Science.gov

Sample records for earth-trailing heliocentric orbit

  1. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  2. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  3. Probes to the Inferior Planets - A New Dawn for NEO and IEO Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth's?

    NASA Astrophysics Data System (ADS)

    Grundmann, J. T.; Mottola, S.; Drentschew, M.; Drobczyk, M.; Kahle, R.; Maiwald, V.; Quantius, D.; Zabel, P.; Van Zoest, T.

    2011-11-01

    With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence. Several missions to Venus and Mercury are planned to follow in this decade. Increased interest in the inferior planets is accompanied by several missions designed to study the Sun and the interplanetary medium (IPM) from a position near or in Earth orbit, such as the STEREO probes and SDO. These augment established solar observation capabilities at the Sun-Earth L1 Lagrangian point such as the SOHO spacecraft. Thus, three distinct classes of spacecraft operate or observe interior to Earth's orbit. All these spacecraft carry powerful multispectral cameras optimized for their respective primary targets. MESSENGER is scheduled to end its six-year interplanetary cruise in March 2011 to enter Mercury orbit, but a similarly extended cruise with several gravity-assists awaits the European Mercury mission BEPICOLOMBO. Unfortunately, the automatic abort of the orbit insertion manoeuvre has also left AKATSUKI (a.k.a. Venus Climate Orbiter (VCO), Planet-C) stranded in heliocentric orbit. After an unintended fly-by, the probe will catch up with Venus in approximately six years. Meanwhile, it stays mostly interior to Venus in a planet-leading orbit. In addition to the study of comets and their interaction with the IPM, observations of small bodies akin to those carried out by outer solar system probes are occasionally attempted with the equipment available. The study of structures in the interplanetary dust (IPD) cloud has been a science objective during the cruise phase of the Japanese Venus probe AKATSUKI from Earth to Venus. IPD observations in the astronomical H-band (1.65 ?m) are supported by its IR2 camera down to 1.5 ?W/m2sr in single 2 minute exposures. In the same setting, point sources of 13 mag can be detected. Obviously, a number of large asteroids exceed this threshold. The EARTHGUARD-I study, completed in 2003 by the DLR Institute of Planetary Research and Kayser-Threde under ESA contract, proposed a dedicated steerable 020...35 cm telescope and CCD camera payload on a probe to the inner solar system, to detect Near-Earth and Inner-Earth Objects (NEOs, IEOs) in favourable opposition geometry. A ride- share on a Mercury orbiter and a dedicated low-thrust propulsion spacecraft to a heliocentric 0.5 AU orbit were studied. A similar-sized telescope is presently being developed for the ASTEROIDFINDER satellite of DLR. Therefore, the technical feasibility of a number of asteroid observation scenarios involving spacecraft and targets interior to Earth's orbit is assessed based on the latest available spacecraft information and asteroid population models. A rough estimate of the required effort in terms of ground-based spacecraft operations and on-board resources is given for selected representative scenarios.

  4. The Case for a Geocentric rather than Heliocentric Origin of the Late Stage Heavy Bombardment (LHB) of the Moon and Tidal Evolution of its Orbit

    NASA Astrophysics Data System (ADS)

    Davis, P. M.; Stacey, F. D.

    2009-12-01

    Melt breccia samples returned from the Apollo mission have dates that suggest that the impacts that formed major basins on the Moon occurred between 3.8 and 4.0 Ga i.e., about 0.6 G years after Lunar formation. Three models have been proposed to explain the LHB. Heliocentric models including (1) The period marked the end of large-scale impacts associated with planetary formation and (2) It corresponded to a spike in impacts associated with major reorientation of the solar system (the ‘Nice model’), when the orbits Jupiter and Saturn became resonant, causing the orbits of Uranus and Neptune to become unstable and grow, scattering cometary and asteroidal fragments into Earth-Moon crossing orbits, and a geocentric model (3) It was due to collision with the last of a series of moonlets formed during Earth accretion which were swept up by tidal regression of a large Moon that had been formed near the Earth by a giant impact. While there is no smoking gun for any of these scenarios we will discuss a possible scenario for (3). Numerical calculations show that tidal regression of a large inner Moon sequentially traps exterior smaller moonlets into 2:1 resonance. Resonant trapping rapidly increases the eccentricity of their orbits causing them to become Moon-crossing. If the orbital radii of the moonlets had a resonance or Bode's law-type distribution, for the last collision to take place at 0.6 Gy, the Moon would have been at ~40 RE when it took place. One of the implications is that the associated LHB impacts would have significantly less relative velocity than those derived from asteroidal or cometary distances associated with (1) or (2). This may explain the low content of vapor condensate in the Lunar breccias. The tidal evolution from ~40 RE at 0.6 Gy requires a lower tidal friction than at present, but this has been evident for many years from tidal rhythmite data.

  5. Simulations of the Solar Orbiter spacecraft interactions with the Solar wind at different heliocentric distances: effects on SWA-EAS measurements

    NASA Astrophysics Data System (ADS)

    Guillemant, S.; Genot, V. N.; Matéo Vélez, J.; Sarrailh, P.; Louarn, P.; Maksimovic, M.; Owen, C. J.; Hilgers, A. M.

    2013-12-01

    This presentation focuses on numerical simulations of the Solar Orbiter spacecraft/plasma interactions performed with the Spacecraft Plasma Interaction System (SPIS) software (http://dev.spis.org/projects/spine/home/spis/). This toolkit aims at modelling spacecraft-plasma interactions, based on an electrostatic 3-D unstructured particle-in-cell plasma model. New powerful SPIS functionalities were recently delivered within the extension of the software: SPIS-Science (ESA contract). This version revolutionizes spacecraft/plasma interactions as users are now able to model and configure plasma instrument such as Langmuir probes or particle detectors taking into account instrument characteristics like geometry, materials, energy ranges and resolution, output frequency, field of view ... In the validation context of SPIS-Science functionalities, a simulation campaign was carried out, including several cases of the ESA Solar Orbiter mission. The results presented here specifically focus on particle measurements through the modelling of the Solar Wind Analyzer - Electron Analyzer System instrument (SWA-EAS). Simulations of the spacecraft in different environments have been performed and extensively analysed. A detailed analysis will be presented concerning 1/ the satellite charging and, in particular, differential potentials on the dielectric surfaces of the Solar panels and the High Gain Antenna, which may severely affect low energy EAS measurements, 2/ the surrounding plasma behaviour : potential barriers for secondary and photoelectrons of about -5 V around the vehicle are indeed observed at the mission perihelion of 0.28 AU from the Sun and 3/ a quantification of biases on EAS measurements due to the combined effects of surface potentials, ion wake, and potential barriers. This work proposes a general framework to prepare the analysis of the future Solar Orbiter measurements.

  6. A Space weather information service based upon remote and in-situ measurements of coronal mass ejections heading for Earth. A concept mission consisting of six spacecraft in a heliocentric orbit at 0.72 AU

    NASA Astrophysics Data System (ADS)

    Ritter, Birgit; Meskers, Arjan J. H.; Miles, Oscar; Rußwurm, Michael; Scully, Stephen; Roldán, Andrés; Hartkorn, Oliver; Jüstel, Peter; Réville, Victor; Lupu, Sorina; Ruffenach, Alexis

    2015-02-01

    The Earth's magnetosphere is formed as a consequence of interaction between the planet's magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past 40 years with the intention of understanding and forecasting solar behavior. One of these phenomena in particular, Earth-bound interplanetary coronal mass ejections (CMEs), can significantly disturb the Earth's magnetosphere for a short time and cause geomagnetic storms. This publication presents a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic field's orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the aforementioned CME properties. The obtained data can additionally be used for updating scientific models. This update is the mission's secondary objective. In-situ measurements are performed using a Solar Wind Analyzer instrumentation package and fluxgate magnetometers, while for remote measurements coronagraphs are employed. The proposed instruments originate from other space missions with the intention to reduce mission costs and to streamline the mission design process. Communication with the six identical spacecraft is realized via a deep space network consisting of six ground stations. They provide an information service that is in uninterrupted contact with the spacecraft, allowing for continuous space weather monitoring. A dedicated data processing center will handle all the data, and then forward the processed data to the SSA Space Weather Coordination Center which will, in turn, inform the general public through a space weather forecast. The data processing center will additionally archive the data for the scientific community. The proposed concept mission allows for major advances in space weather forecasting time and the scientific modeling of space weather.

  7. Solar Sail Optimal Orbit Transfers to Synchronous Orbits

    NASA Technical Reports Server (NTRS)

    Powers, Robert B.; Coverstone, Victoria; Prussing, John E.; Lunney, Bryan C. (Technical Monitor)

    1999-01-01

    A constant outward radial thrust acceleration can be used to reduce the radius of a circular orbit of specified period. Heliocentric circular orbits are designed to match the orbital period of Earth or Mars for various radial thrust accelerations and are defined as synchronous orbits. Minimum-time solar sail orbit transfers to these synchronous heliocentric orbits are presented.

  8. Ancient Greek Heliocentric Views Hidden from Prevailing Beliefs?

    NASA Astrophysics Data System (ADS)

    Liritzis, Ioannis; Coucouzeli, Alexandra

    2008-03-01

    We put forward the working hypothesis that the heliocentric, rather than the geocentric view, of the Solar System was the essential belief of the early Greek philosophers and astronomers. Although most of them referred to the geocentric view, it is plausible that the prevalent religious beliefs about the sacred character of the Earth as well as the fear of prosecution for impiety (asebeia) prevented them from expressing the heliocentric view, even though they were fully aware of it. Moreover, putting the geocentric view forward, instead, would have facilitated the reception of the surrounding world and the understanding of everyday celestial phenomena, much like the modern presentation of the celestial sphere and the zodiac, where the Earth is at the centre and the Sun makes an apparent orbit on the ecliptic. Such an ingenious stance would have set these early astronomers in harmony with the dominant religious beliefs and, at the same time, would have helped them to 'save the appearances', without sacrificing the essence of their ideas. In Hellenistic and Roman times, the prevailing view was still the geocentric one. The brilliant heliocentric theory advanced by Aristarchos in the early third century B.C. was never established, because it met with hostility in Athens - Aristarchos was accused of impiety and faced the death penalty. The textual evidence suggests that the tight connection which existed between religion and the city-state (polis) in ancient Greece, and which led to a series of impiety trials against philosophers in Athens during the fifth and fourth centuries B.C., would have made any contrary opinion expressed by the astronomers seem almost a high treason against the state.

  9. Analytical control laws of the heliocentric motion of the solar sail spacecraft

    NASA Astrophysics Data System (ADS)

    Gorbunova, Irina; Starinova, Olga

    2014-12-01

    The heliocentric motion of the solar sail spacecraft is described in classical Keplerian elements. The flat of solar sail with an ideal reflection coefficient is considered. The spacecraft performs a noncoplanar motion with the sun gravity and the light pressure. Disturbances of other celestial bodies gravity are not considered. We have received analytical terms for laws to control a solar sail, which ensure constancy or maximum rate of change of the Keplerian elements. To confirm the results correctness, we simulated the solar sail spacecraft. The spacecraft's initial orbit coincides with the average Earth orbit relative to the Sun. Authors developed a program complex to simulated the planar heliocentric movement and obtained results for motion simulation of flights to Mars and Venus. The results were compared with the simulation results obtained using the Pontryagin maximum principle.

  10. Microlensing Parallax for Observers in Heliocentric Motion

    E-print Network

    Novati, S Calchi

    2016-01-01

    Motivated by the ongoing Spitzer observational campaign, and the forecoming K2 one, we revisit, working in an heliocentric reference frame, the geometrical foundation for the analysis of the microlensing parallax, as measured with the simultaneous observation of the same microlensing event from two observers with relative distance of order AU. For the case of observers at rest we discuss the well known fourfold microlensing parallax degeneracy and determine an equation for the degenerate directions of the lens trajectory. For the case of observers in motion, we write down an extension of the Gould (1994) relationship between the microlensing parallax and the observable quantities and, at the same time, we highlight the functional dependence of these same quantities from the timescale of the underlying microlensing event. Furthermore, through a series of examples, we show the importance of taking into account the motion of the observers to correctly recover the parameters of the underlying microlensing event. ...

  11. Heliocentric zoning of the asteroid belt by aluminum-26 heating

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.; Mcsween, H. Y., Jr.

    1993-01-01

    Variations in petrology among meteorites attest to a strong heating event early in solar system history, but the heat source has remained unresolved. Aluminum-26 has been considered the most likely high-energy, short-lived radionuclide (half-life 0.72 million years) since the discovery of its decay product - excess Mg-26 - in Allende CAI's. Furthermore, observation of relict Mg-26 in an achondritic clast and in feldspars within ordinary chondrites (3,4) provided strong evidence for live Al-26 in meteorite parent bodies and not just in refractory nebular condensates. The inferred amount of Al-26 is consistent with constraints on the thermal evolution of both ordinary and carbonaceous chondrite parent objects up to a few hundred kilometers in diameter. Meteorites can constrain the early thermal evolution of their parent body locations, provided that a link can be established between asteroid spectrophotometric signature and meteorite class. Asteroid compositions are heliocentrically distributed: objects thought to have experienced high metamorphic or even melting temperatures are located closer to the sun, whereas apparently unaltered or mildly heated asteroids are located farther away. Heliocentric zoning could be the result of Al-26 heating if the initial amount of the radionuclide incorporated into planetesimals was controlled by accretion time, which in turn varies with semimajor axis. Analytic expressions for planetary accretion may be integrated to given the time, tau, required for a planetesimal to grow to a specified radius: tau varies as a(sup n), where n = 1.5 to 3 depending on the assumptions about variations in the surface density of the planetesimal swarm. Numerical simulations of planetesimal accretion at fixed semimajor axis demonstrate that variations in accretion time among small planetesimals can be strongly nonlinear depending on the initial conditions and model assumptions. The general relationship with semimajor axis remains valid because it depends only on the initial orbit properties and distribution of the planesimal swarm. In order to demonstrate the basic dependence of thermal evolution on semimajor axis, we parameterized accretion time across the asteroid belt according to tau varies as a(sup n) and calculated the subsequent thermal history. Objects at a specified semimajor axis were assumed to have the same accretion time, regardless of size. We set the initial Al-26/Al-27 ratio = 6 x 10(exp -5) and treated n and tau(sub 0) at a(sub 0) = 3 AU as adjustable parameters. The thermal model included temperature-dependent properties of ice and rock (CM chondrite analog) and the thermodynamic effects of phase transitions.

  12. Proof-of-Concept Trajectory Designs for a Multi-Spacecraft, Low-Thrust Heliocentric Solar Weather Buoy Mission

    NASA Technical Reports Server (NTRS)

    Muller, Ronald; Franz, Heather; Roberts, Craig; Folta, Dave

    2005-01-01

    A new solar weather mission has been proposed, involving a dozen or more small spacecraft spaced at regular, constant intervals in a mutual heliocentric circular orbit between the orbits of Earth and Venus. These solar weather buoys (SWBs) would carry instrumentation to detect and measure the material in solar flares, solar energetic particle events, and coronal mass ejections as they flowed past the buoys, serving both as science probes and as a radiation early warning system for the Earth and interplanetary travelers to Mars. The baseline concept involves placing a mothercraft carrying the SWBs into a staging orbit at the Sun-Earth L1 libration point. The mothercraft departs the L1 orbit at the proper time to execute a trailing-edge lunar flyby near New Moon, injecting it into a heliocentric orbit with its perihelion interior to Earth s orbit. An alternative approach would involve the use of a Double Lunar Swingby (DLS) orbit, rather than the L1 orbit, for staging prior to this flyby. After injection into heliocentric orbit, the mothercraft releases the SWBs-all equipped with low-thrust pulsed plasma thrusters (PPTs)-whereupon each SWB executes a multi-day low-thrust finite bum around perihelion, lowering aphelion such that each achieves an elliptical phasing orbit of different orbital period from its companions. The resulting differences in angular rates of motion cause the spacecraft to separate. While the lead SWB achieves the mission orbit following an insertion burn at its second perihelion passage, the remaining SWBs must complete several revolutions in their respective phasing orbits to establish them in the mission orbit with the desired longitudinal spacing. The complete configuration for a 14 SWB scenario using a single mothercraft is achieved in about 8 years, and the spacing remains stable for at least a further 6 years. Flight operations can be simplified, and mission risk reduced, by employing two mothercraft instead of one. In this scenario: the second mothercraft stays in a libration-point or DLS staging orbit until the first mothercraft has achieved nearly 180 separation from the Earth. The timing of the second mothercraft's subsequent lunar flyby is planned such that this spacecraft will be located 180 from the first mothercraft upon completion of its heliocentric circularization maneuvers. Both groups of satellites then only have to spread out over 180 to obtain full 360 coverage around the Sun.

  13. Back to the Future: The Return to Heliocentrism

    E-print Network

    Walter, Frederick M.

    to the Sun, p2 = a3 #12;Galileo Galilei (1564-1642) · The first experimental physicist? ­ Demonstrated stars in the Milky Way #12;#12;#12;#12;Galileo vs. the Pope · The Catholic Church was not anti, heliocentric cosmology · But Galileo insulted Pope Urban VIII in his book Dialogue Concerning the Two Chief

  14. orbit

    E-print Network

    2015-11-20

    Key words: water wave, Boussinesq system, traveling wave, homoclinic orbit,. multi-pulsed ... But to the best of my knowledge, there is no result regarding ... systems with exact analytical solitary-wave solutions were found, the existence of

  15. ICARUS 96,43-64 (1992) Orbital Stability Zones about Asteroids

    E-print Network

    Hamilton, Douglas P.

    1992-01-01

    ICARUS 96,43-64 (1992) Orbital Stability Zones about Asteroids II.The Destabilizing Effects-131) characterized the size and shape of a stability zone around an asteroid on a circular heliocentric orbit within analytically and numerically: the asteroid's nonzero heliocentric eccentricity and solar radiation pressure

  16. Systems Engineering for the Kepler Mission: A Search for Terrestrial Planets

    E-print Network

    Rhoads, James

    ) in the habitable zones (HZs) of solar-like stars. The mission will monitor > 100,000 dwarf stars simultaneously-based photometer injected into an earth-trailing heliocentric orbit by a 3-stage Delta II launch vehicle as well, extra-solar planets, Kepler mission, validation & verification, performance modeling * riley

  17. 67P/Churyumov-Gerasimenko: start of activity and heliocentric light curve

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Bramich, D.; Boehnhardt, H.; Barrera, L.

    2012-09-01

    Comets are believed to be widely unmodified remnants from the formation of the solar system; their study can give important insights into the conditions prevailing at the time of the planetary system formation. After the success of the Giotto mission to comet 1P/Halley, the European Space Agency (ESA) approved in the early nineties a new space mission with a comet as main target: Rosetta, which will rendezvous with come 67P/Churyumov-Gerasimenko (67P/C-G) in 2014. 67P/C-G is a Jupiter family comet with orbital period of 6.56 years. Due to repeated encounters with Jupiter, the orbital evolution of 67P/C-G is chaotic. The last encounter in February 1959 occurred at a distance of only 0.0518 AU and produced drastic changes in perihelion distance, eccentricity, inclination, orbital period and possibly led to its discovery in 1969. After 67P/C-G was selected as target comet of Rosetta mission, observational campaigns and theoretical investigations were performed in order to establish a detailed portrait of 67P/C-G in preparation of the rendezvous with the spacecraft ([1], [2], [3], [4]). Here we present ground-based observations of 67P/CG obtained between July 2007 and March 2008 at ESO VLT using the FORS2 instrument. The comet was moving inbound, from 4.6 AU to 3.4 AU. The orbital arc covered by our observation is the same where 67P/C-G will be in 2014 when the rendezvous with the Rosetta spacecraft will take place, thus of highly interest for mission planning. Since the comet's activity around perihelion has shown similar behaviour during the last three orbital passages, it is fair to assume that the comet's behavior at large heliocentric distance has not changed from one orbital revolution to the other, leading us to expect that during its approach to 67P/CG, Rosetta will find the same conditions detected during our observations. A considerable difficulty in observing 67P/C-G during the past years has been its position against crowded fields towards the galactic centre for much of this time (Fig. 1 - top). The 2007/8 data presented here was particularly difficult, and the comet will once again be badly placed for Earth based observations in 2014/5. We made use of the technique of Difference Image Analysis (as implemented in the DanDIA software, [5]), which is commonly used in variable star and exoplanet research, to remove background sources and extract images of the comet (Fig. 1 - bottom). We determined that the comet became active during the period November 2007 - March 2008, at a distance of 4.1-3.4 AU from the Sun. The comet will reach this distance, and probably become active again, in April- September 2014. To investigate the longer period activity cycle of the comet we compiled the heliocentric light curve of the comet, making use of images of 67P/C-G taken during the last three apparitions taken from the ESO archive. A preliminary light curve is shown in 2. This information will be used for planning observing campaigns, both from the ground and using OSIRIS on board Rosetta.

  18. The Structure of the Solar Wind at Large Heliocentric Distances: CIRs and their Successors

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1999-01-01

    Co-rotating interaction regions (CIRs) and their associated shock pairs are dominant structures in the solar wind between the heliocentric distances of 2 and 8 AU. At larger heliocentric distances, these structures undergo a qualitative change. Shocks decay to a point where they are often difficult to detect, and may have little influence on the dynamics of the solar wind. Interaction regions spread and merge, though they appear to retain their identity to surprisingly large distances from the Sun. Solar wind and IMF data from the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were used to conduct a comprehensive survey of CIRs and their successors between heliocentric distances of 1 and 55 AU over the last two solar cycles. The structure of the solar wind varied in a consistent fashion with heliocentric distance. Similar structures were observed at similar heliocentric distances by all three spacecraft during different portions of the solar cycle.

  19. No evidence for a decrease of nuclear decay rates with increasing heliocentric distance based on radiochronology of meteorites

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Wieler, Rainer

    2014-03-01

    It has been argued that the decay rates of several radioactive nuclides are slightly lower at Earth's aphelion than at perihelion, and that this effect might depend on heliocentric distance. It might then be expected that nuclear decay rates be considerably lower at larger distances from the sun, e.g., in the asteroid belt at 2-3 AU from where most meteorites originate. If so, ages of meteorites obtained by analyses of radioactive nuclides and their stable daughter isotopes might be in error, since these ages are based on decay rates determined on Earth. Here we evaluate whether the large data base on nuclear cosmochronology offers any hint for discrepancies which might be due to radially variable decay rates. Chlorine-36 (t1/2 = 301,000 a) is produced in meteorites by interactions with cosmic rays and is the nuclide for which a decay rate dependence from heliocentric distance has been proposed, which, in principle, can be tested with our approach and the current data base. We show that compilations of 36Cl concentrations measured in meteorites offer no support for a spatially variable 36Cl decay rate. For very short-lived cosmic-ray produced radionuclides (half-lives < 10-100 days), the concentration should be different for meteorites hitting the Earth on the incoming vs. outgoing part of their orbit. However, the current data base of very short-lived radionuclides in freshly fallen meteorites is far from sufficient to deduce solid constraints. Constraints on the age of the Earth and the oldest meteorite phases obtained by the U-Pb dating technique give no hints for radially variable decay rates of the ?-decaying nuclides 235U or 238U. Similarly, some of the oldest phases in meteorites have U-Pb ages whose differences agree almost perfectly with respective age differences obtained with "short-lived" radionuclides present in the early solar system, again indicating no variability of uranium decay rates in different meteorite parent bodies in the asteroid belt. Moreover, the oldest U-Pb ages of meteorites agree with the main-sequence age of the sun derived from helioseismology within the formal ˜1% uncertainty of the latter. Meteorite ages also provide no evidence for a decrease of decay rates with heliocentric distance for nuclides such as 87Rb (decay mode ?-) 40K (?- and electron capture), and 147Sm (?).

  20. Deviations from Keplerian Orbits for Solar Sails

    E-print Network

    Roman Ya. Kezerashvili; Justin F. Vazquez-Poritz

    2009-07-20

    It is shown that the curvature of spacetime, a possible net electric charge on the sun, a small positive cosmological constant and the oblateness of the sun, in conjunction with solar radiation pressure (SPR), affect the bound orbital motion of solar sails and lead to deviations from Kepler's third law for heliocentric and non-Keplerian orbits. With regards to the Lense-Thirring effect, the SRP increases the amount of precession per orbit for polar orbits. Non-Keplerian polar orbits exhibit an analog of the Lense-Thirring effect in which the orbital plane precesses around the sun.

  1. From Pythagoreans to Kepler: the dispute between the geocentric and the heliocentric systems

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Danezis, E.; Manimanis, V. N.; Kalyva, E.-M.

    2002-06-01

    Some ancient Greek philosophers and thinkers questioned the geocentric system and proposed instead a heliocentric system. The main proponents of this view - which was seen as heretical at the time - are believed to have been the Pythagoreans Philolaos, Heraclides, Hicetas, and Ecphantos, but mainly Aristarchos of Samos, who placed the Sun in the position of the "central fire" of the Pythagoreans. The geocentric system, reworked by Claudius Ptolemaeus (Ptolemy), was the dominant one for centuries, and it was only during the sixteenth century that the Polish monk-astronomer, Copernicus, revisited the ancient Greek heliocentric views and became the new champion of the theory that we all accept today.

  2. Heliocentric distance and temporal dependence of the interplanetary density-magnetic field magnitude correlation

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.

    1990-01-01

    The Helios, IMP 8, ISEE 3, ad Voyager 2 spacecraft are used to examine the solar cycle and heliocentric distance dependence of the correlation between density n and magnetic field magnitude B in the solar wind. Previous work had suggested that this correlation becomes progressively more negative with heliocentric distance out to 9.5 AU. Here it is shown that this evolution is not a solar cycle effect, and that the correlations become even more strongly negative at heliocentric distance larger than 9.5 AU. There is considerable variability in the distributions of the correlations at a given heliocentric distance, but this is not simply related to the solar cycle. Examination of the evolution of correlations between density and speed suggest that most of the structures responsible for evolution in the anticorrelation between n and B are not slow-mode waves, but rather pressure balance structures. The latter consist of both coherent structures such as tangential discontinuities and the more generally pervasive 'pseudosound' which may include the coherent structures as a subset.

  3. Photometry of comet C/2011 L4 (PANSTARRS) at 4.4 - 4.2 AU heliocentric distances

    E-print Network

    Ivanova, Oleksandra; Golovin, Alex

    2015-01-01

    We present an analysis of the photometric data of comet C/2011 L4 (PANSTARRS) observed at heliocentric distance of 4.4 - 4.2 AU. The comet C/2011 L4 (PANSTARRS) shows one significant activity, despite of its quite large heliocentric distance. The color indexes, dust mass-loss rates and radius of the comet are measured.

  4. observations heliocentric

    E-print Network

    Meech, Karen Jean

    Distant Comet Imaging with the Keck and the HST K. J. Meech, O. R. Hainaut and J. Bauer (IfA­UH) As part of our program to observe the cessation of activity in selected distant comets, we obtained observations of comet C/1987 H1 (Shoemaker 1987o) and C/1984 K1 (Shoemaker 1984f) using the LRIS instrument

  5. Spitzer Orbit Determination During In-orbit Checkout Phase

    NASA Technical Reports Server (NTRS)

    Menon, Premkumar R.

    2004-01-01

    The Spitzer Space Telescope was injected into heliocentric orbit on August 25, 2003 to observe and study astrophysical phenomena in the infrared range of frequencies. The initial 60 days was dedicated to Spitzer's "In-Orbit Checkout (IOC)" efforts. During this time high levels of Helium venting were used to cool down the telescope. Attitude control was done using reaction wheels, which in turn were de-saturated using cold gas Nitrogen thrusting. Dense tracking data (nearly continuous) by the Deep Space network (DSN) were used to perform orbit determination and to assess any possible venting imbalance. Only Doppler data were available for navigation. This paper deals with navigation efforts during the IOC phase. It includes Dust Cover Ejection (DCE) monitoring, orbit determination strategy validation and results and assessment of non-gravitational accelerations acting on Spitzer including that due to possible imbalance in Helium venting.

  6. Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1992-01-01

    Using a simple model for outgassing from a small flat surface area, the sublimation rates of carbon monoxide and carbon dioxide, two species more volatile than water ice that are known to be present in comets, are calculated for a suddenly activated discrete source on the rotating nucleus. The instantaneous sublimation rate depends upon the comet's heliocentric distance and the Sun's zenith angle at the location of the source. The values are derived for the constants of CO and CO2 in an expression that yields the local rotation-averaged sublimation rate as a function of the comet's spin parameters and the source's cometocentric latitude.

  7. CONSTRAINING THE DUST COMA PROPERTIES OF COMET C/SIDING SPRING (2013 A1) AT LARGE HELIOCENTRIC DISTANCES

    SciTech Connect

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnham, Tony L.; A'Hearn, Michael F.; Mutchler, Max J.; Lisse, Carey M.; Delamere, W. Alan E-mail: nalin@psi.edu E-mail: farnham@astro.umd.edu E-mail: mutchler@stsci.edu E-mail: alan@delamere.biz

    2014-12-10

    The close encounter of comet C/2013 A1 (Siding Spring) with Mars on 2014 October 19 presented an extremely rare opportunity to obtain the first flyby quality data of the nucleus and inner coma of a dynamically new comet. However, the comet's dust tail potentially posed an impact hazard to those spacecraft orbiting Mars. To characterize the comet at large heliocentric distances, study its long-term evolution, and provide critical inputs to hazard modeling, we imaged C/Siding Spring with the Hubble Space Telescope when the comet was at 4.58, 3.77, and 3.28 AU from the Sun. The dust production rate, parameterized by the quantity Af?, was 2500, 2100, and 1700 cm (5000 km radius aperture) for the three epochs, respectively. The color of the dust coma is (5.0 ± 0.3)%/100 nm for the first two epochs, and (9.0 ± 0.3)%/100 nm for the last epoch, and reddens with increasing cometocentric distance out to ?3000 km from the nucleus. The spatial distribution and the temporal evolution of the dust color are most consistent with the existence of icy grains in the coma. Two jet-like dust features appear in the northwest and south-southeast directions projected in the sky plane. Within each epoch of 1-2 hr, no temporal variations were observed for either feature, but the position angle of the south-southeastern feature varied between the three epochs by ?30°. The dust feature morphology suggests two possible orientations for the rotational pole of the nucleus, (R.A., decl.) = (295° ± 5°, +43° ± 2°) and (190° ± 10°, +50° ± 5°), or their diametrically opposite orientations.

  8. Constraining the Dust Coma Properties of Comet C/Siding Spring (2013 a1) at Large Heliocentric Distances

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnham, Tony L.; A'Hearn, Michael F.; Mutchler, Max J.; Lisse, Carey M.; Delamere, W. Alan

    2014-12-01

    The close encounter of comet C/2013 A1 (Siding Spring) with Mars on 2014 October 19 presented an extremely rare opportunity to obtain the first flyby quality data of the nucleus and inner coma of a dynamically new comet. However, the comet's dust tail potentially posed an impact hazard to those spacecraft orbiting Mars. To characterize the comet at large heliocentric distances, study its long-term evolution, and provide critical inputs to hazard modeling, we imaged C/Siding Spring with the Hubble Space Telescope when the comet was at 4.58, 3.77, and 3.28 AU from the Sun. The dust production rate, parameterized by the quantity Af?, was 2500, 2100, and 1700 cm (5000 km radius aperture) for the three epochs, respectively. The color of the dust coma is (5.0 ± 0.3)%/100 nm for the first two epochs, and (9.0 ± 0.3)%/100 nm for the last epoch, and reddens with increasing cometocentric distance out to ~3000 km from the nucleus. The spatial distribution and the temporal evolution of the dust color are most consistent with the existence of icy grains in the coma. Two jet-like dust features appear in the northwest and south-southeast directions projected in the sky plane. Within each epoch of 1-2 hr, no temporal variations were observed for either feature, but the position angle of the south-southeastern feature varied between the three epochs by ~30°. The dust feature morphology suggests two possible orientations for the rotational pole of the nucleus, (R.A., decl.) = (295° ± 5°, +43° ± 2°) and (190° ± 10°, +50° ± 5°), or their diametrically opposite orientations.

  9. The heliocentric evolution of cometary infrared spectra - Results from an organic grain model

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.; Sagan, Carl; Mumma, Michael J.

    1989-01-01

    An emission feature peaking near 3.4 microns that is typical of C-H stretching in hydrocarbons and which fits a simple, two-component thermal emission model for dust in the cometary coma, has been noted in observations of Comets Halley and Wilson. A noteworthy consequence of this modeling is that, at about 1 AU, emission features at wavelengths longer than 3.4 microns come to be 'diluted' by continuum emission. A quantitative development of the model shows it to agree with observational data for Comet Halley for certain, plausible values of the optical constants; the observed heliocentric evolution of the 3.4-micron feature thereby furnishes information on the composition of the comet's organic grains.

  10. Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Welter, Gary L.

    2012-01-01

    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions.

  11. A Synoptic Analysis of the Change from the Geocentric to the Heliocentric Conception of the Solar System.

    ERIC Educational Resources Information Center

    Wilson, Roosevelt L.

    The changes which occurred in man's view of the solar system from the time of Ptolemy to that of Galileo are presented. Contained is a brief review of the chain of events which resulted in the acceptance of a heliocentric system. Ptolomy's theory is described and a diagram illustrates the paths of the epicycle of Mars according to his geocentric…

  12. Thermal Infrared Spectra of Comet HaleBopp at Heliocentric Distances of 4 and 2.9 AU.

    E-print Network

    Davies, John Keith

    Thermal Infrared Spectra of Comet Hale­Bopp at Heliocentric Distances of 4 and 2.9 AU. John K. We present 10 and 20¯m spectra of Comet Hale­Bopp taken at UKIRT on 1996 June 20 and 1996 September words: comet, infrared, dust, silicates 1. Introduction Emission features in the 10¯m region have been

  13. Telemetry coding study for the international magnetosphere explorers, mother/daughter and heliocentric missions. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1973-01-01

    A convolutional coding theory is given for the IME and the Heliocentric spacecraft. The amount of coding gain needed by the mission is determined. Recommendations are given for an encoder/decoder system to provide the gain along with an evaluation of the impact of the system on the space network in terms of costs and complexity.

  14. Solar wind structure at large heliocentric distances - An interpretation of Pioneer 10 observations

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.; Gosling, J. T.

    1976-01-01

    Examination of hourly values of the solar wind speed observed by the Pioneer 10 spacecraft beyond a heliocentric distance of 4 AU reveals (1) a prevalent 'sawtoothlike' speed-time profile, most speed fluctuations displaying a rapid rise and a much slower decline, and (2) the nearly universal appearance of abrupt (on the 1-hour time resolution of these data) changes in the speed on the rising portions of the speed fluctuations. These previously unreported characteristics, as well as the rate of decay of stream amplitudes derived earlier by Collard and Wolfe, are in general agreement with the predictions of stream propagation models that neglect any conversion of kinetic energy to thermal energy outside of shock fronts. Thus the Pioneer 10 observations give the first confirmation of the general concept of solar wind stream evolution employed in these models, i.e., that solar wind speed inhomogeneities appear to steepen to form shock waves and that the 'wave amplitudes' decay slowly as the shock waves propagate outward from the sun.

  15. EVOLUTION OF CORONAL MASS EJECTION MORPHOLOGY WITH INCREASING HELIOCENTRIC DISTANCE. I. GEOMETRICAL ANALYSIS

    SciTech Connect

    Savani, N. P.; Kusano, K.; Owens, M. J.; Rouillard, A. P.; Forsyth, R. J.; Shiota, D.; Kataoka, R.

    2011-04-20

    At launch, coronal mass ejections (CMEs) are often approximated as locally cylindrical objects with circular cross sections. However, CMEs have long been known to propagate almost radially away from the Sun along with the bulk solar wind. This has important consequences for the structure of CMEs; an initially circular cross section will be severely flattened by this radial motion. Yet calculations of total flux and helicity transport by CMEs based on in situ observations still use the assumption of a locally cylindrical object. In this paper, we investigate the morphology of an interplanetary CME based upon geometric arguments. By radially propagating an initial cylindrical object that maintains a constant ratio between its expansion speed and bulk flow, A, we show that the flattening, or 'pancaking', of the two-dimensional cross section effectively ceases; the aspect ratios of these CMEs converge to a fixed value as they propagate further into the heliosphere. Thereafter the CME morphology is scale invariant. We predict aspect ratios of 5 {+-} 1 at terrestrial distances. By correlating a planetary shock with an interplanetary shock linked to a CME, these aspect ratios are estimated using in situ measurements in Paper II. These estimates are made at various heliocentric distances.

  16. Heliocentric Potential (HCP) Prediction Model for Nowscast of Aviation Radiation Dose

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Kim, Kyung-Chan; Dokgo, Kyunghwan; Choi, Enjin; Kim, Hang-Pyo

    2015-03-01

    It is well known that the space radiation dose over the polar route should be carefully considered especially when the space weather shows sudden disturbances such as CME and flares. The National Meteorological Satellite Center (NMSC) and Korea Astronomy and Space Science Institute (KASI) recently established a basis for a space radiation service for the public by developing a space radiation prediction model and heliocentric potential (HCP) prediction model. The HCP value is used as a critical input value of the CARI-6 and CARI-6M programs, which estimate the aviation route dose. The CARI-6/6M is the most widely used and confidential program that is officially provided by the U.S. Federal Aviation Administration (FAA). The HCP value is given one month late in the FAA official webpage, making it difficult to obtain real-time information on the aviation route dose. In order to overcome this limitation regarding time delay, we developed a HCP prediction model based on the sunspot number variation. In this paper, we focus on the purpose and process of our HCP prediction model development. Finally, we find the highest correlation coefficient of 0.9 between the monthly sunspot number and the HCP value with an eight month time shift.

  17. Analysis of the interplanetary magnetic field observations at different heliocentric distances

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga

    2013-04-01

    Multi-spacecraft measurements of the interplanetary magnetic field (IMF) from 0.29 AU to 5 AU along the ecliptic plane have demonstrated systematic deviations of the observed IMF strength from the values predicted on the basis of the Parker-like radial extension models (Khabarova, Obridko, 2012). In particular, it was found that the radial IMF component |Br| decreases with a heliocentric distance r with a slope of -5/3 (instead of r-2 expansion law). The current investigation of multi-point observations continues the analysis of the IMF (and, especially, Br) large-scale behaviour, including its latitudinal distribution. Additionally, examples of the mismatches between the expected IMF characteristics and observations at smaller scales are discussed. It is shown that the observed effects may be explained by not complete IMF freezing-in to the solar wind plasma. This research was supported by the Russian Fund of Basic Researches' grants Nos.11-02-00259-a, and 12-02-10008-K. Khabarova Olga, and Obridko Vladimir, Puzzles of the Interplanetary Magnetic Field in the Inner Heliosphere, 2012, Astrophysical Journal, 761, 2, 82, doi:10.1088/0004-637X/761/2/82, http://arxiv.org/pdf/1204.6672v2.pdf

  18. Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James

    2007-01-01

    This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF's orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.

  19. Determination of the Value of the Heliocentric Gravitational Constant (GM?) from Modern Observations of Planets and Spacecraft

    NASA Astrophysics Data System (ADS)

    Pitjeva, E. V.

    2015-09-01

    The history of estimation of the heliocentric gravitational constant is given. Initially the value of GM? was based on the mean period of motion of the Earth around the Sun, then on estimation of the value of the astronomical unit, and finally the modern value of GM? is determined with the extraordinarily high accuracy, GM? = 132 712 440 042 ± 10 (km3/s2), while fitting ephemerides to high-precision radar observations.

  20. Orbital acrobatics in the Sun-Earth-Moon system

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert W.; Dunham, D. W.; Hsu, S. C.

    1986-01-01

    Unconventional trajectory techniques for space missions in the Sun-Earth-Moon system, including libration-point orbits, gravity-assist maneuvers, and Earth-return trajectories are reviewed. The ISEE-3/ICE flight experience is used to illustrate the utility of libration-point orbits called halo-orbits. Five lunar gravity-assist maneuvers used by the ISEE-3/ICE spacecraft are discussed. The final lunar swingby sent the spacecraft into a heliocentric trajectory that will eventually intercept Comet Giacobini-Zinner. As an example of the Earth-return trajectory concept, a proposed mission that includes flybys of three comets and two asteroids is described.

  1. Kepler Stars with Multiple Transiting Planet Candidates

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    NASA's Kepler spacecraft was launched into an Earth-trailing heliocentric orbit in March of 2009. Kepler is designed to conduct a statistical census of planetary system properties using transit photometry. Among the most exciting early results from Kepler are target stars found to have photometric signatures that suggest the presence of more than one transiting planet. Individual transiting planets provide information on the size and orbital period distributions of exoplanets. Multiple transiting planets provide additional information on the spacing and flatness distributions of planetary systems. Results to d ate and plans for future analysis will be presented.

  2. Data catalog series for space science and applications flight missions. Volume 1A: Brief descriptions of planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Cameron, W. S. (editor); Vostreys, R. W. (editor)

    1982-01-01

    Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.

  3. Photochemistry of atomic oxygen green and red-doublet emissions in comets at larger heliocentric distances

    NASA Astrophysics Data System (ADS)

    Raghuram, Susarla; Bhardwaj, Anil

    2014-06-01

    Context. In comets, the atomic oxygen green (5577 Å) to red-doublet (6300, 6364 Å) emission intensity ratio (G/R ratio) of 0.1 has been used to confirm H2O as the parent species producing forbidden oxygen emission lines. The larger (>0.1) value of G/R ratio observed in a few comets is ascribed to the presence of higher CO2 and CO relative abundances in the cometary coma. Aims: We aim to study the effect of CO2 and CO relative abundances on the observed G/R ratio in comets observed at large (>2 au) heliocentric distances by accounting for important production and loss processes of O(1S) and O(1D) atoms in the cometary coma. Methods: Recently we have developed a coupled chemistry-emission model to study photochemistry of O(1S) and O(1D) atoms and the production of green and red-doublet emissions in comets Hyakutake and Hale-Bopp. In the present work we applied the model to six comets where green and red-doublet emissions are observed when they are beyond 2 au from the Sun. Results: The collisional quenching of O(1S) and O(1D) can alter the G/R ratio more significantly than that due to change in the relative abundances of CO2 and CO. In a water-dominated cometary coma and with significant (>10%) CO2 relative abundance, photodissociation of H2O mainly governs the red-doublet emission, whereas CO2 controls the green line emission. If a comet has equal composition of CO2 and H2O, then ~50% of red-doublet emission intensity is controlled by the photodissociation of CO2. The role of CO photodissociation is insignificant in producing both green and red-doublet emission lines and consequently in determining the G/R ratio. Involvement of multiple production sources in the O(1S) formation may be the reason for the observed higher green line width than that of red lines. The G/R ratio values and green and red-doublet line widths calculated by the model are consistent with the observation. Conclusions: Our model calculations suggest that in low gas production rate comets the G/R ratio greater than 0.1 can be used to constrain the upper limit of CO2 relative abundance provided the slit-projected area on the coma is larger than the collisional zone. If a comet has equal abundances of CO2 and H2O, then the red-doublet emission is significantly (~50%) controlled by CO2 photodissociation and thus the G/R ratio is not suitable for estimating CO2 relative abundance.

  4. Orbital Resonance and Solar Cycles

    E-print Network

    P. A. Semi

    2009-03-29

    We present an analysis of planetary moves, encoded in DE406 ephemerides. We show resonance cycles between most planets in Solar System, of differing quality. The most precise resonance - between Earth and Venus, which not only stabilizes orbits of both planets, locks planet Venus rotation in tidal locking, but also affects the Sun: This resonance group (E+V) also influences Sunspot cycles - the position of syzygy between Earth and Venus, when the barycenter of the resonance group most closely approaches the Sun and stops for some time, relative to Jupiter planet, well matches the Sunspot cycle of 11 years, not only for the last 400 years of measured Sunspot cycles, but also in 1000 years of historical record of "severe winters". We show, how cycles in angular momentum of Earth and Venus planets match with the Sunspot cycle and how the main cycle in angular momentum of the whole Solar system (854-year cycle of Jupiter/Saturn) matches with climatologic data, assumed to show connection with Solar output power and insolation. We show the possible connections between E+V events and Solar global p-Mode frequency changes. We futher show angular momentum tables and charts for individual planets, as encoded in DE405 and DE406 ephemerides. We show, that inner planets orbit on heliocentric trajectories whereas outer planets orbit on barycentric trajectories.

  5. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the Lunar Atmosphere Dust Environment Explorer (LADEE) Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Loucks, Michael; Carrico, John

    2014-01-01

    The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).

  6. Program manual for HILTOP, a heliocentric interplanetary low thrust trajectory optimization program. Part 1: User's guide

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1974-01-01

    A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.

  7. Spitzer Space Telescope in-orbit checkout and science verification operations

    NASA Technical Reports Server (NTRS)

    Linick, Sue H.; Miles, John W.; Gilbert, John B.; Boyles, Carol A.

    2004-01-01

    Spitzer Space Telescope, the fourth and final of NASA's great observatories, and the first mission in NASA's Origins Program was launched 25 August 2003 into an Earth-trailing solar orbit. The observatory was designed to probe and explore the universe in the infrared. Before science data could be acquired, however, the observatory had to be initialized, characterized, calibrated, and commissioned. A two phased operations approach was defined to complete this work. These phases were identified as In-Orbit Checkout (IOC) and Science Verification (SV). Because the observatory lifetime is cryogen-limited these operations had to be highly efficient. The IOC/SV operations design accommodated a pre-defined distributed organizational structure and a complex, cryogenic flight system. Many checkout activities were inter-dependent, and therefore the operations concept and ground data system had to provide the flexibility required for a 'short turn-around' environment. This paper describes the adaptive operations system design and evolution, implementation, and lessons-learned from the completion of IOC/SV.

  8. Spitzer Space Telescope mission design

    NASA Technical Reports Server (NTRS)

    Kwok, Johnny H.; Garcia, Mark D.; Bonfiglio, Eugene; Long, Stacia M.

    2004-01-01

    This paper gives a description of the mission design, launch, orbit, and navigation results for the Spitzer space telescope mission. The Spitzer telescope was launched by the Delta II Heavy launch vehicle into a heliocentric Earth trailing orbit. This orbit is flown for the first time and will be used by several future astronomical missions such as Kepler, SIM, and LISA. This paper describes the launch strategy for a winter versus a summer launch and how it affects communications. It also describes how the solar orbit affects the design and operations of the Observatory. It describes the actual launch timeline, launch vehicle flight performance, and the long term behavior of the as flown orbit. It also provides the orbit knowledge from in-flight navigation data.

  9. Low cost transfer into useful sun-synchronous orbits at Mars

    NASA Technical Reports Server (NTRS)

    Glickman, R. E.; Stuart, J. R.

    1981-01-01

    Mars oblateness has been found to provide sun-synchronous orbits, including orbits with stationary apsides, similar to those used at earth. A low mass and low data rate complement of scientific instruments placed in such orbits can provide exciting planetary investigations such as the Mars Orbiter Water Mission described herein. Use of a modest Shuttle kickstage (PAM-A) and existing spacecraft hardware makes this mission low-cost. A preliminary mission and spacecraft design is described. The major emphasis of the paper is on the mechanics of heliocentric transfer for the 1986 and 1988 launch opportunities, Martian sun-synchronous orbit geometries, injectable mass capabilities, and methods of achieving these scientifically useful orbits.

  10. Search for faint meteors on the orbits of Pribram and Neuschwanstein meteorites

    NASA Astrophysics Data System (ADS)

    Koten, P.; Vaubaillon, J.; ?apek, D.; Vojá?ek, V.; Spurný, P.; Štork, R.; Colas, F.

    2014-07-01

    We analysed the faint meteors detected on the orbits close to the orbits of P?íbram (Ceplecha, 1961) and Neuschwanstein (Spurný et al., 2003) meteorite falls and investigate the possibility that they belong to the stream (Pauls and Gladman, 2005). Several meteors with lower orbital similarity criteria to P?íbram and Neuschwanstein meteoroids were found. The atmospheric trajectories and heliocentric orbits of the detected meteors were analysed to determine whether they are members of the same shower. An orbital evolution model was applied on a certain number of cloned particles to investigate their possible connection with the meteorite stream. Statistical tests were conducted to determine if such small sample of the orbits is similar by chance or if the stream is real. It was found that from the observational as well as the theoretical point of view it is impossible to prove the existence of faint meteor shower connected with the P?íbram and Neuschwanstein meteorite stream.

  11. Analysis and interpretation of CCD data on P/Halley and physical parameters and activity status of cometary nuclei at large heliocentric distance

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Mueller, Beatrice

    1991-01-01

    The scientific objectives were as follows: (1) to construct a well sampled photometric time series of comet Halley extending to large heliocentric distances both post and pre-perihelion passage and derive a precise ephemeris for the nuclear spin so that the physical and chemical characteristics of individual regions of activity on the nucleus can be determined; and (2) to extend the techniques in the study of Comet Halley to the study of other cometary nuclei and to obtain new observational data.

  12. A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS

    SciTech Connect

    Savani, N. P.; Shiota, D.; Kusano, K.; Vourlidas, A.; Lugaz, N.

    2012-11-10

    We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, {Delta}, as a fraction of the CME radial half-width, D {sub OB} (i.e., {Delta}/D {sub OB}). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; {rho} {sub u}/{rho} {sub d}) measured across the bow shock. The DR coefficient, k {sub dr}, which is the proportionality constant between the relative standoff distance ({Delta}/D {sub OB}) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 {+-} 0.1 is more appropriate for small heliocentric distances (<30 Rs) which corresponds to the spherical geometry of a magnetosphere presented by Seiff. As the CME propagates its cross section becomes more oblate and the k {sub dr} value increases linearly with heliocentric distance, such that k {sub dr} = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k {sub dr} = 1.8 {+-} 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.

  13. On the evolution of satellite orbits under the action of the planet's oblateness and attraction by its massive satellites and the sun

    NASA Astrophysics Data System (ADS)

    Vashkov'yak, M. A.; Vashkov'yak, S. N.; Emel'yanov, N. V.

    2015-07-01

    The problem of the joint influence of the oblateness of a central planet and attraction by its most massive (or main) satellites and the Sun on the orbital evolution of a satellite with a negligible mass is considered. For an arbitrary angle between the equatorial plane of the planet and the plane of its heliocentric orbit, the evolution equations have been derived in the planeto-equatorial elements of the satellite orbit. Integrable cases of the evolution problem are described. The influence of Uranus's main satellites on the orbital evolution of its real and hypothetical satellites has been revealed through numerical calculations and analytical estimations.

  14. End-of-life disposal of libration point orbit missions: The case of Gaia

    NASA Astrophysics Data System (ADS)

    Armellin, Roberto; Rasotto, Mirco; Di Lizia, Pierluigi; Renk, Florian

    2015-08-01

    This work investigates end of life disposal options for libration point orbit missions. Three different options are presented: the first one considers spacecraft's re-entry in Earth's atmosphere, the second one concerns the impact on the Moon, whereas the third one consists in the injection of the spacecraft into a heliocentric graveyard orbit. The disposal design is formulated as a multi-objective optimization problem in order to take into account other goals in addition to propellant consumption minimization. The disposal of Gaia mission is used as test case throughout the paper.

  15. Everything in OrbitEverything in Orbit Orbital VelocityOrbital Velocity

    E-print Network

    Herrick, Robert R.

    Everything in OrbitEverything in Orbit #12;Orbital VelocityOrbital Velocity Orbital velocity is the speed at which a planetary body moves in Orbital velocity is the speed at which a planetary body moves in its orbit around another body. its orbit around another body. If orbits were circular, this velocity

  16. Pupils Produce their Own Narratives Inspired by the History of Science: Animation Movies Concerning the Geocentric-Heliocentric Debate

    NASA Astrophysics Data System (ADS)

    Piliouras, Panagiotis; Siakas, Spyros; Seroglou, Fanny

    2011-07-01

    In this paper, we present the design and application of a teaching scenario appropriate for 12-years-old pupils in the primary school aiming to a better understanding of scientific concepts and scientific methods, linking the development of individual thinking with the development of scientific ideas and facilitating a better understanding of the nature of science. The design of the instructional material supporting this scenario has been based on the study of the history of astronomy and especially on: (a) The various theories concerning the movement of Earth, our solar system and the universe. (b) Key-stories highlighting the evolutionary character of scientific knowledge as well as the cultural interrelations of science and society. The design of the teaching scenario has focused on the participation of pupils in gradually evolving discourses and practices encouraging an appreciation of aspects of the nature of science (e.g. the role of observation and hypothesis, the use of evidence, the creation and modification of models). In this case, pupils are asked to produce their own narratives: animation movies concerning the geocentric-heliocentric debate inspired by the history of science, as the animation technique presents strong expressional potential and currently has many applications in the field of educational multimedia. The research design of this current case study has been based on the SHINE research model, while data coming from pupils' animation movies, questionnaires, interviews, worksheets, story-boards and drawings have been studied and analyzed using the GNOSIS research model. Elaborated data coming from our analysis approach reveal the appearance, transformation and evolution of aspects of nature of science appreciated by pupils and presented in their movies. Data analysis shows that during the application pupils gradually consider more and more the existence of multiple answers in scientific questions, appreciate the effect of culture on the way science functions and the way scientists work as well as the effect of new scientific interpretations that replace the old ones in the light of new evidence. The development of pupils' animation movies carrying aspects of the history of astronomy with a strong focus on the understanding of the nature of science creates a dynamic educational environment that facilitates pupils' introduction to a demanding teaching content (e.g. planet, model, retrograde motion) placing it in context (key-stories from the history of science) and at the same time offers to pupils the opportunity to engage their personal habits, interests and hobbies in the development of their science movies.

  17. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  18. W-reps, nilp orbits, orbit method

    E-print Network

    Vogan, David

    W-reps, nilp orbits, orbit method David Vogan Representation theory irr reps nilp orbits irr reps W reps nilp orbits W reps Explaining the arrows Remembrance of things past Weyl group representations, nilpotent orbits, and the orbit method David Vogan Department of Mathematics Massachusetts

  19. Heliocentric Distance of Coronal Mass Ejections at the Time of Energetic Particle Release: Revisiting the Ground Level Enhancement Events of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Using the kinematics of coronal mass ejections (CMEs), onset time of soft X-ray flares, and the finite size of the pre-eruption CME structure, we derive the heliocentric distane at which the energetic particles during the ground level enhancement (GLE) events of Solar Cycle 23. We find that the GLE particles are released when the CMEs reach an average heliocentric distance of approx.3.25 solar radii (Rs). From this we infer that the shocks accelerating the particles are located at similar heights. Type II radio burst observations indicate that the CMEs are at much lower distances (average approx.1.4 Rs) when the CME-driven shock first forms. The shock seems to travel approx.1.8 Rs over a period of approox.30 min on the average before releasing the GLE particles. In deriving these results, we made three assumptions that have observational support: (i) the CME lift off occurs from an initial distance of about 1.25 Rs; (ii) the flare onset and CME onset are one and the same because these are two different manifestations of the same eruption; and (iii) the CME has positive acceleration from the onset to the first appearance in the coronagraphic field of view (2.5 to 6 Rs). Observations of coronal cavities in eclipse pictures and in coronagraphic images justify the assumption (i). The close relationship between the flare reconnection magnetic flux and the azimuthal flux of interplanetary magnetic clouds justify assumption (ii) consistent with the standard model (CSHKP) of solar eruption. Coronagraphic observations made close to the solar surface indicate a large positive acceleration of CMEs to a heliocentric distance of approx.3 Rs before they start slowing down due to the drag force. The inferred acceleration (approx.1.5 km/s/s) is consistent with reported values in the literature.

  20. Data catalog series for space science and applications flight missions. Volume 1A: Descriptions of planetary and heliocentric spacecraft and investigations, second edition

    NASA Technical Reports Server (NTRS)

    Cameron, Winifred Sawtell (editor); Vostreys, Robert W. (editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also included.

  1. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard (compiler); Jackson, John E. (compiler); Cameron, Winifred S. (compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  2. Nuclear reactor power for an electrically powered orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  3. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-05-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  4. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  5. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  6. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (compiler); Su, S. Y. (compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  7. Preliminary Optimal Orbit Design for the Laser Interferometer Space Antenna (LISA)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    In this paper we present a preliminary optimal orbit analysis for the Laser Interferometer Space Antenna (LISA). LISA is a NASA/ESA mission to study gravitational waves and test predictions of general relativity. The nominal formation consists of three spacecraft in heliocentric orbits at 1 AU and trailing the Earth by twenty degrees. This configuration was chosen as a trade off to reduce the noise sources that will affect the instrument and to reduce the fuel to achieve the final orbit. We present equations for the nominal orbit design and discuss several different measures of performance for the LISA formation. All of the measures directly relate the formation dynamics to science performance. Also, constraints on the formation dynamics due to spacecraft and instrument limitations are discussed. Using the nominal solution as an initial guess, the formation is optimized using Sequential Quadratic Programming to maximize the performance while satisfying a set of nonlinear constraints. Results are presented for each of the performance measures.

  8. Orbit and dynamic origin of the recently recovered Annama's H5 chondrite

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, Josep M.; Lyytinen, Esko; Gritsevich, Maria; Moreno-Ibáñez, Manuel; Bottke, William F.; Williams, Iwan; Lupovka, Valery; Dmitriev, Vasily; Kohout, Tomas; Grokhovsky, Victor

    2015-05-01

    We describe the fall of Annama meteorite occurred in the remote Kola Peninsula (Russia) close to Finnish border on 2014 April 19 (local time). The fireball was instrumentally observed by the Finnish Fireball Network. From these observations the strewnfield was computed and two first meteorites were found only a few hundred metres from the predicted landing site on 2014 May 29 and 30, so that the meteorite (an H5 chondrite) experienced only minimal terrestrial alteration. The accuracy of the observations allowed a precise geocentric radiant to be obtained, and the heliocentric orbit for the progenitor meteoroid to be calculated. Backward integrations of the orbits of selected near-Earth asteroids and the Annama meteoroid showed that they rapidly diverged so that the Annama meteorites are unlikely related to them. The only exception seems to be the recently discovered 2014UR116 that shows a plausible dynamic relationship. Instead, analysis of the heliocentric orbit of the meteoroid suggests that the delivery of Annama onto an Earth-crossing Apollo-type orbit occurred via the 3:1 mean motion resonance with Jupiter or the nu6 secular resonance, dynamic mechanisms that are responsible for delivering to Earth most meteorites studied so far.

  9. Eye and orbit ultrasound

    MedlinePLUS

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  10. Orbital Effects on Mercury's Escaping Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Schmidt, Carl A.; Wilson, Jody K.; Baumgardner, Jeffrey; Mendillo, Michael

    2009-01-01

    We present results from coronagraphic imaging of Mercury's sodium tail over a 7 deg field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (R(sub m)) in length, or a full degree of sky. However, no tail was observed extending beyond 120 R(sub m) during the January 2008 MESSENGER Fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury's heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury's escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 x 10(exp 23) atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury's sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury's magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury's sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.

  11. The improvement of the Pluto orbit using additional new data

    NASA Astrophysics Data System (ADS)

    Girdiuk, A.

    2015-08-01

    Observational series of the Pluto dwarf planet have started since 1913. At this moment observations have covered only a third of the Pluto orbit, therefore, the Pluto orbital elements are defined with insufficient accuracy. A growing number of observations leads to the improvement of the accuracy of the orbit determination. The database of the Pluto's observations was expanded with the help of about 350 observations during 1930-1996 obtained at the Pulkovo Observatory, and about 5500 observations (1995-2013) including occultation data from Brazilian colleagues obtained at the European Southern Observatory and the Pico dos Dias Observatory, and the new analyzed 469 historical photographic observations archived at Lowell Observatory. The new cross-platform software ERA-8 has been developed in IAA RAS and has been used for implementation of all mathematical procedures for constructing Pluto orbit. The modern ephemerides (EPM2011, EPM2013, DE430, DE432, INPOP13c) are chosen for comparison of the ephemeris positions: equatorial coordinates and heliocentric distance. The main result of the work - construction of ephemerides EPM2014a is a significant improvement of the Pluto's orbit using additional observations.

  12. Correlation of Kuiper Belt Object Colors With Orbital Properties: Gray Objects In Hot Orbits

    NASA Astrophysics Data System (ADS)

    Tegler, S. C.; Romanishin, W.; Consolmagno, G.

    2003-05-01

    In our continuing BVR photometric survey of Kuiper belt objects (KBOs), we find that certain dynamical classes of KBOs exhibit very distinctive surface colors. In our data, 17 of 20 objects on large-inclination and large-eccentricity orbits with aphelion distances larger than 70 AU (a dynamically hot population) exhibit gray, B-R < 1.5, surface colors. In contrast, 21 of 21 classical KBOs on small-inclination and small-eccentricity orbits with perihelion distances larger than 40 AU (a dynamically cold population) exhibit red surface colors, B-R > 1.5. Finally, we find 22 Centaurs divide into two very different color populations, gray and red. These observations are consistent with a primordial origin of KBO surface colors based on their original heliocentric distance. Gray objects may have formed closer to the Sun in regions subject to orbital perturbations by an outward migrating Neptune, resulting in hot orbits. Red objects formed farther from the Sun and would be only partly perturbed by Neptune (contributing to the Centaur population). The furthest objects (red surfaces, cooler orbits) would remain unperturbed. Our observations were taken using CCD cameras on the Keck I 10-m telescope on Mauna Kea, Hawaii, the University of Arizona 2.3-m telescope on Kitt Peak, Arizona, and the Vatican Advanced Technology 1.8-m Telescope on Mt. Graham, Arizona. We thank the NASA Planetary Astronomy Program for support of our work (NAG5-12694) and the NASA Keck, Steward Observatory, and Vatican Observatory Time Allocation Committees for consistent allocation of telescope time.

  13. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  14. Rock-Around Orbits 

    E-print Network

    Bourgeois, Scott K.

    2010-07-14

    ; !). Using these parameters, one can create an orbit that will surround the target orbit allowing the satellite in the Rock-Around Orbit (RAO) orbit to have a 360 degree view of RSOs in the target orbit. The RAO orbit can be applied to any circular...

  15. The Plasma Environment in Comets over a Wide Range of Heliocentric Distances: Application to Comet C/2006 P1 (McNaught)

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Jia, Y.-D.; Gombosi, T.; Toth, G.; Rubin, M.

    2015-08-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.

  16. The Plasma Environment in Comets Over a Wide Range of Heliocentric Distances: Application to Coment C/2006 P1 (McNaught)

    NASA Astrophysics Data System (ADS)

    Shou, Yinsi; Combi, Michael; Jia, Yingdong; Gombosi, Tamas; Toth, Gabor; Rubin, Martin

    2015-11-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses. The work at the University of Michigan was supported by the NASA Planetary Atmospheres grant NNX14AG84G.

  17. Orbit and dynamic origin of the recently recovered Annama's H5 chondrite

    E-print Network

    Trigo-Rodriguez, Josep M; Gritsevich, Maria; Moreno-Ibáñez, Manuel; Bottke, William F; Williams, Iwan; Lupovka, Valery; Dmitriev, Vasily; Kohout, Tomas; Grokhovsky, Victor

    2015-01-01

    We describe the fall of Annama meteorite occurred in the remote Kola Peninsula (Russia) close to Finnish border on April 19, 2014 (local time). The fireball was instrumentally observed by the Finnish Fireball Network. From these observations the strewnfield was computed and two first meteorites were found only a few hundred meters from the predicted landing site on May 29th and May 30th 2014, so that the meteorite (an H4-5 chondrite) experienced only minimal terrestrial alteration. The accuracy of the observations allowed a precise geocentric radiant to be obtained, and the heliocentric orbit for the progenitor meteoroid to be calculated. Backward integrations of the orbits of selected near-Earth asteroids and the Annama meteoroid showed that they rapidly diverged so that the Annama meteorites are unlikely related to them. The only exception seems to be the recently discovered 2014UR116 that shows a plausible dynamic relationship. Instead, analysis of the heliocentric orbit of the meteoroid suggests that the ...

  18. Mission Steering Profiles of Outer Planetary Orbiters Using Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    Radioisotope Electric Propulsion (REP) has the potential to enable small spacecraft to orbit outer planetary targets with trip times comparable to flyby missions. The ability to transition from a flyby to an orbiter mission lies in the availability of continuous low power electric propulsion along the entire trajectory. The electric propulsion system s role is to add and remove energy from the spacecraft s trajectory to bring it in and out of a heliocentric hyperbolic escape trajectory for the outermost target bodies. Energy is added and the trajectory is reshaped to rendezvous with the closer-in target bodies. Sample REP trajectories will be presented for missions ranging for distances from Jupiter orbit to the Pluto-Kuiper Belt.

  19. Small orbits

    NASA Astrophysics Data System (ADS)

    Borsten, L.; Duff, M. J.; Ferrara, S.; Marrani, A.; Rubens, W.

    2012-04-01

    We study both the large and small U-duality charge orbits of extremal black holes appearing in D=5 and D=4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated “moduli spaces.” After recalling N=8 maximal supergravity, we consider N=2 and N=4 theories coupled to an arbitrary number of vector multiplets, as well as N=2 magic, STU, ST2 and T3 models. While the STU model may be considered as part of the general N=2 sequence, albeit with an additional triality symmetry, the ST2 and T3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit nonzero elements of rank 3, respectively. Finally, we also consider minimally coupled N=2, matter-coupled N=3, and pure N=5 theories.

  20. The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-08-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  1. Materials co-orbiting with known NEO asteroids: Properties inferred from collision-produced dust clouds

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, Hanying; Connors, Martin; Lai, Hairong; Delzanno, Gian Luca

    Materials co-orbiting with Near-Earth Objects (NEOs) can be potentially hazardous when their diameters are of tens of meters. Such co-orbiting material is produced when small meteoroids about several meters in diameter collide with parent bodies of much larger diameters. These materials will be dispersed in orbits around the associated NEOs, and therefore could enter the terrestrial atmosphere even when their ‘parent’ NEOs miss the Earth. However, due to the small dimensions of these materials, they are hard to discover by traditional surveys. The co-orbiting materials collide regularly with smaller interplanetary objects, since the smaller objects are quite numerous. The dust cloud released in the collisions, containing fine-sized particles, becomes charged and can perturb the ambient solar wind. The resultant interplanetary magnetic field structure is called interplanetary field enhancement (IFE) and can be detected by magnetometers carried by interplanetary spacecraft as the dust cloud is swept outward by the solar wind. We use the records of IFE occurrence to trace interplanetary collisions and thus identify co-orbiting materials of well-known NEOs with ecliptic plane crossing near to or inside the Earth’s orbit. We suggest that co-orbiting materials of asteroid 138175, whose descending node is inside Earth’s orbit at heliocentric ecliptic longitude of 206 ?, should be responsible for at least some IFEs detected in the longitude range between 195 ? and 225 ?. The mass and spatial distributions of the potentially associated IFEs indicate that these co-orbiting materials had diameters of tens of meters before the collisions and had significant dispersion about the asteroid’s orbit. We can apply this technique to inventory the co-orbiting materials of other known NEOs and obtain the number density, orbits and sizes distributions of the materials. Thus we can estimate their impact probability and issue alerts when the Earth approaches the orbits of the hazardous objects.

  2. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  3. Search for faint meteors on the orbits of P?íbram and Neuschwanstein meteorites

    NASA Astrophysics Data System (ADS)

    Koten, P.; Vaubaillon, J.; ?apek, D.; Vojá?ek, V.; Spurný, P.; Štork, R.; Colas, F.

    2014-09-01

    The very next year following the fall of Neuschwanstein meteorites and discovery of their orbital similarity with the P?íbram meteorite, dedicated observational campaigns aiming for the detection of faint meteors on similar orbits were started. The goal of this paper is to process all the data collected within 7 years, to analyze their atmospheric trajectories and heliocentric orbits and to investigate the possibility that they belong to the stream. The trajectories and orbits of the detected meteors were used to determine whether those meteors are members of the same shower. An orbital evolution model was applied on a certain number of cloned particles to investigate their possible connection with the meteorite stream. Statistical tests were conducted to determine if such small sample of the orbits is similar by chance or if the stream is real. It was found that from the observational as well as the theoretical point of view it is impossible to prove the existence of faint meteor shower connected with the P?íbram and Neuschwanstein meteorite stream.

  4. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  5. Heliocentric architecture : materializing solar cadences

    E-print Network

    Wastvedt, Trygve (Trygve Howard)

    2015-01-01

    There is a long tradition of architecture creating atmospheric, awe-inspiring experiences by shaping and making visible natural light. Another similarly long-established approach to daylighting optimizes lighting conditions ...

  6. Traumatic orbital CSF leak

    PubMed Central

    Borumandi, Farzad

    2013-01-01

    Compared to the cerebrospinalfluid (CSF) leak through the nose and ear, the orbital CSF leak is a rare and underreported condition following head trauma. We present the case of a 49-year-old woman with oedematous eyelid swelling and ecchymosis after a seemingly trivial fall onto the right orbit. Apart from the above, she was clinically unremarkable. The CT scan revealed a minimally displaced fracture of the orbital roof with no emphysema or intracranial bleeding. The fractured orbital roof in combination with the oedematous eyelid swelling raised the suspicion for orbital CSF leak. The MRI of the neurocranium demonstrated a small-sized CSF fistula extending from the anterior cranial fossa to the right orbit. The patient was treated conservatively and the lid swelling resolved completely after 5?days. Although rare, orbital CSF leak needs to be included in the differential diagnosis of periorbital swelling following orbital trauma. PMID:24323381

  7. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  8. Interstellar Dust Measurements from Ulysses' Third Solar Orbit

    NASA Astrophysics Data System (ADS)

    Krueger, Harald; Altobelli, Nicolas; Landgraf, Markus; Gruen, Eberhard

    The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse almost perpendicular to the ecliptic plane (inclination 79° , perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in 1992. The in-situ dust detector on board continuously measured interstellar dust grains with masses up to 10-13 kg, penetrating deep into the solar system. The flow direction is close to the mean apex of the Sun's motion through the solar system and the grains act as tracers of the physical conditions in the local interstellar cloud (LIC). While Ulysses monitored the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. Our dust measurements from Ulysses' 3rd solar orbit indicate a 30° shift in the impact direction of interstellar grains w.r.t. the interstellar helium flow direction. The reason for this shift is presently unknown.

  9. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  10. Actinomycosis of the orbit.

    PubMed Central

    Sullivan, T J; Aylward, G W; Wright, J E

    1992-01-01

    Actinomycosis is a very rare cause of orbital abscess usually attributable to direct spread from adjacent structures. A case of actinomycosis of the orbit is presented, which was treated as orbital pseudotumour for 3 months before progression of signs and symptoms, despite high dose steroids, led to the diagnosis being reconsidered. Images PMID:1390538

  11. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  12. SEASAT B orbit synthesis

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Warmke, J. M.

    1976-01-01

    Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

  13. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  14. Galactic-orbit eccentricity errors

    NASA Astrophysics Data System (ADS)

    Kutuzov, S. A.

    1987-08-01

    Expressions for eccentricities in terms of the motion integrals are found for a model of the Galactic gravitational field. Exact formulas are used to ascertain the influence of errors in heliocentric distance, radial velocity, and proper motion on eccentricity errors. Due to the proper motion errors, there is a tendency to overestimate the values of small eccentricities (the higher they are, the greater the distance).

  15. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  16. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  17. What do the orbital motions of the outer planets of the Solar System tell us about the Pioneer anomaly?

    E-print Network

    Lorenzo Iorio; Giuseppe Giudice

    2006-04-01

    In this paper we investigate the effects that an anomalous acceleration as that experienced by the Pioneer spacecraft after they passed the 20 AU threshold would induce on the orbital motions of the Solar System planets placed at heliocentric distances of 20 AU or larger as Uranus, Neptune and Pluto. It turns out that such an acceleration, with a magnitude of 8.74\\times 10^-10 m s^-2, would affect their orbits with secular and short-period signals large enough to be detected according to the latest published results by E.V. Pitjeva, even by considering errors up to 30 times larger than those released. The absence of such anomalous signatures in the latest data rules out the possibility that in the region 20-40 AU of the Solar System an anomalous force field inducing a constant and radial acceleration with those characteristics affects the motion of the major planets.

  18. Curvature in orbital dynamics

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2005-04-01

    The physical basis and the geometrical significance of the equation for the orbit of a particle moving under the action of external forces is exhibited by deriving this equation in a coordinate-independent representation in terms of the radius of curvature of the orbit. Although this formulation appeared in Newton's Principia, it has been ignored in contemporary classical mechanics textbooks. For small eccentricities, the orbit equation is used to obtain approximate solutions that illustrate the role of curvature. It is shown that this approach leads to a simple graphical method for determining the orbits for central forces. This method is similar to one attributed to Newton, who applied it to a constant central force, and sent a diagram of the orbit to Hooke in 1679. The result is compared to the corresponding orbit of a ball revolving inside an inverted cone which Hooke described in his response to Newton.

  19. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  20. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  1. Ghost orbit spectroscopy

    SciTech Connect

    Bhullar, A. S.; Bluemel, R.; Koch, P. M.

    2006-01-15

    Direct periodic-orbit expansions of individual spectral eigenvalues is a new direction in quantum mechanics. Using a unitary S-matrix theory, we present exact, convergent, integral-free ghost orbit expansions of spectral eigenvalues for a step potential in the tunneling regime. We suggest an experiment to extract ghost orbit information from measured spectra in the tunneling regime (ghost orbit spectroscopy). We contrast our unitary, convergent theory with a recently published nonunitary, divergent theory [Yu. Dabaghian and R. Jensen, Eur. J. Phys. 26, 423 (2005)].

  2. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  3. Orbit determination based on meteor observations using numerical integration of equations of motion

    NASA Astrophysics Data System (ADS)

    Dmitriev, V.; Lupovka, V.; Gritsevich, M.

    2014-07-01

    We review the definitions and approaches to orbital-characteristics analysis applied to photographic or video ground-based observations of meteors. A number of camera networks dedicated to meteors registration were established all over the word, including USA, Canada, Central Europe, Australia, Spain, Finland and Poland. Many of these networks are currently operational. The meteor observations are conducted from different locations hosting the network stations. Each station is equipped with at least one camera for continuous monitoring of the firmament (except possible weather restrictions). For registered multi-station meteors, it is possible to accurately determine the direction and absolute value for the meteor velocity and thus obtain the topocentric radiant. Based on topocentric radiant one further determines the heliocentric meteor orbit. We aim to reduce total uncertainty in our orbit-determination technique, keeping it even less than the accuracy of observations. The additional corrections for the zenith attraction are widely in use and are implemented, for example, here [1]. We propose a technique for meteor-orbit determination with higher accuracy. We transform the topocentric radiant in inertial (J2000) coordinate system using the model recommended by IAU [2]. The main difference if compared to the existing orbit-determination techniques is integration of ordinary differential equations of motion instead of addition correction in visible velocity for zenith attraction. The attraction of the central body (the Sun), the perturbations by Earth, Moon and other planets of the Solar System, the Earth's flattening (important in the initial moment of integration, i.e. at the moment when a meteoroid enters the atmosphere), atmospheric drag may be optionally included in the equations. In addition, reverse integration of the same equations can be performed to analyze orbital evolution preceding to meteoroid's collision with Earth. To demonstrate the developed technique, we provide calculated orbits for several cases, including well-known meteorite-producing fireballs. A comparison of our estimates with previously published ones is also provided.

  4. Moon Lunar Orbiter - Lunar Orbiter III

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The hidden or dark side of the Moon was taken by Lunar Orbiter III During its mission to photograph potential lunar-landing sites for Apollo missions. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 94), by James Schultz.

  5. Orbital Shape Representations.

    ERIC Educational Resources Information Center

    Kikuchi, Osamu; Suzuki, Keizo

    1985-01-01

    Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)

  6. Analyzing Shuttle Orbiter Trajectories

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1986-01-01

    LRBET4 program best-estimated-of-trajectory (BET) calculation for post-flight trajectory analysis of Shuttle orbiter. Produces estimated measurements for comparing predicted and actual trajectory of Earth-orbiting spacecraft. Kalman filter and smoothing filter applied to input data to estimate state vector, reduce noise, and produce BET. LRBET4 written in FORTRAN IV for batch execution.

  7. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  8. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  9. Orbital Causes of Incomitant Strabismus

    PubMed Central

    Lueder, Gregg T.

    2015-01-01

    Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465

  10. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  11. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  12. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  13. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual notation point missions. This paper collects both published and unpublished results from four previous notation point missions (ISEE-3, SOHO, ACE and MAP) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard marine and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using onboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN, missions must find alternatives to the standard OD scenario.

  14. Management of Orbital Diseases.

    PubMed

    Betbeze, Caroline

    2015-09-01

    Orbital diseases are common in dogs and cats and can present on emergency due to the acute onset of many of these issues. The difficulty with diagnosis and therapy of orbital disease is that the location of the problem is not readily visible. The focus of this article is on recognizing classical clinical presentations of orbital disease, which are typically exophthalmos, strabismus, enophthalmos, proptosis, or intraconal swelling. After the orbital disease is confirmed, certain characteristics such as pain on opening the mouth, acute vs. chronic swelling, and involvement of nearby structures can be helpful in determining the underlying cause. Abscesses, cellulitis, sialoceles, neoplasia (primary or secondary), foreign bodies, and immune-mediated diseases can all lead to exophthalmos, but it can be difficult to determine the cause of disease without advanced diagnostic imaging, such as ultrasound, magnetic resonance imaging, or computed tomography scan. Fine-needle aspirates and biopsies of the retrobulbar space can also be performed. PMID:26494502

  15. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  16. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  17. Aerobraking orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)

    1989-01-01

    An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.

  18. Indian Mars Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil

    The Mars Orbiter Mission (MOM) is the first interplanetary mission of India launched by Indian Polar Satellite Launch Vehicle (PSLV-XL) on 5 November 2013. It departed from Earth's orbit on Dec. 1, 2013, on its 300-days journey to Mars. MOM will reach Mars on Sept. 24, 2014. The orbit of MOM around Mars is highly elliptical with periapsis ~370 km and apoapsis ~80000 km, inclination 151 degree, and orbital period 3.15 sols. The spacecraft mass is 1350 kg, with dry mass of 500 kg and science payload mass of 14 kg. The spacecraft carries five science payloads, namely: Methane Sensor for Mars (MSM), Mars Colour Camera (MCC), Lyman Alpha Photometer (LAP), Mars Exospheric Neutral Composition Analyzer (MENCA), TIR Imaging Spectrometer (TIS). This paper will present the details of the instruments, observation plan, and expected science.

  19. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  20. Orbital transfer trajectory optimization

    E-print Network

    Whiting, James K., 1980-

    2004-01-01

    Recent developments in astronautical engineering have led to the adoption of low thrust rocket engines for spacecraft. Optimizing the orbital transfers for low thrust engines is significantly more complicated than optimizing ...

  1. Neonatal orbital abscess

    PubMed Central

    Gogri, Pratik Y.; Misra, Somen L.; Misra, Neeta S.; Gidwani, Hitesh V.; Bhandari, Akshay J.

    2015-01-01

    Orbital abscess generally occurs in older children but it can rarely affect infants and neonates too. We report a case of community acquired methicillin resistant staphylococcus aureus (CA-MRSA) neonatal orbital abscess in a 12-day-old term female neonate with no significant past medical history or risk factor for developing the infection. The case highlights the importance of consideration of CA-MRSA as a causative agent of neonatal orbital cellulitis even in a neonate without any obvious predisposing condition. Prompt initiation of appropriate medical therapy against MRSA and surgical drainage of the abscess prevents life threatening complications of orbital cellulitis which more often tend to be fatal in neonates. PMID:26622145

  2. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  3. A tapestry of orbits

    SciTech Connect

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  4. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Observations of Comets C/2007 D1 (LINEAR), C/2007 D3 (LINEAR), C/2010 G3 (WISE), C/2010 S1 (LINEAR), and C/2012 K6 (McNaught) at large heliocentric distances

    NASA Astrophysics Data System (ADS)

    Ivanova, Oleksandra; Neslušan, Luboš; Krišandová, Zuzana Seman; Svore?, Ján; Korsun, Pavlo; Afanasiev, Viktor; Reshetnyk, Volodymyr; Andreev, Maxim

    2015-09-01

    Photometric and spectroscopic observations of five nearly parabolic comets with eccentricity larger than 0.99 at heliocentric distances greater than 4 AU were performed. No molecular emission was observed for any studied comet and the entire cometary activity in all cases was attributed to dust production. Upper limits of the gas production rates for the main neutral molecules in the cometary comae were calculated. The derived values of dust apparent magnitudes were used to estimate the upper limit of the geometric cross-section of cometary nuclei (upper limits of radii range from 2 km to 28 km). Due to the poor sublimation of water ice at these distances from the Sun, other mechanisms triggering activity in comets are discussed.

  6. Observations of Comets C/2007 D1 (LINEAR), C/2007 D3 (LINEAR), C/2010 G3 (WISE), C/2010 S1 (LINEAR), and C/2012 K6 (McNaught) at large heliocentric distances

    E-print Network

    Ivanova, Oleksandra; Krišandova, Zuzana Seman; Svore?, Jan; Korsun, Pavlo; Afanasiev, Viktor; Resetnyk, Volodymyr; Andreev, Maxim

    2015-01-01

    Photometric and spectroscopic observations of five nearly parabolic comets with eccentricity larger than 0.99 at heliocentric distances greater than 4 AU were performed. No molecular emission was observed for any studied comet and the entire cometary activity in all cases was attributed to dust production. Upper limits of the gas production rates for the main neutral molecules in the cometary comae were calculated. The derived values of dust apparent magnitudes were used to estimate the upper limit of the geometric cross-section of cometary nuclei (upper limits of radii range from 2 km to 28 km). Due to the poor sublimation of water ice at these distances from the Sun, other mechanisms triggering activity in comets are discussed.

  7. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  8. The orbit method for reductive

    E-print Network

    Vogan, David

    The orbit method for reductive groups David Vogan Introduction Commuting algebras Differential operator algebras Hamiltonian G-spaces Coadjoint orbits for reductive groups Conclusion The orbit method and Geometry, May 19­24 2008 #12;The orbit method for reductive groups David Vogan Introduction Commuting

  9. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  10. Sedna Orbit Comparisons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These four panels show the location of the newly discovered planet-like object, dubbed 'Sedna,' which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  11. Mars Reconnaissance Orbiter Navigation

    NASA Technical Reports Server (NTRS)

    You, Tung-Han; Halsell, Allen; Highsmith, Dolan; Moriba, Jah; Demcak, Stuart; Higa, Earl; Long, Stacia; Bhaskaran, Shyam

    2004-01-01

    Mars Reconnaissance Orbiter will launch in August 2005 at Cape Canaveral Air Force Station. The heavyweight spacecraft will use a Lockheed-Martin Atlas V-401 launch vehicle. It will be the first mission in a low Mars Orbit to characterize the surface, subsurface, and atmospheric properties. The intensive science operation imposes a great challenge for Navigation to satisfy the stringent requirements. This paper describes navigation key requirements, major challenges, and the sophisticated dynamic modeling. It also details navigation strategy and processes for various mission phases. Mars Reconnaissance Orbiter will return significant amount of scientific data in support of the objectives set by the Mars Exploration Program. A robust and precise navigation is the key to the success of this mission.

  12. Orbital metastases in Italy

    PubMed Central

    Magliozzi, Patrizio; Strianese, Diego; Bonavolontà, Paola; Ferrara, Mariantonia; Ruggiero, Pasquale; Carandente, Raffaella; Bonavolontà, Giulio; Tranfa, Fausto

    2015-01-01

    AIM To describe a series of Italian patients with orbital metastasis focusing on the outcomes in relation to the different primary site of malignancy. METHODS Retrospective chart review of 93 patients with orbital metastasis collected in a tertiary referral centre in a period of 38y and review of literature. RESULTS Out of 93 patients, 52 were females and 41 were males. Median age at diagnosis was 51y (range 1 to 88y). The patients have been divided into four groups on the basis of the year of diagnosis. The frequency of recorded cases had decreased significantly (P<0.05) during the last 9.5y. Primary tumor site was breast in 36 cases (39%), kidney in 10 (11%), lung in 8 (9%), skin in 6 (6%); other sites were less frequent. In 16 case (17%) the primary tumor remained unknown. The most frequent clinical findings were proptosis (73%), limited ocular motility (55%), blepharoptosis (46%) and blurred vision (43%). The diagnosis were established by history, ocular and systemic evaluation, orbital imaging studies and open biopsy or fine needle aspiration biopsy (FNAB). Treatment included surgical excision, irradiation, chemotherapy, hormone therapy, or observation. Ninety-one percent of patients died of metastasis with an overall mean survival time (OMST) after the orbital diagnosis of 13.5mo. CONCLUSION Breast, kidney and lung are the most frequent primary sites of cancer leading to an orbital metastasis. When the primary site is unknown, gastrointestinal tract should be carefully investigated. In the last decade a decrease in the frequency of orbital metastasis has been observed. Surgery provides a local palliation. Prognosis remains poor with a OMST of 13.5mo ranging from the 3mo in the lung cancer to 24mo in the kidney tumor. PMID:26558220

  13. DASTCOM5: A Portable and Current Database of Asteroid and Comet Orbit Solutions

    NASA Astrophysics Data System (ADS)

    Giorgini, Jon D.; Chamberlin, Alan B.

    2014-11-01

    A portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, with the software to access it, is available for download (ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip). DASTCOM5 contains the latest heliocentric IAU76/J2000 ecliptic osculating orbital elements for all known asteroids and comets as determined by a least-squares best-fit to ground-based optical, spacecraft, and radar astrometric measurements. Other physical, dynamical, and covariance parameters are included when known. A total of 142 parameters per object are supported within DASTCOM5. This information is suitable for initializing high-precision numerical integrations, assessing orbit geometry, computing trajectory uncertainties, visual magnitude, and summarizing physical characteristics of the body. The DASTCOM5 distribution is updated as often as hourly to include newly discovered objects or orbit solution updates. It includes an ASCII index of objects that supports look-ups based on name, current or past designation, SPK ID, MPC packed-designations, or record number. DASTCOM5 is the database used by the NASA/JPL Horizons ephemeris system. It is a subset exported from a larger MySQL-based relational Small-Body Database ("SBDB") maintained at JPL. The DASTCOM5 distribution is intended for programmers comfortable with UNIX/LINUX/MacOSX command-line usage who need to develop stand-alone applications. The goal of the implementation is to provide small, fast, portable, and flexibly programmatic access to JPL comet and asteroid orbit solutions. The supplied software library, examples, and application programs have been verified under gfortran, Lahey, Intel, and Sun 32/64-bit Linux/UNIX FORTRAN compilers. A command-line tool ("dxlook") is provided to enable database access from shell or script environments.

  14. Interplanetary orbit control

    NASA Astrophysics Data System (ADS)

    Roth, E. A.

    In the context of interplanetary navigation, spacecraft position determination and the necessary correction maneuvers are described mathematically. Position measurements and sources of errors are discussed briefly, leading to a dynamic model of random accelerations which influence spacecraft trajectory. The dynamic system is determined by a stochastic differential equation. A linearized equation of observation is also introduced. The transition matrix is evolved in Jacobi matrix form. Correction maneuvers are then evaluated for the deviation of the observed state vector of the reference orbit at a given time. Both a fixed time of arrival and a variable time of arrival are considered. Finally, computer programming which handles orbit calculation and position determination is treated.

  15. [Mesenchymal orbital tumors].

    PubMed

    Civit, T; Klein, O; Freppel, S; Baylac, F

    2010-01-01

    Mesenchymal tumors grow from pluripotent mesenchymal cells that form the soft orbital tissue. Primary tumors of the orbital walls are discussed in another section. Tumors from muscle and adipose tissue are rare or exceptional, except rhabdomyosarcoma, described in the section dedicated to pediatric tumors. Most frequent tumors are fibrous histiocytomas and solitary fibrous tumors, which often have a retrobulbar location. Fibrous histiocytoma is benign in only 65 % of cases. Fibrous solitary tumor is now better known (Ag CD34): this tumor is generally benign but frequently recurs. PMID:20227093

  16. Satellite orbit predictor

    NASA Technical Reports Server (NTRS)

    Friedman, Morton l.; Garrett, James, Major

    An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.

  17. ARTEMIS Lunar Orbit Insertion and Science Orbit Design Through 2013

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Sweetser, Theodore H.; Angelopoulos, Vassilis; Folta, David; Woodard, Mark

    2015-01-01

    As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit insertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth's gravity and restrictive spacecraft capabilities to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future planetary moon missions.

  18. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  19. Global orbit corrections

    SciTech Connect

    Symon, K.

    1987-11-01

    There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.

  20. Lunar Orbit Anomaly

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2012-12-01

    Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;

  1. Sedna Orbit Animation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  2. Goddard Brouwer Orbit Bulletin

    NASA Technical Reports Server (NTRS)

    Morgan, D. B.; Gordon, R. A.

    1971-01-01

    The bulletin provides operational support for earth space research and technological missions by producing a tape containing pertinent spacecraft orbital information which is provided to a number of cities around the world in support of individual missions. A program description of the main and associated subroutines, and a complete description of the input, output and requirements of the bulletin program are presented.

  3. CO-ORBITAL OLIGARCHY

    SciTech Connect

    Collins, Benjamin F.; Sari, Re'em

    2009-04-15

    We present a systematic examination of the changes in semimajor axis of a protoplanet as it interacts with other protoplanets in the presence of eccentricity dissipation. For parameters relevant to the oligarchic stage of planet formation, dynamical friction keeps the typical eccentricities small and prevents orbit crossing. Interactions at impact parameters greater than several Hill radii cause the protoplanets to repel each other; if the impact parameter is instead much less than the Hill radius, the protoplanets shift slightly in semimajor axis but remain otherwise unperturbed. If the orbits of two or more protoplanets are separated by less than a Hill radius, they are each pushed toward an equilibrium spacing between their neighbors and can exist as a stable co-orbital system. In the shear-dominated oligarchic phase of planet formation, we show that the feeding zones contain several oligarchs instead of only one. Growth of the protoplanets in the oligarchic phase drives the disk to an equilibrium configuration that depends on the mass ratio of protoplanets to planetesimals, {sigma}/{sigma}. Early in the oligarchic phase, when {sigma}/{sigma} is low, the spacing between rows of co-orbital oligarchs are about 5 Hill radii wide, rather than the 10 Hill radii cited in the literature. It is likely that at the end of oligarchy, the average number of co-orbital oligarchs is greater than unity. In the outer solar system, this raises the disk mass required to form the ice giants. In the inner solar system, this lowers the mass of the final oligarchs and requires more giant impacts than previously estimated. This result provides additional evidence that Mars is not an untouched leftover from the oligarchic phase, but must be composed of several oligarchs assembled through giant impacts.

  4. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  5. Close up view of the Orbiter Discovery in the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take approximately six months and the system is designed to allow for a 30 deg inclination change on the outgoing and incoming trips of the transfer vehicle.

  7. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21? (up to 34? by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80? latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its performance for helioseismology applications. As input we used a 6 hr time-series of realistic solar magneto-convection simulation (Stagger code) and the SPINOR radiative transfer code to synthesize the observables. The simulated power spectra of solar oscillations show that the instrument is suitable for helioseismology. In particular, the specified point spread function, image jitter, and photon noise are no obstacle to a successful mission.

  8. Orbital Complications of Sinusitis

    PubMed Central

    Radovani, Pjerin; Vasili, Dritan; Xhelili, Mirela; Dervishi, Julian

    2013-01-01

    Background: Despite the modern antibiotherapies applied in the practice of otorhinolaryngology, the orbital complications of sinusitis are still considered a serious threat to essential functions of the eye, including loss of vision, and at worst, life threatening symptoms. Aims: The goal of this study is to consider and analyse patients who were treated for these complications in the last decade in our hospital, which is the only tertiary hospital in our country. Study Design: Retrospective analysis of cases. Methods: In our practice, cases treated in the hospital are rhinosinusitis cases where surgical intervention is necessary, or those with a suspicion of complications. Between the years 1999 and 2009 there were 177 cases, the clinical charts of which were reviewed. The cases that are omitted from this study are those involving soft tissues, bone, and intracranial complications. The diagnoses were determined based on anamnesis, anterior rhinoscopy, x-rays of the sinuses with the Water’s projection or where there was a suspicion of a complication, and CT scans with coronal and axial projections. In all cases, intensive treatment was initiated with a combination of cefalosporines, aminoglycosides and Proetz manoeuvre. When an improvement in the conditions did not occur within 24–48 hours, we intervened with a surgical procedure, preferably the Lynch-Patterson external frontoethmoidectomy. Results: In our study, we encountered 35 cases (19.8%) of orbital complications with an average age of 25 (range: 3–75); Palpebral inflammatory oedema (15), orbital cellulitis (10), subperiosteal abscess (6), orbital abscess (3), and cavernous sinus thrombosis (1 patient). The average time that patients remained in hospital was 4.6 days; for those with orbital complications this was 7 days. Conclusion: Orbital complications of sinusitis are considered to be severe pathologies. The appearance of oedema in the corner of the eye should be evaluated immediately and the means to exclude acute sinusitis should be taken under serious consideration. Early diagnosis and aggressive treatment are key to the reduction of these unwanted manifestations. PMID:25207092

  9. Kepler's Orbit - Duration: 31 seconds.

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  10. Autonomous Aerobraking for Mars Orbiters

    NASA Astrophysics Data System (ADS)

    Prince, J. L.

    2012-06-01

    Autonomous Aerobraking is a developing technology that will reduce cost and increase flexibility of an aerobraking orbiter around Mars. Currently in its second phase of development, autonomous aerobraking could be implemented for a 2018 Mars orbiter.

  11. The Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    1986-01-01

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  12. Martian satellite orbits and ephemerides

    NASA Astrophysics Data System (ADS)

    Jacobson, R. A.; Lainey, V.

    2014-11-01

    We discuss the general characteristics of the orbits of the Martian satellites, Phobos and Deimos. We provide a concise review of the various descriptions of the orbits by both analytical theories and direct numerical integrations of their equations of motion. After summarizing the observational data used to determine the orbits, we discuss the results of our latest orbits obtained from a least squares fit to the data.

  13. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  14. Trajectory, orbit, and spectroscopic analysis of a bright fireball observed over Spain on April 13, 2013

    NASA Astrophysics Data System (ADS)

    Madiedo, José M.; Trigo-Rodríguez, Josep M.; Zamorano, Jaime; Ana-Hernández, Leonor; Izquierdo, Jaime; Ortiz, José L.; Castro-Tirado, Aberto J.; Sánchez de Miguel, Alejandro; Ocaña, Francisco; Pastor, Sensi; de los Reyes, José A.; Galadí, David; de Guindos, Enrique; Organero, Faustino; Fonseca, Fernando; Cabrera-Caño, Jesús

    2014-09-01

    On April 13, 2013 a very bright fireball with an absolute magnitude of -13.0 ± 0.5 was recorded over the center of Spain. This sporadic event, which was witnessed by numerous casual observers throughout the whole country, was imaged from seven meteor-observing stations operated by the Spanish Meteor Network (SPMN), and its emission spectrum was also obtained in the framework of our meteor spectroscopy campaign. The atmospheric trajectory of the bolide and the heliocentric orbit of the parent meteoroid are analyzed here. The spectrum reveals a chondritic nature for this particle, which was following a Jupiter family comet orbit before its encounter with the Earth. In addition, the emission spectrum of the meteoric afterglow was recorded during about 0.8 s. The main emission lines appearing in this signal were identified and their evolution with time is also discussed. Afterglow spectra are not abundant in the literature, and these can provide important clues about the physical proceses taking place in meteoric persistent trains.

  15. An Orbit Plan toward AKATSUKI Venus Reencounter and Orbit Injection

    NASA Technical Reports Server (NTRS)

    Kawakatsu, Yasuhiro; Campagnola, Stefano; Hirose, Chikako; Ishii, Nobuaki

    2012-01-01

    On December 7, 2010, AKATSUKI, the Japanese Venus explorer reached its destination and tried to inject itself into Venus orbit. However, due to a malfunction of the propulsion system, the maneuver was interrupted and AKATSUKI again escaped out from the Venus into an interplanetary orbit. Telemetry data from AKATSUKI suggests the possibility to perform orbit maneuvers to reencounter the Venus and retry Venus orbit injection. Reported in this paper is an orbit plan investigated under this situation. The latest results reflecting the maneuvers conducted in the autumn 2011 is introduced as well.

  16. Circular-Orbit Maintenance Strategies for Primitive Body Orbiters

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Broschart, Stephen

    2013-01-01

    For missions to smaller primitive bodies, solar radiation pressure (SRP) is a significant perturbation to Keplerian dynamics. For most orbits, SRP drives large oscillations in orbit eccentricity, which leads to large perturbations from the irregular gravity field at periapsis. Ultimately, chaotic motion results that often escapes or impacts that body. This paper presents an orbit maintenance strategy to keep the orbit eccentricity small, thus avoiding the destabilizing secondary interaction with the gravity field. An estimate of the frequency and magnitude of the required maneuvers as a function of the orbit and body parameters is derived from the analytic perturbation equations.

  17. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  18. Rhino-orbital zygomycosis.

    PubMed Central

    Ellis, C J; Daniel, S E; Kennedy, P G; Oppenheimer, S M; Scaravilli, F

    1985-01-01

    A 63-year-old diabetic man presented with sinusitis with orbital and intracranial signs progressing over one week, due to zygomycosis. Despite control of the diabetes, surgical excision of infected tissue and antifungal therapy he died in the fifth week of illness. Pathological study showed extensive fungal infiltration of periorbital structures and mycotic thrombosis of many blood vessels with associated necrosis and infarction of fat and extraocular muscles. Images PMID:4039749

  19. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  20. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  1. Orbiter Autoland reliability analysis

    NASA Technical Reports Server (NTRS)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  2. Frozen Orbital Plane Solutions for Satellites in Nearly Circular Orbit

    NASA Astrophysics Data System (ADS)

    Ulivieri, Carlo; Circi, Christian; Ortore, Emiliano; Bunkheila, Federico; Todino, Francesco

    2013-08-01

    This paper deals with the determination of the initial conditions (right ascension of the ascending node and inclination) that minimize the orbital plane variation for nearly circular orbits with a semimajor axis between 3 and 10 Earth radii. An analysis of two-line elements over the last 40 years for mid-, geostationary-, and high-Earth orbits has shown, for initially quasi-circular orbits, low eccentricity variations up to the geostationary altitude. This result makes the application of mathematical models based on satellite circular orbits advantageous for a fast prediction of long-term temporal evolution of the orbital plane. To this purpose, a previous model considering the combined effect due to the Earth's oblateness, moon, and sun (both in circular orbit) has been improved in terms of required computational time and accuracy. The eccentricity of the sun and moon and the equinoctial precession have been taken into account. Resonance phenomena with the lunar plane motion have been found in mid-Earth orbit. Dynamical properties concerning the precession motions of the orbital pole have been investigated, and frozen solutions for geosynchronous and navigation satellites have been proposed. Finally, an accurate model validation has also been carried out by comparing the obtained results with two-line elements of abandoned geostationary-Earth orbit and mid-Earth orbit satellites.

  3. Visible Nulling Coronagraph Testbed Results

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Melnick, Gary; Tolls, Volker; Woodruff, Robert; Vasudevan, Gopal; Rizzo, Maxime; Thompson, Patrick

    2009-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a NASA Astrophysics Strategic Mission Concept study and a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC would provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 5-year mission lifetime. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables starlight suppression in broadband light from 480-960 nm. To demonstrate the VNC approach and advance it's technology readiness we have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed.

  4. Orbital maneuvers and space rendezvous

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  5. Lunar Prospector Orbit Determination Results

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Concha, Marco

    1998-01-01

    The orbit support for Lunar Prospector (LP) consists of three main areas: (1) cislunar orbit determination, (2) rapid maneuver assessment using Doppler residuals, and (3) routine mapping orbit determination. The cislunar phase consisted of two trajectory correction maneuvers during the translunar cruise followed by three lunar orbit insertion burns. This paper will detail the cislunar orbit determination accuracy and the real-time assessment of the cislunar trajectory correction and lunar orbit insertion maneuvers. The non-spherical gravity model of the Moon is the primary influence on the mapping orbit determination accuracy. During the first two months of the mission, the GLGM-2 lunar potential model was used. After one month in the mapping orbit, a new potential model was developed that incorporated LP Doppler data. This paper will compare and contrast the mapping orbit determination accuracy using these two models. LP orbit support also includes a new enhancement - a web page to disseminate all definitive and predictive trajectory and mission planning information. The web site provides definitive mapping orbit ephemerides including moon latitude and longitude, and four week predictive products including: ephemeris, moon latitude/longitude, earth shadow, moon shadow, and ground station view periods. This paper will discuss the specifics of this web site.

  6. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  7. Periodic orbits for three and four co-orbital bodies

    NASA Astrophysics Data System (ADS)

    Verrier, P. E.; McInnes, C. R.

    2014-08-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the planar-restricted 1 + n-body problem for the case 2 ? n ? 4 equal-mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the Solar system. For n = 2, there are two families of periodic orbits associated with the equilibria of the system: the well-known horseshoe and tadpole orbits. For n = 3, there are three families that emanate from the equilibrium configurations of the satellites, while for n = 4, there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  8. Finite thrust orbital transfers

    NASA Astrophysics Data System (ADS)

    Mazzini, Leonardo

    2014-07-01

    The finite thrust optimal transfer in the presence of the Earth's shadow and oblate planet perturbations is a problem of strong interest in modern telecommunication satellite design with plasmic propulsion. The Maximum Principle cannot be used in its standard form to deal with the Earth's shadow. In this paper, using a regularization of the Hamiltonian which expands the Maximum Principle application domain, we provide for the first time, the necessary conditions in a very general context for the finite thrust optimal transfer with limited power around an oblate planet. The costate in such problems is generally discontinuous. To obtain fast numerical solutions, the averaging of the Hamiltonian is introduced. Two classes of boundary conditions are analyzed and numerically solved: the minimum time and the minimum fuel at a fixed time. These two problems are the basic tools for designing the orbit raising of a satellite after the launcher injection into its separation orbit. Numerical solutions have been calculated for the more important applications of LEO to GEO/MEO missions and the results have been reported and discussed.

  9. Orbital construction demonstration study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA) was developed that can be used for evaluating and establishing practical large structural assembly operations. A flight plan for initial placement and continued utility is presented as a basic for an entirely new shuttle payload line-item having great future potential benefit for space applications. The OCDA is a three-axis stabilized platform in low-earth orbit with many structural nodals for mounting large construction and fabrication equipments. This equipment would be used to explore methods for constructing the large structures for future missions. The OCDA would be supported at regular intervals by the shuttle. Construction experiments and consumables resupply are performed during shuttle visit periods. A 250 kw solar array provides sufficient power to support the shuttle while attached to the OCDA and to run construction experiments at the same time. Wide band communications with a Telemetry and Data Relay Satellite compatible high gain antenna can be used between shuttle revisits to perform remote controlled, TV assisted construction experiments.

  10. Orbit selection for a Mars geoscience/climatology orbiter

    NASA Technical Reports Server (NTRS)

    Uphoff, C.

    1984-01-01

    This paper is a presentation of recent work to provide orbit design and selection criteria for a close, nearly polar, nearly circular orbit of Mars. The main aspects of the work are the evaluation of atmospheric drag for altitude selection, the orbit evolution for variations in periapsis altitude, and the interactions of those factors with the science objectives of the MGCO mission. A dynamic model of the Mars atmosphere is available from parallel efforts and the latest estimates of the upper atmospheric density and its time history are incorporated into the analysis to provide a final orbit that satisfies planetary quarantine requirements.

  11. General view of the Orbiter Discovery in the Orbiter Processing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Flyby orbits and perturbing potential

    NASA Astrophysics Data System (ADS)

    Bootello, Javier

    2015-08-01

    This article checks a perturbing gravitational potential, with the orbit dynamics parameters of hyperbolic flyby trajectories. This potential could be consistent with the collected data of flybys after 2005, however with a wide error range. Results are consistent with the post-Newtonian gravitoelectric accelerations, although starting from a different method approach. The dynamic effects of this quantum gravitational perturbing potential, could be modeled as an orbit precession, similar gravitoelectric effect as in close elliptic orbits.

  13. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten times as long* as the latter. The filter correction step also furnishes a statistically rigorous *prediction error* which appears in the likelihood ratios for scoring the association of one report or observation to another. Thus, the new filter can be used to support multi-target tracking within a general multiple hypothesis tracking framework. Additionally, the new distribution admits a distance metric which extends the classical Mahalanobis distance (chi^2 statistic). This metric provides a test for statistical significance and facilitates single-frame data association methods with the potential to easily extend the covariance-based track association algorithm of Hill, Sabol, and Alfriend. The filtering, data fusion, and association methods using the new class of orbital state PDFs are shown to be mathematically tractable and operationally viable.

  14. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  15. Orbiter utilization as an ACRV

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan N.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.; Troutman, Patrick A.

    1990-01-01

    Assuming that a Shuttle Orbiter could be qualified to serve long duration missions attached to Space Station Freedom in the capacity as an Assured Crew Return Vehicle (ACRV), a study was conducted to identify and examine candidate attach locations. Baseline, modified hardware, and new hardware design configurations were considered. Dual simultaneous Orbiter docking accommodation were required. Resulting flight characteristics analyzed included torque equilibrium attitude (TEA), microgravity environment, attitude controllability, and reboost fuel requirements. The baseline Station could not accommodate two Orbiters. Modified hardware configurations analyzed had large TEA's. The utilization of an oblique docking mechanism best accommodated an Orbiter as an ACRV.

  16. Geology orbiter comparison study

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  17. TOPEX orbital radiation study

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. M.

    1984-01-01

    The space radiation environment of the TOPEX spacecraft is investigated. A single trajectory was considered. The external (surface incident) charged particle radiation, predicted for the satellite, is determined by orbital flux integration for the specified trajectory. The latest standard models of the environment are used in the calculations. The evaluation is performed for solar maximum conditions. The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thickness. Limited shielding and dose evaluations are performed for simple infinite slab and spherical geometries. Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on.

  18. Exploratory orbit analysis

    SciTech Connect

    Michelotti, L.

    1989-03-01

    Unlike the other documents in these proceedings, this paper is neither a scientific nor a technical report. It is, rather, a short personal essay which attempts to describe an Exploratory Orbit Analysis (EOA) environment. Analyzing the behavior of a four or six dimensional nonlinear dynamical system is at least as difficult as analyzing events in high-energy collisions; the consequences of doing it badly, or slowly, would be at least as devastating; and yet the level of effort and expenditure invested in the latter, the very attention paid to it by physicists at large, must be two orders of magnitude greater than that given to the former. It is difficult to choose the model which best explains the behavior of a physical device if one does not first understand the behavior of the available models. The time is ripe for the development of a functioning EOA environment, which I will try to describe in this paper to help us achieve this goal.

  19. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  20. Hypervelocity orbital intercept guidance

    NASA Astrophysics Data System (ADS)

    Alfano, Salvatore

    1988-04-01

    Terminal guidance of a hypervelocity exo-atmospheric orbital interceptor with free end-time is examined. The pursuer is constrained to lateral thrusting with the evader modeled as an ICBM in its final boost phase. Proportional navigation, optimal control using certainty equivalence, dual control, and control with optimum thrust spacing are all examined. Also, a new approach called certainty control is developed for this problem. This algorithm constrains the final state to a function of projected estimate error to reduce control energy expenditure. All methods model the trajectories using splines and employ eight state Extended Kalman Filters with line-of-sight and range updates. The relative effectiveness of these control strategies is illustrated by applying them to various intercept problems.

  1. The Košice meteorite fall: Atmospheric trajectory, fragmentation, and orbit

    NASA Astrophysics Data System (ADS)

    Borovi?Ka, Ji?í; Tóth, Juraj; Igaz, Antal; Spurný, Pavel; Kalenda, Pavel; Haloda, Jakub; Svoreå, Ján; Kornoš, Leonard; Silber, Elizabeth; Brown, Peter; HusáRik, Marek

    2013-10-01

    The Košice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s-1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s-1. A maximum brightness of absolute stellar magnitude about -18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Košice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.

  2. Orbit Determination Toolbox

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave

    2010-01-01

    The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.

  3. Astrometric planet search around southern ultracool dwarfs. III. Discovery of a brown dwarf in a 3-year orbit around DE0630-18

    NASA Astrophysics Data System (ADS)

    Sahlmann, J.; Lazorenko, P. F.; Ségransan, D.; Martín, E. L.; Mayor, M.; Queloz, D.; Udry, S.

    2015-05-01

    Using astrometric measurements obtained with the FORS2/VLT camera, we are searching for low-mass companions around 20 nearby ultracool dwarfs. With a single-measurement precision of ~0.1 milli-arcsec, our survey is sensitive to a wide range of companion masses from planetary companions to binary systems. Here, we report the discovery and orbit characterisation of a new ultracool binary at a distance of 19.5 pc from Earth that is composed of the M8.5-dwarf primary DE0630-18 and a substellar companion. The nearly edge-on orbit is moderately eccentric (e = 0.23) with an orbital period of 1120 d, which corresponds to a relative separation in semimajor axis of approximately 1.1 AU. We obtained a high-resolution optical spectrum with UVES/VLT and measured the system's heliocentric radial velocity. The spectrum does not exhibit lithium absorption at 670.8 nm, indicating that the system is not extremely young. A preliminary estimate of the binary's physical parameters tells us that it is composed of a primary at the stellar-substellar limit and a massive brown-dwarf companion. DE0630-18 is a new very low-mass binary system with a well-characterised orbit. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 086.C-0680, 088.C-0679, 090.C-0786, and 092.C-0202.

  4. PyORBIT: A Python Shell For ORBIT

    SciTech Connect

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  5. Structure of the Zodiacal Emission by Spitzer Archive Data

    NASA Astrophysics Data System (ADS)

    Verebélyi, Erika

    2015-08-01

    Dust in the Interplanetary Dust Cloud not just reflects the sunlight (known as zodiacal light) but also has its own thermal emission. At the heliocentric distance of Earth the peak of this emission (with particle size 100 ?m) is close to 20 ?m. In this study we used the data of four programs completed with the MIPS camera of the Spitzer Space Telescope at 24 ?m to probe the large scale brightness distribution as well as the small-scale (subarcmin) structure of the Zodiacal Could. The four programs were:1. The Production of Zodiacal Dust by Asteroids and Comets (ID: 2317)2. High Latitude Dust Bands in the Main Asteroid Belt: Fingerprints of Recent Breakup Events (ID: 20539)3. A New Source of Interplanetary Dust: Type II Dust Trails (ID: 30545)4. First Look Survey - Ecliptic Plane Component (ID: 98)We take into account that while the Spitzer Space Telescope carried out the measurements it was orbiting the Sun at an Earth-trailing orbit and looked at different parts of the Zodiacal Cloud, in many cases looking through the same parts of the cloud from different locations. This gives us the chance to investigate the 3D distribution of zodiacal dust in addition to its large and small scale structure.

  6. Structure of the zodiacal emission by Spitzer archive data

    NASA Astrophysics Data System (ADS)

    Verebelyi, E.; Kiss, C.; Balog, Z.; Stansberry, J.

    2014-07-01

    Dust in the interplanetary dust cloud not just reflects the sunlight (known as zodiacal light) but also has its own thermal emission. At the heliocentric distance of the Earth, the peak of this emission (with particle size ˜ 100 ? m) is close to 20 ? m. In this study, we used the data of four programs completed with the MIPS camera of the Spitzer Space Telescope at 24 ? m to probe the large-scale brightness distribution as well as the small-scale (sub-arcmin) structure of the zodiacal cloud. The four programs were: - The Production of Zodiacal Dust by Asteroids and Comets (ID: 2317) - High Latitude Dust Bands in the Main Asteroid Belt: Fingerprints of Recent Breakup Events (ID: 20539) - A New Source of Interplanetary Dust: Type II Dust Trails (ID: 30545) - First Look Survey - Ecliptic Plane Component (ID: 98) We take into account that, when the Spitzer Space Telescope carried out the measurements, it was orbiting the Sun at an Earth-trailing orbit and looking at different parts of the zodiacal cloud, in many cases looking through the same parts of the cloud from different locations. This gives us the chance to investigate the 3D distribution of zodiacal dust in addition to large- and small-scale structure of the cloud.

  7. Endoscopic treatment of orbital tumors

    PubMed Central

    Signorelli, Francesco; Anile, Carmelo; Rigante, Mario; Paludetti, Gaetano; Pompucci, Angelo; Mangiola, Annunziato

    2015-01-01

    Different orbital and transcranial approaches are performed in order to manage orbital tumors, depending on the location and size of the lesion within the orbit. These approaches provide a satisfactory view of the superior and lateral aspects of the orbit and the optic canal but involve risks associated with their invasiveness because they require significant displacement of orbital structures. In addition, external approaches to intraconal lesions may also require deinsertion of extraocular muscles, with subsequent impact on extraocular mobility. Recently, minimally invasive techniques have been proposed as valid alternative to external approaches for selected orbital lesions. Among them, transnasal endoscopic approaches, “pure” or combined with external approaches, have been reported, especially for intraconal lesions located inferiorly and medially to the optic nerve. The avoidance of muscle detachment and the shortness of the surgical intraorbital trajectory makes endoscopic approach less invasive, thus minimizing tissue damage. Endoscopic surgery decreases the recovery time and improves the cosmetic outcome not requiring skin incisions. The purpose of this study is to review and discuss the current surgical techniques for orbital tumors removal, focusing on endoscopic approaches to the orbit and outlining the key anatomic principles to follow for safe tumor resection. PMID:25789299

  8. What is a MISR orbit?

    Atmospheric Science Data Center

    2014-12-08

    ... The Terra platform that carries MISR and other scientific instruments flies at an altitude of 705 km above sea level on a ... day. In the context of MISR data exploitation, each complete revolution is called an orbit, and orbits are consecutively numbered from ...

  9. Newton's hypothetical orbits independently derived.

    NASA Astrophysics Data System (ADS)

    Kenyon, K. E.

    The mathematical results of four hypothetical orbital problems from the Principia are confirmed by an independent physical method. Each orbital problem that Newton posed and solved is characterized as follows. Given the shape of the orbit and the position of the force center, find the functional form of the central attractive force that will keep a body moving around the orbit. None of Newton's hypothetical orbital problems has so far found any apparent practical application, whereas the Kepler problem, also solved by Newton in the Principia, is of great importance to physics. The Kepler problem too can be derived easily by the present method. Newton used primarily geometrical constructions and logical deductions to arrive at his force functions. In contrast to this, the present (inverse) approach is based on a force balance: as a body moves along a curved path the outward centrifugal force always balances the component of the inward attractive force that is perpendicular to the orbit. Taking the functional form for the central force derived by Newton and inserting it into the force balance, the orbital shape can be derived by solving an ordinary second-order differential equation-the forced harmonic oscillator equation. Two of Newton's four force functions examined in this way lead to (different) fully nonlinear differential equations, which, surprisingly, can both be solved analytically and in closed form by means of the elementary functions that describe the shapes of the orbits.

  10. Orbit propagation in Minkowskian geometry

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Peláez, Jesús

    2015-09-01

    The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in , the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.

  11. Orbit determination in satellite geodesy

    NASA Astrophysics Data System (ADS)

    Beutler, G.; Schildknecht, T.; Hugentobler, U.; Gurtner, W.

    2003-04-01

    For centuries orbit determination in Celestial Mechanics was a synonym for the determination of six so-called Keplerian elements of the orbit of a minor planet or a comet based on a short series of (three or more) astrometric places observed from one or more observatories on the Earth's surface. With the advent of the space age the problem changed considerably in several respects: (1) orbits have to be determined for a new class of celestial objects, namely for artificial Earth satellites; (2) new observation types, in particular topocentric distances and radial velocities, are available for the establishment of highly accurate satellite orbits; (3) even for comparatively short arcs (up to a few revolutions) the orbit model that has to be used is much more complicated than for comparable problems in the planetary system: in addition to the gravitational perturbations due to Moon and planets higher-order terms in the Earth's gravity field have to be taken into account as well as non-gravitational effects like atmospheric drag and/or radiation pressure; (4) the parameter space is often of higher than the sixth dimension, because not only the six osculating elements referring to the initial epoch of an arc, but dynamical parameters defining the (a priori imperfectly known) force field have to be determined, as well. It may even be necessary to account for stochastic velocity changes. Orbit determination is not a well-known task in satellit geodesy. This is mainly due to the fact that orbit determination is often imbedded in a much more general parameter estimation problem, where other parameter types (referred to station positions, Earth rotation, atmosphere, etc.) have to be determined, as well. Three examples of "pure" orbit determination problems will be discussed subsequently: ? The first problem intends to optimize the observation process of one Satellite Laser Ranging (SLR) observatory. It is a filter problem, where the orbit is improved in real time with the goal to narrow down the so-called range-gate, defining the time interval when the echo of the LASER pulse is expected. ? Secondly we highlight orbit determination procedures (in particular advanced orbit parametrization techniques) related to the determination of the orbits of GPS satellites and of Low Earth Orbiters (LEOS) equipped with GPS receivers. ? We conclude by discussing the problem of determining the orbits of passive artificial satellites or of space debris using high-precision astrometric CCD-observations of these object.

  12. Circular orbits in modified gravity

    NASA Astrophysics Data System (ADS)

    Alhamzawi, Ahmed; Alhamzawi, Rahim

    2015-08-01

    A slight modification of the general relativistic metric under modified gravity is presented. The circular motion of massive particles is discussed in the new metric. It is shown that there are two roots at which circular motion can happen. However, while one root results in a stable circular orbit, the second represents a maxima which is very unstable because the attractive forces dominate as radius gets small and draw towards zero. Furthermore, we derive an equation for the orbital angular speed for the stable root in modified gravity and show that for large values of , the modified orbital angular speed approaches the well known orbital angular speed. Finally, a description of photon orbits in the new metric is given and a derivation of the deflection angle is presented. Its shown that modified gravity can give a considerable contribution to the deflection angles of light rays.

  13. General relativity and satellite orbits

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1975-01-01

    The general relativistic correction to the position of a satellite is found by retaining Newtonian physics for an observer on the satellite and introducing a potential. The potential is expanded in terms of the Keplerian elements of the orbit and substituted in Lagrange's equations. Integration of the equations shows that a typical earth satellite with small orbital eccentricity is displaced by about 17 cm. from its unperturbed position after a single orbit, while the periodic displacement over the orbit reaches a maximum of about 3 cm. The moon is displaced by about the same amounts. Application of the equations to Mercury gives a total displacement of about 58 km. after one orbit and a maximum periodic displacement of about 12 km.

  14. Molecular Orbital Analysis Based on Fragment Molecular Orbital Scheme

    SciTech Connect

    Sekino, Hideo; Kengoku, Yasuo; Sugiki, Sin-ichirou; Kurita, Noriyuki

    2003-09-12

    Dipole and quadrupole moments computed in the fragment molecular orbital (FMO) scheme reproduce the results from the full molecular orbital (MO) theory within a few percent error. It is also shown that the FMO molecular orbitals for creating the FMO density matrix of each fragment provide qualitatively correct information on the chemical active sites of molecular aggregates in comparison with the full MO counterpart. The FMO also provides correct HOMO for single strand DNA, while the ordering of the LUMO among the fragments is not correct.

  15. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  16. Radiation therapy for orbital lymphoma

    SciTech Connect

    Zhou Ping . E-mail: pzhou@partners.org; Ng, Andrea K.; Silver, Barbara; Li Sigui; Hua Ling; Mauch, Peter M.

    2005-11-01

    Purpose: To describe radiation techniques and evaluate outcomes for orbital lymphoma. Methods and Materials: Forty-six patients (and 62 eyes) with orbital lymphoma treated with radiotherapy between 1987 and 2003 were included. The majority had mucosa-associated lymphoid tissue (48%) or follicular (30%) lymphoma. Seventeen patients had prior lymphoma at other sites, and 29 had primary orbital lymphoma. Median follow-up was 46 months. Results: The median dose was 30.6 Gy; one-third received <30 Gy. Electrons were used in 9 eyes with disease confined to the conjunctiva or eyelid, and photons in 53 eyes with involvement of intraorbital tissues to cover entire orbit. Local control rate was 98% for all patients and 100% for those with indolent lymphoma. Three of the 26 patients with localized primary lymphoma failed distantly, resulting in a 5-year freedom-from-distant-relapse rate of 89%. The 5-year disease-specific and overall survival rates were 95% and 88%, respectively. Late toxicity was mainly cataract formation in patients who received radiation without lens block. Conclusions A dose of 30 Gy is sufficient for indolent orbital lymphoma. Distant relapse rate in patients with localized orbital lymphoma was lower than that reported for low-grade lymphoma presenting in other sites. Orbital radiotherapy can be used for salvage of recurrent indolent lymphoma.

  17. Lifetimes of lunar satellite orbits

    NASA Technical Reports Server (NTRS)

    Meyer, Kurt W.; Buglia, James J.; Desai, Prasun N.

    1994-01-01

    The Space Exploration Initiative has generated a renewed interest in lunar mission planning. The lunar missions currently under study, unlike the Apollo missions, involve long stay times. Several lunar gravity models have been formulated, but mission planners do not have enough confidence in the proposed models to conduct detailed studies of missions with long stay times. In this report, a particular lunar gravitational model, the Ferrari 5 x 5 model, was chosen to determine the lifetimes for 100-km and 300-km perilune altitude, near-circular parking orbits. The need to analyze orbital lifetimes for a large number of initial orbital parameters was the motivation for the formulation of a simplified gravitational model from the original model. Using this model, orbital lifetimes were found to be heavily dependent on the initial conditions of the nearly circular orbits, particularly the initial inclination and argument of perilune. This selected model yielded lifetime predictions of less than 40 days for some orbits, and other orbits had lifetimes exceeding a year. Although inconsistencies and limitations are inherent in all existing lunar gravity models, primarily because of a lack of information about the far side of the moon, the methods presented in this analysis are suitable for incorporating the moon's nonspherical gravitational effects on the preliminary design level for future lunar mission planning.

  18. Orbital, Rotational, and Climatic Interactions

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G. (editor)

    1992-01-01

    The report of an international meeting on the topic of Orbital, Rotational, and Climatic Interactions, which was held 9-11 Jul. 1991 at the Johns Hopkins University is presented. The meeting was attended by 22 researchers working on various aspects of orbital and rotational dynamics, paleoclimate data analysis and modeling, solid-Earth deformation studies, and paleomagnetic analyses. The primary objective of the workshop was to arrive at a better understanding of the interactions between the orbital, rotational, and climatic variations of the Earth. This report contains a brief introduction and 14 contributed papers which cover most of the topics discussed at the meeting.

  19. Mars Science Laboratory Orbit Determination

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard L.; Gustafson, Eric D.; Thompson, Paul F.; Jefferson, David C.; Martin-Mur, Tomas J.; Mottinger, Neil A.; Pelletier, Frederic J.; Ryne, Mark S.

    2012-01-01

    This paper describes the orbit determination process, results and filter strategies used by the Mars Science Laboratory Navigation Team during cruise from Earth to Mars. The new atmospheric entry guidance system resulted in an orbit determination paradigm shift during final approach when compared to previous Mars lander missions. The evolving orbit determination filter strategies during cruise are presented. Furthermore, results of calibration activities of dynamical models are presented. The atmospheric entry interface trajectory knowledge was significantly better than the original requirements, which enabled the very precise landing in Gale Crater.

  20. Extrasolar Planet Orbits and Eccentricities

    E-print Network

    Scott Tremaine; Nadia L. Zakamska

    2003-12-01

    The known extrasolar planets exhibit many interesting and surprising features--extremely short-period orbits, high-eccentricity orbits, mean-motion and secular resonances, etc.--and have dramatically expanded our appreciation of the diversity of possible planetary systems. In this review we summarize the orbital properties of extrasolar planets. One of the most remarkable features of extrasolar planets is their high eccentricities, far larger than seen in the solar system. We review theoretical explanations for large eccentricities and point out the successes and shortcomings of existing theories.

  1. Mab's orbital motion explained

    NASA Astrophysics Data System (ADS)

    Kumar, K.; de Pater, I.; Showalter, M. R.

    2015-07-01

    We explored the hypothesis that Mab's anomalous orbital motion, as deduced from Hubble Space Telescope (HST) data (Showalter, M.R., Lissauer, J.J. [2006]. Science (New York, NY) 311, 973-977), is the result of gravitational interactions with a putative suite of large bodies in the ?-ring. We conducted simulations to compute the gravitational effect of Mab (a recently discovered Uranian moon) on a cloud of test particles. Subsequently, by employing the data extracted from the test particle simulations, we executed random walk simulations to compute the back-reaction of nearby perturbers on Mab. By generating simulated observation metrics, we compared our results to the data retrieved from the HST. Our results indicate that the longitude residual change noted in the HST data (??r,Mab ? 1 deg) is well matched by our simulations. The eccentricity variations (?eMab ?10-3) are however typically two orders of magnitude too small. We present a variety of reasons that could account for this discrepancy. The nominal scenario that we investigated assumes a perturber ring mass (mring) of 1 mMab (Mab's mass) and a perturber ring number density (?n,ring) of 10 perturbers per 3 RHill,Mab (Mab's Hill radius). This effectively translates to a few tens of perturbers with radii of approximately 2-3 km, depending on the albedo assumed. The results obtained also include an interesting litmus test: variations of Mab's inclination on the order of the eccentricity changes should be observable. Our work provides clues for further investigation into the tantalizing prospect that the Mab/?-ring system is undergoing re-accretion after a recent catastrophic disruption.

  2. JSC Orbital Debris Website Description

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as required. These data also help in the analysis and interpretation of impact features on returned spacecraft surfaces. 4) Mitigation - Controlling the growth of the orbital debris population is a high priority for NASA, the United States, and the major space-faring nations of the world to preserve near-Earth space for future generations. Mitigation measures can take the form of curtailing or preventing the creation of new debris, designing satellites to withstand impacts by small debris, and implementing operational procedures ranging from utilizing orbital regimes with less debris, adopting specific spacecraft attitudes, and even maneuvering to avoid collisions with debris. Downloadable items include several documents in PDF format and executable software.and 5) Reentry - Because of the increasing number of objects in space, NASA has adopted guidelines and assessment procedures to reduce the number of non-operational spacecraft and spent rocket upper stages orbiting the Earth. One method of postmission disposal is to allow reentry of these spacecraft, either from orbital decay (uncontrolled entry) or with a controlled entry. Orbital decay may be achieved by firing engines to lower the perigee altitude so that atmospheric drag will eventually cause the spacecraft to enter. However, the surviving debris impact footprint cannot be guaranteed to avoid inhabited landmasses. Controlled entry normally occurs by using a larger amount of propellant with a larger propulsion system to drive the spacecraft to enter the atmosphere at a steeper flight path angle. It will then enter at a more precise latitude, longitude, and footprint in a nearly uninhabited impact region, generally located in the ocean.

  3. Independent Orbiter Assessment (IOA): Analysis of the orbital maneuvering system

    NASA Technical Reports Server (NTRS)

    Prust, C. D.; Paul, D. J.; Burkemper, V. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbital Maneuvering System (OMS) hardware are documented. The OMS provides the thrust to perform orbit insertion, orbit circularization, orbit transfer, rendezvous, and deorbit. The OMS is housed in two independent pods located one on each side of the tail and consists of the following subsystems: Helium Pressurization; Propellant Storage and Distribution; Orbital Maneuvering Engine; and Electrical Power Distribution and Control. The IOA analysis process utilized available OMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluted and analyzed for possible failure modes and effects. Criticality was asigned based upon the severity of the effect for each failure mode.

  4. Effects of orbital ellipticity on collisional disruptions of rubble-pile asteroids

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Baoyin, Hexi; Li, Junfeng; Richardson, Derek C.; Schwartz, Stephen R.

    2015-11-01

    The behavior of debris ejected from asteroids after collisional disruptions has significant implications for asteroid evolution. Analytical approximations of the elliptic restricted three-body system show that the behavior of ejecta varies significantly with the orbital eccentricity and true anomaly of an asteroid. To study these orbital perturbative effects on collision outcomes, we conduct a series of low-speed collision simulations using a combination of an N-body gravity algorithm and the soft-sphere discrete element method. The asteroid is modeled as a gravitational aggregate, which is one of the plausible structures for asteroids whose sizes are larger than several hundreds of meters. To reduce the effect of complicating factors raised by the mutual interaction between post-collision fragments on the outcomes, a low-resolution model and a set of frictionless material parameters are used in the first step of exploration. The results indicate that orbital perturbations on ejecta arising from the eccentricity and true anomaly of the target asteroid at the time of impact cause larger mass loss and lower the catastrophic disruption threshold (the specific energy required to disperse half the total system mass) in collision events. The "universal law" of catastrophic disruption derived by Stewart and Leinhardt (Astrophys. J. Lett. 691:L133-L137, 2009) can be applied to describe the collision outcomes of asteroids on elliptical heliocentric orbits. Through analyses of ejecta velocity distributions, we develop a semi-analytic description of escape speed from the asteroid's surface in an elliptic restricted three-body system and show that resulting perturbations have long-term orbital effects on ejecta and can also have an indirect influence on the velocity field of post-fragments through interparticle collisions. Further exploration with a high-resolution model shows that the long-term perturbative effects systematically increase mass loss, regardless of the target's material parameters and internal configuration, while indirect effect on mass loss is much more complicated and is enhanced when a coarse material or high-porosity model is used.

  5. Canonical elements for collision orbits

    E-print Network

    Scott Tremaine

    2000-12-12

    I derive a set of canonical elements that are useful for collision orbits (perihelion distance approaching zero at fixed semimajor axis). The coordinates are the mean anomaly and the two spherical polar angles at aphelion.

  6. A Case of Orbital Histoplasmosis.

    PubMed

    Krakauer, Mark; Prendes, Mark Armando; Wilkes, Byron; Lee, Hui Bae Harold; Fraig, Mostafa; Nunery, William R

    2014-09-01

    Histoplasma capsulatum var capsulatum is a dimorphic fungus endemic to the Ohio and Mississippi River Valleys of the United States. In this case report, a 33-year-old woman who presented with a right orbital mass causing progressive vision loss, diplopia, and facial swelling is described. Lateral orbitotomy with lateral orbital wall bone flap was performed for excisional biopsy of the lesion. The 1.5 × 1.8 × 2.3 cm cicatricial mass demonstrated a granulomatous lesion with necrosis and positive staining consistent with Histoplasma capsulatum var capsulatum infection. To the authors' knowledge, this is the first case of orbital histoplasmosis to be reported in the United States and the first case worldwide of orbital histoplasmosis due to Histoplasma capsulatum var capsulatum. PMID:25186215

  7. Two stage to orbit design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A preliminary design of a two-stage to orbit vehicle was conducted with the requirements to carry a 10,000 pound payload into a 300 mile low-earth orbit using an airbreathing first stage, and to take off and land unassisted on a 15,000 foot runway. The goal of the design analysis was to produce the most efficient vehicle in size and weight which could accomplish the mission requirements. Initial parametric analysis indicated that the weight of the orbiter and the transonic performance of the system were the two parameters that had the largest impact on the design. The resulting system uses a turbofan ramjet powered first stage to propel a scramjet and rocket powered orbiter to the stage point of Mach 6 to 6.5 at an altitude of 90,000 ft.

  8. NASA Orbital Debris Baseline Populations

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  9. How to Orbit the Earth.

    ERIC Educational Resources Information Center

    Quimby, Donald J.

    1984-01-01

    Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)

  10. Visualization of Molecular Orbitals: Formaldehyde

    ERIC Educational Resources Information Center

    Olcott, Richard J.

    1972-01-01

    Describes a computer program that plots a solid" representation of molecular orbital charge density which can be used to analyze wave functions of molecules. Illustrated with diagrams for formaldehyde. (AL)

  11. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  12. Orbits in a logarithmic potential

    SciTech Connect

    Hooverman, R.H.

    2014-04-15

    The characteristics of charged particle orbits in the logarithmic electrostatic potential field surrounding a straight conducting wire at a fixed potential are investigated. The equations of motion of an electron in a logarithmic potential are derived, the limiting cases are considered, and the results of numerical integration of the equations of motion are presented along with sketches of a few representative orbits. (C.E.S.)

  13. Minimum impulse orbital evasive maneuvers

    NASA Astrophysics Data System (ADS)

    Burk, Roger C.; Widhalm, Joseph W.

    1989-02-01

    The defeat of an attack on a satellite by a threat sphere moving in a Keplerian orbit is presently achieved by changing the satellite's orbital velocity at a specified time, thereby avoiding the penetration of the threat sphere. An algorithm employing a method of differential corrections was developed to ascertain the minimum-impulse evasive maneuver. The sensitivity of this solution to intercept parameter variations was also studied; maneuver time was the most important parameter, followed by threat sphere radius.

  14. Five Planets Orbiting 55 Cancri

    E-print Network

    Debra A. Fischer; Geoffrey W. Marcy; R. Paul Butler; Steven S. Vogt; Greg Laughlin; Gregory W. Henry; David Abouav; Kathryn M. G. Peek; Jason T. Wright; John A. Johnson; Chris McCarthy; Howard Isaacson

    2007-12-27

    We report 18 years of Doppler shift measurements of a nearby star, 55 Cancri, that exhibit strong evidence for five orbiting planets. The four previously reported planets are strongly confirmed here. A fifth planet is presented, with an apparent orbital period of 260 days, placing it 0.78 AU from the star in the large empty zone between two other planets. The velocity wobble amplitude of 4.9 \\ms implies a minimum planet mass \\msini = 45.7 \\mearthe. The orbital eccentricity is consistent with a circular orbit, but modest eccentricity solutions give similar \\chisq fits. All five planets reside in low eccentricity orbits, four having eccentricities under 0.1. The outermost planet orbits 5.8 AU from the star and has a minimum mass, \\msini = 3.8 \\mjupe, making it more massive than the inner four planets combined. Its orbital distance is the largest for an exoplanet with a well defined orbit. The innermost planet has a semi-major axis of only 0.038 AU and has a minimum mass, \\msinie, of only 10.8 \\mearthe, one of the lowest mass exoplanets known. The five known planets within 6 AU define a {\\em minimum mass protoplanetary nebula} to compare with the classical minimum mass solar nebula. Numerical N-body simulations show this system of five planets to be dynamically stable and show that the planets with periods of 14.65 and 44.3 d are not in a mean-motion resonance. Millimagnitude photometry during 11 years reveals no brightness variations at any of the radial velocity periods, providing support for their interpretation as planetary.

  15. Lunar Orbiter I - Moon & Earth

    NASA Technical Reports Server (NTRS)

    1966-01-01

    First view of the earth and moon from space. Published in: Spaceflight Revolution: Langley Research Center From Sputnik to Apollo, by James R. Hansen. NASA History Series. NASA SP ; 4308. p ii. Caption: 'The picture of the century was this first view of the earth from space. Lunar Orbiter I took the photo on 23 August 1966 on its 16th orbit just before it passed behind the moon. The photo also provided a spectacular dimensional view of the lunar surface.'

  16. Lightweight launches to low orbit

    NASA Astrophysics Data System (ADS)

    The development and applicability of lightweight vehicles for launching payloads, such as communication and earth observation satellites and microgravity experiments, into nongeostationary orbit are examined. Consideration is given to the Scout, Conestoga, Industrial Launch Vehicle, Marianne, the Long March, Proton, and 'M'rockets. The use of payload recovery capsules to deliver payloads is discussed. Alternative lightweight orbital services, such as TOPAS based on the Scout rocket and the Space Kurier, for launching small payloads are being studied.

  17. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  18. Space Tourism: Orbital Debris Considerations

    NASA Astrophysics Data System (ADS)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a review of the current work on space tourism and debris situation in low earth orbit suitable orbits for space tourism activities with regard to the presence of orbital debris are discussed.

  19. Modeling issues in precision orbit determination for Mars orbiter

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rosborough, George W.; Smith, David E.

    1990-01-01

    This paper examines the accuracy of recent Mars gravity models and the importance of perturbations due to the Mars radiation pressure and the Martian moons, Phobos and Deimos, on the trajectories of Mars orbiters. A linear orbit perturbation theory is used to characterize the patterns of gravity field near resonances for the Viking and Mariner 9 spacecraft. These resonances are shown to have considerable power and their potential for contributing to Mars gravity solutions is emphasized. It is shown that some of the same resonance orders which appear in the Viking orbits, dominate the radial orbit error spectrum for Mars Observer. Results of orbit determination simulations at the Goddard Space Flight Center show that the perturbations caused by the Martian moons and the Mars radiation pressure are larger than 0.1 mm/s, the expected precision of the Mars Observer Doppler tracking data. Tests with the Viking Doppler data indicate that best analysis of these data mandates the inclusion of the Phobos gravitational perturbation in the modeling of Viking spacecraft trajectories.

  20. Stable bound orbits around black rings

    SciTech Connect

    Igata, Takahisa; Ishihara, Hideki; Takamori, Yohsuke

    2010-11-15

    We examine bound orbits of particles around singly rotating black rings. We show that there exist stable bound orbits in toroidal spiral shape near the 'axis' of the ring, and also stable circular orbits on the axis as special cases. The stable bound orbits can have arbitrary large size if the thickness of the ring is less than a critical value.

  1. THE ORBITS OF THE OUTER URANIAN SATELLITES

    SciTech Connect

    Brozovic, M.; Jacobson, R. A.

    2009-04-15

    We report on the numerically integrated orbits for the nine outer Uranian satellites. The orbits are calculated based on fits to the astrometric observations for the period from 1984 to 2006. The results include the state vectors, post-fit residuals, and mean orbital elements. We also assess the accuracy of the orbital fits and discuss the need for future measurements.

  2. Orbital emphysema: nose blowing leading to a blown orbit.

    PubMed

    Jawaid, M Saad

    2015-01-01

    A 32-year-old woman with a painful swelling around the right eye few hours after blowing her nose, presented to the accident and emergency department. There was no associated history of facial trauma. Examination revealed a grossly swollen right eye and palpable subcutaneous emphysema. The patient's visual acuity and eye movements were normal. A CT scan of the orbit confirmed orbital emphysema secondary to a fracture of the floor of the orbit into the maxillary sinus, as a result of increased intranasal pressure during nose blowing. The patient was admitted and managed conservatively with antibiotics. She made a full recovery with complete resolution of all her symptoms. A nasal bone fracture was also seen on CT scan and even though the patient could not recall any history of facial trauma, it was an incidental finding. PMID:26516251

  3. Forces charging the orbital floor after orbital trauma.

    PubMed

    Birkenfeld, Falk; Steiner, Martin; Becker, Merlind Erika; Kern, Matthias; Wiltfang, Jörg; Lucius, Ralph; Becker, Stephan Thomas

    2012-07-01

    The objectives of this study were (i) to evaluate different fracture mechanisms for orbital floor fractures and (ii) to measure forces and displacement of intraorbital tissue after orbital traumata to predict the necessity of strength for reconstruction materials. Six fresh frozen human heads were used, and orbital floor defects in the right and left orbit were created by a direct impact of 3.0 J onto the globe and infraorbital rim, respectively. Orbital floor defect sizes and displacement were evaluated after a Le Fort I osteotomy. In addition, after reposition of the intraorbital tissue, forces and displacement were measured. The orbital floor defect sizes were 208.3 (SD, 33.4) mm(2) for globe impact and 221.8 (SD, 53.1) mm(2) for infraorbital impact. The intraorbital tissue displacement after the impact and before reposition was 5.6 (SD, 1.0) mm for globe impact and 2.8 (SD, 0.7) mm for infraorbital impact. After reposition, the displacement was 0.8 (SD, 0.5) mm and 1.1 (SD, 0.7) mm, respectively. The measured applied forces were 0.061 (SD, 0.014) N for globe impact and 0.066 (SD, 0.022) N for infraorbital impact. Different fracture-inductive mechanisms are not reflected by the pattern of the fracture. The forces needed after reposition are minimal (~0.07 N), which may explain the success of PDS foils [poly-(p-dioxanone)] and collagen membranes as reconstruction materials. PMID:22777456

  4. The Eccentric Behavior of Nearly Frozen Orbits

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  5. Orbital expansion of the congenitally anophthalmic socket.

    PubMed Central

    Tucker, S M; Sapp, N; Collin, R

    1995-01-01

    BACKGROUND--Congenital anophthalmos is a rare condition in which intervention at an early age can stimulate orbital expansion and maximise facial symmetry. Much is still unknown, however, regarding the degree of soft tissue and bony orbital growth achieved using the orbital expanders presently available. METHODS--A retrospective review of 59 congenitally anophthalmic orbits in 42 patients was carried out. RESULTS--The soft tissue and bony orbital expansion achieved using serial solid shapes is reported, and experience with hydrophilic expanders and inflatable silicone expanders is reviewed. CONCLUSION--Although serially fitted solid shapes in the orbit lead to increased expansion of orbital soft tissue and bone compared with no orbital implant, further orbital tissue enlargement is required. The inflatable silicone expander may allow more rapid and extensive orbital tissue expansion, but design changes are needed to achieve this. PMID:7662633

  6. Virtual Surgical Planning for Orbital Reconstruction.

    PubMed

    Susarla, Srinivas M; Duncan, Katherine; Mahoney, Nicholas R; Merbs, Shannath L; Grant, Michael P

    2015-01-01

    The advent of computer-assisted technology has revolutionized planning for complex craniofacial operations, including orbital reconstruction. Orbital reconstruction is ideally suited for virtual planning, as it allows the surgeon to assess the bony anatomy and critical neurovascular structures within the orbit, and plan osteotomies, fracture reductions, and orbital implant placement with efficiency and predictability. In this article, we review the use of virtual surgical planning for orbital decompression, posttraumatic midface reconstruction, reconstruction of a two-wall orbital defect, and reconstruction of a large orbital floor defect with a custom implant. The surgeon managing orbital pathology and posttraumatic orbital deformities can benefit immensely from utilizing virtual planning for various types of orbital pathology. PMID:26692714

  7. The 2009 Mars Telecommunications Orbiter

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.; DePaula, R.; Diehl, R. E.; Edwards, C. D.; Fitzgerald, R. J.; Franklin, S. F.; Kerridge, S. A.; Komarek, T. A.; Noreen, G. K.

    2004-01-01

    The first spacecraft with a primary function of providing communication links while orbiting a foreign planet has begun development for a launch in 2009. NASA's Mars Telecommunications Orbiter would use three radio bands to magnify the benefits of other future Mars missions and enable some types of missions otherwise impractical. It would serve as the Mars hub for a growing interplanetary Internet. And it would pioneer the use of planet-to-planet laser communications to demonstrate the possibility for even greater networking capabilities in the future. With Mars Telecommunications Orbiter overhead in the martian sky, the Mars Science Laboratory rover scheduled to follow the orbiter to Mars by about a month could send to Earth more than 100 times as much data per day as it could otherwise send. The orbiter will be designed for the capability of relaying up to 15 gigabits per day from the rover, equivalent to more than three full compact discs each day. The same benefits would accrue to other future major Mars missions from any nation.

  8. First Spacecraft Orbit of Mercury

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    After a 7.9-billion-kilometer flight since its launch on 3 August 2004—which included flybys of Earth, Venus, and Mercury—NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered a planned, highly elliptical orbit around the closest planet to our Sun on 17 March. Engineers in the mission operations center at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in Laurel, Md., which manages the mission for NASA, received radiometric signals indicating a successful orbit insertion at 9:10 P.M. local time. "Tonight we will have orbited the fifth planet in the solar system. This is a major accomplishment," Ed Weiler, NASA assistant administrator for the Science Mission Directorate, said at a 17 March public forum at JHU/APL, noting that spacecraft have previously entered orbit around several other planets. "You only go into orbit for the first time around Mercury once in human history, and that is what was accomplished tonight."

  9. Autonomous perturbations of LISA orbits

    E-print Network

    Giuseppe Pucacco; Massimo Bassan; Massimo Visco

    2010-09-24

    We investigate autonomous perturbations on the orbits of LISA, namely the effects produced by fields that can be expressed only in terms of the position, but not of time in the Hill frame. This first step in the study of the LISA orbits has been the subject of recent papers which implement analytical techniques based on a "post-epicyclic" approximation in the Hill frame to find optimal unperturbed orbits. The natural step forward is to analyze the perturbations to purely Keplerian orbits. In the present work a particular emphasis is put on the tidal field of the Earth assumed to be stationary in the Hill frame. An accurate interpretation of the global structure of the perturbed solution sheds light on possible implications on injection in orbit when the time base-line of the mission is longer than that assumed in previous papers. Other relevant classes of autonomous perturbations are those given by the corrections to the Solar field responsible for a slow precession and a global stationary field, associated to sources like the interplanetary dust or a local dark matter component. The inclusion of simple linear contributions in the expansion of these fields produces secular solutions that can be compared with the measurements and possibly used to evaluate some morphological property of the perturbing components.

  10. Orbital reflectometry of oxide heterostructures.

    PubMed

    Benckiser, Eva; Haverkort, Maurits W; Brück, Sebastian; Goering, Eberhard; Macke, Sebastian; Frañó, Alex; Yang, Xiaoping; Andersen, Ole K; Cristiani, Georg; Habermeier, Hanns-Ulrich; Boris, Alexander V; Zegkinoglou, Ioannis; Wochner, Peter; Kim, Heon-Jung; Hinkov, Vladimir; Keimer, Bernhard

    2011-03-01

    The occupation of d orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties, but could not thus far be probed in a quantitative manner. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of ~3% in the occupation of Ni e(g) orbitals in adjacent atomic layers of a LaNiO(3)-LaAlO(3) superlattice, in good agreement with ab initio electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in transition-metal oxides. PMID:21297622

  11. GLONASS orbit/clock combination in VNIIFTRI

    NASA Astrophysics Data System (ADS)

    Bezmenov, I.; Pasynok, S.

    2015-08-01

    An algorithm and a program for GLONASS satellites orbit/clock combination based on daily precise orbits submitted by several Analytic Centers were developed. Some theoretical estimates for combine orbit positions RMS were derived. It was shown that under condition that RMS of satellite orbits provided by the Analytic Centers during a long time interval are commensurable the RMS of combine orbit positions is no greater than RMS of other satellite positions estimated by any of the Analytic Centers.

  12. Radio frequency interference at the geostationary orbit

    NASA Technical Reports Server (NTRS)

    Sue, M. K.

    1981-01-01

    Growing demands on the frequency spectrum have increased the possibility of radio frequency interference (RFI). Various approaches to obtain in orbit RFI data are compared; this comparision indicates that the most practical way to obtain RFI data for a desired orbit (such as a geostationary orbit) is through the extrapolation of in orbit RFI measurements by a low orbit satellite. It is concluded that a coherent RFI program that uses both experimental data and analytical predictions provides accurate RFI data at minimal cost.

  13. Meteorite producing fragment on the Apophis' orbit

    NASA Astrophysics Data System (ADS)

    Terentjeva, Alexandra; Bakanas, Elena

    2014-10-01

    A meteorite producing object moving along an orbit similar to that of the near-Earth asteroid (99942) Apophis was found. The object may be a fragment of Apophis. It is shown that Apophis' orbit has approaches to the Earth's orbit (up to the indicated limit of ? ? 0.20 AU) over a long time interval. Asteroid 2012 BN1, whose orbit is very similar with the Apophis' orbit, was identified.

  14. CONSTRUCTION OF STABLE PERIODIC ORBITS FOR THE SPIN--ORBIT PROBLEM OF

    E-print Network

    CONSTRUCTION OF STABLE PERIODIC ORBITS FOR THE SPIN--ORBIT PROBLEM OF CELESTIAL MECHANICS--mail: luigi@matrm3.mat.uniroma3.it ABSTRACT. Birkhoff periodic orbits associated to spin--orbit resonances of such orbits with particular attention to ``effective estimates'' on the size of the perturbative parameters

  15. Gravity Probe B orbit determination

    NASA Astrophysics Data System (ADS)

    Shestople, P.; Ndili, A.; Hanuschak, G.; Parkinson, B. W.; Small, H.

    2015-11-01

    The Gravity Probe B (GP-B) satellite was equipped with a pair of redundant Global Positioning System (GPS) receivers used to provide navigation solutions for real-time and post-processed orbit determination (OD), as well as to establish the relation between vehicle time and coordinated universal time. The receivers performed better than the real-time position requirement of 100 m rms per axis. Post-processed solutions indicated an rms position error of 2.5 m and an rms velocity error of 2.2 mm s?1. Satellite laser ranging measurements provided independent verification of the GPS-derived GP-B orbit. We discuss the modifications and performance of the Trimble Advance Navigation System Vector III GPS receivers. We describe the GP-B precision orbit and detail the OD methodology, including ephemeris errors and the laser ranging measurements.

  16. Orbital-only models: ordering and excitations

    NASA Astrophysics Data System (ADS)

    van den Brink, Jeroen

    2004-12-01

    We consider orbital-only models in Mott insulators, where the orbital orbital interactions are either due to Jahn Teller distortions or due to the Kugel Khomskii superexchange. This leads to highly anisotropic and frustrated orbital Hamiltonians. For two-fold degenerate eg systems, both types of orbital interactions lead to the same form of the Hamiltonian—the 120° model. In both cases, the predicted symmetry of the orbital ordering is the same, although different from the one observed experimentally. The orbital operators that appear in the two kinds of orbital-only Hamiltonians are different. In the case of superexchange, the orbital degrees of freedom are represented by quantum pseudo-spin 1/2 operators. But when the interactions are Jahn Teller mediated and the coupling with the lattice is strong, the orbital operators are essentially classical pseudospins. Thus as a function of the relative coupling strengths, a quantum-to-classical crossover is expected. For three-fold degenerate t2g orbitals, the Jahn Teller coupling gives rise to a particular type of orbital compass models. We point out that fluctuations—whether due to quantum effects or finite temperature—are of prime importance for ordering in the 120° and orbital compass models. The fluctuations generally generate a gap in the orbital excitation spectrum. These orbital excitations—orbitons—are hybrid excitations that carry both a lattice Jahn Teller and a magnetic Kugel Khomskii character.

  17. Orbit precession and orbital period shortening in close binary systems

    E-print Network

    A. V. Serghienko

    2010-05-21

    We describe phenomenologically well-known effects in close binary systems. The uniform precession of an elliptical orbit is described by the adding of an inverse cube to an inverse square of the distance. If the precession is small, then the inverse cube contribution is small as compared to the one of inverse square. At some value of the distance these contributions become equal.

  18. BINARY STAR ORBITS. IV. ORBITS OF 18 SOUTHERN INTERFEROMETRIC PAIRS

    SciTech Connect

    Mason, Brian D.; Hartkopf, William I.; Tokovinin, Andrei E-mail: wih@usno.navy.mi

    2010-09-15

    First orbits are presented for 3 interferometric pairs and revised solutions for 15 others, based in part on first results from a recently initiated program of speckle interferometric observations of neglected southern binaries. Eight of these systems contain additional components, with multiplicity ranging up to 6.

  19. Orbits of 15 visual binaries

    NASA Astrophysics Data System (ADS)

    Heintz, W. D.

    1981-04-01

    Micrometer observations in 1979-1980 permitted the computation of substantially revised or new orbital elements for 15 visual pairs. They include the bright stars 52 Ari and 78 UMa (in the UMa cluster), four faint dK pairs, and the probable triple ADS 16185. Ephemerides for equator of data are listed in a table along with the orbital elements of the binaries. The measured positions and their residuals are listed in a second table. The considered binaries include ADS 896, 2336, 6315, 7054, 7629, 8092, 8555, 8739, 13987, 16185, Rst 1658, 3906, 3972, 4529, and Jsp 691.

  20. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  1. Precise GPS orbits for geodesy

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  2. Orbiter electrical equipment utilization baseline

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The baseline for utilization of Orbiter electrical equipment in both electrical and Environmental Control and Life Support System (ECLSS) thermal analyses is established. It is a composite catalog of Space Shuttle equipment, as defined in the Shuttle Operational Data Book. The major functions and expected usage of each component type are described. Functional descriptions are designed to provide a fundamental understanding of the Orbiter electrical equipment, to insure correlation of equipment usage within nominal analyses, and to aid analysts in the formulation of off-nominal, contingency analyses.

  3. Simulating Orbital Operations Of Spacecraft

    NASA Technical Reports Server (NTRS)

    Edwards, Carter; Bailey, Robert W.

    1993-01-01

    Orbital Operations Simulator, OOS, computer program developed to implement mathematical models of complex outer-space vehicular systems and be "testbed" for new flight software. Has multi-vehicular-simulation capability to model on-orbit proximity and docking operations. Version 1.0, with its Prepare Processor and User Interface Shell designed to be true multivehicle dynamic simulator with capability to change mathematical models of spacecraft subsystems easily. Written in K & R standard C, LEX, and YACC languages and operates under System V shell.

  4. Getting a Crew into Orbit

    ERIC Educational Resources Information Center

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  5. Augmented orbiter heat rejection study

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1981-01-01

    Spacecraft radiator concepts are presented that relieve attitude restrictions required by the shuttle orbiter space radiator for baseline and extended capability STS missions. Cost effective heat rejection kits are considered which add additional capability in the form of attached spacelab radiators or a deployable radiator module.

  6. Energy and the Elliptical Orbit

    ERIC Educational Resources Information Center

    Nettles, Bill

    2009-01-01

    In the January 2007 issue of "The Physics Teacher," Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and…

  7. Tension Pneumocephalus Following Orbital Exenteration.

    PubMed

    Shieh, Wen-Shi; Farrell, Christopher; Curry, Joseph; Murchison, Ann P; Bilyk, Jurij R

    2016-01-01

    Pneumocephalus is a known complication of skull base surgery, but is rarely seen by orbital surgeons. We report a case of postoperative mental status changes after exenteration due to tension pneumocephalus. After surgical and medical management, the patient's pneumocephalus resolved and she recovered fully. Risk factors for tension pneumocephalus, mechanism, clinical presentation, and management techniques are discussed. PMID:25689788

  8. Launching Social Studies into Orbit.

    ERIC Educational Resources Information Center

    Stone, Kirk

    1986-01-01

    As a social studies educator, Christa McAuliffe was delighted that a "non-science teacher" was chosen to become the first teacher to orbit the earth. Her thoughts concerning the NASA space flight and its meaning for the social studies are discussed. (RM)

  9. Viking orbiter stereo imaging catalog

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.; Vertrone, A. V.; Lewis, B. H.; Martin, M. D.

    1982-01-01

    The extremely long mission of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of these photos can be used to form stereo images allowing the student of Mars to examine a subject in three dimensional. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set.

  10. Mars Reconnaissance Orbiter Aerobraking Navigation Operation

    NASA Technical Reports Server (NTRS)

    Long, Stacia M.; You, Tung-Han; Halsell, C. Allen; Bhat, Ramachand S.; Demcak, Stuart W.; Graat, Eric J.; Higa, Earl S.; Highsmith, Dolan E.; Mottinger, Neil A.; Jah, Moriba K.

    2008-01-01

    After a seven-month interplanetary cruise, the Mars Reconnaissance Orbiter arrived at Mars and executed a 1.0 km/s Mars Orbit Insertion (MOI) maneuver. The post-MOI orbit was highly elliptical with a 35 hour, 428 km x 45000 km altitude orbit. To establish a useful science orbit, the navigation team used an aerobraking technique to guide the spacecraft into a 2-hour, 255 km x 320 km altitude orbit. This paper details the aerobraking navigation operation strategy and flight results. It also describes the aerobraking key requirements and navigation challenges.

  11. Orbiter CIU/IUS communications hardware evaluation

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1979-01-01

    The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.

  12. Conversion of Osculating Orbital Elements to Mean Orbital Elements

    NASA Technical Reports Server (NTRS)

    Der, Gim J.; Danchick, Roy

    1996-01-01

    Orbit determination and ephemeris generation or prediction over relatively long elapsed times can be accomplished with mean elements. The most simple and efficient method for orbit determination, which is also known as epoch point conversion, performs the conversion of osculating elements to mean elements by iterative procedures. Previous epoch point conversion methods are restricted to shorter elapsed times with linear convergence. The new method presented in this paper calculates an analytic initial guess of the unknown mean elements from a first order theory of secular perturbations and computes a transition matrix with accurate numerical partials. It thereby eliminates the problem of an inaccurate initial guess and an identity transition matrix employed by previous methods. With a good initial guess of the unknown mean elements and an accurate transition matrix, converging osculating elements to mean elements can be accomplished over long elapsed times with quadratic convergence.

  13. Orbiter CIU/IUS communications hardware evaluation

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1979-01-01

    Inertial Upper Stage (IUS) and DoD Communication Interface Unit (CIU) communication system design, hardware specifications, and interfaces were evaluated to determine their compatibility with the Orbiter payload communication and data handling equipment and the Orbiter network communication equipment.

  14. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  15. Two designs for an orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    The Orbital Transfer Vehicle (OTV) and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures.

  16. Rational orbits around charged black holes

    SciTech Connect

    Misra, Vedant; Levin, Janna

    2010-10-15

    We show that all eccentric timelike orbits in Reissner-Nordstroem spacetime can be classified using a taxonomy that draws upon an isomorphism between periodic orbits and the set of rational numbers. By virtue of the fact that the rationals are dense, the taxonomy can be used to approximate aperiodic orbits with periodic orbits. This may help reduce computational overhead for calculations in gravitational wave astronomy. Our dynamical systems approach enables us to study orbits for both charged and uncharged particles in spite of the fact that charged particle orbits around a charged black hole do not admit a simple one-dimensional effective potential description. Finally, we show that comparing periodic orbits in the Reissner-Nordstroem and Schwarzschild geometries enables us to distinguish charged and uncharged spacetimes by looking only at the orbital dynamics.

  17. MOOSE: Manned On-Orbit Servicing Equipment

    NASA Technical Reports Server (NTRS)

    Budinoff, J. (editor); Leontsinis, N. (editor); Lane, J. (editor); Singh, R. (editor); Angelone, K.; Boswell, C.; Chamberlain, I.; Concha, M.; Corrodo, M.; Custodio, O.

    1993-01-01

    The ability to service satellites has thus far been limited to low earth orbit platforms within reach of the Space Shuttle. Other orbits, such as geosynchronous orbits containing high-value spacecraft have not been attainable by a servicing vehicle. The useful life of a satellite can be extended by replacing spent propellant and damaged orbital replacement units, forestalling the need for eventual replacement. This growing need for satellite on-orbits servicing can be met by the Manned On-Orbit Servicing Equipment (MOOSE). Missions requiring orbit transfer capability, precision manipulation and maneuvering, and man-in-the-loop control can be accomplished using MOOSE. MOOSE is a flexible, reusable, single operator, aerobraking spacecraft designed to refuel, repair, and service orbiting spacecraft. MOOSE will be deployed from Space Station Freedom, (SSF), where it will be stored, resupplied, and refurbished.

  18. An Analytical Satellite Orbit Predictor (ASOP)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The documentation and user's guide are presented for the analytical satellite orbit predictor computer program which is intended to be used for computation of near-earth orbits including those of the shuttle orbiter and its payloads. The Poincare-Similar elements used make it possible to compute near-earth orbits to within an accuracy of a few meters. Recursive equations are used instead of complicated formulas. Execution time is on the order of a few milliseconds.

  19. Orbiter Thermal Protection System Development

    NASA Technical Reports Server (NTRS)

    Greenshields, D. H.

    1977-01-01

    The development of the Space Shuttle Orbiter Thermal Protection System (TPS) is traced from concept definition, through technical development, to final design and qualification for manned flight. A sufficiently detailed description of the TPS design is presented to support an indepth discussion of the key issues encountered in conceptual design, materials development, and structural integration. Emphasis is placed on the unique combination of requirements which resulted in the use not only of revolutionary design concepts and materials, but also of unique design criteria, newly developed analysis, testing and manufacturing methods, and finally of an unconventional approach to system certification for operational flight. The conclusion is drawn that a significant advance in all areas of thermal protection system development has been achieved which results in a highly efficient, flexible, and cost-effective thermal protection system for the Orbiter of the Space Shuttle System.

  20. Elliptical orbit performance computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  1. Environmental dynamics at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1976-01-01

    The influence of real satellite aerodynamics on the determination of upper atmospheric density was investigated. A method of analysis of satellite drag data is presented which includes the effect of satellite lift and the variation in aerodynamic properties around the orbit. The studies indicate that satellite lift may be responsible for the observed orbit precession rather than a super rotation of the upper atmosphere. The influence of simplifying assumptions concerning the aerodynamics of objects in falling sphere analysis were evaluated and an improved method of analysis was developed. Wind tunnel data was used to develop more accurate drag coefficient relationships for studying altitudes between 80 and 120 Km. The improved drag coefficient relationships revealed a considerable error in previous falling sphere drag interpretation. These data were reanalyzed using the more accurate relationships. Theoretical investigations of the drag coefficient in the very low speed ratio region were also conducted.

  2. [Needlefish jaw in the orbit].

    PubMed

    Rahimian, O; Hage, R; Donnio, A; Merle, H

    2013-03-01

    We report a case of unsuspected penetrating trauma with intraorbital foreign body, namely a needlefish jaw. A 44-year-old fisherman presented with vertical diplopia and discrete swelling of the upper lid near the medial canthus after being hit by a fish. He was unaware of any penetrating lesion or foreign body. There was no entry wound. CT-scan showed a foreign body between the globe and the medial orbital wall. Surgical exploration found that it was a 4.5cm long needlefish jaw. Removal resulted in complete resolution of symptoms. Needlefish can be very dangerous. This is the first reported case of a needlefish jaw in the orbit with no associated lesion, infection or inflammation. PMID:23238074

  3. Of Orbits, Conics, and Grammar

    NASA Astrophysics Data System (ADS)

    Henderson, Hugh

    2005-02-01

    In the half-dozen or so years leading up to the publication of the Principia, Isaac Newton observed the comets of 1680 and 1682 and wrestled with the extent to which his law of gravitation could be applied. In time, he would see the connections between the four possible orbits of a satellite (circular, elliptical, parabolic, and hyperbolic) and the four curves produced by the careful carving of a cone. But if we look a little further into the conic sections, we find some interesting connections among the natural orbit of a satellite, ancient mathematics, and the roots of familiar words. Illuminating these connections for introductory physics students may help them to better understand the role of language and mathematics in the descriptions of science.

  4. Orbital Motion in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Merritt, David

    Encounters between stars and stellar remnants at the centers of galaxies drive many important processes. The fact that these encounters take place near a supermassive black hole (SBH) alters the dynamics in a number of ways: (1) The orbital motion is quasi-Keplerian so that correlations are maintained for much longer than in purely random encounters; (2) relativity affects the motion, through mechanisms like precession of the periastron and frame dragging; (3) the SBH spin is affected, directly by capture and indirectly by spin-orbit torques. The interplay between these processes is just now beginning to be understood, but a key result is that relativity can be crucially important even at distances that are thousands of gravitational radii from the SBH.

  5. Pursuit/evasion in orbit

    NASA Astrophysics Data System (ADS)

    Kelley, H. J.; Cliff, E. M.; Lutze, F. H.

    1981-09-01

    Maneuvers available to a spacecraft having sufficient propellant to escape an antisatellite satellite (ASAT) attack are examined. The ASAT and the evading spacecraft are regarded as being in circular orbits, and equations of motion are developed for the ASAT to commence a two-impulse maneuver sequence. The ASAT employs thrust impulses which yield a minimum-time-to-rendezvous, considering available fuel. Optimal evasion is shown to involve only in-plane maneuvers, and begins as soon as the ASAT launch information is gathered and thrust activation can be initiated. A closest approach, along with a maximum evasion by the target spacecraft, is calculated to be 14,400 ft. Further research to account for ASATs in parking orbit and for generalization of a continuous control-modeled differential game is indicated.

  6. Pursuit/evasion in orbit

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Cliff, E. M.; Lutze, F. H.

    1981-01-01

    Maneuvers available to a spacecraft having sufficient propellant to escape an antisatellite satellite (ASAT) attack are examined. The ASAT and the evading spacecraft are regarded as being in circular orbits, and equations of motion are developed for the ASAT to commence a two-impulse maneuver sequence. The ASAT employs thrust impulses which yield a minimum-time-to-rendezvous, considering available fuel. Optimal evasion is shown to involve only in-plane maneuvers, and begins as soon as the ASAT launch information is gathered and thrust activation can be initiated. A closest approach, along with a maximum evasion by the target spacecraft, is calculated to be 14,400 ft. Further research to account for ASATs in parking orbit and for generalization of a continuous control-modeled differential game is indicated.

  7. Analytic theory of orbit contraction

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Longuski, J. M.; Busemann, A.; Culp, R. D.

    1977-01-01

    The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory.

  8. Lunar Orbiter: Moon and Earth

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The worlds first view of the Earth taken by a spacecraft from the vicinity of the Moon. The photo was transmitted to Earth by the United States Lunar Orbiter I and recieved at the NASA tracking station at Robledo de Chavela near Madrid, Spain. This crescent of the Earth was photographed August 23 at 16:35 GMT when the spacecraft was on its 16th orbit and just about to pass behind the Moon. This is the view the astronauts will have when they come around the backside of the Moon and face the Earth. The Earth is shown on the left of the photo with the U.S. east coast in the upper left, southern Europe toward the dark or night side of the Earth, and Antartica at the bottom of the Earth crescent. The surface of the Moon is shown on the right side of the photograph.

  9. The Orbiting Primate Experiment (OPE)

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Debourne, M. N. G.; Mcclure, H. M.

    1977-01-01

    Instrumentation and life support systems are described for an experiment to determine the physiological effects of long term space flight on unrestrained, minimally instrumented rhesus macaques flown in orbit for periods up to six months or one year. On return from orbit, vestibular, cardiovascular, and skeletal muscle function will be tested. Blood chemistry and hematological studies will be conducted as well as tests of the immunological competence of selected animals. Nasal, rectal, and throat swabs will be used for bacterial and viral studies, and histopathological and histochemical investigations will be be made of all organs using light and electron microscopy. The experiment is being considered as a payload for the biomedical experiment scientific satellite.

  10. Outgassing products from orbiter TPS materials

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Lash, Tom J.; Rawls, J. Richard

    1995-01-01

    The Space Transportation System (STS) orbiters are known to be significant sources of outgassing in low earth orbit (LEO). Infrared and mass spectra of residues and outgassing from orbiter thermal protection tile and an external blanket are presented. Several sources of methyl and phenyl methyl silicones are identified. About fifty pounds of silicones are estimated to be outgassed during an STS mission.

  11. Orbital-Transfer Vehicle With Aerodynamic Braking

    NASA Technical Reports Server (NTRS)

    Scott, C. D.; Nagy, K.; Roberts, B. B.; Ried, R. C.; Kroll, K.; Gamble, J.

    1986-01-01

    Vehicle includes airbrake for deceleration into lower orbit. Report describes vehicle for carrying payloads between low and high orbits around Earth. Vehicle uses thin, upper atmosphere for braking when returning to low orbit. Since less propellant needed than required for full retrorocket braking, vehicle carries larger payload and therefore reduces cost of space transportation.

  12. The History of the Molniya Orbit

    NASA Astrophysics Data System (ADS)

    Kettering Group

    Arthur C. Clarke's name is often linked with the Geostationary orbit as a result of his 1945 paper in Wireless World. Less well-known is where the credit for discovering the Molniya orbit should lie. This paper presents the evidence uncovered to date concerning the original concept and provides some insight into the ways in which the orbit has subsequently been exploited.

  13. ON TRIANGULATED ORBIT CATEGORIES BERNHARD KELLER

    E-print Network

    Keller, Bernhard - Institut de Mathématiques de Jussieu, Université Paris 7

    ON TRIANGULATED ORBIT CATEGORIES BERNHARD KELLER Dedicated to Claus Michael Ringel on the occasion of a hereditary category under a well-behaved autoequivalence is canonically triangulated. This answers a question Asashiba about orbit categories. We observe that the resulting triangulated orbit categories provide many

  14. The geostationary orbit and developing countries

    NASA Technical Reports Server (NTRS)

    Medina, E. R.

    1982-01-01

    The geostationary orbit is becoming congested due to use by several countries throughout the world, and the request for use of this orbit is increasing. There are 188 geostationary stations in operation. An equitable distribution of stations on this orbit is requested.

  15. Some Observations on Molecular Orbital Theory

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2005

    2005-01-01

    A few flawed predictions in the context of homonuclear diatomic molecules are presented in order to introduce students to molecular orbital (MO) theory. A common misrepresentation of the relationship between the energy of an atomic orbital and the energy of the MO associated with the atomic orbital is illustrated.

  16. Vigilance problems in orbiter processing

    NASA Technical Reports Server (NTRS)

    Swart, William W.; Safford, Robert R.; Kennedy, David B.; Yadi, Bert A.; Barth, Timothy S.

    1993-01-01

    A pilot experiment was done to determine what factors influence potential performance errors related to vigilance in Orbiter processing activities. The selected activities include post flight inspection for burned gap filler material and pre-rollout inspection for tile processing shim material. It was determined that the primary factors related to performance decrement were the color of the target and the difficulty of the target presentation.

  17. Geological exploration from orbital altitudes

    USGS Publications Warehouse

    Badgley, Peter C.; Fischer, William A.; Lyon, Ronald J. P.

    1965-01-01

    The National Aeronautics & Space Administration is planning geologic exploration from orbiting spacecraft. For that purpose it is evaluating new and refined exploration tools, often called remote sensors, including devices that are sensitive to force fields, such as gravity gradient systems, and devices that record the reflection or emission of electromagnetic energy. Both passive electromagnetic sensors (those that rely on natural sources of illumination, such as the Sun) and active electromagnetic sensors (which use an artificial source of illumination) are being considered.

  18. Mars Orbiting Plasma Surveyor (MOPS)

    NASA Astrophysics Data System (ADS)

    Barabash, S.; Andre, M.; Blomberg, L. G.; Lundin, R.; Marklund, G. T.; Rathsman, P.; von Scheele, F.; Wahlund, J.-E.

    Mars Orbiting Plasma Surveyor (MOPS) S. Barabash (1), M. André (2), L. G. Blomberg (3), R. Lundin (1),G. T. Marklund (3), P. Rathsman (4), F. von Schéele (4), J.-E. Wahlund (2) (1) Swedish Institute of Space Physics, Kiruna, Sweden (stas@irf.se) (2) Swedish Institute of Space Physics, Uppsala, Sweden (3) Royal Institute of Technology, Department of Space and Plasma Physics , Stockholm, Sweden (4) Swedish Space Corporation, Solna, Sweden Mars Orbiting Plasma Surveyor (MOPS) is a microsatellite mission focused on studies of the near - Mars environment and the planet - solar wind interaction. The recent findings by the ESA Mars Express mission further highlighted the complexity of the processes taking place at the planet resulting from the solar wind interaction that strongly affect the planet's atmosphere. However, despite many previous Martian missions carrying different types of space plasma experiments, a comprehensive investigation including simultaneous measurements of particles, fields, and waves has never been performed. We propose a spinning spacecraft of a mass of 50-80 kg with a 10 kg payload which can "hitchhike" on another platform until Mars orbit insertion and then be released into a suitable orbit. The spacecraft design is based on the experience gained in very successful Swedish space plasma missions, Viking, Freja, Astrid -1, and Astrid - 2. In the present mission design, the MOPS spacecraft is equipped with its own 1m high gain antenna for direct communication with the Earth. The payload includes a wave experiment with wire booms, magnetometer with a rigid boom, electron and ion energy spectrometers and an ion mass analyser. An energetic neutral atom imager and an UV photometer may complete the core payload.

  19. Exotic Orbital Modes in Nuclei

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, P.

    2003-06-01

    Experimental evidence for two types of collective excitations in nuclei generated by orbital motion is discussed, viz. a magnetic quadrupole twist mode observed in 180° electron scattering experiments and a toroidal electric dipole mode. The latter may be a source of low-energy pygmy dipole resonances observed in many nuclei. This is discussed in detail for the example of 208Pb based on the recent finding of a resonance at particle threshold in a high-resolution (?, ?') experiment.

  20. Ganymede's Thermal and Orbital Evolution

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Showman, A. P.; Tobie, G.

    2007-10-01

    The heating mechanism that created the melting and global expansion necessary to form Ganymede's ubiquitous grooved terrains remains unclear. While the current Laplace resonance does not pump Ganymede's eccentricity, Malhotra (1991) and Showman and Malhotra (1997) showed that the Galilean satellites may have passed through Laplace-like resonances that did force Ganymede's eccentricity, leading to internal heating of the satellite. Showman et al. (1997) explored the effects of such tidal heating on Ganymede and found that it can lead to thermal runaway and melting, helping to explain the extensive resurfacing of the satellite. While the likelihood of thermal runaway appeared small, improved understanding of the internal structure of Ganymede and the nature of stagnant lid convection warrants a new study. Here we present simulations of Ganymede's coupled thermal and orbital evolution. The orbital model allows a dynamical investigation of the orbital histories of the Galilean satellites near the observed 2:1 mean motion resonance. The thermal model simultaneously solves the energy balance in Ganymede's ice shell, silicate mantle, and Fe/FeS core. Stagnant lid convection, radiogenic heating, ocean formation, and inner core growth are included in the model. Coupling between the orbital and thermal models occurs via tidal dissipation, which uses the model of Tobie et al. 2005 to determine how tidal heating is distributed throughout the satellite interior. These simulations reveal that passage through the Laplace-like resonance can lead to melting under a much broader range of initial conditions than suggested by Showman et al. (1997). Such melting requires that the grain sizes in Ganymede's icy mantle be 1 mm or less, and that the Galilean satellites passed through one of the stronger Laplace-like resonances. The generation of melt would not only lead to satellite expansion and extensional stress, but would also provide a source of near surface melt, permitting cryovolcanic activity.

  1. Viking orbiter system primary mission

    NASA Technical Reports Server (NTRS)

    Goudy, J. R.

    1977-01-01

    An overview of Viking Orbiter (VO) system and subsystem performances during the primary mission (the time period from VO-1 launch on August 20, 1975, through November 15, 1976) is presented. Brief descriptions, key design requirements, pertinent historical information, unique applications or situations, and predicted versus actual performances are included for all VO-1 and VO-2 subsystems, both individually and as an integrated system.

  2. Orbital assembly and maintenance study

    NASA Technical Reports Server (NTRS)

    Gorman, D.; Grant, C.; Kyrias, G.; Lord, C.; Rombach, J.; Salis, M.; Skidmore, R.; Thomas, R.

    1975-01-01

    The requirements, conceptual design, tradeoffs, procedures, and techniques for orbital assembly of the support structure of the microwave power transmission system and the radio astronomy telescope are described. Thermal and stress analyses, packaging, alignment, and subsystems requirements are included along with manned vs. automated and transportation tradeoffs. Technical and operational concepts for the manned and automated maintenance of satellites were investigated and further developed results are presented.

  3. Mars Orbiting Plasma Surveyor (MOPS)

    NASA Astrophysics Data System (ADS)

    Barabash, S.; André, M.; Blomberg, L. G.; Lundin, R.; Marklund, G. T.; Rathsman, P.; von Schuele, F.; Wahlund, J.-E.

    Mars Orbiting Plasma Surveyor MOPS is a microsatellite mission focused on studies of the near - Mars environment and the planet - solar wind interaction The recent findings by the ESA Mars Express mission further highlighted the complexity of the processes taking place at the planet resulting from the solar wind interaction that strongly affect the planet s atmosphere However despite many previous Martian missions carrying different types of space plasma experiments a comprehensive investigation including simultaneous measurements of particles fields and waves has never been performed We propose a spinning spacecraft of a mass of 50-80 kg with a 10 kg payload which can hitchhike on another platform until Mars orbit insertion and then be released into a suitable orbit The spacecraft design is based on the experience gained in very successful Swedish space plasma missions Viking Freja Astrid -1 and Astrid - 2 In the present mission design the MOPS spacecraft is equipped with its own 1m high gain antenna for direct communication with the Earth The payload includes a wave experiment with wire booms magnetometer with a rigid boom electron and ion energy spectrometers and an ion mass analyser An energetic neutral atom imager and an UV photometer may complete the core payload

  4. Density-orbital embedding theory

    SciTech Connect

    Gritsenko, O. V.; Visscher, L.

    2010-09-15

    In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total supermolecular density {rho}{sub s} as the square of the sum of the DO {phi}{sub a}, which represents the active subsystem A and the square root of the frozen density {rho}{sub f} of the environment F. The correct {rho}{sub s} is obtained with {phi}{sub a} being negative in the regions in which {rho}{sub f} might exceed {rho}{sub s}. This makes it possible to obtain the correct {rho}{sub s} with a broad range of the input frozen densities {rho}{sub f} so that DOE resolves the problem of the frozen-density admissibility of the current frozen-density embedding theory. The DOE Euler equation for the DO {phi}{sub a} is derived with the characteristic embedding potential representing the effect of the environment. The DO square {phi}{sub a}{sup 2} is determined from the orbitals of the effective Kohn-Sham (KS) system. Self-consistent solution of the corresponding one-electron KS equations yields not only {phi}{sub a}{sup 2}, but also the DO {phi}{sub a} itself.

  5. Fitting orbits to tidal streams

    NASA Astrophysics Data System (ADS)

    Binney, James

    2008-05-01

    Recent years have seen the discovery of many tidal streams through the Galaxy. Relatively straightforward observations of a stream allow one to deduce three phase-space coordinates of an orbit. An algorithm is presented that reconstructs the missing phase-space coordinates from these data. The reconstruction starts from assumed values of the Galactic potential and a distance to one point on the orbit, but with noise-free data the condition that energy be conserved on the orbit enables one to reject incorrect assumptions. The performance of the algorithm is investigated when errors are added to the input data that are comparable to those in published data for the streams of Pal 5. It is found that the algorithm returns distances and proper motions that are accurate to of the order of 1 per cent, and enables one to reject quite resonable but incorrect trial potentials. In practical applications, it will be important to minimize errors in the imput data, and there is considerable scope for doing this.

  6. Extended Duration Orbiter Medical Project

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Pool, S. L.; Sawin, C. F.; Nicogossian, A. E.

    1990-01-01

    The Extended Duration Orbiter (EDO) program addresses a need for more time to perform experiments and other tasks during Space Shuttle missions. As a part of this program, the Extended Duration Orbiter Medical Project (EDOMP) has been instituted to obtain information about physiologic effects of extending mission duration and the effectiveness of countermeasures against factors that might compromise crew health, safety, or performance on extended-duration missions. Only those investigations that address and characterize operational problems, develop countermeasures, or evaluate the effectiveness of countermeasures will be pursued. The EDOMP investigations will include flight-associated Detailed Supplementary Objectives as well as ground-based studies simulating the influence of microgravity. Investigator teams have been formed in the following areas: biomedical physiology, cardiovascular and fluid/electrolyte physiology, environmental health, muscle and exercise physiology, and neurophysiology. Major operational questions must be answered in each of these areas, and investigations have been designed to answer them. The EDO program will proceed only after countermeasures have been shown to be effective in preventing or mitigating the adverse changes they have been designed to attenuate. The program is underway and will continue on each Shuttle flight as the manifest builds toward a 16-day orbital flight.

  7. Synchronous orbit power technology needs

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.; Billerbeck, W. J.

    1979-01-01

    The needs are defined for future geosynchronous orbit spacecraft power subsystem components, including power generation, energy storage, and power processing. A review of the rapid expansion of the satellite communications field provides a basis for projection into the future. Three projected models, a mission model, an orbit transfer vehicle model, and a mass model for power subsystem components are used to define power requirements and mass limitations for future spacecraft. Based upon these three models, the power subsystems for a 10 kw, 10 year life, dedicated spacecraft and for a 20 kw, 20 year life, multi-mission platform are analyzed in further detail to establish power density requirements for the generation, storage and processing components of power subsystems as related to orbit transfer vehicle capabilities. Comparison of these requirements to state of the art design values shows that major improvements, by a factor of 2 or more, are needed to accomplish the near term missions. However, with the advent of large transfer vehicles, these requirements are significantly reduced, leaving the long lifetime requirement, associated with reliability and/or refurbishment, as the primary development need. A few technology advances, currently under development, are noted with regard to their impacts on future capability.

  8. Orbital Space Plane (OSP) Program

    NASA Technical Reports Server (NTRS)

    McKenzie, Patrick M.

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  9. APPLICATION OF OPTICAL TRACKING AND ORBIT ESTIMATION TO SATELLITE ORBIT TOMOGRAPHY

    E-print Network

    Wohlberg, Brendt

    AAS 13-824 APPLICATION OF OPTICAL TRACKING AND ORBIT ESTIMATION TO SATELLITE ORBIT TOMOGRAPHY Michael A. Shoemaker , Brendt Wohlberg , Richard Linares , and Josef Koller§ . Satellite orbit tomography, and selects nearly 200 resident space objects in low-Earth orbit as potential tracking targets. Over a chosen

  10. UNIVERSITY AT BUFFALO: CSE TECHNICAL REPORT 1 ORBIT Mobility Framework and Orbit Based

    E-print Network

    Krovi, Venkat

    UNIVERSITY AT BUFFALO: CSE TECHNICAL REPORT 1 ORBIT Mobility Framework and Orbit Based Routing (OBR). In this paper, we propose a novel mobility framework called ORBIT. In addition to generating a more practical mobility pattern based on sociological movement of users, ORBIT can also integrate all the work mentioned

  11. Excited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles models

    E-print Network

    Krylov, Anna I.

    Excited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles May 2000; accepted 31 July 2000 We introduce an excited state theory for the optimized orbital coupled cluster doubles OO-CCD and valence optimized orbital coupled cluster doubles VOO-CCD models. The equations

  12. The orbital record in stratigraphy

    NASA Technical Reports Server (NTRS)

    Fischer, Alfred G.

    1992-01-01

    Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity, and (2) presence of abundant microfossils yields close ties to geochronology. A tantalizing possibility that stratigraphy may yield a record of orbital signals unrelated to climate has turned up in magnetic studies of our Cretaceous core. Magnetic secular variations here carry a strong 39 ka periodicity, corresponding to the theoretical obliquity period of that time - Does the obliquity cycle perhaps have some direct influence on the magnetic field?

  13. Space Shuttle Orbiter auxiliary power unit status

    NASA Technical Reports Server (NTRS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    1991-01-01

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  14. Stationary occultations from low Earth orbit

    NASA Technical Reports Server (NTRS)

    Percival, Jeffrey W.

    1993-01-01

    The process of stationary lunar occultations is considered for observers in LEO. The orbit of the Hubble Space Telescope (HST) is used as a prototype. The noncoplanarity of the HST and lunar orbits disrupts many of the expected stationary events, and orbital drag complicates the prediction problem. In a typical year, the apparent speed of the lunar limb seen by the HST is slower than a typical ground-based event only about 0.7 percent of the time. The orbit prediction can be wrong by as much as 20 deg in 53 days, with most of the error lying in the plane of the orbit.

  15. Space Shuttle Orbiter auxiliary power unit status

    NASA Astrophysics Data System (ADS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  16. Circular orbits on a warped spandex fabric

    E-print Network

    Chad A. Middleton; Michael Langston

    2013-12-10

    We present a theoretical and experimental analysis of circular-like orbits made by a marble rolling on a warped spandex fabric. We show that the mass of the fabric interior to the orbital path influences the motion of the marble in a nontrivial way, and can even dominate the orbital characteristics. We also compare a Kepler-like expression for such orbits to similar expressions for orbits about a spherically-symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.

  17. Mission design of a Pioneer Jupiter Orbiter

    NASA Technical Reports Server (NTRS)

    Friedman, L. D.; Nunamaker, R. R.

    1975-01-01

    The Mission analysis and design work performed in order to define a Pioneer mission to orbit Jupiter is described. This work arose from the interaction with a science advisory 'Mission Definition' team and led to the present mission concept. Building on the previous Jupiter Orbiter-Satellite Tour development at JPL a magnetospheric survey mission concept is developed. The geometric control of orbits which then provide extensive local time coverage of the Jovian system is analyzed and merged with the various science and program objectives. The result is a 'flower-orbit' mission design, yielding three large apoapse excursions at various local times and many interior orbits whose shape and orientation is under continual modification. This orbit design, together with a first orbit defined by delivery of an atmospheric probe, yields a mission of high scientific interest.

  18. CATALOG OF ORBIT DETERMINATION RESULTS FOR LINKED, AUTONOMOUS,

    E-print Network

    Born, George

    CATALOG OF ORBIT DETERMINATION RESULTS FOR LINKED, AUTONOMOUS, INTERPLANETARY SATELLITE ORBIT for Astrodynamics Research University of Colorado Boulder, CO 80309 Revised 3 Feb 2006 #12;CATALOG OF ORBIT DETERMINATION RESULTS FOR LINKED, AUTONOMOUS, INTERPLANETARY SATELLITE ORBIT NAVIGATION (Li

  19. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  20. Orbitals with intermediate localization and low coupling: Spanning the gap between canonical and localized orbitals

    NASA Astrophysics Data System (ADS)

    Zimmerman, Paul M.; Molina, Andrew R.; Smereka, Peter

    2015-07-01

    Localized orbitals are representations of electronic structure, which are easier to interpret than delocalized, canonical orbitals. While unitary transformations from canonical orbitals into localized orbitals have long been known, existing techniques maximize localization without regard to coupling between orbitals. Especially in conjugated ? spaces, orbitals are collapsed by unitary localization procedures into nonintuitive, strongly interacting units. Over-localization decreases interpretability, results in large values of interorbital coupling, and gives unmeaningful diagonal Fock energies. Herein, we introduce orbitals of intermediate localization that span between canonical and fully localized orbitals. To within a specified error, these orbitals preserve the diagonal nature of the Fock matrix while still introducing significant locality. In systems composed of molecular fragments, ? spaces can be localized into weakly coupled units. Importantly, as the weakly coupled orbitals separate, highly coupled orbitals maintain their expected structure. The resulting orbitals therefore correspond well to chemical intuition and maintain accurate orbital energies, making this procedure unique among existing orbital localization techniques. This article focuses on the formation and physical analysis of orbitals that smoothly connect the known fully delocalized and fully localized limits.

  1. Orbital Space Plane Program Status

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2003-01-01

    The Orbital Space Plane Program is an integral part of NASA's Integrated Space Transportation Program (ISTP). The ISTP consists of three major programs: Space Shuttle, Orbital Space Plane, and Next Generation Launch Technology. The Orbital Space Plane (OSP) Program will develop a new Crew Transfer Vehicle (CTV) with multipurpose utility for the Agency. The CTV will complement and back up the Space Shuttle by taking crews to and from the International Space Station (ISS), as well as enable a transition path to future reusable launch vehicle systems. In the CTV development cycle, around 2010 it will be used as a Crew Return Vehicle (CRV). The OSP will be launched on an Evolved Expendable Launch Vehicle (EELV). NASA is in the process of establishing Level 1 Requirements and initiating concept studies. Ongoing flight demonstrators will continue, while new flight demonstrator projects will begin. The OSP Program contains two elements: (1) Technology and Demonstrations, and (2) Design, Development, and Production. The OSP Design, Development, and Production element will enter the Formulation Phase in FY03. Per NASA Procedures and Guidelines 7120.5B, the Formulation Phase will be utilized to establish the Program schedule and budget plans. Current budget planning is based on Phase A concept studies being conducted in FY03 and FY04, preliminary design activities conducted in FY04 and FY05, and a Preliminary Design Review in FY05. An OSP full-scale development decision will be made in FY05. At that point, a conclusion to proceed will result in the OSP Program transitioning from the Formulation Phase to the Development Phase.

  2. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  3. Viking orbiter stereo imaging catalog

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.; Vetrone, A. V.; Martin, M. D.

    1980-01-01

    The extremely long missions of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of which can be used to form stereo images allowing the earth-bound student of Mars to examine the subject in 3-D. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set. Since that data set is still growing (January, 1980, about 3 1/2 years after the mission began), a second edition of this catalog is planned with completion expected about November, 1980.

  4. Orbiter wheel and tire certification

    NASA Technical Reports Server (NTRS)

    Campbell, C. C., Jr.

    1985-01-01

    The orbiter wheel and tire development has required a unique series of certification tests to demonstrate the ability of the hardware to meet severe performance requirements. Early tests of the main landing gear wheel using conventional slow roll testing resulted in hardware failures. This resulted in a need to conduct high velocity tests with crosswind effects for assurance that the hardware was safe for a limited number of flights. Currently, this approach and the conventional slow roll and static tests are used to certify the wheel/tire assembly for operational use.

  5. On-Orbit Software Analysis

    NASA Technical Reports Server (NTRS)

    Moran, Susanne I.

    2004-01-01

    The On-Orbit Software Analysis Research Infusion Project was done by Intrinsyx Technologies Corporation (Intrinsyx) at the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC). The Project was a joint collaborative effort between NASA Codes IC and SL, Kestrel Technology (Kestrel), and Intrinsyx. The primary objectives of the Project were: Discovery and verification of software program properties and dependencies, Detection and isolation of software defects across different versions of software, and Compilation of historical data and technical expertise for future applications

  6. PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS

    SciTech Connect

    Brown, Robert A.

    2009-09-10

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevant 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be feasible in at least a subset of cases.

  7. Environmental dynamics at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1976-01-01

    The work reported involved the improvement of aerodynamic theory for free molecular and transition flow regimes. The improved theory was applied to interpretation of the dynamic response of objects traveling through the atmosphere. Satellite drag analysis includes analysis methods, atmospheric super rotation effects, and satellite lift effects on orbital dynamics. Transition flow regimes were studied with falling sphere data and errors resulting in inferred atmospheric parameters from falling sphere techniques. Improved drag coefficients reveal considerable error in previous falling sphere data. The drag coefficient has been studied for the entire spectrum of Knudsen Number and speed ratio, with particular emphasis on the theory of the very low-speed ratio regime.

  8. Orbital Space Plane Cost Credibility

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2003-01-01

    NASA's largest new start development program is the Orbital Space Plane (OSP) Program. The program is currently in the formulation stage. One of the critical issues to be resolved, prior to initiating full-scale development, is establishing cost credibility of NASA s budget estimates for development, production, and operations of the OSP. This paper will discuss the processes, tools, and methodologies that NASA, along with its industry partners, are implementing to assure cost credibility for the OSP program. Results of benchmarking of current tools and the development of new cost estimating capabilities and approaches will be discussed.

  9. The Orbiting Carbon Observatory (OCO)

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    CO2 is the principal human generated driver of climate change. Accurate forecasting of future climate requires an improved understanding of the global carbon cycle and its interaction with the climate system. The Orbiting Carbon Observatory (OCO) will make global, space-based observations of atmospheric CO2 with the precision, resolution, and coverage needed to understand sources and sinks. OCO data will provide critical information for decision makers including the scientific basis for policy formulation, guide for carbon management strategies and treaty monitoring.

  10. Orbital debris: A technical assessment

    NASA Technical Reports Server (NTRS)

    Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav

    1995-01-01

    To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.

  11. Orbital floor reconstruction with ethyl-2-cyanoacrylate.

    PubMed

    Nemoto, Hitoshi; Ito, Yoshinori; Kasai, Yoshiaki; Maruyama, Naoki; Kimura, Naohiro; Sumiya, Noriyoshi

    2015-02-01

    The orbital floor is one of the most frequently broken bones in maxillofacial fracture, and orbital reconstruction is needed in many cases. Various materials are used for orbital floor reconstruction. We report here orbital reconstruction using autologous orbital bone with cyanoacrylate. Entrapped soft tissues were freed and repositioned intraorbitally and bone fragments were gathered with a microscope simultaneously. The bone fragments were fixed to a board of bone with ethyl-2-cyanoacrylate and returned to the orbital fracture site. Of 96 fresh orbital floor fractures, this method was used for 31 (32.3%) patients. Simple reduction was performed in 48 patients. Bone graft with iliac crest was performed in the other 12 patients. Reconstruction with alloplastic materials was performed in 5 patients. Diplopia was corrected in 26 patients on whom this method was performed. The reconstructed bone collapsed into the maxillary sinus in 1 patient who underwent iliac bone graft on reoperation. Another 4 patients did not show diplopia preoperatively. None of the patients showed enophthalmos, foreign body reaction, or infection postoperatively. We were able to perform orbital bone reconstruction with autologous orbital bone without another donor site in 30 (62.5%) of 48 cases that required grafting. The indications for this method are that a sufficient quantity of bone fragments can be obtained and returned on a board of bone which can be stabilized in the orbit without collapsing into the maxillary sinus. Good results were obtained, and we consider this to be a safe and useful method. PMID:24149407

  12. The Kepler Project: Mission Update

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Koch, David G.

    2009-01-01

    Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of > 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.

  13. Orbital variations, climate and paleoecology.

    PubMed

    Bartlein, P J; Prentice, I C

    1989-07-01

    One of the most exciting discoveries in the earth sciences in recent decades has been the proof that ice ages are governed by deterministic variations in the earth's orbit. These variations modify the latitudinal and seasonal distribution of solar radiation at periods ranging from 103 to 10(5) years, and alternately produce conditions for building and melting continental ice. The same solar radiation variations also govern other aspects of world climate, including the temperatures of the midlatitude continental interiors, the intensity of upwelling in the tropical oceans, and the strength and extent of the monsoons. The interplay of solar radiation, seasonality and ice-sheet changes is responsible for the complex ecological history documented in the fossil record of the past 20 000 years. But the orbital variations have occurred throughout earth's history, and have caused periodic environmental changes in both terrestrial and marine environments even during times when there was no ice. Species have responded to these changes by range migration, an evolved ability that may maintain their genetic coherence in the face of a continually changing environment. PMID:21227349

  14. Six Planets Orbiting HD 219134

    NASA Astrophysics Data System (ADS)

    Vogt, Steven S.; Burt, Jennifer; Meschiari, Stefano; Butler, R. Paul; Henry, Gregory W.; Wang, Songhu; Holden, Brad; Gapp, Cyril; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Laughlin, Gregory

    2015-11-01

    We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope at Lick Observatory. Our observations reveal six new planetary candidates, with orbital periods of P = 3.1, 6.8, 22.8, 46.7, 94.2, and 2247 days, spanning masses of {M}{sin}i=3.8, 3.5, 8.9, 21.3, 10.8, and 108 {{M}}\\oplus , respectively. Our analysis indicates that the outermost signal is unlikely to be an artifact induced by stellar activity. In addition, several years of precision photometry with the T10 0.8 m automatic photometric telescope at Fairborn Observatory demonstrated a lack of brightness variability to a limit of ?0.0002 mag, providing strong support for planetary-reflex motion as the source of the RV variations. The HD 219134 system with its bright (V = 5.6) primary provides an excellent opportunity to obtain detailed orbital characterization (and potentially follow-up observations) of a planetary system that resembles many of the multiple-planet systems detected by Kepler, which are expected to be detected by NASA’s forthcoming TESS Mission and by ESA’s forthcoming PLATO Mission.

  15. Kepler's Constant and WDS Orbit

    E-print Network

    Siregar, S

    2012-01-01

    The aim of this work are to find a Kepler's constant by using polynomial regression of the angular separation \\rho = \\rho(t) and the position angle \\theta = \\theta(t). The Kepler's constant obtained is used to derive the element of orbit. As a case study the angular separation and the position angle of the WDS 00063 +5826 and the WDS 04403-5857 were investigated. For calculating the element of orbit the Thiele-Innes van den Bos method is used. The rough data of the angular separation \\rho(t) and the position angle \\theta(t) are taken from the US Naval Observatory, Washington. This work also presents the masses and absolute bolometric magnitudes of each star.These stars include into the main-sequence stars with the spectral class G5V for WDS04403-5857and the type of spectrum G3V for WDS 00063+5826. The life time of the primary star and the secondary star of WDS 04403-5857 nearly equal to 20 Gyr. The life time of the primary star and the secondary star of WDS 00063+5826 are 20 Gyr and 19 Gyr, respectively.

  16. Constrained orbital intercept-evasion

    NASA Astrophysics Data System (ADS)

    Zatezalo, Aleksandar; Stipanovic, Dusan M.; Mehra, Raman K.; Pham, Khanh

    2014-06-01

    An effective characterization of intercept-evasion confrontations in various space environments and a derivation of corresponding solutions considering a variety of real-world constraints are daunting theoretical and practical challenges. Current and future space-based platforms have to simultaneously operate as components of satellite formations and/or systems and at the same time, have a capability to evade potential collisions with other maneuver constrained space objects. In this article, we formulate and numerically approximate solutions of a Low Earth Orbit (LEO) intercept-maneuver problem in terms of game-theoretic capture-evasion guaranteed strategies. The space intercept-evasion approach is based on Liapunov methodology that has been successfully implemented in a number of air and ground based multi-player multi-goal game/control applications. The corresponding numerical algorithms are derived using computationally efficient and orbital propagator independent methods that are previously developed for Space Situational Awareness (SSA). This game theoretical but at the same time robust and practical approach is demonstrated on a realistic LEO scenario using existing Two Line Element (TLE) sets and Simplified General Perturbation-4 (SGP-4) propagator.

  17. The Orbiting Carbon Observatory mission

    NASA Technical Reports Server (NTRS)

    Crisp, David; Johnson, Christyl

    2003-01-01

    The Orbiting Carbon Observatory (OCO) mission was selected by NASA's Office of Earth Science as the fifth mission in its Earth System Science Pathfinder (ESSP) Program. OCO will make the first global, space-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to characterize sources and sinks of this important greenhouse gas. These measurements will improve our ability to forecasts CO2-induced climate change. OCO will fly in a 1:15 PM sun-synchronous orbit, sharing its ground track with the Earth Observing System (EOS) Aqua platform. It will carry high-resolution spectrometers to measure reflected sunlight in the molecular oxygen (O2) A-band at 0.76-microns and the CO2 bands at 1.61 and 2.06 microns to retrieve the column-averaged CO2 dry air mole fraction, XCO2. A comprehensive validation and correlative measurement program has been incorporated into this mission to ensure that XCO2 can be retrieved with precisions of 0.3% (1 ppm) on regional scales.

  18. Dexterous Orbital Servicing System (DOSS)

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Berka, Reginald B.; Chladek, John T.

    1994-01-01

    The Dexterous Orbiter Servicing System (DOSS) is a dexterous robotic spaceflight system that is based on the manipulator designed as part of the Flight Telerobotics Servicer program for the Space Station Freedom and built during a 'technology capture' effort that was commissioned when the FTS was cancelled from the Space Station Freedom program. The FTS technology capture effort yielded one flight manipulator and the 1 g hydraulic simulator that had been designed as an integrated test tool and crew trainer. The DOSS concept was developed to satisfy needs of the telerobotics research community, the space shuttle, and the space station. As a flight testbed, DOSS would serve as a baseline reference for testing the performance of advanced telerobotics and intelligent robotics components. For shuttle, the DOSS, configured as a movable dexterous tool, would be used to provide operational flexibility for payload operations and contingency operations. As a risk mitigation flight demonstration, the DOSS would serve the International Space Station to characterize the end to end system performance of the Special Purpose Dexterous Manipulator performing assembly and maintenance tasks with actual ISSA orbital replacement units. Currently, the most likely entrance of the DOSS into spaceflight is a risk mitigation flight experiment for the International Space Station.

  19. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  20. Orbital Debris Observations with WFCAM

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Mann, B.; Read, M.; Kerr, T.; Irwin, M.; Cross, N.; Bold, M.,; Varricatt, W.; Madsen, G.

    2014-09-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU. This paper will present the January and February results of the orbital debris surveys with WFCAM.

  1. Chandrayaan-1, Lunar polar orbiter

    NASA Astrophysics Data System (ADS)

    Bhandari, N.

    Chandrayaan-1 is a lunar polar orbiter mission designed by the Indian Space Research organisation for remote sensing of the lunar surface. The scientific objectives of the proposed mission are simultaneous geochemical, mineralogical and photogeological mapping of the whole lunar surface. The payloads include hyperspectral imager (HySI) for mineralogical mapping, X-ray fluorescence spectrometer (LEX) for elemental mapping, low energy gamma ray spectrometer (HEX) for mapping some radioactive elements, a Terrain mapping camera (TMC) and a Laser altimeter (LLRI), leaving a provision for some additional instruments, which may enhance the capability of this mission in achieving its objectives. A plausible launch scenario using the Polar Satellite Launch Vehicle (PSLV) suggests that a 480 kg lunarcraft, carrying about 60 kg of payloads can be inserted in a 100 km altitude polar orbit around the Moon and can be sustained for two years of observations for total coverage of the lunar surface. The goals and scientific challenges of the mission are discussed in this paper

  2. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.

  3. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  4. Orbital Granulomatosis With Polyangiitis (Wegener Granulomatosis)

    PubMed Central

    Muller, Karra; Lin, Jonathan H.

    2014-01-01

    The pathology of granulomatosis with polyangiitis (GPA), formerly Wegener granulomatosis, typically features a granulomatous and sometimes necrotizing vasculitis targeting the respiratory tract and kidneys. However, orbital involvement occurs in up to 60% of patients and is frequently the first or only clinical presentation in patients with systemic or limited forms of GPA. Orbital GPA can cause significant morbidity and potentially lead to complete loss of vision and permanent facial deformity. Fortunately, GPA is highly responsive to medical treatment with corticosteroids combined with cyclophosphamide or, more recently, rituximab. Therefore, it is imperative for this disease to be accurately diagnosed on orbital biopsy and distinguished from other histologically similar orbital lesions. Herein, we review the clinical and pathologic findings of orbital GPA, focusing on the differentiation of this disease from other inflammatory orbital lesions. PMID:25076302

  5. Orbit Design of Earth-Observation Satellite

    NASA Astrophysics Data System (ADS)

    Owis, Ashraf

    The purpose of this study is to design a reliable orbit for a medium-resolution scientific satellite to observe Earth for developmental issues such as water resources, agricultural, and industrial. To meet this objective this study firstly, defines the mission, secondly, determines mission constraints, thirdly, design the attitude and orbit control system. As for the observation requirements, and the revisit time are provided as a function of the orbital parameters. Initial orbital parameters are obtained by optimal analysis between observation characteristics and attitude and orbit maintenance costs. Long term station-keeping strategies will be provided for the proposed solutions. Impulsive control will be investigated to provide a reliable and affordable attitude and orbit control system.

  6. RHIC BPM system average orbit calculations

    SciTech Connect

    Michnoff,R.; Cerniglia, P.; Degen, C.; Hulsart, R.; et al.

    2009-05-04

    RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed just prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.

  7. Mars Observer trajectory and orbit design

    NASA Technical Reports Server (NTRS)

    Beerer, Joseph G.; Roncoli, Ralph B.

    1991-01-01

    The Mars Observer launch, interplanetary, Mars orbit insertion, and mapping orbit designs are described. The design objective is to enable a near-maximum spacecraft mass to be placed in orbit about Mars. This is accomplished by keeping spacecraft propellant requirements to a minimum, selecting a minimum acceptable launch period, equalizing the spacecraft velocity change requirement at the beginning and end of the launch period, and constraining the orbit insertion maneuvers to be coplanar. The mapping orbit design objective is to provide the opportunity for global observation of the planet by the science instruments while facilitating the spacecraft design. This is realized with a sun-synchronous near-polar orbit whose ground-track pattern covers the planet at progressively finer resolution.

  8. Ocular and orbital metastasis from systemic malignancies.

    PubMed

    Jain, I S; Dinesh, K; Mohan, K

    1987-01-01

    One hundred and seventy adult patients and one hundred and forty-eight children with systemic malignancies were examined for ocular and/or orbital metastases. Thirty-six patients (11.3%) had intraocular and/or orbital metastasis. Twenty-nine of the 36 patients (80.5%) had orbital metastasis, five patients (13.9%) had intraocular and two patients (5.5%) had intraocular and orbital metastasis. The commonest malignancy producing ocular metastasis was carcinoma breast in females and carcinoma bronchus in males. Eight of the 17 children had orbital deposits from leukaemia (47%) and six from neuroblastoma (35%). One child had uveal infiltration from acute lymphatic leukaemia. Ophthalmic metastasis were treated by external irradiation and/or combination chemotherapy whenever possible. The mean survival was five months for intraocular metastasis and 15.6 months for the orbital metastasis in adults. Prognosis was very poor in children. PMID:3508830

  9. Comet C/2011 W3 (Lovejoy): Orbit Determination, Outbursts, Disintegration of Nucleus, Dust-tail Morphology, and Relationship to New Cluster of Bright Sungrazers

    NASA Astrophysics Data System (ADS)

    Sekanina, Zdenek; Chodas, Paul W.

    2012-10-01

    We describe the physical and orbital properties of C/2011 W3. After surviving perihelion passage, the comet was observed to undergo major physical changes. The permanent loss of the nuclear condensation and the formation of a narrow spine tail were observed first at Malargue, Argentina, on December 20 and then systematically at Siding Spring, Australia. The process of disintegration culminated with a terminal fragmentation event on December 17.6 UT. The postperihelion dust tail, observed for ~3 months, was the product of activity over <2 days. The nucleus' breakup and crumbling were probably caused by thermal stress due to the penetration of the intense heat pulse deep into the nucleus' interior after perihelion. The same mechanism may be responsible for cascading fragmentation of sungrazers at large heliocentric distances. The delayed response to the hostile environment in the solar corona is at odds with the rubble-pile model, since the residual mass of the nucleus, estimated at ~1012 g (equivalent to a sphere 150-200 m across) just before the terminal event, still possessed nontrivial cohesive strength. The high production rates of atomic oxygen, observed shortly after perihelion, are compatible with a subkilometer-sized nucleus. The spine tail—the product of the terminal fragmentation—was a synchronic feature, whose brightest part contained submillimeter-sized dust grains, released at velocities of up to 30 m s-1. The loss of the nuclear condensation prevented an accurate orbital-period determination by traditional techniques. Since the missing nucleus must have been located on the synchrone, whose orientation and sunward tip have been measured, we compute the astrometric positions of this missing nucleus as the coordinates of the points of intersection of the spine tail's axis with the lines of forced orbital-period variation, derived from the orbital solutions based on high-quality preperihelion astrometry from the ground. The resulting orbit gives 698 ± 2 yr for the osculating orbital period, showing that C/2011 W3 is the first member of the expected new, 21st-century cluster of bright Kreutz-system sungrazers, whose existence was predicted by these authors in 2007. From the spine tail's evolution, we determine that its measured tip, populated by dust particles 1-2 mm in diameter, receded antisunward from the computed position of the missing nucleus. The bizarre appearance of the comet's dust tail in images taken only hours after perihelion with the coronagraphs on board the SOHO and STEREO spacecraft is readily understood. The disconnection of the comet's head from the tail released before perihelion and an apparent activity attenuation near perihelion have a common cause—sublimation of all dust at heliocentric distances smaller than about 1.8 solar radii. The tail's brightness is strongly affected by forward scattering of sunlight by dust. From an initially broad range of particle sizes, the grains that were imaged the longest had a radiation-pressure parameter ? ~= 0.6, diagnostic of submicron-sized silicate grains and consistent with the existence of the dust-free zone around the Sun. The role and place of C/2011 W3 in the hierarchy of the Kreutz system and its genealogy via a 14th-century parent suggest that it is indirectly related to the celebrated sungrazer X/1106 C1, which, just as the first-generation parent of C/2011 W3, split from a common predecessor during the previous return to perihelion.

  10. COMET C/2011 W3 (LOVEJOY): ORBIT DETERMINATION, OUTBURSTS, DISINTEGRATION OF NUCLEUS, DUST-TAIL MORPHOLOGY, AND RELATIONSHIP TO NEW CLUSTER OF BRIGHT SUNGRAZERS

    SciTech Connect

    Sekanina, Zdenek; Chodas, Paul W. E-mail: Paul.W.Chodas@jpl.nasa.gov

    2012-10-01

    We describe the physical and orbital properties of C/2011 W3. After surviving perihelion passage, the comet was observed to undergo major physical changes. The permanent loss of the nuclear condensation and the formation of a narrow spine tail were observed first at Malargue, Argentina, on December 20 and then systematically at Siding Spring, Australia. The process of disintegration culminated with a terminal fragmentation event on December 17.6 UT. The postperihelion dust tail, observed for {approx}3 months, was the product of activity over <2 days. The nucleus' breakup and crumbling were probably caused by thermal stress due to the penetration of the intense heat pulse deep into the nucleus' interior after perihelion. The same mechanism may be responsible for cascading fragmentation of sungrazers at large heliocentric distances. The delayed response to the hostile environment in the solar corona is at odds with the rubble-pile model, since the residual mass of the nucleus, estimated at {approx}10{sup 12} g (equivalent to a sphere 150-200 m across) just before the terminal event, still possessed nontrivial cohesive strength. The high production rates of atomic oxygen, observed shortly after perihelion, are compatible with a subkilometer-sized nucleus. The spine tail-the product of the terminal fragmentation-was a synchronic feature, whose brightest part contained submillimeter-sized dust grains, released at velocities of up to 30 m s{sup -1}. The loss of the nuclear condensation prevented an accurate orbital-period determination by traditional techniques. Since the missing nucleus must have been located on the synchrone, whose orientation and sunward tip have been measured, we compute the astrometric positions of this missing nucleus as the coordinates of the points of intersection of the spine tail's axis with the lines of forced orbital-period variation, derived from the orbital solutions based on high-quality preperihelion astrometry from the ground. The resulting orbit gives 698 {+-} 2 yr for the osculating orbital period, showing that C/2011 W3 is the first member of the expected new, 21st-century cluster of bright Kreutz-system sungrazers, whose existence was predicted by these authors in 2007. From the spine tail's evolution, we determine that its measured tip, populated by dust particles 1-2 mm in diameter, receded antisunward from the computed position of the missing nucleus. The bizarre appearance of the comet's dust tail in images taken only hours after perihelion with the coronagraphs on board the SOHO and STEREO spacecraft is readily understood. The disconnection of the comet's head from the tail released before perihelion and an apparent activity attenuation near perihelion have a common cause-sublimation of all dust at heliocentric distances smaller than about 1.8 solar radii. The tail's brightness is strongly affected by forward scattering of sunlight by dust. From an initially broad range of particle sizes, the grains that were imaged the longest had a radiation-pressure parameter {beta} {approx_equal} 0.6, diagnostic of submicron-sized silicate grains and consistent with the existence of the dust-free zone around the Sun. The role and place of C/2011 W3 in the hierarchy of the Kreutz system and its genealogy via a 14th-century parent suggest that it is indirectly related to the celebrated sungrazer X/1106 C1, which, just as the first-generation parent of C/2011 W3, split from a common predecessor during the previous return to perihelion.

  11. How periodic orbit bifurcations drive multiphoton ionization

    E-print Network

    S. Huang; C. Chandre; T. Uzer

    2006-12-26

    The multiphoton ionization of hydrogen by a strong bichromatic microwave field is a complex process prototypical for atomic control research. Periodic orbit analysis captures this complexity: Through the stability of periodic orbits we can match qualitatively the variation of experimental ionization rates with a control parameter, the relative phase between the two modes of the field. Moreover, an empirical formula reproduces quantum simulations to a high degree of accuracy. This quantitative agreement shows how short periodic orbits organize the dynamics in multiphoton ionization.

  12. Quantum Formulation of Fractional Orbital Angular Momentum

    E-print Network

    J. B. Goette; S. Franke-Arnold; R. Zambrini; Stephen M. Barnett

    2006-11-15

    The quantum theory of rotation angles (S. M. Barnett and D. T. Pegg, Phys. Rev. A, 41, 3427-3425 (1990)) is generalised to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.

  13. Management of orbital trauma and foreign bodies.

    PubMed

    Holt, G R; Holt, J E

    1988-02-01

    Blunt and penetrating trauma to the orbital region can have a devastating effect both functionally and cosmetically for the orbit. Penetrating injuries to the orbit should be suspected whenever there is a history of trauma to the regions of the eyelids. Meticulous inspection of the eyelids and globe should be undertaken, and if there is any suspicion of a foreign body retained within the orbital soft tissues, then a CT scan should be obtained. It is possible that the foreign body is not opaque, and exploration of the soft tissues may be indicated. Blow-out fractures of the orbit should be explored and repaired when the evidence clearly indicates that a blow-out is present. This includes the clinical presence of diplopia, evidence of muscle entrapment with forced duction testing, and CT scan showing orbital wall fracture with explosion of the orbital contents into the paranasal sinuses. If these signs or symptoms are equivocable, then a waiting period of 10 to 14 days is indicated to rule out the presence of a nerve palsy, which should improve. However, a CT scan showing a large blow-out defect of the orbit should be repaired regardless of the clinical signs at the time because of the late sequelae of enophthalmos and hypophthalmos. It is very difficult to secondarily repair an orbit that is contracted owing to loss of volume from an orbital blow-out fracture. Procedures of this sort involve the reintroduction of autogenous fat into the orbital contents and are very difficult technically. Although orbital fractures should not be routinely explored, each should be viewed with its own merit and an aggressive approach developed if there is clinical evidence of a blow-out fracture. PMID:3277118

  14. A new chapter in precise orbit determination

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.

    1992-01-01

    A report is presented on the use of GPS receivers on board orbiting spacecraft to determine their orbits with unprecedented accuracy. By placing a GPS receiver aboard a satellite one can observe its true motion and reconstruct its trajectory in great detail without knowledge of the forces acting on it. Only the accuracy of the GPS carrier-phase observable, which can be better than 1 cm for a 1 sec duration observation, ultimately limits 'user orbit' accuracy.

  15. Orbit stability of the ALS storage ring

    SciTech Connect

    Keller, R.; Nishimura, H.; Biocca, A.

    1997-05-01

    The Advanced Light Source (ALS) storage ring, a synchrotron light source of the third generation, is specified to maintain its electron orbit stable within one tenth of the rms beam size. In the absence of a dedicated orbit feed-back system, several orbit-distorting effects were investigated, aided by a new interactive simulation tool, the code TRACY V. The effort has led to a better understanding of the behavior of a variety of accelerator subsystems and in consequence produced a substantial improvement in day-to-day orbit stability.

  16. Orbital Operations for Phobos and Deimos Exploration

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Parker, Jeffrey S.; Strange, Nathan J.; Grebow, Daniel

    2012-01-01

    One of the deep-space human exploration activities proposed for the post-Shuttle era is a mission to one of the moons of Mars, Phobos or Deimos. There are several options available to the mission architect for operations around these bodies. These options include distant retrograde orbits (DROs), Lagrange-point orbits such as halos and Lyapunov orbits, and fixed-point stationkeeping or "hovering." These three orbit options are discussed in the context of the idealized circular restricted three body problem, full-dynamics propagations, and a concept of operations. The discussion is focused on Phobos, but all results hold for Deimos

  17. Payload/orbiter contamination control assessment support

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Ress, E. B.

    1975-01-01

    The development and use is described of a basic contamination mathematical model of the shuttle orbiter which incorporates specific shuttle orbiter configurations and contamination sources. These configurations and sources were evaluated with respect to known shuttle orbiter operational surface characteristics and specific lines-of-sight which encompass the majority of viewing requirements for shuttle payloads. The results of these evaluations are presented as summary tables for each major source. In addition, contamination minimization studies were conducted and recommendations are made, where applicable, to support the shuttle orbiter design and operational planning for those sources which were identified to present a significant contamination threat.

  18. On-Orbit Compressor Technology Program

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, Danny M.; Svedeman, Steven J.; Schroeder, Edgar C.; Gerlach, C. Richard

    1990-01-01

    A synopsis of the On-Orbit Compressor Technology Program is presented. The objective is the exploration of compressor technology applicable for use by the Space Station Fluid Management System, Space Station Propulsion System, and related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-art in natural gas compressor technology to the unique requirements of high-pressure, low-flow, small, light, and low-power devices for on-orbit applications. This technology is adapted to seven on-orbit conceptual designs and one prototype is developed and tested.

  19. Determination of GPS orbits to submeter accuracy

    NASA Technical Reports Server (NTRS)

    Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.

    1988-01-01

    Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.

  20. Orbital aspergillus infection diagnosed by FNAC.

    PubMed

    Kuruba, Sree Lakshmi; Prabhakaran, Venkatesh C; Nagarajappa, A H; Biligi, Dayanand S

    2011-07-01

    Fungal infections of the orbit represent a small minority of orbital infections. However, due to the virulent nature of some of the fungal species, they can have a devastating effect on ocular functions. Most of these fungi are saprophytes, which cause opportunistic infections. Aspergillus is one such fungus that can cause infection at various sites in an immunosuppressed individual. Sinonasal aspergillus infection with orbital extension and orbital aspergillus infection progress relentlessly. They can have a precipitous clinical course resulting in total loss of vision. Fine needle aspiration cytology (FNAC) is rarely used as a preoperative diagnostic tool in the investigation of orbital mass lesions. Further, fungal infections of orbit are seldom diagnosed on FNAC. Two cases of fungal infection of the orbital and periorbital tissue diagnosed on FNAC are presented. A 50-year-old diabetic male presented with diminishing vision, pain, and forward protrusion of the left eye. On examination, he had upper eye lid fullness. A 55-year-old diabetic male presented with a swelling on the right upper eye lid. The patients were evaluated radiologically and then subjected to FNAC. The smears showed giant cells, histiocytes, epithelioid granulomas, and fungal hyphae. A diagnosis of fungal infection was arrived at which was subsequently confirmed by culture and biopsy. Orbital aspergillus infection can have a precipitous course. Computerized tomography and magnetic resonance imaging of the orbit provide crucial information. However, FNAC can help in making an early definitive diagnosis of fungal infection and thus obviate the need for a biopsy. PMID:21695805

  1. Construction of invariant tori around closed orbits

    NASA Astrophysics Data System (ADS)

    Kaasalainen, Mikko

    1995-07-01

    The approach and methods introduced by McGill & Binney and Kaasalainen & Binney (Papers I and III), for the construction of phase-space tori that are approximate invariant tori of a given Hamiltonian, are generalized to include motion `trapped' around general closed orbits. This is accomplished by introducing point transformations that map the configuration space around a closed orbit in the target potential to one in a toy potential for which action-angle coordinates are known. This approach opens up the possibility of constructing tori for an arbitrary orbit family. The method is illustrated by applying it to the `banana' and `fish' minor-orbit families in the planar logarithmic potential.

  2. Improved orbiter waste collection system study

    NASA Technical Reports Server (NTRS)

    Bastin, P. H.

    1984-01-01

    Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.

  3. A Periodic Table for Black Hole Orbits

    E-print Network

    Janna Levin; Gabe Perez-Giz

    2008-02-04

    Understanding the dynamics around rotating black holes is imperative to the success of the future gravitational wave observatories. Although integrable in principle, test particle orbits in the Kerr spacetime can also be elaborate, and while they have been studied extensively, classifying their general properties has been a challenge. This is the first in a series of papers that adopts a dynamical systems approach to the study of Kerr orbits, beginning with equatorial orbits. We define a taxonomy of orbits that hinges on a correspondence between periodic orbits and rational numbers. The taxonomy defines the entire dynamics, including aperiodic motion, since every orbit is in or near the periodic set. A remarkable implication of this periodic orbit taxonomy is that the simple precessing ellipse familiar from planetary orbits is not allowed in the strong-field regime. Instead, eccentric orbits trace out precessions of multi-leaf clovers in the final stages of inspiral. Furthermore, for any black hole, there is some point in the strong-field regime past which zoom-whirl behavior becomes unavoidable. Finally, we sketch the potential application of the taxonomy to problems of astrophysical interest, in particular its utility for computationally intensive gravitational wave calculations.

  4. TOPEX/Poseidon orbit acquisition maneuver design

    NASA Technical Reports Server (NTRS)

    Bhat, Ramachandra S.

    1992-01-01

    The current baseline injection orbit for the jointly sponsored NASA/CNES TOPEX/Poseidon mission is near-circular, approximately 30 km below the desired operational orbit altitude and at the operational orbit inclination. A baseline maneuver sequence to retarget from this injection orbit to the desired operational orbit has been designed based upon the expected worst-case 3-sigma injection and maneuver execution errors. The sequence requires seven maneuvers, including an initial calibration burn, and achieves the operational orbit with the desired ground track pattern in 30 days. A delay sensitivity analysis has been conducted to estimate the allowable operational delay for each maneuver without increasing the total orbit acquisition period. The baseline sequence provides back-ups for a one-revolution delay for each maneuver and one-day delay for most maneuvers. It is also shown that a higher injection orbit allows the maneuver sequence to achieve the operational orbit in 26 days under a worst-case scenario.

  5. Magnetospheric Multiscale (MMS) Orbit - Duration: 61 seconds.

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  6. The accuracy of Halley's cometary orbits

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.

    The accuracy of a scientific computation depends in the main on the data fed in and the analysis method used. This statement is certainly true of Edmond Halley's cometary orbit work. Considering the 420 comets that had been seen before Halley's era of orbital calculation (1695 - 1702) only 24, according to him, had been observed well enough for their orbits to be calculated. Two questions are considered in this paper. Do all the orbits listed by Halley have the same accuracy? and, secondly, how accurate was Halley's method of calculation?

  7. A periodic table for black hole orbits

    SciTech Connect

    Levin, Janna; Perez-Giz, Gabe

    2008-05-15

    Understanding the dynamics around rotating black holes is imperative to the success of future gravitational wave observatories. Although integrable in principle, test-particle orbits in the Kerr spacetime can also be elaborate, and while they have been studied extensively, classifying their general properties has been a challenge. This is the first in a series of papers that adopts a dynamical systems approach to the study of Kerr orbits, beginning with equatorial orbits. We define a taxonomy of orbits that hinges on a correspondence between periodic orbits and rational numbers. The taxonomy defines the entire dynamics, including aperiodic motion, since every orbit is in or near the periodic set. A remarkable implication of this periodic orbit taxonomy is that the simple precessing ellipse familiar from planetary orbits is not allowed in the strong-field regime. Instead, eccentric orbits trace out precessions of multileaf clovers in the final stages of inspiral. Furthermore, for any black hole, there is some point in the strong-field regime past which zoom-whirl behavior becomes unavoidable. Finally, we sketch the potential application of the taxonomy to problems of astrophysical interest, in particular its utility for computationally intensive gravitational wave calculations.

  8. NASA Orbiter Extended Nose Landing Gear

    NASA Technical Reports Server (NTRS)

    King, Steven R.; Jensen, Scott A.; Hansen, Christopher P.

    1999-01-01

    This paper discusses the design, development, test, and evaluation of a prototype Extended Nose Landing Gear (ENLG) for NASA's Space Shuttle orbiters. The ENLG is a proposed orbiter modification developed in-house at NASA's Johnson Space Center (JSC) by a joint government/industry team. It increases the orbiter's nose landing gear (NLG) length, thereby changing the vehicle's angle of attack during rollout, which lowers the aerodynamic forces on the vehicle. This, in combination with a dynamic elevon change, will lower the loads on the orbiter's main landing gear (MLG). The extension is accomplished by adding a telescoping section to the current NLG strut that will be pneumatically extended during NLG deployment.

  9. On-orbit coldwelding: Fact or friction?

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1992-01-01

    A study into the potential of on-orbit coldwelding occurring was completed. No instances of cold welding were found during deintegration and subsequent testing and analysis of LDEF hardware. This finding generated wide interest and indicated the need to review previous on-orbit coldwelding experiments and on-orbit spacecraft anomalies to determine whether the absence of coldwelding on LDEF was to be expected. Results show that even though there have been no documented cases of significant on-orbit coldwelding events occurring, precautions should be taken to ensure that neither coldwelding nor galling occurs in the space or prelaunch environment.

  10. Quasiparticle virtual orbitals in electron propagator calculations.

    PubMed

    Flores-Moreno, R; Ortiz, J V

    2008-04-28

    The computational limits of accurate electron propagator methods for the calculation of electron binding energies of large molecules are usually determined by the rank of the virtual orbital space. Electron density difference matrices that correspond to these transition energies in the second-order quasiparticle approximation may be used to obtain a virtual orbital space of reduced rank that introduces only minor deviations with respect to the results produced with the full, original set of virtual orbitals. Numerical tests show the superior accuracy and efficiency of this approach compared to the usual practice of omission of virtual orbitals with the highest energies. PMID:18447419

  11. Minimum impulse orbital evasive maneuvers

    NASA Astrophysics Data System (ADS)

    Burk, R. C.

    1985-12-01

    A threat to a satellite is modeled as a sphere of a given radius. The satellite may be required to be outside of the sphere at a given time or never to enter the sphere at all. The threat sphere may be inertially fixed or may move in a keplerian orbit. A method is described of finding the smallest impulsive maneuver that can be made at a given time to avoid the threat. Using the linearized relationship between the satellite state vector at the maneuver time and the state at the intercept time, iterative algorithms are developed that converge on the optimal evasive maneuver. A computer program that implements the algorithms is described. The results of the algorithm are given for several cases. An interception taken from a plausible real-world scenario is used as a basis for investigating how maneuver size varies with the geometry of the interception.

  12. Airbreathing Acceleration Toward Earth Orbit

    SciTech Connect

    Whitehead, J C

    2007-05-09

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, then transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.

  13. Phonons with orbital angular momentum

    SciTech Connect

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  14. Plasmons with orbital angular momentum

    SciTech Connect

    Mendonca, J. T.; Ali, S.; Thide, B.

    2009-11-15

    Electron plasma waves carrying orbital angular momentum are investigated in an unmagnetized collisionless plasma composed of inertial electrons and static ions. For this purpose, the usual plasmon dispersion relation is employed to derive an approximate paraxial equation. The latter is analyzed with a Gaussian beam solution. For a finite angular momentum associated with the plasmon, Laguerre-Gaussian (LG) solutions are employed for solving the electrostatic potential problem which gives approximate solution and is valid for plasmon beams in the paraxial approximation. The LG potential determines the electric field components and energy flux of plasmons with finite angular momentum. Numerical illustrations show that the radial and angular mode numbers strongly modify the profiles of the LG potential.

  15. Tracing Planet Orbits with WFIRST

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey

    2015-08-01

    The WFIRST mission will directly image planets around nearby stars with a goal of not only detecting planets, but, more importantly, of characterizing their properties. Visible-light spectra will measure molecular abundances in planet atmospheres, while series of images will trace planetary orbits. Independent radial velocity measurements are needed to determine each planet's mass. This study considers the ability of a combined set of data - radial velocity plus direct-imaging astrometry - to constrain both the planet mass and its phase of illumination during each observation. The addition of pre- and post-mission radial velocity measurements in some cases allows for fewer WFIRST observations, maximizing the overall science yield of the mission.

  16. Mars Science Laboratory Orbit Determination

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard; Gustafson, Eric; Jefferson, David; Martin-Mur, Tomas; Mottinger, Neil; Pelletier, Fred; Ryne, Mark; Thompson, Paul

    2012-01-01

    Mars Science Laboratory (MSL) Orbit Determination (OD) met all requirements with considerable margin, MSL OD team developed spin signature removal tool and successfully used the tool during cruise, A novel approach was used for the MSL solar radiation pressure model and resulted in a very accurate model during the approach phase, The change in velocity for Attitude Control System (ACS) turns was successfully calibrated and with appropriate scale factor resulted in improved change in velocity prediction for future turns, All Trajectory Correction Maneuvers were successfully reconstructed and execution errors were well below the assumed pre-fight execution errors, The official OD solutions were statistically consistent throughout cruise and for OD solutions with different arc lengths as well, Only EPU-1 was sent to MSL. All other Entry Parameter Updates were waived, EPU-1 solution was only 200 m separated from final trajectory reconstruction in the B-plane

  17. Free space laser communication experiments from Earth to the Lunar Reconnaissance Orbiter in lunar orbit

    E-print Network

    Sun, Xiaoli

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. ...

  18. Orbit determination singularities in the Doppler tracking of a planetary orbiter

    NASA Technical Reports Server (NTRS)

    Wood, L. J.

    1985-01-01

    On a number of occasions, spacecraft launched by the U.S. have been placed into orbit about the moon, Venus, or Mars. It is pointed out that, in particular, in planetary orbiter missions two-way coherent Doppler data have provided the principal data type for orbit determination applications. The present investigation is concerned with the problem of orbit determination on the basis of Doppler tracking data in the case of a spacecraft in orbit about a natural body other than the earth or the sun. Attention is given to Doppler shift associated with a planetary orbiter, orbit determination using a zeroth-order model for the Doppler shift, and orbit determination using a first-order model for the Doppler shift.

  19. GOCE Satellite Orbit in a Computational Aspect

    NASA Astrophysics Data System (ADS)

    Bobojc, Andrzej; Drozyner, Andrzej

    2013-04-01

    The presented work plays an important role in research of possibility of the Gravity Field and Steady-State Ocean Circulation Explorer Mission (GOCE) satellite orbit improvement using a combination of satellite to satellite tracking high-low (SST- hl) observations and gravity gradient tensor (GGT) measurements. The orbit improvement process will be started from a computed orbit, which should be close to a reference ("true") orbit as much as possible. To realize this objective, various variants of GOCE orbit were generated by means of the Torun Orbit Processor (TOP) software package. The TOP software is based on the Cowell 8th order numerical integration method. This package computes a satellite orbit in the field of gravitational and non-gravitational forces (including the relativistic and empirical accelerations). The three sets of 1-day orbital arcs were computed using selected geopotential models and additional accelerations generated by the Moon, the Sun, the planets, the Earth and ocean tides, the relativity effects. Selected gravity field models include, among other things, the recent models from the GOCE mission and the models such as EIGEN-6S, EIGEN-5S, EIGEN-51C, ITG-GRACE2010S, EGM2008, EGM96. Each set of 1-day orbital arcs corresponds to the GOCE orbit for arbitrary chosen date. The obtained orbits were compared to the GOCE reference orbits (Precise Science Orbits of the GOCE satellite delivered by the European Space Agency) using the root mean squares (RMS) of the differences between the satellite positions in the computed orbits and in the reference ones. These RMS values are a measure of performance of selected geopotential models in terms of GOCE orbit computation. The RMS values are given for the truncated and whole geopotential models. For the three variants with the best fit to the reference orbits, the empirical acceleration models were added to the satellite motion model. It allowed for further improving the fitting of computed orbits to the reference orbits. A linear and non-linear model of empirical accelerations was used. After using the non-linear model, the RMS values were reduced by the factor from about 2 to 3 compared with the linear model. A general form of the non-linear model of empirical accelerations is shown in this work. This model can be scaled to a given set of dynamical data for orbit determination by estimating of 192 parameters. The comparison between the computed orbits and the reference ones was performed with respect to the inertial reference frame (IRF) at J2000.0 epoch. Thus, the given GOCE reference orbits were transformed from ITRF2005 reference frame into IRF frame. It is shown that the velocity components of GOCE reference orbits must be transformed into IRF frame using the full rotation vector of the Earth. In such a case RMS values reach a level of meters.

  20. Small Orbital Stereo Tracking Camera Technology Development

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; MacLeod, T.

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASAs Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  1. Predictability in orbital reconstruction: A human cadaver study. Part II: Navigation-assisted orbital reconstruction.

    PubMed

    Dubois, Leander; Schreurs, Ruud; Jansen, Jesper; Maal, Thomas J J; Essig, Harald; Gooris, Peter J J; Becking, Alfred G

    2015-12-01

    Preformed orbital reconstruction plates are useful for treating orbital defects. However, intraoperative errors can lead to misplaced implants and poor outcomes. Navigation-assisted surgery may help optimize orbital reconstruction. We aimed to explore whether navigation-assisted surgery is more predictable than traditional orbital reconstruction for optimal implant placement. Pre-injury computed tomography scans were obtained for 10 cadaver heads (20 orbits). Complex orbital fractures (Class III-IV) were created in all orbits, which were reconstructed using a transconjunctival approach with and without navigation. The best possible fit of the stereolithographic file of a preformed orbital mesh plate was used as the optimal position for reconstruction. The accuracy of the implant positions was evaluated using iPlan software. The consistency of orbital reconstruction was lower in the traditional reconstructions than in the navigation group in the parameters of translation and rotation. Implant position also differed significantly in the parameters of translation (p = 0.002) and rotation (pitch: p = 0.77; yaw: p < 0.001; roll: p = 0.001). Compared with traditional orbital reconstruction, navigation-assisted reconstruction provides more predictable anatomical reconstruction of complex orbital defects and significantly improves orbital implant position. PMID:26454323

  2. Orbit optimization of Mars orbiters for entry navigation: From an observability point of view

    NASA Astrophysics Data System (ADS)

    Yu, Zhengshi; Zhu, Shengying; Cui, Pingyuan

    2015-06-01

    In this paper, the observability of orbiter-based Mars entry navigation is investigated and its application to the orbit optimization of Mars orbiters is demonstrated. An observability analysis of Mars entry navigation processing of range measurements to multiple orbiters based on Fisher information matrix is conducted. The determinant of Fisher information matrix is derived to quantify the degree of observability. The orbit optimization method based on the observability analysis is then proposed. Two navigation scenarios using three and four orbiters are considered in simulations. To verify the advantages of navigation performance, the orbiter-based and ground beacon-based navigation schemes are comparatively analyzed. In the simulation, an Extended Kalman Filter is used to examine the navigation accuracy. It is concluded that the proposed orbit optimization method is able to optimize the orbits of Mars orbiters with the maximum degree of observability. For the Mars entry navigation based on orbiters, a better configuration which is a main contributor to the observability, can be achieved. The navigation performance is more excellent than the ground beacon-based navigation. However, a diminishing return of navigation accuracy is obtained solely by increasing the number of orbiters.

  3. orbit their host star at distances closer than Mercury's orbit around the Sun (Fig. 1) --is

    E-print Network

    Schnaufer, Achim

    since the discovery7 in 2006 of three Neptune-mass planets on compact orbits around star HD69830 by the gravitational tug of an orbiting planet. The most dense multi- planet configurations have been observed in a system of seven planets8 orbiting star HD10180and a system of six planets9 transit- ing star Kepler-11

  4. Mission design for an orbiting volcano observatory

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.; Johnston, M. Daniel

    1990-01-01

    The Mission to Planet Earth initiative will require global observation of land, sea, and atmosphere, and all associated phenomena over the coming years; perhaps for decades. A major phenomenon playing a major part in earth's environment is volcanic activity. Orbital observations, including IR, UV, and visible imaging, may be made to monitor many active sites, and eventually increase our understanding of volcanoes and lead to the predictability of eruptions. This paper presents the orbital design and maneuvering capability of a low cost, volcano observing satellite, flying in low earth orbit. Major science requirements include observing as many as 10 to 20 active sites daily, or every two or three days. Given specific geographic locations of these sites, it is necessary to search the trajectory space for those orbits which maximize overflight opportunities. Also, once the satellite is in orbit, it may be desirable to alter the orbit to fly over targets of opportunity. These are active areas which are not being monitored, but which give indications of erupting, or have in fact erupted. Multiple impulse orbital maneuvering methods have been developed to minimize propellant usage for these orbital changes.

  5. Space shuttle orbiter test flight series

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Gordon, R.; Jackson, R. B.

    1977-01-01

    The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

  6. HORSESHOE PERIODIC ORBITS FOR SATURN COORBITAL SATELLITES

    E-print Network

    Politècnica de Catalunya, Universitat

    HORSESHOE PERIODIC ORBITS FOR SATURN COORBITAL SATELLITES Jaume Llibre and Merc`e Oll'e Dept. Matem conclude that there exist stable horseshoe periodic orbits which fit with the motion of Saturn coorbital­ stricted problem. 1. Introduction In 1981 the successful Voyager flights to Saturn confirmed the existence

  7. Stationkeeping for the Lunar Reconnaissance Orbiter (LRO)

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Lamb, Rivers

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) is scheduled to launch in 2008 as the first mission under NASA's Vision for Space Exploration. Follo wing several weeks in a quasi-frozen commissioning orbit, LRO will fl y in a 50 km mean altitude lunar polar orbit. During the one year mis sion duration, the orbital dynamics of a low lunar orbit force LRO to perform periodic sets of stationkeeping maneuvers. This paper explor es the characteristics of low lunar orbits and explains how the LRO s tationkeeping plan is designed to accommodate the dynamics in such an orbit. The stationkeeping algorithm used for LRO must meet five miss ion constraints. These five constraints are to maintain ground statio n contact during maneuvers, to control the altitude variation of the orbit, to distribute periselene equally between northern and southern hemispheres, to match eccentricity at the beginning and the end of the sidereal period, and to minimize stationkeeping (Delta)V. This pape r addresses how the maneuver plan for LRO is designed to meet all of the above constraints.

  8. Interagency Report on Orbital Debris, 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1995 report updates the findings and recommendations of the 1989 report and reflects the authors' progress in understanding and managing the orbital debris environment. It provides an up-to-date portrait of their measurement, modeling, and mitigation efforts; and a set of recommendations outlining specific steps they should pursue, both domestically and internationally, to minimize the potential hazard posed by orbital debris.

  9. Giant Solitary Fibrous Tumor of Orbit.

    PubMed

    Tenekeci, Goktekin; Sari, Alper; Vayisoglu, Yusuf; Serin, Onur

    2015-07-01

    Solitary fibrous tumors (SFTs) have been reported in various locations in the body. Solitary fibrous tumors are extremely rare tumors, especially when located in the orbit. Diagnosis of SFT cannot be made based on histopathology only because it exhibits a variable microscopic appearance, and necessitates immunohistochemistry to confirm the diagnosis. A 51-year-old man was admitted to our clinic for the evaluation of a mass bulging in his left eye. Clinical examination revealed a painless mass extruding out of the orbital cavity with dimensions of 8?×?7 ?cm. Exenteration of the left eye including the upper and lower eyelid and reconstruction of the orbital cavity using a temporoparietal fascia flap and a temporal muscle flap was performed. SFT of orbital region is known as a slow growing and painless tumor. Based on previous studies, increased mitotic rate of the tumor gives the impression that the tumor has a malignant nature. Until now a small number or orbital SFTs were reported and none of them presented with a giant mass protruding out of the orbital cavity. We present a unique case of orbital SFT filling the whole orbital cavity and protruding outward as a giant mass. This case has been reported to expand our knowledge in this debated entity. PMID:26102546

  10. Inverse-Square Orbits: A Geometric Approach.

    ERIC Educational Resources Information Center

    Rainwater, James C.; Weinstock, Robert

    1979-01-01

    Presents a derivation of Kepler's first law of planetary motion from Newtonian principles. Analogus derivations of the hyperbolic and parabolic orbits of nonreturning comets and the hyperbolic orbit for a particle in a repulsive inverse-square field are also presented. (HM)

  11. Orbital Transfer Trajectory Optimization James K Whiting

    E-print Network

    Orbital Transfer Trajectory Optimization by James K Whiting Submitted to the Department Students #12;Orbital Transfer Trajectory Optimization by James K Whiting Submitted to the Department in astronautical engineering have led to the adoption of low thrust rocket engines for spacecraft. Optimizing

  12. Orbitals: Some Fiction and Some Facts

    ERIC Educational Resources Information Center

    Autschbach, Jochen

    2012-01-01

    The use of electron orbitals in quantum theory and chemistry is discussed. Common misconceptions are highlighted. Suggestions are made how chemistry educators may describe orbitals in the first and second year college curriculum more accurately without introducing unwanted technicalities. A comparison is made of different ways of graphically…

  13. Orbital pseudotumor imaged with Ga-67 citrate

    SciTech Connect

    Jaikishen, P.; Bateman, J.L.; Shreeve, W.W. )

    1989-11-01

    An orbital pseudotumor causing proptosis, diplopia, and gaze palsy was imaged with Ga-67 citrate and showed persistent intense activity for five days. This may be the first case of gallium uptake into an orbital pseudotumor to be reported in the literature. This case report demonstrates the use of Ga-67 citrate imaging in the early diagnostic workup of this disorder.

  14. ORBITAL VARIETIES AND UNIPOTENT REPRESENTATIONS THOMAS PIETRAHO

    E-print Network

    Pietraho, Thomas

    ORBITAL VARIETIES AND UNIPOTENT REPRESENTATIONS THOMAS PIETRAHO Abstract. Using the notion of a Lagrangian covering, W. Graham and D. Vo- gan proposed a method of constructing representations from show that whenever it is pos- sible to carry out the Graham-Vogan construction for an orbital variety

  15. A Catalog of Selected Viking Orbiter Images

    NASA Technical Reports Server (NTRS)

    Turner, R. L.; Carroll, R. D.

    1983-01-01

    This collection of Viking Orbiter photomosaics is designed to facilitate identification and location of the various pictures with respect to the surface of Mars. Only a representative set of the nearly 50,000 images taken by the two Viking Orbiters, and computer-processed prior to December 1978, are contained in the mosaics and in the picture listings.

  16. Space missions orbits around small worlds

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, Josué; dos Santos Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho; Bertachini de Almeida Prado, Antônio Fernando

    2015-08-01

    Space missions under study to visit icy moons and small worlds in our solar system will requires orbits with low-altitude and high inclinations. These orbits provides a better coverage to map the surface and to analyse the gravitational and magnetic fields. In this context, obtain these orbits has become important in planning of these missions. Celestial bodies like Haumea, Europa, Ganymede, Callisto, Enceladus, Titan and Triton are among the objects under study study to receive missions in a near future. In order to obtain low-altitude and high inclined orbits for future exploration of these bodies, this work aims to present an analytical study to describe and evaluate gravitational disturbances over a spacecraft's orbit around a minor body. An analytical model for the third-body perturbation is presented. Perturbations due to the non-sphericity of the minor body are considered. The effects on spacecraft's orbital elements are analyzed to provide the the more useful and desired orbits. The dynamic of these orbits is explored by numerical simulations. The results present good accordance with the literature.

  17. Orbital physics in transition-metal oxides

    PubMed

    Tokura; Nagaosa

    2000-04-21

    An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. The orbital represents the shape of the electron cloud in solid. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons. PMID:10775098

  18. Primary orbital neuroblastoma with intraocular extension

    PubMed Central

    Vallinayagam, Muthukrishnan; Rao, Vasudev Anand; Pandian, Datta Gulnar; Akkara, John Davis; Ganesan, Niruban

    2015-01-01

    Neuroblastoma is an undifferentiated malignancy of primitive neuroblasts. Neuroblastoma is among the most common solid tumors of childhood. Orbital neuroblastoma is typically a metastatic tumor. In this case report, we describe a 2-year-old child with a rapidly progressing orbital tumor. Computed tomography revealed an orbital mass lesion with extraocular and intraocular components. An incisional biopsy was done, and a histopathological examination showed features suggestive of neuroblastoma. Systemic workup including ultrasonography of the abdomen, chest roentgenogram, whole body computed tomography, and bone scintigraphy showed no evidence of systemic involvement. The diagnosis of primary orbital neuroblastoma was made, and the child was subjected to chemotherapy followed by rapid melting of the tumor. Neuroblastoma should be considered in the differential diagnosis of childhood orbital tumors. PMID:26576531

  19. Asteroids in Retrograde Orbits: Interesting Cases

    NASA Astrophysics Data System (ADS)

    Kankiewicz, Pawe?; W?odarczyk, Ireneusz

    2014-12-01

    We present the most interesting examples of the orbital evolution of asteroids in retrograde orbits (i > 90°). First, we used the latest observational data to determine nominal and averaged orbital elements of these objects. Next, the equations of motion of these asteroids were integrated backward 1 My, taking into account the propagation of observational errors. We used so-called 'cloning' procedure to reproduce the reliability of initial data. We obtained some possible scenarios of the orbit inversion in the past, what is often caused by the long-term influence of outer planets. For two most interesting cases (Apollo and Amor type) we did additional calculations: 100 My in the future. Additionally, we investigated the potential influence of Yarkovski/YORP effects on the long-time orbital evolution.

  20. Polynomial equations for science orbits around Europa

    NASA Astrophysics Data System (ADS)

    Cinelli, Marco; Circi, Christian; Ortore, Emiliano

    2015-07-01

    In this paper, the design of science orbits for the observation of a celestial body has been carried out using polynomial equations. The effects related to the main zonal harmonics of the celestial body and the perturbation deriving from the presence of a third celestial body have been taken into account. The third body describes a circular and equatorial orbit with respect to the primary body and, for its disturbing potential, an expansion in Legendre polynomials up to the second order has been considered. These polynomial equations allow the determination of science orbits around Jupiter's satellite Europa, where the third body gravitational attraction represents one of the main forces influencing the motion of an orbiting probe. Thus, the retrieved relationships have been applied to this moon and periodic sun-synchronous and multi-sun-synchronous orbits have been determined. Finally, numerical simulations have been carried out to validate the analytical results.

  1. Orbital debris: Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, Andrew (editor)

    1992-01-01

    An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.

  2. Organics, Earth orbit and astrobiology

    NASA Astrophysics Data System (ADS)

    Brack, A.

    Space technology provides the vehicle for transporting terrestrial organic matter and minerals in Earth orbit in order to study in situ their responses to space conditions and to atmospheric entry. Amino acids and peptides were exposed in Earth orbit during two Biopan ESA flights (1994, 1997) and during the CNES Perseus-Exobiologie mission (1999) with exposure times of 14, 10 and 97 days, respectively. The samples were studied with respect of chemical degradation, racemization and possible oligomerization. The samples were exposed as solid films as well as embedded in mineral material (montmorillonite clay, basalt powder and Allende meteorite powder). After three month exposure, about 50% of the amino acids were destroyed in the absence of mineral shielding. Among the different minerals used, meteoritic powder offered the best protection whereas montmorillonite was the less efficient. Different thicknesses of meteorite powder films were used to estimate the shielding threshold. Significant protection from solar radiation was observed when the thickness of the meteorite mineral was 5 ?m or greater. No polymerization occured and no conversion of L-amino acids into the D amino acids was observed. The "STONE" experiment, flown by ESA, was designed to test whether Martian sedimentary material could survive terrestrial atmospheric entry. A basalt (inflight control), a dolomite (sedimentary rock) and artificial Martian regolith were embedded into the ablative heat shield of Foton 12, which was launched on September 1999. The collected entry samples have been analysed for their chemistry, mineralogy and isotopic compositions. Modifications due to atmospheric infall were tested by reference to the untreated samples. The dolomite sample was retrieved intact, although reduced to a depth of about 30% of its original thickness, suggesting that some Martian sediments could, in part, survive terrestrial atmospheric entry from space. Some kinetic isotopic fractionation accompanied the thermal degradation of the dolomite during re-entry, as evidenced by bulk isotopic measurements on different zones of the residual carbonate. The silica "fusion crust" from the associated sample holder exhibited a significant degree of isotopic exchange with atmospheric oxygen during re-entry.

  3. The Solar Poynting-Robertson Effect On Particles Orbiting Solar System Bodies: Circular Orbits

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    2013-01-01

    The Poynting-Robertson effect from sunlight impinging directly on a particle which orbits a Solar System body (planet, asteroid, comet) is considered from the Sun's rest frame. There appear to be no significant first-order terms in V(sub b)/c for circular orbits, where V(sub b) is the body's speed in its orbit about the Sun and c is the speed of light, when the particle's orbital semimajor axis is much smaller than the body's orbital semimajor axis about the Sun as is mainly the case in the Solar System.

  4. Hypersonic aerodynamic characteristics of NR-ATP orbiter, orbiter with external tank, and ascent configuration

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.

    1973-01-01

    A scale model of the North American Rockwell ATP Orbiter with and without the external tank has been tested in a 22-inch helium tunnel at Mach 20 and a Reynolds number based on model length, of 2.14 times one million. Longitudinal and lateral-directional data were determined for the orbiter alone while only longitudinal characteristics and elevon roll effectiveness were investigated for the orbiter/tank combination. Oil flow and electron beam flow visualization studies were conducted for the orbiter alone, orbiter with external tank and the ascent configuration.

  5. ORBITS AROUND BLACK HOLES IN TRIAXIAL NUCLEI

    SciTech Connect

    Merritt, David; Vasiliev, Eugene E-mail: eugvas@lpi.ru

    2011-01-10

    We discuss the properties of orbits within the influence sphere of a supermassive black hole (BH), in the case that the surrounding star cluster is non-axisymmetric. There are four major orbit families; one of these, the pyramid orbits, have the interesting property that they can approach arbitrarily closely to the BH. We derive the orbit-averaged equations of motion and show that in the limit of weak triaxiality, the pyramid orbits are integrable: the motion consists of a two-dimensional libration of the major axis of the orbit about the short axis of the triaxial figure, with eccentricity varying as a function of the two orientation angles and reaching unity at the corners. Because pyramid orbits occupy the lowest angular momentum regions of phase space, they compete with collisional loss cone repopulation and with resonant relaxation (RR) in supplying matter to BHs. General relativistic advance of the periapse dominates the precession for sufficiently eccentric orbits, and we show that relativity imposes an upper limit to the eccentricity: roughly the value at which the relativistic precession time is equal to the time for torques to change the angular momentum. We argue that this upper limit to the eccentricity should also apply to evolution driven by RR, with potentially important consequences for the rate of extreme-mass-ratio inspirals in low-luminosity galaxies. In giant galaxies, we show that capture of stars on pyramid orbits can dominate the feeding of BHs, at least until such a time as the pyramid orbits are depleted; however this time can be of order a Hubble time.

  6. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  7. Study on reduced-dynamic orbit determination of low Earth orbiters

    NASA Astrophysics Data System (ADS)

    Han, Bao-min

    2007-11-01

    Some orbit determination methods using onboard GPS Observations were discussed firstly in this paper, especially the principle and mathematical model of reduced-dynamic Precise Orbit Determination (POD) of Low Earth Satellite (LEO) based on undifferenced spaceborne dual-frequency GPS data. Then a weeklong (from July 28, 2003 to August 3,2003) dual-frequency onboard GPS observation from CHAMP satellite was computed using reduced-dynamic POD. Compared with TUM solutions, our CHAMP orbiting results of one week using reduced dynamic POD method are within 8 centimeters, which can meet the requirements of some higher precision orbit satellite orbits. In order to obtain high precision orbiting results, the impact of different gravity models and proper interval of pseudo-stochastic-pulses on the orbit determination accuracy were analyzed as well.

  8. Messier 101 Single Orbit Exposure

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This single orbit exposure, ultraviolet color image of Messier 101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. Messier 101 is a large spiral galaxy located 20 million light-years from Earth. This image is a short and medium 'exposure' picture of the evolution of star formation in a spiral galaxy. The far ultraviolet emission detects the younger stars as concentrated in tight spiral arms, while the near ultraviolet emission, which traces stars living for more than 100 million years, displays the movement of the spiral pattern over a 100 million year period. The red stars in the foreground of the image are Milky Way stars.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  9. Extended Duration Orbiter Medical Project

    NASA Technical Reports Server (NTRS)

    Sawin, Charles F. (Editor); Taylor, Gerald R. (Editor); Smith, Wanda L. (Editor); Brown, J. Travis (Technical Monitor)

    1999-01-01

    Biomedical issues have presented a challenge to flight physicians, scientists, and engineers ever since the advent of high-speed, high-altitude airplane flight in the 1940s. In 1958, preparations began for the first manned space flights of Project Mercury. The medical data and flight experience gained through Mercury's six flights and the Gemini, Apollo, and Skylab projects, as well as subsequent space flights, comprised the knowledge base that was used to develop and implement the Extended Duration Orbiter Medical Project (EDOMP). The EDOMP yielded substantial amounts of data in six areas of space biomedical research. In addition, a significant amount of hardware was developed and tested under the EDOMP. This hardware was designed to improve data gathering capabilities and maintain crew physical fitness, while minimizing the overall impact to the microgravity environment. The biomedical findings as well as the hardware development results realized from the EDOMP have been important to the continuing success of extended Space Shuttle flights and have formed the basis for medical studies of crew members living for three to five months aboard the Russian space station, Mir. EDOMP data and hardware are also being used in preparation for the construction and habitation of International Space Station. All data sets were grouped to be non-attributable to individuals, and submitted to NASA s Life Sciences Data Archive.

  10. Orbital Debris Observations with WFCAM

    NASA Technical Reports Server (NTRS)

    Bold, Matthew; Cross, Nick; Irwin, Mike; Kendrick, Richard; Kerr, Thomas; Lederer, Susan; Mann, Robert; Sutorius, Eckhard

    2014-01-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU.

  11. Spacewire on Earth orbiting scatterometers

    NASA Technical Reports Server (NTRS)

    Bachmann, Alex; Lang, Minh; Lux, James; Steffke, Richard

    2002-01-01

    The need for a high speed, reliable and easy to implement communication link has led to the development of a space flight oriented version of IEEE 1355 called SpaceWire. SpaceWire is based on high-speed (200 Mbps) serial point-to-point links using Low Voltage Differential Signaling (LVDS). SpaceWIre has provisions for routing messages between a large network of processors, using wormhole routing for low overhead and latency. {additionally, there are available space qualified hybrids, which provide the Link layer to the user's bus}. A test bed of multiple digital signal processor breadboards, demonstrating the ability to meet signal processing requirements for an orbiting scatterometer has been implemented using three Astrium MCM-DSPs, each breadboard consists of a Multi Chip Module (MCM) that combines a space qualified Digital Signal Processor and peripherals, including IEEE-1355 links. With the addition of appropriate physical layer interfaces and software on the DSP, the SpaceWire link is used to communicate between processors on the test bed, e.g. sending timing references, commands, status, and science data among the processors. Results are presented on development issues surrounding the use of SpaceWire in this environment, from physical layer implementation (cables, connectors, LVDS drivers) to diagnostic tools, driver firmware, and development methodology. The tools, methods, and hardware, software challenges and preliminary performance are investigated and discussed.

  12. Controlling neutron orbital angular momentum.

    PubMed

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831

  13. Controlling neutron orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.; Barankov, Roman; Huber, Michael G.; Arif, Muhammad; Cory, David G.; Pushin, Dmitry A.

    2015-09-01

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a `twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.

  14. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  15. Diagrammatic theory of transition of pendulum like systems. [orbit-orbit and spin-orbit gravitational resonance interactions

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.

  16. Orbital refill of propulsion vehicle tankage

    NASA Technical Reports Server (NTRS)

    Merino, F.; Risberg, J. A.; Hill, M.

    1980-01-01

    Techniques for orbital refueling of space based vehicles were developed and experimental programs to verify these techniques were identified. Orbital refueling operations were developed for two cryogenic orbital transfer vehicles (OTV's) and an Earth storable low thrust liquid propellant vehicle. Refueling operations were performed assuming an orbiter tanker for near term missions and an orbital depot. Analyses were conducted using liquid hydrogen and N2O4. The influence of a pressurization system and acquisition device on operations was also considered. Analyses showed that vehicle refill operations will be more difficult with a cryogen than with an earth storable. The major elements of a successful refill with cryogens include tank prechill and fill. Propellant quantities expended for tank prechill appear to to insignificant. Techniques were identified to avoid loss of liquid or excessive tank pressures during refill. It was determined that refill operations will be similar whether or not an orbiter tanker or orbital depot is available. Modeling analyses were performed for prechill and fill tests to be conducted assuming the Spacelab as a test bed, and a 1/10 scale model OTV (with LN2 as a test fluid) as an experimental package.

  17. Orbital debris removal and salvage system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Four Texas A&M University projects are discussed. The first project is a design to eliminate a majority of orbital debris. The Orbital Debris and Salvage System will push the smaller particles into lower orbits where their orbits will decay at a higher rate. This will be done by momentum transfer via laser. The salvageable satellites will be delivered to the Space Station by an Orbital Transfer Vehicle. The rest of the debris will be collected by Salvage I. The second project is the design of a space based satellite system to prevent the depletion of atmospheric ozone. The focus is on ozone depletion in the Antarctic. The plan is to use an orbiting solar array system designed to transmit microwaves at a frequency of 22 GHz over the region in order to dissipate polar stratospheric clouds that form during the months beginning in August and ending in October. The third project, Project Poseidon, involves a conceptual design of a space based hurricane control system consisting of a network of 21 low-orbiting laser platforms arranged in three rings designed to heat the upper atmosphere of a developing tropical depression. Fusion power plants are proposed to provide power for the lasers. The fourth project, Project Donatello, involves a proposed Mars exploration initiative for the year 2050. The project is a conceptual design for a futuristic superfreighter that will transport large numbers of people and supplies to Mars for the construction of a full scale scientific and manufacturing complex.

  18. Satellite orbits design using frequency analysis

    NASA Astrophysics Data System (ADS)

    Noullez, A.; Tsiganis, K.; Tzirti, S.

    2015-07-01

    We present here a new method for the efficient computation of periodic orbits, which are of particular interest for low-altitude satellite orbits design in high degree/order, non-axisymmetric gravity models. Our method consists of an iterative filtering scheme, that is itself based on 'Prony's method' of frequency analysis, and is independent of the complexity of the gravity model. Applying this method to the case of a low-altitude lunar orbiter, we show that it converges rapidly, in all models and for all values of altitude and initial inclination studied. Thus, as demonstrated below, one could use it to correct the initial conditions of a desired mission orbit - usually defined within the framework of a simplified model (e.g. the 'J2 problem') - ensuring minimal orbital eccentricity variations and, for very low altitudes, collision avoidance. At the same time, an accurate quasi-periodic decomposition of the orbit is computed, giving a measure of the periodic fluctuations of the orbital parameters.

  19. The Statistical Mechanics of Planet Orbits

    NASA Astrophysics Data System (ADS)

    Tremaine, Scott

    2015-07-01

    The final “giant-impact” phase of terrestrial planet formation is believed to begin with a large number of planetary “embryos” on nearly circular, coplanar orbits. Mutual gravitational interactions gradually excite their eccentricities until their orbits cross and they collide and merge; through this process the number of surviving bodies declines until the system contains a small number of planets on well-separated, stable orbits. In this paper we explore a simple statistical model for the orbit distribution of planets formed by this process, based on the sheared-sheet approximation and the ansatz that the planets explore uniformly all of the stable region of phase space. The model provides analytic predictions for the distribution of eccentricities and semimajor axis differences, correlations between orbital elements of nearby planets, and the complete N-planet distribution function, in terms of a single parameter, the “dynamical temperature,” that is determined by the planetary masses. The predicted properties are generally consistent with N-body simulations of the giant-impact phase and with the distribution of semimajor axis differences in the Kepler catalog of extrasolar planets. A similar model may apply to the orbits of giant planets if these orbits are determined mainly by dynamical evolution after the planets have formed and the gas disk has disappeared.

  20. Moonport: Transportation node in lunar orbit

    NASA Technical Reports Server (NTRS)

    1987-01-01

    An orbital transporation system between the Earth and Moon was designed. The design work focused on the requirements and configuration of an orbiting lunar base. The design utilized current Space Station technologies, but also focused on the specific requirements involved with a permanently manned, orbiting lunar station. A model of the recommended configuration was constructed. In order to analyze Moonport activity and requirements, a traffic model was designed, defining traffic between the lunar port, or Moonport and low Earth orbit. Also, a lunar base model was used to estimate requirements of the surface base on Moonport traffic and operations. A study was conducted to compare Moonport traffic and operations based in low lunar orbit and the L (sub 2) equilibrium point, behind the Moon. The study compared delta-V requirements to each location and possible payload deliveries to low Earth orbit from each location. Products of the Moonport location study included number of flights annually to Moonport, net payload delivery to low Earth orbit, and Moonport storage requirement.

  1. The optimization of the orbital Hohmann transfer

    NASA Astrophysics Data System (ADS)

    El Mabsout, Badaoui; Kamel, Osman M.; Soliman, Adel S.

    2009-10-01

    There are four bi-impulsive distinct configurations for the generalized Hohmann orbit transfer. In this case the terminal orbits as well as the transfer orbit are elliptic and coplanar. The elements of the initial orbit a1, e1 and the semi-major axis a2 of the terminal orbit are uniquely given quantities. For optimization procedure, minimization is relevant to the independent parameter eT, the eccentricity of the transfer orbit. We are capable of the assignment of minimum rocket fuel expenditure by using ordinary calculus condition of minimization for |?VA|+|?VB|=S. We exposed in detail the multi-steps of the optimization procedure. We constructed the variation table of S(eT) which proved that S(eT) is a decreasing function of eT in the admissible interval [e,e]. Our analysis leads to the fact that e2=1 for eT=e, i.e. the final orbit is a parabolic trajectory.

  2. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Mahaffy, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; Acuna, M.; Allen, M.; Bjoraker, G.; Brasunas, J.; Farrell, W.; Burchell, M. J.; Burger, M.; Chin, G.; Coates, A. J.; Farrell, W.; Flasar, M.; Gerlach, B.; Gorevan, S.; Hartle, R. E.; Im, Eastwood; Jennings, D.; Johnson, R. E.

    2007-01-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. One could also use aerobraking to put spacecraft into orbit around Saturn first for an Enceladus phase of the mission and then later use aerocapture to put spacecraft into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG approx. 1000 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan's atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  3. Low-thrust transfer to Backflip orbits

    NASA Astrophysics Data System (ADS)

    Pergola, P.

    2010-11-01

    The aim of the work is to design a low-thrust transfer from a Low Earth Orbit to a "useful" periodic orbit in the Earth-Moon Circular Restricted Three Body Model (CR3BP). A useful periodic orbit is here intended as one that moves both in the Earth-Moon plane and out of this plane without any requirements of propellant mass. This is achieved by exploiting a particular class of periodic orbits named Backflip orbits, enabled by the CR3BP. The unique characteristics of this class of periodic solutions allow the design of an almost planar transfer from a geocentric orbit and the use of the Backflip intrinsic characteristics to explore the geospace out of the Earth-Moon plane. The main advantage of this approach is that periodic plane changes can be obtained by performing an almost planar transfer. In order to save propellant mass, so as to increase the scientific payload of the mission, a low-powered transfer is considered. This foresees a thrusting phase to gain energy from a departing circular geocentric orbit and a second thrusting phase to match the state of the target Backflip orbit, separated by an intermediate ballistic phase. This results in a combined application of a low-thrust manoeuvre and of a periodical solution in the CR3BP to realize a new class of missions to explore the Earth-Moon neighbourhoods in a quite inexpensive way. In addition, a low-thrust transit between two different Backflip orbits is analyzed and considered as a possible extension of the proposed mission. Thus, also a Backflip-to-Backflip transfer is addressed where a low-powered probe is able to experience periodic excursions above and below the Earth-Moon plane only performing almost planar and very short transfers.

  4. 21 CFR 886.3340 - Extraocular orbital implant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...false Extraocular orbital implant. 886.3340 Section...3340 Extraocular orbital implant. (a) Identification. An extraocular orbital implant is a nonabsorbable device...building up the floor of the eye, usually in...

  5. 7 Orbital Elements 1. Semimajor axis of the ellipse (a)

    E-print Network

    Herrick, Robert R.

    of the orbit ellipse (e) 3. Inclination of the plane of the Orbit ellipse relative to the ecliptic (I) 4. Longitude (in the plane of the ecliptic) where the orbit plane crosses (the node) () 5. Periapsis Latitude

  6. Orbital motion under continuous tangential thrust

    NASA Technical Reports Server (NTRS)

    Boltz, Frederick W.

    1992-01-01

    The effect of continuous tangential thrust on the orbital motion and mass loss of a vehicle initially in a circular orbit is investigated analytically. It is shown that, for a thrust-to-weight ratio of greater than 0.16175, escape speed will eventually be reached along an unwinding spiral trajectory. For lower thrust-to-weight ratios, escape speed is never attained, and the flight path oscillates around a logarithmic spiral trajectory. Formulas are obtained for the approximate orbital motion and time of flight along each type of trajectory and for mass loss due to expenditure of rocket propellant.

  7. Re-determination of Phoebe's orbit

    NASA Astrophysics Data System (ADS)

    Shen, K. X.; Harper, D.; Qiao, R. C.; Dourneau, G.; Liu, J. R.

    2005-07-01

    In order to improve the orbit of Phoebe, the ninth satellite of the Saturnian system, 101 new observations were made by our research team in 2003, using a CCD detector of large size (2048×2048 pixels) mounted on the 1.56 m astrometric reflector at the Sheshan Station of Shanghai Astronomical Observatory. We fitted a numerical integration of its orbit to all of the collected Earth-based astrometric observations from 1904 to 2003, including the newest precise data sets from Qiao & Tang and from Peng et al. A new set of initial conditions of Phoebe has been obtained, leading to an improved orbit of this satellite.

  8. Dual RF Astrodynamic GPS Orbital Navigator Satellite

    NASA Technical Reports Server (NTRS)

    Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn

    2009-01-01

    Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.

  9. Self-shadowing of orbiting trusses

    NASA Technical Reports Server (NTRS)

    Mahaney, J.; Thornton, E. A.

    1983-01-01

    The approach used to assess shadowing reductions on the heating of orbiting trusses involves determining the heating rates with slender member shadowing effects included and then obtaining the thermal response of the shadowed member. Steps taken to identify shadowers, find locations where shadowing occurs and calculate shadow intensity are listed. The finite element thermal structural analysis of cable stiffened space structure is delineated and the exact solution of the caternary problem is given. Typical cable surface heating rates are plotted. The structural analysis includes large deformation (nonlinear), thermal effect, and the pretension effect. Displacements and stresses are computed at different orbital positions for an orbit.

  10. The orbital mechanics of flight mechanics

    NASA Technical Reports Server (NTRS)

    Dunning, R. S.

    1973-01-01

    A reference handbook on modern dynamic orbit theory is presented. Starting from the most basic inverse-square law, the law of gravity for a sphere is developed, and the motion of point masses under the influence of a sphere is considered. The reentry theory and the orbital theory are discussed along with the relative motion between two bodies in orbit about the same planet. Relative-motion equations, rectangular coordinates, and the mechanics of simple rigid bodies under the influence of a gravity gradient field are also discussed.

  11. Orbital motion under continuous tangential thrust

    NASA Astrophysics Data System (ADS)

    Boltz, Frederick W.

    1992-12-01

    The effect of continuous tangential thrust on the orbital motion and mass loss of a vehicle initially in a circular orbit is investigated analytically. It is shown that, for a thrust-to-weight ratio of greater than 0.16175, escape speed will eventually be reached along an unwinding spiral trajectory. For lower thrust-to-weight ratios, escape speed is never attained, and the flight path oscillates around a logarithmic spiral trajectory. Formulas are obtained for the approximate orbital motion and time of flight along each type of trajectory and for mass loss due to expenditure of rocket propellant.

  12. Closed loop orbit trim using GPS

    NASA Technical Reports Server (NTRS)

    Parkinson, B. W.; Axelrad, P.

    1989-01-01

    This paper describes an onboard closed-loop navigation and control system capable of executing extremely precise orbit maneuvers. It uses information from the Global Positioning System (GPS) and an onboard controller to perform orbit adjustments. As a result, the system circumvents the need for extensive ground support. The particular application considered is an orbit injection system for NASA's Gravity Probe B (GP-B) spacecraft. Eccentricity adjustments of 0.0004 to 0.005, and inclination and node changes of 0.001 to 0.01 deg are demonstrated. The same technique can be adapted to other satellite missions.

  13. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  14. Squeezed potato orbits in a magnetic well

    SciTech Connect

    Shaing, K. C.

    2001-09-01

    It is shown that potato orbits in the near-axis region of a high beta tokamak are squeezed in a magnetic well. The squeezing factor is the same as that for the banana orbits derived in an earlier work [Phys. Plasmas 3, 2843 (1996)]. It depends on the energy of the particle. For high-energy particles, the size of the squeezed orbits is independent of their energy. This implies improved confinement for high-energy particles and for high beta tokamaks with advanced fuels.

  15. Plasma conditions at Europa's orbit

    NASA Astrophysics Data System (ADS)

    Bagenal, Fran; Sidrow, Evan; Wilson, Robert J.; Cassidy, Timothy A.; Dols, Vincent; Crary, Frank J.; Steffl, Andrew J.; Delamere, Peter A.; Kurth, William S.; Paterson, William R.

    2015-11-01

    With attention turned to Europa as a target for exploration, we focus on the space environment in which Europa is embedded. We review remote and in situ observations of plasma properties at Europa's orbit, between Io's dense, UV-emitting plasma torus and Jupiter's dynamic plasma sheet. Where observations are limited (e.g. in plasma composition), we supplement our analysis with models of the neutral and plasma populations from Io to Europa. We evaluate variations and uncertainties in plasma properties with radial distance, latitude, longitude and time. If we consider only the EUV channel of UVIS, the spectral emissions model concludes that O(III) is the dominant ionization state of oxygen in the Io torus. This unphysical result occurs because the model maximizes the amount of O(III) in order to minimize the model/spectrum discrepancy at 702 Å. With the inclusion of the FUV channel, there are two additional O(III) spectral lines located at 1661 and 1666 Å. These lines, first detected in the Io torus by Moos et al. (1991), place a strong constraint on the amount of O(III) present in the torus. Unfortunately, they are relatively faint and barely above the level of noise in the UVIS spectra. Therefore, the values we derive for the mixing ratio of O(III) or O(II) as a function of radial distance should more properly be thought of as an upper or lower limit on the actual value. With this caveat in mind, there is still significantly more O(III) and less O(II) compared to the Voyager model of Bagenal (1994). The [O(II)]/[O(III)] ratio, averaged over 6.2-8.8 RJ, is 3.7 - less than half the corresponding value of 8.8 from Bagenal (1994). The value of this ratio generally decreases with increasing radial distance, which is consistent with the observed increase in electron temperature.Note that the Bagenal (1994) oxygen composition came from Bagenal et al. (1992), which was based on the limited spectral range of the Voyager UVS observations. The average charge state of oxygen ions at 8.8 RJ is reported by Steffl et al. (2004b) to be 1.2-1.3, corresponding to the abundance ratio OII/OIII between 2.0 and 3.3. Shemansky et al. (2014), however, argue for OIII > OII. We return to this issue of the charge state of oxygen ions in Section 4.While emissions from the torus plasma describe the conditions near Io, they do not extend much beyond about 7-8 RJ (Herbert and Sandel, 1995; Steffl et al., 2004b; Yoshioka et al., 2014). Thus, extrapolating conditions to the orbit of Europa requires combining Io plasma torus data with models of radial transport and physical chemistry (discussed in Section 4).

  16. Distant retrograde orbits for the Moon's exploration

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav

    We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large scale browsing of the Moon’s environment. [1] Jackson, J. (1913) MNRAS, 74, 62-82. [2] Mikkola, S., Brasser, R., Wiegert, P., Innanen, K. (2004) MNRAS, 351, L63-L65. [3] Broucke, R.A. (1968) NASA Technical Report 32-1168, JPL. [4] Broucke, R.A. (1969) NASA Technical Report 32-1360, JPL. [5] Kogan, A.I. (1989) Cosmic Research, 26, 705-710. [6] Namouni, F. (1999) Icarus, 6, 293-314. [7] Sidorenko, V.V., Neishtadt, A.I., Artemyev, A.V., Zelenyi, L.M. (2013) Doklady Physics, 58, 207-211.

  17. Gravitational waves carrying orbital angular momentum

    E-print Network

    Bialynicki-Birula, Iwo

    2015-01-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  18. Nickel hydrogen low Earth orbit life testing

    NASA Technical Reports Server (NTRS)

    Badcock, C. C.; Haag, R. L.

    1986-01-01

    A program to demonstrate the long term reliability of NiH2 cells in low Earth orbits (LEO) and support use in mid-altitude orbits (MAO) was initiated. Both 3.5 and 4.5 inch diameter nickel hydrogen cells are included in the test plan. Cells from all U.S. vendors are to be tested. The tests will be performed at -5 and 10 C at 40 and 60% DOD for LEO orbit and 10 C and 80% DOD for MAO orbit simulations. The goals of the testing are 20,000 cycles at 60% DOD and 30,000 cycles at 40% DOD. Cells are presently undergoing acceptance and characterization testing at Naval Weapons Systems Center, Crane.

  19. The orbit of Lageos and solar eclipses

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.; Weiss, N. R.

    1984-01-01

    An eclipse of the Sun by the Moon as seen by the Lageos satellite can affect the orbital semimajor axis at the centimeter level. The weakened radiation pressure acting on Lageos perturbs the orbit differently from that due to full sunlight. This difference amounted to less than 2 mm in the semimajor axis for 23 of the 30 eclipses Lageos experienced between launch in 1976 and the end of 1983. However, it was 17.6 mm for the eclipses on 28 March 1979 and 11.2 mm for the one on 15 December 1982. Differences such as these generate large enough along-track errors to make it worthwhile to include eclipses in complex orbit determination programs such as GEODYN which integrate the orbit. Eclipses cannot explain the presently unmolded variations in along-track acceleration which have a magnitude of about 3 x 10(-12) ms(-2).

  20. Successive Continuation for Locating Connecting Orbits

    E-print Network

    E. J. Doedel; M. J. Friedman; B. I. Kunin

    1996-09-30

    A successive continuation method for locating connecting orbits in parametrized systems of autonomous ODEs is considered. A local convergence analysis is presented and several illustrative numerical examples are given.

  1. Direct Measurements of Winds from Mars Orbit

    NASA Astrophysics Data System (ADS)

    Allen, M.; Mischna, M.; Chin, G.; Stachnik, R.; Mehdi, I.; Schlecht, E.; Jarnot, R.

    2012-06-01

    Goals for the Mars Exploration Program in the Planetary Decadal Survey are Mars’s present climate and the prospect for extant life. A submillimeter wave spectrometer in Mars orbit can provide wind, temperature, and trace gas constituent measurements.

  2. Nonlinear realizations and the orbit method

    E-print Network

    Joanna Gonera

    2013-08-12

    Given a symmetry group one can construct the invariant dynamics using the technique of nonlinear realizations or the orbit method. The relationship between these methods is discussed. Few examples are presented.

  3. Orbiting propellant depot safety. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Appendices to support the findings of the Orbiting Propellant Depot Safety study are presented. The subjects discussed are ullage control subsystems, evaluation of methods, propellant transfer, and baseline subsystem selection.

  4. Chaos in orbits due to disk crossings.

    PubMed

    Hunter, C

    2005-06-01

    We study orbits of halo stars in simple models of galaxies with disks and halos to see if the cumulative effects of the sudden changes in acceleration that occur at disk crossings can induce chaos. We find that they can, although not in all orbits and not in all potentials. Most of the orbits that become chaotic stay relatively close to the disk and range widely in the radial direction. Heavier disks and increased halo flattening both enhance the extent of the chaos. A limited range of experiments with a three-component model of the Milky Way with an added central bulge finds that many chaotic disk-crossing orbits can be expected in the central regions, and that prolateness of the halo is much more effective than oblateness in generating chaos. PMID:15980309

  5. The Orbits of the Inner Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Brozovic, Marina; Jacobson, R. A.

    2009-05-01

    We report on the numerically integrated orbits for the thirteen inner Uranian satellites. Our dataset includes Voyager imaging data as well as HST and Earth-based astrometric data. The observations span time period from 1985 to 2003. Our model of the inner moons' orbits accounts for the equatorial bulge of Uranus, the perturbations from the external bodies and the perturbations from the large moons of Uranus (Miranda, Umbriel, Ariel, Oberon, and Titania). The inner satellites were initially considered massless, but we found that this assumption may need to be revised in order to fine-tune the system's dynamics and obtain the orbital solutions with adequate residuals.The results are given in terms of state vectors,post-fit residuals and mean orbital elements.

  6. A Simple Huckel Molecular Orbital Plotter

    ERIC Educational Resources Information Center

    Ramakrishnan, Raghunathan

    2013-01-01

    A program is described and presented to readily plot the molecular orbitals from a Huckel calculation. The main features of the program and the scope of its applicability are discussed through some example organic molecules. (Contains 2 figures.)

  7. Dealing with Uncertainties in Initial Orbit Determination

    NASA Technical Reports Server (NTRS)

    Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato

    2015-01-01

    A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.

  8. Asteroid orbital error analysis: Theory and application

    NASA Technical Reports Server (NTRS)

    Muinonen, K.; Bowell, Edward

    1992-01-01

    We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).

  9. Dacryocystography in a cat with orbital pneumatosis.

    PubMed

    Meomartino, Leonardo; Pasolini, Maria P; Lamagna, Francesco; Santangelo, Bruna; Mennonna, Giuseppina; Della Valle, Giovanni; Lamagna, Barbara

    2015-03-01

    A 2-year-old neutered male European short-haired cat was presented for a persistent discharge from the scar of previous left eye enucleation, performed 6 months prior by the referring veterinarian. A surgical exploration of the orbit was performed and retained nictitating membrane glandular and conjunctival tissues were removed. Eleven days later, the cat developed an orbital pneumatosis caused by retrograde movement of air through a patent nasolacrimal system and diagnosed by survey radiographic examination of the skull. Nasolacrimal system patency was assessed by dacryocystography performed by injection of iodinated contrast medium under pressure into the orbital cavity. Computed tomography dacryocystography confirmed the radiographic findings. The condition resolved following dacryocystography, possibly as an inflammatory response to the contrast medium. To our knowledge, this is the first case of orbital pneumatosis reported in a cat. PMID:24118801

  10. Spinning compact binary dynamics and chameleon orbits

    NASA Astrophysics Data System (ADS)

    Gergely, László Árpád; Keresztes, Zoltán

    2015-01-01

    We analyze the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first-order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that general relativity predicts stronger gravity at short distances than Newtonian theory does.

  11. Orbiting quarantine facility. The Antaeus report

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (editor); Bagby, J. R. (editor)

    1981-01-01

    A mission plan for the Orbiting Quarantine Facility (OQF) is presented. Coverage includes system overview, quarantine and protocol, the laboratory, support systems, cost analysis and possible additional uses of the OQF.

  12. Designing the Orbital Space Tourism Experience

    NASA Astrophysics Data System (ADS)

    Webber, Derek

    2006-01-01

    Sub-orbital space tourism is now well on its way to becoming a reality, with offerings by Virgin Galactic, Rocketplane, and others soon to be made available. Orbital space tourism is harder to achieve, but, if successful as a business model, will make significant contributions towards improved operational efficiencies, reusability, reliability and economies of scale to the world of crewed space flight. Some responses to the President's Vision for Space Exploration have included public space travel in low Earth orbit as sustaining and enabling elements of the vision in a post-Shuttle space architecture. This paper addresses the steps necessary to make possible such a US-based orbital space tourism business, and will assist commercial and government agencies concerned with the development of this new sector.

  13. Orbital debris : drafting, negotiating, implementing a convention

    E-print Network

    Sénéchal, Thierry

    2007-01-01

    It is time to recognize that while space may be infinite, Earth orbital space is a finite natural resource that must be managed properly. The problem we face with space pollution is complex and serious. The space treaties ...

  14. ORION: A Supersynchronous Transfer Orbit mission

    NASA Technical Reports Server (NTRS)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.

    1995-01-01

    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  15. STS mission duration enhancement study: (orbiter habitability)

    NASA Technical Reports Server (NTRS)

    Carlson, A. D.

    1979-01-01

    Habitability improvements for early flights that could be implemented with minimum impact were investigated. These included: (1) launching the water dispenser in the on-orbit position instead of in a locker; (2) the sleep pallet concept; and (3) suction cup foot restraints. Past studies that used volumetric terms and requirements for crew size versus mission duration were reviewed and common definitions of key habitability terms were established. An accurately dimensioned drawing of the orbiter mid-deck, locating all of the known major elements was developed. Finally, it was established that orbiter duration and crew size can be increased with minimum modification and impact to the crew module. Preliminary concepts of the aft med-deck, external versions of expanded tunnel adapters (ETA), and interior concepts of ETA-3 were developed and comparison charts showing the various factors of volume, weight, duration, size, impact to orbiter, and number of sleep stations were generated.

  16. NASA-GSFC Orbital Debris Research Priorities

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2014-01-01

    While quite a lot is known about the orbital debris environment and how to limit its growth, more remains to be learned. The curent priorities for research and development, from the NASA Goddard Space Flight Center perspective, will be discussed.

  17. NASA Orbital Debris Requirements and Best Practices

    NASA Technical Reports Server (NTRS)

    Hull, Scott

    2014-01-01

    Limitation of orbital debris accumulation is an international and national concern, reflectedin NASA debris limitation requirements. These requirements will be reviewed, along with some practices that can be employed to achieve the requirements.

  18. Nasal myiasis with orbital and palatal complications.

    PubMed

    Thomas, Shaji; Nair, Preeti; Hegde, Karthik; Kulkarni, Abhay

    2010-01-01

    A 15-year-old girl presented with a chief complaint of bleeding from her nose. She had noticed worms emerging from her right nostril. She had a continuous dull ache on the right side of her nose, spreading over the maxillary sinus area, and on the infra-orbital margin on the same side. She complained of difficulty breathing through her right nostril and a foul smell, which was associated with orbital oedema. Intra-oral examination revealed erythema of the soft palate on the same side, which was tender on palpation. Her condition was diagnosed as nasal myiasis with orbital and palatal extension. Nasal myiasis was treated by surgical removal of the maggots and with Ivermectin and local application of turpentine. The symptoms resolved and the dangers of orbital complications and penetration into the intracranial cavity were averted. The serious short-term complications of nasal myiasis were prevented by prompt treatment. PMID:22802476

  19. Gravitational waves carrying orbital angular momentum

    E-print Network

    Iwo Bialynicki-Birula; Zofia Bialynicka-Birula

    2015-11-28

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  20. Mars orbiter conceptual systems design study

    NASA Technical Reports Server (NTRS)

    Dixon, W.; Vogl, J.

    1982-01-01

    Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.

  1. Spacetime and orbits of bumpy black holes

    E-print Network

    Vigeland, Sarah Jane

    Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine ...

  2. Orbital impacts and the Space Shuttle windshield

    NASA Astrophysics Data System (ADS)

    Edelstein, Karen S.

    1995-03-01

    The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have changes over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

  3. Orbital impacts and the Space Shuttle windshield

    NASA Technical Reports Server (NTRS)

    Edelstein, Karen S.

    1995-01-01

    The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have changes over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

  4. Orbital impacts and the space shuttle windshield

    NASA Astrophysics Data System (ADS)

    Edelstein, Karen S.

    1995-06-01

    The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have chnaged over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures, and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

  5. Spinning compact binary dynamics and chameleon orbits

    E-print Network

    László Árpád Gergely; Zoltán Keresztes

    2014-12-20

    We analyse the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that General Relativity predicts stronger gravity at short distances than Newtonian theory does.

  6. Nonlinear realizations and the orbit method

    SciTech Connect

    Gonera, Joanna

    2013-11-15

    Given a symmetry group one can construct the invariant dynamics using the technique of nonlinear realizations or the orbit method. The relationship between these methods is discussed. Few examples are presented.

  7. Orbital polarization in narrow band systems

    SciTech Connect

    Eriksson, O.; Johansson, B.; Brooks, M.S..S. . Inst. of Physics; Commission of the European Communities, Karlsruhe . European Inst. for Transuranium Elements)

    1989-01-01

    A novel technique for treating orbital polarization is presented. The single electron eigenvalue shifts that emanates from the orbital polarization is of the form -E{sup 3}Lm{sub l}, where E{sup 3} is the Racah parameter, L is the orbital moment and m{sub l} the azimuthal quantum number. Thereby the effect of Hund's second rule is included not only in the total energy, but also in the eigenvalue splittings which are required in the solid. The calculations presented also incorporate the exchange and correlation potential in the local spin density approximation as well as the spin-orbit coupling. The self-consistently calculated equation-of-state for the light lanthanide Ce is presented. The observed volume collapse is well described by the parameter free calculations and accordingly the volume collapse in Ce is described as a Mott transition of the 4f electron. 20 refs., 1 fig., 1 tab.

  8. A THIRD GIANT PLANET ORBITING HIP 14810

    SciTech Connect

    Wright, J. T.; Fischer, D. A.; Ford, Eric B.; Veras, D.; Wang, J.; Henry, G. W.; Marcy, G. W.; Howard, A. W.; Johnson, John Asher

    2009-07-10

    We present new precision radial velocities and a three-planet Keplerian orbit fit for the V = 8.5, G5 V star HIP 14810. We began observing this star at Keck Observatory as part of the N2K Planet Search Project. Wright et al. announced the inner two planets to this system, and subsequent observations have revealed the outer planet and the proper orbital solution for the middle planet. The planets have minimum masses of 3.9, 1.3, and 0.6 M {sub Jup} and orbital periods of 6.67, 147.7, and 952 day, respectively. We have numerically integrated the family of orbital solutions consistent with the data and find that they are stable for at least 10{sup 6} yr. Our photometric search shows that the inner planet does not transit.

  9. Apollo 11 (launch, on moon, in orbit)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Apollo 11 Command and Service Modules are shown in a photo taken from the Lunar Module while in orbit around the Moon. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 98), by James Schultz.

  10. Analysis of unstable periodic orbits and chaotic orbits in the one-dimensional linear piecewise-smooth discontinuous map

    NASA Astrophysics Data System (ADS)

    Rajpathak, Bhooshan; Pillai, Harish K.; Bandyopadhyay, Santanu

    2015-10-01

    In this paper, we analytically examine the unstable periodic orbits and chaotic orbits of the 1-D linear piecewise-smooth discontinuous map. We explore the existence of unstable orbits and the effect of variation in parameters on the coexistence of unstable orbits. Further, we show that this structuring is different from the well known period adding cascade structure associated with the stable periodic orbits of the same map. Further, we analytically prove the existence of chaotic orbit for this map.

  11. The Jupiter Icy Moons Orbiter reference trajectory

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.; Lam, Try

    2006-01-01

    The proposed NASA Jupiter Icy Moons Orbiter (JIMO) mission would have used a single spacecraft to orbit Callisto, Ganymede, and Europa in succession. The enormous Delta-Velocity required for this mission (nearly [25 km/s]) would necessitate the use of very high efficiency electric propulsion. The trajectory created for the proposed baseline JIMO mission may be the most complex trajectory ever designed. This paper describes the current reference trajectory in detail and describes the processes that were used to construct it.

  12. Performance of perturbation methods on orbit prediction

    NASA Astrophysics Data System (ADS)

    Barrio, Roberto; Serrano, Sergio

    2008-04-01

    In this paper we analyse briefly the use of two classical perturbation methods vs. the formulation using Cartesian coordinates in the numerical integration of satellite orbits. In particular, we compare the variation-of-parameters (VOP) and Encke's methods. The numerical tests performed with a realistic Earth potential model and using a well-recognised numerical ODE integrator (dop853) permit us to establish the power of these alternative formulations on orbital problems, in spite of the affirmations of other researchers.

  13. Effective potential for natural spin orbitals.

    PubMed

    Pernal, Katarzyna

    2005-06-17

    For the first time the explicit form of the effective nonlocal potential for the natural spin orbitals is derived and analyzed. It is shown that in the case of the degenerate one-electron reduced density matrix the potential is not unique. The knowledge of the effective potential allows one to establish one-electron equations for the natural spin orbitals that may be of great value for efficient density matrix functional theory calculations. PMID:16090468

  14. Servicing communication satellites in geostationary orbit

    NASA Technical Reports Server (NTRS)

    Russell, Paul K.; Price, Kent M.

    1990-01-01

    The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.

  15. Fast ion orbits in spherical tokamaks

    SciTech Connect

    Solano, E.R.

    1995-07-20

    In a spherical tokamak, the 1/R variation of the toroidal field is extreme, and for a given value of the safety factor a relatively low average toroidal field can be used, together with large plasma current and large plasma minor radius and elongation. The poloidal and toroidal fields are then of similar size. In consequence, the orbits of fast ions depart considerably from the guiding center orbits because of gyromotion in the small magnetic fields in the low field side.

  16. Revised Orbits of Saturn's Small Inner Satellites

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.; Spitale, J.; Porco, C. C.; Beurle, K.; Cooper, N. J.; Evans, M. W.; Murray, C. D.

    2007-01-01

    We have updated the orbits of the small inner Saturnian satellites using additional Cassini imaging observations through 2007 March. Statistically significant changes from previously published values appear in the eccentricities and inclinations of Pan and Daphnis, but only small changes have been found in the estimated orbits of the other satellites. We have also improved our knowledge of the masses of Janus and Epimetheus as a result of their close encounter observed in early 2006.

  17. Advanced propulsion concepts for orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1982-01-01

    Studies of the United States Space Transportation System show that in the mid-to-late 1990s expanded capabilities for Orbital Transfer Vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possible men to geosynchronous orbit. NASA is conducting a technology program in support of an advanced propulsion system for future OTVs. This program is briefly described with results to date of the first program element, the Conceptual Design and Technology Definition studies.

  18. Introduction to orbital flight planning (1)

    NASA Technical Reports Server (NTRS)

    Blackwell, H. E. (editor); Davis, E. L.; Dell, D. D.

    1981-01-01

    This workbook is designed for students interested in space flight planning, who after training, may serve as flight planning aides. Routine flight planning activities requiring engineering-type calculations and analysis are covered. Practice exercises and brief instructions are given for the programming and use of the hand calculator as well as the calculation of position and velocity in the orbital plane. Calculation of relative orbital position is also covered with emphasis upon celestial coordinates and time measurement.

  19. (abstract) Hermes Global Orbiter: Mission to Mercury

    NASA Technical Reports Server (NTRS)

    Horn, L.; Nelson, R.; Weiss, J.; Smythe, W.; Evans, M.; Gatz, E.; Kuo, S.; Lane, A.; Linick, S.; Lopes-Gautier, R.; Manatt, K.; Martin, W.; Morris, R.; Ocampo, A.; Spradlin, G.; Wallis, B.; Yen, C.; Danielson, G.; Garvin, J.; Guest, J.; Hapke, B.; McClintock, W.; Simmons, K.; Russell, C.; Cruz, M.

    1993-01-01

    The Hermes Global Orbiter is a proposed Discovery-class mission. Hermes will be launched aboard a Delta II rocket in 1999 and will be placed in an elliptical polar orbit about Mercury. Remote sensing measurements of the planet's surface, atmosphere, and magnetosphere will be performed. Key mission goals include mapping the entire surface at 1 km resolution, characterizing the surface composition, texture and topography, searching for water ice at the poles, characterizing the atmosphere, and constraining the interior structure.

  20. Orbital migration and the brown dwarf desert

    E-print Network

    Philip J. Armitage; Ian A. Bonnell

    2002-10-08

    The orbital elements of extreme mass ratio binaries will be modified by interactions with surrounding circumstellar disks. For brown dwarf companions to Solar-type stars the resulting orbital migration is sufficient to drive short period systems to merger, creating a brown dwarf desert at small separations. We highlight the similarities and the differences between the migration of brown dwarfs and massive extrasolar planets, and discuss how observations can test a migration model for the brown dwarf desert.

  1. Technologies for Refueling Spacecraft On-Orbit

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2000-01-01

    This paper discusses the current technologies for on-orbit refueling of spacecraft. The findings of 55 references are reviewed and summarized. Highlights include: (1) the Russian Progress system used by the International Space Station; (2) a flight demonstration of superfluid helium transfer; and (3) ground tests of large cryogenic systems. Key technologies discussed include vapor free liquid outflow, control of fluid inflow to prevent liquid venting, and quick disconnects for on-orbit mating of transfer lines.

  2. Berthing simulator for space station and orbiter

    NASA Technical Reports Server (NTRS)

    Veerasamy, Sam

    1991-01-01

    The development of a real-time man-in-the-loop berthing simulator is in progress at NASA Lyndon B. Johnson Space Center (JSC) to conduct a parametric study and to measure forces during contact conditions of the actual docking mechanisms for the Space Station Freedom and the orbiter. In berthing, the docking ports of the Space Station and the orbiter are brought together using the orbiter robotic arm to control the relative motion of the vehicles. The berthing simulator consists of a dynamics docking test system (DDTS), computer system, simulator software, and workstations. In the DDTS, the Space Station, and the orbiter docking mechanisms are mounted on a six-degree-of-freedom (6 DOF) table and a fixed platform above the table. Six load cells are used on the fixed platform to measure forces during contact conditions of the docking mechanisms. Two Encore Concept 32/9780 computers are used to simulate the orbiter robotic arm and to operate the berthing simulator. A systematic procedure for a real-time dynamic initialization is being developed to synchronize the Space Station docking port trajectory with the 6 DOF table movement. The berthing test can be conducted manually or automatically and can be extended for any two orbiting vehicles using a simulated robotic arm. The real-time operation of the berthing simulator is briefly described.

  3. The Visual Orbit of 64 Piscium

    NASA Astrophysics Data System (ADS)

    Boden, A. F.; Lane, B. F.; Creech-Eakman, M. J.; Colavita, M. M.; Dumont, P. J.; Gubler, J.; Koresko, C. D.; Kuchner, M. J.; Kulkarni, S. R.; Mobley, D. W.; Pan, X. P.; Shao, M.; van Belle, G. T.; Wallace, J. K.; Oppenheimer, B. R.

    1999-12-01

    We report on the determination of the visual orbit of the double-lined spectroscopic binary system 64 Piscium with data obtained by the Palomar Testbed Interferometer in 1997 and 1998. 64 Psc is a nearly equal-mass double-lined binary system whose spectroscopic orbit is well known. We have estimated the visual orbit of 64 Psc from our interferometric visibility data. Our 64 Psc orbit is in good agreement with the spectroscopic results, and the physical parameters implied by a combined fit to our interferometric visibility data and radial velocity data of Duquennoy & Mayor result in precise component masses that agree well with their spectral type identifications. In particular, the orbital parallax of the system is determined to be 43.29+/-0.46 mas, and masses of the two components are determined to be 1.223+/-0.021 Msolar and 1.170+/-0.018 Msolar, respectively. Nadal et al. put forward arguments of temporal variability in some of the orbital elements of 64 Psc, presumably explained by an undetected component in the system. While our visibility data do not favor the Nadal temporal variability inference, neither is it definitive in excluding it. Consequently we have performed both high dynamic-range near-infrared imaging and spectroscopy of potential additional companions to the 64 Psc system. Our imaging and spectroscopic data do not support the conjecture of an additional component to 64 Psc, but we did identify a faint object with unusual red colors and spectra.

  4. Orbital-optimized density cumulant functional theory

    SciTech Connect

    Sokolov, Alexander Yu. Schaefer, Henry F.

    2013-11-28

    In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.

  5. Orbital Evolution of Jupiter-Family Comets

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. S.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We investigated the evolution for periods of at least 5-10 Myr of 2500 Jupiter-crossing objects (JCOs) under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period less than 10 yr, and in the second series we took 500 orbits close to the orbit of Comet 10P Tempel 2. We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance of bodies was less than a semimajor axis of the planet. The values of P = 10(exp 6)P(sub sigma)/N and T = T(sub sigma)/1000 yr are presented in Table together with the ratio r of the total time interval when orbits were of Apollo type (at e less than 0.999) to that of Amor type.

  6. Evolution of star clusters on eccentric orbits

    NASA Astrophysics Data System (ADS)

    Cai, Maxwell Xu; Gieles, Mark; Heggie, Douglas C.; Varri, Anna Lisa

    2016-01-01

    We study the evolution of star clusters on circular and eccentric orbits using direct N-body simulations. We model clusters with initially N = 8k and 16k single stars of the same mass, orbiting around a point-mass galaxy. For each orbital eccentricity that we consider, we find the apogalactic radius at which the cluster has the same lifetime as the cluster with the same N on a circular orbit. We show that then, the evolution of bound particle number and half-mass radius is approximately independent of eccentricity. Secondly, when we scale our results to orbits with the same semimajor axis, we find that the lifetimes are, to first order, independent of eccentricity. When the results of Baumgardt and Makino for a singular isothermal halo are scaled in the same way, the lifetime is again independent of eccentricity to first order, suggesting that this result is independent of the galactic mass profile. From both sets of simulations, we empirically derive the higher order dependence of the lifetime on eccentricity. Our results serve as benchmark for theoretical studies of the escape rate from clusters on eccentric orbits. Finally, our results can be useful for generative models for cold streams and cluster evolution models that are confined to spherical symmetry and/or time-independent tides, such as Fokker-Planck models, Monte Carlo models, and (fast) semi-analytic models.

  7. Constraints on the Orbital Evolution of Triton

    E-print Network

    Matija Cuk; Brett J. Gladman

    2005-05-11

    We present simulations of Triton's post-capture orbit that confirm the importance of Kozai-type oscillations in its orbital elements. In the context of the tidal orbital evolution model, these variations require average pericenter distances much higher than previously published, and the timescale for the tidal orbital evolution of Triton becomes longer than the age of the Solar System. Recently-discovered irregular satellites present a new constraint on Triton's orbital history. Our numerical integrations of test particles indicate a timescale for Triton's orbital evolution to be less than $10^5$ yrs for a reasonable number of distant satellites to survive Triton's passage. This timescale is inconsistent with the exclusively tidal evolution (time scale of $>10^8$ yrs), but consistent with the interestion with the debris from satellite-satellite collisions. Any major regular satellites will quickly collide among themselves after being perturbed by Triton, and the resulting debris disk would eventually be swept up by Triton; given that the total mass of the Uranian satellite system is 40% of that of Triton, large scale evolution is possible. This scenario could have followed either collisional or the recently-discussed three-body-interaction-based capture.

  8. INTERACTING BINARIES WITH ECCENTRIC ORBITS. III. ORBITAL EVOLUTION DUE TO DIRECT IMPACT AND SELF-ACCRETION

    SciTech Connect

    Sepinsky, J. F.; Willems, B.; Kalogera, V.; Rasio, F. A. E-mail: b-willems@northwestern.ed E-mail: rasio@northwestern.ed

    2010-11-20

    The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of Roche lobe overflow is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion onto the companion star within a single orbit, self-accretion back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star, possibly leading to the formation of a disk. We calculate the secular evolution of the binary orbit in the first two cases and conclude that direct impact accretion can increase as well as decrease the orbital semimajor axis and eccentricity, while self-accretion always decreases the orbital semimajor axis and eccentricity. In cases where mass overflow contributes to circularizing the orbit, circularization can set in on timescales as short as a few percent of the mass-transfer timescale. In cases where mass overflow increases the eccentricity, the orbital evolution is governed by competition between mass overflow and tidal torques. In the absence of tidal torques, mass overflow results in direct impact can lead to substantially subsynchronously rotating donor stars. Contrary to assumptions common in the literature, direct impact accretion furthermore does not always provide a strong sink of orbital angular momentum in close mass-transferring binaries; in fact, we instead find that a significant part can be returned to the orbit during the particle orbit. The formulation presented in this paper together with our previous work can be combined with stellar and binary evolution codes to generate a better picture of the evolution of eccentric, Roche lobe overflowing binary star systems.

  9. Orbit determination of the Lunar Reconnaissance Orbiter using laser ranging and radiometric tracking data

    NASA Astrophysics Data System (ADS)

    Löcher, Anno; Kusche, Jürgen

    2014-05-01

    The Lunar Reconnaissance Orbiter (LRO) launched in 2009 by the National Aeronautics and Space Administration (NASA) still orbits the Moon in a polar orbit at an altitude of 50 kilometers and below. Its main objective is the detailed exploration of the Moon's surface by means of the Lunar Orbiter Laser Altimeter (LOLA) and three high resolution cameras bundled in the Lunar Reconnaissance Orbiter Camera (LROC) unit. Referring these observations to a Moon-fixed reference frame requires the computation of highly accurate and consistent orbits. For this task only Earth-based observations are available, primarily radiometric tracking data from stations in the United States, Australia and Europe. In addition, LRO is prepared for one-way laser measurements from specially adapted sites. Currently, 10 laser stations participate more or less regularly in this experiment. For operational reasons, the official LRO orbits from NASA only include radiometric data so far. In this presentation, we investigate the benefit of the laser ranging data by feeding both types of observations in an integrated orbit determination process. All computations are performed by an in-house software development based on a dynamical approach improving orbit and force parameters in an iterative way. Special attention is paid to the determination of bias parameters, in particular of timing biases between radio and laser stations and the drift and aging of the LRO spacecraft clock. The solutions from the combined data set will be compared to radio- and laser-only orbits as well as to the NASA orbits. Further results will show how recent gravity field models from the GRAIL mission can improve the accuracy of the LRO orbits.

  10. Mars Orbiter Sample Return Power Design

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Dawson, S.

    2005-01-01

    Mars has greatly intrigued scientists and the general public for many years because, of all the planets, its environment is most like Earth's. Many scientists believe that Mars once had running water, although surface water is gone today. The planet is very cold with a very thin atmosphere consisting mainly of CO2. Mariner 4, 6, and 7 explored the planet in flybys in the 1960s and by the orbiting Mariner 9 in 1971. NASA then mounted the ambitious Viking mission, which launched two orbiters and two landers to the planet in 1975. The landers found ambiguous evidence of life. Mars Pathfinder landed on the planet on July 4, 1997, delivering a mobile robot rover that demonstrated exploration of the local surface environment. Mars Global Surveyor is creating a highest-resolution map of the planet's surface. These prior and current missions to Mars have paved the way for a complex Mars Sample Return mission planned for 2003 and 2005. Returning surface samples from Mars will necessitate retrieval of material from Mars orbit. Sample mass and orbit are restricted to the launch capability of the Mars Ascent Vehicle. A small sample canister having a mass less than 4 kg and diameter of less than 16 cm will spend from three to seven years in a 600 km orbit waiting for retrieval by a second spacecraft consisting of an orbiter equipped with a sample canister retrieval system, and a Earth Entry Vehicle. To allow rapid detection of the on-orbit canister, rendezvous, and collection of the samples, the canister will have a tracking beacon powered by a surface mounted solar array. The canister must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the Satellite Orbit Analysis Program (SOAP).

  11. Maintaining Aura's Orbit Requirements While Performing Orbit Maintenance Maneuvers Containing an Orbit Normal Delta-V Component

    NASA Technical Reports Server (NTRS)

    Johnson, Megan R.; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Aura's Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Aura's frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under noslew operations.

  12. Orbital dynamics and equilibrium points around an asteroid with gravitational orbit-attitude coupling perturbation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Xu, Shijie

    2015-10-01

    The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit-attitude coupling of the spacecraft. This gravitational orbit-attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.

  13. Automated GPS-based operational orbit determination

    NASA Astrophysics Data System (ADS)

    Meek, Matthew Cameron

    Satellite operations depend on being able to generate accurate predictions of a spacecraft's orbit in a very short period of time, typically a few hours, after observations are made. The satellite ephemeris generated in this process is used by mission controllers for planning operations such as vehicle pointing and orbit adjust generation. The research described in this dissertation, investigates the methods and parameterizations necessary to achieve a fast and accurate ephemeris. To accomplish these investigations, an automated system is used. Two distinct spacecraft missions are discussed. They each have specific goals that must be met by their operational orbit determination systems. The first is ICESat, a scientific satellite that is part of NASA's Earth Observation System (EOS), and is operated by the Laboratory for Atmospheric and Space Physics (LASP). The primary OD requirement for ICESat is to provide predictions accurate to 10 meters cross-track for 48 hours to accomplish instrument pointing planning. The second mission is Quick-Bird, a commercial imaging satellite that is owned and operated by Digital Globe, Inc. QuickBird requires post-processed orbits with 3 meters (1sigma) accuracy in total position and 30 day orbit predictions to accomplish imagery planning. A variety of measurement processing schemes and error corrections are explored for each of these spacecraft. It is shown that it is possible to achieve approximately one meter (1sigma) orbits for both spacecraft in a orbit determination system that is designed for use in spacecraft operations. In the ICESat case, it was found that using single-differenced measurements met the requirements while reducing both the processing time and the logistical load for importing external data. QuickBird benefitted from the addition of the DRVID method of ionospheric removal and from using double-differenced measurements.

  14. Spacetime and orbits of bumpy black holes

    SciTech Connect

    Vigeland, Sarah J.; Hughes, Scott A.

    2010-01-15

    Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.

  15. Homoclinic orbit to a center manifold Patrick Bernard

    E-print Network

    Homoclinic orbit to a center manifold Patrick Bernard janvier 2000 Introduction A saddle-center #12 and #12;lled with periodic orbits. Each of these periodic orbits is the transversal intersection between are interested in the existence of orbits homoclinic to these periodic trajectories. Let us consider an initial

  16. The port side view of the Orbiter Discovery while mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The port side view of the Orbiter Discovery while mounted atop the 76-wheeled orbiter transfer system as it is being rolled from the Orbiter Processing Facility to the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. The starboard side view of the Orbiter Discovery while mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The starboard side view of the Orbiter Discovery while mounted atop the 76-wheeled orbiter transfer system as it is being rolled from the Orbiter Processing Facility to the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  19. 1 Objects in Turtle a satellite circulating an orbiting planet

    E-print Network

    Verschelde, Jan

    Outline 1 Objects in Turtle a satellite circulating an orbiting planet 2 Encapsulation data hiding circulating an orbiting planet 2 Encapsulation data hiding polynomials in one variable 3 Inheritance base March 2015 3 / 41 #12;Moon circles orbiting Earth running orbiting.py The sun is yellow, the earth

  20. General view of the Orbiter Discovery on runway 33 at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery on runway 33 at Kennedy Space Center shortly after landing. The orbiter is processed and prepared for being towed to the Orbiter Processing Facility for continued post flight processing and pre flight preparations for its next mission. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Spin-Orbit Splitting (Lande) Factors Russell M. Pitzer

    E-print Network

    Pitzer, Russell M.

    Spin-Orbit Splitting (Land´e) Factors Russell M. Pitzer Department of Chemistry The Ohio State, the spin-orbit splitting constant for an electronic state of an atom may be expressed as a linear combination of one-electron radial orbital integrals, with coefficients called spin-orbit splitting or Land

  2. Frozen Natural Orbital for open-shell systems within

    E-print Network

    Krylov, Anna I.

    Frozen Natural Orbital (FNO) for open-shell systems within Equation of motion-coupled cluster (EOM-CC) approach Arik Landau Anna I. Krylov #12;Frozen Natural Orbital (FNO) for ionized states within Equation #12;Motivation · Frozen virtual orbitals (very-high energy orbitals) Limited reduction

  3. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar radiation force for several hours. The effects of these events on orbit determination ac

  4. The Orbits of the Regular Jovian Satellites

    NASA Astrophysics Data System (ADS)

    Jacobson, R.

    2014-04-01

    At the conclusion of the Galileo Mission we produced ephemerides for the Galilean and four inner Jovian satellites, Amalthea, Thebe, Adrastea, and Metis [1]. The satellite orbits were determined by fitting a data set that included Earthbased astrometry through 2001 and data acquired by the Pioneer, Voyager, Ulysses, Cassini, and Galileo spacecraft. The spacecraft tracking data provided additional information on the Jovian system gravity parameters. In preparation for the Juno mission currently enroute to Jupiter, we have been developing new ephemerides from updated satellite orbits. As before, the orbits are determined through a comprehensive data fit which also redetermines the gravity parameters and spacecraft trajectories to be consistent with the revised satellite orbits. Our standard model for the orbits, both satellite and spacecraft, is a numerical integration of their equations of motion. We include the gravitational effects of the point mass mutual interactions of Jupiter, the Galilean satellites, and Amalthea (Thebe, Adrastea, and Metis are assumed to be massless), the effects of an oblate Jupiter, and perturbations from the Sun and planets. For our new orbits we also take into account the effects of tides raised on Jupiter by the satellites. Lainey et al. [4] have pointed out the importance of the tidal accelerations. The spacecraft are also affected by nongravitational forces, e.g., solar radiation pressure, trajectory correction maneuvers. These forces are discussed by several authors [2, 3, 5]. Our current data set is an expansion of that used previously. We have extended the Galilean satellite Earthbased astrometry back to 1891 and forward to 2013 and the inner satellite astrometry back to 1892 and forward to 2002. We added the Galilean satellite mutual events from 2003 and 2009, the Galilean satellite eclipse timings from 1878 to 2013, and the Earthbased radar ranges to Ganymede and Callisto measured in 1992. We also augmented our spacecraft data set with imaging acquired by the New Horizons spacecraft when it flew through the Jovian system in February 2007. In this paper we present the results of our latest determination of the satellite orbits and associated gravity parameters. We compare the orbits and gravity parameters to those that we found previously and our tidal parameters to those of Lainey et al.. We comment on possible future modifications and enhancements before our ephemeris delivery to the Juno Project for orbital operations.

  5. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities, as well as relative positions and velocities in space. The second novelty is that ordinarily one requires many satellites in order to achieve full navigation of any given customer s position and velocity over time. With LiAISON navigation, only a single navigation satellite is needed, provided that the satellite is significantly affected by the gravity of the Earth and the Moon. That single satellite can track another satellite elsewhere in the Earth- Moon system and obtain absolute knowledge of both satellites states.

  6. Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits

    SciTech Connect

    Correia, Alexandre C. M.; Robutel, Philippe

    2013-12-10

    Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies n ± k?/2, where n is the orbital mean motion, ? the orbital libration frequency, and k an integer. In addition, when the natural rotational libration frequency due to the axial asymmetry, ?, has the same magnitude as ?, the rotation becomes chaotic. Saturn coorbital satellites are synchronous since ? << ?, but coorbital exoplanets may present non-synchronous or chaotic rotation. Our results prove that the spin dynamics of a body cannot be dissociated from its orbital environment. We further anticipate that a similar mechanism may affect the rotation of bodies in any mean-motion resonance.

  7. Gaussian-Type Orbitals versus Slater-Type Orbitals: A Comparison

    ERIC Educational Resources Information Center

    Magalha~es, Alexandre L.

    2014-01-01

    The advantages of Gaussian-type orbitals (GTO) over Slater-type orbitals (STO) in quantum chemistry calculations are clarified here by means of a holistic approach. The popular Microsoft Office Excel program was used to create an interactive application with which students are able to explore the features of GTO, including automatic calculations…

  8. Ionospheric refraction effects on orbit determination using the orbit determination error analysis system

    NASA Technical Reports Server (NTRS)

    Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.

    1990-01-01

    The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.

  9. Conceptual design of an orbital debris collector

    NASA Technical Reports Server (NTRS)

    Odonoghue, Peter (editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas

    1991-01-01

    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.

  10. The last orbit of binary black holes

    E-print Network

    M. Campanelli; C. O. Lousto; Y. Zlochower

    2006-01-23

    We have used our new technique for fully numerical evolutions of orbiting black-hole binaries without excision to model the last orbit and merger of an equal-mass black-hole system. We track the trajectories of the individual apparent horizons and find that the binary completed approximately one and a third orbits before forming a common horizon. Upon calculating the complete gravitational radiation waveform, horizon mass, and spin, we find that the binary radiated 3.2% of its mass and 24% of its angular momentum. The early part of the waveform, after a relatively short initial burst of spurious radiation, is oscillatory with increasing amplitude and frequency, as expected from orbital motion. The waveform then transitions to a typical `plunge' waveform; i.e. a rapid rise in amplitude followed by quasinormal ringing. The plunge part of the waveform is remarkably similar to the waveform from the previously studied `ISCO' configuration. We anticipate that the plunge waveform, when starting from quasicircular orbits, has a generic shape that is essentially independent of the initial separation of the binary.

  11. Earth orbital variations and vertebrate bioevolution

    NASA Technical Reports Server (NTRS)

    Mclean, Dewey M.

    1988-01-01

    Cause of the Pleistocene-Holocene transition mammalian extinctions at the end of the last age is the subject of debate between those advocating human predation and climate change. Identification of an ambient air temperature (AAT)-uterine blood flow (UBF) coupling phenomenon supports climate change as a factor in the extinctions, and couples the extinctions to earth orbital variations that drive ice age climatology. The AAT-UBF phenomenon couples mammalian bioevolution directly to climate change via effects of environmental heat upon blood flow to the female uterus and damage to developing embryos. Extinctions were in progress during climatic warming before the Younger Dryas event, and after, at times when the AAT-UBF couple would have been operative; however, impact of a sudden short-term cooling on mammals in the process of adapting to smaller size and relatively larger S/V would have been severe. Variations in earth's orbit, and orbital forcing of atmospheric CO2 concentrations, were causes of the succession of Pleistocene ice ages. Coincidence of mammalian extinctions with terminations of the more intense cold stages links mammalian bioevolution to variations in earth's orbit. Earth orbital variations are a driving source of vertebrate bioevolution.

  12. Distributed earth model/orbiter simulation

    NASA Technical Reports Server (NTRS)

    Geisler, Erik; Mcclanahan, Scott; Smith, Gary

    1989-01-01

    Distributed Earth Model/Orbiter Simulation (DEMOS) is a network based application developed for the UNIX environment that visually monitors or simulates the Earth and any number of orbiting vehicles. Its purpose is to provide Mission Control Center (MCC) flight controllers with a visually accurate three dimensional (3D) model of the Earth, Sun, Moon and orbiters, driven by real time or simulated data. The project incorporates a graphical user interface, 3D modelling employing state-of-the art hardware, and simulation of orbital mechanics in a networked/distributed environment. The user interface is based on the X Window System and the X Ray toolbox. The 3D modelling utilizes the Programmer's Hierarchical Interactive Graphics System (PHIGS) standard and Raster Technologies hardware for rendering/display performance. The simulation of orbiting vehicles uses two methods of vector propagation implemented with standard UNIX/C for portability. Each part is a distinct process that can run on separate nodes of a network, exploiting each node's unique hardware capabilities. The client/server communication architecture of the application can be reused for a variety of distributed applications.

  13. THE ORBIT OF CHARON IS CIRCULAR

    SciTech Connect

    Buie, Marc W.; Tholen, David J.; Grundy, William M. E-mail: tholen@ifa.hawaii.edu

    2012-07-15

    We present a detailed analysis of the orbit of Charon where we show its orbit to be circular. This analysis explores the effects of surface albedo variations on the astrometry and the resulting errors in the orbital elements. We present two new epochs of data from the Hubble Space Telescope taken in 2008 and 2010 and combine that with a re-analysis of previously published data from 1992 and 2002. Our adopted two-body Keplerian orbital elements for Charon are P = 6.3872273 {+-} 0.0000003 days, a = 19573 {+-} 2 km, e = 0., i = 96.218 {+-} 0.008 deg, L = 4.50177 {+-} 0.00018 rad, and {Omega} = 3.89249 {+-} 0.00012 rad for an epoch of JDT = 2452600.5 in the J2000 reference frame. The 1{sigma} upper limit to the eccentricity is 7.5 Multiplication-Sign 10{sup -5}. The predicted uncertainty in the position of Charon relative to Pluto at the time of the New Horizons encounter based on this orbit is 8 km.

  14. Analytic Orbit Propagation for Transiting Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Eggl, Siegfried

    2015-04-01

    The analytical framework presented herein fully describes the motion of coplanar systems consisting of a stellar binary and a planet orbiting both stars on orbital as well as secular timescales. Perturbations of the Runge-Lenz vector are used to derive short-period evolution of the system, while octupole secular theory is applied to describe its long-term behavior. A post-Newtonian correction on the stellar orbit is included. The planetary orbit is initially circular and the theory developed here assumes that the planetary eccentricity remains relatively small ({{e}2}\\lt 0.2). Our model is tested against results from numerical integrations of the full equations of motion and is then applied to investigate the dynamical history of some of the circumbinary planetary systems discovered by NASA’s Kepler spacecraft. Our results suggest that the formation history of the systems Kepler-34 and Kepler-413 has most likely been different from that of Kepler-16, Kepler-35, Kepler-38 and Kepler-64, since the observed planetary eccentricities for those systems are not compatible with the assumption of initially circular orbits.

  15. The Orbiter Stability Experiment on STS-40

    NASA Astrophysics Data System (ADS)

    Neupert, Werner M.; Epstein, Gabriel L.; Houston, James; Meese, Kenneth J.; Muney, William S.; Plummer, Thomas B.; Russo, Frank P.

    1992-10-01

    The Orbiter Stability Experiment (OSE) was developed to evaluate the steadiness of the STS Orbiter as a potential platform for instrumentation that would image the Sun in its extreme ultraviolet and soft X-ray radiations. We were interested in any high frequency motions of the Orbiter's orientation due to normal operations and manned activities. Preliminary results are presented of the observations. Other than the expected slow motion of the Orbiter within the specified angular deadband of 0.1 degrees during the observations, it was found that high frequency (above 1 Hz) angular motions (jitter) were not detectable at the 0.25 arc sec detection limit of the most sensitive detector, for most of the period of observation. No high frequency motions were recorded during intervals that were identified with vernier thruster firings. However, one short interval with detectable spectral power to a frequency of 10 Hz has been found to date. It has not yet been correlated with a particular activity going on at the time. The results of the observations may also be of value in assessing perturbations to the Orbiter's micro-gravity environment produced by normal operations.

  16. The Orbiter Stability Experiment on STS-40

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.; Epstein, Gabriel L.; Houston, James; Meese, Kenneth J.; Muney, William S.; Plummer, Thomas B.; Russo, Frank P.

    1992-01-01

    The Orbiter Stability Experiment (OSE) was developed to evaluate the steadiness of the STS Orbiter as a potential platform for instrumentation that would image the Sun in its extreme ultraviolet and soft X-ray radiations. We were interested in any high frequency motions of the Orbiter's orientation due to normal operations and manned activities. Preliminary results are presented of the observations. Other than the expected slow motion of the Orbiter within the specified angular deadband of 0.1 degrees during the observations, it was found that high frequency (above 1 Hz) angular motions (jitter) were not detectable at the 0.25 arc sec detection limit of the most sensitive detector, for most of the period of observation. No high frequency motions were recorded during intervals that were identified with vernier thruster firings. However, one short interval with detectable spectral power to a frequency of 10 Hz has been found to date. It has not yet been correlated with a particular activity going on at the time. The results of the observations may also be of value in assessing perturbations to the Orbiter's micro-gravity environment produced by normal operations.

  17. Spin-orbit engineering in perovskite heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Byounghak; Khalsa, Guru

    2015-03-01

    There has been a steadily increasing interest in spin-orbit effects in systems with broken inversion symmetry. These effects may have technological applicability due to recent success in inducing dynamics and switching across heavy metal/ferromagnet interfaces through spin-orbit torque. In addition, broken inversion symmetry and large spin-orbit interactions can lead to novel magnetic and superconducting properties. Little effort has focused on developing a materials platform for studying these effects systematically. The versatility of perovskites along with recent advances in their epitaxial growth may provide such a playground. In this talk we discuss our theoretical efforts to engineer spin-orbit effects in materials systems based on perovskites. We show that Ruddlesden-Popper perovskites provide control of both spin-orbit strength and atomic scale broken inversion symmetry, providing new avenues for customizable materials. Using ab initio tools, we predict the spin-splitting in SrTiO3 and KTaO3 based Ruddlesden-Popper perovskites and contrast results with bare surfaces and interfaces.

  18. Gateway: An earth orbiting transportation node

    NASA Technical Reports Server (NTRS)

    1988-01-01

    University of Texas Mission Design (UTMD) has outlined the components that a space based transportation facility must include in order to support the first decade of Lunar base buildup. After studying anticipated traffic flow to and from the hub, and taking into account crew manhour considerations, propellant storage, orbital transfer vehicle maintenance requirements, and orbital mechanics, UTMD arrived at a design for the facility. The amount of activity directly related to supporting Lunar base traffic is too high to allow the transportation hub to be part of the NASA Space Station. Instead, a separate structure should be constructed and dedicated to handling all transportation-related duties. UTMD found that the structure (named Gateway) would need a permanent crew of four to perform maintenance tasks on the orbital transfer and orbital maneuvering vehicles and to transfer payload from launch vehicles to the orbital transfer vehicles. In addition, quarters for 4 more persons should be allocated for temporary accommodation of Lunar base crew passing through Gateway. UTMD was careful to recommend an expendable structure that can adapt to meet the growing needs of the American space program.

  19. Orbital floor reconstruction with resorbable polydioxanone implants.

    PubMed

    Gierloff, Matthias; Seeck, Niels Gunnar Karl; Springer, Ingo; Becker, StephanThomas; Kandzia, Christian; Wiltfang, Jörg

    2012-01-01

    Many different materials are proposed for reconstruction of traumatic orbital floor defects. Donor-site morbidity of autologous transplants and infections or extrusions of nonresorbable implants lead to a widespread use of resorbable, alloplastic materials such as polydioxanone (PDS). The goal of this study was to evaluate the prevalence of orbital floor fracture-related problems after surgical treatment using PDS. Ophthalmologic and clinical examinations were performed at 194 patients before orbital floor reconstruction, 14 days and 6 months after surgery (approximate defect sizes: <1 cm², n=50; 1-2 cm², n=97; >2 cm², n=47). Clinical findings including the ocular motility, the sensibility of the infraorbital nerve, and the position of the globe were evaluated. For statistical analysis of categorical data, confidence intervals of percentages were determined. Linear relationships between 2 variables were assessed with Pearson correlation analysis. A reduced ocular motility was diagnosed in 60 patients (31%) before surgery; in 14 patients (7%), 2 weeks; and in 10 patients (5%), 6 months after surgery. Infraorbital hypesthesia was found in 120 patients (62%) before surgery; in 47 patients (24%), 2 weeks; and in 35 patients (18%), 6 months after surgery. An enophthalmos was present in 10 patients (5%) before surgery, and in 4 patients (2%), 6 months after surgery. Our data suggest that PDS is a suitable implant for orbital floor reconstruction with acceptable low rates of infraorbital hypesthesia, bulbus motility disturbances, and enophthalmos. Polydioxanone can also be used for orbital floor defects exceeding 2 cm². PMID:22337397

  20. Evolution of star clusters on eccentric orbits

    E-print Network

    Cai, Maxwell Xu; Heggie, Douglas C; Varri, Anna Lisa

    2015-01-01

    We study the evolution of star clusters on circular and eccentric orbits using direct $N$-body simulations. We model clusters with initially $N=8{\\rm k}$ and $N=16{\\rm k}$ single stars of the same mass, orbiting around a point-mass galaxy. For each orbital eccentricity that we consider, we find the apogalactic radius at which the cluster has the same lifetime as the cluster with the same $N$ on a circular orbit. We show that then, the evolution of bound particle number and half-mass radius is approximately independent of eccentricity. Secondly, when we scale our results to orbits with the same semi-major axis, we find that the lifetimes are, to first order, independent of eccentricity. When the results of Baumgardt and Makino for a singular isothermal halo are scaled in the same way, the lifetime is again independent of eccentricity to first order, suggesting that this result is independent of the Galactic mass profile. From both sets of simulations we empirically derive the higher order dependence of the lif...