for these critical encounters, but a number of factors contributed to the general degradation of orbit determination accuracy. This included the fact that the spacecraft was at apogee, at a range of 1.7 million km and moving at less than I km/sec perpendicular to the line of sight. Nozomi was also close to zero degrees declination where there are known limitations on orbit determination performance. Finally, S-band tracking data was acquired through the Nozomi backup low gain antenna. This antenna is offset from the axis of this spin stabilized spacecraft and superimposed large signatures in the Doppler and range data. These difficulties were overcome by combining long data arcs, spanning several maneuvers, with a high fidelity solar pressure model. The model included a physically accurate representation of the spacecraft structure and a high time resolution orientation model. Observation modeling included the removal of the spin induced Doppler bias, spin signature and per pass correction of range calibration errors applied for data leading up to critical events. As a result, all orbit determination goals were met. A second area of emphasis in this paper is the JPL tracking and orbit determination effort in support of the TMI maneuver. TMI occurred out of contact with ground stations and the JPL Goldstone tracking complex had the first pass following the bum. As a result, MMNAV had the responsibility to make a rapid assessment of the maneuver performance. MMNAV made the determination that a 100 m/s under bum had occurred and promptly informed ISAS via voice lines. ISAS immediately began preparations for a correction maneuver (TMIc), which had to be performed during the next Usuda pass. The near real time assessment by MMNAV provided accurate antenna frequency and pointing updates for the spacecraft acquisition at Usuda and the close coordination between the two agencies enabled the design and successful execution of the TMc maneuver. Propellant consumption during the correction burn dictated that the mission be redesigned. ISAS developed a new plan which adds 3 full solar orbits, two Earth swingbys and one lunar swingby with arrival at Mars in January 2004. The final Mars orbit will still enable the mission to achieve all of its science objectives.

  1. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  2. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  3. Orbit correction in an orbit separated cyclotron

    NASA Astrophysics Data System (ADS)

    Plostinar, C.; Rees, G. H.

    2014-04-01

    The orbit separated proton cyclotron (OSC) described in [1] differs in concept from that of a separated orbit cyclotron (SOC) [2]. Synchronous acceleration in an OSC is based on harmonic number jumps and orbit length adjustments via reverse bending. Four-turn acceleration in the OSC enables it to have four times fewer cryogenic-cavity systems than in a superconducting linac of the same high beam power and energy range. Initial OSC studies identified a progressive distortion of the spiral beam orbits by the off-axis, transverse deflecting fields in its accelerating cavities. Compensation of the effects of these fields involves the repeated use of a cavity field map, in a 3-D linac tracking code, to determine the modified arc bends required for the OSC ring. Subsequent tracking studies confirm the compensation scheme and show low emittance growth in acceleration.

  4. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  5. Satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.; Boggs, D. H.; Born, G. H.; Christensen, E. J.; Ferrari, A. J.; Green, D. W.; Hylkema, R. K.; Mohan, S. N.; Reinbold, S. J.; Sievers, G. L.

    1973-01-01

    A historic account of the activities of the Satellite OD Group during the MM'71 mission is given along with an assessment of the accuracy of the determined orbit of the Mariner 9 spacecraft. Preflight study results are reviewed, and the major error sources described. Tracking and data fitting strategy actually used in the real time operations is itemized, and Deep Space Network data available for orbit fitting during the mission and the auxiliary information used by the navigation team are described. A detailed orbit fitting history of the first four revolutions of the satellite orbit of Mariner 9 is presented, with emphasis on the convergence problems and the delivered solution for the first orbit trim maneuver. Also included are a solution accuracy summary, the history of the spacecraft orbit osculating elements, the results of verifying the radio solutions with TV imaging data, and a summary of the normal points generated for the relativity experiment.

  6. Orbital angioleiomyoma: A rare orbital neoplasm.

    PubMed

    Alam, Md Shahid; Subramanian, Nirmala; Koka, Kirthi; Subramanian, Krishnakumar

    2016-04-01

    A 44-year-old male patient presented with painless progressive proptosis of left eye for the last 20 years. Examination revealed a purplish vascular mass extending from the medial orbital region to the surface of the globe. He underwent complete excision of the mass via an anterior orbitotomy approach. Histopathology and immunohistochemistry revealed a diagnosis of angioleiomyoma. No recurrence was noted at 1 year of follow-up. Angioleiomyomas are benign smooth muscle tumors with an additional vascular component. Their occurrence in the orbit is extremely rare with only three cases reported in literature till date. We report a fourth case of angioleiomyoma of the orbit with the longest duration of presentation of 20 years. PMID:26927953

  7. Orbital physics in RIXS

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Krzysztof; Marra, Pasquale; Grueninger, Markus; Schmitt, Thorsten; van den Brink, Jeroen

    2013-03-01

    In contrast to magnetism, phenomena associated with the orbital degrees of freedom in transition metal oxides had always been considered to be very difficult to observe. However, recently resonant inelastic x-ray scattering (RIXS) has established itself as a perfect probe of the orbital excitations and orbital order in transition metal oxides. Here we give a brief overview of these recent theoretical and experimental advances which have inter alia led to the observation of the separation of the spin and orbital degree of freedom of an electron.

  8. Minimal orbits of metrics

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshiaki; Rosenberg, Steven; Tondeur, Philippe

    1997-11-01

    The group of diffeomorphisms of a compact manifold acts isometrically on the space of Riemannian metrics with its L2 metric. Following Arnaudon and Paycha (1995) and Maeda, Rosenberg and Tondeur (1993), we define minimal orbits for this action by a zeta function regularization. We show that odd dimensional isotropy irreducible homogeneous spaces give rise to minimal orbits, the first known examples of minimal submanifolds of infinite dimension and codimension. We also find a flat 2-torus giving a stable minimal orbit. We prove that isolated orbits are minimal, as in finite dimensions.

  9. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  10. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  11. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  12. Long-Period Meteor Streams and the Dispersion of Semimajor Axes of Meteor Orbits

    NASA Astrophysics Data System (ADS)

    Hajduková, Mária, Jr.

    2013-06-01

    The present work is based on an analysis of a large statistical sample of meteor orbits collected in the Japanese shower catalogue (SonotaCo 2009, WGN, 37, 55) of 114280 video observed meteors. The shower meteor data were selected and analysed with the aim of determining the orbits' distribution in major meteor streams with heliocentric velocities close to the parabolic limit, in which the errors in the velocity determination correspond to large differences in the reciprocal semimajor axis, 1/a. The contribution of the real dispersion of the semimajor axes, a, can be deduced from the high proportion of hyperbolic orbits in the analysed streams, where an excess over the parabolic value can be regarded as being entirely due to measurement errors. The orbital dispersion described by the median absolute deviation in terms of 1/a was found to be ±0.083 AU-1 for the Leonids and ±0.080 AU-1 for the Orionids, and slightly smaller for the Perseid and Lyrid meteor streams (±0.055 and ±0.047 AU-1). The proximity of the parabolic limit caused a strong influence of observational effects; however, a significant contribution of the real dispersion is involved.

  13. Reticulohistiocytoma of the Orbit

    PubMed Central

    Weissman, Heather M.; Hayek, Brent R.; Grossniklaus, Hans E.

    2015-01-01

    Reticulohistiocytoma is a rare, benign histiocytic proliferation of the skin or soft tissue. While ocular involvement has been documented in the past, there have been no previously reported cases of reticulohistiocytoma of the orbit. In this report, the authors describe a reticulohistiocytoma of the orbit in a middle-aged woman. PMID:24807799

  14. Orbital Shape Representations.

    ERIC Educational Resources Information Center

    Kikuchi, Osamu; Suzuki, Keizo

    1985-01-01

    Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)

  15. Satellite orbit computation methods

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mathematical and algorithmical techniques for solution of problems in satellite dynamics were developed, along with solutions to satellite orbit motion. Dynamical analysis of shuttle on-orbit operations were conducted. Computer software routines for use in shuttle mission planning were developed and analyzed, while mathematical models of atmospheric density were formulated.

  16. Orbital Plots Using Gnuplot

    NASA Astrophysics Data System (ADS)

    Moore, Brian G.

    2000-06-01

    The plotting program Gnuplot is freely available, general purpose, easy to use, and available on a variety of platforms. Complex three-dimensional surfaces, including the familiar angular parts of the hydrogen atom orbitals, are easily represented using Gnuplot. Contour plots allow viewing the radial and angular variation of the probability density in an orbital. Examples are given of how Gnuplot is used in an undergraduate physical chemistry class to view familiar atomic orbitals in new ways or to generate views of orbital functions that the student may have not seen before. Gnuplot may also be easily integrated into the environment of a Web page; an example of this is discussed (and is available at http://onsager.bd.psu.edu/~moore/orbitals_gnuplot). The plotting commands are entered with a form and a CGI script is used to run Gnuplot and display the result back to the browser.

  17. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  18. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  19. E-Orbit Functions

    NASA Astrophysics Data System (ADS)

    Klimyk, Anatoliy U.; Patera, Jiri

    2008-01-01

    We review and further develop the theory of E-orbit functions. They are functions on the Euclidean space En obtained from the multivariate exponential function by symmetrization by means of an even part We of a Weyl group W, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. They are closely related to symmetric and antisymmetric orbit functions which are received from exponential functions by symmetrization and antisymmetrization procedure by means of a Weyl group W. The E-orbit functions, determined by integral parameters, are invariant with respect to even part Weaff of the affine Weyl group corresponding to W. The E-orbit functions determine a symmetrized Fourier transform, where these functions serve as a kernel of the transform. They also determine a transform on a finite set of points of the fundamental ! domain Fe of the group Weaff (the discrete E-orbit function transform).

  20. Orbital preservation in maxillectomy.

    PubMed

    Stern, S J; Goepfert, H; Clayman, G; Byers, R; Wolf, P

    1993-07-01

    Twenty-eight previously untreated patients with squamous carcinoma of the maxillary sinus underwent maxillectomy with preservation of the orbital contents at the M. D. Anderson Cancer Center between 1971 and 1986. Eighteen patients had part or all of the orbital floor resected; nine patients were treated with radiotherapy, and nine had surgery only. Only 3 of 18 patients in this group (17%) retained significant function in the ipsilateral eye. Furthermore, local recurrence in this group was common (44%), regardless of whether postoperative radiotherapy was used. Ten patients retained the bony orbital floor; if the radiation fields did not include the eye, problems were minimal. Strong consideration should be given to orbital exenteration at the time of surgery, when the orbital floor is resected--especially if postoperative radiation fields will include the eye. PMID:8336956

  1. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  2. Orbit determination based on meteor observations using numerical integration of equations of motion

    NASA Astrophysics Data System (ADS)

    Dmitriev, V.; Lupovka, V.; Gritsevich, M.

    2014-07-01

    We review the definitions and approaches to orbital-characteristics analysis applied to photographic or video ground-based observations of meteors. A number of camera networks dedicated to meteors registration were established all over the word, including USA, Canada, Central Europe, Australia, Spain, Finland and Poland. Many of these networks are currently operational. The meteor observations are conducted from different locations hosting the network stations. Each station is equipped with at least one camera for continuous monitoring of the firmament (except possible weather restrictions). For registered multi-station meteors, it is possible to accurately determine the direction and absolute value for the meteor velocity and thus obtain the topocentric radiant. Based on topocentric radiant one further determines the heliocentric meteor orbit. We aim to reduce total uncertainty in our orbit-determination technique, keeping it even less than the accuracy of observations. The additional corrections for the zenith attraction are widely in use and are implemented, for example, here [1]. We propose a technique for meteor-orbit determination with higher accuracy. We transform the topocentric radiant in inertial (J2000) coordinate system using the model recommended by IAU [2]. The main difference if compared to the existing orbit-determination techniques is integration of ordinary differential equations of motion instead of addition correction in visible velocity for zenith attraction. The attraction of the central body (the Sun), the perturbations by Earth, Moon and other planets of the Solar System, the Earth's flattening (important in the initial moment of integration, i.e. at the moment when a meteoroid enters the atmosphere), atmospheric drag may be optionally included in the equations. In addition, reverse integration of the same equations can be performed to analyze orbital evolution preceding to meteoroid's collision with Earth. To demonstrate the developed technique, we provide calculated orbits for several cases, including well-known meteorite-producing fireballs. A comparison of our estimates with previously published ones is also provided.

  3. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  4. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  5. OL- ORBITAL LIFETIME PROGRAM

    NASA Technical Reports Server (NTRS)

    Orr, L. H.

    1994-01-01

    The Orbital Lifetime (OL) program analyzes the long-term motion of Earth-orbiting spacecraft at altitudes of up to 2500 kilometers. It models perturbations to the orbit caused by solar radiation pressure, atmospheric drag, and gravitational effects due to the sun, the moon, and Earth oblateness. OL can be used to predict the orbital lifetime and decay rate of a satellite. The atmospheric density models used in OL are the U.S. Standard Atmosphere for altitudes below 90 km and the Jacchia model for altitudes above 90 km. The Jacchia model requires solar flux and geomagnetic index for the date of orbit. An input file containing these values for 1984 to 1998 is supplied with the OL package. The solar radiation pressure calculations in OL will predict the amount of time a spacecraft is subjected to the Earth's shadow. Input to OL includes spacecraft physical characteristics, initial orbit parameters, and launch date/time. OL calculates time histories of the orbital elements, total lifetime, and decay rates. A spacecraft is considered 'down' at an altitude of 64 km. OL also generates a file of plot data which can be input to a user-supplied graphics program for lifetime plots of altitude against time. OL is written in FORTRAN 77 for interactive or batch execution and has been implemented on a DEC VAX series computer operating under VMS. This program was developed in 1985.

  6. Superatomic Orbitals under Spin-Orbit Coupling.

    PubMed

    Jiang, De-En; Kühn, Michael; Tang, Qing; Weigend, Florian

    2014-10-01

    The Au25(SR)18(-) cluster has been the poster child of success in applying the superatom complex concept and remains the most studied system of all of the monolayer-protected metal clusters. In this Letter, we try to solve a mystery about this cluster: the low-temperature UV-vis absorption spectrum shows double peaks below 2.0 eV while simulation by scalar relativistic time-dependent density functional theory (TDDFT) shows only one peak in this region. Using a recently implemented two-component TDDFT, we show that spin-orbit coupling (SOC) leads to those two peaks by splitting the 1P superatomic HOMO orbitals. This work highlights the importance of SOC in understanding the electronic structure and optical absorption of thiolated gold nanoclusters, which has not been realized previously. PMID:26278432

  7. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  8. Orbital Debris Environment Monitor (ODEM)

    NASA Technical Reports Server (NTRS)

    Oliver, John P.

    1992-01-01

    Viewgraphs on orbital debris environmental monitor (ODEM) are presented. Topics covered include: Long Duration Exposure Facility (LDEF); interplanetary dust experiment; orbital debris clouds; mapping and modeling of orbital debris clouds; and solar maximum mission spacecraft.

  9. Aerobraking orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)

    1989-01-01

    An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.

  10. Neonatal orbital abscess

    PubMed Central

    Gogri, Pratik Y.; Misra, Somen L.; Misra, Neeta S.; Gidwani, Hitesh V.; Bhandari, Akshay J.

    2015-01-01

    Orbital abscess generally occurs in older children but it can rarely affect infants and neonates too. We report a case of community acquired methicillin resistant staphylococcus aureus (CA-MRSA) neonatal orbital abscess in a 12-day-old term female neonate with no significant past medical history or risk factor for developing the infection. The case highlights the importance of consideration of CA-MRSA as a causative agent of neonatal orbital cellulitis even in a neonate without any obvious predisposing condition. Prompt initiation of appropriate medical therapy against MRSA and surgical drainage of the abscess prevents life threatening complications of orbital cellulitis which more often tend to be fatal in neonates. PMID:26622145

  11. Indian Mars Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil

    The Mars Orbiter Mission (MOM) is the first interplanetary mission of India launched by Indian Polar Satellite Launch Vehicle (PSLV-XL) on 5 November 2013. It departed from Earth's orbit on Dec. 1, 2013, on its 300-days journey to Mars. MOM will reach Mars on Sept. 24, 2014. The orbit of MOM around Mars is highly elliptical with periapsis ~370 km and apoapsis ~80000 km, inclination 151 degree, and orbital period 3.15 sols. The spacecraft mass is 1350 kg, with dry mass of 500 kg and science payload mass of 14 kg. The spacecraft carries five science payloads, namely: Methane Sensor for Mars (MSM), Mars Colour Camera (MCC), Lyman Alpha Photometer (LAP), Mars Exospheric Neutral Composition Analyzer (MENCA), TIR Imaging Spectrometer (TIS). This paper will present the details of the instruments, observation plan, and expected science.

  12. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  13. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  14. Imaging in orbital trauma

    PubMed Central

    Lin, Ken Y.; Ngai, Philip; Echegoyen, Julio C.; Tao, Jeremiah P.

    2012-01-01

    Orbital trauma is one of the most common reasons for ophthalmology specialty consultation in the emergency department setting. We survey the literature from 1990 to present to describe the role of computed tomography (CT), magnetic resonance imaging (MRI) and their associated angiography in some of the most commonly encountered orbital trauma conditions. CT orbit can often detect certain types of foreign bodies, lens dislocation, ruptured globe, choroidal or retinal detachments, or cavernous sinus thrombosis and thus complement a bedside ophthalmic exam that can sometimes be limited in the setting of trauma. CT remains the workhorse for acute orbital trauma owing to its rapidity and ability to delineate bony abnormalities; however MRI remains an important modality in special circumstances such as soft tissue assessment or with organic foreign bodies. PMID:23961028

  15. Space Shuttle Orbiter ECLSS.

    NASA Technical Reports Server (NTRS)

    Stoll, O. T.; Laubach, G. E.; Gibb, J. W.

    1973-01-01

    The Orbiter Environmental Control and Life Support System (ECLSS) provides the functions of atmosphere revitalization, crew life support, active thermal conditioning, and airlock support for EVA and docking activities. The ECLSS must satisfy the requirements of orbital missions with four to ten crewmembers and mission duration of a few hours to 30 days and the requirements associated with an atmospheric horizontal flight test program and ferry flight missions. The ECLSS development plan utilizes an ECLSS ground test article and thermal/vacuum testing to support the first horizontal flight test at the end of 1976. The ground testing and horizontal flight test program certify the Orbiter ECLSS for the first orbital flight in early 1978.

  16. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  17. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  18. Antisymmetric Orbit Functions

    NASA Astrophysics Data System (ADS)

    Klimyk, Anatoliy; Patera, Jiri

    2007-02-01

    In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space En are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group G of rank n. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space En. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in En, vanishing on the boundary of the fundamental domain F. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is clo! sely related to expansions of central functions in characters of irreducible representations of the group G. They also determine a transform on a finite set of points of F (the discrete antisymmetric orbit function transform). Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  19. The Lunar Orbital Prospector

    NASA Astrophysics Data System (ADS)

    Redd, Frank J.; Cantrell, James N.; McCurdy, Greg

    1992-09-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  20. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  1. A survey of meteor spectra and orbits: evidence for three populations of Na-free meteoroids

    NASA Astrophysics Data System (ADS)

    Borovička, J.; Koten, P.; Spurný, P.; Boček, J.; Štork, R.

    2005-03-01

    We present a survey of 97 spectra of mainly sporadic meteors in the magnitude range +3 to -1, corresponding to meteoroid sizes 1-10 mm. For the majority of the meteors, heliocentric orbits are known as well. We classified the spectra according to relative intensities of the lines of Mg, Na, and Fe. Theoretical intensities of these lines for a chondritic composition of the meteoroid and a wide range of excitation and ionization conditions were computed. We found that only a minority of the meteoroids show chondritic composition. Three distinct populations of Na-free meteoroids, each comprising ˜10% of sporadic meteoroids in the studied size range, were identified. The first population are meteoroids on asteroidal orbits containing only Fe lines in their spectra and possibly related to iron-nickel meteorites. The second population are meteoroids on orbits with small perihelia ( q⩽0.2 AU), where Na was lost by thermal desorption. The third population of Na-free meteoroids resides on Halley type cometary orbits. This material was possibly formed by irradiation of cometary surfaces by cosmic rays in the Oort cloud. The composition of meteoroids on Halley type orbits is diverse, probably reflecting internal inhomogeneity of comets. On average, cometary dust has lower than chondritic Fe/Mg ratio. Surprisingly, iron meteoroids prevail among millimeter-sized meteoroids on typical Apollo-asteroid orbits. We have also found varying content of Na in the members of the Geminid meteoroid stream, suggesting that Geminid meteoroids were not released from their parent body at the same time.

  2. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. [Orbital complications of sinusitis].

    PubMed

    ucha?, M; Hor?k, M; Kaliarik, L; Krempask, S; Kotialov, T; Kova?, J

    2014-12-01

    Orbital complications categorised by Chandler are emergency. They need early diagnosis and agresive treatment. Stage and origin of orbital complications are identified by rhinoendoscopy, ophtalmologic examination and CT of orbite and paranasal sinuses. Periorbital cellulitis and early stage of orbital cellulitis can be treated conservatively with i. v. antibiotics. Monitoring of laboratory parameters and ophtalmologic symptoms is mandatory. Lack of improvement or worsening of symptoms within 24-48 hours and advanced stages of orbital complications are indicated for surgery. The purpose of the study is to evaluate epidemiology, clinical features and management of sinogenic orbital complications. Retrospective data of 8 patients with suspicion of orbital complication admited to hospital from 2008 to 2013 were evaluated. Patients were analyzed in terms of gender, age, CT findings, microbiology, clinical features, stage and treatment. Male and female were afected in rate 1,66:1. Most of patients were young adult in 3rd. and 4th. decade of life (62,5 %). Acute and chronic sinusitis were cause of orbital complication in the same rate. The most common origin of orbital complication was ethmoiditis (62,5 %), than maxillary (25 %) and frontal (12,5 %) sinusitis. Polysinusitis with affection of ethmoidal, maxillary and frontal sinuses (75 %) was usual CT finding. Staphylococcus epidermidis and Staphylococcus aureus were etiological agens in half of cases. Periorbital oedema (100 %), proptosis, chemosis (50 %), diplopia and glaucoma (12,5 %) were observed. Based on examinations, diagnosis of periorbital oedema/preseptal cellulitis was made in 3 (37,5 %), orbital cellulitis in 3 (37,5 %) and subperiosteal abscess in 2 cases (25 %). All patients underwent combined therapy - i. v. antibiotics and surgery within 24 hours. Eradication of disease from ostiomeatal complex (OMC), drainage of affected sinuses and drainage of subperiosteal abscess were done via fuctional endonasal endoscopic surgery (FEES). In case of superior subperiosteal abscess, combined endonasal and external approach (external orbitotomy) was needed. Combined therapy facilitated quick improvement of local and systematic symptoms. Average time of hospitalisation was 7 days. Early diagnosis and agresive combined therapy prevent loss of vision and life threatening complications. PMID:25640234

  4. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  5. The Tajikistan superbolide of July 23, 2008. I. Trajectory, orbit, and preliminary fall data

    NASA Astrophysics Data System (ADS)

    Konovalova, Natalia A.; Madiedo, Jose M.; Trigo-Rodríguez, Josep M.

    2013-12-01

    The results of the atmospheric trajectory, radiant, heliocentric orbit, and preliminary strewn field calculations for an extremely bright slow-moving fireball are presented. In the evening hours of July 23, 2008, a bright object entered Earth's atmosphere over Tajikistan. The fireball had a -20.3 maximum absolute magnitude and a spectacularly long persistent dust trail remained visible over a widespread region of Tajikistan for about 28 minutes after sunset. The fireball was also recorded by a visible-light satellite system at 14 h 45 min 25 s UT, and the dust trail was imaged by video and photocameras. A unique aspect of this event is that it was detected by two infrasound and five seismic stations too. The bolide was first recorded at a height of 38.2 km, reached its maximum brightness at a height of 35.0 km, and finished at a height of 19.6 km. The first breakup occurred under an aerodynamic pressure of approximately 1.6 MPa, similar to the values derived for breakups of the scarcely reported meteorite-dropping bolides. The fireball's trajectory and dynamic results suggest that meteorite survival is likely. The meteoroid followed an Apollo-like asteroid orbit comparable to those derived for previously recovered meteorites with accurately known orbits.

  6. ICESat Precision Orbit Determination

    NASA Astrophysics Data System (ADS)

    Rim, H.; Yoon, S.; Webb, C. E.; Kim, Y.; Schutz, B. E.

    2003-12-01

    Following the successful launch of the Ice, Cloud and land Elevation Satellite (ICESat) on January 13, 2003, 00:45 UTC, the GPS receiver on ICESat was turned on successfully on Jan. 17, 2003. High quality GPS data were collected since then to support Precision Orbit Determination (POD) activities. ICESat carries Geoscience Laser Altimeter System (GLAS) to measure ice-sheet topography and associated temporal changes, as well as cloud and atmospheric properties. To accomplish the ICESat science objectives, the position of the GLAS instrument in space should be determined with an accuracy of 5 cm and 20 cm in radial and horizontal components, respectively. This knowledge is acquired by the POD activities using the data collected by the GPS receiver on ICESat and the ground-based satellite laser ranging (SLR) data. It has been shown from pre-launch POD studies that the gravity model error is the dominant source of ICESat orbit errors. The predicted radial orbit errors at the ICESat orbit (600 km altitude) based on pre-launch gravity models, such as TEG-4 and EGM-96, are 7-15 cm. Performance of these gravity models and the recent gravity models from GRACE on ICESat POD were evaluated. The radial orbit accuracy is approaching 1-2 cm level with the GRACE gravity model. This paper also summarizes POD activities at Center for Space Research (CSR), which is responsible to generate ICESat POD products.

  7. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  8. Management of orbital tumors.

    PubMed

    Char, D H

    1993-11-01

    Orbital tumors are uncommon. In children, both malignant and benign causes of orbital proptosis necessitate urgent assessment; in many cases, emergent intervention is necessary to avoid blindness. In adults, proptosis is most commonly associated with thyroid orbitopathy. Orbital tumors in adults rarely are characterized by the explosive growth and damage that can occur with childhood lesions. In both age-groups, the evolution of better scanning modalities, such as magnetic resonance imaging with fat saturation and gadolinium enhancement, has improved diagnostic accuracy, especially in patients with loss of vision. In more than 95% of cases, noninvasive techniques yield a correct diagnosis. In patients who require nonsurgical intervention, especially if the diagnosis is uncertain, fine-needle aspiration biopsy has an accuracy that exceeds 95%. Combined-modality therapy has improved the control of and decreased the morbidity associated with several orbital tumors. Surgical advances, such as the ancillary use of the CO2 laser, have enhanced the management of some orbital tumors. PMID:8231272

  9. GOCE Precise Science Orbits

    NASA Astrophysics Data System (ADS)

    Bock, Heike; Jäggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Heinze, Markus; Hugentobler, Urs

    GOCE (Gravity field and steady-state Ocean Circulation Explorer), as the first ESA (European Space Agency) Earth Explorer Core Mission, is dedicated for gravity field recovery of unprece-dented accuracy using data from the gradiometer, its primary science instrument. Data from the secondary instrument, the 12-channel dual-frequency GPS (Global Positioning System) receiver, is used for precise orbit determination of the satellite. These orbits are used to accu-rately geolocate the gradiometer observations and to provide complementary information for the long-wavelength part of the gravity field. A precise science orbit (PSO) product is provided by the GOCE High-Level Processing Facility (HPF) with a precision of about 2 cm and a 1-week latency. The reduced-dynamic and kinematic orbit determination strategies for the PSO product are presented together with results of about one year of data. The focus is on the improvement achieved by the use of empirically derived azimuth-and elevation-dependent variations of the phase center of the GOCE GPS antenna. The orbits are validated with satellite laser ranging (SLR) measurements.

  10. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  11. Pioneer Venus orbiter

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The orbiter mission of the Pioneer Venus probe is discussed. In accordance with the low-cost Pioneer Venus concept, NASA intends to use the same basic spacecraft, known as the bus, for the execution of the two missions. The bus will be equipped with all of the subsystems common to the probe and orbiter missions (for example, thermal control, solar cells and power supply, attitude measurement and control, telemetry and communication electronics, and auxiliary propulsion unit). For the 1977 mission, the bus will be equipped with the large and small probes and a special antenna system. For the orbiter mission, the bus will be equipped with a retro-propulsion motor and a high-gain antenna. A diagram of the system envisaged is shown.

  12. On the asteroid belt's orbital and size distribution

    NASA Astrophysics Data System (ADS)

    Gladman, Brett J.; Davis, Donald R.; Neese, Carol; Jedicke, Robert; Williams, Gareth; Kavelaars, J. J.; Petit, Jean-Marc; Scholl, Hans; Holman, Matthew; Warrington, Ben; Esquerdo, Gil; Tricarico, Pasquale

    2009-07-01

    For absolute magnitudes greater than the current completeness limit of H-magnitude ∼15 the main asteroid belt's size distribution is imperfectly known. We have acquired good-quality orbital and absolute H-magnitude determinations for a sample of small main-belt asteroids in order to study the orbital and size distribution beyond H = 15, down to sub-kilometer sizes (H > 18). Based on six observing nights over a 11-night baseline we have detected, measured photometry for, and linked observations of 1087 asteroids which have one-week time baselines or more. The linkages allow the computation of full heliocentric orbits (as opposed to statistical distances determined by some past surveys). Judged by known asteroids in the field the typical uncertainty in the (a / e / i) orbital elements is less than 0.03 AU/0.03/0.5°. The distances to the objects are sufficiently well known that photometric uncertainties (of 0.3 magnitudes or better) dominate the error budget of their derived H-magnitudes. The detected asteroids range from HR = 12- 22 and provide a set of objects down to sizes below 1 km in diameter. We find an on-sky surface density of 210 asteroids per square degree in the ecliptic with opposition magnitudes brighter than mR = 23, with the cumulative number of asteroids increasing by a factor of 100.27/mag from mR = 18 down to the mR ≃ 23.5 limit of our survey. In terms of absolute H magnitudes, we find that beyond H = 15 the belt exhibits a constant power-law slope with the number increasing proportional to 100.30H from H ≃ 15 to 18, after which incompleteness begins in the survey. Examining only the subset of detections inside 2.5 AU, we find weak evidence for a mildly shallower slope for H = 15- 19.5. We provide the information necessary such that anyone wishing to model the main asteroid belt can compare a detailed model to our detected sample.

  13. Orbital metastases in Italy

    PubMed Central

    Magliozzi, Patrizio; Strianese, Diego; Bonavolontà, Paola; Ferrara, Mariantonia; Ruggiero, Pasquale; Carandente, Raffaella; Bonavolontà, Giulio; Tranfa, Fausto

    2015-01-01

    AIM To describe a series of Italian patients with orbital metastasis focusing on the outcomes in relation to the different primary site of malignancy. METHODS Retrospective chart review of 93 patients with orbital metastasis collected in a tertiary referral centre in a period of 38y and review of literature. RESULTS Out of 93 patients, 52 were females and 41 were males. Median age at diagnosis was 51y (range 1 to 88y). The patients have been divided into four groups on the basis of the year of diagnosis. The frequency of recorded cases had decreased significantly (P<0.05) during the last 9.5y. Primary tumor site was breast in 36 cases (39%), kidney in 10 (11%), lung in 8 (9%), skin in 6 (6%); other sites were less frequent. In 16 case (17%) the primary tumor remained unknown. The most frequent clinical findings were proptosis (73%), limited ocular motility (55%), blepharoptosis (46%) and blurred vision (43%). The diagnosis were established by history, ocular and systemic evaluation, orbital imaging studies and open biopsy or fine needle aspiration biopsy (FNAB). Treatment included surgical excision, irradiation, chemotherapy, hormone therapy, or observation. Ninety-one percent of patients died of metastasis with an overall mean survival time (OMST) after the orbital diagnosis of 13.5mo. CONCLUSION Breast, kidney and lung are the most frequent primary sites of cancer leading to an orbital metastasis. When the primary site is unknown, gastrointestinal tract should be carefully investigated. In the last decade a decrease in the frequency of orbital metastasis has been observed. Surgery provides a local palliation. Prognosis remains poor with a OMST of 13.5mo ranging from the 3mo in the lung cancer to 24mo in the kidney tumor. PMID:26558220

  14. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  15. Pediatric Orbital Fractures

    PubMed Central

    Oppenheimer, Adam J.; Monson, Laura A.; Buchman, Steven R.

    2013-01-01

    It is wise to recall the dictum “children are not small adults” when managing pediatric orbital fractures. In a child, the craniofacial skeleton undergoes significant changes in size, shape, and proportion as it grows into maturity. Accordingly, the craniomaxillofacial surgeon must select an appropriate treatment strategy that considers both the nature of the injury and the child's stage of growth. The following review will discuss the management of pediatric orbital fractures, with an emphasis on clinically oriented anatomy and development. PMID:24436730

  16. Satellite orbit predictor

    NASA Technical Reports Server (NTRS)

    Friedman, Morton l.; Garrett, James, Major

    An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.

  17. Orbital dermoids in children.

    PubMed

    Ahuja, Rakesh; Azar, Nathalie F

    2006-01-01

    Orbital dermoid cysts are benign congenital choristomas. They are common in pediatric population, developing adjacent to suture lines, most commonly located in antero-lateral fronto-zygomatic suture, and are slowly progressive. Complete surgical excision without rupture of cyst is the standard of care. Deep orbital cysts cause proptosis, require imaging, and may present a surgical challenge with a difficult approach. Rupture of the cyst leads to severe inflammatory reaction in surrounding tissues. Overall prognosis remains good with isolated reports of malignancy masquerading as dermoid cysts. PMID:16912019

  18. DASTCOM5: A Portable and Current Database of Asteroid and Comet Orbit Solutions

    NASA Astrophysics Data System (ADS)

    Giorgini, Jon D.; Chamberlin, Alan B.

    2014-11-01

    A portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, with the software to access it, is available for download (ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip). DASTCOM5 contains the latest heliocentric IAU76/J2000 ecliptic osculating orbital elements for all known asteroids and comets as determined by a least-squares best-fit to ground-based optical, spacecraft, and radar astrometric measurements. Other physical, dynamical, and covariance parameters are included when known. A total of 142 parameters per object are supported within DASTCOM5. This information is suitable for initializing high-precision numerical integrations, assessing orbit geometry, computing trajectory uncertainties, visual magnitude, and summarizing physical characteristics of the body. The DASTCOM5 distribution is updated as often as hourly to include newly discovered objects or orbit solution updates. It includes an ASCII index of objects that supports look-ups based on name, current or past designation, SPK ID, MPC packed-designations, or record number. DASTCOM5 is the database used by the NASA/JPL Horizons ephemeris system. It is a subset exported from a larger MySQL-based relational Small-Body Database ("SBDB") maintained at JPL. The DASTCOM5 distribution is intended for programmers comfortable with UNIX/LINUX/MacOSX command-line usage who need to develop stand-alone applications. The goal of the implementation is to provide small, fast, portable, and flexibly programmatic access to JPL comet and asteroid orbit solutions. The supplied software library, examples, and application programs have been verified under gfortran, Lahey, Intel, and Sun 32/64-bit Linux/UNIX FORTRAN compilers. A command-line tool ("dxlook") is provided to enable database access from shell or script environments.

  19. Orbital correlation of space objects based on orbital elements

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Hong; Li, Jun-Feng; Du, Xin-Peng; Zhang, Xuan

    2016-03-01

    Orbital correlation of space objects is one of the most important elements in space object identification. Using the orbital elements, we provide correlation criteria to determine if objects are coplanar, co-orbital or the same. We analyze the prediction error of the correlation parameters for different orbital types and propose an orbital correlation method for space objects. The method is validated using two line elements and multisatellite launching data. The experimental results show that the proposed method is effective, especially for space objects in near-circular orbits.

  20. ARTEMIS Lunar Orbit Insertion and Science Orbit Design Through 2013

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Sweetser, Theodore H.; Angelopoulos, Vassilis; Folta, David; Woodard, Mark

    2015-01-01

    As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit insertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth's gravity and restrictive spacecraft capabilities to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future planetary moon missions.

  1. Orbit Transfer Programs

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.

    1986-01-01

    Collection of computer programs developed that solve problem of transfer between noncoplanar circular orbits for spacecraft with chemical propulsion systems. Two basic programs given. First, referred to as "exact solution," gives complete, exact time histories of transfers. Second, or "approximate solution," program gives approximate information on transfer time and fuel cost but provides no detail of trajectory.

  2. Goddard Brouwer Orbit Bulletin

    NASA Technical Reports Server (NTRS)

    Morgan, D. B.; Gordon, R. A.

    1971-01-01

    The bulletin provides operational support for earth space research and technological missions by producing a tape containing pertinent spacecraft orbital information which is provided to a number of cities around the world in support of individual missions. A program description of the main and associated subroutines, and a complete description of the input, output and requirements of the bulletin program are presented.

  3. Lunar Orbit Anomaly

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2012-12-01

    Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;

  4. Sedna Orbit Animation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  5. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  6. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  7. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS meet the servicing requirements for ISS and could also provide the automated fluid and power interface system needed for on orbit consumable resupply of spacecraft into the new century.

  8. Kaguya Orbit Determination from JPL

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.; Mottinger, N. A.; Graat, E. J.; Jefferson, D. C.; Park, R.; Menom, P.; Higa, E.

    2008-01-01

    Selene (re-named 'Kaguya' after launch) is an unmanned mission to the Moon navigated, in part, by JPL personnel. Launched by an H-IIA rocket on September 14, 2007 from Tanegashima Space Center, Kaguya entered a high, Earth-centered phasing orbit with apogee near the radius of the Moon's orbit. After 19 days and two orbits of Earth, Kaguya entered lunar orbit. Over the next 2 weeks the spacecraft decreased its apolune altitude until reaching a circular, 100 kilometer altitude orbit. This paper describes NASA/JPL's participation in the JAXA/Kaguya mission during that 5 week period, wherein JPL provided tracking data and orbit determination support for Kaguya.

  9. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  10. Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions

    PubMed Central

    Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin

    2014-01-01

    Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481

  11. Orbital Complications of Sinusitis

    PubMed Central

    Radovani, Pjerin; Vasili, Dritan; Xhelili, Mirela; Dervishi, Julian

    2013-01-01

    Background: Despite the modern antibiotherapies applied in the practice of otorhinolaryngology, the orbital complications of sinusitis are still considered a serious threat to essential functions of the eye, including loss of vision, and at worst, life threatening symptoms. Aims: The goal of this study is to consider and analyse patients who were treated for these complications in the last decade in our hospital, which is the only tertiary hospital in our country. Study Design: Retrospective analysis of cases. Methods: In our practice, cases treated in the hospital are rhinosinusitis cases where surgical intervention is necessary, or those with a suspicion of complications. Between the years 1999 and 2009 there were 177 cases, the clinical charts of which were reviewed. The cases that are omitted from this study are those involving soft tissues, bone, and intracranial complications. The diagnoses were determined based on anamnesis, anterior rhinoscopy, x-rays of the sinuses with the Water’s projection or where there was a suspicion of a complication, and CT scans with coronal and axial projections. In all cases, intensive treatment was initiated with a combination of cefalosporines, aminoglycosides and Proetz manoeuvre. When an improvement in the conditions did not occur within 24–48 hours, we intervened with a surgical procedure, preferably the Lynch-Patterson external frontoethmoidectomy. Results: In our study, we encountered 35 cases (19.8%) of orbital complications with an average age of 25 (range: 3–75); Palpebral inflammatory oedema (15), orbital cellulitis (10), subperiosteal abscess (6), orbital abscess (3), and cavernous sinus thrombosis (1 patient). The average time that patients remained in hospital was 4.6 days; for those with orbital complications this was 7 days. Conclusion: Orbital complications of sinusitis are considered to be severe pathologies. The appearance of oedema in the corner of the eye should be evaluated immediately and the means to exclude acute sinusitis should be taken under serious consideration. Early diagnosis and aggressive treatment are key to the reduction of these unwanted manifestations. PMID:25207092

  12. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its performance for helioseismology applications. As input we used a 6 hr time-series of realistic solar magneto-convection simulation (Stagger code) and the SPINOR radiative transfer code to synthesize the observables. The simulated power spectra of solar oscillations show that the instrument is suitable for helioseismology. In particular, the specified point spread function, image jitter, and photon noise are no obstacle to a successful mission.

  13. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take approximately six months and the system is designed to allow for a 30 deg inclination change on the outgoing and incoming trips of the transfer vehicle.

  14. Close up view of the Orbiter Discovery in the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1990-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

  16. Kepler's Orbit - Duration: 31 seconds.

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  17. Three orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Aerospace engineering students at the Virginia Polytechnic Institute and State University undertook three design projects under the sponsorship of the NASA/USRA Advanced Space Design Program. All three projects addressed cargo and/or crew transportation between low Earth orbit and geosynchronous Earth orbit. Project SPARC presents a preliminary design of a fully reusable, chemically powered aeroassisted vehicle for a transfer of a crew of five and a 6000 to 20000 pound payload. The ASTV project outlines a chemically powered aeroassisted configuration that uses disposable tanks and a relatively small aerobrake to realize propellant savings. The third project, LOCOST, involves a reusable, hybrid laser/chemical vehicle designed for large cargo (up to 88,200 pounds) transportation.

  18. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  19. Orbital rhabdomyosarcomas: A review

    PubMed Central

    Jurdy, Lama; Merks, Johanus H.M.; Pieters, Bradly R.; Mourits, Maarten P.; Kloos, Roel J.H.M.; Strackee, Simone D.; Saeed, Peerooz

    2013-01-01

    Rhabdomyosarcoma (RMS) is a highly malignant tumor and is one of the few life-threatening diseases that present first to the ophthalmologist. It is the most common soft-tissue sarcoma of the head and neck in childhood with 10% of all cases occurring in the orbit. RMS has been reported from birth to the seventh decade, with the majority of cases presenting in early childhood. Survival has changed drastically over the years, from 30% in the 1960’s to 90% presently, with the advent of new diagnostic and therapeutic modalities. The purpose of this review is to provide a general overview of primary orbital RMS derived from a literature search of material published over the last 10 years, as well as to present two representative cases of patients that have been managed at our institute. PMID:24227982

  20. Orbital signature of interglacials

    NASA Astrophysics Data System (ADS)

    Kukla, G.; Berger, A.; Lotti, R.; Brown, J.

    1981-03-01

    A specific orbital configuration-high obliquity combined with the June perihelion-marked the beginning of the past three interglacials. This suggests that the primary cause of the glacial cycle may be astronomical. An astronomical climate index (ACLIN) is introduced which combines the three orbital variables in the time-lag bivariant model designed to predict the major climate changes in the late and middle Pleistocene, and in the near future. ACLIN closely correlates with the major climatic events revealed by independently dated proxy climate indicators of the past 130,000 yr. It successfully differentiates the interglacials, and displays a 100,000-yr periodicity. It predicts an early end of the present inter glacial and the start of a new one in 114,000 yr.

  1. Orbiter based construction equipment

    NASA Astrophysics Data System (ADS)

    Goodwin, C. J.

    1982-03-01

    Many orbiter based activities need equipment to hold a payload steady while it is being worked on. This work may be construction, updating, repair, services, check out, or refueling operations in preparation for return to Earth. The Handling and Positioning Aid (HPA) is intended for use as general purpose equipment. The HPA provides a wide choice of work station positions, both immediately above the orbiter cargo bay and beyond. It can act in a primary docking role and, if required, can assist actively in the berthing process. From an analysis of ten reference missions, it was determined that two types of HPA mobility are needed; a tilt table, which simply swings out of the cargo bay, pivoting about an athwartships y axis, and an articulated arm. Illustration of the aid are provided.

  2. On-orbit coldwelding

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1991-01-01

    Spacecraft mechanisms are required to operate in the space environment for extended periods of time. A significant concern to the spacecraft designer is the possibility of metal to metal coldwelding or significant increases in friction. Coldwelding can occur between atomically clean metal surfaces when carefully prepared in a vacuum chamber on earth. The question is whether coldwelding occurs in orbit service conditions. The results of the System Special Investigation Group's (SIG's) investigation into whether coldwelding had occurred on any Long Duration Exposure Facility (LDEF) hardware are presented. The results of a literature search into previous ground based anomalies is also presented. Results show that even though there have been no documented on-orbit coldwelding related failures, precautions should be taken to ensure that coldwelding does not occur in the space environment and that seizure does not occur in the prelaunch or launch environment.

  3. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  4. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  5. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  6. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  7. Orbiter Autoland reliability analysis

    NASA Technical Reports Server (NTRS)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  8. Examination of trajectories between low planetary orbits and circulation orbits

    NASA Astrophysics Data System (ADS)

    Knoedler, Andrew J.

    Circulating orbits have been investigated to provide regular periodic transfers between the Earth and Mars. The circulating orbits pass close enough to each planet to be considered hyperbolic in planetocentric frame. The large spacecraft (CASTLE) in the circulating orbit is resupplied by a smaller 'Taxi' spacecraft leaving a low planetary orbit. The Taxi follows an optimal three-impulse patched-conic trajectory to travel from its spaceport to the large spacecraft following a hyperbolic fly-by. Examining the parameters of the situation produces a Delta V profile for each planetary fly-by of the circulating orbit.

  9. An Orbit Plan toward AKATSUKI Venus Reencounter and Orbit Injection

    NASA Technical Reports Server (NTRS)

    Kawakatsu, Yasuhiro; Campagnola, Stefano; Hirose, Chikako; Ishii, Nobuaki

    2012-01-01

    On December 7, 2010, AKATSUKI, the Japanese Venus explorer reached its destination and tried to inject itself into Venus orbit. However, due to a malfunction of the propulsion system, the maneuver was interrupted and AKATSUKI again escaped out from the Venus into an interplanetary orbit. Telemetry data from AKATSUKI suggests the possibility to perform orbit maneuvers to reencounter the Venus and retry Venus orbit injection. Reported in this paper is an orbit plan investigated under this situation. The latest results reflecting the maneuvers conducted in the autumn 2011 is introduced as well.

  10. Circular-Orbit Maintenance Strategies for Primitive Body Orbiters

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Broschart, Stephen

    2013-01-01

    For missions to smaller primitive bodies, solar radiation pressure (SRP) is a significant perturbation to Keplerian dynamics. For most orbits, SRP drives large oscillations in orbit eccentricity, which leads to large perturbations from the irregular gravity field at periapsis. Ultimately, chaotic motion results that often escapes or impacts that body. This paper presents an orbit maintenance strategy to keep the orbit eccentricity small, thus avoiding the destabilizing secondary interaction with the gravity field. An estimate of the frequency and magnitude of the required maneuvers as a function of the orbit and body parameters is derived from the analytic perturbation equations.

  11. Radiation Propulsion For Maintaining Orbits

    NASA Technical Reports Server (NTRS)

    Richter, Robert

    1995-01-01

    Brief report proposes radiative propulsion systems for maintaining precise orbits of spacecraft. Radiation from electrical heaters directed outward by paraboloidal reflectors to produce small forces to oppose uncontrolled drag and solar-radiative forces perturbing orbits. Minimizes or eliminates need to fire rocket thrusters to correct orbits.

  12. Orbiter KU-band transmitter

    NASA Technical Reports Server (NTRS)

    Halterman, R.

    1976-01-01

    The design, build, and test of an engineering breadboard Ku band quadraphase shift keyed and wideband frequency modulated transmitter are described. This orbiter Ku band transmitter drawer is to simulate the orbiter transmitter and meet the functional requirements of the orbiter communication link.

  13. A search for interstellar meteoroids using the Canadian Meteor Orbit Radar (CMOR)

    NASA Astrophysics Data System (ADS)

    Weryk, R. J.; Brown, P.

    2004-12-01

    Using the CMOR system, a search was conducted through 2.5 years (more than 1.5 million orbits) of archived data for meteoroids having unbound hyperbolic orbits around the Sun. Making use of the fact that each echo has an individually measured error, we were able to apply a cut-off for heliocentric speeds both more than two, and three standard deviations above the parabolic limit as our main selection criterion. CMOR has a minimum detectable particle radius near 100 μm for interstellar meteoroids. While these sizes are much larger than reported by the radar detections of extrasolar meteoroids by AMOR or Arecibo, the interstellar meteoroid population at these sizes would be of great astrophysical interest as such particles are more likely to remain unperturbed by external forces found in the interstellar medium, and thus, more likely to be traceable to their original source regions. It was found that a lower limit of approximately 0.0008% of the echoes (for the 3σ case) were of possible interstellar origin. For our effective limiting mass of 1×10-8 kg, this represents a flux of meteoroids arriving at the Earth of 6×10-6 meteoroids/km2/h. For our 2σ results, the lower limit was 0.003%, with a flux of 2×10-5 meteoroids/km2/h. The total number of events was too low to be statistically meaningful in determining any temporal or directional variations.

  14. Asteroid-type orbit evolution near the 5:2 resonance

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.

    1992-01-01

    In this case of the 5:2 commensurability with the motion of Jupiter, an asteroid can reach the orbits of Mars, Earth, and Venus when eccentricity e is greater than 0.41, 0.65, and 0.74, respectively. For individual fictitious asteroids, Ipatov and Yoshikawa obtained a growth in e from 0.15 to 074-0.76. Rates of changes in orbital orientations are different for Mars, Earth, Venus, and the asteroid. Therefore, for corresponding values of e, the asteroid could encounter these planets and leave the gap at those encounters. In order to investigate this hypothesis of the 5:2 Kirkwood gap formation, Ipatov studied the regions of initial data for which the eccentricities of asteroids located near the 5:2 commensurability exceeded 0.41 during evolution. The orbit evolution for 500 fictitious asteroids was investigated by numerical integration of the complete (unaveraged) equations of motion for the three-body problem (Sun-Jupiter-asteroid). The equations of motion were integrated in the time intervals T is greater than or equal to 5(10)(exp 3)t(sub J) (t(sub J) is the heliocentric orbital period of Jupiter) in the planar model, T is greater than or equal to 10(exp 4)t(sub J) at initial inclination 5 deg is less than or equal to i(sub 0) is less than or equal to 20 deg and T = 10(exp 5)t(sub J) at i(sub 0) = 40 deg. The larger interval T was taken at i(sub 0) = 40 deg because in this case for the majority of runs maximum values of e and i were reached in the time delta(t) is greater than 2(10)(exp 4)t(sub J).

  15. Rosetta at comet 67P/Churyumov-Gerasimenko: Spacecraft orbit modeling

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Pätzold, M.; Tellmann, S.; Häusler, B.; Andert, T.

    2011-10-01

    The Rosetta spacecraft is on its way to its target comet 67P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment addresses fundamental aspects of cometary science such as the determinations of the nucleus mass and bulk density, its size and shape, its gravity field and internal structure, and its perturbed interplanetary orbit. The radio carrier links at X-band (8.4 GHz) and Sband (2.3 GHz) transmitted by the Rosetta spacecraft and received on Earth will be used for these investigations. The motion of the spacecraft will be perturbed near the comet nucleus. The perturbed Doppler frequency shifts of the transmitted radio signals will be used to reconstruct the flown orbit. In order to extract small changes of the perturbed Doppler frequency, a prediction of the unperturbed orbit is needed which must include best known estimates for all forces acting on the spacecraft. These forces are the nucleus gravity field, third body perturbations, the solar radiation pressure, the solar wind pressure and the cometary outgassing. The cometary outgassing is the dominant force near the comet nucleus during the entire escort mission phase (for heliocentric distances < 3.0 AU). The gas streams radially away from the nuceus and will cause perturbations in the dynamics of the spacecraft. During the perihelion passage of the comet the spacecraft may even be "blown" away from the nucleus. Simulations for different outgassing scenarios and their influence on spacecraft dynamics will be presented. Configurations that allow stable orbits, for at least a couple of days, will be shown.

  16. Global Orbit Feedback in RHIC

    SciTech Connect

    Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G.; Satogata, T.

    2010-05-23

    For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.

  17. Orbital maneuvers and space rendezvous

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  18. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  19. Orbital Phase Environments and Stereoselectivities

    NASA Astrophysics Data System (ADS)

    Ohwada, Tomohiko

    Facial selections are reviewed to propose a new theory, orbital phase environment, for stereoselectivities of organic reactions. The orbital phase environment is a generalized idea of the secondary orbital interaction between the non-reacting centers and the unsymmetrization of the orbitals at the reacting centers arising from in-phase and out-of-phase overlapping with those at the neighboring non-reacting sites. In this context, the nucleophilic addition preferentially occurs on the face of the carbonyl functionality opposite to the better electron-donating orbital at the β position. In a similar manner to the carbonyl cases, the preferred reaction faces of olefins in electrophilic addition reactions are opposite to the better electron-donating orbitals at the β positions. The orbital phase environments in Diels-Alder reactions are also reviewed.

  20. Galactic Habitable Orbits

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  1. Quark Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2016-03-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  2. Mars orbits with daily repeating ground traces

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.; Kerridge, Stuart; Diehl, Roger; neelon, Joseph; Ely, Todd; Turner, Andrew

    2003-01-01

    This paper derives orbits at Mars with ground traces that repeat at the same times every solar day (sol). A relay orbiter in such an orbit would pass over insitu probes at the same times every sol, ensuring consistent coverage and simplifying mission design and operations. 42 orbits in five classes are characteried: 14 cicular equatorial prograde orbits; 14 circular equatorial retrograde orbits; 11 circular sun synchrounous orbits; 2 eccentroc equatorial orbits; 1 eccentric critcally inclined orbit. the paper reports on the performance of a relay orbiter in some of the orbits.

  3. Finite thrust orbital transfers

    NASA Astrophysics Data System (ADS)

    Mazzini, Leonardo

    2014-07-01

    The finite thrust optimal transfer in the presence of the Earth's shadow and oblate planet perturbations is a problem of strong interest in modern telecommunication satellite design with plasmic propulsion. The Maximum Principle cannot be used in its standard form to deal with the Earth's shadow. In this paper, using a regularization of the Hamiltonian which expands the Maximum Principle application domain, we provide for the first time, the necessary conditions in a very general context for the finite thrust optimal transfer with limited power around an oblate planet. The costate in such problems is generally discontinuous. To obtain fast numerical solutions, the averaging of the Hamiltonian is introduced. Two classes of boundary conditions are analyzed and numerically solved: the minimum time and the minimum fuel at a fixed time. These two problems are the basic tools for designing the orbit raising of a satellite after the launcher injection into its separation orbit. Numerical solutions have been calculated for the more important applications of LEO to GEO/MEO missions and the results have been reported and discussed.

  4. Orbital construction demonstration study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA) was developed that can be used for evaluating and establishing practical large structural assembly operations. A flight plan for initial placement and continued utility is presented as a basic for an entirely new shuttle payload line-item having great future potential benefit for space applications. The OCDA is a three-axis stabilized platform in low-earth orbit with many structural nodals for mounting large construction and fabrication equipments. This equipment would be used to explore methods for constructing the large structures for future missions. The OCDA would be supported at regular intervals by the shuttle. Construction experiments and consumables resupply are performed during shuttle visit periods. A 250 kw solar array provides sufficient power to support the shuttle while attached to the OCDA and to run construction experiments at the same time. Wide band communications with a Telemetry and Data Relay Satellite compatible high gain antenna can be used between shuttle revisits to perform remote controlled, TV assisted construction experiments.

  5. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1989-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain choices of initial true anomaly can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for the existence of such singularities is that the initial and final orbits intersect.

  6. General view of the Orbiter Discovery in the Orbiter Processing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Orbital Evolution and Impact Hazard of Asteroids on Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Kankiewicz, P.; Włodarczyk, I.

    2014-07-01

    We present the past evolutional scenarios of known group of asteroids in retrograde orbits. Applying the latest observational data, we determined their nominal and averaged orbital elements. Next, we studied the behaviour of their orbital motion 1~My in the past (100~My in the future for two NEAs) taking into account the limitations of observational errors. It has been shown that the influence of outer planets perturbations in many cases can import small bodies on high inclination or retrograde orbits into the inner Solar System.

  8. Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight; Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using a light-weight synthetic aperture radar.

  9. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten times as long* as the latter. The filter correction step also furnishes a statistically rigorous *prediction error* which appears in the likelihood ratios for scoring the association of one report or observation to another. Thus, the new filter can be used to support multi-target tracking within a general multiple hypothesis tracking framework. Additionally, the new distribution admits a distance metric which extends the classical Mahalanobis distance (chi^2 statistic). This metric provides a test for statistical significance and facilitates single-frame data association methods with the potential to easily extend the covariance-based track association algorithm of Hill, Sabol, and Alfriend. The filtering, data fusion, and association methods using the new class of orbital state PDFs are shown to be mathematically tractable and operationally viable.

  10. Adaptive interplanetary orbit determination

    NASA Astrophysics Data System (ADS)

    Crain, Timothy Price

    This work documents the development of a real-time interplanetary orbit determination monitoring algorithm for detecting and identifying changes in the spacecraft dynamic and measurement environments. The algorithm may either be utilized in a stand-alone fashion as a spacecraft monitor and hypothesis tester by navigators or may serve as a component in an autonomous adaptive orbit determination architecture. In either application, the monitoring algorithm serves to identify the orbit determination filter parameters to be modified by an offline process to restore the operational model accuracy when the spacecraft environment changes unexpectedly. The monitoring algorithm utilizes a hierarchical mixture-of-experts to regulate a multilevel bank organization of extended Kalman filters. Banks of filters operate on the hierarchy top-level and are composed of filters with configurations representative of a specific environment change called a macromode. Fine differences, or micromodes, within the macromodes are represented by individual filter configurations. Regulation is provided by two levels of single-layer neural networks called gating networks. A single top-level gating network regulates the weighting among macromodes and each bank uses a gating network to regulate member filters internally. Experiments are conducted on the Mars Pathfinder cruise trajectory environment using range and Doppler data from the Deep Space Network. The experiments investigate the ability of the hierarchical mixture-of-experts to identify three environment macromodes: (1) unmodeled impulsive maneuvers, (2) changes in the solar radiation pressure dynamics, and (3) changes in the measurement noise strength. Two methods of initializing the gating networks are examined in each experiment. One method gives the neurons associated with all filters equivalent synaptic weight. The other method places greater weight on the operational filter initially believed to model the spacecraft environment. The results will show that the equal synaptic weight initialization method is superior to the one favoring the operational filter and that processing range and Doppler data together is superior to processing Doppler data alone. When processing range and Doppler with an equally initialized hierarchy, all three macromodes are definitively identified by the top-level gating network weights. Additionally, in the case of multiple successive macromode changes, the hierarchy is generally able to recover from one macromode and identify a change to another macromode.

  11. Real and hybrid atomic orbitals

    NASA Astrophysics Data System (ADS)

    Cook, D. B.; Fowler, P. W.

    1981-09-01

    It is shown that the Schrödinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. Thus the real and hybrid atomic orbitals have as sound a pedigree as the more familiar complex orbitals based on the separation of the Schrödinger equation in spherical polar coordinates.

  12. Extrasolar Planetary Imaging Coronagraph: Visible Nulling Coronagraph Testbed Results

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 3-year mission lifetime ( 5 year goal) and will revisit planets at least three times at intervals of 9 months. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables high order starlight suppression in broadband light. To demonstrate the VNC approach and advance it's technology readiness the NASA Goddard Space Flight Center and Lockheed-Martin have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed,

  13. Visible Nulling Coronagraph Testbed Results

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Melnick, Gary; Tolls, Volker; Woodruff, Robert; Vasudevan, Gopal; Rizzo, Maxime; Thompson, Patrick

    2009-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a NASA Astrophysics Strategic Mission Concept study and a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC would provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 5-year mission lifetime. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables starlight suppression in broadband light from 480-960 nm. To demonstrate the VNC approach and advance it's technology readiness we have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed.

  14. Geology orbiter comparison study

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  15. Exploratory orbit analysis

    SciTech Connect

    Michelotti, L.

    1989-03-01

    Unlike the other documents in these proceedings, this paper is neither a scientific nor a technical report. It is, rather, a short personal essay which attempts to describe an Exploratory Orbit Analysis (EOA) environment. Analyzing the behavior of a four or six dimensional nonlinear dynamical system is at least as difficult as analyzing events in high-energy collisions; the consequences of doing it badly, or slowly, would be at least as devastating; and yet the level of effort and expenditure invested in the latter, the very attention paid to it by physicists at large, must be two orders of magnitude greater than that given to the former. It is difficult to choose the model which best explains the behavior of a physical device if one does not first understand the behavior of the available models. The time is ripe for the development of a functioning EOA environment, which I will try to describe in this paper to help us achieve this goal.

  16. Skylab Orbiter Workshop Illustration

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.

  17. Calculating Trajectories And Orbits

    NASA Technical Reports Server (NTRS)

    Alderson, Daniel J.; Brady, Franklyn H.; Breckheimer, Peter J.; Campbell, James K.; Christensen, Carl S.; Collier, James B.; Ekelund, John E.; Ellis, Jordan; Goltz, Gene L.; Hintz, Gerarld R.; Legerton, Victor N.; Mccreary, Faith A.; Mitchell, Robert T.; Mottinger, Neil A.; Moultrie, Benjamin A.; Moyer, Theodore D.; Rinker, Sheryl L.; Ryne, Mark S.; Stavert, L. Robert; Sunseri, Richard F.

    1989-01-01

    Double-Precision Trajectory Analysis Program, DPTRAJ, and Orbit Determination Program, ODP, developed and improved over years to provide highly reliable and accurate navigation capability for deep-space missions like Voyager. Each collection of programs working together to provide desired computational results. DPTRAJ, ODP, and supporting utility programs capable of handling massive amounts of data and performing various numerical calculations required for solving navigation problems associated with planetary fly-by and lander missions. Used extensively in support of NASA's Voyager project. DPTRAJ-ODP available in two machine versions. UNIVAC version, NPO-15586, written in FORTRAN V, SFTRAN, and ASSEMBLER. VAX/VMS version, NPO-17201, written in FORTRAN V, SFTRAN, PL/1 and ASSEMBLER.

  18. TOPEX orbital radiation study

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. M.

    1984-01-01

    The space radiation environment of the TOPEX spacecraft is investigated. A single trajectory was considered. The external (surface incident) charged particle radiation, predicted for the satellite, is determined by orbital flux integration for the specified trajectory. The latest standard models of the environment are used in the calculations. The evaluation is performed for solar maximum conditions. The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thickness. Limited shielding and dose evaluations are performed for simple infinite slab and spherical geometries. Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on.

  19. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  20. Orbiting radiation stars

    NASA Astrophysics Data System (ADS)

    Foster, Dean P.; Langford, John; Perez-Giz, Gabe

    2016-03-01

    We study a spherically symmetric solution to the Einstein equations in which the source, which we call an orbiting radiation star (OR-star), is a compact object consisting of freely falling null particles. The solution avoids quantum scale regimes and hence neither relies upon nor ignores the interaction of quantum mechanics and gravitation. The OR-star spacetime exhibits a deep gravitational well yet remains singularity free. In fact, it is geometrically flat in the vicinity of the origin, with the flat region being of any desirable scale. The solution is observationally distinct from a black hole because a photon from infinity aimed at an OR-star escapes to infinity with a time delay.

  1. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  2. Aerobraked orbital transfer vehicle definition

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Bloetscher, F.

    1981-01-01

    A new technique has been developed to enhance the use of upper atmosphere aerobraking for increased performance from orbital transfer vehicles. This technique utilizes a pressure supported drag brake and the orbital transfer vehicle main engine to modulate aerodynamic drag and also to alleviate the aerodynamic heating during a grazing pass through the atmosphere. Performance analyses of vehicles utilizing all-propulsive or aerobraking during round trip missions from low earth orbit (LEO) to geo-synchronous earth orbit (GEO) and back shows that aerobraking allows a given vehicle to deliver approximately twice as much payload to GEO and return. Aerobraking also provides more than twice the round trip payload.

  3. Orbiter utilization as an ACRV

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan N.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.; Troutman, Patrick A.

    1990-01-01

    Assuming that a Shuttle Orbiter could be qualified to serve long duration missions attached to Space Station Freedom in the capacity as an Assured Crew Return Vehicle (ACRV), a study was conducted to identify and examine candidate attach locations. Baseline, modified hardware, and new hardware design configurations were considered. Dual simultaneous Orbiter docking accommodation were required. Resulting flight characteristics analyzed included torque equilibrium attitude (TEA), microgravity environment, attitude controllability, and reboost fuel requirements. The baseline Station could not accommodate two Orbiters. Modified hardware configurations analyzed had large TEA's. The utilization of an oblique docking mechanism best accommodated an Orbiter as an ACRV.

  4. Orbital molecules in electronic materials

    SciTech Connect

    Attfield, J. Paul

    2015-04-01

    Orbital molecules are made up of coupled orbital states on several metal ions within an orbitally ordered (and sometimes also charge-ordered) solid such as a transition metal oxide. Spin-singlet dimers are known in many materials, but recent discoveries of more exotic species such as 18-electron heptamers in AlV{sub 2}O{sub 4} and magnetic 3-atom trimerons in magnetite (Fe{sub 3}O{sub 4}) have shown that orbital molecules constitute a general new class of quantum electronic states in solids.

  5. Orbit Determination Toolbox

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave

    2010-01-01

    The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.

  6. The Košice meteorite fall: Atmospheric trajectory, fragmentation, and orbit

    NASA Astrophysics Data System (ADS)

    BorovičKa, Jiří; Tóth, Juraj; Igaz, Antal; Spurný, Pavel; Kalenda, Pavel; Haloda, Jakub; Svoreå, Ján; Kornoš, Leonard; Silber, Elizabeth; Brown, Peter; HusáRik, Marek

    2013-10-01

    The Košice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s-1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s-1. A maximum brightness of absolute stellar magnitude about -18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Košice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.

  7. PyORBIT: A Python Shell For ORBIT

    SciTech Connect

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  8. Dynamic behavior of solar wind as revealed by a correlation study of magnetic fields observed at the Venus and Earth orbits

    NASA Technical Reports Server (NTRS)

    Marubashi, K.

    1995-01-01

    Correlations between interplanetary magnetic fields (IMFs) at 0.72 AU and 1.0 AU have been examined using data sets obtained from the Pioneer Venus orbiter and Earth-orbiting spacecraft. While the two-sector structures are evident in long-term variations at these two heliocentric distances, the corresponding auto-correlation coefficients are consistently smaller at 1.0 AU than at 0.72 AU. This suggests that the IMF structures become less persistent at 1.0 AU due to the effects of changing solar wind dynamics between the Venus and Earth orbits. Short-term variations exhibit generally poor correlations between IMFs near Venus and those near Earth, though good correlations are sometimes obtained for well-defined structures when the Sun, Venus, and Earth are closely aligned. The rather poor correlations in the background streams indicate that the IMFs are still changing between the Venus and Earth orbits under the strong influence of solar wind dynamics.

  9. Orbit propagation in Minkowskian geometry

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Peláez, Jesús

    2015-09-01

    The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in , the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.

  10. SIRTF in high earth orbit

    NASA Technical Reports Server (NTRS)

    Werner, Michael W.; Brooks, Walter F.; Manning, Larry A.; Eisenhardt, Peter

    1989-01-01

    The goals, requirements and operation of the Space Infrared Telescope Facility (SIRTF) are discussed. Emphasis is upon an analysis of the options of high and low earth orbits for the mission. The consensus was that the high earth orbit offers significant scientific and engineering advantages for SIRTF.

  11. Lageos orbit and solar eclipses

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1984-01-01

    The objective was to assess the importance of solar eclipses on Lageos' orbit. Solar radiation pressure perturbs the orbit of the Lageos satellite. The GEODYN orbit determination computer program includes solar radiation pressure as one of the forces operating on the satellite as it integrates the orbit. GEODYN also takes into account the extinction of sunlight when Lageos moves into the Earth's shadow. The effect of solar eclipses on the semimajor axis of Lageos' orbit was computed analytically by assuming Lageos to be in a circular orbit, the Sun and the Moon to be in the plane of the orbit, and the Moon to be stationary in the sky in front of the Sun. Also, the magnitude of the radiation pressure is assumed to be linearly related to the angular separation of the Sun and Moon, and that Lageos is a perfect absorber of radiation. The computation indicates that an eclipse of the Sun by the Moon as seen by Lageos can affect the semimajor axis at the 1 centimeter (1 cm) level. Such a change is significant enough to include in GEODYN, in order to get an accurate orbit for Lageos.

  12. What is a MISR orbit?

    Atmospheric Science Data Center

    2014-12-08

    ... on a sun-synchronous orbit. It revolves once around the planet in 98.88 minutes and thus completes about 14.5 revolutions per day. In ... the Terra platform is over the illuminated (day) side of the planet, i.e., during one half of the complete orbit or a bit less. Of course, ...

  13. Giant Orbitals Currents in Nanostructures

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph; Sellmyer, D. J.

    2010-03-01

    The possibility and origin of giant orbital currents [1] in nanostructures is investigated by model calculations. We compare two models: (i) a model where electrons are confined to a ``racetrack'' around the dot and (ii) a tight-binding model where atomic spin-orbit coupling creates macroscopic currents at the periphery of the dots. The first model yields expressions very similar to Ref. 1, but the corresponding spin-orbit coupling [2] is negligibly small, because it strongly decreases with increasing orbital radius. Furthermore, the orbital moment rapidly collapses due to a redistribution of electron with wave vectors of opposite sense of rotation. In the second model, the relatively strong intra-atomic spin-orbit interaction yields orbital currents that add [3] between neighboring atoms and create a macroscopic current at the periphery of the dot. This current corresponds to a magnetic Berry phase and cannot dissipate, because the underlying atomic orbital moments are quantized. References: [1] A. Hernando, P. Crespo, and M. A. Garc'ia, Phys. Rev. Lett. 96, 057206 (2006). [2] R. Skomski, IEEE Trans. Magn. 32, 4794 (1996). [3] J. Zhang, R. Skomski, Y. F. Lu, and D. J. Sellmyer, Phys. Rev. B 75, 214417 (2007).

  14. Safety in earth orbit study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Safety aspects are studied of the space shuttle orbiter, the shuttle payloads, and space stations in earth orbital operations. The tasks generated safety requirements, guidelines, recommendations, and conceptual safety devices. The tasks studied were: hazardous payloads, docking, onboard survivability tumbling spacecraft, and escape and rescue operations.

  15. Low Earth Orbiter: Terminal

    NASA Technical Reports Server (NTRS)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper will describe the current NASA implementation of the LEO-T network of antenna systems, the customers now being supported, and the services NASA can now offer with this new breed of autonomous ground stations. In addition, the paper will define the technical capabilities of the system and the cost effectiveness of using the systems including the capital costs of installation.

  16. Orbit determination in satellite geodesy

    NASA Astrophysics Data System (ADS)

    Beutler, G.; Schildknecht, T.; Hugentobler, U.; Gurtner, W.

    2003-04-01

    For centuries orbit determination in Celestial Mechanics was a synonym for the determination of six so-called Keplerian elements of the orbit of a minor planet or a comet based on a short series of (three or more) astrometric places observed from one or more observatories on the Earth's surface. With the advent of the space age the problem changed considerably in several respects: (1) orbits have to be determined for a new class of celestial objects, namely for artificial Earth satellites; (2) new observation types, in particular topocentric distances and radial velocities, are available for the establishment of highly accurate satellite orbits; (3) even for comparatively short arcs (up to a few revolutions) the orbit model that has to be used is much more complicated than for comparable problems in the planetary system: in addition to the gravitational perturbations due to Moon and planets higher-order terms in the Earth's gravity field have to be taken into account as well as non-gravitational effects like atmospheric drag and/or radiation pressure; (4) the parameter space is often of higher than the sixth dimension, because not only the six osculating elements referring to the initial epoch of an arc, but dynamical parameters defining the (a priori imperfectly known) force field have to be determined, as well. It may even be necessary to account for stochastic velocity changes. Orbit determination is not a well-known task in satellit geodesy. This is mainly due to the fact that orbit determination is often imbedded in a much more general parameter estimation problem, where other parameter types (referred to station positions, Earth rotation, atmosphere, etc.) have to be determined, as well. Three examples of "pure" orbit determination problems will be discussed subsequently: ? The first problem intends to optimize the observation process of one Satellite Laser Ranging (SLR) observatory. It is a filter problem, where the orbit is improved in real time with the goal to narrow down the so-called range-gate, defining the time interval when the echo of the LASER pulse is expected. ? Secondly we highlight orbit determination procedures (in particular advanced orbit parametrization techniques) related to the determination of the orbits of GPS satellites and of Low Earth Orbiters (LEOS) equipped with GPS receivers. ? We conclude by discussing the problem of determining the orbits of passive artificial satellites or of space debris using high-precision astrometric CCD-observations of these object.

  17. General relativity and satellite orbits

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1975-01-01

    The general relativistic correction to the position of a satellite is found by retaining Newtonian physics for an observer on the satellite and introducing a potential. The potential is expanded in terms of the Keplerian elements of the orbit and substituted in Lagrange's equations. Integration of the equations shows that a typical earth satellite with small orbital eccentricity is displaced by about 17 cm. from its unperturbed position after a single orbit, while the periodic displacement over the orbit reaches a maximum of about 3 cm. The moon is displaced by about the same amounts. Application of the equations to Mercury gives a total displacement of about 58 km. after one orbit and a maximum periodic displacement of about 12 km.

  18. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  19. Orbiter Camera Payload System

    NASA Astrophysics Data System (ADS)

    1980-12-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  20. Mapping Elliptical Orbits Around Europa

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Prado, Antonio; Carvalho, Jean Paulo; Cardoso dos Santos, Josué

    Due to specifics scientific purposes space missions has been proposed to explore natural satellites, comets and asteroids sending artificial satellites orbiting around these bodies. The planning of such missions must be taken into account a good choice for the orbits that reduces the cost related to station-keeping and the increasing the duration of the mission. The present research has the objective of using a new concept to map with respect the station-keeping maneuvers to study elliptical orbits around Europa. This concept is based in the integral of the perturbing forces over the time. This value can estimate the total variation of velocity received by the spacecraft from the perturbations forces acting on it. The value of this integral is a characteristic of the perturbations considered and the orbit chosen for the spacecraft. Numerical simulations are made showing the value of this integral for orbits around Europa as a function of the eccentricity and semi-major axis of the orbits. An important application of the present research is in the search for frozen orbits.

  1. Lifetimes of lunar satellite orbits

    NASA Technical Reports Server (NTRS)

    Meyer, Kurt W.; Buglia, James J.; Desai, Prasun N.

    1994-01-01

    The Space Exploration Initiative has generated a renewed interest in lunar mission planning. The lunar missions currently under study, unlike the Apollo missions, involve long stay times. Several lunar gravity models have been formulated, but mission planners do not have enough confidence in the proposed models to conduct detailed studies of missions with long stay times. In this report, a particular lunar gravitational model, the Ferrari 5 x 5 model, was chosen to determine the lifetimes for 100-km and 300-km perilune altitude, near-circular parking orbits. The need to analyze orbital lifetimes for a large number of initial orbital parameters was the motivation for the formulation of a simplified gravitational model from the original model. Using this model, orbital lifetimes were found to be heavily dependent on the initial conditions of the nearly circular orbits, particularly the initial inclination and argument of perilune. This selected model yielded lifetime predictions of less than 40 days for some orbits, and other orbits had lifetimes exceeding a year. Although inconsistencies and limitations are inherent in all existing lunar gravity models, primarily because of a lack of information about the far side of the moon, the methods presented in this analysis are suitable for incorporating the moon's nonspherical gravitational effects on the preliminary design level for future lunar mission planning.

  2. Radiation therapy for orbital lymphoma

    SciTech Connect

    Zhou Ping . E-mail: pzhou@partners.org; Ng, Andrea K.; Silver, Barbara; Li Sigui; Hua Ling; Mauch, Peter M.

    2005-11-01

    Purpose: To describe radiation techniques and evaluate outcomes for orbital lymphoma. Methods and Materials: Forty-six patients (and 62 eyes) with orbital lymphoma treated with radiotherapy between 1987 and 2003 were included. The majority had mucosa-associated lymphoid tissue (48%) or follicular (30%) lymphoma. Seventeen patients had prior lymphoma at other sites, and 29 had primary orbital lymphoma. Median follow-up was 46 months. Results: The median dose was 30.6 Gy; one-third received <30 Gy. Electrons were used in 9 eyes with disease confined to the conjunctiva or eyelid, and photons in 53 eyes with involvement of intraorbital tissues to cover entire orbit. Local control rate was 98% for all patients and 100% for those with indolent lymphoma. Three of the 26 patients with localized primary lymphoma failed distantly, resulting in a 5-year freedom-from-distant-relapse rate of 89%. The 5-year disease-specific and overall survival rates were 95% and 88%, respectively. Late toxicity was mainly cataract formation in patients who received radiation without lens block. Conclusions A dose of 30 Gy is sufficient for indolent orbital lymphoma. Distant relapse rate in patients with localized orbital lymphoma was lower than that reported for low-grade lymphoma presenting in other sites. Orbital radiotherapy can be used for salvage of recurrent indolent lymphoma.

  3. Mab's orbital motion explained

    NASA Astrophysics Data System (ADS)

    Kumar, K.; de Pater, I.; Showalter, M. R.

    2015-07-01

    We explored the hypothesis that Mab's anomalous orbital motion, as deduced from Hubble Space Telescope (HST) data (Showalter, M.R., Lissauer, J.J. [2006]. Science (New York, NY) 311, 973-977), is the result of gravitational interactions with a putative suite of large bodies in the μ-ring. We conducted simulations to compute the gravitational effect of Mab (a recently discovered Uranian moon) on a cloud of test particles. Subsequently, by employing the data extracted from the test particle simulations, we executed random walk simulations to compute the back-reaction of nearby perturbers on Mab. By generating simulated observation metrics, we compared our results to the data retrieved from the HST. Our results indicate that the longitude residual change noted in the HST data (Δλr,Mab ≈ 1 deg) is well matched by our simulations. The eccentricity variations (ΔeMab ≈10-3) are however typically two orders of magnitude too small. We present a variety of reasons that could account for this discrepancy. The nominal scenario that we investigated assumes a perturber ring mass (mring) of 1 mMab (Mab's mass) and a perturber ring number density (ρn,ring) of 10 perturbers per 3 RHill,Mab (Mab's Hill radius). This effectively translates to a few tens of perturbers with radii of approximately 2-3 km, depending on the albedo assumed. The results obtained also include an interesting litmus test: variations of Mab's inclination on the order of the eccentricity changes should be observable. Our work provides clues for further investigation into the tantalizing prospect that the Mab/μ-ring system is undergoing re-accretion after a recent catastrophic disruption.

  4. Numerical studies on neutral solar wind flux at Solar Orbiter's perihelion

    NASA Astrophysics Data System (ADS)

    D'Amicis, Raffaella; Mura, Alessandro; Orsini, Stefano; Hilchenbach, Martin; Hsieh, K. C.; Telloni, Daniele; Bruno, Roberto; Antonucci, Ester

    Solar wind neutral hydrogen, flowing together with the ionized component, has basically a different phase-space distribution function. As a matter of fact, contrary to the ionized component, neutrals can cover long distances on ballistic trajectories, unmodified by magnetic and electric fields. As a consequence, once decoupled from protons, neutral hydrogen atoms retain information on the three-dimensional distribution of protons at the location where they are generated. In the present study, we perform numerical simulations of neutral hydrogen flux distribution to be measured by Solar Orbiter at a perihelion distance of 48 solar radii (RS ), using different models of solar wind expansion and considering neutral hydrogen coming from fast and slow solar wind. By analysing flux distributions as a function of energy and heliocentric distance, we find that the generation region of neutral hydrogen is at approximately 10 RS for fast wind and at about 20 RS for slow wind. Moreover, the differential flux in angle shows that the signal is concentrated in a small region around the Sun direction. The width of this region depends on the solar wind model applied, and may be up to 10° for fast wind and up to 20° for slow wind.

  5. Earth orbiter into planetary orbiter - What's the problem?

    NASA Technical Reports Server (NTRS)

    Brodsky, R. F.

    1984-01-01

    A recent series of competitive design studies appears to have yielded positive results about the efficacy of adapting earth-orbiting spacecraft to perform planetary missions. The purpose of this paper is twofold: (1) to show the intrinsic attributes required to adapt an earth orbiter into a Martian orbiter compatible with the scientific requirements, and (2) to show the minimum requisite changes needed to make the adaptation. It is shown that major deficiencies of such conversion for earth-orbiting satellites lie in the not-unexpected inability of its telecommunications system to operate at Martian distances and its lack of an autonomous recovery system from anomalous performance. Since these deficiencies can be overcome without too great a financial or schedule penalty, the study shows that the adaptation can be made cost effectively.

  6. Orbital, Rotational, and Climatic Interactions

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G. (Editor)

    1992-01-01

    The report of an international meeting on the topic of Orbital, Rotational, and Climatic Interactions, which was held 9-11 Jul. 1991 at the Johns Hopkins University is presented. The meeting was attended by 22 researchers working on various aspects of orbital and rotational dynamics, paleoclimate data analysis and modeling, solid-Earth deformation studies, and paleomagnetic analyses. The primary objective of the workshop was to arrive at a better understanding of the interactions between the orbital, rotational, and climatic variations of the Earth. This report contains a brief introduction and 14 contributed papers which cover most of the topics discussed at the meeting.

  7. Manrating orbital transfer vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1985-01-01

    The expended capabilities for Orbital Transfer Vehicles (OTV) which will be needed to meet increased payload requirements for transporting materials and men to geosynchronous orbit are discussed. The requirement to provide manrating offers challenges and opportunities to the propulsion system designers. The propulsion approaches utilized in previous manned space vehicles of the United States are reviewed. The principals of reliability analysis are applied to the Orbit Transfer Vehicle. Propulsion system options are characterized in terms of the test requirements to demonstrate reliability goals and are compared to earlier vehicle approaches.

  8. Mars Science Laboratory Orbit Determination

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard L.; Gustafson, Eric D.; Thompson, Paul F.; Jefferson, David C.; Martin-Mur, Tomas J.; Mottinger, Neil A.; Pelletier, Frederic J.; Ryne, Mark S.

    2012-01-01

    This paper describes the orbit determination process, results and filter strategies used by the Mars Science Laboratory Navigation Team during cruise from Earth to Mars. The new atmospheric entry guidance system resulted in an orbit determination paradigm shift during final approach when compared to previous Mars lander missions. The evolving orbit determination filter strategies during cruise are presented. Furthermore, results of calibration activities of dynamical models are presented. The atmospheric entry interface trajectory knowledge was significantly better than the original requirements, which enabled the very precise landing in Gale Crater.

  9. JSC Orbital Debris Website Description

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as required. These data also help in the analysis and interpretation of impact features on returned spacecraft surfaces. 4) Mitigation - Controlling the growth of the orbital debris population is a high priority for NASA, the United States, and the major space-faring nations of the world to preserve near-Earth space for future generations. Mitigation measures can take the form of curtailing or preventing the creation of new debris, designing satellites to withstand impacts by small debris, and implementing operational procedures ranging from utilizing orbital regimes with less debris, adopting specific spacecraft attitudes, and even maneuvering to avoid collisions with debris. Downloadable items include several documents in PDF format and executable software.and 5) Reentry - Because of the increasing number of objects in space, NASA has adopted guidelines and assessment procedures to reduce the number of non-operational spacecraft and spent rocket upper stages orbiting the Earth. One method of postmission disposal is to allow reentry of these spacecraft, either from orbital decay (uncontrolled entry) or with a controlled entry. Orbital decay may be achieved by firing engines to lower the perigee altitude so that atmospheric drag will eventually cause the spacecraft to enter. However, the surviving debris impact footprint cannot be guaranteed to avoid inhabited landmasses. Controlled entry normally occurs by using a larger amount of propellant with a larger propulsion system to drive the spacecraft to enter the atmosphere at a steeper flight path angle. It will then enter at a more precise latitude, longitude, and footprint in a nearly uninhabited impact region, generally located in the ocean.

  10. Independent Orbiter Assessment (IOA): Analysis of the orbital maneuvering system

    NASA Technical Reports Server (NTRS)

    Prust, C. D.; Paul, D. J.; Burkemper, V. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbital Maneuvering System (OMS) hardware are documented. The OMS provides the thrust to perform orbit insertion, orbit circularization, orbit transfer, rendezvous, and deorbit. The OMS is housed in two independent pods located one on each side of the tail and consists of the following subsystems: Helium Pressurization; Propellant Storage and Distribution; Orbital Maneuvering Engine; and Electrical Power Distribution and Control. The IOA analysis process utilized available OMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluted and analyzed for possible failure modes and effects. Criticality was asigned based upon the severity of the effect for each failure mode.

  11. Reactionless orbital propulsion using tether deployment

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1990-01-01

    Examples of tether propulsion in orbit without the use of reaction mass are discussed. These include (1) using tether extension to reposition a satellite in orbit without fuel expenditure by extending a mass on the end of the tether; (2) using a tether for eccentricity pumping to add energy to the orbit for boosting and orbital transfer; and (3) length modulation of a spinning tether to transfer angular momentum between the orbit and tether spin, thus allowing changes in orbital angular momentum.

  12. Optical performance of the 100-sq deg field-of-view telescope for NASA's Kepler exoplanet mission

    NASA Astrophysics Data System (ADS)

    Ebbets, D.; Atcheson, P.; Stewart, C.; Spuhler, P.; Van Cleve, J.; Bryson, S.

    2011-09-01

    Kepler is NASA's first space mission dedicated to the study of exoplanets. The primary scientific goal is statistical - to estimate the frequency of planetary systems associated with sun-like stars, especially the detection of earth-size planets in the Habitable Zones. Kepler was launched into an Earth-trailing heliocentric "drift-away" orbit (period = 372 days) in March 2009. The instrument detects the faint photometric signals of transits of planets across the stellar disks of those systems with orbital planes fortuitously oriented in our line-of-sight. Since the probability of such alignments is small Kepler must observe a large number of stars. In fact, Kepler is monitoring approximately 150,000 stars with a 30-minute cadence. These scientific requirements led to the choice of a classical Schmidt telescope, and requirements on field-of-view (FOV), throughput, spectral bandpass, image quality, scattered light, thermal and opto-mechanical stability and in-flight adjustment authority. We review the pre-launch integration, alignment and test program, and we describe the in-flight commissioning that optimized the optical performance of the observatory. The stability of the flight system has enabled increasing recognition of small effects and increasing sophistication in data processing algorithms. Astrophysical noise arising from intrinsic stellar variability is now the dominant term in the photometric error budget.

  13. Structure of the Zodiacal Emission by Spitzer Archive Data

    NASA Astrophysics Data System (ADS)

    Verebélyi, Erika

    2015-08-01

    Dust in the Interplanetary Dust Cloud not just reflects the sunlight (known as zodiacal light) but also has its own thermal emission. At the heliocentric distance of Earth the peak of this emission (with particle size 100 μm) is close to 20 μm. In this study we used the data of four programs completed with the MIPS camera of the Spitzer Space Telescope at 24 μm to probe the large scale brightness distribution as well as the small-scale (subarcmin) structure of the Zodiacal Could. The four programs were:1. The Production of Zodiacal Dust by Asteroids and Comets (ID: 2317)2. High Latitude Dust Bands in the Main Asteroid Belt: Fingerprints of Recent Breakup Events (ID: 20539)3. A New Source of Interplanetary Dust: Type II Dust Trails (ID: 30545)4. First Look Survey - Ecliptic Plane Component (ID: 98)We take into account that while the Spitzer Space Telescope carried out the measurements it was orbiting the Sun at an Earth-trailing orbit and looked at different parts of the Zodiacal Cloud, in many cases looking through the same parts of the cloud from different locations. This gives us the chance to investigate the 3D distribution of zodiacal dust in addition to its large and small scale structure.

  14. Telescope with 100 square degree field-of-view for NASA's Kepler mission

    NASA Astrophysics Data System (ADS)

    Ebbets, Dennis; Stewart, Chris; Spuhler, Peter; Atcheson, Paul; Cleve, Jeffrey Van; Bryson, Stephen; Clarkson, Andrew; Barentine, John

    2013-09-01

    Kepler is NASA's first space mission dedicated to the study of exoplanets. The primary scientific goal is statistical-to estimate the frequency of planetary systems associated with sun-like stars, especially the detection of earth-size planets in the habitable zones. Kepler was launched into an Earth-trailing heliocentric "drift-away" orbit (period=372 days) in March 2009. The instrument detects the faint photometric signals of transits of planets across the stellar disks of those systems with orbital planes fortuitously oriented in our line of sight. Since the probability of such alignments is small, Kepler must observe a large number of stars. In fact, Kepler is monitoring approximately 150,000 stars with a 30-min cadence. The scientific goals led to the choice of a classical Schmidt telescope, and requirements on field-of-view, throughput, spectral bandpass, image quality, scattered light, thermal and opto-mechanical stability, and in-flight adjustment authority. We review the measurement requirements, telescope design, prelaunch integration, alignment, and test program, and we describe the in-flight commissioning that optimized the performance. The stability of the flight system has enabled increasing recognition of small effects and sophistication in data processing algorithms. Astrophysical noise arising from intrinsic stellar variability is now the dominant term in the photometric error budget.

  15. Structure of the zodiacal emission by Spitzer archive data

    NASA Astrophysics Data System (ADS)

    Verebelyi, E.; Kiss, C.; Balog, Z.; Stansberry, J.

    2014-07-01

    Dust in the interplanetary dust cloud not just reflects the sunlight (known as zodiacal light) but also has its own thermal emission. At the heliocentric distance of the Earth, the peak of this emission (with particle size ˜ 100 μ m) is close to 20 μ m. In this study, we used the data of four programs completed with the MIPS camera of the Spitzer Space Telescope at 24 μ m to probe the large-scale brightness distribution as well as the small-scale (sub-arcmin) structure of the zodiacal cloud. The four programs were: - The Production of Zodiacal Dust by Asteroids and Comets (ID: 2317) - High Latitude Dust Bands in the Main Asteroid Belt: Fingerprints of Recent Breakup Events (ID: 20539) - A New Source of Interplanetary Dust: Type II Dust Trails (ID: 30545) - First Look Survey - Ecliptic Plane Component (ID: 98) We take into account that, when the Spitzer Space Telescope carried out the measurements, it was orbiting the Sun at an Earth-trailing orbit and looking at different parts of the zodiacal cloud, in many cases looking through the same parts of the cloud from different locations. This gives us the chance to investigate the 3D distribution of zodiacal dust in addition to large- and small-scale structure of the cloud.

  16. Effects of orbital ellipticity on collisional disruptions of rubble-pile asteroids

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Baoyin, Hexi; Li, Junfeng; Richardson, Derek C.; Schwartz, Stephen R.

    2015-11-01

    The behavior of debris ejected from asteroids after collisional disruptions has significant implications for asteroid evolution. Analytical approximations of the elliptic restricted three-body system show that the behavior of ejecta varies significantly with the orbital eccentricity and true anomaly of an asteroid. To study these orbital perturbative effects on collision outcomes, we conduct a series of low-speed collision simulations using a combination of an N-body gravity algorithm and the soft-sphere discrete element method. The asteroid is modeled as a gravitational aggregate, which is one of the plausible structures for asteroids whose sizes are larger than several hundreds of meters. To reduce the effect of complicating factors raised by the mutual interaction between post-collision fragments on the outcomes, a low-resolution model and a set of frictionless material parameters are used in the first step of exploration. The results indicate that orbital perturbations on ejecta arising from the eccentricity and true anomaly of the target asteroid at the time of impact cause larger mass loss and lower the catastrophic disruption threshold (the specific energy required to disperse half the total system mass) in collision events. The "universal law" of catastrophic disruption derived by Stewart and Leinhardt (Astrophys. J. Lett. 691:L133-L137, 2009) can be applied to describe the collision outcomes of asteroids on elliptical heliocentric orbits. Through analyses of ejecta velocity distributions, we develop a semi-analytic description of escape speed from the asteroid's surface in an elliptic restricted three-body system and show that resulting perturbations have long-term orbital effects on ejecta and can also have an indirect influence on the velocity field of post-fragments through interparticle collisions. Further exploration with a high-resolution model shows that the long-term perturbative effects systematically increase mass loss, regardless of the target's material parameters and internal configuration, while indirect effect on mass loss is much more complicated and is enhanced when a coarse material or high-porosity model is used.

  17. A Case of Orbital Histoplasmosis.

    PubMed

    Krakauer, Mark; Prendes, Mark Armando; Wilkes, Byron; Lee, Hui Bae Harold; Fraig, Mostafa; Nunery, William R

    2016-01-01

    Histoplasma capsulatum var capsulatum is a dimorphic fungus endemic to the Ohio and Mississippi River Valleys of the United States. In this case report, a 33-year-old woman who presented with a right orbital mass causing progressive vision loss, diplopia, and facial swelling is described. Lateral orbitotomy with lateral orbital wall bone flap was performed for excisional biopsy of the lesion. The 1.5 × 1.8 × 2.3 cm cicatricial mass demonstrated a granulomatous lesion with necrosis and positive staining consistent with Histoplasma capsulatum var capsulatum infection. To the authors' knowledge, this is the first case of orbital histoplasmosis to be reported in the United States and the first case worldwide of orbital histoplasmosis due to Histoplasma capsulatum var capsulatum. PMID:25186215

  18. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  19. Quark Spin-Orbit Correlations

    NASA Astrophysics Data System (ADS)

    Lorc, Cdric

    2015-02-01

    The proton spin puzzle issue focused the attention on the parton spin and orbital angular momentum contributions to the proton spin. However, a complete characterization of the proton spin structure requires also the knowledge of the parton spin-orbit correlation. We showed that this quantity can be expressed in terms of moments of measurable parton distributions. Using the available phenomenological information about the valence quarks, we concluded that this correlation is negative, meaning that the valence quark spin and kinetic orbital angular momentum are, in average, opposite. The quark spin-orbit correlation can also be expressed more intuitively in terms of relativistic phase-space distributions, which can be seen as the mother distributions of the standard generalized and transverse-momentum dependent parton distributions. We present here for the first time some examples of the general multipole decomposition of these phase-space distributions.

  20. [Orbital phlegmon: clinical picture, diagnosis].

    PubMed

    Tarasova, L N; Khakimova, G M; Chernov, S V

    2008-01-01

    The purpose of the study was to enhance the efficiency of early diagnosis of orbital phlegmon, by examining its clinical picture and using instrumental studies. Sixty-three patients with orbital phlegmon were treated at hospital in 1985 to 2007. Its diagnosis employed ultrasound and X-ray studies. Orbital phlegmon was diagnosed in 30 patients with orbital injury and 33 patients with inflammatory diseases of the eyelids, face, nasal sinuses, and infection metastasis from septic foci. The disease was characterized by intoxication syndrome, eyelid inflammatory changes, chemosis, exophthalmos, and ophthalmoplegia. The following complications: neuritis, optic nerve ischemia, meningoencephalitis, brain abscess, cavernous sinus thrombosis, and sepsis were observed. Ultrasound and X-ray (computed tomography, magnetic resonance imaging) studies provide the diagnosis of the disease in early periods and timely medical and surgical treatments. PMID:19205400

  1. The orbit of Pluto's satellite

    NASA Technical Reports Server (NTRS)

    Tholen, D. J.

    1985-01-01

    Nineteen speckle interferometric observations of the Pluto system have been used to improve the determination of the orbital elements for Pluto's satellite. Calibration uncertainties appear to be the dominant source of error, but the observation of a partial occultation of the satellite by Pluto has been used to constrain the orbit solution. The orbital period is found to be in excellent agreement with the rotational period of the planet, reinforcing the belief that the system is completely tidally evolved. The orbital radius and period imply a total mass for the system of 6.8 + or - 0.5 x 10 to the -9th solar masses. Density constraints place an upper limit of 3615 + or - 90 km on the diameter of Pluto, while observations of the first mutual events establish a crude lower limit of about 2800 km.

  2. Two stage to orbit design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A preliminary design of a two-stage to orbit vehicle was conducted with the requirements to carry a 10,000 pound payload into a 300 mile low-earth orbit using an airbreathing first stage, and to take off and land unassisted on a 15,000 foot runway. The goal of the design analysis was to produce the most efficient vehicle in size and weight which could accomplish the mission requirements. Initial parametric analysis indicated that the weight of the orbiter and the transonic performance of the system were the two parameters that had the largest impact on the design. The resulting system uses a turbofan ramjet powered first stage to propel a scramjet and rocket powered orbiter to the stage point of Mach 6 to 6.5 at an altitude of 90,000 ft.

  3. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  4. Real and Hybrid Atomic Orbitals.

    ERIC Educational Resources Information Center

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  5. How to Orbit the Earth.

    ERIC Educational Resources Information Center

    Quimby, Donald J.

    1984-01-01

    Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)

  6. NASA Orbital Debris Baseline Populations

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  7. Gravity Probe B Orbit Determination

    NASA Astrophysics Data System (ADS)

    Shestople, Paul; Small, Huntington

    2007-04-01

    The GP-B satellite is equipped with two redundant Trimble TANS Vector III GPS receivers and matching antennae, used to reconcile vehicle time with Coordinated Universal Time (UTC) and to provide a satellite position measurement. Real time GPS position accuracy easily meets mission requirements of 100 m RMS per axis. The GP-B precision orbit was determined in ground processing of 18-hour and 30-hour GPS data segments. Analysis of overlapping consecutive 18-hour ephemeris segments suggest a maximum position uncertainty of 2.5 m RMS and maximum velocity uncertainty of 2.2 mm/sec RMS. Satellite Laser Ranging (SLR) measurements provide independent verification of the GPS-derived GP-B orbit. We describe the GPS equipment and orbit determination operations, including pre-launch verification testing. On-orbit performance and lessons learned are discussed. GP-B ephemeris uncertainties estimated using ephemeris overlap comparisons and SLR residual computations are detailed.

  8. Visualization of Molecular Orbitals: Formaldehyde

    ERIC Educational Resources Information Center

    Olcott, Richard J.

    1972-01-01

    Describes a computer program that plots a solid" representation of molecular orbital charge density which can be used to analyze wave functions of molecules. Illustrated with diagrams for formaldehyde. (AL)

  9. Orbits in a logarithmic potential

    SciTech Connect

    Hooverman, R.H.

    2014-04-15

    The characteristics of charged particle orbits in the logarithmic electrostatic potential field surrounding a straight conducting wire at a fixed potential are investigated. The equations of motion of an electron in a logarithmic potential are derived, the limiting cases are considered, and the results of numerical integration of the equations of motion are presented along with sketches of a few representative orbits. (C.E.S.)

  10. Conversion Of Classical Orbital Elements

    NASA Technical Reports Server (NTRS)

    Guinn, Joseph R.; Bhat, Ramachand S.; Vincent, Mark A.; Konopliv, Alexander S.

    1994-01-01

    OSMEAN is sophisticated program that converts between osculating and mean classical orbital elements. Enables engineer to exploit advantages of each approach for design and planning or orbital trajectories and maneuvers. Converts mean elements to osculating elements or vice-versa. Conversion based on mathematical modeling of all first-order aspherical terrestrial, lunar, and solar gravitational perturbations plus second-order aspherical term based on second-degree central-body zonal perturbation. Written in FORTRAN 77.

  11. Perturbed volume of orbiting debris

    NASA Astrophysics Data System (ADS)

    Ashenberg, Joshua

    1994-05-01

    A case study is presented to investigate the dominant perturbations in particle propagation after an isotropic explosion in low Earth orbits and the volume occupied by the particles. The perturbations were caused by the Earth's oblateness and atmospheric drag. The four integrals of motion, energy, and angular momentum are analyzed to have an insight on the effects of perturbation on volume. The method of solution used is the linearized perturbations, providing a first order solution about the reference orbit.

  12. Orbital Debris Studies at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Krisko, Paula; Whitlock, Dave

    2007-01-01

    Any discussion of expanding the capabilities of Space Surveillance Networks to include tracking and cataloging smaller objects will require a good understanding of orbital debris. In the current U.S. catalog of over 11,000 objects, more than 50% are classified as "debris" to include fragmentation debris, operational debris, liquid metal coolant, and Westford needles. If the catalog is increased to 100,000 objects by lowering the tracked object size threshold, almost all of the additional objects will be orbital debris. The Orbital Debris Program Office has been characterizing the small orbital debris environment through measurements and modeling for many years. This presentation will specifically discuss two different studies conducted at NASA. The first study was done in 1992 and examined the requirements and produced a conceptual design for a Collision Avoidance Network to protect the Space Station Freedom from centimeter sized orbital debris while minimizing maneuvers. The second study was conducted last year and produced NASA s estimate of the orbital population for the years 2015 and 2030 for objects 2 cm and larger.

  13. Mars Observer Orbit Insertion Briefing

    NASA Technical Reports Server (NTRS)

    1993-01-01

    For the first part of this briefing, see NONP-NASA-VT-2000081556. Marvin Traxler continues his discussion on signal tracking from the Mars Observer. Julie Webster, Lead Engineer, Telecommunications Subsystem, is introduced. She explains how signals coming back from Mars are detected. Dr. Pasquale Esposito talks about flyby orbits and capture orbits. He says that frequencies coming from the spacecraft can determine if the spacecraft has flown by Mars, or if a capture orbit has occurred. Charles Whetsel, System Engineer Spacecraft Team, presents a computer program. He shows where the signal will appear on the computer from the Spacecraft. Suzanne Dodd presents orbit insertion geometry. Dr. Arden Albee, Project Scientist Mars Observer Project, Cal Tech tech, says that Mars is studied to get more data to confirm their hypotheses derived from previous Mars Missions such as the Viking Mars Program and the Mariner Program. Dr. Albee also describes instrumentation on the Mars Observer such as the Ultra Stable Oscillator, Mars Orbiter Laser Altimeter, and Magnetometer. The camera on the spacecraft is similar to a fax machine because it scans one line at a time as the spacecraft orbits Mars. Dr. Michael Malin, Principle Investigator Mars Observer Camera, Malin Space Science Systems, Inc., describe this process.

  14. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  15. Harmonic structure of generic Kerr orbits

    NASA Astrophysics Data System (ADS)

    Grossman, Rebecca; Levin, Janna; Perez-Giz, Gabe

    2012-01-01

    Generic Kerr orbits exhibit intricate three-dimensional motion. We offer a classification scheme for these intricate orbits in terms of periodic orbits. The crucial insight is that for a given effective angular momentum L and angle of inclination ι, there exists a discrete set of orbits that are geometrically n-leaf clovers in a precessing orbital plane. When viewed in the full three dimensions, these orbits are periodic in r-θ. Each n-leaf clover is associated with a rational number, 1+qrθ=ωθ/ωr, that measures the degree of perihelion precession in the precessing orbital plane. The rational number qrθ varies monotonically with the orbital energy and with the orbital eccentricity. Since any bound orbit can be approximated as near one of these periodic n-leaf clovers, this special set offers a skeleton that illuminates the structure of all bound Kerr orbits, in or out of the equatorial plane.

  16. Space Tourism: Orbital Debris Considerations

    NASA Astrophysics Data System (ADS)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a review of the current work on space tourism and debris situation in low earth orbit suitable orbits for space tourism activities with regard to the presence of orbital debris are discussed.

  17. The orbit properties of colliding co-orbiting bodies

    NASA Astrophysics Data System (ADS)

    Freeman, J. W.

    1986-05-01

    It is generally assumed that an ensemble of small bodies located in similar Keplarian orbits will, because of collisions, tend to disperse into more and more dissimilar orbits. For example, it is thought that the asteroids may represent the remnants of a few larger bodies that broke up or failed to fully accrete. A proposed experiment using the space station consists of an ensemble of small bodies or particles released gently from a central location in a large chamber, much like the breaking of billiard balls. The particles would them co-orbit and occasionally collide. Their subsequent behavior could be monitored by several video recorders, their linear and angular velocities before and after collision calculated, and their general behavior studied. This experiment could yield results of fundamental importance for theories of the origin of the planets, asteroids, comets, and probably ring systems.

  18. Forces charging the orbital floor after orbital trauma.

    PubMed

    Birkenfeld, Falk; Steiner, Martin; Becker, Merlind Erika; Kern, Matthias; Wiltfang, Jörg; Lucius, Ralph; Becker, Stephan Thomas

    2012-07-01

    The objectives of this study were (i) to evaluate different fracture mechanisms for orbital floor fractures and (ii) to measure forces and displacement of intraorbital tissue after orbital traumata to predict the necessity of strength for reconstruction materials. Six fresh frozen human heads were used, and orbital floor defects in the right and left orbit were created by a direct impact of 3.0 J onto the globe and infraorbital rim, respectively. Orbital floor defect sizes and displacement were evaluated after a Le Fort I osteotomy. In addition, after reposition of the intraorbital tissue, forces and displacement were measured. The orbital floor defect sizes were 208.3 (SD, 33.4) mm(2) for globe impact and 221.8 (SD, 53.1) mm(2) for infraorbital impact. The intraorbital tissue displacement after the impact and before reposition was 5.6 (SD, 1.0) mm for globe impact and 2.8 (SD, 0.7) mm for infraorbital impact. After reposition, the displacement was 0.8 (SD, 0.5) mm and 1.1 (SD, 0.7) mm, respectively. The measured applied forces were 0.061 (SD, 0.014) N for globe impact and 0.066 (SD, 0.022) N for infraorbital impact. Different fracture-inductive mechanisms are not reflected by the pattern of the fracture. The forces needed after reposition are minimal (~0.07 N), which may explain the success of PDS foils [poly-(p-dioxanone)] and collagen membranes as reconstruction materials. PMID:22777456

  19. An Analytical Satellite Orbit Predictor (ASOP)

    NASA Technical Reports Server (NTRS)

    Starke, S. E.

    1977-01-01

    The documentation and user's guide for the Analytical Satellite Orbit Predictor (ASOP) computer program is presented. The ASOP is based on mathematical methods that represent a new state-of-the-art for rapid orbit computation techniques. It is intended to be used for computation of near-earth orbits including those of the shuttle/orbiter and its payloads.

  20. THE ORBITS OF THE OUTER URANIAN SATELLITES

    SciTech Connect

    Brozovic, M.; Jacobson, R. A.

    2009-04-15

    We report on the numerically integrated orbits for the nine outer Uranian satellites. The orbits are calculated based on fits to the astrometric observations for the period from 1984 to 2006. The results include the state vectors, post-fit residuals, and mean orbital elements. We also assess the accuracy of the orbital fits and discuss the need for future measurements.

  1. The orbiter Columbia is moved into the Orbiter Processing Facility.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Space Shuttle orbiter Columbia sits outside the Orbiter Processing Facility bay 1 after transfer from the Vehicle Assembly Building. Columbia will undergo processing for mission STS-93, targeted for launch in July 1999. The STS-93 mission will deploy the Chandra X-ray Observatory (formerly AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). Chandra will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. The STs-93 mission commander is Eileen M. Collins, the first woman to serve in that capacity.

  2. The 2009 Mars Telecommunications Orbiter

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.; DePaula, R.; Diehl, R. E.; Edwards, C. D.; Fitzgerald, R. J.; Franklin, S. F.; Kerridge, S. A.; Komarek, T. A.; Noreen, G. K.

    2004-01-01

    The first spacecraft with a primary function of providing communication links while orbiting a foreign planet has begun development for a launch in 2009. NASA's Mars Telecommunications Orbiter would use three radio bands to magnify the benefits of other future Mars missions and enable some types of missions otherwise impractical. It would serve as the Mars hub for a growing interplanetary Internet. And it would pioneer the use of planet-to-planet laser communications to demonstrate the possibility for even greater networking capabilities in the future. With Mars Telecommunications Orbiter overhead in the martian sky, the Mars Science Laboratory rover scheduled to follow the orbiter to Mars by about a month could send to Earth more than 100 times as much data per day as it could otherwise send. The orbiter will be designed for the capability of relaying up to 15 gigabits per day from the rover, equivalent to more than three full compact discs each day. The same benefits would accrue to other future major Mars missions from any nation.

  3. Tumor pathology of the orbit.

    PubMed

    Héran, F; Bergès, O; Blustajn, J; Boucenna, M; Charbonneau, F; Koskas, P; Lafitte, F; Nau, E; Roux, P; Sadik, J C; Savatovsky, J; Williams, M

    2014-10-01

    The term orbital tumor covers a wide range of benign and malignant diseases affecting specific component of the orbit or developing in contact with them. They are found incidentally or may be investigated as part of the assessment of a systemic disorder or because of orbital signs (exophthalmos, pain, etc.). Computed tomography, MRI and Color Doppler Ultrasound (CDU), play a varying role depending on the clinical presentation and the disease being investigated. This article reflects long experience in a reference center but does not claim to be exhaustive. We have chosen to consider these tumors from the perspective of their usual presentation, emphasizing the most common causes and suggestive radiological and clinical presentations (progressive or sudden-onset exophthalmos, children or adults, lacrimal gland lesions, periorbital lesions and enophthalmos). We will describe in particular muscle involvement (thyrotoxicosis and tumors), vascular lesions (cavernous sinus hemangioma, orbital varix, cystic lymphangioma), childhood lesions and orbital hematomas. We offer straightforward useful protocols for simple investigation and differential diagnosis. Readers who wish to go further to extend their knowledge in this fascinating area can refer to the references in the bibliography. PMID:25195185

  4. Communications satellites in non-geostationary orbits

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Doong, Wen; Nguyen, Tuan Q.; Turner, Andrew E.; Weyandt, Charles

    1988-01-01

    The design of a satellite communications system in an orbit lower than GEO is described. Two sun-synchronous orbits which lie in the equatorial plane have been selected: (1) the apogee at constant time-of-day equatorial orbit, a highly eccentric orbit with five revolutions per day, which allows 77-135 percent more satellite mass to be placed in orbit than for GEO; and (2) the sun-synchronous 12-hour equatorial orbit, a circular orbit with two revolutions per day, which allows 23-29 percent more mass. The results of a life cycle economic analysis illustrate that nongeostationary satellite systems could be competitive with geostationary satellite systems.

  5. The Eccentric Behavior of Nearly Frozen Orbits

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  6. Orbital expansion of the congenitally anophthalmic socket.

    PubMed Central

    Tucker, S M; Sapp, N; Collin, R

    1995-01-01

    BACKGROUND--Congenital anophthalmos is a rare condition in which intervention at an early age can stimulate orbital expansion and maximise facial symmetry. Much is still unknown, however, regarding the degree of soft tissue and bony orbital growth achieved using the orbital expanders presently available. METHODS--A retrospective review of 59 congenitally anophthalmic orbits in 42 patients was carried out. RESULTS--The soft tissue and bony orbital expansion achieved using serial solid shapes is reported, and experience with hydrophilic expanders and inflatable silicone expanders is reviewed. CONCLUSION--Although serially fitted solid shapes in the orbit lead to increased expansion of orbital soft tissue and bone compared with no orbital implant, further orbital tissue enlargement is required. The inflatable silicone expander may allow more rapid and extensive orbital tissue expansion, but design changes are needed to achieve this. PMID:7662633

  7. A criterion to classify asteroids and comets based on the orbital parameters

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo

    2014-05-01

    The classification criterion between asteroids and comets has evolved in recent decades, but the main distinction remains unchanged. Comets present gas and dust ejection from the surface at some point of their orbits, therefore, these objects are considered to be active. On the other hand, asteroids do not show any kind of large scale gas and dust ejection, they are inert. Nevertheless, this classification scheme is impractical when we have more than 500,000 asteroids already discovered. In addition, comets are not active all along their orbits. In order for a comet to display activity at present or in the recent past in the inner region of the Solar System (heliocentric distance <2 AU), the cometary orbit must be unstable in the time scale on the order of ten thousands of years; otherwise, the object should have completely consumed its volatile component. Close encounters with the most massive planets is the only mechanism that could produce “macroscopic” instabilities on a short time scale. The macroscopic changes in the orbital elements can be detected in a numerical integration of the dynamical evolution of the object over a time scale of several thousand years. This procedure to identify asteroids in cometary-like orbits is also impractical because it would require months of computing time. Therefore, a classification scheme based on the orbital elements to identify the border cases between the asteroid and comet populations is urgently required. We present a criterion to classify asteroids and comets and to find the border case based on the Tisserand’s parameter, the Minimum Orbital Intersection Distance (MOID), and considering some information regarding the aphelion and perihelion distances. Objects in mean-motion are disregarded. After applying a filter to the sample of over half a million asteroids already discovered to select the precise orbits and to the sample of 487 short-period comets, we apply the proposed classification criterion. The resulting sample consists of ∼331 Asteroids in Cometary Orbits (ACOs). The ACOs are further classified in subclasses similar to the cometary classification. There are 436 Jupiter Family Comets and 203 ACOs of the Jupiter Family type. This new criterion is more strict that the criteria used by other authors to identify ACOs; nonetheless, with the new criterion we ensure that the ACOs have a chaotic dynamical evolution similar to the periodic comets. The discovered dormant or extinct comets seems, if they exist at all, to be a small fraction of the active comets. We also analyse the available photometric data of ACOs to identify possible large brightness variations. Among the sample of ACOs, there is only one object with brightness variations typical of an active comet: 174P/(60558) Echeclus. But this object has already been double classified as asteroid and comet.

  8. Management of the orbital environment

    NASA Technical Reports Server (NTRS)

    Loftus, Joseph P., Jr.; Kessler, Donald J.; Anz-Meador, Phillip D.

    1991-01-01

    Data regarding orbital debris are presented to shed light on the requirements of environmental management in space, and strategies are given for active intervention and operational strategies. Debris are generated by inadvertent explosions of upper stages, intentional military explosions, and collisional breakups. Design and operation practices are set forth for minimizing debris generation and removing useless debris from orbit in the low-earth and geosynchronous orbits. Self-disposal options include propulsive maneuvers, drag-augmentation devices, and tether systems, and the drag devices are described as simple and passive. Active retrieval and disposition are considered, and the difficulty is examined of removing small debris. Active intervention techniques are required since pollution prevention is more effective than remediation for the problems of both earth and space.

  9. Orbital Variability of η Carinae

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Gies, Douglas; Gull, Ted; Moffat, Anthony; St-Louis, Nicole

    2013-08-01

    We propose to obtain weekly spectra of η Carinae in order to document the systemic variability with respect to the orbital geometry. The orbit is long (5.5 years), and our previous SMARTS and NOAO programs (started in 2008) have documented well the line profile variations of the system. With a full orbit of coverage (obtained through this proposal through 2014B), we will have the largest data set available in order to find spectroscopic evidence of the companion star that has eluded observers. The CTIO 1.5 m and echelle spectrograph provides the only resource in the southern hemisphere to study the H(alpha) transition of the star, as this line saturates all other publicly available spectrographs in the southern hemisphere.

  10. Orbits on bodies of rotation

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    Orbits of small balls on revolutions solid shells are examined. Which velocity is necessary to stay in balance? The angular velocity remains constant. General revolution solid, revolution cone, revolution ellipsoid, ball, paraboloid and hyperboloid are treated. Chapter 1 represents the frictionless case. Chapter 2 deals with the friction case. The transformation from velocity to the belonging orbit height is calculated in chapter 3. In chapter 4 and 5 the macro revolution solids follow (without and with friction)is treated. The assumption of a homogeneous field is not possible here. The radial gravitational field must be used. In the last chapter we have orbits with non constant angular velocity that can be derived with the Lagrange-equations of the second kind in the frictionless case. Here is also possible to view different revolution solids. The book is recommended to all experimental-, theoretical and mathematical physicists. There is an english and a german edition.

  11. Gravity Probe B orbit determination

    NASA Astrophysics Data System (ADS)

    Shestople, P.; Ndili, A.; Hanuschak, G.; Parkinson, B. W.; Small, H.

    2015-11-01

    The Gravity Probe B (GP-B) satellite was equipped with a pair of redundant Global Positioning System (GPS) receivers used to provide navigation solutions for real-time and post-processed orbit determination (OD), as well as to establish the relation between vehicle time and coordinated universal time. The receivers performed better than the real-time position requirement of 100 m rms per axis. Post-processed solutions indicated an rms position error of 2.5 m and an rms velocity error of 2.2 mm s-1. Satellite laser ranging measurements provided independent verification of the GPS-derived GP-B orbit. We discuss the modifications and performance of the Trimble Advance Navigation System Vector III GPS receivers. We describe the GP-B precision orbit and detail the OD methodology, including ephemeris errors and the laser ranging measurements.

  12. Orbiter Atlantis returns to KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Stairs are rolled to the forward opening of the Shuttle Carrier Aircraft -- with its piggyback cargo, the orbiter Atlantis -- after it rolls to a stop at the Shuttle Landing Facility. Atlantis returns home after a 10-month stay in the Palmdale, CA, orbiter processing facility undergoing extensive inspections and modifications. They included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. The flight from Palmdale included a fueling stop in Ft. Hood, TX, and overnight stay at Ft. Campbell, KY. Atlantis will undergo preparations in the Orbiter Processing Facility at KSC for its planned flight in June 1999.

  13. The Challenge of Orbital Debris

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2012-01-01

    Since the dawn of the Space Age more than 50 years ago, humans have been launching objects into the space environment faster than they have been removed by active means or natural decay. This has led to a proliferation of debris -- derelict satellites, discarded rocket upper stages, and pieces from satellite breakups -- in Earth orbit, especially in well-used orbital regimes. This talk will summarize the current knowledge of the debris environment and describe plans to address the challenges orbital debris raises for the future usability of near-Earth space. The talk will be structured around 4 categories: Measurements, Modeling, Shielding, and Mitigation. This will include discussions of the long-term prognosis of debris growth (i.e., the "Kessler Syndrome") as well as plans for active debris removal.

  14. Orbital involvement in systemic mastocytosis.

    PubMed

    Meena, Manju; Benger, Ross; Karnaukhvoa, Irina; Waring, Dale; Li, Yi-Chiao

    2014-06-01

    A 61-year-old female presented with a 3-day history of painful and reddened right eye with painful ocular movements. She had been diagnosed as having systemic mastocytosis 4 years earlier. Ocular examination showed Best Corrected Visual acuity of 6/6 right eye and 6/6 left eye. There was marked conjunctival injection and chemosis. The posterior segment was normal. The left eye was normal. Exophthalmometry showed 2 mm of right proptosis relative to the left eye. Computed tomography (CT) scans showed an ill-defined intra-conal lesion and enlargement of the lacrimal gland in the right orbit. A diagnostic biopsy was performed; the histopathology findings were of orbital mastocytosis. We present what our literature search suggests is the first biopsy-proven case of orbital mastocytosis. PMID:24410676

  15. The SHOOT orbital operations. [Superfluid Helium On Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dipirro, M. J.; Shirron, P. J.

    1992-01-01

    The present study describes the SHOOT on orbit operations, the reasons for the methods used to obtain the experimental data, and the expected results. Attention is given to prelaunch operations, ascent and pumpdown, beneficial accelerations, transfer operations, adverse accelerations, crew-controlled transfer, and warm Dewar cooldown. Transfer losses expected for SHOOT as a function of the flow rate are illustrated.

  16. Bending waves and orbital inclinations

    NASA Astrophysics Data System (ADS)

    Ward, William R.

    1991-06-01

    Disk tides may play an important role in the formation of a planetary system. Modification of protoplanet semi-major axes and eccentricities through density waves was suggested and calculations of linear and non-linear protoplanet-nebula interactions were carried out by a number of researchers. The possible significance of radial drift to the accretion process was discussed, while the evolution of orbital eccentricities was studied for a perturber orbiting external to a ring and for a perturber embedded in the ring. The possible importance of bending waves to the early evolution of protoplanet inclinations is described.

  17. Orbiter electrical equipment utilization baseline

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The baseline for utilization of Orbiter electrical equipment in both electrical and Environmental Control and Life Support System (ECLSS) thermal analyses is established. It is a composite catalog of Space Shuttle equipment, as defined in the Shuttle Operational Data Book. The major functions and expected usage of each component type are described. Functional descriptions are designed to provide a fundamental understanding of the Orbiter electrical equipment, to insure correlation of equipment usage within nominal analyses, and to aid analysts in the formulation of off-nominal, contingency analyses.

  18. Precise GPS orbits for geodesy

    NASA Astrophysics Data System (ADS)

    Colombo, Oscar L.

    1994-05-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  19. Precise GPS orbits for geodesy

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  20. Orbits of 15 visual binaries

    NASA Astrophysics Data System (ADS)

    Heintz, W. D.

    1981-04-01

    Micrometer observations in 1979-1980 permitted the computation of substantially revised or new orbital elements for 15 visual pairs. They include the bright stars 52 Ari and 78 UMa (in the UMa cluster), four faint dK pairs, and the probable triple ADS 16185. Ephemerides for equator of data are listed in a table along with the orbital elements of the binaries. The measured positions and their residuals are listed in a second table. The considered binaries include ADS 896, 2336, 6315, 7054, 7629, 8092, 8555, 8739, 13987, 16185, Rst 1658, 3906, 3972, 4529, and Jsp 691.

  1. Constraints on Triton's Orbital Evolution

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Zhang, K.; Agnor, C.

    2005-05-01

    Three models have been proposed for the capture origin of Triton: Collision with a preexisting satellite (Goldreich 1989), Gas drag (McKinnon 1990), and three-body exchange (Agnor and Hamilton 2004). All three scenarios put Triton onto a highly elongated orbit which is subsequently circularized by satellite tides. Our goal here is to use the current state of the Neptunian system to constrain these capture scenarios. Triton strongly affects inner satellites (or an inner disk) directly via close pericenter passages before its orbit circularizes. Since satellite tides nearly conserve angular momentum, a simple tidal model puts Triton's minimum pericenter distance at aT/2 ˜ 7RN, where aT is its current semimajor axis. Our initial simulations show that some satellites orbiting outside Proteus (the outermost of the inner satellites at a=4.67RN) can survive these Triton passages. So why are there no known moonlets beyond 4.67RN? Seeking answers, we have integrated Triton's orbit backwards in time with a more sophisticated model that includes J2, solar perturbations, and satellite tides. We find that Triton's pericenter smoothly descends toward 7RN, as in the simple tidal model, but with superimposed oscillations at i) 1/2 Neptune's orbital period and ii) the nodal and apsidal precession periods. At a ˜ 94RN Triton encounters a Kozai-like resonance between these precession periods which causes its pericenter to dip to ˜ 4.2RN - well within the current orbit of Proteus. If Triton's orbit were ever this large, then the early inner satellite system must have been much smaller than it is today. Additional apsidal and nodal resonances between an early Triton on a highly elliptical orbit and the small inner satellites (with resonant arguments like 2nT - 2Ω sat) are strong enough to drive moonlet inclinations up to several degrees. We are using the stengths and locations of these resonances to further limit possible capture and evolution scenarios and will report on the status of these investigations.

  2. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  3. Current Issues in Orbital Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.

  4. Energy and the Elliptical Orbit

    NASA Astrophysics Data System (ADS)

    Nettles, Bill

    2009-03-01

    In the January 2007 issue of The Physics Teacher, Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and important. This paper presents an exercise which uses an energy/angular momentum conservation model for elliptical orbits. This exercise can be done easily by an individual student and on regular notebook-sized paper.

  5. Orbital-only models: ordering and excitations

    NASA Astrophysics Data System (ADS)

    van den Brink, Jeroen

    2004-12-01

    We consider orbital-only models in Mott insulators, where the orbital orbital interactions are either due to Jahn Teller distortions or due to the Kugel Khomskii superexchange. This leads to highly anisotropic and frustrated orbital Hamiltonians. For two-fold degenerate eg systems, both types of orbital interactions lead to the same form of the Hamiltonianthe 120 model. In both cases, the predicted symmetry of the orbital ordering is the same, although different from the one observed experimentally. The orbital operators that appear in the two kinds of orbital-only Hamiltonians are different. In the case of superexchange, the orbital degrees of freedom are represented by quantum pseudo-spin 1/2 operators. But when the interactions are Jahn Teller mediated and the coupling with the lattice is strong, the orbital operators are essentially classical pseudospins. Thus as a function of the relative coupling strengths, a quantum-to-classical crossover is expected. For three-fold degenerate t2g orbitals, the Jahn Teller coupling gives rise to a particular type of orbital compass models. We point out that fluctuationswhether due to quantum effects or finite temperatureare of prime importance for ordering in the 120 and orbital compass models. The fluctuations generally generate a gap in the orbital excitation spectrum. These orbital excitationsorbitonsare hybrid excitations that carry both a lattice Jahn Teller and a magnetic Kugel Khomskii character.

  6. Getting a Crew into Orbit

    ERIC Educational Resources Information Center

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  7. Viking orbiter stereo imaging catalog

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.; Vertrone, A. V.; Lewis, B. H.; Martin, M. D.

    1982-01-01

    The extremely long mission of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of these photos can be used to form stereo images allowing the student of Mars to examine a subject in three dimensional. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set.

  8. Biomaterials for orbital fractures repair

    PubMed Central

    Totir, M; Ciuluvica, R; Dinu, I; Careba, I; Gradinaru, S

    2014-01-01

    The unique and complex anatomy of the orbit requires significant contouring of the implants to restore the proper anatomy. Fractures of the orbital region have an incidence of 10-25% from total facial fractures and the most common age group was the third decade of life. The majority of cases require reconstruction of the orbital floor to support the globe position and restore the shape of the orbit. The reason for this is that the bony walls are comminuted and/or bone fragments are missing. Therefore, the reconstruction of missing bone is important rather than reducing bone fragments. This can be accomplished using various materials. There is hardly any anatomic region in the human body that is so controversial in terms of appropriate material used for fracture repair: nonresorbable versus resorbable, autogenous/allogenous/xenogenous versus alloplastic material, non-prebent versus preformed (anatomical) plates, standard versus custom-made plates, nonporous versus porous material, non-coated versus coated plates. Thus, the importance of material used for reconstruction becomes more challenging for the ophthalmologist and the oral and maxillofacial surgeon.

  9. Biomaterials for orbital fractures repair

    PubMed Central

    Totir, M; Ciuluvica, R; Dinu, I; Careba, I; Gradinaru, S

    2015-01-01

    The unique and complex anatomy of the orbit requires significant contouring of the implants to restore the proper anatomy. Fractures of the orbital region have an incidence of 10-25% from the total facial fractures and the most common age group was the third decade of life. The majority of cases required reconstruction of the orbital floor to support the globe position and restore the shape of the orbit. The reason for this was that the bony walls were comminuted and/ or bone fragments were missing. Therefore, the reconstruction of the missing bone was important rather than reducing the bone fragments. This could be accomplished by using various materials. There is hardly any anatomic region in the human body that is so controversial in terms of appropriate material used for fracture repair: non resorbable versus resorbable, autogenous/ allogeneic/ xenogenous versus alloplastic material, non-prebent versus preformed (anatomical) plates, standard versus custom-made plates, nonporous versus porous material, non-coated versus coated plates. Thus, the importance of the material used for reconstruction becomes more challenging for the ophthalmologist and the oral and maxillofacial surgeon. PMID:25914737

  10. Three Planets Orbiting Wolf 1061

    NASA Astrophysics Data System (ADS)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M⊕ minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M⊕ minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M⊕ minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H & K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  11. Integrated orbit/attitude determination

    NASA Astrophysics Data System (ADS)

    Mikelson, A. D.

    1981-11-01

    The Space Sextant - Autonomous Navigation Attitude Reference System (SS-ANARS), a spacecraft subsystem that has the integrated capability of on-board orbit determination with on-board attitude determination is described. The Space Sextant is a gimballed-two telescope included angle measurement device that is driven by an on-board computer to measure the angles between celestial bodies, as seen from a spacecraft, to an accuracy of 1 arc second. Orbit determination with the system is achieved by measuring the included angles between brighter stars and the limbs of the Moon and Earth, and processing these angle measurements through a Kalman filter with an on-board digital computer. Spacecraft position accuracy from 800 to 1200 feet is determined for any Earth orbit. Attitude determination relative to the celestial sphere is determined with the same device to an accuracy of less than 1 arc second by measuring the included angles between the brighter stars and a reference platform consisting of a mirror and a Porro prism. The SS-ANARS described has progressed through critical technology development, a proof of concept model, a laboratory model, and a flight demonstration system. This flight demonstration system is to be flown as a sortie payload on the Space Transportation System (Space Shuttle) to prove its autonomous-integrated orbit and attitude determination capabilities.

  12. Getting a Crew into Orbit

    ERIC Educational Resources Information Center

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the

  13. Energy and the Elliptical Orbit

    ERIC Educational Resources Information Center

    Nettles, Bill

    2009-01-01

    In the January 2007 issue of "The Physics Teacher," Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and

  14. Launching Social Studies into Orbit.

    ERIC Educational Resources Information Center

    Stone, Kirk

    1986-01-01

    As a social studies educator, Christa McAuliffe was delighted that a "non-science teacher" was chosen to become the first teacher to orbit the earth. Her thoughts concerning the NASA space flight and its meaning for the social studies are discussed. (RM)

  15. Augmented orbiter heat rejection study

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1981-01-01

    Spacecraft radiator concepts are presented that relieve attitude restrictions required by the shuttle orbiter space radiator for baseline and extended capability STS missions. Cost effective heat rejection kits are considered which add additional capability in the form of attached spacelab radiators or a deployable radiator module.

  16. Closed orbit analysis for RHIC

    SciTech Connect

    Milutinovic, J.; Ruggiero, A.G.

    1989-01-01

    We examine the effects of four types of errors in the RHIC dipoles and quadrupoles on the on-momentum closed orbit in the machine. We use PATRIS both to handle statistically the effects of kick-modeled errors and to check the performance of the Fermilab correcting scheme in a framework of a more realistic modeling. On the basis of the accepted rms values of the lattice errors, we conclude that in about 40% of all studied cases the lattice must be to some extent pre-corrected in the framework of the so-called ''first turn around strategy,'' in order to get a closed orbit within the aperture limitations at all and, furthermore, for approximately 2/3 of the remaining cases we find that a single pass algorithm of the Fermilab scheme is not sufficient to bring closed orbit distortions down to acceptable levels. We have modified the scheme and have allowed repeated applications of the otherwise unchanged three bump method and in doing so we have been able to correct the orbit in a satisfactory manner. 4 refs., 2 figs., 3 tabs.

  17. Energy and the Elliptical Orbit

    ERIC Educational Resources Information Center

    Nettles, Bill

    2009-01-01

    In the January 2007 issue of "The Physics Teacher," Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and…

  18. Space Shuttle Orbiter-Illustration

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.

  19. Orbital Debris Research at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.

    2009-01-01

    The United States has one of the most active programs of research of the orbital debris environment in the world. Much of the research is conducted by NASA s Orbital Debris Program Office at the Johnson Space Center. Past work by NASA has led to the development of national space policy which seeks to limit the growth of the debris population and limit the risk to spacecraft and humans in space and on the Earth from debris. NASA has also been instrumental in developing consistent international policies and standards. Much of NASA's efforts have been to measure and characterize the orbital debris population. The U.S. Department of Defense tracks and catalogs spacecraft and large debris with it's Space Surveillance Network while NASA concentrates on research on smaller debris. In low Earth orbit, NASA has utilized short wavelength radars such as Haystack, HAX, and Goldstone to statistically characterize the population in number, size, altitude, and inclination. For higher orbits, optical telescopes have been used. Much effort has gone into the understanding and removal of observational biases from both types of measurements. NASA is also striving to understand the material composition and shape characteristics of debris to assess these effects on the risk to operational spacecraft. All of these measurements along with data from ground tests provide the basis for near- and long-term modeling of the environment. NASA also develops tools used by spacecraft builders and operators to evaluate spacecraft and mission designs to assess compliance with debris standards and policies which limit the growth of the debris environment.

  20. Orbit and properties of the massive X-ray binary BD +60 73=IGR J00370+6122

    NASA Astrophysics Data System (ADS)

    Grunhut, J. H.; Bolton, C. T.; McSwain, M. V.

    2014-03-01

    Context. High-energy X-rays generated in massive binary systems can arise from several different mechanisms. Constraints on the orbital parameters of these systems are therefore necessary to properly understand and interpret the X-ray phenomena. Aims: In this study we aim to determine a spectroscopic orbit for the high-mass X-ray binary system BD +60 73=IGR J00370+6122, to infer the properties of the optical and compact companion, and to interpret the characteristics of the X-ray light curve within the context of our findings. Methods: We acquired 123 spectroscopic observations with the David Dunlap Observatory and Kitt Peak National Observatory telescopes in the optical domain. Using a cross-correlation technique, we measured the radial velocity of each of these spectra relative to the heliocentric rest-frame. An orbital solution was obtained from the resulting radial velocity measurements. Spectra of several spectral standards were also acquired to reassess the spectral classification of the optical companion. Results: The best-fit orbital parameters suggest an eccentricity of e = 0.48+0.02-0.03 and a mass-function of f(M) = 0.009 ± 0.002, lending further support to the assumption that the companion is a low-mass compact star. We find that the X-ray maximum occurs just after the time of periastron passage, but before the time of superior conjunction when the optical companion could eclipse the compact companion. The spectrum of the optical companion is best matched by the B1Ib spectral standard HD 24398, which reaffirms the original classification. Conclusions: The mass-function combined with a plausible range of possible masses for a neutron star companion yields primary masses within the range expected for the spectral type of BD +60 73 for high orbital inclinations. The compact companion cannot be a black hole unless the supergiant has an exceptionally high mass for its B1Ib spectral type or if the inclination of its orbit is very low. The X-ray timing and characteristics can potentially be explained by accretion variations on the compact object; but this would require the companion to be a magnetar. Table 2 is available in electronic form at http://www.aanda.org

  1. Fixing the Closed Orbits in the Debuncher

    SciTech Connect

    Halling, Mike

    1991-04-05

    Without a large number of new trims the best way to fix the closed orbits in the debuncher is to move quads. There are some obvious features in the vertical orbit, Figure 1, that look like they are indeed orbit distortions. The horizontal orbit, Figure 2, also has some systematic features that can be removed by moving a small number of quads. It is likely that removing these orbit distortions will help in improving the aperture. In addition, the second order effects of such large offsets in the closed orbit, like changes in phase advance due to the sextapoles, could improve operations.

  2. Orbiter CIU/IUS communications hardware evaluation

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1979-01-01

    The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.

  3. Magneto-orbital coupling in iron pnictides

    NASA Astrophysics Data System (ADS)

    Ghosh, Sayandip; Raghuvanshi, Nimisha; Singh, Avinash

    2016-05-01

    A magneto-orbital coupling mechanism is proposed to account for the weak energy gap at the Fermi energy in the (π , 0) ordered SDW state of a realistic three-orbital model for iron pnictides involving dxz, dyz, and dxy Fe orbitals. The orbital mixing terms between the dxy and dxz /dyz orbitals, which are important in reproducing the orbital composition of the elliptical electron pockets at (± π , 0) and (0 , ± π), are shown to play a key role in the energy gap formation in the SDW state.

  4. Mars Reconnaissance Orbiter Aerobraking Navigation Operation

    NASA Technical Reports Server (NTRS)

    Long, Stacia M.; You, Tung-Han; Halsell, C. Allen; Bhat, Ramachand S.; Demcak, Stuart W.; Graat, Eric J.; Higa, Earl S.; Highsmith, Dolan E.; Mottinger, Neil A.; Jah, Moriba K.

    2008-01-01

    After a seven-month interplanetary cruise, the Mars Reconnaissance Orbiter arrived at Mars and executed a 1.0 km/s Mars Orbit Insertion (MOI) maneuver. The post-MOI orbit was highly elliptical with a 35 hour, 428 km x 45000 km altitude orbit. To establish a useful science orbit, the navigation team used an aerobraking technique to guide the spacecraft into a 2-hour, 255 km x 320 km altitude orbit. This paper details the aerobraking navigation operation strategy and flight results. It also describes the aerobraking key requirements and navigation challenges.

  5. Assessment and management of orbital cellulitis.

    PubMed

    Amin, Nikul; Syed, Irfan; Osborne, Sarah

    2016-04-01

    Orbital cellulitis is a medical emergency requiring multidisciplinary team involvement. Early diagnosis and intervention is imperative to avoid serious complications. This article provides an evidence-based approach to the assessment and management of patients with orbital cellulitis. PMID:27071427

  6. Rational orbits around charged black holes

    SciTech Connect

    Misra, Vedant; Levin, Janna

    2010-10-15

    We show that all eccentric timelike orbits in Reissner-Nordstroem spacetime can be classified using a taxonomy that draws upon an isomorphism between periodic orbits and the set of rational numbers. By virtue of the fact that the rationals are dense, the taxonomy can be used to approximate aperiodic orbits with periodic orbits. This may help reduce computational overhead for calculations in gravitational wave astronomy. Our dynamical systems approach enables us to study orbits for both charged and uncharged particles in spite of the fact that charged particle orbits around a charged black hole do not admit a simple one-dimensional effective potential description. Finally, we show that comparing periodic orbits in the Reissner-Nordstroem and Schwarzschild geometries enables us to distinguish charged and uncharged spacetimes by looking only at the orbital dynamics.

  7. Overview of the Mars Reconnaissance Orbiter mission

    NASA Technical Reports Server (NTRS)

    Mateer, B.; Graf, J.; Zurek, R.; Jones, R.; Eisen, H.; Johnston, M.; Jai, D. B.

    2002-01-01

    The Mars Reconnaissance Orbiter will deliver to Mars orbit a payload to conduct remote sensing science observations, characterize sites for future landers, and provide critical telecom/navigation relay capability for follow-on missions.

  8. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  9. MOOSE: Manned On-Orbit Servicing Equipment

    NASA Technical Reports Server (NTRS)

    Budinoff, J. (Editor); Leontsinis, N. (Editor); Lane, J. (Editor); Singh, R. (Editor); Angelone, K.; Boswell, C.; Chamberlain, I.; Concha, M.; Corrodo, M.; Custodio, O.

    1993-01-01

    The ability to service satellites has thus far been limited to low earth orbit platforms within reach of the Space Shuttle. Other orbits, such as geosynchronous orbits containing high-value spacecraft have not been attainable by a servicing vehicle. The useful life of a satellite can be extended by replacing spent propellant and damaged orbital replacement units, forestalling the need for eventual replacement. This growing need for satellite on-orbits servicing can be met by the Manned On-Orbit Servicing Equipment (MOOSE). Missions requiring orbit transfer capability, precision manipulation and maneuvering, and man-in-the-loop control can be accomplished using MOOSE. MOOSE is a flexible, reusable, single operator, aerobraking spacecraft designed to refuel, repair, and service orbiting spacecraft. MOOSE will be deployed from Space Station Freedom, (SSF), where it will be stored, resupplied, and refurbished.

  10. Analysing weak orbital signals in Gaia data

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2014-11-01

    Anomalous orbits are found when minimum-χ2 estimation is applied to synthetic Gaia data for orbits with astrometric signatures comparable to the single-scan measurement error (Pourbaix 2002, A&A, 385, 686). These orbits are nearly parabolic, edge-on, and their major axes align with the line-of-sight to the observer. Such orbits violate the Copernican principle (CPr) and as such could be rejected. However, the preferred alternative is to develop a statistical technique that incorporates the CPr as a fundamental postulate. This can be achieved in a Bayesian context by defining a Copernican prior. Pourbaix's anomalous orbits then no longer arise. Instead, the selected orbits have a somewat higher χ2 but do not violate the CPr. The problem of detecting a weak additional orbit in an astrometric binary with a well-determined orbit is also treated.

  11. Two designs for an orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    The Orbital Transfer Vehicle (OTV) and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures.

  12. Management of ocular, orbital, and adnexal trauma

    SciTech Connect

    Spoor, T.C.; Nesi, F.A.

    1988-01-01

    This book contains 20 chapters. Some of the chapter titles are: The Ruptured Globe: Primary Care; Corneal Trauma, Endophthalmitis; Antibiotic Usage; Radiology of Orbital Trauma; Maxillofacial Fractures; Orbital Infections; and Basic Management of Soft Tissue Injury.

  13. Variationally optimized basis orbitals for biological molecules

    NASA Astrophysics Data System (ADS)

    Ozaki, T.; Kino, H.

    2004-12-01

    Numerical atomic basis orbitals are variationally optimized for biological molecules such as proteins, polysaccharides, and deoxyribonucleic acid within a density functional theory. Based on a statistical treatment of results of a fully variational optimization of basis orbitals ( full optimized basis orbitals) for 43 biological model molecules, simple sets of preoptimized basis orbitals classified under the local chemical environment (simple preoptimized basis orbitals) are constructed for hydrogen, carbon, nitrogen, oxygen, phosphorous, and sulfur atoms, each of which contains double valence plus polarization basis function. For a wide variety of molecules we show that the simple preoptimized orbitals provide well convergent energy and physical quantities comparable to those calculated by the full optimized orbitals, which demonstrates that the simple preoptimized orbitals possess substantial transferability for biological molecules.

  14. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  15. Environmental dynamics at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1976-01-01

    The influence of real satellite aerodynamics on the determination of upper atmospheric density was investigated. A method of analysis of satellite drag data is presented which includes the effect of satellite lift and the variation in aerodynamic properties around the orbit. The studies indicate that satellite lift may be responsible for the observed orbit precession rather than a super rotation of the upper atmosphere. The influence of simplifying assumptions concerning the aerodynamics of objects in falling sphere analysis were evaluated and an improved method of analysis was developed. Wind tunnel data was used to develop more accurate drag coefficient relationships for studying altitudes between 80 and 120 Km. The improved drag coefficient relationships revealed a considerable error in previous falling sphere drag interpretation. These data were reanalyzed using the more accurate relationships. Theoretical investigations of the drag coefficient in the very low speed ratio region were also conducted.

  16. Lunar Orbiter: Moon and Earth

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The worlds first view of the Earth taken by a spacecraft from the vicinity of the Moon. The photo was transmitted to Earth by the United States Lunar Orbiter I and recieved at the NASA tracking station at Robledo de Chavela near Madrid, Spain. This crescent of the Earth was photographed August 23 at 16:35 GMT when the spacecraft was on its 16th orbit and just about to pass behind the Moon. This is the view the astronauts will have when they come around the backside of the Moon and face the Earth. The Earth is shown on the left of the photo with the U.S. east coast in the upper left, southern Europe toward the dark or night side of the Earth, and Antartica at the bottom of the Earth crescent. The surface of the Moon is shown on the right side of the photograph.

  17. Orbital Motion in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Merritt, David

    Encounters between stars and stellar remnants at the centers of galaxies drive many important processes. The fact that these encounters take place near a supermassive black hole (SBH) alters the dynamics in a number of ways: (1) The orbital motion is quasi-Keplerian so that correlations are maintained for much longer than in purely random encounters; (2) relativity affects the motion, through mechanisms like precession of the periastron and frame dragging; (3) the SBH spin is affected, directly by capture and indirectly by spin-orbit torques. The interplay between these processes is just now beginning to be understood, but a key result is that relativity can be crucially important even at distances that are thousands of gravitational radii from the SBH.

  18. The Orbiting Primate Experiment (OPE)

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Debourne, M. N. G.; Mcclure, H. M.

    1977-01-01

    Instrumentation and life support systems are described for an experiment to determine the physiological effects of long term space flight on unrestrained, minimally instrumented rhesus macaques flown in orbit for periods up to six months or one year. On return from orbit, vestibular, cardiovascular, and skeletal muscle function will be tested. Blood chemistry and hematological studies will be conducted as well as tests of the immunological competence of selected animals. Nasal, rectal, and throat swabs will be used for bacterial and viral studies, and histopathological and histochemical investigations will be be made of all organs using light and electron microscopy. The experiment is being considered as a payload for the biomedical experiment scientific satellite.

  19. Elliptical orbit performance computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  20. Analytic theory of orbit contraction

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Longuski, J. M.; Busemann, A.; Culp, R. D.

    1977-01-01

    The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory.

  1. Testing relativity with orbiting clocks

    NASA Astrophysics Data System (ADS)

    Nissen, J. A.; Lipa, J. A.; Wang, S.; Avaloff, D.; Stricker, D. A.

    2011-02-01

    We describe the background and status of a superconducting microwave clock suitable for relativity experiments in earth orbit. The project has the capability of performing improved tests of Lorentz invariance via a Michelson-Morley type experiment, and setting new limits on nine parameters in the Standard Model Extension. If flown with a high stability atomic clock, a Kennedy-Thorndike experiment along with additional tests in general relativity could be performed.In orbit, unwanted cavity frequency variations are expected to be caused mainly by acceleration effects due to residual drag and vibration, temperature variations, and fluctuations in the energy stored in the cavity. A cavity support system has been designed to reduce acceleration effects and a high resolution thermometer has been implemented to improve temperature control.

  2. ECS: Ninth year in orbit

    NASA Astrophysics Data System (ADS)

    Baston, D. W.; Button, P.; Demelenne, B.; Derbyshire, K. R.; Leggett, P. J.; Meier, H.; Neumann, W. E.; Tilmans, E.; Viddeleer, R.; Longdon, Norman

    1993-01-01

    Experience gained with the European Communications System (ECS) satellites during the ninth year of service in orbit from the beginning of Jul. 1991 to the end of Jun. 1992 is summarized. Appraisals are made of how various individual satellite systems have performed taking into account: thermal control; telemetry, tracking and command; attitude and orbit control and reaction control; and power. Significant events during the reporting period are identified. The accumulated total of channel years of the ECS system at the end of Jun. 1992 was close to 215, considerably in excess of the original Eutelsat requirement upon ESA to provide a minimum of 180 channel years. In the reporting period, the ECS system accumulated a total of 256,447 channel hours, or 29 channel years. Only seven of the total of 22 Spurious Switch Offs (SSO's) interrupted traffic. The total outage time due the SSO's was 29.1 channel minutes.

  3. Thermal properties of comet 67P derived from Rosetta/VIRTIS, and orbital observations of Philae landing site

    NASA Astrophysics Data System (ADS)

    Drossart, Pierre; Leyrat, C.; Erard, S.; Capria, M. T.; Capaccioni, F.; Filacchione, G.; Tosi, F.; De Sanctis, M. C.; Arnold, G.; Markus, K.; Bockelée-Morvan, D.; Schmitt, B.; Formisano, M.; Kuehrt, E.

    2014-11-01

    The Rosetta spacecraft has reached its final target, comet 67P/Churyumov-Gerasimenko, in early August 2014. The VIRTIS imaging spectrometer onboard the Rosetta orbiter has intensively observed both the nucleus and the coma environment in the 0.25-5 microns wavelength range. Nucleus observations are performed with both channels: VIRTIS-M for spectral mapping and VIRTIS-H for high spectral resolution. Dayside surface temperatures in various illumination conditions can be retrieved from the long wavelength range. This allows us to infer local thermal properties. The very irregular shape of 67P results in unusual patterns in the heating / cooling regime of the object, e.g. sudden transitions from day to night. We will present thermal analyses of observations performed during the first mapping phase of the pre-landing activity (August 2014), with a focus on thermo-physical modeling of comet 67P on both regional and local scales, and a special emphasis on the expected landing site. These observations document the state of the comet surface at a time of large heliocentric distance and low activity. The authors acknowledge funding from CNES, ASI, and DLR, the French, Italian and German Space Agencies. Support from the Rosetta and VIRTIS science, instrument, and operation teams is gratefully acknowledged.

  4. Assembling the Skylab Orbital Workshop

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph was taken during assembly of the bottom and upper floors of the Skylab Orbital Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  5. The Orbital Workshop Sleep Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This wide-angle view is of the Orbital Workshop (OWS) sleep compartment, located in the lower level of the OWS. Each crewman was assigned a small space for sleeping and zipped themselves into sleeping bags stretched against the wall. Because of the absence of gravity, sleeping comfort was achieved in any position relative to the spacecraft; body support was not necessary. Sleeping could be accommodated quite comfortably in a bag that held the body at a given place in Skylab.

  6. Viking orbiter system primary mission

    NASA Technical Reports Server (NTRS)

    Goudy, J. R.

    1977-01-01

    An overview of Viking Orbiter (VO) system and subsystem performances during the primary mission (the time period from VO-1 launch on August 20, 1975, through November 15, 1976) is presented. Brief descriptions, key design requirements, pertinent historical information, unique applications or situations, and predicted versus actual performances are included for all VO-1 and VO-2 subsystems, both individually and as an integrated system.

  7. Bond orbital modelling of heterostructures

    NASA Astrophysics Data System (ADS)

    Ünlü, Hilmi

    2016-03-01

    We propose a non-orthogonal sp3 hybrid bond orbital model to determine the electronic properties of semiconductor heterostructures. The model considers the non-orthogonality of sp3 hybrid states of nearest neighboring adjacent atoms using the intra-atomic Coulomb interactions corrected Hartree-Fock atomic energies and metallic contribution to calculate the valence band width energies of group IV elemental and group III-V and II-VI compound semiconductors without any adjustable parameter.

  8. Orbital assembly and maintenance study

    NASA Technical Reports Server (NTRS)

    Gorman, D.; Grant, C.; Kyrias, G.; Lord, C.; Rombach, J.; Salis, M.; Skidmore, R.; Thomas, R.

    1975-01-01

    The requirements, conceptual design, tradeoffs, procedures, and techniques for orbital assembly of the support structure of the microwave power transmission system and the radio astronomy telescope are described. Thermal and stress analyses, packaging, alignment, and subsystems requirements are included along with manned vs. automated and transportation tradeoffs. Technical and operational concepts for the manned and automated maintenance of satellites were investigated and further developed results are presented.

  9. Geological exploration from orbital altitudes

    USGS Publications Warehouse

    Badgley, Peter C.; Fischer, William A.; Lyon, Ronald J. P.

    1965-01-01

    The National Aeronautics & Space Administration is planning geologic exploration from orbiting spacecraft. For that purpose it is evaluating new and refined exploration tools, often called remote sensors, including devices that are sensitive to force fields, such as gravity gradient systems, and devices that record the reflection or emission of electromagnetic energy. Both passive electromagnetic sensors (those that rely on natural sources of illumination, such as the Sun) and active electromagnetic sensors (which use an artificial source of illumination) are being considered.

  10. Introduction to Orbital Sciences Corporation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A general overview of the Orbital Sciences Corporation (OSC) is presented. The following topics are covered: (1) manpower, facilities, and financial growth; (2) organization and management team; (3) the Space Data Division organization; (4) the Chandler facility; (5) Space Data-Products and Services; (6) space transportation systems; (7) spacecraft and space support systems; (8) turn-key suborbital launch services and support systems; and (9) OSC suborbital booster performance.

  11. Orbital lymphoma: Role of radiation

    PubMed Central

    Yadav, B S; Sharma, S C

    2009-01-01

    The purpose of this article is to review the literature for clinical presentation, treatment, outcome and complications of using radiotherapy for the treatment of orbital lymphoma. For this, MEDLINE, EMBASE, and the Cochrane Library were searched through January 2007 for published data on primary non-Hodgkin's lymphoma (NHL) of the orbit. The search was conducted in all document types, using the following terms “Non-Hodgkin's lymphoma, MALT (mucosa associated lymphoid tissue) and orbit”. Data extracted were based on age, sex, therapeutic methods and outcome of treatment. When full articles were not available, abstracts were used as a source of information. Only those articles whose abstracts or full text were available in English were included in table. The review of reports of NHL of the orbit, in general, served as a source of information about its clinical behavior, treatment and overall prognosis. Fifty-six publications were identified, including six in languages other than English. There was no randomized trial. All the studies were retrospective. The studies were heterogeneous in patient number (3 to 112), histology, disease stage (IE to IV), radiotherapy doses used (4 to 53.8Gy), local control rates (65 to 100%), distant relapse rates (0 to 67%, from low grade to high grade) and five-year survival rates (33 to 100%). Three of the studies with a good number of patients also demonstrated clinical benefit with radiotherapy in terms of superior efficacy or less toxicity. Available data support the acceptance of radiotherapy as a standard therapeutic option in patients with low to intermediate grade orbital lymphoma. Toxicity of radiotherapy is mild if delivered precisely. PMID:19237780

  12. Moving the Mars Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In late October 2004, NASA's Mars Reconnaissance Orbiter was moved from the High Bay 100,000-class clean room at Lockheed Martin Space Systems, Denver, to the facility's Reverberant Acoustic Lab, where system environmental testing will continue through March 2005. Shown here are technicians guiding the spacecraft as it is lowered onto its transporter interface ring prior to installation of the shipping-container lid.

  13. An Analytical Satellite Orbit Predictor (ASOP)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The documentation and user's guide are presented for the analytical satellite orbit predictor computer program which is intended to be used for computation of near-earth orbits including those of the shuttle orbiter and its payloads. The Poincare-Similar elements used make it possible to compute near-earth orbits to within an accuracy of a few meters. Recursive equations are used instead of complicated formulas. Execution time is on the order of a few milliseconds.

  14. Density-orbital embedding theory

    SciTech Connect

    Gritsenko, O. V.; Visscher, L.

    2010-09-15

    In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total supermolecular density {rho}{sub s} as the square of the sum of the DO {phi}{sub a}, which represents the active subsystem A and the square root of the frozen density {rho}{sub f} of the environment F. The correct {rho}{sub s} is obtained with {phi}{sub a} being negative in the regions in which {rho}{sub f} might exceed {rho}{sub s}. This makes it possible to obtain the correct {rho}{sub s} with a broad range of the input frozen densities {rho}{sub f} so that DOE resolves the problem of the frozen-density admissibility of the current frozen-density embedding theory. The DOE Euler equation for the DO {phi}{sub a} is derived with the characteristic embedding potential representing the effect of the environment. The DO square {phi}{sub a}{sup 2} is determined from the orbitals of the effective Kohn-Sham (KS) system. Self-consistent solution of the corresponding one-electron KS equations yields not only {phi}{sub a}{sup 2}, but also the DO {phi}{sub a} itself.

  15. Orbital Space Plane (OSP) Program

    NASA Technical Reports Server (NTRS)

    McKenzie, Patrick M.

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  16. Some Observations on Molecular Orbital Theory

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2005

    2005-01-01

    A few flawed predictions in the context of homonuclear diatomic molecules are presented in order to introduce students to molecular orbital (MO) theory. A common misrepresentation of the relationship between the energy of an atomic orbital and the energy of the MO associated with the atomic orbital is illustrated.

  17. Information Measures for Statistical Orbit Determination

    ERIC Educational Resources Information Center

    Mashiku, Alinda K.

    2013-01-01

    The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain…

  18. Outgassing products from orbiter TPS materials

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Lash, Tom J.; Rawls, J. Richard

    1995-01-01

    The Space Transportation System (STS) orbiters are known to be significant sources of outgassing in low earth orbit (LEO). Infrared and mass spectra of residues and outgassing from orbiter thermal protection tile and an external blanket are presented. Several sources of methyl and phenyl methyl silicones are identified. About fifty pounds of silicones are estimated to be outgassed during an STS mission.

  19. The History of the Molniya Orbit

    NASA Astrophysics Data System (ADS)

    Kettering Group

    Arthur C. Clarke's name is often linked with the Geostationary orbit as a result of his 1945 paper in Wireless World. Less well-known is where the credit for discovering the Molniya orbit should lie. This paper presents the evidence uncovered to date concerning the original concept and provides some insight into the ways in which the orbit has subsequently been exploited.

  20. The geostationary orbit and developing countries

    NASA Technical Reports Server (NTRS)

    Medina, E. R.

    1982-01-01

    The geostationary orbit is becoming congested due to use by several countries throughout the world, and the request for use of this orbit is increasing. There are 188 geostationary stations in operation. An equitable distribution of stations on this orbit is requested.

  1. Conversion Between Osculating and Mean Orbital Elements

    NASA Technical Reports Server (NTRS)

    Guinn, Joseph; Chung, Min-Kun; Vincent, Mark

    2006-01-01

    Osculating/Mean Orbital Element Conversion (C version) (OSMEANC) is a C-language computer program that performs precise conversions between osculating and mean classical orbital elements. OSMEANC can be used for precise design of spacecraft missions and maneuvers and precise calculation of planetary orbits. The program accounts for the full complexity of gravitational fields, including aspherical and third-body effects.

  2. Simulation of Atomic and Molecular Orbitals

    ERIC Educational Resources Information Center

    Massey, A. G.; Massey S.

    1976-01-01

    Describes the use of magnets to simulate s, p, and d atomic orbitals from which a wide variety of molecular orbitals can be derived. The technique gives students an idea of molecular orbitals' shapes and stresses the importance of symmetry labels. (MLH)

  3. Information Measures for Statistical Orbit Determination

    ERIC Educational Resources Information Center

    Mashiku, Alinda K.

    2013-01-01

    The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain

  4. The orbital record in stratigraphy

    NASA Technical Reports Server (NTRS)

    Fischer, Alfred G.

    1992-01-01

    Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity, and (2) presence of abundant microfossils yields close ties to geochronology. A tantalizing possibility that stratigraphy may yield a record of orbital signals unrelated to climate has turned up in magnetic studies of our Cretaceous core. Magnetic secular variations here carry a strong 39 ka periodicity, corresponding to the theoretical obliquity period of that time - Does the obliquity cycle perhaps have some direct influence on the magnetic field?

  5. Morphological characteristics and clinical manifestations of orbital emphysema caused by isolated medial orbital wall fractures.

    PubMed

    Moon, H; Kim, Y; Wi, J M; Chi, M

    2016-04-01

    PurposeTo investigate the morphological characteristics and clinical manifestations of orbital emphysema in patients with isolated medial orbital wall fractures.MethodsThis was a retrospective observational case series of 348 orbits of 348 patients with isolated medial orbital wall fractures. Medical charts were reviewed, and computed tomographic (CT) images were examined to determine the morphological characteristics of orbital emphysema.ResultsOrbital emphysema was detected in 70 orbits (20.1%). Large and communited type fracture was related with the presence of orbital emphysema (P<0.05). Orbital air pockets were detected in medial or superior extraconal orbital segment in all cases with orbital emphysema. Swollen eyelid with crepitus (90.0%) and supraduction limitation (31.4%) were developed with orbital emphysema. All cases with supraduction limitation accompanied with superior extraconal orbital emphysema and superior rectus muscle deviation, and these eyes were fully recovered with conservative management without surgery.ConclusionsOrbital emphysema can be a cause of ocular motility restriction following orbital wall fracture. If supraduction limitation is noted with isolated medial wall fracture and superior orbital emphysema with superior rectus muscle deviation is detected by CT scan, conservative management can be a good choice for spontaneous recovery delaying the surgery. PMID:26795415

  6. Parameningeal rhabdomyosarcoma (including the orbit): results of orbital irradiation

    SciTech Connect

    Jereb, B.; Haik, B.G.; Ong, R.; Ghavimi, F.

    1985-12-01

    Twenty-three patients with parameningeal (including orbital rhabdomyosarcoma (RMS)) were treated at Memorial Sloan-Kettering Cancer Center (MSKCC) between July 1971 and January 1983. Twenty were children with a mean age of 6 and 3 were adults. In 6 patients, the primary tumor was from the orbit, whereas the remaining 17 had other parameningeal primary sites. The tumors were in a very progressive local stage, with extensive destruction of the facial bones in 19 patients. Eight patients were treated with T2 chemotherapy protocol and 15 received T6. Seven patients received 5,000 to 7,200 rad delivered to the primary tumor in 11-16 weeks, 15 patients received between 4,500 to 5,000 rad in 4-7 weeks, and 1 patient received 3,000 rad in 3 weeks for residual microscopic disease following surgery. Two patients were treated with radiation to the whole brain; no patients received radiation of the whole central nervous axis (CNA). Fifteen of the 23 patients (65%) are alive and well with a medical follow-up time of 5 years. Two patients died of therapeutic complications and six died of tumor spread. In five patients, involvement of the central nervous system (CNS) was the cause of death. The prognosis of orbital RMS with parameningeal involvement is no better than in other tumors of parameningeal sites. In those patients who had impaired vision because of optic nerve damage prior to treatment, the vision did not improve following treatment. There was no impaired vision seen due to radiation damage of eye structures except in the lens.

  7. GOCE Gravity Gradients in an Orbital Aspect

    NASA Astrophysics Data System (ADS)

    Bobojc, Andrzej; Drozyner, Andrzej

    2014-05-01

    This work includes a study of the possibility of the Gravity Field and Steady-State Ocean Circulation Explorer Mission (GOCE) satellite orbit improvement using gravity gradient observations. The orbit improvement is performed by a dedicated software package, called Orbital Computation System (OCS), which is based on the classical least squares method. In an iterative process, the corrections to the initial state vector components of the satellite are estimated, using dynamical models describing gravitational perturbations. An important component implemented in the OCS package is the Cowell 8th order numerical integration procedure, which directly generates the satellite orbit. Taking into account the GOCE real and simulated gravity gradients, different variants of solution of the orbit improvement process were obtained. The improved orbits were compared to the GOCE reference orbits (Precise Science Orbits of the GOCE satellite delivered by the European Space Agency) using the root mean squares (RMS) of the differences between the satellite positions on the improved orbits and on the reference ones. The comparison between the improved orbits and the reference ones was performed with respect to the inertial reference frame (IRF) at J2000.0 epoch. RMS values for the solutions based on the real gravity gradients measurements are at a level of hundreds of kilometers and more. This means that the orbit improvement using the real gravity gradients is ineffective. However, all solutions using the simulated gravity gradients, have RMS values below the threshold determined by RMS values for the computed orbits (without the improvement). The most promising results have been achieved here in the case of improving of short orbital arcs with the lengths from a few to tens of minutes. For these short arcs, RMS values reach the level of centimeters, which is close to the accuracy of Precise Science Orbit of GOCE satellite. Additional research have provided requirements for the effective orbit improvement in terms of the accuracy and spectral content of measured gravity gradients.

  8. An analysis of thrust of a realistic solar sail with focus on a flight validation mission in a geocentric orbit

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.

    Several scientifically important space flight missions have been identified that, at this time, can only be practically achieved using a solar sail propulsion system. These missions take advantage of the potentially continuous force on the sail, provided by solar radiation, to produce significant changes in the spacecraft's velocity, in both magnitude and/or direction, without the need for carrying the enormous amount of fuel that conventional propulsion systems would require to provide the same performance. However, to provide thrust levels that would support these missions requires solar sail areas in the (tens of) thousands of square meter sizes. To realize this, many technical areas must be developed further and demonstrated in space before solar sails will be accepted as a viable space mission propulsion system. One of these areas concerns understanding the propulsion performance of a realistic solar sail well enough for mission planning. Without this understanding, solar sail orbits could not be predicted well enough to meet defined mission requirements, such as rendezvous or station-keeping, and solar sail orbit optimization, such as minimizing flight time, could be close to impossible. In most mission studies, either an "ideal" sail's performance is used for mission planning, or some top-level assumptions of certain nonideal sail characteristics are incorporated to give a slightly better estimate of the sail performance. This paper identifies the major sources of solar sail thrust performance uncertainty, and analyzes the most significant ones to provide a more comprehensive understanding of thrust generation by a "realistic" solar sail. With this understanding, mission planners will be able to more confidently and accurately estimate the capabilities of such a system. The first solar sail mission will likely be a system validation mission, using a relatively small sail in a geocentric (Earth-centered) orbit. The author has been involved in conceptual design of such missions, and through this became aware of the current status in solar sail system development, and the need for a better understanding of the thrust performance of a "realistic" solar sail. Such a validation mission is significantly different than most of the "operational" science missions envisioned to utilize a solar sail propulsion system. These future missions will likely use very large, very light sails in heliocentric orbits far away from major gravity fields like planets, have very long mission lifetimes (years), and will conduct relatively minor and slow orbital and attitude control maneuvers. Nonetheless, most of the capabilities of later systems can be gleaned from a small geocentric validation mission. This paper is a significant step toward understanding the thrust characteristics and performance of a realistic solar sail, and provides insight to the methods by which this understanding can be corroborated by a solar sail validation mission.

  9. Detection of Co-orbital Exoplanets

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2015-10-01

    Co-orbital bodies, or two bodies which orbit around a more massive third body with the same mean motion, can be found in the solar system. For moderate eccentricities and mutual inclination, two configurations are possible: Co-orbitals on tadpole orbit, like Jupiter's Trojans, and the horseshoe configuration, like the Saturn's satellites Janus and Epimetheus. Until now, no exoplanet has been found in either of these configurations. However, basic detection methods tend to mistake these configurations for single planets. We hence propose a detection method adapted for co-orbital bodies. This method can be adapted for radial velocity, astrometry, or other kinds of signal.

  10. Cluster analysis of the meteoroid orbit population

    NASA Astrophysics Data System (ADS)

    Baggaley, W. J.; Galligan, D. P.

    1997-07-01

    To provide efficient searches of the meteoroid orbit population for indications of orbit grouping, techniques based on cluster analysis are described. These procedures are distinct from the meteoroid orbit searches used previously where the population is tested against a reference orbit: here the whole population is searched for multiple clustering over a given time interval. Appropriate graphical techniques are applied to enhance the understanding of the structure of the dataset. A preliminary sampling of the radar orbits obtained by the AMOR facility is presented in order to demonstrate the procedures.

  11. Space Shuttle Orbiter auxiliary power unit status

    NASA Technical Reports Server (NTRS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    1991-01-01

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  12. Space Shuttle Orbiter auxiliary power unit status

    NASA Astrophysics Data System (ADS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  13. On-orbit flight control algorithm description

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Algorithms are presented for rotational and translational control of the space shuttle orbiter in the orbital mission phases, which are external tank separation, orbit insertion, on-orbit and de-orbit. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. Software functional requirements are described using block diagrams where feasible, and input--output tables, and the software implementation of each function is presented in equations and structured flow charts. Included are a glossary of all symbols used to define the requirements, and an appendix of supportive material.

  14. Novel Surgical Approaches to the Orbit

    PubMed Central

    Campbell, Ashley A.; Grob, Seanna R.; Yoon, Michael K.

    2015-01-01

    Determining safe surgical access to the orbit can be difficult given the complex anatomy and delicacy of the orbital structures. When considering biopsy or removal of an orbital tumor or repair of orbital fractures, careful planning is required to determine the ideal approach. Traditionally, this has at times necessitated invasive procedures with large incisions and extensive bone removal. The purpose of this review was to present newly techniques and devices in orbital surgery that have been reported over the past decade, with aims to provide better exposure and/or minimally invasive approaches and to improve morbidity and/or mortality. PMID:26692713

  15. Stationary occultations from low Earth orbit

    NASA Technical Reports Server (NTRS)

    Percival, Jeffrey W.

    1993-01-01

    The process of stationary lunar occultations is considered for observers in LEO. The orbit of the Hubble Space Telescope (HST) is used as a prototype. The noncoplanarity of the HST and lunar orbits disrupts many of the expected stationary events, and orbital drag complicates the prediction problem. In a typical year, the apparent speed of the lunar limb seen by the HST is slower than a typical ground-based event only about 0.7 percent of the time. The orbit prediction can be wrong by as much as 20 deg in 53 days, with most of the error lying in the plane of the orbit.

  16. Novel Surgical Approaches to the Orbit.

    PubMed

    Campbell, Ashley A; Grob, Seanna R; Yoon, Michael K

    2015-01-01

    Determining safe surgical access to the orbit can be difficult given the complex anatomy and delicacy of the orbital structures. When considering biopsy or removal of an orbital tumor or repair of orbital fractures, careful planning is required to determine the ideal approach. Traditionally, this has at times necessitated invasive procedures with large incisions and extensive bone removal. The purpose of this review was to present newly techniques and devices in orbital surgery that have been reported over the past decade, with aims to provide better exposure and/or minimally invasive approaches and to improve morbidity and/or mortality. PMID:26692713

  17. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally, we considered planetary formation in highly inclined binary systems, where orbital excitation due to the Kozai resonance apparently implies destructive collisions among planetesimals. Through a proper account of gravitational interactions within the protoplanetary disk, we showed that fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained, resolving the difficulty in planet-formation. (Abstract shortened by UMI.)

  18. Pioneer probe mission with orbiter option

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A spacecraft is described which is based on Pioneer 10 and 11, and existing propulsion technology; it can transport and release a probe for entry into Jupiter's atmosphere, and subsequently maneuver to place the spacecraft in orbit about Jupiter. Orbital operations last 3 years and include maneuvers to provide multiple close satellite encounters which allow the orbit to be significantly changed to explore different parts of the magnetosphere. A mission summary, a guide to related documents, and background information about Jupiter are presented along with mission analysis over the complete mission profile. Other topics discussed include the launch, interplanetary flight, probe release and orbit deflection, probe entry, orbit selection, orbit insertion, periapsis raising, spacecraft description, and the effects of Jupiter's radiation belt on both orbiter and the probe.

  19. Maneuver Design Using Relative Orbital Elements

    NASA Astrophysics Data System (ADS)

    Spencer, David A.; Lovell, Thomas A.

    2015-12-01

    Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit.

  20. Mission design of a Pioneer Jupiter Orbiter

    NASA Technical Reports Server (NTRS)

    Friedman, L. D.; Nunamaker, R. R.

    1975-01-01

    The Mission analysis and design work performed in order to define a Pioneer mission to orbit Jupiter is described. This work arose from the interaction with a science advisory 'Mission Definition' team and led to the present mission concept. Building on the previous Jupiter Orbiter-Satellite Tour development at JPL a magnetospheric survey mission concept is developed. The geometric control of orbits which then provide extensive local time coverage of the Jovian system is analyzed and merged with the various science and program objectives. The result is a 'flower-orbit' mission design, yielding three large apoapse excursions at various local times and many interior orbits whose shape and orientation is under continual modification. This orbit design, together with a first orbit defined by delivery of an atmospheric probe, yields a mission of high scientific interest.

  1. Orbital perturbations of low orbiters in a dusty Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis Iraklis

    2010-12-01

    A study of a low-orbit polar satellite around Mars is carried out using Lagrangian mechanics principles and Lagrange's planetary equations in which both conservative and non-conservative forces are modelled. Our work differs from state-of-the-art Newtonian and Gaussian methods and enhances the modelling of the perturbing potentials arising from areopotential anomalies: atmospheric drag, dust drag, solar radiation pressure, relativistic effects, third-body, and solid-body tides on Mars. Because we are interested in analytical/numerical expressions and results, the Lagrangian method constitutes a more suitable analytical approach than does the traditional Gaussian. The resulting system of equations of motion for the satellite provides the time derivatives of the orbital elements as functions of the gravitational harmonic coefficients and all the perturbing effects we considered. When the time derivatives of the orbital elements are available from satellite tracking observations, the equations can be used in a least-squares estimation process to provide, the gravitational field in terms of harmonic coefficients. To understand the utility of the derived equations of motion, we obtain analytical expressions for the gravitational harmonics of degree and order six. These expressions involve, among other variables, the inclination and eccentricity functions and their time derivatives. In particular, the numerical calculation of high-degree/order eccentricity and inclination functions are known to be numerically unstable. To remove such instabilities, we use an effective and efficient transformation that relates the eccentricity functions to Hansen coefficients, using Bessel functions of the first kind. Similarly, the inclination functions are transformed into hypergeometric series. Analytical and numerical tests show that the transformed inclination and eccentricity functions are remarkably stable up to degree/order eighty. This is very important when the Lagrangian method is used to determine the gravitational field with high accuracy and spatial resolution. We study the effects of atmospheric dust on low orbiters by considering a low velocity "fluid" dust medium containing dust particles of radius 1.25 mum, by deriving a velocity-cube dissipation function that represents the energy density dissipated by the satellite per unit time. We have developed a method for determining a satellite's dust drag coefficient provided that its geometrical shape is known. For example, for a cylindrical satellite, we find that Cd = 4. We also calculate an upper bound to the atmospheric dust density of 8.323 x 10-10 kg m-3 at an altitude of 100 km. Local dust storm-clouds in the range of 800 - 1000 km reduce the semi-major axis from a few centimetres up to a few decimetres per day. Similarly, episodic dust clouds of 10 km in length and at low altitudes (65 - 90 km) result in sub-millimetre per day losses in the semi-major axis. The satellite's mass increase due to dust adhesion is modelled by considering the dust as an aerosol moving in an atmospheric fluid. Adhesion affects the semi-major axis by a few millimetres to a few decimetres per year. Other orbital elements are affected only by insignificant amounts.

  2. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  3. Orbital Space Plane Program Status

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2003-01-01

    The Orbital Space Plane Program is an integral part of NASA's Integrated Space Transportation Program (ISTP). The ISTP consists of three major programs: Space Shuttle, Orbital Space Plane, and Next Generation Launch Technology. The Orbital Space Plane (OSP) Program will develop a new Crew Transfer Vehicle (CTV) with multipurpose utility for the Agency. The CTV will complement and back up the Space Shuttle by taking crews to and from the International Space Station (ISS), as well as enable a transition path to future reusable launch vehicle systems. In the CTV development cycle, around 2010 it will be used as a Crew Return Vehicle (CRV). The OSP will be launched on an Evolved Expendable Launch Vehicle (EELV). NASA is in the process of establishing Level 1 Requirements and initiating concept studies. Ongoing flight demonstrators will continue, while new flight demonstrator projects will begin. The OSP Program contains two elements: (1) Technology and Demonstrations, and (2) Design, Development, and Production. The OSP Design, Development, and Production element will enter the Formulation Phase in FY03. Per NASA Procedures and Guidelines 7120.5B, the Formulation Phase will be utilized to establish the Program schedule and budget plans. Current budget planning is based on Phase A concept studies being conducted in FY03 and FY04, preliminary design activities conducted in FY04 and FY05, and a Preliminary Design Review in FY05. An OSP full-scale development decision will be made in FY05. At that point, a conclusion to proceed will result in the OSP Program transitioning from the Formulation Phase to the Development Phase.

  4. Assembling the Skylab Orbital Workshop

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph was taken during installation of floor grids on the upper and lower floors inside the Skylab Orbital Workshop at the McDornell Douglas plant at Huntington Beach, California. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  5. Interactive Orbit Control in MATLAB

    SciTech Connect

    Corbett, William

    2001-07-06

    Recent advances in steering algorithms have made it possible to accurately control electron beam position in storage rings, implement fast and slow feedback systems, and in some cases detect hardware errors. In practice, however, the program operator would like to reduce the overhead of selecting variables and constraints and to easily view the data. To simplify the process, we constructed an interactive orbit control program in MATLAB [1]. The program modules are easily adapted to new algorithms or beam lines. This paper describes the program functionality and architecture.

  6. Orbital Space Plane Cost Credibility

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2003-01-01

    NASA's largest new start development program is the Orbital Space Plane (OSP) Program. The program is currently in the formulation stage. One of the critical issues to be resolved, prior to initiating full-scale development, is establishing cost credibility of NASA s budget estimates for development, production, and operations of the OSP. This paper will discuss the processes, tools, and methodologies that NASA, along with its industry partners, are implementing to assure cost credibility for the OSP program. Results of benchmarking of current tools and the development of new cost estimating capabilities and approaches will be discussed.

  7. Environmental dynamics at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1976-01-01

    The work reported involved the improvement of aerodynamic theory for free molecular and transition flow regimes. The improved theory was applied to interpretation of the dynamic response of objects traveling through the atmosphere. Satellite drag analysis includes analysis methods, atmospheric super rotation effects, and satellite lift effects on orbital dynamics. Transition flow regimes were studied with falling sphere data and errors resulting in inferred atmospheric parameters from falling sphere techniques. Improved drag coefficients reveal considerable error in previous falling sphere data. The drag coefficient has been studied for the entire spectrum of Knudsen Number and speed ratio, with particular emphasis on the theory of the very low-speed ratio regime.

  8. PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS

    SciTech Connect

    Brown, Robert A.

    2009-09-10

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevant 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be feasible in at least a subset of cases.

  9. Photometric Orbits of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Brown, Robert A.

    2009-09-01

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevant "planetary population of interest" in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins & Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the "msin i" degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be feasible in at least a subset of cases.

  10. Orbiter fuel cell improvement assessment

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1981-01-01

    The history of fuel cells and the theory of fuel cells is given. Expressions for thermodynamic and electrical efficiencies are developed. The voltage losses due to electrode activation, ohmic resistance and ionic diffusion are discussed. Present limitations of the Orbiter Fuel Cell, as well as proposed enhancements, are given. These enhancements are then evaluated and recommendations are given for fuel cell enhancement both for short-range as well as long-range performance improvement. Estimates of reliability and cost savings are given for enhancements where possible.

  11. Transconjunctival herniation of orbital fat.

    PubMed

    Monner, J; Benito, J R; Zayuelas, J; Paloma, V; Castro, V; Serra, J M

    1998-12-01

    The authors present 3 patients with subconjunctival fat prolapse treated at their oculoplastic unit. Albeit rare, orbital fat is a well-recognized entity, and is described in the literature as being associated with trauma and surgery. The 3 patients reported herein, however, presented with no history of trauma or surgery. This condition is produced by herniation of the intraconal fat between the conjunctiva and the sclera, presumably due to dehiscence of the Tenon's capsule. Differential diagnosis should be made with lacrimal gland ptosis, lacrimal gland tumors, and lymphoid tumors. PMID:9869141

  12. Orbital debris: A technical assessment

    NASA Technical Reports Server (NTRS)

    Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav

    1995-01-01

    To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.

  13. IRAS in-orbit checkout

    NASA Astrophysics Data System (ADS)

    Lamers, M.

    1983-08-01

    The in-orbit checkout (IOC) procedures which permitted astronomical observations with the IRAS to begin on schedule despite postlaunch complications are reviewed. The IRAS attitude-control system and on-board computers are characterized, and the general and attitude-control-related parts of the 14-day IOC program are described. The fine-sun-sensor spiking problem observed during the first few days of the IRAS mission (in January, 1983) and the corrections introduced from the ground into the attitude-control program are discussed in detail and illustrated graphically.

  14. Advanced orbital servicing capabilities development

    NASA Technical Reports Server (NTRS)

    Olsen, Roy E.; Quinn, Alberta

    1986-01-01

    The potential servicing requirements of the Space Station and associated free-flying platforms are identified and analyzed; the selected servicing tasks encompass orbital maneuver vehicle refueling, reaction-control subsystem thruster module replacement, and body-mounted radiator changeout. Attention is presently given to the commonality of all servicing activities, the definition of servicing interfaces, and the roles played by automation and robotics. The servicing concepts for each representative servicing task were selected on the basis of a weighed combination of seven factors: safety, productivity, relative cost, mission effectiveness, design flexibility and simplicity, and development status.

  15. Viking orbiter stereo imaging catalog

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.; Vetrone, A. V.; Martin, M. D.

    1980-01-01

    The extremely long missions of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of which can be used to form stereo images allowing the earth-bound student of Mars to examine the subject in 3-D. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set. Since that data set is still growing (January, 1980, about 3 1/2 years after the mission began), a second edition of this catalog is planned with completion expected about November, 1980.

  16. The Orbiting Carbon Observatory (OCO)

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    CO2 is the principal human generated driver of climate change. Accurate forecasting of future climate requires an improved understanding of the global carbon cycle and its interaction with the climate system. The Orbiting Carbon Observatory (OCO) will make global, space-based observations of atmospheric CO2 with the precision, resolution, and coverage needed to understand sources and sinks. OCO data will provide critical information for decision makers including the scientific basis for policy formulation, guide for carbon management strategies and treaty monitoring.

  17. Orbital Debris Observations with WFCAM

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Mann, B.; Read, M.; Kerr, T.; Irwin, M.; Cross, N.; Bold, M.,; Varricatt, W.; Madsen, G.

    2014-09-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU. This paper will present the January and February results of the orbital debris surveys with WFCAM.

  18. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  19. Six Planets Orbiting HD 219134

    NASA Astrophysics Data System (ADS)

    Vogt, Steven S.; Burt, Jennifer; Meschiari, Stefano; Butler, R. Paul; Henry, Gregory W.; Wang, Songhu; Holden, Brad; Gapp, Cyril; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Laughlin, Gregory

    2015-11-01

    We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope at Lick Observatory. Our observations reveal six new planetary candidates, with orbital periods of P = 3.1, 6.8, 22.8, 46.7, 94.2, and 2247 days, spanning masses of {M}{sin}i=3.8, 3.5, 8.9, 21.3, 10.8, and 108 {{M}}\\oplus , respectively. Our analysis indicates that the outermost signal is unlikely to be an artifact induced by stellar activity. In addition, several years of precision photometry with the T10 0.8 m automatic photometric telescope at Fairborn Observatory demonstrated a lack of brightness variability to a limit of ∼0.0002 mag, providing strong support for planetary-reflex motion as the source of the RV variations. The HD 219134 system with its bright (V = 5.6) primary provides an excellent opportunity to obtain detailed orbital characterization (and potentially follow-up observations) of a planetary system that resembles many of the multiple-planet systems detected by Kepler, which are expected to be detected by NASA’s forthcoming TESS Mission and by ESA’s forthcoming PLATO Mission.

  20. Anteromedial Approach to the Orbit

    PubMed Central

    Deda, Haluk; Ugur, Hasan Çaglar; Yorulmaz, Irfan; Kucuk, Babur

    2001-01-01

    This study evaluated the surgical results of the anteromedial approach for treatment of orbital lesions in 16 patients. Pre- and postoperatively, all patients underwent a complete physical examination focusing on the head and neck area including a thorough ophthalmologic evaluation, computerized tomography, and magnetic resonance imaging. The surgical approach was limited to a medial orbitotomy in five patients; the remaining 11 patients underwent a medial orbitotomy combined with an external sphenoethmoidectomy. The tumor was removed completely without damaging the intraorbital neurovascular structures in all but one patient whose recurrent clival chordoma extended beyond the limits of an extracranial approach. Fibro-osseous lesions, cavernous hemangiomas, and dermoid cysts were the most common pathologies. The follow-up ranged from 18 to 48 months, and no patient has shown evidence of a recurrence. One patient with a clival chordoma received radiation therapy. The lateral nasal skin incision healed with acceptable cosmetic results. The anteromedial approach to the orbit provides a wider working space and direct exposure while protecting neurovascular structures. ImagesFigure 1Figure 2Figure 3 PMID:17167625

  1. Mars Rotational and Orbital Dynamics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Rotation and Orbit Dynamics experiment is based on measuring the Doppler range to Pathfinder using the radio link. Mars rotation about it's pole causes a signature in the data with a daily minimum when the lander is closest to the Earth. Changes in the daily signature reveal information about the planetary interior, through its effect on Mars' precession and nutation. The signature also is sensitive to variations in Mars' rotation rate as the mass of the atmosphere increases and decreases as the polar caps are formed in winter and evaporate in spring. Long term signatures in the range to the lander are caused by asteroids perturbing Mars' orbit. Analysis of these perturbations allows the determination of the masses of asteroids.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  2. Superfluid Helium Orbital Resupply Coupling

    NASA Technical Reports Server (NTRS)

    Ryder, M. O.; Morash, D. H.; Schoenberg, R. J.

    1989-01-01

    The resupply of superfluid helium to satellites and other space-based experiment packages can increase the useful longevity of these devices far beyond their present life expectancies which are many times determined by the supply of helium coolant. The transfer of superfluid helium to spacecraft in space will require a reusable coupling that functions at 1.8 Kelvin with little heat leak and low pressure drop. Moog has designed the Helium Resupply Coupling to meet these operational requirements. Initially, the coupling manual mode operation will be demonstrated on orbit by an EVA crew member during the Space Shuttle borne Superfluid Helium On-Orbit Transfer (SHOOT) experiment. The ultimate application will use robotic (automatic) coupling operation to which the present design readily adapts. The utilization of Moog's exclusive Rotary Shut-Off (RSO) technology in the development of the Superfluid Helium Resupply Coupling is described. The coupling not only performs the function of a flow control valve and disconnect but also provides adequate safety features for a shuttle launched man-rated payload. In addition, the coupling incorporates the necessary features to provide the high thermal isolation of the internal flow path from the external environment.

  3. Introducing the Moon's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2014-11-01

    I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a guided exercise, rather than just telling them the facts.1 The inclination and nodes may be found by direct observation, monitoring carefully the position of the Moon among the stars. Even the regression of the nodes may be discovered in this way2 To find the eccentricity from students' observations is also possible,3 but that requires considerable time and effort. if a whole class should discover it in a short time, here is a method more suitable for a one-day class or home assignment. The level I aim at is, more or less, advanced high school or first-year college students. I assume them to be acquainted with celestial coordinates and the lunar phases, and to be able to use algebra and trigonometry.

  4. The Orbiting Carbon Observatory mission

    NASA Technical Reports Server (NTRS)

    Crisp, David; Johnson, Christyl

    2003-01-01

    The Orbiting Carbon Observatory (OCO) mission was selected by NASA's Office of Earth Science as the fifth mission in its Earth System Science Pathfinder (ESSP) Program. OCO will make the first global, space-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to characterize sources and sinks of this important greenhouse gas. These measurements will improve our ability to forecasts CO2-induced climate change. OCO will fly in a 1:15 PM sun-synchronous orbit, sharing its ground track with the Earth Observing System (EOS) Aqua platform. It will carry high-resolution spectrometers to measure reflected sunlight in the molecular oxygen (O2) A-band at 0.76-microns and the CO2 bands at 1.61 and 2.06 microns to retrieve the column-averaged CO2 dry air mole fraction, XCO2. A comprehensive validation and correlative measurement program has been incorporated into this mission to ensure that XCO2 can be retrieved with precisions of 0.3% (1 ppm) on regional scales.

  5. Orbital evolution. [of large natural satellite

    NASA Technical Reports Server (NTRS)

    Burns, J. A.

    1977-01-01

    The orbital evolution of a large satellite is governed primarily by tidal interactions between the satellite and the planet it orbits. Tides raised on a planet by a satellite transfer energy and angular momentum to the satellite orbit; this changes the semimajor axes of satellite orbits, increasing the size of those orbits where the satellite mean motion is smaller than the planetary angular velocity, and decreasing those where the opposite is true. Substantial changes caused by such tides for satellites of the terrestrial planets may explain the absence of satellites about Mercury and Venus. For Jovian and Saturnian satellites, such tides probably are only important in bringing about some of the observed orbital resonances. Tides raised on satellites generally cause decreasing orbital eccentricities, indicating why close satellites always have nearly circular orbits. Different processes of orbital evolution dominate for small bodies; their effects probably are critical in positioning material in the primordial dust cloud so that satellite coagulation may occur. A qualitative description is given of the orbital results of gas drag, radiation pressure, Poynting-Robertson drag and electromagnetic forces.

  6. Shadowing Lemma and chaotic orbit determination

    NASA Astrophysics Data System (ADS)

    Spoto, Federica; Milani, Andrea

    2016-03-01

    Orbit determination is possible for a chaotic orbit of a dynamical system, given a finite set of observations, provided the initial conditions are at the central time. The Shadowing Lemma (Anosov 1967; Bowen in J Differ Equ 18:333-356, 1975) can be seen as a way to connect the orbit obtained using the observations with a real trajectory. An orbit is a shadowing of the trajectory if it stays close to the real trajectory for some amount of time. In a simple discrete model, the standard map, we tackle the problem of chaotic orbit determination when observations extend beyond the predictability horizon. If the orbit is hyperbolic, a shadowing orbit is computed by the least squares orbit determination. We test both the convergence of the orbit determination iterative procedure and the behaviour of the uncertainties as a function of the maximum number of map iterations observed. When the initial conditions belong to a chaotic orbit, the orbit determination is made impossible by numerical instability beyond a computability horizon, which can be approximately predicted by a simple formula. Moreover, the uncertainty of the results is sharply increased if a dynamical parameter is added to the initial conditions as parameter to be estimated. The Shadowing Lemma does not dictate what the asymptotic behaviour of the uncertainties should be. These phenomena have significant implications, which remain to be studied, in practical problems of orbit determination involving chaos, such as the chaotic rotation state of a celestial body and a chaotic orbit of a planet-crossing asteroid undergoing many close approaches.

  7. LLOFX earth orbit to lunar orbit delta V estimation program user and technical documentation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The LLOFX computer program calculates in-plane trajectories from an Earth-orbiting space station to Lunar orbit in such a way that the journey requires only two delta V burns (one to leave Earth circular orbit and one to circularize into Lunar orbit). The program requires the user to supply the Space Station altitude and Lunar orbit altitude (in km above the surface), and the desired time of flight for the transfer (in hours). It then determines and displays the trans-Lunar injection (TLI) delta V required to achieve the transfer, the Lunar orbit insertion (LOI) delta V required to circularize the orbit around the Moon, the actual time of flight, and whether the transfer orbit is elliptical or hyperbolic. Return information is also displayed. Finally, a plot of the transfer orbit is displayed.

  8. Beyond low earth orbit - An overview of orbit-to-orbit stages

    NASA Technical Reports Server (NTRS)

    Loftus, J. P., Jr.; Brasher, W. L.

    1985-01-01

    New developments in upper stages are discussed. Tables revealing the dimensions, engine types, total thrust, weight, payload, and sponsor for developed and planned upper stages compatible with Space Transportation System (STS) or expendable launch vehicles are presented. An example of STS delivery capability to the Space Station at various orbital altitudes is provided. The use of aerobraking as the propulsion strategy for reusable stages is investigated. Various methods of controlling spent stages and maintaining a fragment free space environment are described. Storable propellant transfer systems and handling techniques for cryogens are studied.

  9. Optimal aeroassisted transfer between coplanar elliptical orbits

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Johannesen, J. R.

    1985-01-01

    An attempt is made to solve the problem of orbital transfer between coplanar elliptical orbits. Pure propulsive transfer is analyzed with the restriction of two impulses for the transfer. The optimal switching conditions are reviewed, and it is shown that the solution is obtained by solving a set of three nonlinear equations for three unknowns. A semianalytical solution is obtained to the problem of planar rotation of an orbit for the pure propulsive maneuver, and it is shown that, for high eccentricity and rotation angle, aeroassisted transfer is a fuel-saving maneuver. It is demonstrated that complete circularization of the intermediate orbit is not necessary in the optimal aeroassisted transfer. An analytical proof is presented, giving an explicit condition for noncircularization. A complete numerical solution is presented for a case of optimal aeroassisted transfer from a low-energy orbit to a high-energy orbit.

  10. Debris impact on Earth-orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Smith, D. G.

    1985-01-01

    The accumulation of Earth-orbiting space debris leads to important new design considerations. Some 5,000 orbiting objects, many of them explosion fragments, are currently being tracked and future collision of these objects with each other is predicted. These collisions will occur at high velocities. Each collision will be explosive, ejecting thousands, of new orbiting objects, in turn increasing the frequency of future collisions. The debris population may thus become self-regenerative, and the future flux of orbiting debris will exceed that of meteoroids. As a result, a large space structure in Earth-orbit for several years has a significant probability of impact by debris objects. As a design problem, debris impact is significantly different from meteoroid impact. Protection against such large objects may require structural measures. The consideration of debris impact in the design of large, Earth-orbiting spacecraft is recommended.

  11. Orbital Granulomatosis With Polyangiitis (Wegener Granulomatosis)

    PubMed Central

    Muller, Karra; Lin, Jonathan H.

    2014-01-01

    The pathology of granulomatosis with polyangiitis (GPA), formerly Wegener granulomatosis, typically features a granulomatous and sometimes necrotizing vasculitis targeting the respiratory tract and kidneys. However, orbital involvement occurs in up to 60% of patients and is frequently the first or only clinical presentation in patients with systemic or limited forms of GPA. Orbital GPA can cause significant morbidity and potentially lead to complete loss of vision and permanent facial deformity. Fortunately, GPA is highly responsive to medical treatment with corticosteroids combined with cyclophosphamide or, more recently, rituximab. Therefore, it is imperative for this disease to be accurately diagnosed on orbital biopsy and distinguished from other histologically similar orbital lesions. Herein, we review the clinical and pathologic findings of orbital GPA, focusing on the differentiation of this disease from other inflammatory orbital lesions. PMID:25076302

  12. Orbit Design and Simulation for Kufasat Nanosatellite

    NASA Astrophysics Data System (ADS)

    Mahdi, Mohammed Chessab

    2015-12-01

    Orbit design for KufaSat Nano-satellites is presented. Polar orbit is selected for the KufaSat mission. The orbit was designed with an Inclination which enables the satellite to see every part of the earth. KufaSat has a payload for imaging purposes which require a large amount of power, so the orbit is determined to be sun synchronous in order to provide the power through solar panels. The KufaSat mission is designed for the low earth orbit. The six initial Keplerian Elements of KufaSat are calculated. The orbit design of KufaSat according to the calculated Keplerian elements has been simulated and analyzed by using MATLAB first and then by using General Mission Analysis Tool.

  13. Orbit Selection for Earth Observation Missions

    NASA Technical Reports Server (NTRS)

    King, J. C.

    1978-01-01

    The orbit selection process is simplified for most earth-oriented satellite missions by a restriction to circular orbits, which reduces the primary orbit characteristics to be determined to only two: altitude and inclination. A number of important mission performance characteristics depend on these choices, however, so a major part of the orbit selection task is concerned with developing the correlating relationships in clear and convenient forms to provide a basis for rational orbit selection procedures. The present approach to that task is organized around two major areas of mission performance, orbit plane precession and coverage pattern development, whose dependence on altitude and inclination is delineated graphically in design chart form. These charts provide a visual grasp of the relationships between the quantities cited above, as well as other important mission performance parameters including viewing time of day (solar), sensor swath width (and fields of view), swath sequencing, and pattern repeat condition and repeat periods.

  14. Orbit Design of Earth-Observation Satellite

    NASA Astrophysics Data System (ADS)

    Owis, Ashraf

    The purpose of this study is to design a reliable orbit for a medium-resolution scientific satellite to observe Earth for developmental issues such as water resources, agricultural, and industrial. To meet this objective this study firstly, defines the mission, secondly, determines mission constraints, thirdly, design the attitude and orbit control system. As for the observation requirements, and the revisit time are provided as a function of the orbital parameters. Initial orbital parameters are obtained by optimal analysis between observation characteristics and attitude and orbit maintenance costs. Long term station-keeping strategies will be provided for the proposed solutions. Impulsive control will be investigated to provide a reliable and affordable attitude and orbit control system.

  15. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.

  16. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  17. Extended duration Orbiter life support definition

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1978-01-01

    Extending the baseline seven-day Orbiter mission to 30 days or longer and operating with a solar power module as the primary source for electrical power requires changes to the existing environmental control and life support (ECLS) system. The existing ECLS system imposes penalties on longer missions which limit the Orbiter capabilities and changes are required to enhance overall mission objectives. Some of these penalties are: large quantities of expendables, the need to dump or store large quantities of waste material, the need to schedule fuel cell operation, and a high landing weight penalty. This paper presents the study ground rules and examines the limitations of the present ECLS system against Extended Duration Orbiter mission requirements. Alternate methods of accomplishing ECLS functions for the Extended Duration Orbiter are discussed. The overall impact of integrating these options into the Orbiter are evaluated and significant Orbiter weight and volume savings with the recommended approaches are described.

  18. RHIC BPM system average orbit calculations

    SciTech Connect

    Michnoff,R.; Cerniglia, P.; Degen, C.; Hulsart, R.; et al.

    2009-05-04

    RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed just prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.

  19. Large capacity cryopropellant orbital storage facility

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.

    1987-01-01

    A comprehensive study was performed to develop the major features of a large capacity orbital propellant storage facility for the space-based cryogenic orbital transfer vehicle. Projected propellant usage and delivery schedules can be accommodated by two orbital tank sets of 100,000 lb storage capacity, with advanced missions expected to require increased capacity. Information is given on tank pressurization schemes, propellant transfer configurations, pump specifications, the refrigeration system, and flight tests.

  20. Orbital Decompression in Thyroid Eye Disease

    PubMed Central

    Fichter, N.; Guthoff, R. F.; Schittkowski, M. P.

    2012-01-01

    Though enlargement of the bony orbit by orbital decompression surgery has been known for about a century, surgical techniques vary all around the world mostly depending on the patient's clinical presentation but also on the institutional habits or the surgeon's skills. Ideally every surgical intervention should be tailored to the patient's specific needs. Therefore the aim of this paper is to review outcomes, hints, trends, and perspectives in orbital decompression surgery in thyroid eye disease regarding different surgical techniques. PMID:24558591

  1. Real time closed orbit correction system

    SciTech Connect

    Yu, L.H.; Biscardi, R.; Bittner, J.; Bozoki, E.; Galayda, J.; Krinsky, S.; Nawrocky, R.; Singh, O.; Vignola, G.

    1989-01-01

    We describe a global closed orbit feedback experiment, based upon a real time harmonic analysis of both the orbit movement and the correction magnetic fields. The feedback forces the coefficients of a few harmonics near the betatron tune to vanish, and significantly improves the global orbit stability. We present the results of the experiment in the UV ring using 4 detectors and 4 trims, in which maximum observed displacement was reduced by a factor of between 3 and 4. 4 refs., 3 figs.

  2. Extended Duration Orbiter - Meeting the challenge

    NASA Technical Reports Server (NTRS)

    Saucier, D. R.

    1992-01-01

    The paper overviews the Extended Duration Orbiter (EDO) program designed to provide an on-orbit stay capability of 16 days using the Orbiter Vehicle OV-102. Special attention is given to the EDO's subsystems and substructures, including the cryogenic pallet, the cryogenic storage tanks, the cryogenic solenoid valves, the regenerable carbon dioxide removal system, and the waste collection system. The EDO program will start with the STS-50 U.S. Microgravity Lab mission planned for June 1992.

  3. Operational factors affecting microgravity levels in orbit

    NASA Technical Reports Server (NTRS)

    Olsen, R. E.; Mockovciak, J., Jr.

    1980-01-01

    Microgravity levels desired for proposed materials processing payloads are fundamental considerations in the design of future space platforms. Disturbance sources, such as aerodynamic drag, attitude control torques, crew motion and orbital dynamics, influence the microgravity levels attainable in orbit. The nature of these effects are assessed relative to platform design parameters such as orbital altitude and configuration geometry, and examples are presented for a representative spacecraft configuration. The possible applications of control techniques to provide extremely low acceleration levels are also discussed.

  4. Comet C/2011 W3 (Lovejoy): Orbit Determination, Outbursts, Disintegration of Nucleus, Dust-tail Morphology, and Relationship to New Cluster of Bright Sungrazers

    NASA Astrophysics Data System (ADS)

    Sekanina, Zdenek; Chodas, Paul W.

    2012-10-01

    We describe the physical and orbital properties of C/2011 W3. After surviving perihelion passage, the comet was observed to undergo major physical changes. The permanent loss of the nuclear condensation and the formation of a narrow spine tail were observed first at Malargue, Argentina, on December 20 and then systematically at Siding Spring, Australia. The process of disintegration culminated with a terminal fragmentation event on December 17.6 UT. The postperihelion dust tail, observed for ~3 months, was the product of activity over <2 days. The nucleus' breakup and crumbling were probably caused by thermal stress due to the penetration of the intense heat pulse deep into the nucleus' interior after perihelion. The same mechanism may be responsible for cascading fragmentation of sungrazers at large heliocentric distances. The delayed response to the hostile environment in the solar corona is at odds with the rubble-pile model, since the residual mass of the nucleus, estimated at ~1012 g (equivalent to a sphere 150-200 m across) just before the terminal event, still possessed nontrivial cohesive strength. The high production rates of atomic oxygen, observed shortly after perihelion, are compatible with a subkilometer-sized nucleus. The spine tail—the product of the terminal fragmentation—was a synchronic feature, whose brightest part contained submillimeter-sized dust grains, released at velocities of up to 30 m s-1. The loss of the nuclear condensation prevented an accurate orbital-period determination by traditional techniques. Since the missing nucleus must have been located on the synchrone, whose orientation and sunward tip have been measured, we compute the astrometric positions of this missing nucleus as the coordinates of the points of intersection of the spine tail's axis with the lines of forced orbital-period variation, derived from the orbital solutions based on high-quality preperihelion astrometry from the ground. The resulting orbit gives 698 ± 2 yr for the osculating orbital period, showing that C/2011 W3 is the first member of the expected new, 21st-century cluster of bright Kreutz-system sungrazers, whose existence was predicted by these authors in 2007. From the spine tail's evolution, we determine that its measured tip, populated by dust particles 1-2 mm in diameter, receded antisunward from the computed position of the missing nucleus. The bizarre appearance of the comet's dust tail in images taken only hours after perihelion with the coronagraphs on board the SOHO and STEREO spacecraft is readily understood. The disconnection of the comet's head from the tail released before perihelion and an apparent activity attenuation near perihelion have a common cause—sublimation of all dust at heliocentric distances smaller than about 1.8 solar radii. The tail's brightness is strongly affected by forward scattering of sunlight by dust. From an initially broad range of particle sizes, the grains that were imaged the longest had a radiation-pressure parameter β ~= 0.6, diagnostic of submicron-sized silicate grains and consistent with the existence of the dust-free zone around the Sun. The role and place of C/2011 W3 in the hierarchy of the Kreutz system and its genealogy via a 14th-century parent suggest that it is indirectly related to the celebrated sungrazer X/1106 C1, which, just as the first-generation parent of C/2011 W3, split from a common predecessor during the previous return to perihelion.

  5. COMET C/2011 W3 (LOVEJOY): ORBIT DETERMINATION, OUTBURSTS, DISINTEGRATION OF NUCLEUS, DUST-TAIL MORPHOLOGY, AND RELATIONSHIP TO NEW CLUSTER OF BRIGHT SUNGRAZERS

    SciTech Connect

    Sekanina, Zdenek; Chodas, Paul W. E-mail: Paul.W.Chodas@jpl.nasa.gov

    2012-10-01

    We describe the physical and orbital properties of C/2011 W3. After surviving perihelion passage, the comet was observed to undergo major physical changes. The permanent loss of the nuclear condensation and the formation of a narrow spine tail were observed first at Malargue, Argentina, on December 20 and then systematically at Siding Spring, Australia. The process of disintegration culminated with a terminal fragmentation event on December 17.6 UT. The postperihelion dust tail, observed for {approx}3 months, was the product of activity over <2 days. The nucleus' breakup and crumbling were probably caused by thermal stress due to the penetration of the intense heat pulse deep into the nucleus' interior after perihelion. The same mechanism may be responsible for cascading fragmentation of sungrazers at large heliocentric distances. The delayed response to the hostile environment in the solar corona is at odds with the rubble-pile model, since the residual mass of the nucleus, estimated at {approx}10{sup 12} g (equivalent to a sphere 150-200 m across) just before the terminal event, still possessed nontrivial cohesive strength. The high production rates of atomic oxygen, observed shortly after perihelion, are compatible with a subkilometer-sized nucleus. The spine tail-the product of the terminal fragmentation-was a synchronic feature, whose brightest part contained submillimeter-sized dust grains, released at velocities of up to 30 m s{sup -1}. The loss of the nuclear condensation prevented an accurate orbital-period determination by traditional techniques. Since the missing nucleus must have been located on the synchrone, whose orientation and sunward tip have been measured, we compute the astrometric positions of this missing nucleus as the coordinates of the points of intersection of the spine tail's axis with the lines of forced orbital-period variation, derived from the orbital solutions based on high-quality preperihelion astrometry from the ground. The resulting orbit gives 698 {+-} 2 yr for the osculating orbital period, showing that C/2011 W3 is the first member of the expected new, 21st-century cluster of bright Kreutz-system sungrazers, whose existence was predicted by these authors in 2007. From the spine tail's evolution, we determine that its measured tip, populated by dust particles 1-2 mm in diameter, receded antisunward from the computed position of the missing nucleus. The bizarre appearance of the comet's dust tail in images taken only hours after perihelion with the coronagraphs on board the SOHO and STEREO spacecraft is readily understood. The disconnection of the comet's head from the tail released before perihelion and an apparent activity attenuation near perihelion have a common cause-sublimation of all dust at heliocentric distances smaller than about 1.8 solar radii. The tail's brightness is strongly affected by forward scattering of sunlight by dust. From an initially broad range of particle sizes, the grains that were imaged the longest had a radiation-pressure parameter {beta} {approx_equal} 0.6, diagnostic of submicron-sized silicate grains and consistent with the existence of the dust-free zone around the Sun. The role and place of C/2011 W3 in the hierarchy of the Kreutz system and its genealogy via a 14th-century parent suggest that it is indirectly related to the celebrated sungrazer X/1106 C1, which, just as the first-generation parent of C/2011 W3, split from a common predecessor during the previous return to perihelion.

  6. Spin-orbit-coupled superconductivity

    PubMed Central

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C.-T.

    2014-01-01

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature Tc, clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < Tc, the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity. PMID:24961726

  7. Orbit IMU alignment: Error analysis

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  8. Orbits of six visual binaries

    NASA Astrophysics Data System (ADS)

    Couteau, P.

    1987-12-01

    Recent interferometric and visual observations have been used to compile orbital elements for the binaries COU 79, Phi 342, ADS 5726, COU 292, ADS 15487, and COU 542. The problematic binaries COU 79 and Phi 342 are discussed in detail. The results for COU 79 indicate a dynamic parallax of 0.0182 arcsec and absolute visual magnitudes of 2.5 and 2.8, values which are not consistent with the previously-determined spectral type of F6V. A parallax of 0.01420 arcsec is found for Phi 342, and the visual magnitudes of 2.74 and 3.13 are indicative of superluminous stars outside of the main sequence.

  9. Airbreathing Acceleration Toward Earth Orbit

    SciTech Connect

    Whitehead, J C

    2007-05-09

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, then transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.

  10. Mars Science Laboratory Orbit Determination

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard; Gustafson, Eric; Jefferson, David; Martin-Mur, Tomas; Mottinger, Neil; Pelletier, Fred; Ryne, Mark; Thompson, Paul

    2012-01-01

    Mars Science Laboratory (MSL) Orbit Determination (OD) met all requirements with considerable margin, MSL OD team developed spin signature removal tool and successfully used the tool during cruise, A novel approach was used for the MSL solar radiation pressure model and resulted in a very accurate model during the approach phase, The change in velocity for Attitude Control System (ACS) turns was successfully calibrated and with appropriate scale factor resulted in improved change in velocity prediction for future turns, All Trajectory Correction Maneuvers were successfully reconstructed and execution errors were well below the assumed pre-fight execution errors, The official OD solutions were statistically consistent throughout cruise and for OD solutions with different arc lengths as well, Only EPU-1 was sent to MSL. All other Entry Parameter Updates were waived, EPU-1 solution was only 200 m separated from final trajectory reconstruction in the B-plane

  11. Bayesian inference for orbital eccentricities

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2013-03-01

    Highest posterior density intervals (HPDIs) are derived for the true eccentricities ɛ of spectroscopic binaries with measured values e ≈ 0. These yield upper limits when e is below the detection threshold eth and seamlessly transform to upper and lower bounds when e > eth. In the main text, HPDIs are computed with an informative eccentricity prior representing orbital decay due to tidal dissipation. In an appendix, the corresponding HPDIs are computed with a uniform prior and are the basis for a revised version of the Lucy-Sweeney test, with the previous outcome ɛ = 0 now replaced by an upper limit ɛU. Sampling experiments with known prior confirm the validity of the HPDIs.

  12. Fibrous dysplasia of the orbit.

    PubMed Central

    Bibby, K; McFadzean, R

    1994-01-01

    Twelve patients with fibrous dysplasia of the orbit are reviewed and the ophthalmic findings described. Three case histories are presented in detail. Six patients were managed conservatively; four have shown radiological progression of the disease. Six patients underwent surgery. A conservative procedure, comprising debulking dysplastic bone, was carried out in four--all required further surgery including radical excision in two patients. Two subjects had primary radical operations. No recurrence was encountered in the four patients who had undergone radical surgery. It would appear that fibrous dysplasia is not a disease confined to adolescence but may continue into adulthood, and even middle age. Patients may never require surgery, but require follow up for late progression. If surgical intervention is deemed necessary, an attempt should be made to excise all dysplastic bone, since progression of the disease after conservative surgery is relatively common. Images PMID:8199111

  13. Crowding of the geostationary orbit

    NASA Astrophysics Data System (ADS)

    Fusco, G.; Buratti, A.

    1984-10-01

    The number of likely collisions and disturbances suffered by an active geostationary satellite involving abandoned geosynchronous satellites and other active satellites in the same longitudinal slot is evaluated. While the risk of a collision with (and even of disturbances from) abandoned satellites is very remote, the risk of a collision and the number of likely disturbances during the lifetime of a satellite with other satellites operating in the same longitudinal slot could be unacceptably high, its value depending on stationkeeping strategies which, in turn, depend on mission constraints and satellite design. Provisions involving spacecraft and ground station equipment to reduce collision and disturbance risks are discussed. Algorithms to build a detailed model of the population of abandoned objects around the geostationary orbit are presented.

  14. Analysis of initial orbit determination accuracy

    NASA Astrophysics Data System (ADS)

    Vananti, Alessandro; Schildknecht, Thomas

    The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for orbital debris. The debris objects are discovered during systematic survey observations. In general only a short observation arc, or tracklet, is available for most of these objects. From this discovery tracklet a first orbit determination is computed in order to be able to find the object again in subsequent follow-up observations. The additional observations are used in the orbit improvement process to obtain accurate orbits to be included in a catalogue. In this paper, the accuracy of the initial orbit determination is analyzed. This depends on a number of factors: tracklet length, number of observations, type of orbit, astrometric error, and observation geometry. The latter is characterized by both the position of the object along its orbit and the location of the observing station. Different positions involve different distances from the target object and a different observing angle with respect to its orbital plane and trajectory. The present analysis aims at optimizing the geometry of the discovery observations depending on the considered orbit.

  15. Lunar and Solar Perturbations on Satellite Orbits.

    PubMed

    Upton, E; Bailie, A; Musen, P

    1959-12-18

    Calculations of the solar and lunar effects on highly eccentric satellite orbits show that the sun and the moon may cause large changes in perigee height over extended periods of time. The amplitude and sign of the perigee height variations depend on the orbit parameters and the hour of launch; for a typical orbit and various choices of launch time, the perigee height will either rise or fall at the rate of 1 km/day over the course of several months. These results may be significant in deciding the launch conditions for future satellites with highly eccentric orbits. PMID:17742251

  16. A periodic table for black hole orbits

    NASA Astrophysics Data System (ADS)

    Levin, Janna; Perez-Giz, Gabe

    2008-05-01

    Understanding the dynamics around rotating black holes is imperative to the success of future gravitational wave observatories. Although integrable in principle, test-particle orbits in the Kerr spacetime can also be elaborate, and while they have been studied extensively, classifying their general properties has been a challenge. This is the first in a series of papers that adopts a dynamical systems approach to the study of Kerr orbits, beginning with equatorial orbits. We define a taxonomy of orbits that hinges on a correspondence between periodic orbits and rational numbers. The taxonomy defines the entire dynamics, including aperiodic motion, since every orbit is in or near the periodic set. A remarkable implication of this periodic orbit taxonomy is that the simple precessing ellipse familiar from planetary orbits is not allowed in the strong-field regime. Instead, eccentric orbits trace out precessions of multileaf clovers in the final stages of inspiral. Furthermore, for any black hole, there is some point in the strong-field regime past which zoom-whirl behavior becomes unavoidable. Finally, we sketch the potential application of the taxonomy to problems of astrophysical interest, in particular its utility for computationally intensive gravitational wave calculations.

  17. Mars Observer Lecture: Mars Orbit Insertion

    NASA Technical Reports Server (NTRS)

    Dodd, Suzanne R. (Personal Name)

    1993-01-01

    The Mars Observer mission spacecraft was primarily designed for exploring Mars and the Martian environment. The Mars Observer was launched on September 25, 1992. The spacecraft was lost in the vicinity of Mars on August 21, 1993 when the spacecraft began its maneuvering sequence for Martian orbital insertion. This videotape shows a lecture by Suzanne R. Dodd, the Mission Planning Team Chief for the Mars Observer Project. Ms Dodd begins with a brief overview of the mission and the timeline from the launch to orbital insertion. Ms Dodd then reviews slides showing the trajectory of the spacecraft on its trip to Mars. Slides of the spacecraft being constructed are also shown. She then discusses the Mars orbit insertion and the events that will occur to move the spacecraft from the capture orbit into a mapping orbit. During the trip to Mars, scientists at JPL had devised a new strategy, called Power In that would allow for an earlier insertion into the mapping orbit. The talk summarizes this strategy, showing on a slide the planned transition orbits. There are shots of the Martian moon, Phobos, taken from the Viking spacecraft, as Ms Dodd explains that the trajectory will allow the orbiter to make new observations of that moon. She also explains the required steps to prepare for mapping after the spacecraft has achieved the mapping orbit around Mars. The lecture ends with a picture of Mars from the Observer on its approach to the planet.

  18. Sun-synchronous satellite orbit determination

    NASA Astrophysics Data System (ADS)

    Ma, Der-Ming; Zhai, Shen-You

    2004-02-01

    The linearized dynamic equations used for on-board orbit determination of Sun-synchronous satellite are derived. Sun-synchronous orbits are orbits with the secular rate of the right ascension of the ascending node equal to the right ascension rate of the mean sun. Therefore the orbit is no more a closed circle but a tight helix about the Earth. In the paper, instead of treating the orbit as a closed circle, the actual helix orbit is taken as nominal trajectory. The details of the linearized equations of motion for the satellite in the Sun-synchronous orbit are derived. The linearized equations are obtained by perturbing the Keplerian motion with the J2 correction and the effect of sun's attraction being neglected. Combined with the GPS navigation equations, the Kalman filter formulation is given. The particular application considered is the circular Sun-synchronous orbit with the altitude of 800 km and inclination of 98.6°. The numerical example simulated by MATLAB® shows that only the pseudo-range data used in the algorithm still gives acceptable results. Based on the simulation results, we can use the on-board GPS receivers' signal only as an alternative to determine the orbit of Sun-Synchronous satellite and therefore circumvents the need for extensive ground support.

  19. A periodic table for black hole orbits

    SciTech Connect

    Levin, Janna; Perez-Giz, Gabe

    2008-05-15

    Understanding the dynamics around rotating black holes is imperative to the success of future gravitational wave observatories. Although integrable in principle, test-particle orbits in the Kerr spacetime can also be elaborate, and while they have been studied extensively, classifying their general properties has been a challenge. This is the first in a series of papers that adopts a dynamical systems approach to the study of Kerr orbits, beginning with equatorial orbits. We define a taxonomy of orbits that hinges on a correspondence between periodic orbits and rational numbers. The taxonomy defines the entire dynamics, including aperiodic motion, since every orbit is in or near the periodic set. A remarkable implication of this periodic orbit taxonomy is that the simple precessing ellipse familiar from planetary orbits is not allowed in the strong-field regime. Instead, eccentric orbits trace out precessions of multileaf clovers in the final stages of inspiral. Furthermore, for any black hole, there is some point in the strong-field regime past which zoom-whirl behavior becomes unavoidable. Finally, we sketch the potential application of the taxonomy to problems of astrophysical interest, in particular its utility for computationally intensive gravitational wave calculations.

  20. Space Shuttle orbiter approach and landing test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Approach and Landing Test Program consisted of a series of steps leading to the demonstration of the capability of the Space Shuttle orbiter to safely approach and land under conditions similar to those planned for the final phases of an orbital flight. The tests were conducted with the orbiter mounted on top of a specially modified carrier aircraft. The first step provided airworthiness and performance verification of the carrier aircraft after modification. The second step consisted of three taxi tests and five flight tests with an inert unmanned orbiter. The third step consisted of three mated tests with an active manned orbiter. The fourth step consisted of five flights in which the orbiter was separated from the carrier aircraft. For the final two flights, the orbiter tail cone was replaced by dummy engines to simulate the actual orbital configuration. Landing gear braking and steering tests were accomplished during rollouts following the free flight landings. Ferry testing was integrated into the Approach and Landing Test Program to the extent possible. In addition, four ferry test flights were conducted with the orbiter mated to the carrier aircraft in the ferry configuration after the free-flight tests were completed.

  1. Determination of GPS orbits to submeter accuracy

    NASA Technical Reports Server (NTRS)

    Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.

    1988-01-01

    Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.

  2. Magnetospheric Multiscale (MMS) Orbit - Duration: 61 seconds.

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  3. Payload/orbiter contamination control assessment support

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Ress, E. B.

    1975-01-01

    The development and use is described of a basic contamination mathematical model of the shuttle orbiter which incorporates specific shuttle orbiter configurations and contamination sources. These configurations and sources were evaluated with respect to known shuttle orbiter operational surface characteristics and specific lines-of-sight which encompass the majority of viewing requirements for shuttle payloads. The results of these evaluations are presented as summary tables for each major source. In addition, contamination minimization studies were conducted and recommendations are made, where applicable, to support the shuttle orbiter design and operational planning for those sources which were identified to present a significant contamination threat.

  4. The NOVA-2 postlaunch orbit adjustment process

    NASA Astrophysics Data System (ADS)

    Heyler, Gene A.

    The NOVA-2 satellite was the last of three `drag free' spacecraft to be placed into the Transit Navigation Systems's constellation of satellites. After its launch from Vandenburg Air Force Base into an initial 510 x 170 nmi near poar orbit, an intensive two-week operations schedule was implemented to : raise the orbit approximately 450 nmi to within .015 sec of desired period, trim eccentricity to within .003, trim inclination to within .006 degrees of requirement, freeze the phase of the spacecraft in orbit relative to the other two `drag free' satellites, dump extra fuel by deliberately fual wasting burns, and transition the spacecraft from a slow spin mode to gravity gradient. This paper will briefly discuss the concept of a `drag free' satellite, the selection of the orbit plane in the constellations, and the derivation of the required final orbit parameters. The paper will also discuss peripheral support needed to assist the OATS (Orbit Adjust and Transfer System) ground software, including attitude determination and maneuvers, orbit determination, and orbit prediction through the burns. However, the specific focus of this paper is on the design and execution of the nine OATS burns that accomplished the orbital maneuvers.

  5. Orbital Emphysema Occurring During Weight Lifting.

    PubMed

    Ozdemir, Ozdemir

    2015-12-01

    Although orbital emphysema is a recognized complication of orbital fractures involving any of the paranasal sinuses, it may develop without any fracture. A 23-year-old man presented with sudden left periorbital swelling during weight lifting in a fitness facility. On the left side, there was periorbital swelling with crepitus in palpation of subcutaneous tissue and conjunctival congestion. Computed tomography showed no fractures in the orbit. The patient was hospitalized. He was treated with empiric antibiotics and non-steroidal antiinflammatory drugs. In three days, the swelling and crepitus had almost disappeared. Seven days later, orbital emphysema had completely resolved. PMID:24475915

  6. Endoscopic Endonasal Management of Orbital Pathologies.

    PubMed

    Castelnuovo, Paolo; Turri-Zanoni, Mario; Battaglia, Paolo; Locatelli, Davide; Dallan, Iacopo

    2015-07-01

    Based on the anatomic relationship between sinonasal complex and orbit, endoscopic transnasal procedures could be a smart solution for approaching the medial orbital region. These techniques should be considered a valid option for optic nerve or orbital wall decompression in cases of Graves ophthalmopathy and post-traumatic optic neuropathy as well as for addressing extraconal or intraconal lesions placed medially to the optic nerve course. This article describes the anatomic principles, indications, technical nuances, and limitations of the endoscopic endonasal approaches for the management of selected orbital pathologic abnormalities. PMID:26141364

  7. New concepts for Mercury orbiter missions

    NASA Technical Reports Server (NTRS)

    French, J. R.; Stuart, J. R.; Zeldin, B.

    1978-01-01

    The next logical step in the exploration of Mercury is an orbiter mission. A conflict exists between those in the field of planetary sciences who desire a mission with a low circular orbit, and scientists in the fields and particles disciplines, who generally prefer a highly elliptical spacecraft orbit. The thermal environment imposed by the sun and planet render the low orbit intolerable for spacecraft using previous thermal control methods. A thermal control concept and a spacecraft mission concept have been developed which resolve these problems and promise a scientifically significant mission for the mid-1980s.

  8. On-orbit coldwelding: Fact or friction?

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1992-01-01

    A study into the potential of on-orbit coldwelding occurring was completed. No instances of cold welding were found during deintegration and subsequent testing and analysis of LDEF hardware. This finding generated wide interest and indicated the need to review previous on-orbit coldwelding experiments and on-orbit spacecraft anomalies to determine whether the absence of coldwelding on LDEF was to be expected. Results show that even though there have been no documented cases of significant on-orbit coldwelding events occurring, precautions should be taken to ensure that neither coldwelding nor galling occurs in the space or prelaunch environment.

  9. Orbit stability of the ALS storage ring

    SciTech Connect

    Keller, R.; Nishimura, H.; Biocca, A.

    1997-05-01

    The Advanced Light Source (ALS) storage ring, a synchrotron light source of the third generation, is specified to maintain its electron orbit stable within one tenth of the rms beam size. In the absence of a dedicated orbit feed-back system, several orbit-distorting effects were investigated, aided by a new interactive simulation tool, the code TRACY V. The effort has led to a better understanding of the behavior of a variety of accelerator subsystems and in consequence produced a substantial improvement in day-to-day orbit stability.

  10. GPS as an orbit determination subsystems

    NASA Technical Reports Server (NTRS)

    Fennessey, Richard; Roberts, Pat; Knight, Robin; Vanvolkinburg, Bart

    1995-01-01

    This paper evaluates the use of Global Positioning System (GPS) receivers as a primary source of tracking data for low-Earth orbit satellites. GPS data is an alternative to using range, azimuth, elevation, and range-rate (RAER) data from the Air Force Satellite Control Network antennas, the Space Ground Link System (SGLS). This evaluation is applicable to missions such as Skipper, a joint U.S. and Russian atmosphere research mission, that will rely on a GPS receiver as a primary tracking data source. The Detachment 2, Space and Missile Systems Center's Test Support Complex (TSC) conducted the evaluation based on receiver data from the Space Test Experiment Platform Mission O (STEP-O) and Advanced Photovoltaic and Electronics Experiments (APEX) satellites. The TSC performed orbit reconstruction and prediction on the STEP-0 and APEX vehicles using GPS receiver navigation solution data, SGLS RAER data, and SGLS anglesonly (azimuth and elevation) data. For the STEP-O case, the navigation solution based orbits proved to be more accurate than SGLS RAER based orbits. For the APEX case, navigation solution based orbits proved to be less accurate than SGLS RAER based orbits for orbit prediction, and results for orbit reconstruction were inconclusive due to the lack of a precise truth orbit. After evaluating several different GPS data processing methods, the TSC concluded that using GPS navigation solution data is a viable alternative to using SGLS RAER data.

  11. Improved orbiter waste collection system study

    NASA Technical Reports Server (NTRS)

    Bastin, P. H.

    1984-01-01

    Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.

  12. Orbit analysis for Seasat-A

    NASA Technical Reports Server (NTRS)

    Cutting, E.; Frautnick, J. C.; Born, G. H.

    1978-01-01

    Seasat-A is a NASA earth satellite for measuring global ocean dynamics from space. The instruments on the spacecraft will provide data on wave height and direction, surface wind speed and direction, ice fields, ocean surface topography and atmospheric water content. This paper is concerned with the orbit analysis for Seasat-A. The first topic is the selection of the orbit which best satisfies the measurement objectives of the various instruments. The maintenance of this orbit under drag and other perturbations is also discussed. The second topic is precision orbit determination analysis which is required to achieve ocean topography objectives of the mission.

  13. Orbital Operations for Phobos and Deimos Exploration

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Parker, Jeffrey S.; Strange, Nathan J.; Grebow, Daniel

    2012-01-01

    One of the deep-space human exploration activities proposed for the post-Shuttle era is a mission to one of the moons of Mars, Phobos or Deimos. There are several options available to the mission architect for operations around these bodies. These options include distant retrograde orbits (DROs), Lagrange-point orbits such as halos and Lyapunov orbits, and fixed-point stationkeeping or "hovering." These three orbit options are discussed in the context of the idealized circular restricted three body problem, full-dynamics propagations, and a concept of operations. The discussion is focused on Phobos, but all results hold for Deimos

  14. Orbital debris from upper-stage breakup

    NASA Technical Reports Server (NTRS)

    Loftus, Joseph P., Jr. (Editor)

    1989-01-01

    The present conference on the effects of launch vehicle upper-stage breakup on the orbital debris scenario discusses an analysis of the SPOT 1 Ariane third stage, the explosive fragmentation of orbiting propellant tanks, albedo estimates for debris, Ariane-related debris in deep-space orbit, and the relationship of hypervelocity impacts to upper-stage breakups. Also discussed are the prospects for and the economics of the future removal of orbital debris, collision probabilities in GEO, current operational practices for Delta second stage breakup prevention, breakup-precluding modifications to the Ariane third stage, and the safing of the H-1 second stage after spacecraft separation.

  15. Aerodynamic lift effect on satellite orbits

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Cleland, J. G.; Devries, L. L.

    1975-01-01

    Numerical quadrature is employed to obtain orbit perturbation results from the general perturbation equations. Both aerodynamic lift and drag forces are included in the analysis of the satellite orbit. An exponential atmosphere with and without atmospheric rotation is used. A comparison is made of the perturbations which are caused by atmospheric rotation with those caused by satellite aerodynamic effects. Results indicate that aerodynamic lift effects on the semi-major axis and orbit inclination can be of the same order as the effects of atmosphere rotation depending upon the orientation of the lift vector. The results reveal the importance of including aerodynamic lift effects in orbit perturbation analysis.

  16. On-Orbit Compressor Technology Program

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, Danny M.; Svedeman, Steven J.; Schroeder, Edgar C.; Gerlach, C. Richard

    1990-01-01

    A synopsis of the On-Orbit Compressor Technology Program is presented. The objective is the exploration of compressor technology applicable for use by the Space Station Fluid Management System, Space Station Propulsion System, and related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-art in natural gas compressor technology to the unique requirements of high-pressure, low-flow, small, light, and low-power devices for on-orbit applications. This technology is adapted to seven on-orbit conceptual designs and one prototype is developed and tested.

  17. The accuracy of Halley's cometary orbits

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.

    The accuracy of a scientific computation depends in the main on the data fed in and the analysis method used. This statement is certainly true of Edmond Halley's cometary orbit work. Considering the 420 comets that had been seen before Halley's era of orbital calculation (1695 - 1702) only 24, according to him, had been observed well enough for their orbits to be calculated. Two questions are considered in this paper. Do all the orbits listed by Halley have the same accuracy? and, secondly, how accurate was Halley's method of calculation?

  18. NASA Orbiter Extended Nose Landing Gear

    NASA Technical Reports Server (NTRS)

    King, Steven R.; Jensen, Scott A.; Hansen, Christopher P.

    1999-01-01

    This paper discusses the design, development, test, and evaluation of a prototype Extended Nose Landing Gear (ENLG) for NASA's Space Shuttle orbiters. The ENLG is a proposed orbiter modification developed in-house at NASA's Johnson Space Center (JSC) by a joint government/industry team. It increases the orbiter's nose landing gear (NLG) length, thereby changing the vehicle's angle of attack during rollout, which lowers the aerodynamic forces on the vehicle. This, in combination with a dynamic elevon change, will lower the loads on the orbiter's main landing gear (MLG). The extension is accomplished by adding a telescoping section to the current NLG strut that will be pneumatically extended during NLG deployment.

  19. Retrograde Satellite to Monitor Overcrowded Geosynchronous Orbits

    NASA Astrophysics Data System (ADS)

    Kawase, Sei-Ichiro

    In order to mitigate the overcrowding problem of geosynchronous orbits, we propose a monitoring satellite placed in a sub-synchronous, retrograde circular orbit. The monitoring satellite has an on-board optical sensor, and observes look-angles of the target geosynchronous satellites that come into the field of view one after another. This kind of monitoring makes it possible to determine the orbit of every target satellite in a short term. Covariance analyses show that the target position determination can be accurate to 350m. The monitoring satellite's orbit determination will be obtained from ranging at two ground stations, with a sufficient accuracy because range biases can be estimated.

  20. Bifurcation Complexity from Orbit-Flip Homoclinic Orbit of Weak Type

    NASA Astrophysics Data System (ADS)

    Lu, Qiuying; Naudot, Vincent

    In this paper, we study the unfolding of a three-dimensional vector field having an orbit-flip homoclinic orbit of weak type. Such a homoclinic orbit is a degenerate version of the so-called orbit-flip homoclinic orbit. We show the existence of inclination-flip homoclinic orbits of arbitrary higher order bifurcating from the unperturbed system. Our strategy consists of using the local moving coordinates method and blow up in the parameter space. In addition, the numerical existence of the orbit-flip homoclinic orbit of weak type is presented based on the truncated Taylor expansion and the numerical computation for both the strong stable manifold and unstable manifold.