Science.gov

Sample records for earth-trailing heliocentric orbit

  1. Low thrust transfer optimisation of satellites formations to heliocentric Earth trailing orbits through a gradient restoration algorithm

    NASA Astrophysics Data System (ADS)

    Bastante, J. C.; Caramagno, A.; Peñín, L. F.; Belló-Mora, M.; Rodríguez-Canabal, J.

    2004-08-01

    When dealing with mission requirements calling for highly stable gravitational and thermal environments, one of the common options always considered is that of the heliocentric Earth trailing orbits (HETO). This is the case, for instance, of the Laser Interferometer Space Antenna (LISA), a joint ESA-NASA effort aimed at detecting gravitational radiation from deep-space sources, hence testing the fundamental gravitational theories. This article is about the low-thrust transfer trajectory optimisation for a three-satellites flotilla to a HETO. To this end, and after a brief presentation of the selected reference mission (LISA), a five impulses transfer strategy is conceived to build a solution guess for the ignition of the Sequential Gradient Restoration Algorithm (SGRA), which solves the full optimal control problem (FOCP) of finding the optimal low thrust profiles injecting each SC to its respective target orbit while minimising a given functional. An inequality path constraint on the Solar Aspect Angle (SAA) is imposed on the low-thrust vector of each SC. Finally several relevant conclusions are derived from the presented results, among them the direct relationship between the departure velocity from Earth, the final SC masses and the transfer duration.

  2. Modeling atmospheric drag effect on Mangalyaan Mars orbiter during geocentric, heliocentric and areocentric trajectories

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    2016-07-01

    Interplanetary missions are susceptible to gravitational and non-gravitational perturbing forces at every trajectory phase, assuming that the man made rockets and thrusters work as expected. These forces are mainly due to planetary and solar-forcing-induced perturbations during geocentric, heliocentric and Martian trajectories, and before orbit insertion. In this study, we analyzed perturbing forces and their possible effects on interplanetary and/or Mars mission satellites, before Orbit Insertion. We also model the significance of atmospheric drag force on Mangalyaan Mars orbiter mission, as a function of appropriate space environmental parameters during its 28 days in Earth's orbit (around and during perigee passage), 300 days of heliocentric and 100 days of Martian trajectory based on Earth-Mars atmosphere density ratio.

  3. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  4. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  5. Secular influence of change in the heliocentric gravitation constant GM ⊙ on evolution of orbits of Meteor Streams

    NASA Astrophysics Data System (ADS)

    Li, Lin-Sen

    2016-06-01

    The Secular influence of the change in the heliocentric gravitational constant on the evolution of orbits of Meteor Streams is examined by using the method of celestial mechanics with variable mass and variable gravitational constant. The change in the heliocentric gravitational constant includes the combined changes in the sun's mass and gravitational constant obtained from the modern observation of planets and spacecraft. The perturbation equations are solved by expanding series with mean anomaly. The solutions of the secular and periodic variation of orbital elements are derived. The theoretical results for the secular variables of the semi-major axes, solar distances at perihelion and orbital periods are given for three Meteor Streams: Dracorids, Quadrantids, and Ursids. The numerical results are shown in Table 2. The discussion and conclusion are drawn.

  6. Probes to the Inferior Planets - A New Dawn for NEO and IEO Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth's?

    NASA Astrophysics Data System (ADS)

    Grundmann, J. T.; Mottola, S.; Drentschew, M.; Drobczyk, M.; Kahle, R.; Maiwald, V.; Quantius, D.; Zabel, P.; Van Zoest, T.

    2011-11-01

    With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence. Several missions to Venus and Mercury are planned to follow in this decade. Increased interest in the inferior planets is accompanied by several missions designed to study the Sun and the interplanetary medium (IPM) from a position near or in Earth orbit, such as the STEREO probes and SDO. These augment established solar observation capabilities at the Sun-Earth L1 Lagrangian point such as the SOHO spacecraft. Thus, three distinct classes of spacecraft operate or observe interior to Earth's orbit. All these spacecraft carry powerful multispectral cameras optimized for their respective primary targets. MESSENGER is scheduled to end its six-year interplanetary cruise in March 2011 to enter Mercury orbit, but a similarly extended cruise with several gravity-assists awaits the European Mercury mission BEPICOLOMBO. Unfortunately, the automatic abort of the orbit insertion manoeuvre has also left AKATSUKI (a.k.a. Venus Climate Orbiter (VCO), Planet-C) stranded in heliocentric orbit. After an unintended fly-by, the probe will catch up with Venus in approximately six years. Meanwhile, it stays mostly interior to Venus in a planet-leading orbit. In addition to the study of comets and their interaction with the IPM, observations of small bodies akin to those carried out by outer solar system probes are occasionally attempted with the equipment available. The study of structures in the interplanetary dust (IPD) cloud has been a science objective during the cruise phase of the Japanese Venus probe AKATSUKI from Earth to Venus. IPD observations in the

  7. Orbital motions of astronomical bodies and their centre of mass from different reference frames: a conceptual step between the geocentric and heliocentric models

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Simeão Carvalho, Paulo

    2016-09-01

    The motion of astronomical bodies and the centre of mass of the system is not always well perceived by students. One of the struggles is the conceptual change of reference frame, which is the same that held back the acceptance of the Heliocentric model over the Geocentric one. To address the question, the notion of centre of mass, motion equations (and their numerical solution for a system of multiple bodies), and change of frame of reference is introduced. The discussion is done based on conceptual and real world examples, using the solar system. Consequently, through the use of simple ‘do it yourself’ methods and basic equations, students can debate complex motions, and have a wider and potentially effective understanding of physics.

  8. Kepler's winding Path to true Heliocentrism

    NASA Astrophysics Data System (ADS)

    Bialas, Volker

    The paper concerns the evolution of concepts by Johannes Kepler from Aristotelian conception of the Universe to Heliocentrism. Already as young Magister in Tubingen Kepler has taken an active part in Physical disputations of the candidates and has defended the doctrines of Copernik (1). In the Mysterium Cosmographicum he refers the planetary distances no longer to the center of the earth's orbit, but to the center of the true sun. But just by working out his Astronomia Nova Kepler succeeds in creating a strictly heliocentric astronomy as his handwriting Manuscripts give detailed information (2). Notes: 1) fragmentum orations de motu terrae. In Keppler Gesammelte werke Vol. 20.1, Munich 1988, p. 147-149 2) Commentaria in Theoriam Martis. Edition in: Kepler Gessamelete Werke Vol. 20.2 (in preparation)

  9. Simulations of the Solar Orbiter spacecraft interactions with the Solar wind at different heliocentric distances: effects on SWA-EAS measurements

    NASA Astrophysics Data System (ADS)

    Guillemant, S.; Genot, V. N.; Matéo Vélez, J.; Sarrailh, P.; Louarn, P.; Maksimovic, M.; Owen, C. J.; Hilgers, A. M.

    2013-12-01

    This presentation focuses on numerical simulations of the Solar Orbiter spacecraft/plasma interactions performed with the Spacecraft Plasma Interaction System (SPIS) software (http://dev.spis.org/projects/spine/home/spis/). This toolkit aims at modelling spacecraft-plasma interactions, based on an electrostatic 3-D unstructured particle-in-cell plasma model. New powerful SPIS functionalities were recently delivered within the extension of the software: SPIS-Science (ESA contract). This version revolutionizes spacecraft/plasma interactions as users are now able to model and configure plasma instrument such as Langmuir probes or particle detectors taking into account instrument characteristics like geometry, materials, energy ranges and resolution, output frequency, field of view ... In the validation context of SPIS-Science functionalities, a simulation campaign was carried out, including several cases of the ESA Solar Orbiter mission. The results presented here specifically focus on particle measurements through the modelling of the Solar Wind Analyzer - Electron Analyzer System instrument (SWA-EAS). Simulations of the spacecraft in different environments have been performed and extensively analysed. A detailed analysis will be presented concerning 1/ the satellite charging and, in particular, differential potentials on the dielectric surfaces of the Solar panels and the High Gain Antenna, which may severely affect low energy EAS measurements, 2/ the surrounding plasma behaviour : potential barriers for secondary and photoelectrons of about -5 V around the vehicle are indeed observed at the mission perihelion of 0.28 AU from the Sun and 3/ a quantification of biases on EAS measurements due to the combined effects of surface potentials, ion wake, and potential barriers. This work proposes a general framework to prepare the analysis of the future Solar Orbiter measurements.

  10. A Space weather information service based upon remote and in-situ measurements of coronal mass ejections heading for Earth. A concept mission consisting of six spacecraft in a heliocentric orbit at 0.72 AU

    NASA Astrophysics Data System (ADS)

    Ritter, Birgit; Meskers, Arjan J. H.; Miles, Oscar; Rußwurm, Michael; Scully, Stephen; Roldán, Andrés; Hartkorn, Oliver; Jüstel, Peter; Réville, Victor; Lupu, Sorina; Ruffenach, Alexis

    2015-02-01

    The Earth's magnetosphere is formed as a consequence of interaction between the planet's magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past 40 years with the intention of understanding and forecasting solar behavior. One of these phenomena in particular, Earth-bound interplanetary coronal mass ejections (CMEs), can significantly disturb the Earth's magnetosphere for a short time and cause geomagnetic storms. This publication presents a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic field's orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the aforementioned CME properties. The obtained data can additionally be used for updating scientific models. This update is the mission's secondary objective. In-situ measurements are performed using a Solar Wind Analyzer instrumentation package and fluxgate magnetometers, while for remote measurements coronagraphs are employed. The proposed instruments originate from other space missions with the intention to reduce mission costs and to streamline the mission design process. Communication with the six identical spacecraft is realized via a deep space network consisting of six ground stations. They provide an information service that is in uninterrupted contact with the spacecraft, allowing for continuous space weather monitoring. A dedicated data processing center will handle all the data, and then forward the processed data to the SSA Space Weather Coordination Center which will, in turn, inform the general public through a space weather forecast. The data processing center will

  11. Comprehensive investigation of the dynamics of micron and submicron lunar ejecta in heliocentric space

    SciTech Connect

    Hargrave, A.D.

    1984-01-01

    The forces which act on micron and submicron dust particles in interplanetary space are studied in detail. Particular attention is given to Mie scattering theory as it applies to the calculation of the force due to radiation pressure. All of the forces are integrated into a computer model to study the heliocentric orbits of lunar ejecta. It is shown that lunar ejecta contribute to a geocentric dust cloud, as well as to a heliocentric dust belt.

  12. Solar Sail Optimal Orbit Transfers to Synchronous Orbits

    NASA Technical Reports Server (NTRS)

    Powers, Robert B.; Coverstone, Victoria; Prussing, John E.; Lunney, Bryan C. (Technical Monitor)

    1999-01-01

    A constant outward radial thrust acceleration can be used to reduce the radius of a circular orbit of specified period. Heliocentric circular orbits are designed to match the orbital period of Earth or Mars for various radial thrust accelerations and are defined as synchronous orbits. Minimum-time solar sail orbit transfers to these synchronous heliocentric orbits are presented.

  13. Ancient Greek Heliocentric Views Hidden from Prevailing Beliefs?

    NASA Astrophysics Data System (ADS)

    Liritzis, Ioannis; Coucouzeli, Alexandra

    2008-03-01

    We put forward the working hypothesis that the heliocentric, rather than the geocentric view, of the Solar System was the essential belief of the early Greek philosophers and astronomers. Although most of them referred to the geocentric view, it is plausible that the prevalent religious beliefs about the sacred character of the Earth as well as the fear of prosecution for impiety (asebeia) prevented them from expressing the heliocentric view, even though they were fully aware of it. Moreover, putting the geocentric view forward, instead, would have facilitated the reception of the surrounding world and the understanding of everyday celestial phenomena, much like the modern presentation of the celestial sphere and the zodiac, where the Earth is at the centre and the Sun makes an apparent orbit on the ecliptic. Such an ingenious stance would have set these early astronomers in harmony with the dominant religious beliefs and, at the same time, would have helped them to 'save the appearances', without sacrificing the essence of their ideas. In Hellenistic and Roman times, the prevailing view was still the geocentric one. The brilliant heliocentric theory advanced by Aristarchos in the early third century B.C. was never established, because it met with hostility in Athens - Aristarchos was accused of impiety and faced the death penalty. The textual evidence suggests that the tight connection which existed between religion and the city-state (polis) in ancient Greece, and which led to a series of impiety trials against philosophers in Athens during the fifth and fourth centuries B.C., would have made any contrary opinion expressed by the astronomers seem almost a high treason against the state.

  14. Comet Hale-Bopp at large heliocentric distance

    NASA Astrophysics Data System (ADS)

    Ford, Holland

    2002-07-01

    The objective is to determine the size, shape, and possible presence of a small, possibly bound, companion. The latter has been reported by Marchis et al. using the ADONIS adaptive optics system on the ESO 3.6 meter telescope. They claim separations of the two components of 0.23'' {November 1997} and 0.36'' {January 1998} when the comet was 3.3 and 4.1 AU from the Sun. Such a companion is not evident in any STIS images recorded by Weaver et al., but these were single snapshots in time and the companion may have been occulted. The discovery of a bound companion, and the subsequent determination of its orbital period, would provide the first determination of a cometary mass and the density of a cometary nucleus. At large heliocentric distances there will still be residual dust coma so the highest possible spatial resolution {HRC near 300 nm} is needed to model the coma and photometrically isolate the nucleus. The near infrared is best suited for evaluation of the spatial distribution of the dust coma. With proper choice of filter it is also possible to search for a gas coma {CN at 388 nm}. Ideally the comet should be imaged over a complete 11.3 hour rotation period, but a half period would be sufficient to obtain an idea of the shape of the reflecting body. Hale-Bopp is visible throughout 2002. During the period 1 March 2002 to 28 February 2003 the heliocentric distance increases from 15.2 to 17.3 AU. The expected nucleus magnitude {visible} is 16.5-17.0

  15. Microlensing Parallax for Observers in Heliocentric Motion

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Scarpetta, G.

    2016-06-01

    Motivated by the ongoing Spitzer observational campaign, and the forthcoming K2 one, we revisit, working in an heliocentric reference frame, the geometrical foundation for the analysis of the microlensing parallax, as measured with the simultaneous observation of the same microlensing event from two observers with relative distance of order au. For the case of observers at rest, we discuss the well-known fourfold microlensing parallax degeneracy and determine an equation for the degenerate directions of the lens trajectory. For the case of observers in motion, we write down an extension of the Gould relationship between the microlensing parallax and the observable quantities and, at the same time, highlight the functional dependence of these same quantities from the timescale of the underlying microlensing event. Furthermore, through a series of examples, we show the importance of taking into account themotion of the observers to correctly recover the parameters of the underlying microlensing event. In particular, we discuss the cases of the amplitude of the microlensing parallax and that of the difference of the timescales between the observed microlensing events, which are key to understand the breaking of the microlensing parallax degeneracy. Finally, we consider the case of the simultaneous observation of the same microlensing event from the ground and two satellites, a case relevant for the expected joint K2 and Spitzer observational programs in 2016.

  16. Heliocentric zoning of the asteroid belt by aluminum-26 heating

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.; Mcsween, H. Y., Jr.

    1993-01-01

    Variations in petrology among meteorites attest to a strong heating event early in solar system history, but the heat source has remained unresolved. Aluminum-26 has been considered the most likely high-energy, short-lived radionuclide (half-life 0.72 million years) since the discovery of its decay product - excess Mg-26 - in Allende CAI's. Furthermore, observation of relict Mg-26 in an achondritic clast and in feldspars within ordinary chondrites (3,4) provided strong evidence for live Al-26 in meteorite parent bodies and not just in refractory nebular condensates. The inferred amount of Al-26 is consistent with constraints on the thermal evolution of both ordinary and carbonaceous chondrite parent objects up to a few hundred kilometers in diameter. Meteorites can constrain the early thermal evolution of their parent body locations, provided that a link can be established between asteroid spectrophotometric signature and meteorite class. Asteroid compositions are heliocentrically distributed: objects thought to have experienced high metamorphic or even melting temperatures are located closer to the sun, whereas apparently unaltered or mildly heated asteroids are located farther away. Heliocentric zoning could be the result of Al-26 heating if the initial amount of the radionuclide incorporated into planetesimals was controlled by accretion time, which in turn varies with semimajor axis. Analytic expressions for planetary accretion may be integrated to given the time, tau, required for a planetesimal to grow to a specified radius: tau varies as a(sup n), where n = 1.5 to 3 depending on the assumptions about variations in the surface density of the planetesimal swarm. Numerical simulations of planetesimal accretion at fixed semimajor axis demonstrate that variations in accretion time among small planetesimals can be strongly nonlinear depending on the initial conditions and model assumptions. The general relationship with semimajor axis remains valid because it

  17. Feasibility study of a single, elliptical heliocentric Earth-Mars trajectory

    NASA Technical Reports Server (NTRS)

    Blake, M.; Fulgham, K.; Westrup, S.

    1989-01-01

    The initial intent of this design project was to evaluate the existence and feasibility of a single elliptical heliocentric Earth/Mars trajectory. This trajectory was constrained to encounter Mars twice in its orbit, within a time interval of 15 to 180 Earth days between encounters. The single ellipse restriction was soon found to be prohibitive for reasons shown later. Therefore, the approach taken in the design of the round-trip mission to Mars was to construct single-leg trajectories which connected two planets on two prescribed dates. Three methods of trajectory design were developed. Method 1 is an eclectic approach and employs Gaussian Orbit Determination (Method 1A) and Lambert-Euler Preliminary Orbit Determination (Method 1B) in conjunction with each other. Method 2 is an additional version of Lambert's Solution to orbit determination, and both a coplanar and a noncoplanar solution were developed within Method 2. In each of these methods, the fundamental variables are two position vectors and the time between the position vectors. In all methods, the motion was considered Keplerian motion and the reference frame origin was located at the sun. Perturbative effects were not considered in Method 1. The feasibility study of round-trip Earth/Mars trajectories maintains generality by considering only heliocentric trajectory parameters and planetary approach conditions. The coordinates and velocity components of the planets, for the standard epoch J2000, were computed from an approximate set of osculating elements by the procedure outlined in an ephemeris of coordinates.

  18. Proof-of-Concept Trajectory Designs for a Multi-Spacecraft, Low-Thrust Heliocentric Solar Weather Buoy Mission

    NASA Technical Reports Server (NTRS)

    Muller, Ronald; Franz, Heather; Roberts, Craig; Folta, Dave

    2005-01-01

    A new solar weather mission has been proposed, involving a dozen or more small spacecraft spaced at regular, constant intervals in a mutual heliocentric circular orbit between the orbits of Earth and Venus. These solar weather buoys (SWBs) would carry instrumentation to detect and measure the material in solar flares, solar energetic particle events, and coronal mass ejections as they flowed past the buoys, serving both as science probes and as a radiation early warning system for the Earth and interplanetary travelers to Mars. The baseline concept involves placing a mothercraft carrying the SWBs into a staging orbit at the Sun-Earth L1 libration point. The mothercraft departs the L1 orbit at the proper time to execute a trailing-edge lunar flyby near New Moon, injecting it into a heliocentric orbit with its perihelion interior to Earth s orbit. An alternative approach would involve the use of a Double Lunar Swingby (DLS) orbit, rather than the L1 orbit, for staging prior to this flyby. After injection into heliocentric orbit, the mothercraft releases the SWBs-all equipped with low-thrust pulsed plasma thrusters (PPTs)-whereupon each SWB executes a multi-day low-thrust finite bum around perihelion, lowering aphelion such that each achieves an elliptical phasing orbit of different orbital period from its companions. The resulting differences in angular rates of motion cause the spacecraft to separate. While the lead SWB achieves the mission orbit following an insertion burn at its second perihelion passage, the remaining SWBs must complete several revolutions in their respective phasing orbits to establish them in the mission orbit with the desired longitudinal spacing. The complete configuration for a 14 SWB scenario using a single mothercraft is achieved in about 8 years, and the spacing remains stable for at least a further 6 years. Flight operations can be simplified, and mission risk reduced, by employing two mothercraft instead of one. In this scenario: the

  19. Solar wind stream structure at large heliocentric distances Pioneer observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1987-01-01

    Time profiles and histograms of plasma data from Pioneers 10 and 11 are examined for the period between 1975 and 1983. During this time, Pioneer 10 traveled between a heliocentric distance of 8.7 and 30.4 AU. The velocity structure of the solar wind at these heliocentric distances is found to have one of two distinct forms: approximately 70 percent of the time the solar wind has a nearly flat velocity profile. Occasionally, this flat velocity profile is accompanied by quasi-periodic variations in density and in thermal speed consistent with the concept that the 'corotating interaction regions' which are produced by the interaction of high- and low-speed streams at intermediate heliocentric distances are replaced by 'pressure regions' in the outer heliosphere. The remaining 30 percent of the time the solar wind is marked by large (50-200 km/s) long-term (30-120 days) shifts in the average solar wind velocity.

  20. Differential impact cratering of Saturn's satellites by heliocentric impactors

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki

    2016-02-01

    Saturnian satellites are thought to have been struck by two different types of impactors: those with heliocentric origins and those with planetocentric origins. Many of the impacts are suggested to come from planetocentric debris, while many crater count studies assume an ecliptic comet origin when determining the ages of the surfaces. To assess the contribution of planetocentric impactors, this study examines the global distribution and apex-antapex asymmetry of impact craters on Rhea and Iapetus. The results demonstrate that the craters of Rhea (more than 20 km in diameter) and Iapetus (more than 30 km in diameter) show an apex-antapex asymmetry. This suggests that most of the large craters are formed from heliocentric impacts. In contrast, the craters less than 20 km in diameter seem to show no asymmetry. Possible explanations for this are either planetocentric impactor origins or saturation with impact craters.

  1. A photometric and dynamic study of comet C/2013 A1 (Siding Spring) from observations at a heliocentric distance of ~4.1 AU

    NASA Astrophysics Data System (ADS)

    Andrienko, Yu. S.; Golovin, A. V.; Ivanova, A. V.; Reshetnik, V. N.; Kolesnik, S. N.; Borisenko, S. A.

    2016-03-01

    An analysis is presented for the photometric data on comet C/2013 A1 (Siding Spring) from observations at a large heliocentric distance (~4.1 AU). Comet C/2013 A1 (Siding Spring) displays intense activity despite the relatively large heliocentric distance. The morphology of the comet's coma is analyzed. The following parameters are measured: the color indices V-R, the normalized spectral gradient of the reflectivity of the comet's dust S', and the dust production rate Afρ. A numerical simulation is performed for the evolution of the comet's orbit after a close encounter with Mars. The most probable values are obtained for the Keplerian orbital elements of the comet over a hundred-year period. The comet's orbit remains nearly parabolic after passing the orbits of all the Solar System planets.

  2. Heliocentric distance dependence of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.

    1977-01-01

    Recent and ongoing planetary missions have provided extensive observations of the variations of the Interplanetary Magnetic Field (IMF) both in time and with heliocentric distance from the sun. Large time variations in both the IMF and its fluctuations were observed. These are produced predominantly by dynamical processes in the interplanetary medium associated with stream interactions. Magnetic field variations near the sun are propagated to greater heliocentric distances, also contributing to the observed variablity of the IMF. Temporal variations on a time-scale comparable to or less than the corotation period complicate attempts to deduce radial gradients of the field and its fluctuations from the various observations. However, recent measurements inward to 0.46 AU and outward to 5 AU suggest that the radial component of the field on average decreases approximately as r to the minus second power, while the azimuthal component decreases more rapidly than the r to the minum first power dependence predicted by simple theory. This, and other observations, are discussed.

  3. Application of the heliocentric potential to aircraft dosimetry.

    PubMed

    O'Brien, Keran; Felsberger, Ernst; Kindl, Peter

    2005-01-01

    The heliocentric potential is the result of a steady-state solution to the diffusion equation of cosmic rays through the solar wind. The counting rate of any high-latitude, ground-level neutron monitor can be used to determine this potential, which will return cosmic ray spectra in real time. These spectra are routinely used to determine the radiation dose rate to which air crew are exposed during the precise hours of a flight, including the effects of quick decreases and Forbush decreases. Further, it has been used in an effort to calculate the radiation dose rate to air crew during an energetic solar particle event, as the cosmic ray background before the event must be determined. An alternate approach is to use the deceleration potential, which assumes a significant time-dependence of cosmic rays through the heliosphere. However, the theory behind it does not account for the behaviour of ground-level neutron monitors. PMID:16604656

  4. Heliocentric zoning of the asteroid belt by aluminum-26 heating

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; McSween, H. Y.

    1993-01-01

    The dependence of asteroid spectral class (and inferred composition and thermal history) on heliocentric radius has been held to be the result of heating by a solar energy source, most likely electrical induction, during the formation of the planetary system. Such variations in thermal history can be more simply explained by the presence of different amounts of the radionuclide aluminum-26, whose decay products are observed in meteorites, in planetesimals. These differences occurred naturally as a function of the increasing amount of time required to accrete objects farther from the sun, during which aluminum-26 decayed from its initial concentration in the solar nebula. Both theory and isotopic evidence suggest that increases in accretion time across the asteroid belt are of order several half-lives of aluminum-26, which is sufficient to produce the inferred differences in thermal history.

  5. 67P/Churyumov-Gerasimenko: start of activity and heliocentric light curve

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Bramich, D.; Boehnhardt, H.; Barrera, L.

    2012-09-01

    Comets are believed to be widely unmodified remnants from the formation of the solar system; their study can give important insights into the conditions prevailing at the time of the planetary system formation. After the success of the Giotto mission to comet 1P/Halley, the European Space Agency (ESA) approved in the early nineties a new space mission with a comet as main target: Rosetta, which will rendezvous with come 67P/Churyumov-Gerasimenko (67P/C-G) in 2014. 67P/C-G is a Jupiter family comet with orbital period of 6.56 years. Due to repeated encounters with Jupiter, the orbital evolution of 67P/C-G is chaotic. The last encounter in February 1959 occurred at a distance of only 0.0518 AU and produced drastic changes in perihelion distance, eccentricity, inclination, orbital period and possibly led to its discovery in 1969. After 67P/C-G was selected as target comet of Rosetta mission, observational campaigns and theoretical investigations were performed in order to establish a detailed portrait of 67P/C-G in preparation of the rendezvous with the spacecraft ([1], [2], [3], [4]). Here we present ground-based observations of 67P/CG obtained between July 2007 and March 2008 at ESO VLT using the FORS2 instrument. The comet was moving inbound, from 4.6 AU to 3.4 AU. The orbital arc covered by our observation is the same where 67P/C-G will be in 2014 when the rendezvous with the Rosetta spacecraft will take place, thus of highly interest for mission planning. Since the comet's activity around perihelion has shown similar behaviour during the last three orbital passages, it is fair to assume that the comet's behavior at large heliocentric distance has not changed from one orbital revolution to the other, leading us to expect that during its approach to 67P/CG, Rosetta will find the same conditions detected during our observations. A considerable difficulty in observing 67P/C-G during the past years has been its position against crowded fields towards the galactic

  6. The Structure of the Solar Wind at Large Heliocentric Distances: CIRs and their Successors

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1997-01-01

    Co-rotating interaction regions (CIRs) and their associated shock pairs are dominant structures in the solar wind between the heliocentric distances of 2 and 8 AU. At larger heliocentric distances, these structures undergo a qualitative change. Shocks decay to a point where they are often difficult to detect, and may have little influence on the dynamics of the solar wind. Interaction regions spread and merge, though they appear to retain their identity to surprisingly large distances from the Sun. Solar wind and IMF data from the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were used to conduct a comprehensive survey of CIRs and their successors between heliocentric distances of 1 and 55 AU over the last two solar cycles. The structure of the solar wind varied in a consistent fashion with heliocentric distance. Similar structures were observed at similar heliocentric distances by all three spacecraft during different portions of the solar cycle.

  7. The Structure of the Solar Wind at Large Heliocentric Distances: CIRs and their Successors

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1999-01-01

    Co-rotating interaction regions (CIRs) and their associated shock pairs are dominant structures in the solar wind between the heliocentric distances of 2 and 8 AU. At larger heliocentric distances, these structures undergo a qualitative change. Shocks decay to a point where they are often difficult to detect, and may have little influence on the dynamics of the solar wind. Interaction regions spread and merge, though they appear to retain their identity to surprisingly large distances from the Sun. Solar wind and IMF data from the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were used to conduct a comprehensive survey of CIRs and their successors between heliocentric distances of 1 and 55 AU over the last two solar cycles. The structure of the solar wind varied in a consistent fashion with heliocentric distance. Similar structures were observed at similar heliocentric distances by all three spacecraft during different portions of the solar cycle.

  8. Variation of Magnetic Flux Ropes With Heliocentric Distance

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Mulligan, T.; Anderson, B. J.

    As the magnetic flux ropes in interplanetary coronal mass ejections move away from the Sun, their thickness expands and the field strength drops. This radial variation has been measured statistically by Bothmer and Schwenn with Helios. On occasion spacecraft are sufficiently radially aligned during the passage of an ICME that this expansion can be determined for a single structure. Two such occasions occurred with ACE and NEAR on July 12-16, 2000 and August 13-15, 2000. In accord with the statistical results from Helios, we find that the axial field for the first rope (the Bastille Day event) decreased as R^-1.4 and the poloidal field as R^-1.2 and as R^-1.8 and R^- 1.3 for the second rope. The thickness of the ropes increased from 0.50 to 0.86 AU over a distance of 0.76 AU and from 0.34 to 0.58 AU over 0.72 AU respectively. These results confirm that even when in quasi force-free magnetic balance magnetic ropes expand with heliocentric distance. Such an evolution is a natural consequence of the motion of the flux tube if it is rooted to the Sun even if the twist and magnetic flux content of the tube remain constant since the poloidal field must decrease as the tube moves outward.

  9. Heliocentric trajectory analysis of Sun-pointing smart dust with electrochromic control

    NASA Astrophysics Data System (ADS)

    Mengali, Giovanni; Quarta, Alessandro A.

    2016-02-01

    A smart dust is a micro spacecraft, with a characteristic side length on the order of a few millimeters, whose surface is coated with electrochromic material. Its orbital dynamics is controlled by exploiting the differential force due to the solar radiation pressure, which is obtained by modulating the reflectivity coefficient of the electrochromic material within a range of admissible values. A significant thrust level can be reached due to the high values of area-to-mass ratio of such a spacecraft configuration. Assuming that the smart dust is designed to achieve a passive Sun-pointing attitude, the propulsive acceleration due to the solar radiation pressure lies along the Sun-spacecraft direction. The aim of this paper is to study the smart dust heliocentric dynamics in order to find a closed form, analytical solution of its trajectory when the reflectivity coefficient of the electrochromic material can assume two values only. The problem is addressed by introducing a suitable transformation that regularizes the spacecraft motion and translates the smart-dust dynamics into that of a linear harmonic oscillator with unitary frequency, whose forcing input is a boxcar function. The solution is found using the Laplace transform method, and afterwards the problem is generalized by accounting for the degradation of the electrochromic material due to its exposition to the solar radiation. Three spacecraft configurations, corresponding to low, medium and high performance smart dusts, are finally used to quantify the potentialities of these advanced devices in an interplanetary mission scenario.

  10. 67P/Churyumov-Gerasimenko at large heliocentric distance

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Böhnhardt, H.; Agarwal, J.; Drahus, M.; Barrera, L.; Ortiz, J. L.

    2011-03-01

    Aims: The Jupiter family comet (JFC) 67P/Churyumov-Gerasimenko (67P/C-G) is the target of ESA's ROSETTA mission. Observational campaigns and theoretical investigations were performed to characterise 67P/C-G in terms of nucleus properties (e.g. size, surface colours, rotational period), gas and dust production, and plasma environment in preparation for the rendezvous with the spacecraft; however, there are still open questions that need to be addressed. Our observations of 67P/C-G are important not only for a good planning of the rendezvous of the ROSETTA spacecraft with 67P/C-G, but also for providing valuable information on the basic physical properties of the nuclei of JFCs at large heliocentric distances. Moreover, this information will help to identify to what extent 67P/C-G is a typical JFC. Methods: We performed broad-band imaging and low-resolution spectroscopy of 67P/C-G in the visible wavelength range during five periods between April 2004 and July 2007 at the ESO Very Large Telescope (VLT) with the FORS2 instrument. At the time of the observations 67P/C-G was at heliocentric distance r ≥ 4.6 AU. The imaging data were used to search for a faint coma, to improve the phase function of the nucleus, to constrain its rotational period, and to analyse the neck-line of dust close to the nucleus. Results: The comet appears point-like and no coma signature was found around the nucleus. The most realistic representative of the phase function of 67P/C-G is the linear approximation: This could be interpreted to mean that the opposition effect is not very pronounced for 67/C-G in the phase angle range between 0.5° and 10°. We determined that the magnitude dependence on the phase angle is very steep, with the linear phase coefficient in the range β = 0.061-0.076 mag/°. The colour indices and reflectance spectrum show that the nucleus of 67P/C-G is slightly redder than the Sun (spectral slope ~11%/1000 Å) and uniform with the rotational phase. A tail

  11. The heliocentric system from the Orphic Hymns and the Pythagoreans to emperor Julian

    NASA Astrophysics Data System (ADS)

    Theodossiou, Efstratios; Dacanalis, Aris; Dimitrijević, Milan, S.; Mantarakis, Petros

    The evolution of the heliocentric theory in the antiquity has been analyzed, from the first seeds in the Orphic Hymns to the emperor Julian, also called "the Apostate" in the 4th century A.D. In particular the Orphic Hymns, views of Pythagoreans, as well as the heliocentric ideas of Philolaus of Croton, Icetas, Ecphantus, Heraclides of Pontos, Anaximander, Seleucus of Seleucia, Aristarchus of Samos and Emperor Julian were analyzed.

  12. Ludwik Antoni Birkenmajer and Curtis Wilson on the Origin of Nicholas Copernicus's Heliocentrism.

    PubMed

    Goddu, André

    2016-06-01

    What moved Copernicus to switch from the time-honored geocentric to a heliocentric setup for the planetary system? He himself did not explain this momentous move in any detail--his only comments about it suggest that Ptolemy's complete solution to the problem of nonuniform motion, the equant model, led him to propose. Earth's annual motion around the Sun. The most widely accepted accounts of the origin of Copernicus's theory dismiss or dispute any direct relation between the principle of uniform motion and the heliocentric theory. Two scholars, the Polish expert on Copernicus Ludwik Antoni Birkenmajer (1855-1929) and the American historian of astronomy Curtis Wilson (1921-2012), constructed detailed arguments about how Copernicus's rejection of Ptolemy's solution led him to his theory. The principal aim of this essay is to reintroduce Birkenmajer's and Wilson's voices to the discussion of the origin of Copernicus's heliocentrism. PMID:27439284

  13. THE DISTRIBUTION OF QUIET-SUN MAGNETIC FIELDS AT DIFFERENT HELIOCENTRIC ANGLES

    SciTech Connect

    Orozco Suarez, D.; Katsukawa, Y.

    2012-02-20

    This paper presents results from the analysis of high signal-to-noise ratio spectropolarimetric data taken at four heliocentric angles in quiet-Sun internetwork regions with the Hinode satellite. First, we find that the total circular and total linear polarization signals vary with heliocentric angle, at least for fields with large polarization signals. We also report changes on the Stokes V amplitude asymmetry histograms with viewing angle for fields weaker than 200 G. Then, we subject the data to a Milne-Eddington inversion and analyze the variation of the field vector probability density functions with heliocentric angle. Weak, highly inclined fields permeate the internetwork at all heliocentric distances. For fields weaker than 200 G, the distributions of field inclinations peak at 90 Degree-Sign and do not vary with viewing angle. The inclination distributions change for fields stronger than 200 G. We argue that the shape of the inclination distribution for weak fields partly results from the presence of coherent, loop-like magnetic features at all heliocentric distances and not from tangled fields within the field of view. We also find that the average magnetic field strength is about 180 G (for 75% of the pixels) and is constant with heliocentric angle. The average vertical and horizontal magnetic field components are 70 and 150 G. The latter (former) is slightly greater (smaller) near the limb. Finally, the ratio between the horizontal and vertical components of the fields ranges from {approx}1 for strong fields to {approx}3.5 for weak fields, suggesting that the magnetic field vector is not isotropically distributed within the field of view.

  14. Pioneer and voyager observations of the solar wind at large heliocentric distances and lattitudes

    SciTech Connect

    Gazis, P.R.; Mihalov, J.D.; Barnes, A.; Lazarus, A.J.; Smith, E.J.

    1989-03-01

    The Pioneer 10, 11, and Voyager 2 spacecraft are well suited for exploring spatial gradients in the distant solar wind. Between 1984 and 1986 Pioneer 11 and Voyager 2 were located at nearly the same heliocentric distance (approx. =20 AU) and longitude but were widely separated in latitude; Pioneer 11 was at a heliographic latitude of greater than or equal to15/sup 0/ while Voyager 2 was near the solar equator. Pioneer 10 was located near the solar equator but at a considerably greater heliocentric distance (approx. =40 AU). IMP observations at 1 AU provide an inner heliosphere baseline.

  15. From Pythagoreans to Kepler: the dispute between the geocentric and the heliocentric systems

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Danezis, E.; Manimanis, V. N.; Kalyva, E.-M.

    2002-06-01

    Some ancient Greek philosophers and thinkers questioned the geocentric system and proposed instead a heliocentric system. The main proponents of this view - which was seen as heretical at the time - are believed to have been the Pythagoreans Philolaos, Heraclides, Hicetas, and Ecphantos, but mainly Aristarchos of Samos, who placed the Sun in the position of the "central fire" of the Pythagoreans. The geocentric system, reworked by Claudius Ptolemaeus (Ptolemy), was the dominant one for centuries, and it was only during the sixteenth century that the Polish monk-astronomer, Copernicus, revisited the ancient Greek heliocentric views and became the new champion of the theory that we all accept today.

  16. Heliocentric distance and temporal dependence of the interplanetary density-magnetic field magnitude correlation

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.

    1990-01-01

    The Helios, IMP 8, ISEE 3, ad Voyager 2 spacecraft are used to examine the solar cycle and heliocentric distance dependence of the correlation between density n and magnetic field magnitude B in the solar wind. Previous work had suggested that this correlation becomes progressively more negative with heliocentric distance out to 9.5 AU. Here it is shown that this evolution is not a solar cycle effect, and that the correlations become even more strongly negative at heliocentric distance larger than 9.5 AU. There is considerable variability in the distributions of the correlations at a given heliocentric distance, but this is not simply related to the solar cycle. Examination of the evolution of correlations between density and speed suggest that most of the structures responsible for evolution in the anticorrelation between n and B are not slow-mode waves, but rather pressure balance structures. The latter consist of both coherent structures such as tangential discontinuities and the more generally pervasive 'pseudosound' which may include the coherent structures as a subset.

  17. The trend of production rates with heliocentric distance for comet P/Halley

    NASA Astrophysics Data System (ADS)

    Fink, U.

    1994-03-01

    Comet P/Halley was observed spectroscopically in the wavelength range 5200-10,400 A during 10 observing runs, roughly a month apart from 1985 August 28 to 1986 June 6. The observations span a heliocentric distance from 0.73 to 2.52 AU. This data set is analyzed to determine the course of the production rate with heliocentric distance for C2, NH2, CN, and the continuum. The effect of changing the Haser scale lengths and their heliocentric distance dependence is examined. The production rate ratios to water change only in a minor way, but the absolute values of the production rates are more severely affected. Fluorescent efficiencies, or g-factors for the CN red system are calculated, and band intensity ratios for NH2 and CN are presented. Using presently available fluorescence efficiencies and Haser scale lengths, mixing ratios for the parents of C2, CN, and NH2 with respect to water are: 0.34 +/- 0.07%, 0.15 +/- 0.04%, and 0.13 +/- 0.05%. It is found that these mixing ratios are essentially constant over the heliocentric distance range of the observations, implying a rather uniform nucleus and uniform outgassing characteristics, although there are indications of smaller scale day-to-day variations. The results provide strong observational confirmation that water evaporation controls the activity of the comet over the distance range studied. Continuum values Af rho are determined, and their ratios to QH2O are found to have a clear dependence with heliocentric distance approximately r-1.0 with a post-perihelion enhancement. No correlation of the production rate ratios with light curve of P/Halley were found, nor was there any correlation of the C2 or CN production with the dust.

  18. Neptune's story. [Triton's orbit perturbation

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Murray, N.; Longaretti, P. Y.; Banfield, D.

    1989-01-01

    It is conjectured that Triton was captured from a heliocentric orbit as the result of a collision with what was then one of Neptune's regular satellites. The immediate post-capture orbit was highly eccentric. Dissipation due to tides raised by Neptune in Triton caused Triton's orbit to evolve to its present state in less than one billion years. For much of this time Triton was almost entirely molten. While its orbit was evolving, Triton cannibalized most of the regular satellites of Neptune and also perturbed Nereid, thus accounting for that satellite's highly eccentric and inclined orbit. The only regular satellites of Neptune that survived were those that formed well within 5 Neptune radii, and they move on inclined orbits as the result of chaotic perturbations forced by Triton.

  19. Science-philosophy relation and the prevalence of the heliocentric theory.

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Manimanis, V. N.; Danezis, E.

    The relation between philosophy and science has passed from many phases in history and still is an interesting topic. The value of falsifiability (or refutability) in science was stressed by Popper. Here, as a paradigm, the juxtaposition of the Earth-centered view of the universe and the prevalence of the heliocentric theory is examined. A new physics appeared in the West in the 17th century, under the Cartesian philosophical canopy, the spirit of which had its deep influence on the savants of that period. This new physics, as defined by Galileo and Kepler, was not searching for purpose, but it was seeking for causes.

  20. Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1992-01-01

    Using a simple model for outgassing from a small flat surface area, the sublimation rates of carbon monoxide and carbon dioxide, two species more volatile than water ice that are known to be present in comets, are calculated for a suddenly activated discrete source on the rotating nucleus. The instantaneous sublimation rate depends upon the comet's heliocentric distance and the Sun's zenith angle at the location of the source. The values are derived for the constants of CO and CO2 in an expression that yields the local rotation-averaged sublimation rate as a function of the comet's spin parameters and the source's cometocentric latitude.

  1. CONSTRAINING THE DUST COMA PROPERTIES OF COMET C/SIDING SPRING (2013 A1) AT LARGE HELIOCENTRIC DISTANCES

    SciTech Connect

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnham, Tony L.; A'Hearn, Michael F.; Mutchler, Max J.; Lisse, Carey M.; Delamere, W. Alan E-mail: nalin@psi.edu E-mail: farnham@astro.umd.edu E-mail: mutchler@stsci.edu E-mail: alan@delamere.biz

    2014-12-10

    The close encounter of comet C/2013 A1 (Siding Spring) with Mars on 2014 October 19 presented an extremely rare opportunity to obtain the first flyby quality data of the nucleus and inner coma of a dynamically new comet. However, the comet's dust tail potentially posed an impact hazard to those spacecraft orbiting Mars. To characterize the comet at large heliocentric distances, study its long-term evolution, and provide critical inputs to hazard modeling, we imaged C/Siding Spring with the Hubble Space Telescope when the comet was at 4.58, 3.77, and 3.28 AU from the Sun. The dust production rate, parameterized by the quantity Afρ, was 2500, 2100, and 1700 cm (5000 km radius aperture) for the three epochs, respectively. The color of the dust coma is (5.0 ± 0.3)%/100 nm for the first two epochs, and (9.0 ± 0.3)%/100 nm for the last epoch, and reddens with increasing cometocentric distance out to ∼3000 km from the nucleus. The spatial distribution and the temporal evolution of the dust color are most consistent with the existence of icy grains in the coma. Two jet-like dust features appear in the northwest and south-southeast directions projected in the sky plane. Within each epoch of 1-2 hr, no temporal variations were observed for either feature, but the position angle of the south-southeastern feature varied between the three epochs by ∼30°. The dust feature morphology suggests two possible orientations for the rotational pole of the nucleus, (R.A., decl.) = (295° ± 5°, +43° ± 2°) and (190° ± 10°, +50° ± 5°), or their diametrically opposite orientations.

  2. Effect of a drag force due to absorption of solar radiation on solar sail orbital dynamics

    NASA Astrophysics Data System (ADS)

    Kezerashvili, Roman Ya.; Vázquez-Poritz, Justin F.

    2013-03-01

    While solar electromagnetic radiation can be used to propel a solar sail, it is shown that the Poynting-Robertson effect related to the absorbed portion of the radiation leads to a drag force in the transversal direction. The Poynting-Robertson effect is considered for escape trajectories, Heliocentric bound orbits and non-Keplerian bound orbits. For escape trajectories, this drag force diminishes the cruising velocity, which has a cumulative effect on the Heliocentric distance. For Heliocentric and non-Keplerian bound orbits, the Poynting-Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the Sun. Since the Poynting-Robertson effect is due to the absorbed portion of the electromagnetic radiation, degradation of a solar sail implies that this effect becomes enhanced during a mission.

  3. A Numerical Study of Comet Mcnaught over a Wide Range of Heliocentric Distances

    NASA Astrophysics Data System (ADS)

    Shou, Yinsi; Combi, M. R.; Rubin, M.; Toth, G.

    2012-10-01

    A numerical study of Comet McNaught over a wide range of heliocentric distances Yinsi Shou, Michael R. Combi, Martin Rubin, Gabor Toth The Comet C/2006 P1 (McNaught) has a small perihelion distance (0.17 AU) and had a very high production rate during its passage close to the Sun in January and February of 2007. During that period, it was monitored by both ground- and space-based observatories, which provided substantial information about the comet. In early February, the Ulysses spacecraft encountered its ion tail and gave clues to the surrounding solar wind conditions and to the cometary environment. Therefore, Comet McNaught is an ideal object to study the cometary structures under extreme conditions and the solar wind-comet interaction over a wide range of heliocentric distances. A numerical study of Comet McNaught combining two models is conducted. First, a single species magnetohydrodynamics (MHD) [Gombosi et al. (1996, JGR 101, 15233)] simulation is performed using a set of ‘observed’ comet parameters as input. Then a chemistry model [Häberli et al. (1997, Icarus 130, 373)] extracts the streamlines from the MHD model and calculates the densities of different species accounting for photo-dissociation, photo-ionization, electron recombination, ion-molecule and charge-exchange reactions. The MHD results are able to give the diamagnetic cavity sizes and shock distances at various heliocentric distances while the chemistry model better resolves the distribution of the major chemical species in the cometary plasma environment. The combination of the two models allows us to obtain detailed information on the chemical composition of a much wider range of atoms and molecules compared to multi-species or multi-fluid MHD models and at much lower computational expense. Some preliminary results are presented and discussed. This work has been partially supported by grant AST-0707283 from the NSF Planetary Astronomy program and NASA Planetary Atmospheres program grant

  4. Spitzer Orbit Determination During In-orbit Checkout Phase

    NASA Technical Reports Server (NTRS)

    Menon, Premkumar R.

    2004-01-01

    The Spitzer Space Telescope was injected into heliocentric orbit on August 25, 2003 to observe and study astrophysical phenomena in the infrared range of frequencies. The initial 60 days was dedicated to Spitzer's "In-Orbit Checkout (IOC)" efforts. During this time high levels of Helium venting were used to cool down the telescope. Attitude control was done using reaction wheels, which in turn were de-saturated using cold gas Nitrogen thrusting. Dense tracking data (nearly continuous) by the Deep Space network (DSN) were used to perform orbit determination and to assess any possible venting imbalance. Only Doppler data were available for navigation. This paper deals with navigation efforts during the IOC phase. It includes Dust Cover Ejection (DCE) monitoring, orbit determination strategy validation and results and assessment of non-gravitational accelerations acting on Spitzer including that due to possible imbalance in Helium venting.

  5. Multifluid MHD Simulations of the Plasma Environment of Comet Churyumov-Gerasimenko at Different Heliocentric Distances

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Jia, X.; Rubin, M.; Fougere, N.; Gombosi, T. I.; Tenishev, V.; Combi, M. R.; Bieler, A. M.; Toth, G.; Hansen, K. C.; Shou, Y.

    2014-12-01

    We study the plasma environment of the comet Churyumov-Gerasimenko, which is the target of the Rosetta mission, by performing large scale numerical simulations. Our model is based on BATS-R-US within the Space Weather Modeling Framework that solves the governing multifluid MHD equations, which describe the behavior of the cometary heavy ions, the solar wind protons, and electrons. The model includes various mass loading processes, including ionization, charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. The neutral background used in our MHD simulations is provided by a kinetic Direct Simulation Monte Carlo (DSMC) model. We will simulate how the cometary plasma environment changes at different heliocentric distances.

  6. The heliocentric evolution of cometary infrared spectra - Results from an organic grain model

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.; Sagan, Carl; Mumma, Michael J.

    1989-01-01

    An emission feature peaking near 3.4 microns that is typical of C-H stretching in hydrocarbons and which fits a simple, two-component thermal emission model for dust in the cometary coma, has been noted in observations of Comets Halley and Wilson. A noteworthy consequence of this modeling is that, at about 1 AU, emission features at wavelengths longer than 3.4 microns come to be 'diluted' by continuum emission. A quantitative development of the model shows it to agree with observational data for Comet Halley for certain, plausible values of the optical constants; the observed heliocentric evolution of the 3.4-micron feature thereby furnishes information on the composition of the comet's organic grains.

  7. Telemetry coding study for the international magnetosphere explorers, mother/daughter and heliocentric missions. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1973-01-01

    A convolutional coding theory is given for the IME and the Heliocentric spacecraft. The amount of coding gain needed by the mission is determined. Recommendations are given for an encoder/decoder system to provide the gain along with an evaluation of the impact of the system on the space network in terms of costs and complexity.

  8. A Synoptic Analysis of the Change from the Geocentric to the Heliocentric Conception of the Solar System.

    ERIC Educational Resources Information Center

    Wilson, Roosevelt L.

    The changes which occurred in man's view of the solar system from the time of Ptolemy to that of Galileo are presented. Contained is a brief review of the chain of events which resulted in the acceptance of a heliocentric system. Ptolomy's theory is described and a diagram illustrates the paths of the epicycle of Mars according to his geocentric…

  9. EVOLUTION OF CORONAL MASS EJECTION MORPHOLOGY WITH INCREASING HELIOCENTRIC DISTANCE. I. GEOMETRICAL ANALYSIS

    SciTech Connect

    Savani, N. P.; Kusano, K.; Owens, M. J.; Rouillard, A. P.; Forsyth, R. J.; Shiota, D.; Kataoka, R.

    2011-04-20

    At launch, coronal mass ejections (CMEs) are often approximated as locally cylindrical objects with circular cross sections. However, CMEs have long been known to propagate almost radially away from the Sun along with the bulk solar wind. This has important consequences for the structure of CMEs; an initially circular cross section will be severely flattened by this radial motion. Yet calculations of total flux and helicity transport by CMEs based on in situ observations still use the assumption of a locally cylindrical object. In this paper, we investigate the morphology of an interplanetary CME based upon geometric arguments. By radially propagating an initial cylindrical object that maintains a constant ratio between its expansion speed and bulk flow, A, we show that the flattening, or 'pancaking', of the two-dimensional cross section effectively ceases; the aspect ratios of these CMEs converge to a fixed value as they propagate further into the heliosphere. Thereafter the CME morphology is scale invariant. We predict aspect ratios of 5 {+-} 1 at terrestrial distances. By correlating a planetary shock with an interplanetary shock linked to a CME, these aspect ratios are estimated using in situ measurements in Paper II. These estimates are made at various heliocentric distances.

  10. EVOLUTION OF CORONAL MASS EJECTION MORPHOLOGY WITH INCREASING HELIOCENTRIC DISTANCE. II. IN SITU OBSERVATIONS

    SciTech Connect

    Savani, N. P.; Kusano, K.; Owens, M. J.; Rouillard, A. P.; Forsyth, R. J.; Shiota, D.; Kataoka, R.; Jian, L.; Bothmer, V.

    2011-05-10

    Interplanetary coronal mass ejections (ICMEs) are often observed to travel much faster than the ambient solar wind. If the relative speed between the two exceeds the fast magnetosonic velocity, then a shock wave will form. The Mach number and the shock standoff distance ahead of the ICME leading edge is measured to infer the vertical size of an ICME in a direction that is perpendicular to the solar wind flow. We analyze the shock standoff distance for 45 events varying between 0.5 AU and 5.5 AU in order to infer their physical dimensions. We find that the average ratio of the inferred vertical size to measured radial width, referred to as the aspect ratio, of an ICME is 2.8 {+-} 0.5. We also compare these results to the geometrical predictions from Paper I that forecast an aspect ratio between 3 and 6. The geometrical solution varies with heliocentric distance and appears to provide a theoretical maximum for the aspect ratio of ICMEs. The minimum aspect ratio appears to remain constant at 1 (i.e., a circular cross section) for all distances. These results suggest that possible distortions to the leading edge of ICMEs are frequent. But, these results may also indicate that the constants calculated in the empirical relationship correlating the different shock front need to be modified; or perhaps both distortions and a change in the empirical formulae are required.

  11. Solar wind structure at large heliocentric distances - An interpretation of Pioneer 10 observations

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.; Gosling, J. T.

    1976-01-01

    Examination of hourly values of the solar wind speed observed by the Pioneer 10 spacecraft beyond a heliocentric distance of 4 AU reveals (1) a prevalent 'sawtoothlike' speed-time profile, most speed fluctuations displaying a rapid rise and a much slower decline, and (2) the nearly universal appearance of abrupt (on the 1-hour time resolution of these data) changes in the speed on the rising portions of the speed fluctuations. These previously unreported characteristics, as well as the rate of decay of stream amplitudes derived earlier by Collard and Wolfe, are in general agreement with the predictions of stream propagation models that neglect any conversion of kinetic energy to thermal energy outside of shock fronts. Thus the Pioneer 10 observations give the first confirmation of the general concept of solar wind stream evolution employed in these models, i.e., that solar wind speed inhomogeneities appear to steepen to form shock waves and that the 'wave amplitudes' decay slowly as the shock waves propagate outward from the sun.

  12. Heliocentric Potential (HCP) Prediction Model for Nowscast of Aviation Radiation Dose

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Kim, Kyung-Chan; Dokgo, Kyunghwan; Choi, Enjin; Kim, Hang-Pyo

    2015-03-01

    It is well known that the space radiation dose over the polar route should be carefully considered especially when the space weather shows sudden disturbances such as CME and flares. The National Meteorological Satellite Center (NMSC) and Korea Astronomy and Space Science Institute (KASI) recently established a basis for a space radiation service for the public by developing a space radiation prediction model and heliocentric potential (HCP) prediction model. The HCP value is used as a critical input value of the CARI-6 and CARI-6M programs, which estimate the aviation route dose. The CARI-6/6M is the most widely used and confidential program that is officially provided by the U.S. Federal Aviation Administration (FAA). The HCP value is given one month late in the FAA official webpage, making it difficult to obtain real-time information on the aviation route dose. In order to overcome this limitation regarding time delay, we developed a HCP prediction model based on the sunspot number variation. In this paper, we focus on the purpose and process of our HCP prediction model development. Finally, we find the highest correlation coefficient of 0.9 between the monthly sunspot number and the HCP value with an eight month time shift.

  13. Formation and evolution of a circumterrestrial disk Constraints on the origin of the moon in geocentric orbit

    NASA Technical Reports Server (NTRS)

    Herbert, Floyd; Davis, Donald R.; Weidenschilling, Stuart J.

    1986-01-01

    A data base of about 25,000 numerically integrated trajectories of earth-encountering planetesimals is used to study the angular momentum problem of forming the moon out of material captured into a circumterrestrial disk from heliocentric orbits. Mass-orbital element distributions of incoming planetesimals are combined with this data base to calculate, as a function of distance from earth, the net geocentric specific angular momentum of disk-encountering material on heliocentric orbits. Results suggest that a permanent disk population is not possible.

  14. Determination of the Value of the Heliocentric Gravitational Constant (GM⊙) from Modern Observations of Planets and Spacecraft

    NASA Astrophysics Data System (ADS)

    Pitjeva, E. V.

    2015-09-01

    The history of estimation of the heliocentric gravitational constant is given. Initially the value of GM⊙ was based on the mean period of motion of the Earth around the Sun, then on estimation of the value of the astronomical unit, and finally the modern value of GM⊙ is determined with the extraordinarily high accuracy, GM⊙ = 132 712 440 042 ± 10 (km3/s2), while fitting ephemerides to high-precision radar observations.

  15. Interstellar Dust Detected by Voyager 1 Over Heliocentric Radial Distances From 5 to 132 AU

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.; Persoon, A. M.; Granroth, L.; Kurth, W. S.

    2015-12-01

    The plasma wave instruments on the Voyager 1 and 2 spacecraft can detect the impact of high velocity dust particles when they strike the spacecraft body. The impacts are recognizable by a characteristic voltage pulse that they produce in the wideband electric field waveform data. Although the wideband receiver on Voyager 2 is no longer working, Voyager 1 has been collecting wideband data for over 37 years, starting near the Jupiter flyby at 5 AU and continuing to the most recent data beyond 132 AU. During this time a persistent level of dust impacts have been detected at a rate of about 3 to 7 impacts/ hour. We interpret these impacts as being due to interstellar dust. Using the cross-sectional area of the spacecraft high-gain antenna, 10.75 m2, as the effective impact area, and the velocity of the spacecraft relative to the 26 km/s arrival velocity of the interstellar dust, this impact rate corresponds to a flux of about (0.75 to 1.65) x 10-4 m-2 s-1. Although we do not have good knowledge of the mass of the dust particles, this flux agrees well with the interstellar dust flux published by Grün et al. [1993] from the dust detector on the Ulysses spacecraft at 5 AU. The Ulysses dust instrument showed that the mass of the interstellar dust particles ranged from about 10-15 to 10-10 grams (roughly 0.1 to 10 μm). We presume that Voyager 1 is detecting these same particles. The heliocentric radial variation can be fit within the error bars by a constant flux of about 1.2 x 10-4 m-2s-1. However, the plot of the average count rates in 20 AU bins increases steadily from 10 to 100 AU, with a notable decrease beyond 100 AU, suggesting that there might be a slightly higher flux (by a factor of two) in the outer regions of the heliosphere than in the interstellar medium.

  16. Data catalog series for space science and applications flight missions. Volume 1A: Brief descriptions of planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Cameron, W. S. (Editor); Vostreys, R. W. (Editor)

    1982-01-01

    Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.

  17. Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Welter, Gary L.

    2012-01-01

    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions.

  18. Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    NASA Astrophysics Data System (ADS)

    Bender, P. L.; Welter, G. L.

    2013-01-01

    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of ˜ 106 km and Earth-trailing distance ranging from ˜ 12° to 20° over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to ˜ ± 0.1°, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions.

  19. Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James

    2007-01-01

    This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF's orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.

  20. Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James

    2007-01-01

    This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF s orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.

  1. Orbital acrobatics in the Sun-Earth-Moon system

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert W.; Dunham, D. W.; Hsu, S. C.

    1986-01-01

    Unconventional trajectory techniques for space missions in the Sun-Earth-Moon system, including libration-point orbits, gravity-assist maneuvers, and Earth-return trajectories are reviewed. The ISEE-3/ICE flight experience is used to illustrate the utility of libration-point orbits called halo-orbits. Five lunar gravity-assist maneuvers used by the ISEE-3/ICE spacecraft are discussed. The final lunar swingby sent the spacecraft into a heliocentric trajectory that will eventually intercept Comet Giacobini-Zinner. As an example of the Earth-return trajectory concept, a proposed mission that includes flybys of three comets and two asteroids is described.

  2. Expansion of the Hamiltonian for the planetary problem into a Poisson series in the heliocentric reference frame

    NASA Astrophysics Data System (ADS)

    Mikryukov, D. V.

    2016-08-01

    An expansion of the Hamiltonian for the N-planet problem into a Poisson series using a system of modified (complex) Poincaré canonical elements in the heliocentric coordinate system is constructed. The Lagrangian and Hamiltonian formalisms are used. The first terms in the expansions of the principal and complementary parts of the disturbing function are presented. Estimates of the number of terms in the presented expansions have been obtained through numerical experiments. A comparison with the results of other authors is made.

  3. Multi-revolution transfer for heliocentric missions with solar electric propulsion

    NASA Astrophysics Data System (ADS)

    Quarta, Alessandro A.; Mengali, Giovanni; Aliasi, Generoso

    2015-01-01

    An extension of the classical method by Alfano, for the analysis of optimal circle-to-circle two-dimensional orbit transfer, is presented for a deep space probe equipped with a solar electric primary propulsion system. The problem is formulated as a function of suitable design parameters, which allow the optimal transfer to be conveniently characterized in a parametric way, and an indirect approach is used to find the optimal steering law that minimizes the required propellant mass. The numerical results, obtained by solving a number of optimal control problems, are arranged into contour plots, characterized by different and well-defined behaviors depending on the value of the initial spacecraft propulsive acceleration, the final orbit radius, and the thruster's specific impulse. The paper presents also a semi-analytical mathematical model for preliminary mission analysis purposes, which is shown to give excellent approximations of the (exact) numerical solutions when the number of revolutions of the spacecraft around the Sun is greater than five. An Earth-Mars cargo mission has been thoroughly investigated to validate the proposed approach. In this case, assuming a propulsion system with a specific impulse of 3000 s (comparable to that installed on the Deep Space 1 spacecraft), the results obtained with the semi-analytical model coincide, from an engineering point of view, with the numerical solutions both in terms of total mission time (about 8.3 years) and propellant mass fraction required (about 17.5%). By decreasing the value of the specific impulse, the differences between the results from the semi-analytical model and the numerical simulations tend to increase. However, good results are still possible if the number of revolutions of the spacecraft around the Sun is close to an integer number.

  4. Kepler Stars with Multiple Transiting Planet Candidates

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    NASA's Kepler spacecraft was launched into an Earth-trailing heliocentric orbit in March of 2009. Kepler is designed to conduct a statistical census of planetary system properties using transit photometry. Among the most exciting early results from Kepler are target stars found to have photometric signatures that suggest the presence of more than one transiting planet. Individual transiting planets provide information on the size and orbital period distributions of exoplanets. Multiple transiting planets provide additional information on the spacing and flatness distributions of planetary systems. Results to d ate and plans for future analysis will be presented.

  5. Program manual for HILTOP, a heliocentric interplanetary low thrust trajectory optimization program. Part 1: User's guide

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1974-01-01

    A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.

  6. The Orbital Design of Alpha Centauri Exoplanet Satellite (ACESat)

    NASA Technical Reports Server (NTRS)

    Weston, Sasha; Belikov, Rus; Bendek, Eduardo

    2015-01-01

    Exoplanet candidates discovered by Kepler are too distant for biomarkers to be detected with foreseeable technology. Alpha Centauri has high separation from other stars and is of close proximity to Earth, which makes the binary star system 'low hanging fruit' for scientists. Alpha Centauri Exoplanet Satellite (ACESat) is a mission proposed to Small Explorer Program (SMEX) that will use a coronagraph to search for an orbiting planet around one of the stars of Alpha Centauri. The trajectory design for this mission is presented here where three different trajectories are considered: Low Earth Orbit (LEO), Geosynchronous Orbit (GEO) and a Heliocentric Orbit. Uninterrupted stare time to Alpha Centauri is desirable for meeting science requirements, or an orbit that provides 90% stare time to the science target. The instrument thermal stability also has stringent requirements for proper function, influencing trajectory design.

  7. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the Lunar Atmosphere Dust Environment Explorer (LADEE) Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Loucks, Michael; Carrico, John

    2014-01-01

    The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).

  8. Extrasolar Planetary Imaging Coronagraph (EPIC)

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2009-01-01

    EPIC is a NASA mission being studied to detect and characterize Jovian and superEarth planets, and, the dust/debris disks surrounding the parent star. It will be launched into a heliocentric Earth trailing orbit and operate for 5 years. EPIC would operate over the wavelength range of 480 - 960 nm with spectral resolutions of R < 50 and employs a visible nulling coronagraph (VNC) to suppress the starlight, yielding contrast ratios of greater than 9 orders of magnitude. We will discuss the science mission, and its role in the search for habitable planets.

  9. Orbit to orbit transportation

    NASA Technical Reports Server (NTRS)

    Bergeron, R. P.

    1980-01-01

    Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.

  10. On reflecting boundary behind the Earth's orbit at propagation of fast particles from solar flares

    NASA Technical Reports Server (NTRS)

    Nishkovskikh, A. S.; Filippov, A. T.

    1985-01-01

    The flares of solar cosmic rays (SCR) associated with the presence of shocks in interplanetary magnetic field and with their propagation at significant heliocentric distances were always of great interest. Some events and problems concerning the peculiarities of propagation of flare CR in the interplanetary medium are considered. The distinguishing feature of such events is the presence of shock front behind the Earth's orbit having formed either directly in the process of shock generation on the Sun or at large heliocentric distances as a result of the interaction of fast and slow quasistationary recurrent solar wind (SW) streams. Based on the experimental material it is shown that the significant nonlinear disturbances in IMF behind the Earth's orbit can yield the occurrence of the additional SCR flux from shock front region as a result of the interaction of flare flux with shock and a partial reflection from it.

  11. A numerical investigation of planetesimal collision trajectories with a Moon accumulating in Earth orbit

    NASA Technical Reports Server (NTRS)

    Cox, L. P.

    1984-01-01

    In the scenario of lunar origin in which the Moon is assumed to have accreted most of its mass while in orbit about the Earth, ismals on the accrea knowledge of the relative impact rates of heliocentric planetting Earth and Moon is essential for any attempt to establish dynamical constraints on lunar origin. Numerical integrations of the regularized equations of motion for four bodies (Sun, Earth, Moon, planetismal) were done. A planetismal impact trajectory was calculated by assuming that the planetismal has hit the surface of the Moon at an assumed location, traveling in an assumed direction, and with an assumed impact speed. Next, the equations of motion were numerically integrated backward in time in order to determine from where the planetismal has come. In this way those volumes in heliocentric orbital element space which contribute trajectories that directly impact the Moon.

  12. Orbital cellulitis

    MedlinePlus

    ... Haemophilus influenzae B) vaccine. The bacteria Staphylococcus aureus , Streptococcus pneumoniae , and beta-hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and can lead ...

  13. Orbital pseudotumor

    MedlinePlus

    ... Names Idiopathic orbital inflammatory syndrome (IOIS) Images Skull anatomy References Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman W, Jaeger EA, eds. Duane’s ...

  14. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  15. 67P/Churyumov-Gerasimenko: Photometry And Spectroscopy Of The Rosetta Target Comet At Large Heliocentric Distance

    NASA Astrophysics Data System (ADS)

    Tubiana, Cecilia; Drahus, M.; Boehnhardt, H.; Barrera, L.; Ortiz, J.; Schwehm, G.; Schulz, R.

    2007-10-01

    ESA's Rosetta spacecraft will rendezvous with the Jupiter family comet 67P/Churyumov-Gerasimenko in 2014. Here, we present such results from visible imaging and spectroscopy of 67P observed with the ESO Very Large Telescope in June 2004, May 2006 and August 2006, when the comet was at r ≥ 4.9 AU. A good knowledge of the activity and dust environment of 67P/Churyumov-Gerasimenko far from the Sun is essential for the planning of the rendezvous approach of the Rosetta spacecraft. Moreover, these observations contribute to improve our knowledge about the activity and dust environment of short period comets at large heliocentric distances. On May 2006 the full rotational light curve was obtained in the R filter and the rotational period of 12.82 h has been determined. We also estimate the shape and size of the comet's nucleus, together with colors and the slope of the reflectance spectra. The comet has an effective radius of 2.3 km and an axis ratio ≥ 1.33 +/- 0.03. The nucleus colors are slightly redder than the Sun, in agreement with the ones obtained from the spectra of the comet, which show a reddening of 10%/100 nm. At the time of the observation, 67P/Churyumov-Gerasimenko was at phase angle between 0.5° and 1.5°, an interesting range to assess the opposition affect of the comet. The June 2004 observations were dedicated to the detection and characterization of the comet's dust trail. It is clearly visible in the images, with an extension larger than 153", a width of about 8” and a surface brightness in R filter of 28 mag/arcsec^2. The trail has been detected also in the May 2006 images. At all observing epochs the nucleus profile resembles the ones of a point source, indicating that no coma is present around the nucleus.

  16. Analysis and interpretation of CCD data on P/Halley and physical parameters and activity status of cometary nuclei at large heliocentric distance

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Mueller, Beatrice

    1991-01-01

    The scientific objectives were as follows: (1) to construct a well sampled photometric time series of comet Halley extending to large heliocentric distances both post and pre-perihelion passage and derive a precise ephemeris for the nuclear spin so that the physical and chemical characteristics of individual regions of activity on the nucleus can be determined; and (2) to extend the techniques in the study of Comet Halley to the study of other cometary nuclei and to obtain new observational data.

  17. A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS

    SciTech Connect

    Savani, N. P.; Shiota, D.; Kusano, K.; Vourlidas, A.; Lugaz, N.

    2012-11-10

    We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, {Delta}, as a fraction of the CME radial half-width, D {sub OB} (i.e., {Delta}/D {sub OB}). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; {rho} {sub u}/{rho} {sub d}) measured across the bow shock. The DR coefficient, k {sub dr}, which is the proportionality constant between the relative standoff distance ({Delta}/D {sub OB}) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 {+-} 0.1 is more appropriate for small heliocentric distances (<30 Rs) which corresponds to the spherical geometry of a magnetosphere presented by Seiff. As the CME propagates its cross section becomes more oblate and the k {sub dr} value increases linearly with heliocentric distance, such that k {sub dr} = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k {sub dr} = 1.8 {+-} 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.

  18. Spitzer Space Telescope in-orbit checkout and science verification operations

    NASA Technical Reports Server (NTRS)

    Linick, Sue H.; Miles, John W.; Gilbert, John B.; Boyles, Carol A.

    2004-01-01

    Spitzer Space Telescope, the fourth and final of NASA's great observatories, and the first mission in NASA's Origins Program was launched 25 August 2003 into an Earth-trailing solar orbit. The observatory was designed to probe and explore the universe in the infrared. Before science data could be acquired, however, the observatory had to be initialized, characterized, calibrated, and commissioned. A two phased operations approach was defined to complete this work. These phases were identified as In-Orbit Checkout (IOC) and Science Verification (SV). Because the observatory lifetime is cryogen-limited these operations had to be highly efficient. The IOC/SV operations design accommodated a pre-defined distributed organizational structure and a complex, cryogenic flight system. Many checkout activities were inter-dependent, and therefore the operations concept and ground data system had to provide the flexibility required for a 'short turn-around' environment. This paper describes the adaptive operations system design and evolution, implementation, and lessons-learned from the completion of IOC/SV.

  19. Pupils Produce their Own Narratives Inspired by the History of Science: Animation Movies Concerning the Geocentric-Heliocentric Debate

    NASA Astrophysics Data System (ADS)

    Piliouras, Panagiotis; Siakas, Spyros; Seroglou, Fanny

    2011-07-01

    In this paper, we present the design and application of a teaching scenario appropriate for 12-years-old pupils in the primary school aiming to a better understanding of scientific concepts and scientific methods, linking the development of individual thinking with the development of scientific ideas and facilitating a better understanding of the nature of science. The design of the instructional material supporting this scenario has been based on the study of the history of astronomy and especially on: (a) The various theories concerning the movement of Earth, our solar system and the universe. (b) Key-stories highlighting the evolutionary character of scientific knowledge as well as the cultural interrelations of science and society. The design of the teaching scenario has focused on the participation of pupils in gradually evolving discourses and practices encouraging an appreciation of aspects of the nature of science (e.g. the role of observation and hypothesis, the use of evidence, the creation and modification of models). In this case, pupils are asked to produce their own narratives: animation movies concerning the geocentric-heliocentric debate inspired by the history of science, as the animation technique presents strong expressional potential and currently has many applications in the field of educational multimedia. The research design of this current case study has been based on the SHINE research model, while data coming from pupils' animation movies, questionnaires, interviews, worksheets, story-boards and drawings have been studied and analyzed using the GNOSIS research model. Elaborated data coming from our analysis approach reveal the appearance, transformation and evolution of aspects of nature of science appreciated by pupils and presented in their movies. Data analysis shows that during the application pupils gradually consider more and more the existence of multiple answers in scientific questions, appreciate the effect of culture on the way

  20. Low cost transfer into useful sun-synchronous orbits at Mars

    NASA Technical Reports Server (NTRS)

    Glickman, R. E.; Stuart, J. R.

    1981-01-01

    Mars oblateness has been found to provide sun-synchronous orbits, including orbits with stationary apsides, similar to those used at earth. A low mass and low data rate complement of scientific instruments placed in such orbits can provide exciting planetary investigations such as the Mars Orbiter Water Mission described herein. Use of a modest Shuttle kickstage (PAM-A) and existing spacecraft hardware makes this mission low-cost. A preliminary mission and spacecraft design is described. The major emphasis of the paper is on the mechanics of heliocentric transfer for the 1986 and 1988 launch opportunities, Martian sun-synchronous orbit geometries, injectable mass capabilities, and methods of achieving these scientifically useful orbits.

  1. [Orbital inflammation].

    PubMed

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. PMID:25455557

  2. Heliocentric Distance of Coronal Mass Ejections at the Time of Energetic Particle Release: Revisiting the Ground Level Enhancement Events of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Using the kinematics of coronal mass ejections (CMEs), onset time of soft X-ray flares, and the finite size of the pre-eruption CME structure, we derive the heliocentric distane at which the energetic particles during the ground level enhancement (GLE) events of Solar Cycle 23. We find that the GLE particles are released when the CMEs reach an average heliocentric distance of approx.3.25 solar radii (Rs). From this we infer that the shocks accelerating the particles are located at similar heights. Type II radio burst observations indicate that the CMEs are at much lower distances (average approx.1.4 Rs) when the CME-driven shock first forms. The shock seems to travel approx.1.8 Rs over a period of approox.30 min on the average before releasing the GLE particles. In deriving these results, we made three assumptions that have observational support: (i) the CME lift off occurs from an initial distance of about 1.25 Rs; (ii) the flare onset and CME onset are one and the same because these are two different manifestations of the same eruption; and (iii) the CME has positive acceleration from the onset to the first appearance in the coronagraphic field of view (2.5 to 6 Rs). Observations of coronal cavities in eclipse pictures and in coronagraphic images justify the assumption (i). The close relationship between the flare reconnection magnetic flux and the azimuthal flux of interplanetary magnetic clouds justify assumption (ii) consistent with the standard model (CSHKP) of solar eruption. Coronagraphic observations made close to the solar surface indicate a large positive acceleration of CMEs to a heliocentric distance of approx.3 Rs before they start slowing down due to the drag force. The inferred acceleration (approx.1.5 km/s/s) is consistent with reported values in the literature.

  3. Data catalog series for space science and applications flight missions. Volume 1A: Descriptions of planetary and heliocentric spacecraft and investigations, second edition

    NASA Technical Reports Server (NTRS)

    Cameron, Winifred Sawtell (Editor); Vostreys, Robert W. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also included.

  4. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  5. On the evolution of satellite orbits under the action of the planet's oblateness and attraction by its massive satellites and the sun

    NASA Astrophysics Data System (ADS)

    Vashkov'yak, M. A.; Vashkov'yak, S. N.; Emel'yanov, N. V.

    2015-07-01

    The problem of the joint influence of the oblateness of a central planet and attraction by its most massive (or main) satellites and the Sun on the orbital evolution of a satellite with a negligible mass is considered. For an arbitrary angle between the equatorial plane of the planet and the plane of its heliocentric orbit, the evolution equations have been derived in the planeto-equatorial elements of the satellite orbit. Integrable cases of the evolution problem are described. The influence of Uranus's main satellites on the orbital evolution of its real and hypothetical satellites has been revealed through numerical calculations and analytical estimations.

  6. Effects of non-gravitational forces on orbital evolution of active Centaurs

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Kovalenko, Nataliya

    2016-07-01

    Currently there are 26 active Centaurs known among 121 discovered .In the present study we have investigated the influence of cometary activity on their orbital evolution by using orbital evolution integrators. Since there is no information on exact values of non-gravitational forces for these cometary Centaurs, because of their large heliocentric distances, we assumed their non-gravitational forces as the one for comet Halley with coefficient of 1/r^{2}, where r is perihelion distance. As a result we got the differences in perihelion passage dates for active Centaurs and differences in their perihelion distances during one period around the Sun and longer time-span.

  7. End-of-life disposal of libration point orbit missions: The case of Gaia

    NASA Astrophysics Data System (ADS)

    Armellin, Roberto; Rasotto, Mirco; Di Lizia, Pierluigi; Renk, Florian

    2015-08-01

    This work investigates end of life disposal options for libration point orbit missions. Three different options are presented: the first one considers spacecraft's re-entry in Earth's atmosphere, the second one concerns the impact on the Moon, whereas the third one consists in the injection of the spacecraft into a heliocentric graveyard orbit. The disposal design is formulated as a multi-objective optimization problem in order to take into account other goals in addition to propellant consumption minimization. The disposal of Gaia mission is used as test case throughout the paper.

  8. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  9. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  10. Nuclear reactor power for an electrically powered orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  11. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  12. Orbital cellulitis.

    PubMed Central

    Martin-Hirsch, D P; Habashi, S; Hinton, A H; Kotecha, B

    1992-01-01

    Orbital cellulitis is an emergency. It may cause blindness and progress to life-threatening sequelae such as brain abscess, meningitis and cavernous sinus thrombosis. Successful management is dependent upon urgent referral and immediate treatment. Although isolated eyelid erythema and swelling usually indicate primary infection anterior to the orbital septum, they may also be the first signs of an underlying frontal or ethmoidal sinusitis. The condition always requires emergency referral to both an ophthalmologist and otorhinolaryngologist. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1388488

  13. Space-based Search for Transiting Exoplanets Orbiting Bright Stars

    NASA Astrophysics Data System (ADS)

    Tsvetanov, Zlatan

    At the current stage of research transiting planets hold the key to advancing our knowledge of exoplanets as they are the only targets that allow determination of many of the key plane-tary parameters. Because the employed techniques are differential (either photometry or spec-troscopy) and the planet is significantly fainter the host star the dominant limitation is simply the number of photons. This puts a very high premium on transiting planets with bright parent stars. The ExoPlanet Task Force recognized the high value of planets transiting bright stars and identified the need to perform a wide area space-based transit survey. In this presentation I will describe a program that addresses the ExoPTF recommendation by using the output of one of the instruments on the currently operating space mission STEREO. STEREO is the third mission in NASA's Solar Terrestrial Probes program. It uses two nearly identical spacecrafts -one on an Earth-leading orbit and one on an Earth-trailing orbit -each equipped with a suit of five small telescopes to provide a stereoscopic view of the coronal mass ejections (CME) as they propagate away from the Sun. As each of these telescopes observes a portion of the heliospehre, they also image the star field in the background. For the purposes of this study we will consider only the images obtained by the HI-1 instruments. Other instruments, although showing the stellar background as well, do not have the data output suitable for a search for transiting exoplanets. This project described here has the potential of delivering a number of very high value targets for follow-up studies with a wide range of facilities, both ground-based and space-based. It will provide a complete survey of all bright stars (<10m) for 18% of the sky. The photometric data series have the sensitivity to detect all transiting hot-Jupiters and other gas giants with periods up to ˜20 days and even some Neptune size planets orbiting bright and/or late type stars. On

  14. The chemistry of C2 and C3 in the coma of Comet C/1995 O1 (Hale-Bopp) at heliocentric distances rh ≥ 2.9 AU

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Rauer, H.; Boice, D. C.; Huebner, W. F.

    2005-11-01

    The extraordinary activity of comet C/1995 O1 (Hale-Bopp) made it possible to observe the emission bands of the radicals C2 and C3 in the optical wavelengths range at heliocentric distances larger than 3 AU. Based on these observations, we perform an analysis of the formation of C2 and C3 in a comet coma at large heliocentric distances. We present the most complete chemical reaction network used until today, computing the formation of C2 and C3 from C2H2, C2H6, and C3H4 as their parent molecules. The required photodissociation rates of C_3H2 and C3 had to be derived based on the observations. The spatial distributions of C2 and C3 calculated with the chemical model show good agreement with the observations over the whole range of heliocentric distances covered in this work. Based on the production rates for C2H2, C2H6, and C3H4, abundance ratios are obtained for heliocentric distances rh ≥ 3 AU. In comet Hale-Bopp, C2H2 and C2H6 were measured directly by infrared observations only at heliocentric distance rh ≤ 3 AU (Dello Russo et al. 2001). The model presented here greatly extends the heliocentric distance range over which hydrocarbons can be studied in the coma of comet Hale-Bopp. We discuss possible indications of these abundance ratios for the formation region of comet Hale-Bopp.

  15. Trajectories and orbits from the NASA-NMSU meteor observatory. I

    NASA Technical Reports Server (NTRS)

    Tedesco, E. F.; Harvey, G. A.

    1976-01-01

    Reduced trajectory data and orbital elements are reported for 20 double-station meteors photographed at the NASA-NMSU meteor observatory during the winter of 1974/75. The objects photographed include 10 sporadic meteors and 10 members of the Geminid shower. The data for the sporadic meteors indicate that their magnitudes range from 0 to -4, all have eccentricities greater than 0.4, all but three are in direct orbits, and one is probably a member of the Coma Berenicid shower. The elements for the Geminids are obtained using times of appearance chosen by adopting 34.6 km/s as the heliocentric velocity of the shower. The results are compared with previous orbital determinations, and it is concluded that there is no evidence for significant evolution of the Geminid-stream orbit over a period of several decades.

  16. The Plasma Environment in Comets over a Wide Range of Heliocentric Distances: Application to Comet C/2006 P1 (McNaught)

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Jia, Y.-D.; Gombosi, T.; Toth, G.; Rubin, M.

    2015-08-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.

  17. The Plasma Environment in Comets Over a Wide Range of Heliocentric Distances: Application to Coment C/2006 P1 (McNaught)

    NASA Astrophysics Data System (ADS)

    Shou, Yinsi; Combi, Michael; Jia, Yingdong; Gombosi, Tamas; Toth, Gabor; Rubin, Martin

    2015-11-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses. The work at the University of Michigan was supported by the NASA Planetary Atmospheres grant NNX14AG84G.

  18. Orbit and dynamic origin of the recently recovered Annama's H5 chondrite

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, Josep M.; Lyytinen, Esko; Gritsevich, Maria; Moreno-Ibáñez, Manuel; Bottke, William F.; Williams, Iwan; Lupovka, Valery; Dmitriev, Vasily; Kohout, Tomas; Grokhovsky, Victor

    2015-05-01

    We describe the fall of Annama meteorite occurred in the remote Kola Peninsula (Russia) close to Finnish border on 2014 April 19 (local time). The fireball was instrumentally observed by the Finnish Fireball Network. From these observations the strewnfield was computed and two first meteorites were found only a few hundred metres from the predicted landing site on 2014 May 29 and 30, so that the meteorite (an H5 chondrite) experienced only minimal terrestrial alteration. The accuracy of the observations allowed a precise geocentric radiant to be obtained, and the heliocentric orbit for the progenitor meteoroid to be calculated. Backward integrations of the orbits of selected near-Earth asteroids and the Annama meteoroid showed that they rapidly diverged so that the Annama meteorites are unlikely related to them. The only exception seems to be the recently discovered 2014UR116 that shows a plausible dynamic relationship. Instead, analysis of the heliocentric orbit of the meteoroid suggests that the delivery of Annama onto an Earth-crossing Apollo-type orbit occurred via the 3:1 mean motion resonance with Jupiter or the nu6 secular resonance, dynamic mechanisms that are responsible for delivering to Earth most meteorites studied so far.

  19. Orbital Effects on Mercury's Escaping Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Schmidt, Carl A.; Wilson, Jody K.; Baumgardner, Jeffrey; Mendillo, Michael

    2009-01-01

    We present results from coronagraphic imaging of Mercury's sodium tail over a 7 deg field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (R(sub m)) in length, or a full degree of sky. However, no tail was observed extending beyond 120 R(sub m) during the January 2008 MESSENGER Fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury's heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury's escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 x 10(exp 23) atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury's sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury's magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury's sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.

  20. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  1. The improvement of the Pluto orbit using additional new data

    NASA Astrophysics Data System (ADS)

    Girdiuk, A.

    2015-08-01

    Observational series of the Pluto dwarf planet have started since 1913. At this moment observations have covered only a third of the Pluto orbit, therefore, the Pluto orbital elements are defined with insufficient accuracy. A growing number of observations leads to the improvement of the accuracy of the orbit determination. The database of the Pluto's observations was expanded with the help of about 350 observations during 1930-1996 obtained at the Pulkovo Observatory, and about 5500 observations (1995-2013) including occultation data from Brazilian colleagues obtained at the European Southern Observatory and the Pico dos Dias Observatory, and the new analyzed 469 historical photographic observations archived at Lowell Observatory. The new cross-platform software ERA-8 has been developed in IAA RAS and has been used for implementation of all mathematical procedures for constructing Pluto orbit. The modern ephemerides (EPM2011, EPM2013, DE430, DE432, INPOP13c) are chosen for comparison of the ephemeris positions: equatorial coordinates and heliocentric distance. The main result of the work - construction of ephemerides EPM2014a is a significant improvement of the Pluto's orbit using additional observations.

  2. On-orbit assembly and servicing of future space observatories

    NASA Astrophysics Data System (ADS)

    Lillie, C. F.

    2006-06-01

    NASA's experience servicing the Hubble Space Telescope, including the installation of optical elements to compensate for a mirror manufacturing error; replacement of failed avionics and worn-out batteries, gyros, thermal insulation and solar arrays; upgrades to the data handling subsystem; installation of far more capable instruments; and retrofitting the NICMOS experiment with a mechanical cryocooler has clearly demonstrated the advantages of on-orbit servicing. This effort has produced a unique astronomical observatory that is orders of magnitude more capable than when it was launched and can be operated for several times its original design life. The in-space operations capabilities that are developed for NASA's Exploration Program will make it possible to assemble and service spacecraft in space and to service them in cis-lunar and L2 orbits. Future space observatories should be designed to utilize these capabilities. This paper discusses the application of the lessons learned from HST and our plans for servicing the Advanced X-ray Astrophysical Observatory with the Orbital Maneuvering Vehicle and the Space Station Freedom Customer Servicing Facility to future space observatories, such as SAFIR and LifeFinder that are designed to operate in heliocentric orbits. It addresses the use of human and robotic in-space capabilities that would be required for on-orbit assembly and servicing for future space observatories, and describes some of our design concepts for these activities.

  3. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  4. Mission Steering Profiles of Outer Planetary Orbiters Using Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    Radioisotope Electric Propulsion (REP) has the potential to enable small spacecraft to orbit outer planetary targets with trip times comparable to flyby missions. The ability to transition from a flyby to an orbiter mission lies in the availability of continuous low power electric propulsion along the entire trajectory. The electric propulsion system s role is to add and remove energy from the spacecraft s trajectory to bring it in and out of a heliocentric hyperbolic escape trajectory for the outermost target bodies. Energy is added and the trajectory is reshaped to rendezvous with the closer-in target bodies. Sample REP trajectories will be presented for missions ranging for distances from Jupiter orbit to the Pluto-Kuiper Belt.

  5. Fast Geometric Method for Calculating Accurate Minimum Orbit Intersection Distances (MOIDs)

    NASA Astrophysics Data System (ADS)

    Wiźniowski, T.; Rickman, H.

    2013-06-01

    We present a new method to compute Minimum Orbit Intersection Distances (MOIDs) for arbitrary pairs of heliocentric orbits and compare it with Giovanni Gronchi's algebraic method. Our procedure is numerical and iterative, and the MOID configuration is found by geometric scanning and tuning. A basic element is the meridional plane, used for initial scanning, which contains one of the objects and is perpendicular to the orbital plane of the other. Our method also relies on an efficient tuning technique in order to zoom in on the MOID configuration, starting from the first approximation found by scanning. We work with high accuracy and take special care to avoid the risk of missing the MOID, which is inherent to our type of approach. We demonstrate that our method is both fast, reliable and flexible. It is freely available and its source Fortran code downloadable via our web page.

  6. Metis aboard the Solar Orbiter space mission: Doses from galactic cosmic rays and solar energetic particles

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Fabi, Michele; Grimani, Catia; Antonucci, Ester

    2016-03-01

    The aim of this work is to calculate the dose released by galactic cosmic rays (GCRs) and solar energetic particles (SEPs) in the polarimeter of the Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph [1] aboard the Solar Orbiter. This investigation is performed with a Monte Carlo method by considering the role of SEP events of proper intensity at a heliocentric distance from the Sun averaged along the spacecraft orbit. Our approach can be extended to other space missions reaching short distances from the Sun, such as Solar Probe Plus. This study indicates that the deposited dose on the whole set of polarimeter lenses and filters during ten years of the Solar Orbiter mission is of about 2000 Gy. For cerium treated lenses, a dose of 106 Gy of gamma radiation from a 60Co source causes a few percent transmittance loss.

  7. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  8. The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-08-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  9. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  10. A continuum model for the orbit evolution of self-propelled `smart dust' swarms

    NASA Astrophysics Data System (ADS)

    McInnes, Colin R.

    2016-06-01

    A continuity equation is developed to model the evolution of a swarm of self-propelled `smart dust' devices in heliocentric orbit driven by solar radiation pressure. These devices are assumed to be MEMs-scale (micro-electromechanical systems) with a large area-to-mass ratio. For large numbers of devices it will be assumed that a continuum approximation can be used to model their orbit evolution. The families of closed-form solutions to the resulting swarm continuity equation then represent the evolution of the number density of devices as a function of both position and time from a set of initial data. Forcing terms are also considered which model swarm sources and sinks (device deposition and device failure). The closed-form solutions presented for the swarm number density provide insights into the behaviour of swarms of self-propelled `smart dust' devices an can form the basis of more complex mission design methodologies.

  11. The BioSentinel Bioanalytical Microsystem: Characterizing DNA Radiation Damage in Living Organisms Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ricco, A. J.; Hanel, R.; Bhattacharya, S.; Boone, T.; Tan, M.; Mousavi, A.; Rademacher, A.; Schooley, A.; Klamm, B.; Benton, J.; Padgen, M.; Gentry, D.; Friedericks, C.; Defouw, G.; Parra, M.; Santa Maria, S.; Marina, D.; Swan, B. G.; Wheeler, S.; Gavalas, S.; Lewis, B.; Sanchez, H.; Chartres, J.; Lusby, T.

    2016-01-01

    We will present details and initial lab test results from an integrated bioanalytical microsystem designed to conduct the first biology experiments beyond low Earth orbit (LEO) since Apollo 17 (1972). The 14-kg, 12x24x37-cm BioSentinel spacecraft (Figure 1) assays radiation-responsive yeast in its science payload by measuring DNA double-strand breaks (DSBs) repaired via homologous recombination, a mechanism common to all eukaryotes including humans. S. cerevisiae (brewer's yeast) in 288 microwells are provided with nutrient and optically assayed for growth and metabolism via 3-color absorptimetry monthly during the 18-month mission. BioSentinel is one of several secondary payloads to be deployed by NASA's Exploration Mission 1 (EM-1) launch vehicle into approximately 0.95 AU heliocentric orbit in July 2018; it will communicate with Earth from up to 100 million km.

  12. Orbital Evolution and Migration of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Trilling, D. E.; Benz, W.; Guillot, T.; Lunine, J. I.; Hubbard, W. B.; Burrows, A.

    1997-07-01

    Giant planets in circumstellar disks can migrate inward from their initial (formation) positions. Migration is caused by inward torques between the planet and the disk; by outward torques between the planet and the spinning star; and by outward torques due to Roche lobe overflow and mass loss from the planet. Summing torques on planets in disks with various physical parameters, we find that Jupiter-mass planets can stably arrive and survive at small heliocentric distances. Inward migration timescales can be approximately equal to or less than disk lifetimes and star spindown timescales. Therefore, the range of fates of Jupiter-mass planets is broad, and generally comprises three classes: (I) planets which migrate inward too rapidly and lose all their mass due to Roche lobe overflow; (II) planets which migrate inward and survive in very small orbits; and (III) planets which do not migrate very far. Some, but not all, of the planets in Class II lose mass during their evolution and migration times, resulting in planets with final masses smaller than their initial masses. For example, in our model, we produce planets similar to 51 Peg b which have lost ~ 75% of their initial mass. The observed extrasolar planets, both those with extremely small semi-major axes (51 Peg b at 0.05 AU, tau Boo b (0.046 AU), upsilon And b (0.057 AU), and 55 Cnc b (0.11 AU)) and those with more moderate semi-major axes (rho Cor Bor b (0.23 AU), 47 UMa b (2.1 AU)) form a subset of the potential outcomes of the system, in that Jupiter-mass objects can stably survive in orbits with a wide range of semi-major axes. Our numerical model produces planets which have similar characteristics to the observed planets, as well as planets similar to Jupiter, and many intermediate cases. Since Jupiters can stably migrate to various orbital separations, we predict that, as planetary detection techniques improve, Jupiter-mass planets will be found in a wide range of orbits, from much less than 1 AU to

  13. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  14. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  15. Preliminary orbital parallax catalog

    NASA Technical Reports Server (NTRS)

    Halliwell, M.

    1981-01-01

    The study is undertaken to calibrate the more reliable parallaxes derived from a comparison of visual and spectroscopic orbits and to encourage observational studies of other promising binaries. The methodological techniques used in computing orbital parallaxes are analyzed. Tables summarizing orbital data and derived system properties are then given. Also given is a series of detailed discussions of the 71 individual systems included in the tables. Data are listed for 57 other systems which are considered promising candidates for eventual orbital parallax determination.

  16. SEASAT B orbit synthesis

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Warmke, J. M.

    1976-01-01

    Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

  17. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  18. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  19. Orbital Evolution of Asteroids

    NASA Astrophysics Data System (ADS)

    Dermott, S. F.; Kehoe, T. J. J.

    2011-10-01

    The synthetic orbital frequencies and eccentricities of main belt asteroids computed by Knezevic and Milani [2] show evidence that the structure of the asteroid belt has been determined by a dense of web of high-order resonances. By examining the orbital frequency distribution at high resolution, we discover a correlation between asteroid number density, mean orbital eccentricity and Lyapunov Characteristic Exponent. In particular, the orbital eccentricities of asteroids trapped in resonance tend to be higher than those of non-resonant asteroids and we argue that this is observational evidence for orbital evolution due to chaotic diffusion.

  20. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  1. Orbit correction in an orbit separated cyclotron

    NASA Astrophysics Data System (ADS)

    Plostinar, C.; Rees, G. H.

    2014-04-01

    The orbit separated proton cyclotron (OSC) described in [1] differs in concept from that of a separated orbit cyclotron (SOC) [2]. Synchronous acceleration in an OSC is based on harmonic number jumps and orbit length adjustments via reverse bending. Four-turn acceleration in the OSC enables it to have four times fewer cryogenic-cavity systems than in a superconducting linac of the same high beam power and energy range. Initial OSC studies identified a progressive distortion of the spiral beam orbits by the off-axis, transverse deflecting fields in its accelerating cavities. Compensation of the effects of these fields involves the repeated use of a cavity field map, in a 3-D linac tracking code, to determine the modified arc bends required for the OSC ring. Subsequent tracking studies confirm the compensation scheme and show low emittance growth in acceleration.

  2. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  3. [Diseases of the orbit].

    PubMed

    Lukasik, S; Betkowski, A; Cyran-Rymarz, A; Szuber, D

    1995-01-01

    Diseases of the orbital cavity require more attention because of its specific anatomic structure and placement. Their curing requires cooperation of many medical specialties. Analysis consider orbital fractures, mainly caused by car accidents (69.2%). The next half of them consider inflammatory processes and tumor in equal numbers. Malignant tumors of orbital cavity occur most frequently (48.0%), less frequent are pseudotumors--pseudotumor orbitae (36.0%) and rare--malignant ones (16.0%). Malignant tumors more frequently infiltrate the orbit in neighborhood (63.3%), less frequently they come out from orbit tissue (16.7%). It should be emphasized that the number of orbit inflammations decreases in subsequent years, whereas occurrence of orbit tumors increases. PMID:9454170

  4. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  5. Marned Orbital Systems Concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Despite the indefinite postponement of the Space Station in 1972, Marshall Space Flight Center (MSFC) continued to look to the future for some type of orbital facility during the post-Skylab years. In 1975, the MSFC directed a contract with the McDonnel Douglas Aerospace Company for the Manned Orbital Systems Concept (MOSC) study. This 9-month effort examined the requirements for, and defined a cost-effective orbital facility concept capable of, supporting extended manned missions in Earth orbit. The capabilities of this concept exceeded those envisioned for the Space Shuttle and Spacelab, both of which were limited by a 7 to 30-day orbital time constraint. The MOSC's initial operating capability was to be achieved in late 1984. A crew of four would man a four-module configuration. During its five-year orbital life the MOSC would have the capability to evolve into a larger 12-to-24-man facility. This is an artist's concept of MOSC.

  6. Satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.; Boggs, D. H.; Born, G. H.; Christensen, E. J.; Ferrari, A. J.; Green, D. W.; Hylkema, R. K.; Mohan, S. N.; Reinbold, S. J.; Sievers, G. L.

    1973-01-01

    A historic account of the activities of the Satellite OD Group during the MM'71 mission is given along with an assessment of the accuracy of the determined orbit of the Mariner 9 spacecraft. Preflight study results are reviewed, and the major error sources described. Tracking and data fitting strategy actually used in the real time operations is itemized, and Deep Space Network data available for orbit fitting during the mission and the auxiliary information used by the navigation team are described. A detailed orbit fitting history of the first four revolutions of the satellite orbit of Mariner 9 is presented, with emphasis on the convergence problems and the delivered solution for the first orbit trim maneuver. Also included are a solution accuracy summary, the history of the spacecraft orbit osculating elements, the results of verifying the radio solutions with TV imaging data, and a summary of the normal points generated for the relativity experiment.

  7. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  8. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  9. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  10. Orbital physics in RIXS

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Krzysztof; Marra, Pasquale; Grueninger, Markus; Schmitt, Thorsten; van den Brink, Jeroen

    2013-03-01

    In contrast to magnetism, phenomena associated with the orbital degrees of freedom in transition metal oxides had always been considered to be very difficult to observe. However, recently resonant inelastic x-ray scattering (RIXS) has established itself as a perfect probe of the orbital excitations and orbital order in transition metal oxides. Here we give a brief overview of these recent theoretical and experimental advances which have inter alia led to the observation of the separation of the spin and orbital degree of freedom of an electron.

  11. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  12. Orbital dynamics of Sun-facing solar sails under the constraint of constant sail temperature

    NASA Astrophysics Data System (ADS)

    Yamakawa, Hiroshi

    2006-03-01

    The orbital dynamics of Sun-facing solar sails is investigated considering a constraint of constant sail temperature at the limit of the sail material. Although solar sails can normally be articulated so as to provide thrust with both a transverse and radial component, a Sunfacing attitude with the center of solar pressure behind the center of gravity may be preferred for very large or gossamer sails in order to achieve Sun-facing attitude stability. The proposed Sun-facing solar sails are applicable to space weather and geo-storm warning missions for monitoring the inner solar system environment by in-situ measurement of solar wind plasma and high-energy particle events. Constraining the temperature of the sail to the temperature limit of the sail material allows the innermost circular orbits to be attained thereby maximizing scientific returns. The stability of the heliocentric circular orbit under such radial thrust with the constant temperature constraint is investigated, and the stability conditions are obtained as functions of the radius of circular orbit and the solar sail lightness number accounting for optical/thermal properties.

  13. Observations of Comets C/2007 D1 (LINEAR), C/2007 D3 (LINEAR), C/2010 G3 (WISE), C/2010 S1 (LINEAR), and C/2012 K6 (McNaught) at large heliocentric distances

    NASA Astrophysics Data System (ADS)

    Ivanova, Oleksandra; Neslušan, Luboš; Krišandová, Zuzana Seman; Svoreň, Ján; Korsun, Pavlo; Afanasiev, Viktor; Reshetnyk, Volodymyr; Andreev, Maxim

    2015-09-01

    Photometric and spectroscopic observations of five nearly parabolic comets with eccentricity larger than 0.99 at heliocentric distances greater than 4 AU were performed. No molecular emission was observed for any studied comet and the entire cometary activity in all cases was attributed to dust production. Upper limits of the gas production rates for the main neutral molecules in the cometary comae were calculated. The derived values of dust apparent magnitudes were used to estimate the upper limit of the geometric cross-section of cometary nuclei (upper limits of radii range from 2 km to 28 km). Due to the poor sublimation of water ice at these distances from the Sun, other mechanisms triggering activity in comets are discussed.

  14. Orbit determination based on meteor observations using numerical integration of equations of motion

    NASA Astrophysics Data System (ADS)

    Dmitriev, V.; Lupovka, V.; Gritsevich, M.

    2014-07-01

    We review the definitions and approaches to orbital-characteristics analysis applied to photographic or video ground-based observations of meteors. A number of camera networks dedicated to meteors registration were established all over the word, including USA, Canada, Central Europe, Australia, Spain, Finland and Poland. Many of these networks are currently operational. The meteor observations are conducted from different locations hosting the network stations. Each station is equipped with at least one camera for continuous monitoring of the firmament (except possible weather restrictions). For registered multi-station meteors, it is possible to accurately determine the direction and absolute value for the meteor velocity and thus obtain the topocentric radiant. Based on topocentric radiant one further determines the heliocentric meteor orbit. We aim to reduce total uncertainty in our orbit-determination technique, keeping it even less than the accuracy of observations. The additional corrections for the zenith attraction are widely in use and are implemented, for example, here [1]. We propose a technique for meteor-orbit determination with higher accuracy. We transform the topocentric radiant in inertial (J2000) coordinate system using the model recommended by IAU [2]. The main difference if compared to the existing orbit-determination techniques is integration of ordinary differential equations of motion instead of addition correction in visible velocity for zenith attraction. The attraction of the central body (the Sun), the perturbations by Earth, Moon and other planets of the Solar System, the Earth's flattening (important in the initial moment of integration, i.e. at the moment when a meteoroid enters the atmosphere), atmospheric drag may be optionally included in the equations. In addition, reverse integration of the same equations can be performed to analyze orbital evolution preceding to meteoroid's collision with Earth. To demonstrate the developed

  15. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  16. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  17. Orbital preservation in maxillectomy.

    PubMed

    Stern, S J; Goepfert, H; Clayman, G; Byers, R; Wolf, P

    1993-07-01

    Twenty-eight previously untreated patients with squamous carcinoma of the maxillary sinus underwent maxillectomy with preservation of the orbital contents at the M. D. Anderson Cancer Center between 1971 and 1986. Eighteen patients had part or all of the orbital floor resected; nine patients were treated with radiotherapy, and nine had surgery only. Only 3 of 18 patients in this group (17%) retained significant function in the ipsilateral eye. Furthermore, local recurrence in this group was common (44%), regardless of whether postoperative radiotherapy was used. Ten patients retained the bony orbital floor; if the radiation fields did not include the eye, problems were minimal. Strong consideration should be given to orbital exenteration at the time of surgery, when the orbital floor is resected--especially if postoperative radiation fields will include the eye. PMID:8336956

  18. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  19. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  20. Orbital Causes of Incomitant Strabismus

    PubMed Central

    Lueder, Gregg T.

    2015-01-01

    Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465

  1. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  2. Imaging of orbital disorders.

    PubMed

    Cunnane, Mary Beth; Curtin, Hugh David

    2016-01-01

    Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687

  3. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  4. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions. PMID:24749452

  5. Removal of orbital debris

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Talent, David L.

    1989-01-01

    The several methods presently identified for the reduction of orbital debris populations are broadly classifiable as either preventive or remedial, and fall within distinctive operational regimes. For all particles, (1) in the 250-2000-km altitude band, intelligent sweepers may be used; (2) for large objects, in the 80-250-km altitude band, orbital decay renders removal impractical; (3) for the 250-750-km altitude band, deorbit devices should be used; (4) for 750-2500-km altitude, OMV rendezvous for propulsive deorbit package attachment is foreseeable; and beyond 2500 km, (5) propulsive escape from earth orbit is required.

  6. Working in orbit and beyond

    SciTech Connect

    Lorr, D.B. ); Garshnek, V. ); Cadoux, C. )

    1989-01-01

    This book contains papers presented at a conference on the challenges for space medicine. Topics covered include radiation hazards in low earth orbit, polar orbit, geosynchronous orbit, and deep space.

  7. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  8. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  9. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  10. ARTEMIS Orbits Magnetic Moon

    NASA Video Gallery

    NASA's THEMIS spacecraft have completed their mission and are still working perfectly, so NASA is re-directing the outermost two spacecraft to special orbits around the Moon. Now called ARTEMIS, th...

  11. Space Shuttle Orbiter ECLSS.

    NASA Technical Reports Server (NTRS)

    Stoll, O. T.; Laubach, G. E.; Gibb, J. W.

    1973-01-01

    The Orbiter Environmental Control and Life Support System (ECLSS) provides the functions of atmosphere revitalization, crew life support, active thermal conditioning, and airlock support for EVA and docking activities. The ECLSS must satisfy the requirements of orbital missions with four to ten crewmembers and mission duration of a few hours to 30 days and the requirements associated with an atmospheric horizontal flight test program and ferry flight missions. The ECLSS development plan utilizes an ECLSS ground test article and thermal/vacuum testing to support the first horizontal flight test at the end of 1976. The ground testing and horizontal flight test program certify the Orbiter ECLSS for the first orbital flight in early 1978.

  12. MMS Orbit Animation

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS)mission, a Solar Terrestrial Probes mission comprising of fouridentically instrumented spacecraft that will study the Earth’sm...

  13. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  14. Imaging in orbital trauma

    PubMed Central

    Lin, Ken Y.; Ngai, Philip; Echegoyen, Julio C.; Tao, Jeremiah P.

    2012-01-01

    Orbital trauma is one of the most common reasons for ophthalmology specialty consultation in the emergency department setting. We survey the literature from 1990 to present to describe the role of computed tomography (CT), magnetic resonance imaging (MRI) and their associated angiography in some of the most commonly encountered orbital trauma conditions. CT orbit can often detect certain types of foreign bodies, lens dislocation, ruptured globe, choroidal or retinal detachments, or cavernous sinus thrombosis and thus complement a bedside ophthalmic exam that can sometimes be limited in the setting of trauma. CT remains the workhorse for acute orbital trauma owing to its rapidity and ability to delineate bony abnormalities; however MRI remains an important modality in special circumstances such as soft tissue assessment or with organic foreign bodies. PMID:23961028

  15. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  16. Aerobraking orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)

    1989-01-01

    An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.

  17. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  18. A tapestry of orbits

    SciTech Connect

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  19. Partonic orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  20. The Exoplanet Orbit Database

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Fakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, John Asher; Howard, A. W.; Fischer, D. A.; Valenti, J. A.; Anderson, J.; Piskunov, N.

    2011-04-01

    We present a database of well-determined orbital parameters of exoplanets, and their host stars' properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form online through the Exoplanets Data Explorer table, and the data can be plotted and explored through the Exoplanet Data Explorer plotter. We use the Data Explorer to generate publication-ready plots, giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semimajor-axis distribution from apparently singleton systems.

  1. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  2. Interplanetary Coronal Mass Ejections from MESSENGER Orbital Observations at Mercury

    NASA Astrophysics Data System (ADS)

    Winslow, R. M.; Lugaz, N.; Philpott, L. C.; Schwadron, N.; Farrugia, C. J.; Anderson, B. J.; Smith, C. W.

    2015-12-01

    We use observations from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, in orbit around Mercury, to investigate interplanetary coronal mass ejections (ICMEs) near 0.3 AU. MESSENGER, the first spacecraft since the 1980s to make in-situ measurements at distances < 0.5 AU, presents a unique opportunity for observing the innermost heliosphere. It also allows studies of ICME evolution as they expand and propagate outward, interacting with the solar wind. In order to catalog ICME events observed by MESSENGER, we design a strict set of selection criteria to identify them based on magnetic field observations only, since reliable solar wind plasma observations are not available from MESSENGER. We identify 61 ICME events observed by the MESSENGER Magnetometer between 2011 and 2014, and present statistical analyses of ICME properties at Mercury. In addition, using existing datasets of ICMEs at 1 AU we investigate key ICME property changes from Mercury to 1 AU. We find good agreement with previous studies for the magnetic field strength dependence on heliospheric distance, r. We have also established three different lines of evidence that ICME deceleration continues beyond the orbit of Mercury: 1) we find a shallow decrease with distance of ˜r-0.45 for the ICME shock speed from Mercury to 1 AU, 2) the average transit speed from the Sun to Mercury for ICMEs in our catalog is ˜20% faster than the average speed from the Sun to 1 AU, 3) the ICME transit time to 1 AU has a weaker dependence on the CME initial coronagraphic speed, as compared to what we predict based on our MESSENGER ICME catalog. Based on our results, future ICME propagation studies should account for ICME speed changes beyond Mercury's heliocentric distances to improve ICME arrival time forecasting. Our ICME database will also prove particularly useful for multipoint spacecraft studies of recent ICMEs, as well as for model validation of ICME properties.

  3. Orbital Distribution of Main-belt S-type Asteroids

    NASA Astrophysics Data System (ADS)

    Bus, S. J.; Binzel, R. P.; Volquardsen, E. L.; Berghuis, J. L.

    2004-11-01

    We present preliminary results from an ongoing near-infrared spectroscopic survey of silicate-rich asteroids. The goals of this survey are to sample the full range of silicate mineralogies present in the main belt for asteroids with diameters larger than 5 km, and to map the distributions of these mineralogies as functions of orbital elements. Results from this work will help place constraints on conditions in the inner solar system during proto-planetary formation, and on the degree of heating/differentiation that occurred in the asteroid belt. The largest class of silicate-rich asteroids is the S-types. Members of this class have spectra containing diagnostic absorption bands centered near 1- and 2-microns. Variations in these bands are indicative of a wide range in pyroxene/olivine compositions (i.e. Gaffey et al. 1993, Icarus 106, 573). Our study of the S-type asteroids combines visible-wavelength spectra from the SMASSII survey (Bus and Binzel 2002, Icarus 158, 106) with high S/N near-IR (0.8 - 2.5 micron) spectra that are being obtained with SpeX (Rayner et al. 2003, PASP 115, 362) at the NASA Infrared Telescope Facility. The analysis presented here uses both band-parameter measurements (Cloutis et al. 1986, JGR 91, 11641) and principal component analysis (PCA) to group the S-type asteroids into sub-classes based on their spectral properties and inferred compositions. Based on our present sample of over 150 asteroids, we examine the distributions of these groupings as functions of orbital semi-major axis, eccentricity and inclination. Our goal is to determine the amount of spectral variation present among members of several dynamical families, and to look for larger-scale trends in olivine/pyroxene composition with heliocentric distance that may provide clues about heating across the early asteroid belt. This work was supported by NSF grant AST-0307688.

  4. The Trajectory, Orbit and Preliminary Fall Data of the JUNE BOOTID Superbolide of July 23, 2008

    NASA Technical Reports Server (NTRS)

    Konovalova, N. A.; Madiedo, J. M.; Trigo-Rodriguez, J. M.

    2011-01-01

    The results of the atmospheric trajectory, radiant, orbit and preliminary fall data calculations of an extremely bright slow-moving fireball are presented. The fireball had a -20.7 maximum absolute magnitude and the spectacular long-persistence dust trail (Fig 1 and 2) was observed in a widespread region of Tajikistan twenty eight minutes after sunset, precisely at 14h 45m 25s UT on July 23, 2008. The bolide was first recorded at a height of 38.2 km, and attained its maximum brightness at a height of 35.0 km and finished at a height of 19.6 km. These values are very much in line with other well-known fireballs producing meteorites. The first break-up must have occurred under an aerodynamic pressure Pdyn of about 1.5 MPa, similar to those derived from the study of atmospheric break-ups of previously reported meteorite-dropping bolides. Our trajectory, and dynamic results suggest that one might well expect to find meteorites on the ground in this case. The heliocentric orbit of the meteoroid determined from the observations is very similar to the mean orbit of the June Bootid meteor shower, whose parental comet is 7P/Pons-Winnecke (Lindblad et al. 2003). If the parent was indeed a comet, this has implications for the internal structure of comets, and for the survivability of cometary meteorites.

  5. The Tajikistan superbolide of July 23, 2008. I. Trajectory, orbit, and preliminary fall data

    NASA Astrophysics Data System (ADS)

    Konovalova, Natalia A.; Madiedo, Jose M.; Trigo-Rodríguez, Josep M.

    2013-12-01

    The results of the atmospheric trajectory, radiant, heliocentric orbit, and preliminary strewn field calculations for an extremely bright slow-moving fireball are presented. In the evening hours of July 23, 2008, a bright object entered Earth's atmosphere over Tajikistan. The fireball had a -20.3 maximum absolute magnitude and a spectacularly long persistent dust trail remained visible over a widespread region of Tajikistan for about 28 minutes after sunset. The fireball was also recorded by a visible-light satellite system at 14 h 45 min 25 s UT, and the dust trail was imaged by video and photocameras. A unique aspect of this event is that it was detected by two infrasound and five seismic stations too. The bolide was first recorded at a height of 38.2 km, reached its maximum brightness at a height of 35.0 km, and finished at a height of 19.6 km. The first breakup occurred under an aerodynamic pressure of approximately 1.6 MPa, similar to the values derived for breakups of the scarcely reported meteorite-dropping bolides. The fireball's trajectory and dynamic results suggest that meteorite survival is likely. The meteoroid followed an Apollo-like asteroid orbit comparable to those derived for previously recovered meteorites with accurately known orbits.

  6. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  8. The orbits in cancer imaging

    PubMed Central

    Chong, V F H

    2006-01-01

    Primary malignant lesions in the orbit are relatively uncommon. However, the orbits are frequently involved in haematogeneous metastasis or by direct extension from malignancies originating from the adjacent nasal cavity or paranasal sinuses. This paper focuses on the more commonly encountered primary orbital malignancies and the mapping of tumour spread into the orbits. PMID:17114076

  9. Elliptical Orbit Performance Computer Program

    NASA Technical Reports Server (NTRS)

    Myler, T.

    1984-01-01

    Elliptical Orbit Performance (ELOPE) computer program for analyzing orbital performance of space boosters uses orbit insertion data obtained from trajectory simulation to generate parametric data on apogee and perigee altitudes as function of payload data. Data used to generate presentation plots that display elliptical orbit performance capability of space booster.

  10. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  11. Orbital Fluid Resupply Assessment

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  12. On the asteroid belt's orbital and size distribution

    NASA Astrophysics Data System (ADS)

    Gladman, Brett J.; Davis, Donald R.; Neese, Carol; Jedicke, Robert; Williams, Gareth; Kavelaars, J. J.; Petit, Jean-Marc; Scholl, Hans; Holman, Matthew; Warrington, Ben; Esquerdo, Gil; Tricarico, Pasquale

    2009-07-01

    For absolute magnitudes greater than the current completeness limit of H-magnitude ∼15 the main asteroid belt's size distribution is imperfectly known. We have acquired good-quality orbital and absolute H-magnitude determinations for a sample of small main-belt asteroids in order to study the orbital and size distribution beyond H = 15, down to sub-kilometer sizes (H > 18). Based on six observing nights over a 11-night baseline we have detected, measured photometry for, and linked observations of 1087 asteroids which have one-week time baselines or more. The linkages allow the computation of full heliocentric orbits (as opposed to statistical distances determined by some past surveys). Judged by known asteroids in the field the typical uncertainty in the (a / e / i) orbital elements is less than 0.03 AU/0.03/0.5°. The distances to the objects are sufficiently well known that photometric uncertainties (of 0.3 magnitudes or better) dominate the error budget of their derived H-magnitudes. The detected asteroids range from HR = 12- 22 and provide a set of objects down to sizes below 1 km in diameter. We find an on-sky surface density of 210 asteroids per square degree in the ecliptic with opposition magnitudes brighter than mR = 23, with the cumulative number of asteroids increasing by a factor of 100.27/mag from mR = 18 down to the mR ≃ 23.5 limit of our survey. In terms of absolute H magnitudes, we find that beyond H = 15 the belt exhibits a constant power-law slope with the number increasing proportional to 100.30H from H ≃ 15 to 18, after which incompleteness begins in the survey. Examining only the subset of detections inside 2.5 AU, we find weak evidence for a mildly shallower slope for H = 15- 19.5. We provide the information necessary such that anyone wishing to model the main asteroid belt can compare a detailed model to our detected sample.

  13. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  14. Deceleration Orbit Improvements

    SciTech Connect

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  15. Spin-Orbit Caloritronics

    NASA Astrophysics Data System (ADS)

    Manchon, Aurelien; Ndiaye, Papa Birame; Moon, Jung-Hwan; Lee, Hyun-Woo; Lee, Kyung-Jin

    2014-03-01

    Utilizing spin-orbit coupling to enable the electrical manipulation of ferromagnets has recently attracted a considerable amount of interest. This spin-orbit torque appears in magnetic systems displaying inversion symmetry breaking. Another adjacent emerging topic, spin caloritronics, aims at exploiting magnonic spin currents driven by temperature gradients, allowing for the transmission of information and the control of magnetic domain walls. In this work, we demonstrate that a magnon flow generates torques on the local magnetization when subjected to Dzyaloshinskii-Moriya interaction (DMI) just as an electron flow generates torques when submitted to Rashba interaction. A direct consequence is the capability to control the magnetization direction of a homogeneous ferromagnet by applying a temperature gradient or local RF excitations. Merging the spin-orbit torques with spin caloritronics is rendered possible by the emergence of DMI in magnetic materials and opens promising avenues in the development of chargeless information technology.

  16. DASTCOM5: A Portable and Current Database of Asteroid and Comet Orbit Solutions

    NASA Astrophysics Data System (ADS)

    Giorgini, Jon D.; Chamberlin, Alan B.

    2014-11-01

    A portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, with the software to access it, is available for download (ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip). DASTCOM5 contains the latest heliocentric IAU76/J2000 ecliptic osculating orbital elements for all known asteroids and comets as determined by a least-squares best-fit to ground-based optical, spacecraft, and radar astrometric measurements. Other physical, dynamical, and covariance parameters are included when known. A total of 142 parameters per object are supported within DASTCOM5. This information is suitable for initializing high-precision numerical integrations, assessing orbit geometry, computing trajectory uncertainties, visual magnitude, and summarizing physical characteristics of the body. The DASTCOM5 distribution is updated as often as hourly to include newly discovered objects or orbit solution updates. It includes an ASCII index of objects that supports look-ups based on name, current or past designation, SPK ID, MPC packed-designations, or record number. DASTCOM5 is the database used by the NASA/JPL Horizons ephemeris system. It is a subset exported from a larger MySQL-based relational Small-Body Database ("SBDB") maintained at JPL. The DASTCOM5 distribution is intended for programmers comfortable with UNIX/LINUX/MacOSX command-line usage who need to develop stand-alone applications. The goal of the implementation is to provide small, fast, portable, and flexibly programmatic access to JPL comet and asteroid orbit solutions. The supplied software library, examples, and application programs have been verified under gfortran, Lahey, Intel, and Sun 32/64-bit Linux/UNIX FORTRAN compilers. A command-line tool ("dxlook") is provided to enable database access from shell or script environments.

  17. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  18. Orbital Superstructures in Spinels

    NASA Astrophysics Data System (ADS)

    Khomskii, Daniel

    2006-03-01

    Orbital degrees of freedom often lead to specific types of orbital and spin ordering. Complicated and interesting superstructures are observed in B-sublattice of spinels. This is connected with the geometric frustration of this lattice and with the interconnection of edge-sharing MO6 octahedra, which is especially important for transition metals with partially-filled t2g levels. In some such systems (MgTi2O4, CuIr2S4, AlV2O4) there appears strange superstructures with the formation of spin gap states. In other cases (ZnV2O4) structural transitions, apparently connected with orbital ordering, are followed by long-range magnetic ordering. Last but not least, the famous Verwey transition in magnetite Fe3O4 leads to a very complicated structural pattern, accompanied by the appearance of ferroelectricity. In this talk I will discuss all these examples, paying main attention to an interplay of charge, spin and orbital degrees of freedom. In particular, for MgTi2O4, and CuIr2S4 we proposed the picture of orbitally-driven Peierls state [1]. Similar phenomenon can also explain situation in ZnV2O4 [2], although the corresponding superstructure has not yet been observed experimentally. Finally, I propose the model of charge and orbital ordering in magnetite [3], which uses the idea of an interplay of site- and bond-centered ordering [4] and which seems to explain both the structural data and the presence of ferroelectricity in Fe3O4 below Verwey transition. [1] D.I.Khomskii and T.Mizokawa, Phys.Rev.Lett. 94, 156402 (2005); [2] Hua Wu, T.Mizokawa and D.I.Khomskii, unpublished; [3] D.I.Khomskii, unpublished; [4] D.V.Efremov, J.van den Brink and D.I.Khomskii, Nature Mater. 3, 853 (2004)

  19. Orbital metastases in Italy

    PubMed Central

    Magliozzi, Patrizio; Strianese, Diego; Bonavolontà, Paola; Ferrara, Mariantonia; Ruggiero, Pasquale; Carandente, Raffaella; Bonavolontà, Giulio; Tranfa, Fausto

    2015-01-01

    AIM To describe a series of Italian patients with orbital metastasis focusing on the outcomes in relation to the different primary site of malignancy. METHODS Retrospective chart review of 93 patients with orbital metastasis collected in a tertiary referral centre in a period of 38y and review of literature. RESULTS Out of 93 patients, 52 were females and 41 were males. Median age at diagnosis was 51y (range 1 to 88y). The patients have been divided into four groups on the basis of the year of diagnosis. The frequency of recorded cases had decreased significantly (P<0.05) during the last 9.5y. Primary tumor site was breast in 36 cases (39%), kidney in 10 (11%), lung in 8 (9%), skin in 6 (6%); other sites were less frequent. In 16 case (17%) the primary tumor remained unknown. The most frequent clinical findings were proptosis (73%), limited ocular motility (55%), blepharoptosis (46%) and blurred vision (43%). The diagnosis were established by history, ocular and systemic evaluation, orbital imaging studies and open biopsy or fine needle aspiration biopsy (FNAB). Treatment included surgical excision, irradiation, chemotherapy, hormone therapy, or observation. Ninety-one percent of patients died of metastasis with an overall mean survival time (OMST) after the orbital diagnosis of 13.5mo. CONCLUSION Breast, kidney and lung are the most frequent primary sites of cancer leading to an orbital metastasis. When the primary site is unknown, gastrointestinal tract should be carefully investigated. In the last decade a decrease in the frequency of orbital metastasis has been observed. Surgery provides a local palliation. Prognosis remains poor with a OMST of 13.5mo ranging from the 3mo in the lung cancer to 24mo in the kidney tumor. PMID:26558220

  20. Satellite orbit predictor

    NASA Technical Reports Server (NTRS)

    Friedman, Morton l.; Garrett, James, Major

    An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.

  1. Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.

    1997-01-01

    The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data.

  2. Orbital correlation of space objects based on orbital elements

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Hong; Li, Jun-Feng; Du, Xin-Peng; Zhang, Xuan

    2016-03-01

    Orbital correlation of space objects is one of the most important elements in space object identification. Using the orbital elements, we provide correlation criteria to determine if objects are coplanar, co-orbital or the same. We analyze the prediction error of the correlation parameters for different orbital types and propose an orbital correlation method for space objects. The method is validated using two line elements and multisatellite launching data. The experimental results show that the proposed method is effective, especially for space objects in near-circular orbits.

  3. ARTEMIS Lunar Orbit Insertion and Science Orbit Design Through 2013

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Sweetser, Theodore H.; Angelopoulos, Vassilis; Folta, David; Woodard, Mark

    2015-01-01

    As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit insertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth's gravity and restrictive spacecraft capabilities to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future planetary moon missions.

  4. Global orbit corrections

    SciTech Connect

    Symon, K.

    1987-11-01

    There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.

  5. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  6. Goddard Brouwer Orbit Bulletin

    NASA Technical Reports Server (NTRS)

    Morgan, D. B.; Gordon, R. A.

    1971-01-01

    The bulletin provides operational support for earth space research and technological missions by producing a tape containing pertinent spacecraft orbital information which is provided to a number of cities around the world in support of individual missions. A program description of the main and associated subroutines, and a complete description of the input, output and requirements of the bulletin program are presented.

  7. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  8. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  9. Kaguya Orbit Determination from JPL

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.; Mottinger, N. A.; Graat, E. J.; Jefferson, D. C.; Park, R.; Menom, P.; Higa, E.

    2008-01-01

    Selene (re-named 'Kaguya' after launch) is an unmanned mission to the Moon navigated, in part, by JPL personnel. Launched by an H-IIA rocket on September 14, 2007 from Tanegashima Space Center, Kaguya entered a high, Earth-centered phasing orbit with apogee near the radius of the Moon's orbit. After 19 days and two orbits of Earth, Kaguya entered lunar orbit. Over the next 2 weeks the spacecraft decreased its apolune altitude until reaching a circular, 100 kilometer altitude orbit. This paper describes NASA/JPL's participation in the JAXA/Kaguya mission during that 5 week period, wherein JPL provided tracking data and orbit determination support for Kaguya.

  10. Single Frequency GPS Orbit Determination for Low Earth Orbiters

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy; Wu, Sien-Chong

    1996-01-01

    A number of missions in the future are planning to use GPS for precision orbit determination. Cost considerations and receiver availability make single frequency GPS receivers attractive if the orbit accuracy requirements can be met.

  11. Orbital hemorrhage and eyelid ecchymosis in acute orbital myositis.

    PubMed

    Reifler, D M; Leder, D; Rexford, T

    1989-02-15

    We examined two patients with acute orbital myositis associated with orbital hemorrhage and eyelid ecchymosis. Both patients were young women (aged 22 and 30 years) who had painful proptosis, diplopia, and computed tomographic evidence of single extraocular muscle involvement with spillover of inflammatory edema into the adjacent orbital fat. Patient 1 showed contralateral preseptal eyelid inflammation and did not suffer an orbital hemorrhage until after an episode of vomiting. In Patient 2, the diagnosis of occult orbital varix was initially considered but an orbital exploration and a biopsy specimen showed no vascular anomaly. Both patients were treated successfully with high-dose systemic corticosteroids. Some cases of idiopathic orbital inflammation may be related to preexisting vascular anomalies or orbital phlebitis. PMID:2913803

  12. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  13. Unusual sclerosing orbital pseudotumor infiltrating orbits and maxillofacial regions.

    PubMed

    Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin

    2014-01-01

    Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481

  14. Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions

    PubMed Central

    Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin

    2014-01-01

    Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481

  15. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1990-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

  16. Close up view of the Orbiter Discovery in the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  18. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its

  19. Lunar Reconnaissance Orbiter Mission Highlights

    NASA Video Gallery

    Since launch on June 18, 2009 as a precursor mission, the Lunar Reconnaissance Orbiter (LRO) has remained in orbit around the moon, collecting vast amounts of science data in support of NASA's expl...

  20. Management of complex orbital fractures.

    PubMed

    Bhatti, N; Kanzaria, A; Huxham-Owen, N; Bridle, C; Holmes, S

    2016-09-01

    The treatment of orbital injuries has evolved considerably over the last two decades. We describe strategies involved in the emergency management of orbital injuries, the use of imaging, preformed and customised materials for reconstruction, and endoscopic techniques. PMID:27268464

  1. Generation of NEP heliocentric trajectory data

    NASA Technical Reports Server (NTRS)

    Horsewood, J. L.; Brice, K. B.

    1972-01-01

    A study, designed to generate representative nuclear electric propulsion data for rendezvous missions to the comet Encke using the variational calculus program HILTOP, is presented. Other purposes of the study include a comparison of the HILTOP data with equivalent data generated with QUICKTOP program and to propose approaches for storing and subsequently accessing the optimum trajectory and performance data in the QUICKLY program.

  2. Three orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Aerospace engineering students at the Virginia Polytechnic Institute and State University undertook three design projects under the sponsorship of the NASA/USRA Advanced Space Design Program. All three projects addressed cargo and/or crew transportation between low Earth orbit and geosynchronous Earth orbit. Project SPARC presents a preliminary design of a fully reusable, chemically powered aeroassisted vehicle for a transfer of a crew of five and a 6000 to 20000 pound payload. The ASTV project outlines a chemically powered aeroassisted configuration that uses disposable tanks and a relatively small aerobrake to realize propellant savings. The third project, LOCOST, involves a reusable, hybrid laser/chemical vehicle designed for large cargo (up to 88,200 pounds) transportation.

  3. Orbiter based construction equipment

    NASA Technical Reports Server (NTRS)

    Goodwin, C. J.

    1982-01-01

    Many orbiter based activities need equipment to hold a payload steady while it is being worked on. This work may be construction, updating, repair, services, check out, or refueling operations in preparation for return to Earth. The Handling and Positioning Aid (HPA) is intended for use as general purpose equipment. The HPA provides a wide choice of work station positions, both immediately above the orbiter cargo bay and beyond. It can act in a primary docking role and, if required, can assist actively in the berthing process. From an analysis of ten reference missions, it was determined that two types of HPA mobility are needed; a tilt table, which simply swings out of the cargo bay, pivoting about an athwartships y axis, and an articulated arm. Illustration of the aid are provided.

  4. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  5. On-orbit coldwelding

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1991-01-01

    Spacecraft mechanisms are required to operate in the space environment for extended periods of time. A significant concern to the spacecraft designer is the possibility of metal to metal coldwelding or significant increases in friction. Coldwelding can occur between atomically clean metal surfaces when carefully prepared in a vacuum chamber on earth. The question is whether coldwelding occurs in orbit service conditions. The results of the System Special Investigation Group's (SIG's) investigation into whether coldwelding had occurred on any Long Duration Exposure Facility (LDEF) hardware are presented. The results of a literature search into previous ground based anomalies is also presented. Results show that even though there have been no documented on-orbit coldwelding related failures, precautions should be taken to ensure that coldwelding does not occur in the space environment and that seizure does not occur in the prelaunch or launch environment.

  6. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  7. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  8. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  9. Orbital debris measurements

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1986-01-01

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.

  10. [Echinococcosis of the orbit].

    PubMed

    Staindl, O; Krenkel, C

    1985-09-01

    A 5 year old girl with an echinococcuscyst in the right orbit is reported. The final diagnosis was made by removal of the cyst. A second cyst was found in the liver. The epidemiology, clinical and diagnostic problems of echinococcosis are reviewed. Radical surgery is still the only reliable treatment. For inoperable cases chemotherapy with Mebendazol seems promising. Many problems of chemotherapy remain to be solved and Mebendazol therapy is still in an experimental stage. PMID:4077595

  11. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  12. An Orbit Plan toward AKATSUKI Venus Reencounter and Orbit Injection

    NASA Technical Reports Server (NTRS)

    Kawakatsu, Yasuhiro; Campagnola, Stefano; Hirose, Chikako; Ishii, Nobuaki

    2012-01-01

    On December 7, 2010, AKATSUKI, the Japanese Venus explorer reached its destination and tried to inject itself into Venus orbit. However, due to a malfunction of the propulsion system, the maneuver was interrupted and AKATSUKI again escaped out from the Venus into an interplanetary orbit. Telemetry data from AKATSUKI suggests the possibility to perform orbit maneuvers to reencounter the Venus and retry Venus orbit injection. Reported in this paper is an orbit plan investigated under this situation. The latest results reflecting the maneuvers conducted in the autumn 2011 is introduced as well.

  13. Circular-Orbit Maintenance Strategies for Primitive Body Orbiters

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Broschart, Stephen

    2013-01-01

    For missions to smaller primitive bodies, solar radiation pressure (SRP) is a significant perturbation to Keplerian dynamics. For most orbits, SRP drives large oscillations in orbit eccentricity, which leads to large perturbations from the irregular gravity field at periapsis. Ultimately, chaotic motion results that often escapes or impacts that body. This paper presents an orbit maintenance strategy to keep the orbit eccentricity small, thus avoiding the destabilizing secondary interaction with the gravity field. An estimate of the frequency and magnitude of the required maneuvers as a function of the orbit and body parameters is derived from the analytic perturbation equations.

  14. Orbiter Autoland reliability analysis

    NASA Technical Reports Server (NTRS)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  15. Orbiter OMS and RCS technology

    NASA Technical Reports Server (NTRS)

    Boudreaux, R. A.

    1982-01-01

    Orbiter Orbital Maneuver Subsystem (OMS) and Reaction Control Subsystem (RCS) tankage has proved to be highly successful in shuttle flights on-orbit propellant transfer tests were done. Tank qualification tests along with flight demonstrations were carried out future uses of storable propellants are cited.

  16. Orbiter KU-band transmitter

    NASA Technical Reports Server (NTRS)

    Halterman, R.

    1976-01-01

    The design, build, and test of an engineering breadboard Ku band quadraphase shift keyed and wideband frequency modulated transmitter are described. This orbiter Ku band transmitter drawer is to simulate the orbiter transmitter and meet the functional requirements of the orbiter communication link.

  17. Frozen Orbital Plane Solutions for Satellites in Nearly Circular Orbit

    NASA Astrophysics Data System (ADS)

    Ulivieri, Carlo; Circi, Christian; Ortore, Emiliano; Bunkheila, Federico; Todino, Francesco

    2013-08-01

    This paper deals with the determination of the initial conditions (right ascension of the ascending node and inclination) that minimize the orbital plane variation for nearly circular orbits with a semimajor axis between 3 and 10 Earth radii. An analysis of two-line elements over the last 40 years for mid-, geostationary-, and high-Earth orbits has shown, for initially quasi-circular orbits, low eccentricity variations up to the geostationary altitude. This result makes the application of mathematical models based on satellite circular orbits advantageous for a fast prediction of long-term temporal evolution of the orbital plane. To this purpose, a previous model considering the combined effect due to the Earth's oblateness, moon, and sun (both in circular orbit) has been improved in terms of required computational time and accuracy. The eccentricity of the sun and moon and the equinoctial precession have been taken into account. Resonance phenomena with the lunar plane motion have been found in mid-Earth orbit. Dynamical properties concerning the precession motions of the orbital pole have been investigated, and frozen solutions for geosynchronous and navigation satellites have been proposed. Finally, an accurate model validation has also been carried out by comparing the obtained results with two-line elements of abandoned geostationary-Earth orbit and mid-Earth orbit satellites.

  18. Earth Co-orbital Objects

    NASA Astrophysics Data System (ADS)

    Wiegert, P.; Connors, M.; Chodas, P.; Veillet, C.; Mikkola, S.; Innanen, K.

    2002-12-01

    The recent discovery of asteroid 2002 AA29 by the LINEAR survey and the realization of its co-orbital relationship with Earth lead us to consider the characteristics of Earth Co-orbital Objects (ECOs) in general. An object with semimajor axis between 0.99 and 1.01 AU is in 1:1 resonance with the Earth. To be co-orbital in the sense of moving along the Earth's orbit, an object must further have its other orbital parameters similar to those of the Earth. Clarification is needed as to what range of orbital parameters can be regarded as similar enough to permit classification as an ECO. ECOs would be expected to librate on tadpole or horseshoe orbits, be relatively easy to access with spacecraft, and to sometimes exhibit quasisatellite behavior. 2002 AA29 is on a horseshoe orbit and was discovered in a general asteroid survey while near Earth at one end of the horseshoe orbit. Searches for Earth Trojan asteroids, which would be members of the ECO class on tadpole orbits near a triangular Lagrange Point, have not yet been successful. While 2002 AA29 has an orbit even less eccentric than Earth's, it has an inclination of about 10 degrees. 2000 PH5 and 2001 GO2 are on horseshoe orbits and interact gravitationally with Earth to 'bounce' when they approach the Earth from either side. With eccentricities of .23 and .17 respectively, they do not have decidedly Earth-like orbits despite inclinations less that 5 degrees. When in quasi-satellite mode, a body exhibits a looping motion relative to Earth in some ways resembling a satellite orbit. Several resonant bodies including 3753 Cruithne exhibit this behavior at times, but ECOs remain close to Earth while doing it. We suggest that directed searches be used to discover ECOs and characterize this class of objects. Orbital simulations suggest the best target spaces, which are only partially covered by present general searches.

  19. Global Orbit Feedback in RHIC

    SciTech Connect

    Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G.; Satogata, T.

    2010-05-23

    For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.

  20. Orbital maneuvers and space rendezvous

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  1. Lunar Prospector Orbit Determination Results

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Concha, Marco

    1998-01-01

    The orbit support for Lunar Prospector (LP) consists of three main areas: (1) cislunar orbit determination, (2) rapid maneuver assessment using Doppler residuals, and (3) routine mapping orbit determination. The cislunar phase consisted of two trajectory correction maneuvers during the translunar cruise followed by three lunar orbit insertion burns. This paper will detail the cislunar orbit determination accuracy and the real-time assessment of the cislunar trajectory correction and lunar orbit insertion maneuvers. The non-spherical gravity model of the Moon is the primary influence on the mapping orbit determination accuracy. During the first two months of the mission, the GLGM-2 lunar potential model was used. After one month in the mapping orbit, a new potential model was developed that incorporated LP Doppler data. This paper will compare and contrast the mapping orbit determination accuracy using these two models. LP orbit support also includes a new enhancement - a web page to disseminate all definitive and predictive trajectory and mission planning information. The web site provides definitive mapping orbit ephemerides including moon latitude and longitude, and four week predictive products including: ephemeris, moon latitude/longitude, earth shadow, moon shadow, and ground station view periods. This paper will discuss the specifics of this web site.

  2. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  3. Galactic Habitable Orbits

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  4. Mars orbits with daily repeating ground traces

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.; Kerridge, Stuart; Diehl, Roger; neelon, Joseph; Ely, Todd; Turner, Andrew

    2003-01-01

    This paper derives orbits at Mars with ground traces that repeat at the same times every solar day (sol). A relay orbiter in such an orbit would pass over insitu probes at the same times every sol, ensuring consistent coverage and simplifying mission design and operations. 42 orbits in five classes are characteried: 14 cicular equatorial prograde orbits; 14 circular equatorial retrograde orbits; 11 circular sun synchrounous orbits; 2 eccentroc equatorial orbits; 1 eccentric critcally inclined orbit. the paper reports on the performance of a relay orbiter in some of the orbits.

  5. [Ganglioneuroblastoma of the orbit].

    PubMed

    Dhermy, P; Sekkat, A; Moussaoui, M; Bellakhdar, N; Haye, C; Charlot, J C

    1985-01-01

    Ganglioneuroblastoma a transitional tumor of sympathetic origin has not yet been described as involving orbit. It is characterized by a mixture of cells ranging from primitive neuroblast to well differentiated ganglion cells within a neurofibromatous tissue. The prognosis is uncertain, as the tumor may either undergo maturation into a ganglioneuroma or may metastasize widely and rapidly as in neuroblastoma. We may postulate a relationship between ganglioneuroblastoma and Recklinghausen's neurofibromatosis in view of the development of the tumor in conjunction with the phacomatosis. PMID:3924990

  6. Quark Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  7. Electric Propulsion Orbital Platform

    NASA Technical Reports Server (NTRS)

    Friedly, V. J.; Ruyten, Wilhelmus M.; Litchford, R. J.; Garrison, G. W.

    1993-01-01

    This paper describes the Electric Propulsion Orbital Platform (EPOP), of which the primary objective is to provide an instrumented platform for testing electric propulsion devices in space. It is anticipated that the first flight, EPOP-1, will take place on the Shuttle-deployed Wake Shield Facility in 1996, and will be designed around a commercial 1.8 kW arcjet system which will be operated on gaseous hydrogen propellant. Specific subsystems are described, including the arcjet system, the propellant and power systems, and the diagnostics systems.

  8. Periodic orbits for three and four co-orbital bodies

    NASA Astrophysics Data System (ADS)

    Verrier, P. E.; McInnes, C. R.

    2014-08-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the planar-restricted 1 + n-body problem for the case 2 ≤ n ≤ 4 equal-mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the Solar system. For n = 2, there are two families of periodic orbits associated with the equilibria of the system: the well-known horseshoe and tadpole orbits. For n = 3, there are three families that emanate from the equilibrium configurations of the satellites, while for n = 4, there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  9. Orbiter-orbiter and orbiter-lander tracking using same-beam interferometry

    NASA Astrophysics Data System (ADS)

    Folkner, W. M.; Border, J. S.

    Two spacecraft orbiting Mars may be tracked simultaneously by a single earth-based antenna. Same-beam interferometric techniques, using two widely separated antennas, produce a spacecraft-spacecraft measurement in the plane of the sky, complementary to the line-of-sight Doppler information. This paper presents an overview of the same-beam interferometric measurement technique, a measurement error analysis, and examples of the application of same-beam interferometry to orbit determination. For the case of Mars Observer and the Soviet Mars '94 mission, orbit determination improvement up to an order of magnitude is found. Relative tracking between a Mars orbiter and a lander fixed on the surface of Mars is also studied. The lander location may be determined to a few meters, while the orbiter ephemeris may be determined with accuracy similar to the orbiter-orbiter case.

  10. Orbital construction demonstration study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA) was developed that can be used for evaluating and establishing practical large structural assembly operations. A flight plan for initial placement and continued utility is presented as a basic for an entirely new shuttle payload line-item having great future potential benefit for space applications. The OCDA is a three-axis stabilized platform in low-earth orbit with many structural nodals for mounting large construction and fabrication equipments. This equipment would be used to explore methods for constructing the large structures for future missions. The OCDA would be supported at regular intervals by the shuttle. Construction experiments and consumables resupply are performed during shuttle visit periods. A 250 kw solar array provides sufficient power to support the shuttle while attached to the OCDA and to run construction experiments at the same time. Wide band communications with a Telemetry and Data Relay Satellite compatible high gain antenna can be used between shuttle revisits to perform remote controlled, TV assisted construction experiments.

  11. Finite thrust orbital transfers

    NASA Astrophysics Data System (ADS)

    Mazzini, Leonardo

    2014-07-01

    The finite thrust optimal transfer in the presence of the Earth's shadow and oblate planet perturbations is a problem of strong interest in modern telecommunication satellite design with plasmic propulsion. The Maximum Principle cannot be used in its standard form to deal with the Earth's shadow. In this paper, using a regularization of the Hamiltonian which expands the Maximum Principle application domain, we provide for the first time, the necessary conditions in a very general context for the finite thrust optimal transfer with limited power around an oblate planet. The costate in such problems is generally discontinuous. To obtain fast numerical solutions, the averaging of the Hamiltonian is introduced. Two classes of boundary conditions are analyzed and numerically solved: the minimum time and the minimum fuel at a fixed time. These two problems are the basic tools for designing the orbit raising of a satellite after the launcher injection into its separation orbit. Numerical solutions have been calculated for the more important applications of LEO to GEO/MEO missions and the results have been reported and discussed.

  12. General view of the Orbiter Discovery in the Orbiter Processing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Orbital Evolution and Impact Hazard of Asteroids on Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Kankiewicz, P.; Włodarczyk, I.

    2014-07-01

    We present the past evolutional scenarios of known group of asteroids in retrograde orbits. Applying the latest observational data, we determined their nominal and averaged orbital elements. Next, we studied the behaviour of their orbital motion 1~My in the past (100~My in the future for two NEAs) taking into account the limitations of observational errors. It has been shown that the influence of outer planets perturbations in many cases can import small bodies on high inclination or retrograde orbits into the inner Solar System.

  14. Orbit selection for a Mars geoscience/climatology orbiter

    NASA Technical Reports Server (NTRS)

    Uphoff, C.

    1984-01-01

    This paper is a presentation of recent work to provide orbit design and selection criteria for a close, nearly polar, nearly circular orbit of Mars. The main aspects of the work are the evaluation of atmospheric drag for altitude selection, the orbit evolution for variations in periapsis altitude, and the interactions of those factors with the science objectives of the MGCO mission. A dynamic model of the Mars atmosphere is available from parallel efforts and the latest estimates of the upper atmospheric density and its time history are incorporated into the analysis to provide a final orbit that satisfies planetary quarantine requirements.

  15. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  16. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten

  17. 'Columbia Hills' from Orbit

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This view of the 'Columbia Hills' in Gusev Crater was made by draping an image from the Mars Orbiter Camera on NASA's Mars Global Surveyor orbiter (image E0300012 from that camera) over a digital elevation model that was derived from two Mars Orbiter Camera images (E0300012 and R0200357).

    This unique view is helpful to the rover team members as they plan the journey of NASA's Mars Exploration Rover Spirit to the base of the Columbia Hills and beyond. Spirit successfully completed a three-month primary mission, and so far remains healthy in an extended mission of bonus exploration. As of sol 135 (on May 21, 2004), Spirit sits approximately 680 meters (0.4 miles) away from its first target at the western base of the hills, a spot informally called 'West Spur.' The team estimates that Spirit will reach West Spur by sol 146 (June 1, 2004). Spirit will most likely remain there for about a week to study the outcrops and rocks associated with this location.

    When done there, Spirit will head approximately 620 meters (0.38 miles) to a higher-elevation location informally called 'Lookout Point.' Spirit might reach Lookout Point by around sol 165 (June 20, 2004). On the way, the rover will pass by and study ripple-shaped wind deposits that may reveal more information about wind processes on Mars.

    Lookout Point will provide a great vantage point for scientists to remotely study the inner basin area of the Columbia Hills. This basin contains a broad range of interesting geological targets including the informally named 'Home Plate' and other possible layered outcrops. These features suggest that the hills contain rock layers. Spirit might investigate the layers to determine whether they are water-deposited sedimentary rock.

    Once at Lookout Point, Spirit will acquire 360-degree panoramic images of the entire area to help define the rover's next steps. Assuming the rover stays healthy, Spirit will eventually drive down into the basin to get an up

  18. Real and hybrid atomic orbitals

    NASA Astrophysics Data System (ADS)

    Cook, D. B.; Fowler, P. W.

    1981-09-01

    It is shown that the Schrödinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. Thus the real and hybrid atomic orbitals have as sound a pedigree as the more familiar complex orbitals based on the separation of the Schrödinger equation in spherical polar coordinates.

  19. Extrasolar Planetary Imaging Coronagraph: Visible Nulling Coronagraph Testbed Results

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 3-year mission lifetime ( 5 year goal) and will revisit planets at least three times at intervals of 9 months. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables high order starlight suppression in broadband light. To demonstrate the VNC approach and advance it's technology readiness the NASA Goddard Space Flight Center and Lockheed-Martin have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed,

  20. Visible Nulling Coronagraph Testbed Results

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Melnick, Gary; Tolls, Volker; Woodruff, Robert; Vasudevan, Gopal; Rizzo, Maxime; Thompson, Patrick

    2009-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a NASA Astrophysics Strategic Mission Concept study and a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC would provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 5-year mission lifetime. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables starlight suppression in broadband light from 480-960 nm. To demonstrate the VNC approach and advance it's technology readiness we have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed.

  1. The Košice meteorite fall: Atmospheric trajectory, fragmentation, and orbit

    NASA Astrophysics Data System (ADS)

    BorovičKa, Jiří; Tóth, Juraj; Igaz, Antal; Spurný, Pavel; Kalenda, Pavel; Haloda, Jakub; Svoreå, Ján; Kornoš, Leonard; Silber, Elizabeth; Brown, Peter; HusáRik, Marek

    2013-10-01

    The Košice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s-1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s-1. A maximum brightness of absolute stellar magnitude about -18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Košice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.

  2. Photometry of 2006 RH{120}: an asteroid temporary captured into a geocentric orbit

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, T.; Kryszczyńska, A.; Polińska, M.; Buckley, D. A. H.; O'Donoghue, D.; Charles, P. A.; Crause, L.; Crawford, S.; Hashimoto, Y.; Kniazev, A.; Loaring, N.; Romero Colmenero, E.; Sefako, R.; Still, M.; Vaisanen, P.

    2009-03-01

    Aims: From July 2006 to July 2007 a very small asteroid orbited the Earth within its Hill sphere. We used this opportunity to study its rotation and estimate its diameter and shape. Methods: Due to its faintness, 2006 RH{120} was observed photometrically with the new 10-m SALT telescope at the SAAO (South Africa). We obtained data on four nights: 11, 15, 16, and 17 March 2007 when the solar phase angle remained almost constant at 74°. The observations lasted about an hour each night and the object was exposed for 7-10 s through the “clear” filter. Results: From the lightcurves obtained on three nights we derived two solutions for a synodical period of rotation: P1 = 1.375 ± 0.001 min and P2 = 2.750 ± 0.002 min. The available data are not sufficient to choose between them. The absolute magnitude of the object was found to be H = 29.9 ± 0.3 mag (with the assumed slope parameter G = 0.25) and its effective diameter D = 2-7 m, depending on the geometric albedo pV (with the most typical near-Earth asteroids albedo pV = 0.18 its diameter would be D = 3.3 ± 0.4 m). The body has an elongated shape with the a/b ratio greater than 1.4. It probably originates in low-eccentricity Amor or Apollo orbits. There is still a possibility, which needs further investigation, that it is a typical near-Earth asteroid that survived the aerobraking in the Earth's atmosphere and returned to a heliocentric orbit similar to that of the Earth. Based on observations made with the Southern African Large Telescope (SALT).

  3. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  4. Orbital molecules in electronic materials

    SciTech Connect

    Attfield, J. Paul

    2015-04-01

    Orbital molecules are made up of coupled orbital states on several metal ions within an orbitally ordered (and sometimes also charge-ordered) solid such as a transition metal oxide. Spin-singlet dimers are known in many materials, but recent discoveries of more exotic species such as 18-electron heptamers in AlV{sub 2}O{sub 4} and magnetic 3-atom trimerons in magnetite (Fe{sub 3}O{sub 4}) have shown that orbital molecules constitute a general new class of quantum electronic states in solids.

  5. Orbital angular momentum microlaser.

    PubMed

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  6. TOPEX orbital radiation study

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. M.

    1984-01-01

    The space radiation environment of the TOPEX spacecraft is investigated. A single trajectory was considered. The external (surface incident) charged particle radiation, predicted for the satellite, is determined by orbital flux integration for the specified trajectory. The latest standard models of the environment are used in the calculations. The evaluation is performed for solar maximum conditions. The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thickness. Limited shielding and dose evaluations are performed for simple infinite slab and spherical geometries. Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on.

  7. Orbital science's 'Bermuda Triangle'

    NASA Astrophysics Data System (ADS)

    Sherrill, Thomas J.

    1991-02-01

    The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.

  8. Geology orbiter comparison study

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  9. Exploratory orbit analysis

    SciTech Connect

    Michelotti, L.

    1989-03-01

    Unlike the other documents in these proceedings, this paper is neither a scientific nor a technical report. It is, rather, a short personal essay which attempts to describe an Exploratory Orbit Analysis (EOA) environment. Analyzing the behavior of a four or six dimensional nonlinear dynamical system is at least as difficult as analyzing events in high-energy collisions; the consequences of doing it badly, or slowly, would be at least as devastating; and yet the level of effort and expenditure invested in the latter, the very attention paid to it by physicists at large, must be two orders of magnitude greater than that given to the former. It is difficult to choose the model which best explains the behavior of a physical device if one does not first understand the behavior of the available models. The time is ripe for the development of a functioning EOA environment, which I will try to describe in this paper to help us achieve this goal.

  10. Skylab Orbiter Workshop Illustration

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.