Sample records for earthquake monitoring center

  1. Earthquake Monitoring in Haiti

    USGS Multimedia Gallery

    Following the devastating 2010 Haiti earthquake, the USGS has been helping with earthquake awareness and monitoring in the country, with continued support from the U.S. Agency for International Development (USAID). This assistance has helped the Bureau des Mines et de l'Energie (BME) in Port-au-Prin...

  2. PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

    E-print Network

    Adolphs, Ralph

    PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PEER Testbed Study on a Laboratory Building, Berkeley PEER Report 2005/12 Pacific Earthquake Engineering Research Center College of Engineering to "exercise" the PEER performance-based earthquake engineering methodology. All projects involved

  3. National Earthquake Information Center: Earthquake Search

    NSDL National Science Digital Library

    This site enables the user to access a vast database of earthquakes. Searches may be done using a number of different geographic approaches: a Global or Worldwide search, a Rectangular search by specifying latitudes and longitudes of a rectangular area, and a Circular search by specifying the center latitude and longitude coordinates and a radius. Additional parameters, including dates of events, places of events, magnitude, depth and intensity can be specified before engaging in a search. The results of each search can be viewed in a variety of formats. Users may also view information and data on the following pages: Near Real Time Earthquake List, Current and General Earthquake Information, Seismograph Station Codes, Earthquake Information Sources, Routine U.S. Mining Seismicity, U.S. National Seismograph Networks, Today in Earthquake History, Large Earthquakes in 2001, and Earthquake E-mail Notification. Links to other U.S. Geological Survey earthquake websites are provided.

  4. Earthquake Hazards Program - National Earthquake Center

    NSDL National Science Digital Library

    Users can access a selection of technical information and data about earthquakes in the U.S. and around the world. A current worldwide list of earthquakes is available, as are data on geophysical solutions, a catalog search, an automatic data request function, mining seismicity information, and a registry of seismograph stations.

  5. Southern California Earthquake Data Center

    NSDL National Science Digital Library

    To say that there are a few earthquake research centers in Southern California is a bit like saying that Chicago sits on a lake of some size. It's a bit of an obvious remark, but given that there are a number of such projects, it's important to take a look at some of the more compelling ones out there. One such important resource is the Southern California Earthquake Data Center, sponsored by a host of organizations, including the California Institute of Technology and the United States Geological Survey. Visitors to the project site can peruse some of its recent work, which includes a clickable map of the region that features information on recent earthquakes in California and Nevada. Equally compelling is the clickable fault map of Southern California where visitors can learn about the local faults and recent activity along each fault. Another key element of the site is the historical earthquake database, which may be of interest to both the general public and those who are studying this area.

  6. Southern California Earthquake Center (SCEC) Home Page

    NSDL National Science Digital Library

    This is the home page of the Southern California Earthquake Center (SCEC), a consortium of universities and research institutions dedicated to gathering information about earthquakes in Southern California, integrate that knowledge into a comprehensive and predictive understanding of earthquake phenomena, and communicate this understanding to end-users and the general public in order to increase earthquake awareness, reduce economic losses, and save lives. News of recent earthquake research, online resources and educational information is available here.

  7. Northern California Earthquake Data Center

    NSDL National Science Digital Library

    A project between the University of California Berkeley Seismological Laboratory and the United State Geological Survey, the Northern California Earthquake Data Center (NCEDC) "is a long-term archive and distribution center for seismological and geodetic data for Northern and Central California." Educators and students can examine recent seismograms from the Berkeley Digital Seismic Network. Researchers will benefit from the site's enormous amount of data collections including BARD; a system of 67 constantly operating Global Positioning System receivers in Northern California. By reading the annual reports, educators will also learn about the center's many outreach activities from talks and lab tours to the production of classroom resources for kindergarten through twelfth grade teachers. This site is also reviewed in the October 17, 2003 NSDL Physical Sciences Report.

  8. Northern California Earthquake Data Center (NCEDC)

    NSDL National Science Digital Library

    This is the home page of the Northern California Earthquake Data Center (NCEDC) which is a joint project of the University of California Berkeley Seismological Laboratory and the U. S. Geological Survey at Menlo Park. The NCEDC is an archive for seismological and geodetic data for Northern and Central California. Accessible through this page are news items, recent earthquake information, links to earthquake catalogs, seismic waveform data sets, and Global Positioning System information. Most data sets are accessible for downloading via ftp.

  9. Center for Earthquake Research and Information

    NSDL National Science Digital Library

    Center for Earthquake Research and Information

    CERI, established in 1977 as the Tennessee Earthquake Information Center, is a Tennessee Board of Regents Center of Excellence at the University of Memphis devoted to understanding the causes and consequences of earthquakes and the structure and evolution of the continental lithosphere. CERI addresses these needs through cutting-edge research, comprehensive graduate student education, operation of state-of-the-art seismic and GPS networks, and dissemination of technical and practical information to the private and public sectors.

  10. Center for Earthquake Research and Information

    NSDL National Science Digital Library

    This is the homepage of the Center for Earthquake Research and Information (CERI) at the University of Memphis. Scientific users can access technical information on earthquakes in the New Madrid zone and central U.S., databases and catalogs, damage reports, and links to other earthquake data. For the general public there is basic information, facts, and frequently asked questions about earthquakes; preparedness tips; a link to request speakers or presentations; and a link to a site where earthquakes can be reported. For eduators there are links to teachers' guides and lesson plans, preparedness tips, and CERI tour information. For graduate students there is information about CERI graduate studies, admissions and application information, and course descriptions.

  11. TRANSPORTATION NETWORKS PROGRAM OF THE MID-AMERICA EARTHQUAKE CENTER

    E-print Network

    1 TRANSPORTATION NETWORKS PROGRAM OF THE MID-AMERICA EARTHQUAKE CENTER By: Timothy D. Stark Transportation Networks Program Coordinator, Mid-America Earthquake Center and Associate Professor of Civil NETWORKS PROGRAM OF THE MID-AMERICA EARTHQUAKE CENTER TIMOTHY D. STARK TRANSPORTATION NETWORKS PROGRAM

  12. Concerning Shot-term Earthquake Forecasting Through Magnetotelluric Monitoring

    Microsoft Academic Search

    K. M. Kerimov; G. B. Agaguliyev; F. P. Biagi; A. A. Abdullayev; K. G. Mammadhasanov

    2002-01-01

    It is recognized, each earthquake event is a unique phenomena and there is no similarity in its paradigm multiplicity, this event just bears information on a series of identical aspects. and therefore, several aspects, such as structure and peculiarities of geotectonical development, geologic setting, monitoring station location and monitoring technology should be considered while shot-term forecasting of strong earthquakes. In

  13. Multidisciplinary Center for Earthquake Engineering Research

    NSDL National Science Digital Library

    Founded in 1986, the Multidisciplinary Center for Earthquake Engineering Research (MCEER) is located at the State University of New York at Buffalo. MCEER draws on the expertise of many researchers and industry partners from across the United States, as they are "dedicated to the discovery and development of new knowledge, tools and technologies that equip communities to become more disaster resilient in the face of earthquakes and other extreme events.� The Center receives funding from a wide range of institutions, including the National Science Foundation, the Federal Highway Administration, and the Department of Homeland Security. Along with the usual conference announcements and newsletters that one might expect to find on a homepage of this sort, visitors can also peruse their archive of webcasts, which include such past presentations as "Seismic Analysis of Woodframe Structures" and "Structural Control Technologies". Visitors will not be surprised to find that there are also a number of special reports on Hurricane Katrina that are worth taking a look at here.

  14. Monitoring the Pollino Earthquake Swarm (Italy)

    NASA Astrophysics Data System (ADS)

    Roessler, D.; Passarelli, L.; Govoni, A.; Rivalta, E.

    2014-12-01

    The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (southern Apennines, Italy) representone of the most prominent seismic gaps in the Italian seismic catalog, with no M>6 earthquakes during the lastcenturies. In recent times, the MB has been repeatedly interested by seismic swarms.The most energetic swarm started in 2010 and still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on October 25. In contrast, the CF appears aseismic. Only the northern part of the CF has experienced microseismicity.The range host a number of additional sub-parallel faults.Their rheology is unclear. Current debates include the potential of the MB and the CF to host largeearthquakes and the level and the style of deformation.Understanding the seismicity and the behaviour of the faultsis therefore necessary to assess the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have been jointly monitoring the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Using the array, we automatically detect about ten times more earthquakes than currently included inlocal catalogues corresponding to completeness above M~0.5.In the course of the swarm, seismicity has mainly migrated within the Mercure Basin.However, the eastward spread towards the northern tio of the CF in 2013 marksa phase with seismicity located outside of the Mercure Basin.The event locations indicate spatially distinct clusters with different mechanisms across the E-W trending Pollino Fault.The clusters differ in strike and dip.Calibration of the local magnitude scale confirms earlier studies further north in the Apennines. The station corrections show N-S variation indicating that the Pollino Fault forms an important structural boundary.

  15. The USGS National Earthquake Information Center's Response to the Wenchuan, China Earthquake

    Microsoft Academic Search

    P. S. Earle; D. J. Wald; H. Benz; S. Sipkin; J. Dewey; T. Allen; K. Jaiswal; R. Buland; G. Choy; G. Hayes; A. Hutko

    2008-01-01

    Immediately after detecting the May 12th, 2008 Mw 7.9 Wenchuan Earthquake, the USGS National Earthquake Information Center (NEIC) began a coordinated effort to understand and communicate the earthquake's seismological characteristics, tectonic context, and humanitarian impact. NEIC's initial estimates of magnitude and location were distributed within 30 minutes of the quake by e-mail and text message to 70,000 users via the

  16. Northern California Earthquake Data Center Data Retrieval (title provided or enhanced by cataloger)

    NSDL National Science Digital Library

    The Northern California Earthquake Data Center (NCEDC) offers various types of earthquake-related data. Most of the datasets are available on the WWW. A few require the establishment of a research account. Available information includes: earthquake catalogs and lists; seismic waveform data from the Berkeley Digital Seismic Network, the Northern California Seismic Network, the Parkfield High-Resolution Seismic Network, and the Calpine/Unocal Geysers Network; Global Positioning System data from continuous monitoring stations; and Berkeley Digital Seismic Network temperature, electromagnetic and strain data.

  17. Seismic Monitor: Current Global Earthquake Readings

    NSDL National Science Digital Library

    This map shows the most recent seismic activity across the globe. Each circle represents an earthquake, with larger circles indicating stronger quakes. The color signifies how long ago the earthquake occurred, from red (less than one day old) to yellow (two weeks old). Earthquakes that occured more than two weeks ago are represented by black diamonds and purple dots. Seismic stations are represented by triangles. A link is provided to a more detailed, interactive map that displays additional information.

  18. Earthquakes forecasts following space- and ground-based monitoring

    Microsoft Academic Search

    L. N. Doda; V. R. Dushin; V. L. Natyaganov; N. N. Smirnov; I. V. Stepanov

    2011-01-01

    The latest results on short-term forecasts of earthquakes in different regions using space monitoring are presented based on a new concept of seismo-tecto-genesis. The model approaches to theoretical explanations are discussed. The main attention is paid to the results of joint RussianTaiwanese seismic activity forecast experiment, which resulted in several forecasted earthquakes 20092010 in the predicted zone and of predicted

  19. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  20. Passive monitoring of anisotropy change for the Parkfield 2004 earthquake

    Microsoft Academic Search

    S. Durand; J. Montagner; P. Roux; F. Brenguier; S. Saumet; P. Cupillard; G. Burgos

    2010-01-01

    Measuring significant and systematic temporal variations of physical parameters is a major goal of seismologists for monitoring seismogenic zones. Seismic anisotropy is induced by the crack distribution within the continental crust, and it is very sensitive to stress-field changes. To date, anisotropy has been investigated through shear-wave splitting (SWS) measurements of local earthquakes. To avoid the erratic occurrence and spatial

  1. Towards a Better Earthquake and Tsunami Monitoring System: Indian Effort

    NASA Astrophysics Data System (ADS)

    Bansal, B.; Gupta, G.

    2005-12-01

    The December 26, 2004 earthquake (mw 9.3) in the Andaman-Sumatra subduction zone was unprecedented in its size, rupture extent as well as tsunamigenic capacity. Knowledge about the lack of a predecessor to this event was part of the reason for the apparent lack of anticipation and preparedness. Clearly, this event has changed the perception of earthquake/tsunami hazard along the Andaman and Nicobar Islands as well as regions along the southwest coast of India, far removed from the source earthquake. The government of India is embarking on a major programme to study the earthquake processes in the Andaman and Nicobar regions, part of the subduction zone stretching about 1000 km, most of which was affected by the earthquake. These efforts include expansion and modernization of the existing seismic network, continuous and campaign-mode GPS surveys, geological and geophysical investigations and inundation mapping. Research programmes being funded by the DST aims at improved understanding of the seismic sources, their past behavior, rupture characteristics, physical processing related to earthquakes in this subduction zone and style of deformation using geodetic techniques. A network of more than 100 seismological stations operate in India presently, most of them being operated by the India Meteorological Department, the nodal agency for seismological studies. Linking and modernization and addition of more seismic observatories are underway. The station at Port Blair has been upgraded as broadband and a good network of portable stations are now operational. Added to these are the GPS campaign mode surveys that are being done along the entire arc. Establishment of a multiparametric geophysical observatory to monitor physical processes prior to large earthquakes is another experiment in plan. The structure of the Tsunami Warning System being proposed also involves establishment of more tide gauges and pressure sensors at strategic locations. It is expected that the data generated through various research initiatives will provide the necessary scientific basis for the proposed warning system.

  2. Recent Progress and Development on Multi-parameters Remote Sensing Application in Earthquake Monitoring in China

    NASA Astrophysics Data System (ADS)

    Shen, Xuhui; Zhang, Xuemin; Hong, Shunying; Jing, Feng; Zhao, Shufan

    2014-05-01

    In the last ten years, a few national research plans and scientific projects on remote sensing application in Earthquake monitoring research are implemented in China. Focusing on advancing earthquake monitoring capability searching for the way of earthquake prediction, satellite electromagnetism, satellite infrared and D-InSAR technology were developed systematically and some remarkable progress were achieved by statistical research on historical earthquakes and summarized initially the space precursory characters, which laid the foundation for gradually promoting the practical use. On the basis of these works, argumentation on the first space-based platform has been finished in earthquake stereoscope observation system in China, and integrated earthquake remote sensing application system has been designed comprehensively. To develop the space-based earthquake observational system has become a major trend of technological development in earthquake monitoring and prediction. We shall pay more emphasis on the construction of the space segment of China earthquake stereoscope observation system and Imminent major scientific projects such as earthquake deformation observation system and application research combined INSAR, satellite gravity and GNSS with the goal of medium and long term earthquake monitoring and forcasting, infrared observation and technical system and application research with the goal of medium and short term earthquake monitoring and forcasting, and satellite-based electromagnetic observation and technical system and application system with the goal of short term and imminent earthquake monitoring.

  3. Enhanced Earthquake Monitoring in the European Arctic

    NASA Astrophysics Data System (ADS)

    Antonovskaya, Galina; Konechnaya, Yana; Kremenetskaya, Elena O.; Asming, Vladimir; Kvrna, Tormod; Schweitzer, Johannes; Ringdal, Frode

    2015-03-01

    This paper presents preliminary results from a cooperative initiative between the Norwegian Seismic Array (NORSAR) institution in Norway and seismological institutions in NW Russia (Arkhangelsk and Apatity). We show that the joint processing of data from the combined seismic networks of all these institutions leads to a considerable increase in the number of located seismic events in the European Arctic compared to standard seismic bulletins such as the NORSAR reviewed regional seismic bulletin and the Reviewed Event Bulletin (REB) issued by the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) organization. The increase is particularly pronounced along the Gakkel Ridge to the north of the Svalbard and Franz-Josef Land archipelagos. We also note that the vast majority of the events along the Gakkel Ridge have been located slightly to the south of the ridge. We interpret this as an effect of the lack of recording stations closer to and north of the Gakkel Ridge, and the use of a one-dimensional velocity model which is not fully representative for travel-times along observed propagation paths. We conclude that while the characteristics of earthquake activity in the European Arctic is currently poorly known, the knowledge can be expected to be significantly improved by establishing the appropriate cooperative seismic recording infrastructures.

  4. Korea Integrated Seismic System (KISS) and Earthquake Monitoring for Korea Train eXpress (KTX).

    NASA Astrophysics Data System (ADS)

    Park, Jung Ho; Chi, Heon Cheol; Seub Lim, In; Kim, Geun Young; Shin, Jin Soo

    2010-05-01

    Since 2002 Korea Integrated Seismic System (KISS) has been playing main role in real-time seismic data exchange between different seismic networks operated by four earthquake monitoring institutes: KMA, KEPRI, KINS and KIGAM. Seismic data from different seismic networks are gathered into the data pool of KISS where clients can receive data in real-time. Before expanding and modernizing of Korean seismic stations, the consortium of the four institutes made the standard criteria of seismic observation such as instrument, data format, and communication protocol for the purpose of integrating seismic networks. More than 160 digital stations (velocity or accelerometer) installed from 1998 to 2009 in Korea could be easily linked to KISS in real time due to the standard criteria. When a big earthquake happens, the observed peak acceleration value can be used as the instrumental intensity on the local site and the distribution of peak accelerations shows roughly the severity of the damaged area. Real Time Intensity Color Mapping (RTICOM) is developed to generate every second contour map of the nationwide intensity based on the peak acceleration values retrieved through KISS from local stations. RTICOM can be used for rapid evaluation of the intensity and decision making against earthquake damages. For the purpose of rapid response to earthquake hazard, Korea Train eXpress (KTX) constructed real-time monitoring system using accelerometers installed on bridges and tunnels. KTX monitoring center receives every second PGA data and monitoring system displays these data on the dedicated screen. The frequency zone of data is considered only below 10 Hz in other to reduce artificial false alarms. If a higher PGA value overcomes the pre-determined level then an alarm will happen with making sound and brightening red and yellow lights. The KTX control center would make repaid decision whether express train should be stopped immediately or not.

  5. Web Services and Other Enhancements at the Northern California Earthquake Data Center

    NASA Astrophysics Data System (ADS)

    Neuhauser, D. S.; Zuzlewski, S.; Allen, R. M.

    2012-12-01

    The Northern California Earthquake Data Center (NCEDC) provides data archive and distribution services for seismological and geophysical data sets that encompass northern California. The NCEDC is enhancing its ability to deliver rapid information through Web Services. NCEDC Web Services use well-established web server and client protocols and REST software architecture to allow users to easily make queries using web browsers or simple program interfaces and to receive the requested data in real-time rather than through batch or email-based requests. Data are returned to the user in the appropriate format such as XML, RESP, or MiniSEED depending on the service, and are compatible with the equivalent IRIS DMC web services. The NCEDC is currently providing the following Web Services: (1) Station inventory and channel response information delivered in StationXML format, (2) Channel response information delivered in RESP format, (3) Time series availability delivered in text and XML formats, (4) Single channel and bulk data request delivered in MiniSEED format. The NCEDC is also developing a rich Earthquake Catalog Web Service to allow users to query earthquake catalogs based on selection parameters such as time, location or geographic region, magnitude, depth, azimuthal gap, and rms. It will return (in QuakeML format) user-specified results that can include simple earthquake parameters, as well as observations such as phase arrivals, codas, amplitudes, and computed parameters such as first motion mechanisms, moment tensors, and rupture length. The NCEDC will work with both IRIS and the International Federation of Digital Seismograph Networks (FDSN) to define a uniform set of web service specifications that can be implemented by multiple data centers to provide users with a common data interface across data centers. The NCEDC now hosts earthquake catalogs and waveforms from the US Department of Energy (DOE) Enhanced Geothermal Systems (EGS) monitoring networks. These data can be accessed through the above web services and through special NCEDC web pages.

  6. D a t a s o u r c e s Alaska earthquake data from the Alaska Earthquake Information Center (www.aeic.alaska.edu)

    E-print Network

    West, Michael

    D a t a s o u r c e s Alaska earthquake data from the Alaska Earthquake Information Center (www.aeic.alaska.edu) Lower 48 earthquake data drawn from the ANSS composite catalog (http://www.ncedc.org/cnss/catalog-search.html) Earthquake occurrence rate in Alaska 1 9 6 0

  7. A new Automatic Phase Picker for the National Earthquake Information Center

    Microsoft Academic Search

    P. S. Earle; R. Buland

    2002-01-01

    The increasing need for rapid accurate earthquake locations for timely notification and damage assessment has placed greater demands on automatic phase picking technology. We are developing a new automatic phase picker for use by the National Earthquake Information Center (NEIC). Since the NEIC provides rapid notification for all felt earthquakes in the US and significant events worldwide, the picking algorithm

  8. An Earthquake Just Occurred Can I Read About It on NOAA's Tsunami Warning Centers' Websites?

    E-print Network

    An Earthquake Just Occurred Can I Read About It on NOAA's Tsunami Warning Centers' Websites with responsibility for recording and reporting earthquake activity nationwide. According to the West Coast, we can provide an early alert in most situations." Obviously, not all earthquakes generate tsunamis

  9. Southern California Earthquake Center Operates 1991 present, $3 -$5 million per year

    E-print Network

    Southern California Earthquake Center Operates 1991 present, $3 - $5 million per year NSF, USC High profile seismic hazard reports from 1993 Community data bases faults, earthquakes, 3-D faults Quake rates elsewhere Putting it all together ... Uniform California Earthquake Rupture Forecast

  10. Space techniques as a part of crustal dynamic monitoring networks in earthquake zones

    Microsoft Academic Search

    A. Vogel

    1979-01-01

    The use of space systems in the monitoring of crustal dynamics in earthquake zones for the investigation of earthquake dynamics and prediction is discussed. Presently used techniques for crustal dynamics monitoring are considered, including the analysis of seismograms, observations of rock fractures and strain accumulation from acoustic emissions at microearthquake stations, measurements of variations in crustal elasticity and magnetic and

  11. Evaluation of the completeness and accuracy of an earthquake catalogue based on hydroacoustic monitoring

    NASA Astrophysics Data System (ADS)

    Willemann, R. J.

    2002-12-01

    NOAA's Pacific Marine Environment Laboratory (PMEL) produces a catalogue of Pacific Ocean earthquakes based on hydroacoustic monitoring from April 1996. The International Seismological Centre (ISC) worked without referring to the PMEL catalogue for earthquakes through April 2000, so the ISC and PMEL catalogues are independent until then. The PMEL catalogue includes many more intraplate and mid-ocean ridge earthquakes; more than 20 times as many earthquakes as the ISC catalogue in some areas. In some areas ISC earthquakes are nearly a strict subset PMEL earthquakes, but elsewhere many ISC earthquakes are not in the PMEL catalogue. Along the Pacific-Antarctic Plate Boundary (45-70S, 110-180W), for example, the PMEL catalogue misses out many ISC earthquakes, including a few MW(Harvard)>5 crustal earthquakes. Near the Cocos Ridge (2-7N, 81-88E) for many of the earthquakes in each catalogue, there is no corresponding earthquake in the other. Among earthquakes that are in both catalogues, location differences may be much greater than the formal location uncertainties. But formal errors are known to underestimate true location errors, so studying the seismic arrival time residuals with respect to the hydroacoucoustic origins and hydroacoustic arrival times residuals with respect to the seismic origins provides a more rigorous evaluation of the intrinsic differences between these two monitoring technologies.

  12. Remote monitoring of the earthquake cycle using satellite radar interferometry

    Microsoft Academic Search

    Tim J. Wright

    2002-01-01

    The earthquake cycle is poorly understood. Earthquakes continue to occur on previously unrecognized faults. Earthquake prediction seems impossible. These remain the facts despite nearly 100 years of intensive study since the earthquake cycle was first conceptualized. Using data acquired from satellites in orbit 800 km above the Earth, a new technique, radar interferometry (InSAR), has the potential to solve these

  13. Earthquakes

    MedlinePLUS

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  14. An academic center's delivery of care after the Haitian earthquake.

    PubMed

    Jaffer, Amir K; Campo, Rafael E; Gaski, Greg; Reyes, Mario; Gebhard, Ralf; Ginzburg, Enrique; Kolber, Michael A; Macdonald, John; Falcone, Steven; Green, Barth A; Barreras-Pagan, Lazara; O'Neill, William W

    2010-08-17

    The Miller School of Medicine of the University of Miami and Project Medishare, an affiliated not-for-profit organization, provided a large-scale relief effort in Haiti after the earthquake of 12 January 2010. Their experience demonstrates that academic medical centers in proximity to natural disasters can help deliver effective medical care through a coordinated process involving mobilization of their own resources, establishment of focused management teams at home and on the ground with formal organizational oversight, and partnership with governmental and nongovernmental relief agencies. Proximity to the disaster area allows for prompt arrival of medical personnel and equipment. The recruitment and organized deployment of large numbers of local and national volunteers are indispensable parts of this effort. Multidisciplinary teams on short rotations can form the core of the medical response. PMID:20643974

  15. Application of Earthquake Early Warning System and Real-time Strong-motion Monitoring System to Earthquake Disaster Mitigation of a High-Rise Building in Tokyo, Japan

    Microsoft Academic Search

    Tomohiro Kubo; Yoshiaki Hisada; Shigeki Horiuchi; Shunroku Yamamoto

    We apply Earthquake Early Warning System (EEWS) and Real-time Strong-motion Monitoring System (RSMS) to reduce earthquake-related damage of the 29-story building of Kogakuin University in the downtown Tokyo, Shinjuku, Japan. EEWS, which is operated by National Research Institute for Earth Science and Disaster Prevention, is the system to provide earthquake information, such as the location and magnitude of an earthquake,

  16. SOCIOECONOMIC BENEFITS OF USING SPACE TECHNOLOGIES TO MONITOR AND RESPOND TO EARTHQUAKES

    Microsoft Academic Search

    Ian A. Christensen; Lauren E. Fletcher; Jonathan J. Liberda; Jose I. Rojas; Cristina Borrero del Pino

    2008-01-01

    Earthquakes represent a major hazard for populations around the world, causing frequent loss of life, human suffering and enormous damage to homes, other buildings and infrastructure. The Technology Resources for Earthquake Monitoring and Response (TREMOR) Team of 36 space professionals analysed this problem over the course of the International Space University Summer Session Program and published their recommendations in the

  17. Real-time earthquake monitoring using a search engine method

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-12-01

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquakes parameters in <1?s after receiving the long-period surface wave data.

  18. Earthquakes

    NSDL National Science Digital Library

    Mrs. Hemedinger

    2007-11-26

    Students will participate in a virtual earthquake lab where they will locate an epicenter and measure Richter Scale magnitude. They will also plot the positions of earthquakes that occurred that day. 1) Go to Virtual Earthquake website and follow instructions to complete the online lab assignment. 2) Go to the USGS earthquake site. Take a few minutes to explore the earthquakes displayed on the world map. Click on \\"M2.5/4+ Earthquake List\\". Use the world map provided by your teacher to plot the locations ...

  19. Earthquakes

    NSDL National Science Digital Library

    This lesson on earthquakes is based on naturalist John Muir's experiences with two significant earthquakes, the 1872 earthquake on the east side of the Sierra Nevada Mountains, and the Great San Francisco Earthquake of 1906. Students will learn to explain that earthquakes are sudden motions along breaks in the crust called faults, and list the major geologic events including earthquakes, volcanic eruptions and mountain building, which are the result of crustal plate motions. A downloadable, printable version (PDF) of the lesson plan is available.

  20. Robotic mapping and monitoring of data centers

    Microsoft Academic Search

    Chris Mansley; Jonathan Connell; Canturk Isci; Jonathan Lenchner; Jeffrey O. Kephart; Suzanne McIntosh; Michael Schappert

    2011-01-01

    We describe an inexpensive autonomous robot capable of navigating previously unseen data centers and monitoring key metrics such as air temperature 1 . The robot provides real-time navigation and sensor data to commercial IBM software, thereby enabling real-time generation of the data center layout, a thermal map and other visualizations of energy dynamics. Once it has mapped a data center,

  1. Earthquakes

    NSDL National Science Digital Library

    Timothy Heaton

    This site contains 22 questions on the topic of earthquakes, which covers seismic waves, earthquake characteristics, and earthquake magnitudes. This is part of the Principles of Earth Science course at the University of South Dakota. Users submit their answers and are provided immediate verification.

  2. Earthquakes

    MedlinePLUS

    Earthquakes are sudden rolling or shaking events caused by movement under the earths surface. Earthquakes happen along cracks in the earth's surface, called ... although they usually last less than one minute. Earthquakes cannot be predicted although scientists are working on ...

  3. Co-seismic groundwater level changes at multiple-well monitoring stations due to large earthquakes occurred in Taiwan region

    NASA Astrophysics Data System (ADS)

    Liu, C.; Chia, Y.; Chiang, Y.; Chang, Y.; Kuan, Y.

    2008-12-01

    Taiwan is located in the Circum-Pacific seismic belt. As earthquakes occurred frequently, various earthquake monitoring devices have been placed all over this island. More than 600 wells, which include single-well and multiple-well stations, have been installed to monitor earthquake-related groundwater level changes. Co- seismic groundwater level changes may reflect tectonic stress redistribution and crustal strain in 3-D spatial distribution. This study focuses on the responses of groundwater level recorded by multiple-well monitoring stations to three large earthquakes; include the 1999 ML7.3 earthquake, the 2000 ML6.7 earthquake and the 2006 ML7.0 double main earthquakes. Stations located in Southwest plain of Taiwan have greater amount of response than other areas, and have good correlation with hypocentral distance. In vertical direction, the relation between screen depth and amount of groundwater level changes show different results due to different earthquakes.

  4. Southern California Earthquake Center--Virtual Display of Objects (SCEC-VDO): An Earthquake Research and Education Tool

    NASA Astrophysics Data System (ADS)

    Perry, S.; Maechling, P.; Jordan, T.

    2006-12-01

    Interns in the program Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT, an NSF Research Experience for Undergraduates Site) have designed, engineered, and distributed SCEC-VDO (Virtual Display of Objects), an interactive software used by earthquake scientists and educators to integrate and visualize global and regional, georeferenced datasets. SCEC-VDO is written in Java/Java3D with an extensible, scalable architecture. An increasing number of SCEC-VDO datasets are obtained on the fly through web services and connections to remote databases; and user sessions may be saved in xml-encoded files. Currently users may display time-varying sequences of earthquake hypocenters and focal mechanisms, several 3-dimensional fault and rupture models, satellite imagery - optionally draped over digital elevation models - and cultural datasets including political boundaries. The ability to juxtapose and interactively explore these data and their temporal and spatial relationships has been particularly important to SCEC scientists who are evaluating fault and deformation models, or who must quickly evaluate the menace of evolving earthquake sequences. Additionally, SCEC-VDO users can annotate the display, plus script and render animated movies with adjustable compression levels. SCEC-VDO movies are excellent communication tools and have been featured in scientific presentations, classrooms, press conferences, and television reports.

  5. Collaborative Projects at the Northern California Earthquake Data Center (NCEDC)

    NASA Astrophysics Data System (ADS)

    Neuhauser, D.; Oppenheimer, D.; Zuzlewski, S.; Gee, L.; Murray, M.; Bassett, A.; Prescott, W.; Romanowicz, B.

    2001-12-01

    The NCEDC is a joint project of the UC Berkeley Seismological Laboratory and the USGS Menlo Park to provide a long-term archive and distribution center for geophysical data for northern California. Most data are available via the Web at http://quake.geo.berkeley.edu and research accounts are available for access to specialized datasets. Current efforts continue to expand the available datasets and to enhance distribution methods. The NCEDC currently archives continuous and event seismic waveform data from the BDSN and the USGS NCSN. Data from the BDSN are available in SEED and work is underway to make NCSN data available in this format. This massive project requires assembling and tracking the instrument responses from over 5000 current and historic NCSN data channels. Event waveforms from specialized networks, such as Geysers and Parkfield, are also available. In collaboration with the USGS, the NCEDC has archived a total of 887 channels from 139 sites of the "USGS low-frequency" geophysical network (UL), including data from strainmeters, creep meters, magnetometers, water well levels, and tiltmeters. There are 486 current data channels being updated at the NCEDC on a daily basis. All UL data are available in SEED. Data from the BARD network of over 40 continuously recording GPS sites are archived at the NCEDC in both raw and RINEX format. The NCEDC is now the primary archive for survey-mode GPS and other geodetic data collected in northern California by the USGS, universities, and other agencies. All of the BARD data and GPS data archived from USGS Menlo Park surveys are now available from the NCEDC via FTP. To support more portable and uniform data query programs among data centers, the NCEDC developed a set of Generic Data Center Views (GDVs) that incorporates the basic information that most datacenters maintain about data channels, instrument responses, and waveform inventory. We defined MSQL (Meta SeismiQuery Language), a query language based on the SQL SELECT command, to perform queries on the GDVs, and developed a program which converts the MSQL to an SQL request. MSQL2SQL converts the MSQL command into a parse tree, and defines an API allowing each datacenter to traverse the parse tree and revise it to produce a data center-specific SQL request. The NCEDC converted the IRIS SeismiQuery program to use the GDVs and MSQL, installed it at the NCEDC, and distributed the software to IRIS, SCEC-DC, and other interested parties. The resulting program should be much easier to install and support at other data centers. The NCEDC is also working on several data center integration projects in order to provide users with seamless access to data. The NCEDC is collaborating with IRIS on the NETDC project and with UNAVCO on the GPS Seamless Archive Centers initiative. Through the newly formed California Integrated Seismic Network, we are working with the SCEC-DC to provide unified access to California earthquake data.

  6. Real time monitoring systems and advanced simulation researches for Earthquakes/ Tsunami disaster mitigation (Invited)

    NASA Astrophysics Data System (ADS)

    Kaneda, Y.

    2013-12-01

    Researches on Nankai trough mega trust earthquakes around south western Japan are very important for Earthquake/Tsunami disaster mitigation in Japan. Especially, the offshore real time monitoring systems are indispensable for the early warning of earthquakes and tsunamis. Actually, lessons from 2004 Sumatra Earthquake/Tsunami and 2011 East Japan Earthquake accelerate deployments of ocean floor networks such as DONET1, DONET2 around the Nankai trough and Inline cable systems off East Japan. Already, DONET1 have deployed on the Tonankai earthquake seismogenic zone, and DONET2 on the Nankai earthquake seismogenic zone is under developing. In the Nankai trough seismogenic zones, mega thrust earthquakes have occurred with the intervals of every 100-200 years. However, recurrence patters among these mega thrust earthquakes in 1944/ 1946, 1854, 177 and 1605 are quite different. Furthermore, these seismogenic zones are located near the coasts of southwestern Japan, tsunami will come very fast, so evacuations from tsunamis are severe problems at coastal cities southwestern Japan. Based on these conditions, Japanese government and research community recognized that real time monitoring systems of earthquakes and tsunamis are very important for EEW and prediction researches. Furthermore, the Ocean floor network equipped with multi kinds of sensors such as seismometers and pressure gauges are very powerful and significant tool to monitor the broad band phenomena in seismogenic zones. In the Nankai trough, we constructed DONET1 which is Dense Ocean floor Network for Earthquakes and Tsunamis around the Tonankai seismogenic zone with 20 observatories. Multi kinds of sensors such as an accelerometer, a broad band seismometer, a precise pressure gauge, a differential pressure gauge and a precise thermometer are equipped in each observatory. Now, we are already developing DONET2 with 31observatories around the Nankai seismogenic zone. Furthermore, advanced earthquake/tsunami simulations for scenario researches, hazard evaluations and evacuations are very important and significant. Finally, we will apply these real time data and advanced simulations to early warning researches, prediction researches, hazard evaluation researches for the Earthquake/Tsunami disaster mitigations and understandings of seismic linkages among mega thrust earthquakes around the Nankai trough.

  7. Earthquakes!

    NSDL National Science Digital Library

    A strong earthquake struck Istanbul, Turkey on Monday, only weeks after a major quake in the same area claimed more than 15,500 lives. This site, from The Why Files (see the August 9, 1996 Scout Report), offers background information on the science of earthquakes, with particular emphasis on the recent tectonic activity in Turkey.

  8. Romanian Data Center: A modern way for seismic monitoring

    NASA Astrophysics Data System (ADS)

    Neagoe, Cristian; Marius Manea, Liviu; Ionescu, Constantin

    2014-05-01

    The main seismic survey of Romania is performed by the National Institute for Earth Physics (NIEP) which operates a real-time digital seismic network. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Mark l4c, Ranger, gs21, Mark l22) and acceleration sensors (Episensor Kinemetrics). The data are transmitted at the National Data Center (NDC) and Eforie Nord (EFOR) Seismic Observatory. EFOR is the back-up for the NDC and also a monitoring center for the Black Sea tsunami events. NIEP is a data acquisition node for the seismic network of Moldova (FDSN code MD) composed of five seismic stations. NIEP has installed in the northern part of Bulgaria eight seismic stations equipped with broadband sensors and Episensors and nine accelerometers (Episensors) installed in nine districts along the Danube River. All the data are acquired at NIEP for Early Warning System and for primary estimation of the earthquake parameters. The real-time acquisition (RT) and data exchange is done by Antelope software and Seedlink (from Seiscomp3). The real-time data communication is ensured by different types of transmission: GPRS, satellite, radio, Internet and a dedicated line provided by a governmental network. For data processing and analysis at the two data centers Antelope 5.2 TM is being used running on 3 workstations: one from a CentOS platform and two on MacOS. Also a Seiscomp3 server stands as back-up for Antelope 5.2 Both acquisition and analysis of seismic data systems produce information about local and global parameters of earthquakes. In addition, Antelope is used for manual processing (event association, calculation of magnitude, creating a database, sending seismic bulletins, calculation of PGA and PGV, etc.), generating ShakeMap products and interaction with global data centers. National Data Center developed tools to enable centralizing of data from software like Antelope and Seiscomp3. These tools allow rapid distribution of information about damages observed after an earthquake to the public. Another feature of the developed application is the alerting of designated persons, via email and SMS, based on the earthquake parameters. In parallel, Seiscomp3 sends automatic notifications (emails) with the earthquake parameters. The real-time seismic network and software acquisition and data processing used in the National Data Center development have increased the number of events detected locally and globally, the increase of the quality parameters obtained by data processing and potentially increasing visibility on the national and internationally.

  9. Integrated monitoring of pre-earthquake signals in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, L. C.; Lin, C. H.

    2014-12-01

    In the search of possible earthquake precursors in the Taiwan area, there have been continuous measurements of the gravity, geomagnetic perturbation, crustal deformation, ionospheric disturbance, ground water level, and leaky gas (Radon ) from the crust in the past two decades. In 2010, a major project "Integrated Earthquake Precursors and Early Warning for Seismic Disaster Prevention in Taiwan" was initiated by the Ministry of Science and Technology. Under this project, the gamma-ray sensors, downhole strainmeters, telluric electric field measurements and thermal infrared ray analysis are further established. In addition, an electric coupling model for the lithosphere-atmosphere-ionosphere was developed. In this talk, some important results from the integrated observations and theoretical models for pre-earthquake signals will be presented.

  10. Atmospheric Baseline Monitoring Data Losses Due to the Samoa Earthquake

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Cunningham, M. C.; Vasel, B. A.; Butler, J. H.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA) operates an Atmospheric Baseline Observatory at Cape Matatula on the north-eastern point of American Samoa, opened in 1973. The manned observatory conducts continuous measurements of a wide range of climate forcing and atmospheric composition data including greenhouse gas concentrations, solar radiation, CFC and HFC concentrations, aerosols and ozone as well as less frequent measurements of many other parameters. The onset of September 29, 2009 earthquake is clearly visible in the continuous data streams in a variety of ways. The station electrical generator came online when the Samoa power grid failed so instruments were powered during and subsequent to the earthquake. Some instruments ceased operation in a spurt of spurious data followed by silence. Other instruments just stopped sending data abruptly when the shaking from the earthquake broke a data or power links, or an integral part of the instrument was damaged. Others survived the shaking but were put out of calibration. Still others suffered damage after the earthquake as heaters ran uncontrolled or rotating shafts continued operating in a damaged environment grinding away until they seized up or chewed a new operating space. Some instruments operated as if there was no earthquake, others were brought back online within a few days. Many of the more complex (and in most cases, most expensive) instruments will be out of service, some for at least 6 months or more. This presentation will show these results and discuss the impact of the earthquake on long-term measurements of climate forcing agents and other critical climate measurements.

  11. Earthquake!

    ERIC Educational Resources Information Center

    Hernandez, Hildo

    2000-01-01

    Examines the types of damage experienced by California State University at Northridge during the 1994 earthquake and what lessons were learned in handling this emergency are discussed. The problem of loose asbestos is addressed. (GR)

  12. Earthquake Education and Public Information Centers: A Collaboration Between the Earthquake Country Alliance and Free-Choice Learning Institutions in California

    Microsoft Academic Search

    R. M. Degroot; K. Springer; C. J. Brooks; L. Schuman; D. Dalton; M. L. Benthien

    2009-01-01

    In 1999 the Southern California Earthquake Center initiated an effort to expand its reach to multiple target audiences through the development of an interpretive trail on the San Andreas fault at Wallace Creek and an earthquake exhibit at Fingerprints Youth Museum in Hemet. These projects and involvement with the San Bernardino County Museum in Redlands beginning in 2007 led to

  13. Design for communications center monitor & control system

    Microsoft Academic Search

    Zhigang Lv; Cuixia Liu

    2010-01-01

    Communications center monitor & control system, including power supply sub-system, environment sub-system, fire sub-system, security sub-system and so on, is widely used in school, enterprise, government and other areas. The control system designed by this paper can get temperature and humidity information from RS485 sensor of temperature-humidity. From measuring gate sensor, smoke sensor and leak-water senor, the control system can

  14. Earthquakes and submarine volcanism in the Northeast Pacific: Exploration in the time domain based on 21-years of hydroacoustic monitoring

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.; Dziak, R. P.; Fox, C. G.

    2012-12-01

    Monitoring of regional seismic activity in the Northeast Pacific has been accomplished for the past 21 years using US Navy's Sound Surveillance System (SOSUS) hydrophone arrays. Seafloor seismic activity in this region occurs along the spreading center and transform boundaries between the Juan de Fuca, Pacific and North American plates. During the time span, from 1991 through 2011, nearly 50,000 earthquakes were detected and located. The majority of these events were associated with these tectonic boundaries but sections of several plate boundaries were largely aseismic during the this time span. While most of the earthquakes were associated with geological structures revealed in bathymetric maps of the region, there were also less easily explained intraplate events including a swarm of events within the interior of the southern portion of the Juan de Fuca plate. The location and sequential timing of events on portions of the plate boundaries also suggests ordered patterns of stress release. Among the most scientifically significant outcomes of acoustic monitoring was the discovery that deep seafloor magmatic activity can be accompanied by intense (> 1000 events/day) earthquake swarms. The first swarm detected by SOSUS, in 1993, was confirmed to have been associated with an extrusive volcanic eruption which occurred along a segment of the Juan de Fuca spreading center. Notably, this was the first deep spreading center eruption detected, located, and studied while it was active. Subsequently, two more swarms were confirmed to have been associated with volcanic eruptions, one on the Gorda spreading center in 1996 and the other at Axial volcano in 1998. One characteristic of these swarm events is migration of their earthquake locations 10s of km along the ridge axis tracking the movement of magma down-rift. The most rapid magma propagation events have been shown to be associated with seafloor eruptions and dramatic, transient changes in hydrothermal circulation as well as discharges of large volumes of hot water, i.e., megaplumes. Hydroacoustic monitoring using SOSUS, and now augmented with hydrophones deployed on stationary moorings as well as mobile platforms (e.g. gliders), provides a unique means for gaining knowledge concerning a broad diversity of present-day topics of scientific importance including, sources and fate of carbon in the deep ocean, deep ocean micro- and macro-ecosystems, and changes in ocean ambient noise levels.

  15. Seismic Monitoring and Post-Seismic Investigations following the 12 January 2010 Mw 7.0 Haiti Earthquake (Invited)

    Microsoft Academic Search

    J. Altidor; A. Dieuseul; W. L. Ellsworth; D. D. Given; S. E. Hough; M. G. Janvier; J. Z. Maharrey; M. E. Meremonte; B. S. Mildor; C. Prepetit; A. Yong

    2010-01-01

    We report on ongoing efforts to establish seismic monitoring in Haiti. Following the devastating M7.0 Haiti earthquake of 12 January 2010, the Bureau des Mines et de l'Energie worked with the U.S. Geological Survey and other scientific institutions to investigate the earthquake and to better assess hazard from future earthquakes. We deployed several types of portable instruments to record aftershocks:

  16. Earthquake Glossary

    MedlinePLUS

    ... Education FAQ Earthquake Glossary For Kids Prepare Google Earth/KML Files Earthquake Summary Posters Photos Publications Share ... for Education FAQ EQ Glossary For Kids Google Earth/KML Files EQ Summary Posters Photos Publications Monitoring ...

  17. Faster Short-Distance Earthquake Early Warning Using Continued Monitoring of Filtered Vertical Displacement: A Case Study

    E-print Network

    Wu, Yih-Min

    - Motion Instrumentation Program (TSMIP) stations to perform an off-line test for our proposed short for their structural safety. One train of the Taiwan High Speed Rail (THSR) went off the rails during the occurrence of the Jiasian mainshock, although the earthquake monitoring and warning system of THSR had issued an earthquake

  18. Satellite monitoring of atmospheric methane concentration and its potential use in earthquake prediction and energy resources exploration

    Microsoft Academic Search

    Gaoxiang Zhao; Hongqi Wang

    1999-01-01

    The abnormal increase of the ground temperature in seismic areas is one generally observed phenomenon prior to earthquakes, and it can be monitored by using satellite thermal infrared window channel and has been used as a kind of imminent precursor in earthquake prediction. Additionally, a successful test on searching petroleum enrichment zone by using such phenomenon detected with satellite thermal

  19. Towards implementation of the GRiD MT algorithm for near real-time calculation of moment tensors at the Alaska Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Macpherson, K. A.; Ruppert, N. A.; Dreger, D. S.; Lombard, P. N.; Freymueller, J. T.; Nicolsky, D.; Guilhem, A.

    2013-12-01

    The Alaska Earthquake Information Center (AEIC) locates approximately 30,000 earthquakes a year and is the primary source for earthquake information for the state of Alaska. This information is vital for the state; the most seismically active in the Union and home to significant infrastructure such as the Trans-Alaska Pipeline and Anchorage, a city with a population of over 295,000. The ability to quickly characterize an earthquake's moment and mechanism and make this information available to the public is a fundamental component of the AEIC's mission. In order to enhance the AEIC's capabilities in this regard, we are implementing the GRiD MT algorithm. This algorithm monitors a grid of potential sources by continuously cross-correlating pre-computed Green's functions with a data stream, allowing source locations and mechanisms to be determined rapidly. The algorithm has been employed effectively by the Berkeley Seismological Laboratory, the Earthquake Research Institute at the University of Tokyo, and by Academia Sinica in Taiwan. We show preliminary results for Alaska obtained by running the off-line, research version of the GRiD MT code for a 88 grid that covers Anchorage and a segment of the Aleutian megathrust. Because even broad-band instruments may be off scale in the event of a large earthquake, we applied the algorithm to both strong-motion and high-rate GPS data. The results show that the algorithm is able to quickly produce accurate moment tensors for test cases employing both synthetic and real data. Based on these encouraging initial results, we are now incorporating GRiD MT into the AEIC's monitoring infrastructure by developing an interface for the Antelope real-time system and by expanding the grid to cover a larger portion of the Alaska region. Moment tensors determined by GRiD MT will complement the AEIC's existing real-time monitoring capability.

  20. Geomorphic and seismic coupled monitoring of post-earthquake subsurface weakening.

    NASA Astrophysics Data System (ADS)

    Marc, Odin; Sawazaki, Kaoru; Sens-Schnfelder, Christoph; Hovius, Niels; Meunier, Patrick; Uchida, Taro

    2014-05-01

    We present integrated geomorphic data constraining an elevated landslide rate following 3 continental shallow earthquakes, the Mw 6.9 Finisterre (1993), the Mw 7.6 ChiChi (1999) and the Mw 6.8 Iwate-Miyagi (2008) earthquakes. We have constrained the magnitude and decay time of seismically enhanced landslide rates and investigated the mechanism at the source of this prolonged geomorphic response. We provide evidence ruling out aftershocks and rain forcing as possible mechanisms and identify substrate weakening as a likely cause. We have used ambient noise autocorrelation to monitor subsurface seismic velocity within earthquake epicentral areas. Observed station response patterns are diverse, illustrating potential lithological or other local effects. However, some stations were strongly affected by the earthquake in relatively high frequency ranges (1-2 and 2-4 Hz). This may be related to shallow subsurface change. At several stations we have found a velocity drop followed by a recovery over several years, in fair agreement with the recovery time of landslide rates in the area. This prompts a search for common processes altering the strength of the topmost layers of soil/rock in epicentral areas, simultaneously driving a landslide rate increase and a seismic velocity drop. This search requires additional constraints on the seismic signal interpretation. It may yield a useful tool for post-earthquake risk management.

  1. Potential utilization of the NASA/George C. Marshall Space Flight Center in earthquake engineering research

    NASA Technical Reports Server (NTRS)

    Scholl, R. E. (editor)

    1979-01-01

    Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.

  2. Correlation of major eastern earthquake centers with mafic/ultramafic basement masses

    USGS Publications Warehouse

    Kane, Martin Francis

    1977-01-01

    Extensive gravity highs and associated magnetic anomalies are present in or near seven major eastern North American earthquake areas as defined by Hadley and Devine (1974). The seven include the five largest of the eastern North American earthquake .centers. The immediate localities of the gravity anomalies are, however, relatively free of seismicity, particularly the largest events. The anomalies are presumably caused by extensive mafic or ultramafic masses embedded in the crystalline basement. Laboratory experiments show that serpentinized gabbro and dunite fail under stress in a creep mode rather than in a stick-slip mode. A possible explanation of the correlation between the earthquake patterns and the anomalies is that the mafic/ultramafic masses are serpentinized and can only sustain low stress fields thereby acting to concentrate regional stress outside their boundaries. The proposed model is analogous to the hole-in-plate problem of mechanics whereby stresses around a hole in a stressed plate may. reach values several times the average.

  3. A Correction to the article "Geo-center movement caused by huge earthquakes" by Wenke Sun and Jie Dong

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangcun; Sun, Wenke; Dong, Jie

    2015-07-01

    Sun and Dong (2014) studied the co-seismic geo-center movement using dislocation theory for a spherical earth model. However, they incorrectly considered the maximum vertical co-seismic displacement as the rigid geo-center motion (i.e., they did not separate the rigid shift and elastic deformation). In this paper, we correct Sun and Dong (2014) by using a new approach. We now define the geo-center motion as a shift of the center of figure of the Earth relative to the center of mass of the Earth. Furthermore, we derive new formulas to compute the co-seismic geo-center and inner core's center movements caused by huge earthquakes. The 2004 Sumatra earthquake and the 2011 Tohoku-Oki earthquake changed the geo-center by 1-4 mm and about 2 mm, respectively, and caused the inner core's center to displace by about 0.05 mm and 0.025 mm, respectively.

  4. Real-time seismic monitoring of the integrated cape girardeau bridge array and recorded earthquake response

    USGS Publications Warehouse

    Celebi, M.

    2006-01-01

    This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.

  5. Earthquake Education and Public Information Centers: A Collaboration Between the Earthquake Country Alliance and Free-Choice Learning Institutions in California

    NASA Astrophysics Data System (ADS)

    Degroot, R. M.; Springer, K.; Brooks, C. J.; Schuman, L.; Dalton, D.; Benthien, M. L.

    2009-12-01

    In 1999 the Southern California Earthquake Center initiated an effort to expand its reach to multiple target audiences through the development of an interpretive trail on the San Andreas fault at Wallace Creek and an earthquake exhibit at Fingerprints Youth Museum in Hemet. These projects and involvement with the San Bernardino County Museum in Redlands beginning in 2007 led to the creation of Earthquake Education and Public Information Centers (EPIcenters) in 2008. The impetus for the development of the network was to broaden participation in The Great Southern California ShakeOut. In 2009 it has grown to be more comprehensive in its scope including its evolution into a statewide network. EPIcenters constitute a variety of free-choice learning institutions, representing museums, science centers, libraries, universities, parks, and other places visited by a variety of audiences including families, seniors, and school groups. They share a commitment to demonstrating and encouraging earthquake preparedness. EPIcenters coordinate Earthquake Country Alliance activities in their county or region, lead presentations or organize events in their communities, or in other ways demonstrate leadership in earthquake education and risk reduction. The San Bernardino County Museum (Southern California) and The Tech Museum of Innovation (Northern California) serve as EPIcenter regional coordinating institutions. They interact with over thirty institutional partners who have implemented a variety of activities from displays and talks to earthquake exhibitions. While many activities are focused on the time leading up to and just after the ShakeOut, most EPIcenter members conduct activities year round. Network members at Kidspace Museum in Pasadena and San Diego Natural History Museum have formed EPIcenter focus groups on early childhood education and safety and security. This presentation highlights the development of the EPIcenter network, synergistic activities resulting from this collaboration, and lessons learned from interacting with free-choice learning institutions.

  6. Providing Seismotectonic Information to the Public Through Continuously Updated National Earthquake Information Center Products

    NASA Astrophysics Data System (ADS)

    Bernardino, M. J.; Hayes, G. P.; Dannemann, F.; Benz, H.

    2012-12-01

    One of the main missions of the United States Geological Survey (USGS) National Earthquake Information Center (NEIC) is the dissemination of information to national and international agencies, scientists, and the general public through various products such as ShakeMap and earthquake summary posters. During the summer of 2012, undergraduate and graduate student interns helped to update and improve our series of regional seismicity posters and regional tectonic summaries. The "Seismicity of the Earth (1900-2007)" poster placed over a century's worth of global seismicity data in the context of plate tectonics, highlighting regions that have experienced great (M+8.0) earthquakes, and the tectonic settings of those events. This endeavor became the basis for a series of more regionalized seismotectonic posters that focus on major subduction zones and their associated seismicity, including the Aleutian and Caribbean arcs. The first round of these posters were inclusive of events through 2007, and were made with the intent of being continually updated. Each poster includes a regional tectonic summary, a seismic hazard map, focal depth cross-sections, and a main map that illustrates the following: the main subduction zone and other physiographic features, seismicity, and rupture zones of historic great earthquakes. Many of the existing regional seismotectonic posters have been updated and new posters highlighting regions of current seismological interest have been created, including the Sumatra and Java arcs, the Middle East region and the Himalayas (all of which are currently in review). These new editions include updated lists of earthquakes, expanded tectonic summaries, updated relative plate motion vectors, and major crustal faults. These posters thus improve upon previous editions that included only brief tectonic discussions of the most prominent features and historic earthquakes, and which did not systematically represent non-plate boundary faults. Regional tectonic summaries provide the public with immediate background information useful for teaching and media related purposes and are an essential component to many NEIC products. As part of the NEIC's earthquake response, rapid earthquake summary posters are created in the hours following a significant global earthquake. These regional tectonic summaries are included in each earthquake summary poster along with a discussion of the event, written by research scientists at the NEIC, often with help from regional experts. Now, through the efforts of this and related studies, event webpages will automatically contain a regional tectonic summary immediately after an event has been posted. These new summaries include information about plate boundary interactions and other associated tectonic elements, trends in seismicity and brief descriptions of significant earthquakes that have occurred in a region. The tectonic summaries for the following regions have been updated as part of this work: South America, the Caribbean, Alaska and the Aleutians, Kuril-Kamchatka, Japan and vicinity, and Central America, with newly created summaries for Sumatra and Java, the Mediterranean, Middle East, and the Himalayas. The NEIC is currently planning to integrate concise stylized maps with each tectonic summary for display on the USGS website.

  7. Feasibility of acoustic monitoring of strength drop precursory to earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Kame, Nobuki; Nagata, Kohei; Nakatani, Masao; Kusakabe, Tetsuya

    2014-12-01

    Rate- and state-dependent friction law (RSF), proposed on the basis of laboratory experiments, has been extensively applied to modeling of earthquake stick-slip cycles. A simple spring-slider model obeying RSF predicts a significant decrease of the frictional strength ? (the state of contact) that is localized within a few years preceding the earthquake occurrence. On the other hand, recent laboratory experiments successfully monitored the history of the strength by simultaneously measuring the P-wave transmissivity | T| across the frictional interface using a 1-MHz transducer. This suggests a possibility of earthquake forecast by monitoring the strength of a natural fault by acoustic methods. The present paper explores the feasibility of such monitoring in the field on the basis of the physics of RSF combined with the linear slip model (LSM) employed in the classical acoustic methodology for monitoring an imperfectly welded interface. The characteristic frequency f c , around which | T| (or reflectivity | R|) has a good sensitivity to the interface strength, is shown to be proportional to the strength and inversely proportional to the representative scale of real contacts. For natural faults, f c is estimated to be 1 to 100 Hz, which is practicable in the field. The changes of | T| and | R| depend on the ratio of the strength drop to the absolute strength level, the latter of which is not constrained by RSF simulations. Expected changes in wave amplitude in the preslip period would be several percent for strong faults and several tens percent for weak faults, which may be detectable by acoustic methods such as seismic reflection surveys.

  8. Implications of the World Trade Center Health Program (WTCHP) for the Public Health Response to the Great East Japan Earthquake

    PubMed Central

    CRANE, Michael A.; CHO, Hyunje G.; LANDRIGAN, Phillip J.

    2013-01-01

    The attacks on the World Trade Center (WTC) on September 11, 2001 resulted in a serious burden of physical and mental illness for the 50,000 rescue workers that responded to 9/11 as well as the 400,000 residents and workers in the surrounding areas of New York City. The Zadroga Act of 2010 established the WTC Health Program (WTCHP) to provide monitoring and treatment of WTC exposure-related conditions and health surveillance for the responder and survivor populations. Several reports have highlighted the applicability of insights gained from the WTCHP to the public health response to the Great East Japan Earthquake. Optimal exposure monitoring processes and attention to the welfare of vulnerable exposed sub-groups are critical aspects of the response to both incidents. The ongoing mental health care concerns of 9/11 patients accentuate the need for accessible and appropriately skilled mental health care in Fukushima. Active efforts to demonstrate transparency and to promote community involvement in the public health response will be highly important in establishing successful long-term monitoring and treatment programs for the exposed populations in Fukushima. PMID:24317449

  9. Real-time monitoring of fine-scale changes in fault and earthquake properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2014-12-01

    The high-resolution back-processing and re-analysis of long-term seismic archives has generated new data that provide insight into the fine-scale structures of active faults and seismogenic processes that control them. Such high-precision studies are typically carried out retro-actively, for a specific time period and/or fault of interest. For the last 5 years we have been operating a real-time system, DD-RT, that uses waveform cross-correlation and double-difference algorithms to automatically compute high-precision (10s to 100s of meters) locations of new earthquakes recorded by the Northern California Seismic System. These locations are computed relative to a high-resolution, 30 year long background archive that includes over half a million earthquakes, 20 million seismograms, and 1.7 billion correlation measurements. In this paper we present results from using the DD-RT system and its relational database to monitor changes in earthquake and fault properties at the scale of individual events. We developed baseline characteristics for repeating earthquakes, fore- and aftershock sequences, and fault zone properties, against which we evaluate new events in near real-time. We developed these baseline characteristics from a comprehensive analysis of the double-difference archive, and developed real-time modules that plug into the DD-RT system for monitoring deviations from these baselines. For example, we defined baseline characteristics for 8,500 repeating earthquake sequences, including more than 25,000 events, that were found in an extensive search across Northern California. Precise measurements of relative hypocenter positions, differential magnitudes, and waveform similarity are used to automatically associate new member events to existing sequences. This allows us to monitor changes relative to baseline parameters such as recurrence intervals and their coefficient of variation (CV). Alerting of such changes are especially important for large sequences of repeating events with CV~0 - such as are exclusively found on creeping segments of the San Andreas fault system - as they may indicate changes in local fault properties and/or loading rates.

  10. Space Radiation Monitoring Center at SINP MSU

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Barinova, Wera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Myagkova, Irina; Nguen, Minh; Panasyuk, Mikhail; Shiroky, Vladimir; Shugay, Julia

    2015-04-01

    Data on energetic particle fluxes from Russian satellites have been collected in Space monitoring data center at Moscow State University in the near real-time mode. Web-portal http://smdc.sinp.msu.ru/ provides operational information on radiation state of the near-Earth space. Operational data are coming from space missions ELECTRO-L1, Meteor-M2. High-resolution data on energetic electron fluxes from MSU's satellite VERNOV with RELEC instrumentation on board are also available. Specific tools allow the visual representation of the satellite orbit in 3D space simultaneously with particle fluxes variations. Concurrent operational data coming from other spacecraft (ACE, GOES, SDO) and from the Earth's surface (geomagnetic indices) are used to represent geomagnetic and radiation state of near-Earth environment. Internet portal http://swx.sinp.msu.ru provides access to the actual data characterizing the level of solar activity, geomagnetic and radiation conditions in heliosphere and the Earth's magnetosphere in the real-time mode. Operational forecasting services automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons, using data from LEO and GEO orbits. The models of space environment working in autonomous mode are used to generalize the information obtained from different missions for the whole magnetosphere. On-line applications created on the base of these models provide short-term forecasting for SEP particles and relativistic electron fluxes at GEO and LEO, Dst and Kp indices online forecasting up to 1.5 hours ahead. Velocities of high-speed streams in solar wind on the Earth orbit are estimated with advance time of 3-4 days. Visualization system provides representation of experimental and modeling data in 2D and 3D.

  11. Role of WEGENER (World Earthquake GEodesy Network for Environmental Hazard Research) in monitoring natural hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Zerbini, S.; Bastos, M. L.; Becker, M. H.; Meghraoui, M.; Reilinger, R. E.

    2013-12-01

    WEGENER was originally the acronym for Working Group of European Geoscientists for the Establishment of Networks for Earth-science Research. It was founded in March 1981 in response to an appeal delivered at the Journes Luxembourgeoises de Geodynamique in December 1980 to respond with a coordinated European proposal to a NASA Announcement of Opportunity inviting participation in the Crustal Dynamics and Earthquake Research Program. WEGENER, during the past 33 years, has always kept a close contact with the Agencies and Institutions responsible for the development and maintenance of the global space geodetic networks with the aim to make them aware of the scientific needs and outcomes of the project which might have an influence on the general science policy trends. WEGENER served as Inter-commission Project 3.2, between Commission 1 and Commission 3, of the International Association of Geodesy (IAG) until 2012. Since then, WEGENER project has become the Sub-commission 3.5 of IAG commission 3, namely Tectonics and Earthquake Geodesy. In this presentation, we briefly review the accomplishments of WEGENER as originally conceived and outline and justify the new focus of the WEGENER consortium. The remarkable and rapid evolution of the present state of global geodetic monitoring in regard to the precision of positioning capabilities (and hence deformation) and global coverage, the development of InSAR for monitoring strain with unprecedented spatial resolution, and continuing and planned data from highly precise satellite gravity and altimetry missions, encourage us to shift principal attention from mainly monitoring capabilities by a combination of space and terrestrial geodetic techniques to applying existing observational methodologies to the critical geophysical phenomena that threaten our planet and society. Our new focus includes developing an improved physical basis to mitigate earthquake, tsunami, and volcanic risks, and the effects of natural and anthropogenic climate change (sea level, ice degradation). In addition, expanded applications of space geodesy to atmospheric studies will remain a major focus with emphasis on ionospheric and tropospheric monitoring to support forecasting extreme events. Towards these ends, we will encourage and foster interdisciplinary, integrated initiatives to develop a range of case studies for these critical problems. Geological studies are needed to extend geodetic deformation studies to geologic time scales, and new modeling approaches will facilitate full exploitation of expanding geodetic databases. In light of this new focus, the WEGENER acronym now represents, 'World Earthquake GEodesy Network for Environmental Hazard Research.

  12. UNLVs environmentally friendly Science and Engineering Building is monitored for earthquake shaking

    USGS Publications Warehouse

    Kalkan, Erol; Savage, Woody; Reza, Shahneam; Knight, Eric; Tian, Ying

    2013-01-01

    The University of Nevada Las Vegas (UNLV) Science and Engineering Building is at the cutting edge of environmentally friendly design. As the result of a recent effort by the U.S. Geological Surveys National Strong Motion Project in cooperation with UNLV, the building is now also in the forefront of buildings installed with structural monitoring systems to measure response during earthquakes. This is particularly important because this is the first such building in Las Vegas. The seismic instrumentation will provide essential data to better understand the structural performance of buildings, especially in this seismically active region.

  13. Near-Real time, High Resolution Reservoir Monitoring and Modeling with Micro-earthquake Data

    NASA Astrophysics Data System (ADS)

    Hutchings, L. J.; Jarpe, S.; Boyle, K. L.; Bonner, B. P.; Viegas, G.; Philson, H.; Statz-Boyer, P.; Majer, E.

    2011-12-01

    We present a micro-earthquake recording and automated processing system along with a methodology to provide near-real time, high resolution reservoir monitoring and modeling. An interactive program for testing micro-earthquake network designs helps identify configurations for optimum accuracy and resolution. We select the Northwest Geysers, California geothermal field to showcase the usefulness of the system. The system's inexpensive recorders requires very little time or expertise to install, and the automated processing requires merely placing flash memory chips (or telemetry) into a computer. Together these make the deployment of a large numbers of sensors feasible and thus rapid, high resolution results possible. Data are arranged into input files for tomography for Vp, Vs, Qp and Qs, and their combinations to provide for interpretation in terms of rock properties. Micro-earthquake source parameters include seismic moments, full moment tensor solutions, stress drops, source durations, radiated energy, and hypocentral locations. The methodology for interpretation is to utilize visualization with GUI analysis to cross compare tomography and source property results along with borehole or other independent information and rock physics to identify reservoir properties. The system can potentially provide information heretofore unattainable or affordable to many small companies, organizations, and countries around the world.

  14. Change of permeability caused by 2011 Tohoku earthquake detected from pore pressure monitoring

    NASA Astrophysics Data System (ADS)

    Kinoshita, C.; Kano, Y.; Ito, H.

    2013-12-01

    Earthquake-induced groundwater changes which are the pre- and co-seismic changes have been long reported (e.g. Roeloffs, 1996). For example, 1995 Kobe earthquake, water inflow into observation tunnel changed at Rokko (Fujimori et al., 1995), at the times of 1964 Alaska earthquake (M8.6) (Coble, 1967) and 1999 Taiwan Chi-Chi earthquake (M7.6) (Chia et al., 2001), groundwater leve were fluctuated. The shaking of seismic waves and crack formation by crustal deformation are proposed as one causes but the mechanism is controversial. We are monitoring pore pressure from 2005 to measure the stress changes at Kamioka mine, Gifu prefecture, central Japan. Barometric pressure and strain are observed to correct the pore pressure data. In general, the pore pressure changes associate with the meteorological effects, Earth tides and crustal deformation. Increase of pore pressure depends on the precipitation which flows into the ground. Especially, snow effects are bigger than the usual rainfall because our observation site has heavy snow in winter season. Melted snow flows in the ground and pore pressure increases at the March to April every year. When the 2011 Tohoku earthquake (M9.0) occurred, pore pressure remarkably decreased because the permeability increases by crustal deformation at Kamioka region. Thus, we estimated the hydraulic diffusivity before and after the earthquake from pore pressure response to crustal deformation. We made separated analyses on three frequency bands. First is the high frequency band, especially, seismic response. Second is response to Earth tides. Third frequency band is that of barometric response which is lower than other two bands. At high frequency band, we confirmed that the deformation occurred under undrained condition and estimated the bulk modulus from pore pressure and strain data. Next, tidal response is extracted from pore pressure which applied to every three months data of pore pressure, barometric pressure and strain. Time window shifted every one day. As a result, amplitude of O1 and M2 constituents decreased after the Tohoku earthquake. M2 and O1 amplitudes were 0.575 hPa and 0.277 hPa before the earthquake, and decreased to 0.554 hPa and 0.184 hPa after the earthquake respectively. The phase between pore pressure and strain, changed after the event and soon recovered. We estimated the hydraulic diffusivity from the change in ratio of tidal response. We have no strain data due to apparatus problem, so we used synthetic strain. From one-dimensional diffusion equation and poroelastic constitutive relations, we could approximate the relation between pore pressure and strain by the exponential curve. Estimated hydraulic diffusivity of preseismic period is 8.0 m2/s and postseismic period is 19 m2/s, and these results correspond to pore pressure decreases. In the case of the barometric pressure response, we made the spectrum analysis and estimated the hydraulic diffusivity. The results from three frequency domain bands were integrated to show how the hydraulic diffusivity depends on to frequency.

  15. Basin-centered asperities in great subduction zone earthquakes: A link between slip, subsidence, and subduction erosion?

    USGS Publications Warehouse

    Wells, R.E.; Blakely, R.J.; Sugiyama, Y.; Scholl, D. W.; Dinterman, P.A.

    2003-01-01

    Published areas of high coseismic slip, or asperities, for 29 of the largest Circum-Pacific megathrust earthquakes are compared to forearc structure revealed by satellite free-air gravity, bathymetry, and seismic profiling. On average, 71% of an earthquake's seismic moment and 79% of its asperity area occur beneath the prominent gravity low outlining the deep-sea terrace; 57% of an earthquake's asperity area, on average, occurs beneath the forearc basins that lie within the deep-sea terrace. In SW Japan, slip in the 1923, 1944, 1946, and 1968 earthquakes was largely centered beneath five forearc basins whose landward edge overlies the 350??C isotherm on the plate boundary, the inferred downdip limit of the locked zone. Basin-centered coseismic slip also occurred along the Aleutian, Mexico, Peru, and Chile subduction zones but was ambiguous for the great 1964 Alaska earthquake. Beneath intrabasin structural highs, seismic slip tends to be lower, possibly due to higher temperatures and fluid pressures. Kilometers of late Cenozoic subsidence and crustal thinning above some of the source zones are indicated by seismic profiling and drilling and are thought to be caused by basal subduction erosion. The deep-sea terraces and basins may evolve not just by growth of the outer arc high but also by interseismic subsidence not recovered during earthquakes. Basin-centered asperities could indicate a link between subsidence, subduction erosion, and seismogenesis. Whatever the cause, forearc basins may be useful indicators of long-term seismic moment release. The source zone for Cascadia's 1700 A.D. earthquake contains five large, basin-centered gravity lows that may indicate potential asperities at depth. The gravity gradient marking the inferred downdip limit to large coseismic slip lies offshore, except in northwestern Washington, where the low extends landward beneath the coast. Transverse gravity highs between the basins suggest that the margin is seismically segmented and could produce a variety of large earthquakes. Published in 2003 by the American Geophysical Union.

  16. Application of multimode airborne digital camera system in Wenchuan earthquake disaster monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Li, Qingting; Fang, Junyong; Tong, Qingxi; Zheng, Lanfen

    2009-06-01

    Remote sensing, especially airborne remote sensing, can be an invaluable technique for quick response to natural disasters. Timely acquired images by airborne remote sensing can provide very important information for the headquarters and decision makers to be aware of the disaster situation, and make effective relief arrangements. The image acquisition and processing of Multi-mode Airborne Digital Camera System (MADC) and its application in Wenchuan earthquake disaster monitoring are presented in this paper. MADC system is a novel airborne digital camera developed by Institute of Remote Sensing Applications, Chinese Academy of Sciences. This camera system can acquire high quality images in three modes, namely wide field, multi-spectral (hyper-spectral) and stereo conformation. The basic components and technical parameters of MADC are also presented in this paper. MADC system played a very important role in the disaster monitoring of Wenchuan earthquake. In particular, the map of dammed lakes in Jianjiang river area was produced and provided to the front line headquarters. Analytical methods and information extraction techniques of MADC are introduced. Some typical analytical and imaging results are given too. Suggestions for the design and configuration of the airborne sensors are discussed at the end of this paper.

  17. Analogue models of subduction megathrust earthquakes: improving rheology and monitoring technique

    NASA Astrophysics Data System (ADS)

    Brizzi, Silvia; Corbi, Fabio; Funiciello, Francesca; Moroni, Monica

    2015-04-01

    Most of the world's great earthquakes (Mw > 8.5, usually known as mega-earthquakes) occur at shallow depths along the subduction thrust fault (STF), i.e., the frictional interface between the subducting and overriding plates. Spatiotemporal occurrences of mega-earthquakes and their governing physics remain ambiguous, as tragically demonstrated by the underestimation of recent megathrust events (i.e., 2011 Tohoku). To help unravel seismic cycle at STF, analogue modelling has become a key-tool. First properly scaled analogue models with realistic geometries (i.e., wedge-shaped) suitable for studying interplate seismicity have been realized using granular elasto-plastic [e.g., Rosenau et al., 2009] and viscoelastic materials [i.e., Corbi et al., 2013]. In particular, viscoelastic laboratory experiments realized with type A gelatin 2.5 wt% simulate, in a simplified yet robust way, the basic physics governing subduction seismic cycle and related rupture process. Despite the strength of this approach, analogue earthquakes are not perfectly comparable to their natural prototype. In this work, we try to improve subduction seismic cycle analogue models by modifying the rheological properties of the analogue material and adopting a new image analysis technique (i.e., PEP - ParticlE and Prediction velocity). We test the influence of lithosphere elasticity by using type A gelatin with greater concentration (i.e., 6 wt%). Results show that gelatin elasticity plays important role in controlling seismogenic behaviour of STF, tuning the mean and the maximum magnitude of analogue earthquakes. In particular, by increasing gelatin elasticity, we observe decreasing mean magnitude, while the maximum magnitude remains the same. Experimental results therefore suggest that lithosphere elasticity could be one of the parameters that tunes seismogenic behaviour of STF. To increase gelatin elasticity also implies improving similarities with their natural prototype in terms of coseismic duration and rupture width. Experimental monitoring has been performed by means of both PEP and PIV (i.e., Particle Image Velocimetry) algorithms. PEP differs from classic cross-correlation techniques (i.e., PIV) in its ability to provide sparse velocity vectors at points coincident with particle barycentre positions, allowing a lagrangian description of the velocity field and a better spatial resolution (i.e., ? 0.03 mm2) with respect to PIV. Results show that PEP algorithm is able to identify a greater number of analogue earthquakes (i.e., ? 20% more than PIV algorithm), decreasing the minimum detectable magnitude from 6.6 to 4.5. Furthermore, earthquake source parameters (e.g., hypocentre position, rupture limits and slip distribution) are more accurately defined. PEP algorithm is then suitable to potentially gain new insights on seismogenic process of STF, by extending the analysable magnitude range of analogue earthquakes and having implications on applicability of scaling relationship, such as Gutenberg - Richter law, to experimental results.

  18. Noise Reduction in Radon Monitoring Data Using Kalman Filter and Application of Results in Earthquake Precursory Process Research

    NASA Astrophysics Data System (ADS)

    Namvaran, Mojtaba; Negarestani, Ali

    2015-04-01

    Monitoring the concentration of radon gas is an established method for geophysical analyses and research, particularly in earthquake studies. A continuous radon monitoring station was implemented in Jooshan hotspring, Kerman province, south east Iran. The location was carefully chosen as a widely reported earthquake-prone zone. A common issue during monitoring of radon gas concentration is the possibility of noise disturbance by different environmental and instrumental parameters. A systematic mathematical analysis aiming at reducing such noises from data is reported here; for the first time, the Kalman filter (KF) has been used for radon gas concentration monitoring. The filtering is incorporated based on several seismic parameters of the area under study. A novel anomaly defined as "radon concentration spike crossing" is also introduced and successfully used in the study. Furthermore, for the first time, a mathematical pattern of a relationship between the radius of potential precursory phenomena and the distance between epicenter and the monitoring station is reported and statistically analyzed.

  19. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing procedures, the nonlinloc algorithm was implemented for manual and automatic locations using 1D and 3D velocity models; plugins for improved automatic phase picking and Ml computation were developed; and the graphical user interface for manual review was extended (including pick uncertainty definition; first motion focal mechanisms; interactive review of station magnitude waveforms; full inclusion of strong motion data). SC3 locations are fully compatible with those derived from the existing in-house processing tools and are stored in a database derived from the QuakeML data model. The database is shared with the SED alerting software, which merges origins from both SC3 and external sources in realtime and handles the alerting procedure. With the monitoring software being transitioned to SeisComp3, acquisition, archival and dissemination of SED waveform data now conforms to the seedlink and ArcLink protocols and continuous archives can be accessed via SED and all EIDA (European Integrated Data Archives) web-sites. Further, a SC3 module for waveform parameterisation has been developed, allowing rapid computation of peak values of ground motion and other engineering parameters within minutes of a new event. An output of this module is USGS ShakeMap XML. n minutes of a new event. An output of this module is USGS ShakeMap XML.

  20. Data Center Workload Monitoring, Analysis, and Emulation

    Microsoft Academic Search

    Justin Moore; Jeff Chase; Keith Farkas; Parthasarathy Ranganathan

    Over the last ten years we have witnessed a shift from large mainframe computing to commodity, off-the-shelf clusters of servers. Today's data centers contain thousands or tens of thousands of servers, providing services and computation for tens or hundreds of thousands of users. In addition to tra- ditional IT challenges such as server management, security, and performance, data center owners

  1. Robust satellite techniques for seismically active areas monitoring: a sensitivity analysis on September 7, 1999 Athens's earthquake

    Microsoft Academic Search

    C. Filizzola; N. Pergola; C. Pietrapertosa; V. Tramutoli

    2004-01-01

    Space-time TIR anomalies, observed from months to weeks before the occurrence of earthquakes, have been suggested, by several authors, as pre-seismic signals. A robust approach (RAT) has recently been proposed (and successfully applied in the field of monitoring major natural and environmental risks) which permits a statistically based definition of TIR anomaly even in the presence of highly variable contributions

  2. Mid-Ocean Ridge Eruptions: Timing and Processes Inferred from Two Decades of Earthquake Monitoring

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.

    2014-12-01

    Two decades of hydroacoustic monitoring combined with in situ OBS and OBH experiments have identified nine seismically well-defined seafloor events at mid-ocean ridges with characteristics consistent with eruptive activity. The majority of these events occurred at fast and intermediate spreading ridges, where eruption recurrence rates are expected to be higher. Most have also been verified as eruptions through direct seafloor observations. This suite of crustal accretion events, when examined together, suggest patterns of activity that are influenced by both short and long term tidal forces. Tidal triggering of earthquakes in the mid-ocean ridge environment is well established, but until recently data has been lacking on the timing of seafloor eruptions with which to make statistically robust inferences. OBS and OBH earthquake data on the East Pacific Rise and Axial volcano both indicate a steady increase in the rate of seismic activity preceding an eruption, consistent with an increasing state of stress of the system. All of these observations are consistent with a model of crustal accretion that is sensitive to small perturbations in loading both in the short and longer term. Implications of this sensitivity will be presented along with observations to support it.

  3. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3E to 123.0E and 21.0N to 26.0N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1 and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica (http://rmt.earth.sinica.edu.tw). The long-term goal of this system is to provide real-time source information for rapid seismic hazard assessment during large earthquakes.

  4. Long-term blood pressure changes induced by the 2009 L'Aquila earthquake: assessment by 24 h ambulatory monitoring.

    PubMed

    Giorgini, Paolo; Striuli, Rinaldo; Petrarca, Marco; Petrazzi, Luisa; Pasqualetti, Paolo; Properzi, Giuliana; Desideri, Giovambattista; Omboni, Stefano; Parati, Gianfranco; Ferri, Claudio

    2013-09-01

    An increased rate of cardiovascular and cerebrovascular events has been described during and immediately after earthquakes. In this regard, few data are available on long-term blood pressure control in hypertensive outpatients after an earthquake. We evaluated the long-term effects of the April 2009 L'Aquila earthquake on blood pressure levels, as detected by 24 h ambulatory blood pressure monitoring. Before/after (means.d. 6.94.5/14.25.1 months, respectively) the earthquake, the available 24 h ambulatory blood pressure monitoring data for the same patients were extracted from our database. Quake-related daily life discomforts were evaluated through interviews. We enrolled 47 patients (25 female, age 5214 years), divided into three groups according to antihypertensive therapy changes after versus before the earthquake: unchanged therapy (n=24), increased therapy (n=17) and reduced therapy (n=6). Compared with before the quake, in the unchanged therapy group marked increases in 24 h (P=0.004), daytime (P=0.01) and nighttime (P=0.02) systolic blood pressure were observed after the quake. Corresponding changes in 24 h (P=0.005), daytime (P=0.01) and nighttime (P=0.009) diastolic blood pressure were observed. Daily life discomforts were reported more frequently in the unchanged therapy and increased therapy groups than the reduced therapy group (P=0.025 and P=0.018, respectively). In conclusion, this study shows that patients with unchanged therapy display marked blood pressure increments up to more than 1 year after an earthquake, as well as long-term quake-related discomfort. Our data suggest that particular attention to blood pressure levels and adequate therapy modifications should be considered after an earthquake, not only early after the event but also months later. PMID:23595046

  5. Wireless sensor network for data-center environmental monitoring

    Microsoft Academic Search

    Michael G. Rodriguez; Luis E. Ortiz Uriarte; Yi Jia; Kazutomo Yoshii; Robert Ross; Peter H. Beckman

    2011-01-01

    Data centers' energy consumption has attracted global attention because of the fast growth of the information technology (IT) industry. Up to 60% of the energy consumed in a data center is used for cooling in wasteful ways as a result of lack of environmental information and overcompensated cooling systems. In this project, a wireless sensor network for data-enter environmental monitoring

  6. Monitoring of the stress state variations of the Southern California for the purpose of earthquake prediction

    NASA Astrophysics Data System (ADS)

    Gokhberg, M.; Garagash, I.; Bondur, V.; Steblov, G. M.

    2014-12-01

    The three-dimensional geomechanical model of Southern California was developed, including a mountain relief, fault tectonics and characteristic internal features such as the roof of the consolidated crust and Moho surface. The initial stress state of the model is governed by the gravitational forces and horizontal tectonic motions estimated from GPS observations. The analysis shows that the three-dimensional geomechanical models allows monitoring of the changes in the stress state during the seismic process in order to constrain the distribution of the future places with increasing seismic activity. This investigation demonstrates one of possible approach to monitor upcoming seismicity for the periods of days - weeks - months. Continuous analysis of the stress state was carried out during 2009-2014. Each new earthquake with ?~1 and above from USGS catalog was considered as the new defect of the Earth crust which has some definite size and causes redistribution of the stress state. Overall calculation technique was based on the single function of the Earth crust damage, recalculated each half month. As a result each half month in the upper crust layers and partially in the middle layers we revealed locations of the maximal values of the stress state parameters: elastic energy density, shear stress, proximity of the earth crust layers to their strength limit. All these parameters exhibit similar spatial and temporal distribution. How follows from observations all four strongest events with ? ~ 5.5-7.2 occurred in South California during the analyzed period were prefaced by the parameters anomalies in peculiar advance time of weeks-months in the vicinity of 10-50 km from the upcoming earthquake. After the event the stress state source disappeared. The figure shows migration of the maximums of the stress state variations gradients (parameter D) in the vicinity of the epicenter of the earthquake 04.04.2010 with ?=7.2 in the period of 01.01.2010-01.05.2010. Grey lines show the major faults. In the table the values are sampled by 2 weeks, "-" indicates time before the event, "+" indicates time after the event.

  7. The Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) Internship Program

    NASA Astrophysics Data System (ADS)

    Perry, S.; Jordan, T.

    2006-12-01

    Our undergraduate research program, SCEC/UseIT, an NSF Research Experience for Undergraduates site, provides software for earthquake researchers and educators, movies for outreach, and ways to strengthen the technical career pipeline. SCEC/UseIT motivates diverse undergraduates towards science and engineering careers through team-based research in the exciting field of earthquake information technology. UseIT provides the cross-training in computer science/information technology (CS/IT) and geoscience needed to make fundamental progress in earthquake system science. Our high and increasing participation of women and minority students is crucial given the nation"s precipitous enrollment declines in CS/IT undergraduate degree programs, especially among women. UseIT also casts a "wider, farther" recruitment net that targets scholars interested in creative work but not traditionally attracted to summer science internships. Since 2002, SCEC/UseIT has challenged 79 students in three dozen majors from as many schools with difficult, real-world problems that require collaborative, interdisciplinary solutions. Interns design and engineer open-source software, creating increasingly sophisticated visualization tools (see "SCEC-VDO," session IN11), which are employed by SCEC researchers, in new curricula at the University of Southern California, and by outreach specialists who make animated movies for the public and the media. SCEC-VDO would be a valuable tool for research-oriented professional development programs.

  8. Grand Canyon Monitoring and Research Center

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  9. The IPOC Creepmeter Array in N-Chile: Monitoring Slip Accumulation Triggered By Local or Remote Earthquakes

    NASA Astrophysics Data System (ADS)

    Victor, P.; Schurr, B.; Oncken, O.; Sobiesiak, M.; Gonzalez, G.

    2014-12-01

    The Atacama Fault System (AFS) is an active trench-parallel fault, located above the down-dip end of coupling of the north Chilean subduction zone. About 3 M=7 Earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. To investigate the current surface creep rate and to deduce the mode of strain accumulation, we deployed an array of 11 creepmeters along four branches of the AFS. This array monitors the interaction of earthquake activity on the subduction zone and a trench-parallel fault in the overriding forearc. The displacement across the fault is continuously monitored with 2 samples/min with a resolution of 1?m. Collocated seismometers record the seismicity at two of the creepmeters, whereas control of the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip recorded as well-defined steps caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. All of the stations showed a triggered displacement event 6-8 min after origin time of the main shock, at the same time as the arrival of the surface waves recorded at nearby IPOC stations. This points to a dynamic triggering process caused by transient stresses during passage of the surface wave. Investigation of seismic events with Magnitudes <6 show displacement events triggered during P and S wave passage, pointing to static as well as dynamic stress changes for proximal events. Analyzing the causative earthquakes we find that the most effective way to trigger displacement events on the AFS are deep (>100km) earthquakes on the subduction zone interface up to 300 km east of the array. Earthquakes located to the west of the AFS on the locked part of the subduction zone interface rarely trigger displacement events on the AFS. Only if such events are as large as the Pisagua Earthquake or its Mw= 7,6 aftershock, they trigger large displacement events.

  10. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  11. Federal Radiological Monitoring and Assessment Center Phased Response Operations

    SciTech Connect

    Riland, C.A.; Bowman, D.R.

    1999-06-30

    A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to the Lead Federal Agency (LFA) or state request when a major radiological emergency is anticipated of has occurred. The FRMAC becomes a coalition of federal off-site monitoring and assessment activities to assist the LFA, state(s), local, and tribal authorities. State, local, and tribal authorities are invited to co-locate and prioritize monitoring and assessment efforts in the FRMAC. The Department of Energy is tasked by the Federal Radiological Emergency Response Plan to coordinate the FRMAC.

  12. Data and Visualizations in the Southern California Earthquake Center's Fault Information System

    NASA Astrophysics Data System (ADS)

    Perry, S.

    2003-12-01

    The Southern California Earthquake Center's Fault Information System (FIS) provides a single point of access to fault-related data and models from multiple databases and datasets. The FIS is built of computer code, metadata and Web interfaces based on Web services technology, which enables queries and data interchange irrespective of computer software or platform. Currently we have working prototypes of programmatic and browser-based access. The first generation FIS may be searched and downloaded live, by automated processes, as well as interactively, by humans using a browser. Users get ascii data in plain text or encoded in XML. Via the Earthquake Information Technology (EIT) Interns (Juve and others, this meeting), we are also testing the effectiveness of querying multiple databases using a fault database ontology. For more than a decade, the California Geological Survey (CGS), SCEC, and the U. S. Geological Survey (USGS) have put considerable, shared resources into compiling and assessing published fault data, then providing the data on the Web. Several databases now exist, with different formats, datasets, purposes, and users, in various stages of completion. When fault databases were first envisioned, the full power of today's internet was not yet recognized, and the databases became the Web equivalents of review papers, where one could read an overview summation of a fault, then copy and paste pertinent data. Today, numerous researchers also require rapid queries and downloads of data. Consequently, the first components of the FIS are MySQL databases that deliver numeric values from earlier, text-based databases. Another essential service provided by the FIS is visualizations of fault representations such as those in SCEC's Community Fault Model. The long term goal is to provide a standardized, open-source, platform-independent visualization technique. Currently, the FIS makes available fault model viewing software for users with access to Matlab or Java3D. The latter is the interactive LA3D software of the SCEC EIT intern team, which will be demonstrated at this session.

  13. Results of seismological monitoring in the Cascade Range 1962-1989: earthquakes, eruptions, avalanches and other curiosities

    USGS Publications Warehouse

    Weaver, C.S.; Norris, R.D.; Jonientz-Trisler, C.

    1990-01-01

    Modern monitoring of seismic activity at Cascade Range volcanoes began at Longmire on Mount Rainier in 1958. Since then, there has been an expansion of the regional seismic networks in Washington, northern Oregon and northern California. Now, the Cascade Range from Lassen Peak to Mount Shasta in the south and Newberry Volcano to Mount Baker in the north is being monitored for earthquakes as small as magnitude 2.0, and many of the stratovolcanoes are monitored for non-earthquake seismic activity. This monitoring has yielded three major observations. First, tectonic earthquakes are concentrated in two segments of the Cascade Range between Mount Rainier and Mount Hood and between Mount Shasta and Lassen Peak, whereas little seismicity occurs between Mount Hood and Mount Shasta. Second, the volcanic activity and associated phenomena at Mount St. Helens have produced intense and widely varied seismicity. And third, at the northern stratovolcanoes, signals generated by surficial events such as debris flows, icequakes, steam emissions, rockfalls and icefalls are seismically recorded. Such records have been used to alert authorities of dangerous events in progress. -Authors

  14. Postseismic Deformation after the 1964 Great Alaskan Earthquake: Collaborative Research with Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Freymueller, Jeffrey T.

    1999-01-01

    The purpose of this project was to carry out GPS observations on the Kenai Peninsula, southern Alaska, in order to study the postseismic and contemporary deformation following the 1964 Alaska earthquake. All of the research supported in this grant was carried out in collaboration with Dr. Steven Cohen of Goddard Space Flight Center. The research funding from this grant primarily supported GPS fieldwork, along with the acquisition of computer equipment to allow analysis and modeling of the GPS data. A minor amount of salary support was provided by the PI, but the great majority of the salary support was provided by the Geophysical Institute. After the expiration of this grant, additional funding was obtained from the National Science Foundation to continue the work. This grant supported GPS field campaigns in August 1995, June 1996, May-June and September 1997, and May-June 1998. We initially began the work by surveying leveling benchmarks on the Kenai peninsula that had been surveyed after the 1964 earthquake. Changes in height from the 1964 leveling data to the 1995+ GPS data, corrected for the geoid-ellipsoid separation, give the total elevation change since the earthquake. Beginning in 1995, we also identified or established sites that were suitable for long-term surveying using GPS. In the subsequent annual GPS campaigns, we made regular measurements at these GPS marks, and steadily enhanced our set of points for which cumulative postseismic uplift data were available. From 4 years of Global Positioning System (GPS) measurements, we find significant spatial variations in present-day deformation between the eastern and western Kenai peninsula, Alaska. Sites in the eastern Kenai peninsula and Prince William Sound move to the NNW relative to North America, in the direction of Pacific-North America relative plate motion. Velocities decrease in magnitude from nearly the full plate rate in southern Prince William Sound to about 30 mm/yr at Seward and to about 5 mm/yr near Anchorage. In contrast, sites in the western Kenai peninsula move to the SW, in a nearly trenchward direction, with a velocity of about 20 mm/yr. The data are consistent with the shallow plate interface offshore and beneath the eastern Kenai and Prince William Sound being completely locked or nearly so, with elastic strain accumulation resulting in rapid motion in the direction of relative plate motion of sites in the overriding plate. The velocities of sites in the western Kenai, along strike to the southwest, are opposite in sign with those predicted from elastic strain accumulation. These data are incompatible with a significant locked region in this segment of the plate boundary. Trenchward velocities are found also for some sites in the Anchorage area. We interpret the trenchward velocities as being caused by a continuing postseismic transient from the 1964 great Alaska earthquake.

  15. Passive Seismic Monitoring of Natural and Induced Earthquakes: Case Studies, Future Directions and SocioEconomic Relevance

    Microsoft Academic Search

    Marco Bohnhoff; Georg Dresen; William L. Ellsworth; Hisao Ito

    \\u000a An important discovery in crustal mechanics has been that the Earths crust is commonly stressed close to failure, even in\\u000a tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes.\\u000a To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has\\u000a been successfully applied

  16. CURRICULUM VITAE: THEODORE KENNEDY Grand Canyon Monitoring and Research Center

    E-print Network

    Lovich, Jeffrey E.

    CURRICULUM VITAE: THEODORE KENNEDY Grand Canyon Monitoring and Research Center United States. PUBLICATIONS: Kennedy, T.A., J.C. Finlay, and S.E. Hobbie. Eradication of invasive saltcedar (Tamarix. Kennedy, T.A. and S.E. Hobbie. Salt cedar invasion (Tamarix ramosissima) alters organic matter dynamics

  17. Performance evaluation of an automatic system for earthquake monitoring in Italy

    Microsoft Academic Search

    S. Mazza; A. Bono; V. Lauciani; F. Mele; M. Olivieri; S. Pintore; M. Quintiliani; L. Scognamiglio

    2009-01-01

    On April 6th 2009, a magnitude Mw=6.3 earthquake occurred in L'Aquila, Central Italy, causing wide damages and killing almost 300 people. The mainshock was followed by thousands of aftershocks and occurred after some months of small but felt earthquakes. This important event, the largest since the 1980 Mw=6.9 Irpinia earthquake, and the huge amount of events occurred in a short

  18. Federal Radiological Monitoring and Assessment Center Overview of FRMAC Operations

    SciTech Connect

    NONE

    1998-03-01

    In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response Plan. This cooperative effort will ensure that all federal radiological assistance fully supports their efforts to protect the public. the mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of Federal Radiological Monitoring and Assessment Center (FRMAC) describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas.

  19. Comprehensive Nuclear-Test-Ban Treaty seismic monitoring: 2012 USNAS report and recent explosions, earthquakes, and other seismic sources

    SciTech Connect

    Richards, Paul G. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964 (United States)

    2014-05-09

    A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major study published in March 2012 by the US National Academy of Sciences.

  20. Combination of High Rate, Real-Time GNSS and Accelerometer Observations and Rapid Seismic Event Notification for Earthquake Early Warning and Volcano Monitoring with a Focus on the Pacific Rim.

    NASA Astrophysics Data System (ADS)

    Zimakov, L. G.; Passmore, P.; Raczka, J.; Alvarez, M.; Jackson, M.

    2014-12-01

    Scientific GNSS networks are moving towards a model of real-time data acquisition, epoch-by-epoch storage integrity, and on-board real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 sps) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies, volcano monitoring, and critical infrastructure monitoring applications. Our presentation will focus on the characteristics of GNSS, seismic, and strong motion sensors in high dynamic environments, including historic earthquakes in Southern California and the Pacific Rim, replicated on a shake table, over a range of displacements and frequencies. We will explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios. In addition we will discuss implementation of a Rapid Seismic Event Notification System that provides quick delivery of digital data from seismic stations to the acquisition and processing center and a full data integrity model for real-time earthquake notification that provides warning prior to significant ground shaking.

  1. Utilizing Changes in Repeating Earthquakes to Monitor Evolving Processes and Structure Before and During Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, Alicia

    Repeating earthquakes are two or more earthquakes that share the same source location and source mechanism, which results in the earthquakes having highly similar waveforms when recorded at a seismic instrument. Repeating earthquakes have been observed in a wide variety of environments: from fault systems (such as the San Andreas and Cascadia subduction zone), to hydrothermal areas and volcanoes. Volcano seismologists are particularly concerned with repeating earthquakes, as they have been observed at volcanoes along the entire range of eruptive style and are often a prominent feature of eruption seismicity. The behavior of repeating earthquakes sometimes changes with time, which possibly reflects subtle changes in the mechanism creating the earthquakes. In Chapter 1, we document an example of repeating earthquakes during the 2009 eruption of Redoubt volcano that became increasingly frequent with time, until they blended into harmonic tremor prior to several explosions. We interpreted the source of the earthquakes as stick-slip on a fault near the conduit that slipped increasingly often as the explosion neared in response to the build-up of pressure in the system. The waveforms of repeating earthquakes may also change, even if the behavior does not. We can quantify changes in waveform using the technique of coda wave interferometry to differentiate between changes in source and medium. In Chapters 2 and 3, we document subtle changes in the coda of repeating earthquakes related to small changes in the near-surface velocity structure at Mount St. Helens before and during its eruption in 2004. Velocity changes have been observed prior to several volcanic eruptions, are thought to occur in response to volumetric strain and the opening or closing of cracks in the subsurface. We compared continuous records of velocity change against other geophysical data, and found that velocities at Mount St. Helens change in response to snow loading, fluid saturation, shaking from large distant earthquakes, shallow pressurization, and possibly lava extrusion. Velocity changes at Mount St. Helens are a complex mix of many different effects, and other complementary data are required to interpret the signal.

  2. Monitoring Earthquake Fault Slip from Space: Model Implications for a High Precision, High Resolution Dedicated Gravity Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Sachs, M. K.; Tiampo, K. F.; Fernandez, J.; Turcotte, D. L.; Donnellan, A.; Heien, E. M.; Kellogg, L. H.

    2013-12-01

    Monitoring deformation produced by slip on earthquake faults can be carried out via GPS or InSAR measurements. Both of these types of observations have their advantages and disadvantages, in terms of cost, availability, and technical difficulty. It has been suggested that another method to accomplish many of the same objectives would be via a dedicated gravity mission. The GRACE mission has shown that it is possible to make detailed gravity measurements from space for climate dynamics and other purposes. An important question is what level of accuracy will be needed for precise estimation of fault slip in earthquakes of interest to researchers. To answer this question, we turn to numerical simulations of earthquake fault systems and use these to estimate gravity changes. Rundle (1978) considered the question of gravity changes from dilation sources and thrust faults, and found that gravity changes in these cases were free air anomaly (dilation) and Bouguer anomaly (thrust fault). Walsh and Rice (1978) computed these by a different method and found the same result. Okada (1991) listed gravity and potential Green functions for all possible sources for the general case. Hayes et al (2006) then took the Okada Greens functions and applied them computed from an earlier version of Virtual California earthquake fault system simulations. Those simulations only involved vertical strike slip faults. The current far more advanced generation of Virtual California simulations involves faults of any orientation, dip, and rake. In this talk, we discuss these computations and the implications they have for accuracies needed for a dedicated gravity monitoring mission. Preliminary results are in agreement with previous results from Hayes et al (2006). Computed gravity changes are in the range of tens to hundreds of microgals over distances of few to many tens of kilometers. These values are presumably well within the range of measurement for a modern gravity mission flown either at low altitudes, or via UAVs.

  3. Earthquake response

    NASA Astrophysics Data System (ADS)

    Simpson, David; Hough, Susan; Lerner-Lam, Arthur; Phinney, Robert

    The Loma Prieta earthquake in northern California gave geophysicists an unexpected chance to mobilize a team to take portable seismographs to an earthquake region. The magnitude-7.1 earthquake occurred Tuesday, October 17 at 5:04 P.M. Pacific Daylight Time. Less than 48 hours after the main shock, IRIS consortium seismologists from Lamont-Doherty Geological Observatory in Palisades, N.Y., were setting up new, portable equipment around San Francisco.The ability to move quickly to the earthquake area was an unanticipated bonus of two National Science Foundation programs: IRIS, the Incorporated Research Institutions for Seismology in Arlington, Va., and NCEER, the National Center for Earthquake Engineering Research in Buffalo, N.Y.

  4. Emergency radiological monitoring and analysis: Federal Radiological Monitoring and Assessment Center

    SciTech Connect

    Thome, D.J.

    1995-10-01

    The US Federal Radiological Emergency Response Plan (FRERP) provides the framework for integrating the various Federal agencies responding to a major radiological emergency. The FRERP authorizes the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC), which is established to coordinate all Federal agencies involved in the monitoring and assessment of the off-site radiological conditions in support of the impacted State(s) and the Lead Federal Agency (LFA). Within the FRMAC, the Monitoring and Analysis Division (M&A) is responsible for coordinating all FRMAC assets involved in conducting a comprehensive program of environmental monitoring, sampling, radioanalysis, and quality assurance. To assure consistency, completeness, and the quality of the data produced, a methodology and procedures manual is being developed. This paper discusses the structure, assets, and operations of the FRMAC M&A and the content and preparation of the manual.

  5. Emergency radiological monitoring and analysis United States Federal Radiological Monitoring and Assessment Center

    SciTech Connect

    Thome, D.J.

    1994-09-01

    The United States Federal Radiological Emergency Response Plan (FRERP) provides the framework for integrating the various Federal agencies responding to a major radiological emergency. Following a major radiological incident the FRERP authorizes the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC). The FRMAC is established to coordinate all Federal agencies involved in the monitoring and assessment of the off-site radiological conditions in support of the impacted states and the Lead Federal Agency (LFA). Within the FRMAC, the Monitoring and Analysis Division is responsible for coordinating all FRMAC assets involved in conducting a comprehensive program of environmental monitoring, sampling, radioanalysis and quality assurance. This program includes: (1) Aerial Radiological Monitoring - Fixed Wing and Helicopter, (2) Field Monitoring and Sampling, (3) Radioanalysis - Mobile and Fixed Laboratories, (4) Radiation Detection Instrumentation - Calibration and Maintenance, (5) Environmental Dosimetry, and (6) An integrated program of Quality Assurance. To assure consistency, completeness and the quality of the data produced, a methodology and procedures handbook is being developed. This paper discusses the structure, assets and operations of FRMAC monitoring and analysis and the content and preparation of this handbook.

  6. Federal Radiological Monitoring and Assessment Center: Phase I Response

    SciTech Connect

    C. Riland; D. R. Bowman; R. Lambert; R. Tighe

    1999-09-30

    A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to a Lead Federal Agency (LFA) or State request when a radiological emergency is anticipated or has occurred. The FRMAC coordinates the off-site monitoring, assessment, and analysis activities during such an emergency. The FRMAC response is divided into three phases. FRMAC Phase 1 is a rapid, initial-response capability that can interface with Federal or State officials and is designed for a quick response time and rapid radiological data collection and assessment. FRMAC Phase 1 products provide an initial characterization of the radiological situation and information on early health effects to officials responsible for making and implementing protective action decisions.

  7. Development a Heuristic Method to Locate and Allocate the Medical Centers to Minimize the Earthquake Relief Operation Time

    PubMed Central

    AGHAMOHAMMADI, Hossein; SAADI MESGARI, Mohammad; MOLAEI, Damoon; AGHAMOHAMMADI, Hasan

    2013-01-01

    Background Location-allocation is a combinatorial optimization problem, and is defined as Non deterministic Polynomial Hard (NP) hard optimization. Therefore, solution of such a problem should be shifted from exact to heuristic or Meta heuristic due to the complexity of the problem. Locating medical centers and allocating injuries of an earthquake to them has high importance in earthquake disaster management so that developing a proper method will reduce the time of relief operation and will consequently decrease the number of fatalities. Methods: This paper presents the development of a heuristic method based on two nested genetic algorithms to optimize this location allocation problem by using the abilities of Geographic Information System (GIS). In the proposed method, outer genetic algorithm is applied to the location part of the problem and inner genetic algorithm is used to optimize the resource allocation. Results: The final outcome of implemented method includes the spatial location of new required medical centers. The method also calculates that how many of the injuries at each demanding point should be taken to any of the existing and new medical centers as well. Conclusions: The results of proposed method showed high performance of designed structure to solve a capacitated location-allocation problem that may arise in a disaster situation when injured people has to be taken to medical centers in a reasonable time. PMID:23514709

  8. Real Earthquakes, Real Learning

    ERIC Educational Resources Information Center

    Schomburg, Aaron

    2003-01-01

    One teacher took her class on a year long earthquake expedition. The goal was to monitor the occurrences of real earthquakes during the year and mark their locations with push pins on a wall-sized world map in the hallway outside the science room. The purpose of the project was to create a detailed picture of the earthquakes that occurred

  9. USGS Earthquake Hazards Program: Current Earthquakes Maps

    NSDL National Science Digital Library

    The US Geological Survey's National Earthquake Information Center (NEIC) provides this Website for current earthquake maps (for a related USGS site of geologic hazards, see the September 18, 1998 Scout Report). Taken from the NEIC's Near-Real Time Earthquake Bulletin, maps of the world, hemispheres, continents, and sub-continents provide location and phase data for the most recent seismic events. More detailed maps and charts can be accessed by clicking on earthquake locations on the larger maps.

  10. Swiss Reinsurance Company Ltd, Switzerland John A. Blume Earthquake Engineering Center, Dept. of Civil & Environmental

    E-print Network

    Baker, Jack W.

    a methodology to establish capacity-design criteria for force-controlled elements in seismic force resisting is an adaptation of the load and resistance factor design (LRFD) methodology, where the load effects are de- fined and resistance factors) are determined consid- ering the variability in inelastic earthquake demands

  11. The Evolution of the Federal Monitoring and Assessment Center

    SciTech Connect

    NSTec Aerial Measurement System

    2012-07-31

    The Federal Radiological Monitoring and Assessment Center (FRMAC) is a federal emergency response asset whose assistance may be requested by the Department of Homeland Security (DHS), the Department of Defense (DoD), the Environmental Protection Agency (EPA), the Nuclear Regulatory Commission (NRC), and state and local agencies to respond to a nuclear or radiological incident. It is an interagency organization with representation from the Department of Energys National Nuclear Security Administration (DOE/NNSA), the Department of Defense (DoD), the Environmental Protection Agency (EPA), the Department of Health and Human Services (HHS), the Federal Bureau of Investigation (FBI), and other federal agencies. FRMAC, in its present form, was created in 1987 when the radiological support mission was assigned to the DOEs Nevada Operations Office by DOE Headquarters. The FRMAC asset, including its predecessor entities, was created, grew, and evolved to function as a response to radiological incidents. Radiological emergency response exercises showed the need for a coordinated approach to managing federal emergency monitoring and assessment activities. The mission of FRMAC is to coordinate and manage all federal radiological environmental monitoring and assessment activities during a nuclear or radiological incident within the United States in support of state,local, tribal governments, DHS, and the federal coordinating agency. Radiological emergency response professionals with the DOEs national laboratories support the Radiological Assistance Program (RAP), National Atmospheric Release Advisory Center (NARAC), the Aerial MeasuringSystem (AMS), and the Radiation Emergency Assistance Center/Training Site (REAC/TS). These teams support the FRMAC to provide: ? Atmospheric transport modeling ? Radiation monitoring ? Radiological analysis and data assessments ? Medical advice for radiation injuries In support of field operations, the FRMAC provides geographic information systems, communications, mechanical, electrical, logistics, and administrative support. The size of the FRMAC is tailored to the incident and is comprised of emergency response professionals drawn from across the federal government. State and local emergency response teams may also integrate their operations with FRMAC, but are not required to.

  12. Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras fault, California

    Microsoft Academic Search

    G. Poupinet; V. L. Ellsworth; J. Frechet

    1984-01-01

    We present a technique that greatly improves the precision in measuring temporal variations of crustal velocities using an earthquake doublet, or pair of microearthquakes that have nearly identical waveforms and the same hypocenter and magnitude but occur on different dates. We compute differences in arrival times between seismograms recorded at the same station in the frequency domain by cross correlation

  13. (abstract) GPS Monitoring of Crustal Deformation and the Earthquake Cycle in Costa Rica

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul R.

    1994-01-01

    This paper will discuss the objectives, approach, and anticipated results of a study of earthquakes in Costa Rica. GPS measurements will be taken and field surveys will be made. Assessments of seismic strain accumulation and post-seismic deformation will be made in an effort to understand the effect these processes have on regional tectonic models.

  14. Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2007

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.

    2008-01-01

    Between January 1 and December 31, 2007, AVO located 6,664 earthquakes of which 5,660 occurred within 20 kilometers of the 33 volcanoes monitored by the Alaska Volcano Observatory. Monitoring highlights in 2007 include: the eruption of Pavlof Volcano, volcanic-tectonic earthquake swarms at the Augustine, Illiamna, and Little Sitkin volcanic centers, and the cessation of episodes of unrest at Fourpeaked Mountain, Mount Veniaminof and the northern Atka Island volcanoes (Mount Kliuchef and Korovin Volcano). This catalog includes descriptions of : (1) locations of seismic instrumentation deployed during 2007; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2007; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2007.

  15. Federal Radiological Monitoring and Assessment Center Analytical Response

    SciTech Connect

    E.C. Nielsen

    2003-04-01

    The Federal Radiological Monitoring and Assessment Center (FRMAC) is authorized by the Federal Radiological Emergency Response Plan to coordinate all off-site radiological response assistance to state and local government s, in the event of a major radiological emergency in the United States. The FRMAC is established by the U.S. Department of Energy, National Nuclear Security Administration, to coordinate all Federal assets involved in conducting a comprehensive program of radiological environmental monitoring, sampling, radioanalysis, quality assurance, and dose assessment. During an emergency response, the initial analytical data is provided by portable field instrumentation. As incident responders scale up their response based on the seriousness of the incident, local analytical assets and mobile laboratories add additional capability and capacity. During the intermediate phase of the response, data quality objectives and measurement quality objectives are more rigorous. These higher objectives will require the use of larger laboratories, with greater capacity and enhanced capabilities. These labs may be geographically distant from the incident, which will increase sample management challenges. This paper addresses emergency radioanalytical capability and capacity and its utilization during FRMAC operations.

  16. The 2010 Mw 8.8 Maule megathrust earthquake of Central Chile, monitored by GPS.

    PubMed

    Vigny, C; Socquet, A; Peyrat, S; Ruegg, J-C; Mtois, M; Madariaga, R; Morvan, S; Lancieri, M; Lacassin, R; Campos, J; Carrizo, D; Bejar-Pizarro, M; Barrientos, S; Armijo, R; Aranda, C; Valderas-Bermejo, M-C; Ortega, I; Bondoux, F; Baize, S; Lyon-Caen, H; Pavez, A; Vilotte, J P; Bevis, M; Brooks, B; Smalley, R; Parra, H; Baez, J-C; Blanco, M; Cimbaro, S; Kendrick, E

    2011-06-17

    Large earthquakes produce crustal deformation that can be quantified by geodetic measurements, allowing for the determination of the slip distribution on the fault. We used data from Global Positioning System (GPS) networks in Central Chile to infer the static deformation and the kinematics of the 2010 moment magnitude (M(w)) 8.8 Maule megathrust earthquake. From elastic modeling, we found a total rupture length of ~500 kilometers where slip (up to 15 meters) concentrated on two main asperities situated on both sides of the epicenter. We found that rupture reached shallow depths, probably extending up to the trench. Resolvable afterslip occurred in regions of low coseismic slip. The low-frequency hypocenter is relocated 40 kilometers southwest of initial estimates. Rupture propagated bilaterally at about 3.1 kilometers per second, with possible but not fully resolved velocity variations. PMID:21527673

  17. Monitoring the Corniglio Landslide (Parma, Italy) before and after the M=5.4 earthquake of December 2008

    NASA Astrophysics Data System (ADS)

    Virdis, S.; Guastaldi, E.; Rindinella, A.; Disperati, L.; Ciulli, A.

    2009-04-01

    In this work we present the results of monitoring the Corniglio landslide (CL), a large landslide located in the Northern Apennines, by integrating traditional geomorphologic and geological surveys, digital photogrammetry, GPS and geostatistics. The CL spreads over an area of about 3 km x 1 km, close to Corniglio village (Parma, Italy). We propose a new kinematic framework for the CL as Deep-Seated Slope Gravitational Deformation (DSGSD). Surveys were carried out in six periods, in July and September 2006, March and August 2007, July 2008 (after a M=4 earthquake of 28 December 2007, 10 km far from Corniglio), and finally January 2009 (after several earthquakes occurred in the last days of December 2008, with magnitude from 4 to 5.4 and epicentres located less than 30 km far from Corniglio). Geological survey, interpretation of orthophotographs related to 1976, 1988, 1994, 1996, 1998, 2005, and satellite imagery related to 2003 were integrated for analysing the state of activity of landslide from 1976 to 2009, quantifying the ground displacement vectors. A RTK GPS survey was periodically carried out in order to locate the crown of the main landslide scarp and to identify reactivation of the CL after the earthquakes of the end of December 2008. Then, kriged multitemporal maps representing azimuth and module of ground displacement vectors were built, by evaluating the displacement with time of homologous ground targets on the multitemporal remotely sensed images. Measuring of ground deformations was performed on imagery related to the periods between December 1994 to July 1996, between October and November 1996, as well as the recurrent activity from October 1998 to 2003. In some sector of the main body of the landslide we estimated 70 m of total of ground displacement. The fieldwork results and photogeologic interpretation performed along the the Bratica valley, to the east of the CL, suggest that the occurrence of rigid behaviour lithotypes (Mt. Caio calcareous flysch of Upper Campanian - Maastrichtian and Oligocene Arenarie del Bratica) over both the plastic low - shear strength chaotic deposit of brownish clays ("Melange di Lago" formation, upper Campanian - middle Eocene) and marly clays ("Argille e Calcari" formation, middle Lutetian) represent a critical setting for the stability of the area. Furthermore, relevant east-west trending lineaments seem to be involved into slope movements. These evidences suggests that the CL may be part of a larger DSGSD also including the hill among the Bratica river, the CL main body and the Parma river. The earthquakes involving this area periodically reactivate the main body of landslide.

  18. Taiwan Nantou County earthquake 0327 Taiwan Nantou County earthquake

    E-print Network

    Taiwan Nantou County earthquake 20130327 1 #12;0327 Taiwan Nantou County earthquake Source, Intensity 5 #12;I II III IV V VI VII Intensity Shake map of the March 27 Earthquake The peak ground and Technology Center for Disaster Reduction (NCDR) #12;Earthquake Response and Evacuation are a Part of Students

  19. The Response of Academic Medical Centers to the 2010 Haiti Earthquake: The Mount Sinai School of Medicine Experience

    PubMed Central

    Ripp, Jonathan A.; Bork, Jacqueline; Koncicki, Holly; Asgary, Ramin

    2012-01-01

    On January 12, 2010, Haiti was struck by a 7.0 earthquake which left the country in a state of devastation. In the aftermath, there was an enormous relief effort in which academic medical centers (AMC) played an important role. We offer a retrospective on the AMC response through the Mount Sinai School of Medicine (MSSM) experience. Over the course of the year that followed the Earthquake, MSSM conducted five service trips in conjunction with two well-established groups which have provided service to the Haitian people for over 15 years. MSSM volunteer personnel included nurses, resident and attending physicians, and specialty fellows who provided expertise in critical care, emergency medicine, wound care, infectious diseases and chronic disease management of adults and children. Challenges faced included stressful and potentially hazardous working conditions, provision of care with limited resources and cultural and language barriers. The success of the MSSM response was due largely to the strength of its human resources and the relationship forged with effective relief organizations. These service missions fulfilled the institution's commitment to social responsibility and provided a valuable training opportunity in advocacy. For other AMCs seeking to respond in future emergencies, we suggest early identification of a partner with field experience, recruitment of administrative and faculty support across the institution, significant pre-departure orientation and utilization of volunteers to fundraise and advocate. Through this process, AMCs can play an important role in disaster response. PMID:22232447

  20. Research on geo-electrical resistivity observation system specially used for earthquake monitoring in China

    NASA Astrophysics Data System (ADS)

    Zhao, Jialiu; Wang, Lanwei; Qian, Jiadong

    2011-12-01

    This paper deals with the design and development of the observational system of geo-electrical resistivity on the basis of the demands for exploring the temporal variations of electrical properties of Earth media in the fixed points of the networks, which would be associated with the earthquake preparation. The observation system is characterized by the high accuracy in measurement, long term stability in operation and high level of rejection to the environmental interference. It consists of three main parts, configuration system measurement system, the calibration and inspection system.

  1. Seismic Monitoring and Post-Seismic Investigations following the 12 January 2010 Mw 7.0 Haiti Earthquake (Invited)

    NASA Astrophysics Data System (ADS)

    Altidor, J.; Dieuseul, A.; Ellsworth, W. L.; Given, D. D.; Hough, S. E.; Janvier, M. G.; Maharrey, J. Z.; Meremonte, M. E.; Mildor, B. S.; Prepetit, C.; Yong, A.

    2010-12-01

    We report on ongoing efforts to establish seismic monitoring in Haiti. Following the devastating M7.0 Haiti earthquake of 12 January 2010, the Bureau des Mines et de lEnergie worked with the U.S. Geological Survey and other scientific institutions to investigate the earthquake and to better assess hazard from future earthquakes. We deployed several types of portable instruments to record aftershocks: strong-motion instruments within Port-au-Prince to investigate the variability of shaking due to local geological conditions, and a combination of weak-motion, strong-motion, and broadband instruments around the Enriquillo-Plaintain Garden fault (EPGF), primarily to improve aftershock locations and to lower the magnitude threshold of aftershock recording. A total of twenty instruments were deployed, including eight RefTek instruments and nine strong-motion (K2) accelerometers deployed in Port-au-Prince in collaboration with the USGS, and three additional broadband stations deployed in the epicentral region in collaboration with the University of Nice. Five K2s have remained in operation in Port-au-Prince since late June; in late June two instruments were installed in Cap-Haitien and Port de Paix in northern Haiti to provide monitoring of the Septentrional fault. A permanent strong-motion (NetQuakes) instrument was deployed in late June at the US Embassy. Five additional NetQuakes instruments will be deployed by the BME in late 2010/early 2011. Addionally, the BME has collaborated with other scientific institutions, including Columbia University, the Institut Gophysique du Globe, University of Nice, the University of Texas at Austin, and Purdue University, to conduct other types of investigations. These studies include, for example, sampling of uplifted corals to establish a chronology of prior events in the region of the Enriquillo-Plantain Garden fault, surveys of geotechnical properties to develop microzonation maps of metropolitan Port-au-Prince, surveys of damage to public buildings, and a continuation of GPS surveys to measure co- and post-seismic displacements in collaboration with researchers from Purdue University. Preliminary analysis of aftershock recordings and damage surveys reveals that local site effects contributed significantly to the damage in some neighborhoods of Port-au-Prince. However, in general, bad construction practices and high population density were the primary causes of the extent of the damage and the high number of fatalities.

  2. Permeable Pavement Monitoring at the Edison Environmental Center Demonstration Site

    EPA Science Inventory

    The presentation covers the following monitoring objectives at the demonstration site at Edison, NJ: Hydrologic performance, water quality performance, urban heat island effects, maintenance effects and infiltration water parameters. There will be a side by side monitoring of ...

  3. Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2010

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2011-01-01

    Between January 1 and December 31, 2010, the Alaska Volcano Observatory (AVO) located 3,405 earthquakes, of which 2,846 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity in 2010 at these monitored volcanic centers. Seismograph subnetworks with severe outages in 2009 were repaired in 2010 resulting in three volcanic centers (Aniakchak, Korovin, and Veniaminof) being relisted in the formal list of monitored volcanoes. This catalog includes locations and statistics of the earthquakes located in 2010 with the station parameters, velocity models, and other files used to locate these earthquakes.

  4. ESTABLISHMENT OF THE WESTERN REGIONAL CENTER FOR BIOLOGICAL MONITORING AND ASSESSMENT OF FRESHWATER ECOSYSTEMS:

    EPA Science Inventory

    Initial Center Objectives 1. Coordinate the establishment of the Advisory Board for the newly formed Western Regional Center for Biological Monitoring and Assessment of Freshwater Ecosystems. The responsibility of the Advisory Board will be to set research, education, and outr...

  5. Space Monitoring Data Center at Moscow State University

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Bobrovnikov, Sergey; Barinova, Vera; Myagkova, Irina; Shugay, Yulia; Barinov, Oleg; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir

    Space monitoring data center of Moscow State University provides operational information on radiation state of the near-Earth space. Internet portal http://swx.sinp.msu.ru/ gives access to the actual data characterizing the level of solar activity, geomagnetic and radiation conditions in the magnetosphere and heliosphere in the real time mode. Operational data coming from space missions (ACE, GOES, ELECTRO-L1, Meteor-M1) at L1, LEO and GEO and from the Earths surface are used to represent geomagnetic and radiation state of near-Earth environment. On-line database of measurements is also maintained to allow quick comparison between current conditions and conditions experienced in the past. The models of space environment working in autonomous mode are used to generalize the information obtained from observations on the whole magnetosphere. Interactive applications and operational forecasting services are created on the base of these models. They automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons using data from LEO orbits. Special forecasting services give short-term forecast of SEP penetration to the Earth magnetosphere at low altitudes, as well as relativistic electron fluxes at GEO. Velocities of recurrent high speed solar wind streams on the Earth orbit are predicted with advance time of 3-4 days on the basis of automatic estimation of the coronal hole areas detected on the images of the Sun received from the SDO satellite. By means of neural network approach, Dst and Kp indices online forecasting 0.5-1.5 hours ahead, depending on solar wind and the interplanetary magnetic field, measured by ACE satellite, is carried out. Visualization system allows representing experimental and modeling data in 2D and 3D.

  6. Managing Multi-center Flow Cytometry Data for Immune Monitoring

    PubMed Central

    White, Scott; Laske, Karoline; Welters, Marij JP; Bidmon, Nicole; van der Burg, Sjoerd H; Britten, Cedrik M; Enzor, Jennifer; Staats, Janet; Weinhold, Kent J; Gouttefangeas, Ccile; Chan, Cliburn

    2014-01-01

    With the recent results of promising cancer vaccines and immunotherapy15, immune monitoring has become increasingly relevant for measuring treatment-induced effects on T cells, and an essential tool for shedding light on the mechanisms responsible for a successful treatment. Flow cytometry is the canonical multi-parameter assay for the fine characterization of single cells in solution, and is ubiquitously used in pre-clinical tumor immunology and in cancer immunotherapy trials. Current state-of-the-art polychromatic flow cytometry involves multi-step, multi-reagent assays followed by sample acquisition on sophisticated instruments capable of capturing up to 20 parameters per cell at a rate of tens of thousands of cells per second. Given the complexity of flow cytometry assays, reproducibility is a major concern, especially for multi-center studies. A promising approach for improving reproducibility is the use of automated analysis borrowing from statistics, machine learning and information visualization2123, as these methods directly address the subjectivity, operator-dependence, labor-intensive and low fidelity of manual analysis. However, it is quite time-consuming to investigate and test new automated analysis techniques on large data sets without some centralized information management system. For large-scale automated analysis to be practical, the presence of consistent and high-quality data linked to the raw FCS files is indispensable. In particular, the use of machine-readable standard vocabularies to characterize channel metadata is essential when constructing analytic pipelines to avoid errors in processing, analysis and interpretation of results. For automation, this high-quality metadata needs to be programmatically accessible, implying the need for a consistent Application Programming Interface (API). In this manuscript, we propose that upfront time spent normalizing flow cytometry data to conform to carefully designed data models enables automated analysis, potentially saving time in the long run. The ReFlow informatics framework was developed to address these data management challenges.

  7. USGS Earthquake Hazards Program

    NSDL National Science Digital Library

    This site serves as a portal to all US Geological Survey (USGS) earthquake information, both real-time and historic. At the site, visitors can find information on past, present, and predicted future earthquake activity; access a range of publications, maps, and fact sheets; use a number of earthquake education activities; link to various earthquake research centers; and read in-depth information on selected recent earthquakes worldwide. While the site does offer some detailed information, it is probably still best suited for K-12 students and general users.

  8. CONTINUOUS MONITORING FOR NITRATE IN USGS WATER SCIENCE CENTERS ACROSS THE U.S.

    E-print Network

    Torgersen, Christian

    1 CONTINUOUS MONITORING FOR NITRATE IN USGS WATER SCIENCE CENTERS ACROSS THE U.S. USGS scientists and its partners monitor nitrate continuously at nearly 80 locations. (Access WaterQualityWatch website-time monitoring approaches to allow for continuous nitrate information available in real-time. Currently, USGS

  9. Real time earthquake forecasting in Italy

    Microsoft Academic Search

    M. Murru; R. Console; G. Falcone

    2009-01-01

    We have applied an earthquake clustering epidemic model to real time data at the Italian Earthquake Data Center operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for short-term forecasting of moderate and large earthquakes in Italy. In this epidemic-type model every earthquake is regarded, at the same time, as being triggered by previous events and triggering following earthquakes.

  10. A cost effective wireless structural health monitoring network for buildings in earthquake zones

    NASA Astrophysics Data System (ADS)

    Pentaris, F. P.; Stonham, J.; Makris, J. P.

    2014-10-01

    The design, programming and implementation of a cost effective wireless structural health monitoring system (wSHMs) is presented, able to monitor the seismic and/or man-made acceleration in buildings. This system actually operates as a sensor network exploiting internet connections that commonly exist, aiming to monitor the structural health of the buildings being installed. Key-feature of wSHMs is that it can be implemented in Wide Area Network mode to cover many remote structures and buildings, on metropolitan scale. Acceleration data is able to send, in real time, from dozens of buildings of a broad metropolitan area, to a central database, where they are analyzed in order to depict possible structural damages or nonlinear characteristics and alert for non-appropriateness of specific structures.

  11. A model for earthquake acceleration monitoring with wireless sensor networks in a structure

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takahiro; Nakamura, Yugo; Jinno, Kousei; Matsubara, Taku; Uehara, Hideyuki

    2014-03-01

    Wireless sensor networks (WSNs) technologies have attracted much attention to collect damage information in a natural disaster. WSNs to monitor temperature or humidity usually collect data once in some seconds or some minutes. Since structural health monitoring (SHM), meanwhile, aims to make a diagnosis for the state of a structure based on detected acceleration, WSNs are a promising technology to collect acceleration data. One concern to employ WSNs in SHM is to detect phenomena at a high sampling rate under energy-aware condition. In this paper, we describe a model for seismic acceleration monitoring, configured with multi-layer networks: WSNs, a wireless distribution system (WDS) and a database server, where the WDS is mainly operating in a wireless local area network (WLAN). Examining the performance in the test bed for the monitoring system, the results showed the system was capable of collecting acceleration at a rate of 100 sampling per second (sps) even in the fashion of intermittent operation, and capable of storing data into a database. We also suggest that the method using intermittent operation with appropriate sampling rate is effective in providing a long time operation for the system by considering in the response motion of a structure.

  12. Monitoring VLF and LF signal as one of the possible methods of the earthquakes forecast building

    Microsoft Academic Search

    Natalia A. Kazakova; Anatoliy G. Kolesnik; Gennadiy I. Tulkov; Boris M. Shinkevich; S. V. Potovsky

    2003-01-01

    On the basis of the measuring-receiving complex of electromagnetic background monitoring developed in the Siberian Physical Technical Institute, the comparative analysis of continuous records of amplitude variation for VLF and LF-signals of three radio stations is resulted.

  13. Parkfield, California, earthquake prediction experiment

    Microsoft Academic Search

    W. H. Bakun; A. G. Lindh

    1985-01-01

    Five moderate (magnitude 6) earthquakes with similar features have occurred on the Parkfield section of the San Andreas fault in central California since 1857. The next moderate Parkfield earthquake is expected to occur before 1993. The Parkfield prediction experiment is designed to monitor the details of the final stages of the earthquake preparation process; observations and reports of seismicity and

  14. A summary of ground motion effects at SLAC (Stanford Linear Accelerator Center) resulting from the Oct 17th 1989 earthquake

    SciTech Connect

    Ruland, R.E.

    1990-08-01

    Ground motions resulting from the October 17th 1989 (Loma Prieta) earthquake are described and can be correlated with some geologic features of the SLAC site. Recent deformations of the linac are also related to slow motions observed over the past 20 years. Measured characteristics of the earthquake are listed. Some effects on machine components and detectors are noted. 18 refs., 16 figs.

  15. Earthquake Monitoring at 9 50'N on the East Pacific Rise RIDGE 2000 Integrated Studies Site

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.; Waldhauser, F.; Kim, W.

    2004-12-01

    In the fall of 2003 nine ocean bottom seismometers (OBSs) were deployed from the R/V Keldysh within the `bull's-eye' region of the R2K ISS at 9 49'N - 9 51'N on the East Pacific Rise as part of the Ridge 2000 Integrated Studies Site. These instruments were recovered using the R/V Atlantis in April 2004, and twelve more were deployed to take their place for a second year of monitoring (with three years total planned). During the turn-around cruise, two short temporary deployments (~4-8 days), of an additional 3 OBSs each, were accomplished to provide very dense instrument spacing (a few 100 m) around specific vents where in situ chemical monitoring was taking place (Luther et al.). Good data were collected on seven of the nine long deployment and six short deployment OBSs. We will present early results from analysis of these data including an estimate of the level of activity observed through-out the seven month period of the first deployment, and preliminary epicenters. Data will also be shown from the short temporary deployments. Early analysis of these data indicates an event rate of ~8 events per day for events where arrivals are apparent on at least three instruments, and may therefore expect to be located. Also notable in these data are pulses and prolonged periods of what appear to be tremor. This tremor is not generally coherent or synchronous from station to station and is therefore likely a very localized phenomena associated with hydrothermal fluid flow. The exceptionally well characterized and monitored seafloor at this site will allow for unprecedented correlation of observed seismic activity with local biology, geology, geochemical and hydrothermal monitoring. In addition, past and future detailed geophysical imaging of this area will provide an excellent context for observed faulting and fracturing.

  16. THE KASHMIR EARTHQUAKE OF OCTOBER 8, 2005 A QUICKLOOK REPORT

    E-print Network

    Masud, Arif

    THE KASHMIR EARTHQUAKE OF OCTOBER 8, 2005 A QUICKLOOK REPORT Ahmad Jan Durrani Amr Salah Elnashai Youssef M.A. Hashash Sung Jig Kim Arif Masud Mid-America Earthquake Center University of Illinois at Urbana-Champaign Mid-America Earthquake CenterMid-America Earthquake Center #12;2Mid-America Earthquake

  17. Real time of earthquakes prone areas by RST analysis of satellite TIR radiances: results of continuous monitoring over Italy and Turkey regions.

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Filizzola, C.; Genzano, N.; Lisi, M.; Paciello, R.; Pergola, N.

    2012-04-01

    Meteorological satellites offering global coverage, continuity of observations and long term time series (starting even 30 years ago) offer a unique possibility not only to learn from the past but also to guarantee continuous monitoring whereas other observation technologies are lacking because too expensive or (like in the case of earthquake precursor studies) or considered useless by decision-makers. Space-time fluctuations of Earth's emitted Thermal Infrared (TIR) radiation have been observed from satellite months to weeks before earthquakes occurrence. The general RST approach has been proposed (since 2001) in order to discriminate normal (i.e. related to the change of natural factor and/or observation conditions) TIR signal fluctuations from anomalous signal transient possibly associated to earthquake occurrence. Since then several earthquakes occurred in Europe, Africa and America have been studied by analyzing decades of satellite observations always using a validation/confutation approach in order to verify the presence/absence of anomalous space-time TIR transients in presence/absence of significant seismic activity. In the framework of PRE-EARTHQUAKES EU-FP7 Project (www.pre-earthquakes.org) , starting from October 2010 (still continuing) RST approach has been applied to MSG/SEVIRI data to generate TIR anomaly maps over Italian peninsula, continuously for all the midnight slots. Since September 2011 the same monitoring activity (still continuing) started for Turkey region. For the first time a similar analysis has been performed in real-time, systematically analyzing TIR anomaly maps in order to identify day by day possible significant (e.g. persistent in the space-time domain) thermal anomalies. During 2011 only in very few cases (1 in Italy in July and 2 in the Turkish region in September and November) the day by day analysis enhanced significant anomalies that in two cases were communicated to the other PRE-EARTHQUAKES partners asking for their attention. In this paper results of such analysis will be presented which seem to confirm results independently achieved (unfortunately without their knowledge) by other authors applying a similar approach to EOS/MODIS data over California region.

  18. Short Term Earthquake Forecasts at Koyna, India

    Microsoft Academic Search

    H. K. Gupta; D. Shashidhar; K. Mallika; N. Purnachandra Rao; D. Srinagesh; H. Satyanarayana; S. Saha; R. T. Naik

    2010-01-01

    At the Koyna reservoir in western India, beginning form August 2005, earthquake activity is monitored in real time, and successful short term forecasts have been made of M~ 4 earthquakes. The basis of these forecasts is the observation of nucleation that precedes such earthquakes. Here we report that a total of 29 earthquakes in the magnitude range of 3.5 to

  19. Response changes of some wells in the mainland subsurface fluid monitoring network of China, due to the September 21, 1999, Ms7.6 Chi-Chi Earthquake

    NASA Astrophysics Data System (ADS)

    Huang, Fu-qiong; Jian, Chun-lin; Tang, Yi; Xu, Gui-ming; Deng, Zhi-hui; Chi, Gong-cai

    2004-10-01

    About 60 hydrologic changes in response to the Chi-Chi earthquake with Ms7.6 on September 21, 1999, occurred in 52 wells, including groundwater level, temperature, discharge rate, well pressure and radon, etc., in the subsurface fluid monitoring network. These response changes were mainly co-seismic, but some pre- and post-earthquake changes occurred mainly within 5 days before and after the Chi-Chi earthquake. The response changes of different wells clustering in different tectonic areas showed different features. These changes are distributed in five areas named as A, B, C, D and E. The response changes in A area with short hypo-central distance (less than 550 km) were mainly pre-earthquake changes occurring more than 5 days before the event. Those in area B (in Huanan tectonic block) and C (in Huabei tectonic block) were mainly co-seismic changes. The hypo-central distance is about 1100-1280 and 800-1160 km, respectively. These changes were high-frequency water-level oscillations induced by seismic waves and accompanied by prominent and permanent water-level jumps and drops. There are also some post-seismic changes including discharge rate and water radon and well pressure changes in area C. Those in area D in the Yanshan tectonic block were mainly co-seismic and post-seismic changes including water level, water temperature, and water radon concentration, etc., showing prominent and permanent water-level jumps and drops and rising concentrations of water radon. The hypo-central distance is about 1750-2060 km. Those in Area E were mainly co-seismic changes showing prominent and permanent water-level jump. The hypo-central distance is about 1810-2120 km. Three moderate earthquakes occurred in area D and one strong earthquake occurred in area E 4 months after the Chi-Chi earthquake. The different features of the response changes might be caused by the changes of local hydrologic conditions (like permeability) induced by seismic waves. On the other hand, these response changes might indicate the near-critical conditions in the area where the response changes clustered. Such changes might be understood by the crustal buckling hypothesis. It is thought that the response changes might be a kind of precursor that implies elevated earthquake risk in the region.

  20. Investigation of Earthquakes in Turkey Using GIS

    NASA Astrophysics Data System (ADS)

    Garagon Dogru, A.; Ozener, H.

    2005-05-01

    There are three main active faults in Turkey: the North Anatolian Fault (NAF), the Northeast Anatolian Fault (NEAF) and the East Anatolian Fault (EAF). NAF is one of the most active seismic regions over the world, runs along the northern part of Turkey about 1500 km, from the Aegean to the Karliova triple junction in the eastern Turkey. It has been the source of numerous large earthquakes throughout the history. Geographic Information Systems (GIS) are increasingly used to visualize elements associated with seismicity. It enables an efficient interactive exploration and spatial analysis of attributed geographical data. The database of this study consists of the earthquakes that occurred in Turkey since 1970 and the active faults in Turkey, which may cause the huge earthquakes in the future. Seismicity data were obtained from National Earthquake Monitoring Center of Kandilli Observatory and Earthquake Research Institute of Bogazici University. These data were in a text file format with each epicenter identified by latitude and longitude coordinates. This file also includes date, time, depth, magnitude and location information of the earthquakes. These data were then projected onto the map of the faults using GIS software and knowing the projection of the fault data set. The databases and analysis results are visualized by using the GIS software.

  1. Hatfield Marine Science Center Dynamic Revetment Project DSL permit #45455-FP, Monitoring Report February, 2013

    EPA Science Inventory

    A Dynamic Revetment (gravel beach) was installed in November, 2011 on the shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) to mitigate erosion that threatened HMSC critical infrastructure. Shoreline topographic and biological monitoring was init...

  2. Hatfield Marine Science Center Dynamic Revetment Project DSL permit #45455-FP, Monitoring Report February 2012

    EPA Science Inventory

    A Dynamic Revetment (gravel beach) was installed in November, 2011 on the shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) to mitigate erosion that threatened HMSC critical infrastructure. Shoreline topographic and biological monitoring was init...

  3. Monitoring

    MedlinePLUS Videos and Cool Tools

    ... Tracker App Tip Sheets and Handouts AADE7 Self-Care Behaviors Healthy Eating Being Active Monitoring Taking Medication ... Legislative Action Center Federal Legislation State Legislation Affordable Care Act Information Advocacy Tools and Resources Affordable Care ...

  4. Earthquake Research Reveals New Information

    NSDL National Science Digital Library

    2001-01-01

    This brief, three-part report focuses on NSF-sponsored earthquake safety projects. The first section is on the Simmillennium Project, which investigates computer earthquake modeling techniques. The second section concentrates on hospitals, which are particularly difficult to retrofit for earthquake safety because of the sophisticated diagnostic and treatment systems they contain. The report also gives news of a safety engineering project for elementary school students created by the Pacific Earthquake Engineering Research Center.

  5. GREENHOUSE GAS (GHG) MITIGATION AND MONITORING TECHNOLOGY PERFORMANCE: ACTIVITIES OF THE GHG TECHNOLOGY VERIFICATION CENTER

    EPA Science Inventory

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the U.S. EPA's Office of Research and Development. It...

  6. The Parkfield, California, Earthquake Experiment

    NSDL National Science Digital Library

    This report decribes research being carried out in Parkfield, California whose purpose is to better understand the physics of earthquakes: what actually happens on the fault and in the surrounding region before, during and after an earthquake. Ultimately, scientists hope to better understand the earthquake process and, if possible, to provide a scientific basis for earthquake prediction. Topics include the scientific background for the experiment, including the tectonic setting at Parkfield, historical earthquake activity on this section of the San Andreas fault, the monitoring and data collecting activities currently being carried out, and plans for future research. Data are also available to view in real time and to download.

  7. Shear-wave splitting and earthquake forecasting

    Microsoft Academic Search

    Yuan Gao; Stuart Crampin

    2008-01-01

    Seismic shear-wave splitting (SWS) monitors the low-level deformation of fluid-saturated microcracked rock. We report evidence of systematic SWS changes, recorded above small earthquakes, monitoring the accumulation of stress before earthquakes that allows the time and magnitude of impending large earthquakes to be stress-forecast. The effects have been seen with hindsight before some 15 earthquakes ranging in magnitude from an M1.7

  8. The Global Seismographic Network The U.S. Geological Survey's National Earthquake Information Center reports on more than

    E-print Network

    Torgersen, Christian

    The Global Seismographic Network The U.S. Geological Survey's National Earthquake Information, and characterizing events, providing alerts, maps of strong ground shaking, and impact estimates of potential was formed in 1986 as a partnership involving the U.S. Geological Survey (USGS), the National Science

  9. Federal Radiological Monitoring and Assessment Center (FRMAC): Overview of FRMAC operations

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of this Management Overview of the Federal Radiological Monitoring and Assessment Center (FRMAC) is to explain the federal preparation for a radiological accident and to describe the subsequent response activities which provide radiological monitoring and assessment outside the boundaries of the monitoring which support the radiological accident site. In the event of a radiological accident, federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the accident scene under the umbrella of the Federal Radiological Emergency Response Plan (FRERP). This cooperative effort will assure the state(s) and the Lead Federal Agency (LFA) that all federal technical assistance is fully supporting their efforts to protect the public and will provide these monitoring results in a working data center for immediate use by the state(s) and LFA decision makers. The federal agencies do not relinquish their statutory responsibilities. However, the mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibility.

  10. GPS Monitoring of Surface Change During and Following the Fortuitous Occurrence of the M(sub w) = 7.3 Landers Earthquake in our Network

    NASA Technical Reports Server (NTRS)

    Miller, M. Meghan

    1998-01-01

    Accomplishments: (1) Continues GPS monitoring of surface change during and following the fortuitous occurrence of the M(sub w) = 7.3 Landers earthquake in our network, in order to characterize earthquake dynamics and accelerated activity of related faults as far as 100's of kilometers along strike. (2) Integrates the geodetic constraints into consistent kinematic descriptions of the deformation field that can in turn be used to characterize the processes that drive geodynamics, including seismic cycle dynamics. In 1991, we installed and occupied a high precision GPS geodetic network to measure transform-related deformation that is partitioned from the Pacific - North America plate boundary northeastward through the Mojave Desert, via the Eastern California shear zone to the Walker Lane. The onset of the M(sub w) = 7.3 June 28, 1992, Landers, California, earthquake sequence within this network poses unique opportunities for continued monitoring of regional surface deformation related to the culmination of a major seismic cycle, characterization of the dynamic behavior of continental lithosphere during the seismic sequence, and post-seismic transient deformation. During the last year, we have reprocessed all three previous epochs for which JPL fiducial free point positioning products available and are queued for the remaining needed products, completed two field campaigns monitoring approx. 20 sites (October 1995 and September 1996), begun modeling by development of a finite element mesh based on network station locations, and developed manuscripts dealing with both the Landers-related transient deformation at the latitude of Lone Pine and the velocity field of the whole experiment. We are currently deploying a 1997 observation campaign (June 1997). We use GPS geodetic studies to characterize deformation in the Mojave Desert region and related structural domains to the north, and geophysical modeling of lithospheric behavior. The modeling is constrained by our existing and continued GPS measurements, which will provide much needed data on far-field strain accumulation across the region and on the deformational response of continental lithosphere during and following a large earthquake, forming the basis for kinematic and dynamic modeling of secular and seismic-cycle deformation. GPS geodesy affords both regional coverage and high precision that uniquely bear on these problems.

  11. The Canadian National Calibration Reference Center for Bioassay and in-vivo Monitoring: A program summary

    SciTech Connect

    Kramer, G.H.; Zamora, M.L. [Radiation Protection Bureau, Ontario (Canada)

    1994-08-01

    The Canadian National Calibration Reference Center for Bioassay and in-vivo Monitoring is part of the Radiation Protection Bureau, Department of Health. The Reference Center operates a variety of different intercomparison programs that are designed to confirm that workplace monitoring results are accurate and provide the necessary external verification required by the Canadian regulators. The programs administered by the Reference Center currently include urinalysis intercomparisons for tritium, natural uranium, and {sup 14}C, and in-vivo programs for whole-body, thorax, and thyroid monitoring. The benefits of the intercomparison programs to the participants are discussed by example. Future programs that are planned include dual spiked urine sample which contain both tritium and {sup 14}C and the in-vivo measurement of {sup 99m}Tc. 18 refs., 1 fig., 2 tabs.

  12. The WHO Programme for International Drug Monitoring, its database, and the technical support of the Uppsala Monitoring Center.

    PubMed

    Lindquist, M; Edwards, I R

    2001-05-01

    We describe the development of an international adverse reaction database. The operational responsibility for technical aspects of international drug monitoring are run by the Uppsala Monitoring Center (UMC). The system is based on interchange of adverse reaction information between national drug monitoring centers in 60 countries. Collectively these centers provide more than 150,000 individual reports annually of reactions suspected of being drug induced. The cumulative database constructed from these reports now comprises over 2 million records. Compatibility of different data collection systems that need to communicate with each other has been achieved through harmonization rather than standardization. The design of the new system was driven by the needs of existing and prospective users in terms of data fields and functionality. The data set required in the original WHO case reports form was the lowest common denominator consistent with being useful for signal generation and evaluation. The new database has an unlimited number of data fields. The WHO system relies on information being transferred, stored, and retrieved in a timely and secure way. Through the use of sophisticated exchange server technology, the Internet can be used as a transport medium for data and document transfer with guaranteed security and client authentication. PMID:11361210

  13. Near real-time model to monitor SST anomalies related to undersea earthquakes and SW monsoon phenomena from TRMM-AQUA satellite data

    NASA Astrophysics Data System (ADS)

    Chakravarty, Subhas

    Near real-time interactive computer model has been developed to extract daily mean global Sea Surface Temperature (SST) values of 1440x720 pixels, each one covering 0.25 x0.25 lat-long area and SST anomalies from longer period means pertaining to any required oceanic grid size of interest. The core MATLAB code uses the daily binary files (3-day aggregate values) of global SST data (derived from TRMM/TMI-AQUA/AMSRE satellite sensors) available on near real-time basis through the REMSS/NASA website and converts these SSTs into global/regional maps and displays as well as digitised text data tables for further analysis. As demonstrated applications of the model, the SST data for the period between 2003-2009 has been utilised to study (a) SST anomalies before, during and after the occurrence of two great under-sea earthquakes of 26 December 2004 and 28 March 2005 near the western coast of Sumatra and (b) variation of pixel numbers with SSTs between 27-31 C within (i) Nino 4 region and (ii) a broader western Pacific region (say Nino-BP) affected by ENSO events before (January-May) and during (June-October) Monsoon onset/progress. Preliminary results of these studies have been published (Chakravarty, The Open Oceanography Journal, 2009 and Chakravarty, IEEE Xplore, 2009). The results of the SST-earthquake analysis indicate a small but consistent warming of 0.2-0.3 C in the 2 x2 grid area near the earthquake epicentre starting a week earlier to a week later for the event of 26 December 2004. The changes observed in SST for the second earthquake is also indicated but with less clarity owing to the mixing of land and ocean surfaces and hence less number of SST pixels available within the 2 x 2 grid area near the corresponding epicen-tre. Similar analysis for the same period of non-earthquake years did not show any such SST anomalies. These results have far reaching implications to use SST as a possible parameter to be monitored for signalling occurrence of impending under-sea earthquakes sometimes leading to tsunamis. The results of the analysis for the ENSO-Monsoon rainfall relation show that the time series of SST distribution within the Nino 4 or Nino-BP regions with larger number of pixels with SSTs between 27-28 C is generally a favourable condition for normal rainfall condi-tion. While both Nino 4 and Nino-BP provide similar results, Nino-BP region is found to be a more sensitive region for such assessment of monitoring the trend of SW monsoon rainfall over India. This result has the potential to be used in the prognosis of overall rainfall pattern of the monsoon season at weekly intervals which may serve as vital information for Indian agricul-tural production. While simple geophysical models are able to explain the above correlations, more detailed modelling of the plate tectonics and heat fluxes (for undersea earthquakes) and ocean-cloud interaction/dynamics (for ENSO and Monsoon rainfall pattern) would need to be undertaken.

  14. Monitoring of Ground Water Level of Industrial and Civil Centers Using of High-performance Technology of Electromagnetic Scanning

    NASA Astrophysics Data System (ADS)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.; Babushkin, S. M.

    The materials of longstanding theoretical and experimental researches of a Geophys- ical Survey SB RAS on study of geophysical condition in large industrial centers of Siberia, evaluation of seismic risk of territories and prediction of origin of emergency situation of a natural and man-caused character, connected to seismic actions from earthquakes, processes of water logging of territories, etc. are presented in the paper. A rise of a ground water level in cities results in flooding of basements and engineering locations, swamping of territory, etc. As a result a seismicity of territory is increased, soil bearing capacity (including subsidence of a ground) and, as consequence, a pre- mature strain of buildings and underground communications is observed, the corro- sion processes in underground constructions intensify, ecological conditions become worse. Regional underflooding of cities is observed, when the feed of ground waters is increased owing to leakages from water services lines (water pipes and sewer systems, heat supplying), filtration from ponds and building foundation pits, watering of green plantings, etc. A monitoring of the engineering communications and geodynamic pro- cesses for large industrial centers of Siberia is carried out by the Geophysical Survey SB RAS during a series of years using the modern high-performance technology of electromagnetic scanning. This technology, based on study of a high-frequency space- time induction and use of intermediate frequency band, where the distribution of an electromagnetic wave has a diffusing-wave character, is rather effective at study of watering zones, determination of a level of ground and man-caused waters. Using higher density of space-time recording of a field and frequency, beginning from sev- eral megahertz, the offered mode has incomparably higher resolving capacity, than other modern electrometric methods of study of a section top.

  15. ZEM JAKO TEPELN STROJ Earthquake Effects -Ground Shaking

    E-print Network

    Cerveny, Vlastislav

    ;Earthquake Effects - Ground Shaking KGO-TV News ABC-7 Loma Prieta, CA 1989 #12;Earthquake Effects - Ground: National Geophysical Data Center #12;Earthquake Effects - Fires KGO-TV News ABC-7 Loma Prieta, CA 1989 #12

  16. Testing hypotheses of earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.

    2003-12-01

    We present a relatively straightforward likelihood method for testing those earthquake hypotheses that can be stated as vectors of earthquake rate density in defined bins of area, magnitude, and time. We illustrate the method as it will be applied to the Regional Earthquake Likelihood Models (RELM) project of the Southern California Earthquake Center (SCEC). Several earthquake forecast models are being developed as part of this project, and additional contributed forecasts are welcome. Various models are based on fault geometry and slip rates, seismicity, geodetic strain, and stress interactions. We would test models in pairs, requiring that both forecasts in a pair be defined over the same set of bins. Thus we offer a standard "menu" of bins and ground rules to encourage standardization. One menu category includes five-year forecasts of magnitude 5.0 and larger. Forecasts would be in the form of a vector of yearly earthquake rates on a 0.05 degree grid at the beginning of the test. Focal mechanism forecasts, when available, would be also be archived and used in the tests. The five-year forecast category may be appropriate for testing hypotheses of stress shadows from large earthquakes. Interim progress will be evaluated yearly, but final conclusions would be made on the basis of cumulative five-year performance. The second category includes forecasts of earthquakes above magnitude 4.0 on a 0.05 degree grid, evaluated and renewed daily. Final evaluation would be based on cumulative performance over five years. Other types of forecasts with different magnitude, space, and time sampling are welcome and will be tested against other models with shared characteristics. All earthquakes would be counted, and no attempt made to separate foreshocks, main shocks, and aftershocks. Earthquakes would be considered as point sources located at the hypocenter. For each pair of forecasts, we plan to compute alpha, the probability that the first would be wrongly rejected in favor of the second, and beta, the probability that the second would be wrongly rejected in favor of the first. Computing alpha and beta requires knowing the theoretical distribution of likelihood scores under each hypothesis, which we will estimate by simulations. Each forecast is given equal status; there is no "null hypothesis" which would be accepted by default. Forecasts and test results would be archived and posted on the RELM web site. The same methods can be applied to any region with adequate monitoring and sufficient earthquakes. If fewer than ten events are forecasted, the likelihood tests may not give definitive results. The tests do force certain requirements on the forecast models. Because the tests are based on absolute rates, stress models must be explicit about how stress increments affect past seismicity rates. Aftershocks of triggered events must be accounted for. Furthermore, the tests are sensitive to magnitude, so forecast models must specify the magnitude distribution of triggered events. Models should account for probable errors in magnitude and location by appropriate smoothing of the probabilities, as the tests will be "cold hearted:" near misses won't count.

  17. Real-time earthquake data feasible

    Microsoft Academic Search

    Susan Bush

    1991-01-01

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring

  18. Triggering of volcanic activity by large earthquakes

    NASA Astrophysics Data System (ADS)

    Avouris, D.; Carn, S. A.; Waite, G. P.

    2011-12-01

    Statistical analysis of temporal relationships between large earthquakes and volcanic eruptions suggests seismic waves may trigger eruptions even over great distances, although the causative mechanism is not well constrained. In this study the relationship between large earthquakes and subtle changes in volcanic activity was investigated in order to gain greater insight into the relationship between dynamic stress and volcanic response. Daily measurements from the Ozone Monitoring Instrument (OMI), onboard the Aura satellite, provide constraints on volcanic sulfur dioxide (SO2) emission rates as a measure of subtle changes in activity. An SO2 timeseries was produced from OMI data for thirteen persistently active volcanoes. Seismic surface-wave amplitudes were modeled from the source mechanisms of moment magnitude (Mw) ?7 earthquakes, and peak dynamic stress (PDS) was calculated. The SO2 timeseries for each volcano was used to calculate a baseline threshold for comparison with post-earthquake emission. Delay times for an SO2 response following each earthquake at each volcano were analyzed and compared to a random catalog. The delay time analysis was inconclusive. However, an analysis based on the occurrence of large earthquakes showed a response at most volcanoes. Using the PDS calculations as a filtering criterion for the earthquake catalog, the SO2 mass for each volcano was analyzed in 28-day windows centered on the earthquake origin time. If the average SO2 mass after the earthquake was greater than an arbitrary percentage of pre-earthquake mass, we identified the volcano as having a response to the event. This window analysis provided insight on what type of volcanic activity is more susceptible to triggering by dynamic stress. The volcanoes with lava lakes included in this study, Ambrym, Gaua, Villarrica, and Erta Ale, showed a clear response to dynamic stress while the volcanoes with lava domes, Merapi, Semeru, and Bagana showed no response at all. Perhaps dynamic stress triggers release of accumulated gasses or gas nucleation events , which is more likely to produce an observable degassing response in less viscous magmas, or in a magmatic system that facilitates the equilibrium needed to maintain a lava lake.

  19. Program Evaluation of Remote Heart Failure Monitoring: Healthcare Utilization Analysis in a Rural Regional Medical Center

    PubMed Central

    Keberlein, Pamela; Sorenson, Gigi; Mohler, Sailor; Tye, Blake; Ramirez, A. Susana; Carroll, Mark

    2015-01-01

    Abstract Background: Remote monitoring for heart failure (HF) has had mixed and heterogeneous effects across studies, necessitating further evaluation of remote monitoring systems within specific healthcare systems and their patient populations. Care Beyond Walls and Wires, a wireless remote monitoring program to facilitate patient and care team co-management of HF patients, served by a rural regional medical center, provided the opportunity to evaluate the effects of this program on healthcare utilization. Materials and Methods: Fifty HF patients admitted to Flagstaff Medical Center (Flagstaff, AZ) participated in the project. Many of these patients lived in underserved and rural communities, including Native American reservations. Enrolled patients received mobile, broadband-enabled remote monitoring devices. A matched cohort was identified for comparison. Results: HF patients enrolled in this program showed substantial and statistically significant reductions in healthcare utilization during the 6 months following enrollment, and these reductions were significantly greater compared with those who declined to participate but not when compared with a matched cohort. Conclusions: The findings from this project indicate that a remote HF monitoring program can be successfully implemented in a rural, underserved area. Reductions in healthcare utilization were observed among program participants, but reductions were also observed among a matched cohort, illustrating the need for rigorous assessment of the effects of HF remote monitoring programs in healthcare systems. PMID:25025239

  20. Appraising the Early-est earthquake monitoring system for tsunami alerting at the Italian candidate Tsunami Service Provider

    NASA Astrophysics Data System (ADS)

    Bernardi, F.; Lomax, A.; Michelini, A.; Lauciani, V.; Piatanesi, A.; Lorito, S.

    2015-04-01

    In this paper we present the procedure for earthquake location and characterization implemented in the Italian candidate Tsunami Service Provider at INGV in Roma. Following the ICG/NEAMTWS guidelines, the first tsunami warning messages are based only on seismic information, i.e. epicenter location, hypocenter depth and magnitude, which are automatically computed by the software Early-est. Early-est is a package for rapid location and seismic/tsunamigenic characterization of earthquakes. The Early-est software package operates on offline-event or continuous-realtime seismic waveform data to perform trace processing and picking, and, at a regular report interval, phase association, event detection, hypocenter location, and event characterization. In this paper we present the earthquake parameters computed by Early-est from the beginning of 2012 till the end of December 2014 at global scale for events with magnitude M ≥ 5.5, and the detection timeline. The earthquake parameters computed automatically by Early-est are compared with reference manually revised/verified catalogs. From our analysis the epicenter location and hypocenter depth parameters do not differ significantly from the values in the reference catalogs. The epicenter coordinates generally differ less than 20 ∓ 20 km from the reference epicenter coordinates; focal depths are less well constrained and differ generally less than 0 ∓ 30 km. Early-est also provides mb, Mwp and Mwpd magnitude estimations. mb magnitudes are preferred for events with Mwp ≲ 5.8, while Mwpd are valid for events with Mwp ≳ 7.2. The magnitude mb show wide differences with respect to the reference catalogs, we thus apply a linear correction mbcorr = mb 0.52 + 2.46, such correction results into ?mb ? 0.0 ∓ 0.2 uncertainty with respect the reference catalogs. As expected the Mwp show distance dependency. Mwp values at stations with epicentral distance ? ≲ 30 are significantly overestimated with respect the CMT-global solutions, whereas Mwp values at stations with epicentral distance ? ≳ 90 are slightly underestimated. We thus apply a 3rd degree polynomial distance correction. After applying the distance correction, the Mwp provided by Early-est differs from CMT-global catalog values of about ? Mwp ? 0.0 ∓ 0.2. Early-est continuously acquires time series data and updates the earthquake source parameters. Our analysis shows that the epicenter coordinates and the magnitude values converge rather quickly toward the final values. Generally we can provide robust and reliable earthquake source parameters to compile tsunami warning message within less than about 15 min after event origin time.

  1. Earthquake Myths

    NSDL National Science Digital Library

    This site serves to belie several popular myths about earthquakes. Students will learn that most earthquakes do not occur in the early morning and one cannot be swallowed up by an earthquake. In addition, there is no such thing as earthquake weather and California is not falling into the ocean. On the more practical side, students can learn that good building codes do not insure good buildings, it is safer under a table than in a doorway during an earthquake, and most people do not panic during an earthquake.

  2. Lessons learned from the introduction of autonomous monitoring to the EUVE science operations center

    NASA Technical Reports Server (NTRS)

    Lewis, M.; Girouard, F.; Kronberg, F.; Ringrose, P.; Abedini, A.; Biroscak, D.; Morgan, T.; Malina, R. F.

    1995-01-01

    The University of California at Berkeley's (UCB) Center for Extreme Ultraviolet Astrophysics (CEA), in conjunction with NASA's Ames Research Center (ARC), has implemented an autonomous monitoring system in the Extreme Ultraviolet Explorer (EUVE) science operations center (ESOC). The implementation was driven by a need to reduce operations costs and has allowed the ESOC to move from continuous, three-shift, human-tended monitoring of the science payload to a one-shift operation in which the off shifts are monitored by an autonomous anomaly detection system. This system includes Eworks, an artificial intelligence (AI) payload telemetry monitoring package based on RTworks, and Epage, an automatic paging system to notify ESOC personnel of detected anomalies. In this age of shrinking NASA budgets, the lessons learned on the EUVE project are useful to other NASA missions looking for ways to reduce their operations budgets. The process of knowledge capture, from the payload controllers for implementation in an expert system, is directly applicable to any mission considering a transition to autonomous monitoring in their control center. The collaboration with ARC demonstrates how a project with limited programming resources can expand the breadth of its goals without incurring the high cost of hiring additional, dedicated programmers. This dispersal of expertise across NASA centers allows future missions to easily access experts for collaborative efforts of their own. Even the criterion used to choose an expert system has widespread impacts on the implementation, including the completion time and the final cost. In this paper we discuss, from inception to completion, the areas where our experiences in moving from three shifts to one shift may offer insights for other NASA missions.

  3. Chi-Chi Earthquake-caused Landslide: grey prediction model for pioneer vegetation recovery monitored by satellite images

    Microsoft Academic Search

    Chi-Ming Yang; Jan-Chang Chen; Lan-Lin Peng; Jr-Syu Yang; Chang-Hung Chou

    2002-01-01

    We applied multiple SPOT satellite remote sensing data to evaluate the recovery rate of vegetation in the Chiu-Feng-Er mountain landslide area after the Chi-Chi Earthquake. The grey theory was also applied to predict the time required for pioneer vegetation to completely reclaim the non-rock landslide area, and this was compared with the results of linear, exponential, and polynomial regression analysis.

  4. Tracing back ionospheric perturbations detected by GPS monitoring in the epicenter area after large earthquakes to their source mechanisms.

    NASA Astrophysics Data System (ADS)

    Artru, J.; Ji, C.; Ducic, V.; Kanamori, H.; Lognonn, P.; Murakami, M.

    2004-12-01

    Dense Global Positioning System (GPS) continuous networks allow to detect and image small-scale perturbations of the ionosphere, through measurement of the Total Electron Content (TEC) along satellite-receiver rays. We present observations of ionospheric perturbations observed above the epicenter area during two large earthquakes, the M=8.2 Tokachi-Oki earthquake near Hokkaido (09/22/2003) and the M=6.5 San Simeon earthquake in Central California. In both cases significant variations of TEC have been observed, propagating up to several hundred kilometers from the epicenter, and starting approximately 15 minutes after the event. Very similar in nature, but with different amplitudes, those two observations can be interpreted as the signature in the ionosphere of an acoustic wave induced in the atmosphere by the ground displacement. Indeed, we compared those signals with results from finite-source inversions performed for those two events. Most similarities and differences between those two cases can be traced back to the seismic sources.

  5. Earthquake Quiz

    NSDL National Science Digital Library

    This web site provides a short, interactive, four-question quiz on earthquakes focusing the the largest earthquake in both the world and in recent US history, preparedness, and the development of seismic instrumentation.

  6. Short term earthquake forecasts at Koyna, India

    Microsoft Academic Search

    Harsh Gupta; D. Shashidhar; K. Mallika; N. Purnachandra Rao; D. Srinagesh; H. V. S. Satyanarayana; Satish Saha; R. T. B. Naik

    2011-01-01

    Earthquake activity is monitored in real time at the Koyna reservoir in western India, beginning from August 2005 and successful\\u000a short term forecasts have been made of M ? 4 earthquakes. The basis of these forecasts is the observation of nucleation that\\u000a precedes such earthquakes. Here we report that a total of 29 earthquakes in the magnitude range of 3.5

  7. Federal Radiological Monitoring and Assessment Center advanced part phase response actions

    SciTech Connect

    Hurley, B.

    1997-02-01

    Federal Radiological Monitoring and Assessment Center (FRMAC) response actions are carried out in Advance Party and Main Party phases of deployment. Response activities are initiated by a FRMAC Home Team prior to and during Advance Party deployment, with Home Team support continuing until the FRMAC Main Party is fully deployed. Upon arrival at the incident scene, the Advance Party establishes communications with other federal, state, and local response organizations, Following an Advance Party Meeting with these response organizations, FRMAC begins formulation of an initial monitoring and sampling plan, in coordination with the jurisdictional state and the Lead Federal Agency, and initiates detailed logistical arrangements for Main Party deployment and operations.

  8. Virtual Earthquake

    NSDL National Science Digital Library

    Gary Novak

    This interactive feature shows students how an earthquake epicenter is located and how Richter magnitude is determined. They will use recordings of seismograms from three stations (provided in the activity), learn the difference between the focus and epicenter of an earthquake, and that the magnitude of an earthquake is an estimate of the amount of energy that it has released.

  9. Earthquake prediction

    Microsoft Academic Search

    Tsuneji Rikitake

    1968-01-01

    Earthquake prediction research programmes in a number of countries are reviewed together with achievements in various disciplines involved in earthquake prediction research, i.e., geodetic work, tide gauge observation, continuous observation of crustal movement, seismic activity and seismological method, seismic wave velocity, geotectonic work, geomagnetic and geoelectric work and laboratory work and its application in the field. Present-day development of earthquake

  10. Earthquakes Rock!

    NSDL National Science Digital Library

    Integrated Teaching and Learning Program,

    Students learn the two main methods to measure earthquakes, the Richter Scale and the Mercalli Scale. They make a model of a seismographa measuring device that records an earthquake on a seismogram. Students also investigate which structural designs are most likely to survive an earthquake. And, they illustrate an informational guide to the Mercalli Scale.

  11. Seismotectonics and Seismic Structure of the Alboran Sea, Western Mediterranean - Constraints from Local Earthquake Monitoring and Seismic Refraction and Wide-Angle Profiling

    NASA Astrophysics Data System (ADS)

    Leuchters, W.; Grevemeyer, I.; Ranero, C. R.; Villasenor, A.; Booth-Rea, G.; Gallart, J.

    2011-12-01

    The Alboran Basin is located in the western-most Mediterranean Sea and is surrounded by the Gibraltar-Betic and Rif orogenic arc. Geological evidence suggests that the most important phase of formation started in the early-to-mid-Miocene. Currently two conflicting models are discussed for its formation: One model proposes contractive tectonics producing strike-slip faults and folds with sedimentation occurring in synclinal basins and in regions of subsidiary extension in transtensional fault segments. A second model proposes slab roll back that caused contraction at the front of the arc and coeval overriding plate bending and extension and associated arc magmatism. However, this phase has been partially masked by late Miocene to present contractive structures, caused by the convergence of Africa and Iberia. Two German/Spanish collaborative research projects provided excellent new seismological and seismic data. Onshore/offshore earthquake monitoring received a wealth of local earthquake data to study seismotectonics and yielded the average 1D velocity structure of the Alboran/Betics/Rif domain. In the Alboran Basin most earthquakes occur below 20 km along a diffuse fault zone, crossing the Alboran Sea from the Moroccan to the Spanish coast. Further, earthquakes along the northern portion of the Alboran Ridge show thrust mechanisms and compression roughly normal to the vector of plate convergence between Africa and Iberia. A 250 km long seismic refraction and wide-angle profile was acquired coincident with the existing multi-channel seismic (MCS) ESCI-Alb2 line using the German research vessel Meteor. Shots fired with a 64-litre airgun array were recorded on 24 ocean-bottom seismometer (OBS) and ocean-bottom hydrophone (OBH) stations. The profile run roughly along the axis of the basin, circa 65 km off the coast of Morocco, north of the Alboran Ridge. It continues in an ENE direction to end north of the Algeria coast. Using seismic tomography we mapped the crustal and upper mantle structure of the eastern Alboran Sea and the westernmost Algero-Balearic basin. The easternmost part of the profile indicates crust in the order of 5-5.5 km, possibly created by back-arc spreading. Towards the west, crust thickens to 11-13 km, and crustal velocities tend to be lower than in the eastern domain, falling into the range of continental crust. However, a number of intrusive bodies could be identified, favouring the interpretation that the crust was strongly modified by arc magnetism in the mid-Miocene.

  12. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Tu, R.; Wang, R.; Ge, M.; Walter, T. R.; Ramatschi, M.; Milkereit, C.; Bindi, D.; Dahm, T.

    2013-08-01

    detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (microelectromechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analyzed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers.

  13. Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility

    SciTech Connect

    NONE

    1995-10-01

    This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE`s proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) of approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP.

  14. The meteorological monitoring system for the Kennedy Space Center/Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Dianic, Allan V.

    1994-01-01

    The Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS) are involved in many weather-sensitive operations. Manned and unmanned vehicle launches, which occur several times each year, are obvious example of operations whose success and safety are dependent upon favorable meteorological conditions. Other operations involving NASA, Air Force, and contractor personnel, including daily operations to maintain facilities, refurbish launch structures, prepare vehicles for launch, and handle hazardous materials, are less publicized but are no less weather-sensitive. The Meteorological Monitoring System (MMS) is a computer network which acquires, processes, disseminates, and monitors near real-time and forecast meteorological information to assist operational personnel and weather forecasters with the task of minimizing the risk to personnel, materials, and the surrounding population. CLIPS has been integrated into the MMS to provide quality control analysis and data monitoring. This paper describes aspects of the MMS relevant to CLIPS including requirements, actual implementation details, and results of performance testing.

  15. Environmental monitoring and research at the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Hall, C. R.; Hinkle, C. R.; Knott, W. M.; Summerfield, B. R.

    1992-01-01

    The Biomedical Operations and Research Office at the NASA John F. Kennedy Space Center has been supporting environmental monitoring and research since the mid-1970s. Program elements include monitoring of baseline conditions to document natural variability in the ecosystem, assessments of operations and construction of new facilities, and ecological research focusing on wildlife habitat associations. Information management is centered around development of a computerized geographic information system that incorporates remote sensing and digital image processing technologies along with traditional relational data base management capabilities. The proactive program is one in which the initiative is to anticipate potential environmental concerns before they occur and, by utilizing in-house expertise, develop impact minimization or mitigation strategies to reduce environmental risk.

  16. The earth's absolute gravitation potential function in the prospect 'gravitational potential metering' of geological objects and earthquake centers

    E-print Network

    Aleksandr Fridrikson; Marina Kasatochkina

    2009-04-08

    The direct problem of the detection of the Earth's absolute gravitation potential maximum value (MGP) was solved. The inverse problem finding of the Earth maximum gravitation (where there is a maximum of gravitation field intensity and a potential function has a 'bending point') with the help of MGP was solved as well. The obtained results show that the revealed Earth maximum gravitation coincides quite strictly with the cseismic D" layer on the border of the inner and outer (liquid) core. The validity of the method of an absolute gravitation potential detection by the equal- potential velocity was proved as 'gravitation potential measurement' or 'Vs-gravity method'. The prospects of this method for detecting of low-power or distant geological objects with abnormal density and the possible earthquakes with low density was shown.

  17. Lecture Demonstrations on Earthquakes for K-12 Teachers and Students

    NASA Astrophysics Data System (ADS)

    Dry, M. D.; Patterson, G. L.

    2005-12-01

    Lecture Demonstrations on Earthquakes for K-12 Teachers and Students Since 1975, the Center for Earthquake Research and Information, (CERI), at The University of Memphis, has strived to satisfy its information transfer directives through diverse education and outreach efforts, providing technical and non-technical earthquake information to the general public, K-16 teachers and students, professional organizations, and state and federal organizations via all forms of written and electronic communication. <> Through these education and outreach efforts, CERI tries to increase earthquake hazard awareness to help limit future losses. <>In the past three years, education programs have reached over 20,000 K-16 students and teachers through in-service training workshops for teachers and earthquake/earth science lecture demonstrations for students. The presentations include an hour-long lecture demonstration featuring graphics and an informal question and answer format. Graphics used include seismic hazard maps, damage photos, plate tectonic maps, layers of the Earth, and more, all adapted for the audience. Throughout this presentation, manipulatives such as a Slinky, Silly Putty, a foam Earth with depth and temperature features, and Popsicle sticks are used to demonstrate seismic waves, the elasticity of the Earth, the Earth's layers and their features, and the brittleness of the crust. Toward the end, a demonstration featuring a portable shake table with a dollhouse mounted on it is used to illustrate earthquake-shaking effects. This presentation is also taken to schools when they are unable to visit CERI. Following this presentation, groups are then taken to the Public Earthquake Resource Center at CERI, a space featuring nine displays, seven of which are interactive. The interactive displays include a shake table and building blocks, a trench with paleoliquefaction features, computers with web access to seismology sites, a liquefaction model, an oscilloscope and attached geophone, a touch-screen monitor, and various manipulatives. CERI is also developing suitcase kits and activities for teachers to borrow and use in their classrooms. The suitcase kits include activities based on state learning standards, such as layers of the Earth and plate tectonics. Items included in the suitcase modules include a shake table and dollhouse, an oscilloscope and geophone, a resonance model, a Slinky, Silly putty, Popsicle sticks, and other items. Almost all of the activities feature a lecture demonstration component. These projects would not be possible without leveraged funding from the Mid-America Earthquake Center (MAEC) and the Center for Earthquake Research and Information, with additional funding from the National Earthquake Hazards Reduction Program (NEHRP).

  18. Prospective Tests of Southern California Earthquake Forecasts

    Microsoft Academic Search

    D. D. Jackson; D. Schorlemmer; M. Gerstenberger; Y. Y. Kagan; A. Helmstetter; S. Wiemer; N. Field

    2004-01-01

    We are testing earthquake forecast models prospectively using likelihood ratios. Several investigators have developed such models as part of the Southern California Earthquake Center's project called Regional Earthquake Likelihood Models (RELM). Various models are based on fault geometry and slip rates, seismicity, geodetic strain, and stress interactions. Here we describe the testing procedure and present preliminary results. Forecasts are expressed

  19. Earthquake Plotting

    NSDL National Science Digital Library

    Mr. Perry

    2008-11-18

    Do earthquakes tend to happen in certain locations on Earth? Are there predictable patterns to where earthquakes will occur? The Earth is divided into large tectonic plates that move on a ductile layer of material in the mantle (the Asthenosphere). Earthquakes tend to occur along the boundaries where these plates either collide with one another or try to slide one past the other. Today you will plot on a map the location of every earthquake with a magnitude greater than 4.0 within the past week to see if any patterns appear. You will need Dynamic Crust lab #3 (Earthquake Plotting) from your lab books and your Earth Science Reference Tables. Vocabulary: Use the following website to find definitions to the vocabulary terms in the lab. Geology Dictionary Procedures: Go to this site to find a list of \\"Latest Earthquakes Magnitude 2.5 or Greater in the United States ...

  20. Earthquake Plotting

    NSDL National Science Digital Library

    Mr. Kio

    2008-12-06

    Do earthquakes tend to happen in certain locations on Earth? Are there predictable patterns to where earthquakes will occur? The Earth is divided into large tectonic plates that move on a ductile layer of material in the mantle (the Asthenosphere). Earthquakes tend to occur along the boundaries where these plates either collide with one another or try to slide one past the other. Today you will plot on a map the location of every earthquake with a magnitude greater than 4.0 within the past week to see if any patterns appear. You will need Dynamic Crust lab #3 (Earthquake Plotting) from your lab books and your Earth Science Reference Tables. Vocabulary: Use the following website to find definitions to the vocabulary terms in the lab. Geology Dictionary Procedures: Go to this site to find a list of \\"Latest Earthquakes Magnitude 2.5 or Greater in the United States ...

  1. Communication infrastructure in a contact center for home care monitoring of chronic disease patients.

    PubMed

    Maglaveras, N; Gogou, G; Chouvarda, I; Koutkias, V; Lekka, I; Giaglis, G; Adamidis, D; Karvounis, C; Louridas, G; Goulis, D; Avramidis, A; Balas, E A

    2002-01-01

    The Citizen Health System (CHS) is a European Commission (EC) funded project in the field of IST for Health. Its main goal is to develop a generic contact center which in its pilot stage can be used in the monitoring, treatment and management of chronically ill patients at home in Greece, Spain and Germany. Such contact centers, which can use any type of communication technology, and can provide timely and preventive prompting to the patients are envisaged in the future to evolve into well-being contact centers providing services to all citizens. In this paper, we present the structure of such a generic contact center and in particular the telecommunication infrastructure, the communication protocols and procedures, and finally the educational modules that are integrated into this contact center. We discuss the procedures followed for two target groups of patients where two randomized control clinical trials are under way, namely diabetic patients with obesity problems, and congestive heart failure patients. We present examples of the communication means between the contact center medical personnel and these patients, and elaborate on the educational issues involved. PMID:12463870

  2. Efficient testing of earthquake forecasting models

    Microsoft Academic Search

    David A. Rhoades; Danijel Schorlemmer; Matthew C. Gerstenberger; Annemarie Christophersen; J. Douglas Zechar; Masajiro Imoto

    2011-01-01

    Computationally efficient alternatives are proposed to the likelihood-based tests employed by the Collaboratory for the Study\\u000a of Earthquake Predictability for assessing the performance of earthquake likelihood models in the earthquake forecast testing\\u000a centers. For the conditional L-test, which tests the consistency of the earthquake catalogue with a model, an exact test using convolutions of distributions\\u000a is available when the number

  3. Earthquake prediction, societal implications

    NASA Astrophysics Data System (ADS)

    Aki, Keiiti

    1995-07-01

    "If I were a brilliant scientist, I would be working on earthquake prediction." This is a statement from a Los Angeles radio talk show I heard just after the Northridge earthquake of January 17, 1994. Five weeks later, at a monthly meeting of the Southern California Earthquake Center (SCEC), where more than two hundred scientists and engineers gathered to exchange notes on the earthquake, a distinguished French geologist who works on earthquake faults in China envied me for working now in southern California. This place is like northeastern China 20 years ago, when high seismicity and research activities led to the successful prediction of the Haicheng earthquake of February 4, 1975 with magnitude 7.3. A difficult question still haunting us [Aki, 1989] is whether the Haicheng prediction was founded on the physical reality of precursory phenomena or on the wishful thinking of observers subjected to the political pressure which encouraged precursor reporting. It is, however, true that a successful life-saving prediction like the Haicheng prediction can only be carried out by the coordinated efforts of decision makers and physical scientists.

  4. Earthquake Research Institute, University of Tokyo

    NSDL National Science Digital Library

    The Earthquake Research Institute (ERI) at the University of Tokyo acts as the primary association for fundamental geophysical research in Japan and oversees the Earthquake Predication Center and the Volcanic Eruption Prediction Program. The website offers the latest earthquake and volcano news. While a few of the research projects are described only in Japanese, visitors can learn about the Ocean Hemisphere Network Project, Special Project for Earthquake Disaster Mitigation in Urban Areas, and the Marine Seismic Survey. The web site offers links to numerous earthquake databases and to the Institute's many research centers.

  5. Federal Radiological Monitoring and Assessment Center (FRMAC) overview of FRMAC operations

    SciTech Connect

    NONE

    1996-02-01

    In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response plan (FRERP). This cooperative effort will assure the designated Lead Federal Agency (LFA) and the state(s) that all federal radiological assistance fully supports their efforts to protect the public. The mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of the Federal Radiological Monitoring and Assessment Center (FRMAC) Operations describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas. These off-site areas may include one or more affected states.

  6. Satellite Geodetic Constraints On Earthquake Processes: Implications of the 1999 Turkish Earthquakes for Fault Mechanics and Seismic Hazards on the San Andreas Fault

    NASA Technical Reports Server (NTRS)

    Reilinger, Robert

    2005-01-01

    Our principal activities during the initial phase of this project include: 1) Continued monitoring of postseismic deformation for the 1999 Izmit and Duzce, Turkey earthquakes from repeated GPS survey measurements and expansion of the Marmara Continuous GPS Network (MAGNET), 2) Establishing three North Anatolian fault crossing profiles (10 sitedprofile) at locations that experienced major surface-fault earthquakes at different times in the past to examine strain accumulation as a function of time in the earthquake cycle (2004), 3) Repeat observations of selected sites in the fault-crossing profiles (2005), 4) Repeat surveys of the Marmara GPS network to continue to monitor postseismic deformation, 5) Refining block models for the Marmara Sea seismic gap area to better understand earthquake hazards in the Greater Istanbul area, 6) Continuing development of models for afterslip and distributed viscoelastic deformation for the earthquake cycle. We are keeping close contact with MIT colleagues (Brad Hager, and Eric Hetland) who are developing models for S. California and for the earthquake cycle in general (Hetland, 2006). In addition, our Turkish partners at the Marmara Research Center have undertaken repeat, micro-gravity measurements at the MAGNET sites and have provided us estimates of gravity change during the period 2003 - 2005.

  7. Ghana's experience in the establishment of a national data center

    NASA Astrophysics Data System (ADS)

    Ekua, Amponsah Paulina; Yaw, Serfor-Armah

    2012-08-01

    The government of Ghana in a bilateral agreement with the Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) has established a National Data Center in Ghana with the aim of monitoring the testing of nuclear explosions. Seismic, hydroacoustic, radionuclide and infrasound methods are used for the monitoring. The data center was commissioned on 3 February, 2010 at the Ghana Atomic Energy Commission. At present Ghana does not have any operational, centralised data (seismic, hydroacoustic, radionuclide and infrasound) acquisition system with the capability of accessing data from other international stations. Hence, the need of setting up the National Data Center which would enable us constantly monitor, manage and coordinate both natural and man-made seismic activities in the country and around the globe, upload data to the International Data Center (IDC) as well as receive and use International Monitoring System (IMS) data and IDC products for treaty verification and compliance. Apart from these, the center also accesses and analyzes seismic waveforms relevant to its needs from the International Data Center; makes data available to its stakeholder institutions for earthquake disaster mitigation; reports on all aspects of disasters related to earthquake to the relevant government agencies that deal with disasters; makes recommendations to the government of Ghana on earthquake safety measures; provides information to assist government institutions to develop appropriate land and building policies. The center in collaboration with stakeholder agencies periodically organises public lectures on earthquake disaster risk mitigation.

  8. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  9. Earthquake Hazards.

    ERIC Educational Resources Information Center

    Donovan, Neville

    1979-01-01

    Provides a survey and a review of earthquake activity and global tectonics from the advancement of the theory of continental drift to the present. Topics include: an identification of the major seismic regions of the earth, seismic measurement techniques, seismic design criteria for buildings, and the prediction of earthquakes. (BT)

  10. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents, and small-scale maps, as well as links to slideshows of additional photographs and Google Street View scenes. Buildings in Anchorage that were severely damaged, sites of major landslides, and locations of post-earthquake engineering responses are highlighted. The web map can be used online as a virtual tour or in a physical self-guided tour using a web-enabled Global Positioning System (GPS) device. This publication serves the purpose of committing most of the content of the web map to a single distributable document. As such, some of the content differs from the online version.

  11. A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center

    NASA Astrophysics Data System (ADS)

    Wang, Lui; Fletcher, Malise

    1993-03-01

    The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.

  12. A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Fletcher, Malise

    1993-01-01

    The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.

  13. Rapid and robust characterization of the earthquake source for tsunami early-warning

    NASA Astrophysics Data System (ADS)

    Lomax, Anthony; Michelini, Alberto; Bernardi, Fabrizio; Lauciani, Valentino

    2015-04-01

    Effective tsunami early-warning after an earthquake is difficult when the distances and tsunami travel-times between earthquake/tsunami source regions and coast lines at risk are small, especially since the density of seismic and other monitoring stations is very low in most regions of risk. For tsunami warning worldwide, seismic monitoring and analysis currently provide the majority of information available within the first tens of minutes after an earthquake. This information is used for direct tsunami hazard assessment, and as basic input to real-time, tsunami hazard modeling. It is thus crucial that key earthquake parameters are determined as rapidly and reliably as possible, in a probabilistic, time-evolving manner, along with full uncertainties. Early-est (EArthquake Rapid Location sYstem with EStimation of Tsunamigenesis) is the module for rapid earthquake detection, location and analysis at the INGV tsunami alert center (CAT, "Centro di Allerta Tsunami"), part of the Italian, candidate Tsunami Watch Provider. Here we present the information produced by Early-est within the first 10 min after an earthquake to characterize the location, depth, magnitude, mechanism and tsunami potential of an earthquake. We discuss key algorithms in Early-est that produce fully automatic, robust results and their uncertainties in the shortest possible time using sparse observations. For example, a broadband picker and a robust, probabilistic, global-search detector/associator/locator component of Early-est can detect and locate a seismic event with as few as 4 to 5 P onset observations. We also discuss how these algorithms may be further evolved to provide even earlier and more robust results. Finally, we illustrate how the real-time, evolutionary and probabilistic earthquake information produced by Early-est, along with prior and non-seismic information and later seismic information (e.g., full-waveform moment-tensors), may be used within time-evolving, decision and modeling systems for tsunami early warning.

  14. The Deep Impact Network Experiment Operations Center Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan

    2009-01-01

    The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.

  15. Earthquakes and the urban environment. Volume II

    SciTech Connect

    Berlin, G.L.

    1980-01-01

    Because of the complex nature of earthquake effects, current investigations encompass many disciplines, including those of both the physical and social sciences. Research activities center on such diversified topics as earthquake mechanics, earthquake prediction and control, the prompt and accurate detection of tsunamis (seismic sea waves), earthquake-resistant construction, seismic building code improvements, land use zoning, earthquake risk and hazard perception, disaster preparedness, plus the study of the concerns and fears of people who have experienced the effects of an earthquake. This monograph attempts to amalgamate recent research input comprising the vivifying components of urban seismology at a level useful to those having an interest in the earthquake and its effects upon an urban environment. Volume 2 contains chapters on earthquake prediction, control, building design and building response.

  16. Anthropogenic Triggering of Large Earthquakes

    PubMed Central

    Mulargia, Francesco; Bizzarri, Andrea

    2014-01-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1?MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 110?MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor foreshocks, since the induction may occur with a delay up to several years. PMID:25156190

  17. Anthropogenic Triggering of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1 MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10 MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor ``foreshocks'', since the induction may occur with a delay up to several years.

  18. Anthropogenic triggering of large earthquakes.

    PubMed

    Mulargia, Francesco; Bizzarri, Andrea

    2014-01-01

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures < 0.1?MPa. Comparing this with the deviatoric stresses at the depth of crustal hypocenters, which are of the order of 1-10?MPa, we find that injecting in the subsoil fluids at the pressures typical of oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years. PMID:25156190

  19. Earthquake Effects and Experiences

    NSDL National Science Digital Library

    This portion of the United States Geological Survey's (USGS) frequently-asked-questions feature on earthquakes addresses what individuals might actually experience during an earthquake. Topics include earthquake motion (rolling or shaking), earthquake effects (ground shaking, surface faulting, ground failure, etc.), earthquake magnitude, what an earthquake feels like, and others. There are also links to additional resources on earthquake effects and experiences.

  20. Broadband characteristics of earthquakes recorded during a dome-building eruption at Mount St. Helens, Washington, between October 2004 and May 2005: Chapter 5 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Horton, Stephen P.; Norris, Robert D.; Moran, Seth C.

    2008-01-01

    From October 2004 to May 2005, the Center for Earthquake Research and Information of the University of Memphis operated two to six broadband seismometers within 5 to 20 km of Mount St. Helens to help monitor recent seismic and volcanic activity. Approximately 57,000 earthquakes identified during the 7-month deployment had a normal magnitude distribution with a mean magnitude of 1.78 and a standard deviation of 0.24 magnitude units. Both the mode and range of earthquake magnitude and the rate of activity varied during the deployment. We examined the time domain and spectral characteristics of two classes of events seen during dome building. These include volcano-tectonic earthquakes and lower-frequency events. Lower-frequency events are further classified into hybrid earthquakes, low-frequency earthquakes, and long-duration volcanic tremor. Hybrid and low-frequency earthquakes showed a continuum of characteristics that varied systematically with time. A progressive loss of high-frequency seismic energy occurred in earthquakes as magma approached and eventually reached the surface. The spectral shape of large and small earthquakes occurring within days of each other did not vary with magnitude. Volcanic tremor events and lower-frequency earthquakes displayed consistent spectral peaks, although higher frequencies were more favorably excited during tremor than earthquakes.

  1. The long term monitoring analyses of a grid structure for swimming and Diving Hall in Qingdao Sports Center

    Microsoft Academic Search

    Jigang Zhang; Jinwei Sun; Zhaoguo Zhu

    2011-01-01

    Swimming and Diving Hall in Qingdao Sports Center is the 11th National Games match field for swimming and diving. In view of complex grid structure for big-bay steel roof structure of Qingdao Sports Center Swimming and Diving Hall, construction is very difficult and not easy to control. The grid structure is monitored wirelessly by using chordal strain gauges, static level

  2. Earthquake Prediction

    NSDL National Science Digital Library

    Earthquake prediction has never been an exact science or an easy job. In 1923, the debate between two Japanese seismologists, Akitune Imamura, and his superior at the University of Tokyo, Professor Omori, over whether a great earthquake was imminent, ended in tragedy as Omori prevailed and no preparations were made for the disaster. In this video segment, a contemporary seismologist tells the story of these two pioneers and describes the events of the Kanto Earthquake, in which 140,000 people were killed. The segment is two minutes fifty-seven seconds in length. A background essay and discussion questions are included.

  3. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  4. Parkfield: Earthquake Prediction: A Brief History

    NSDL National Science Digital Library

    This report describes recent efforts at earthquake prediction, focusing on the modern era beginning in the mid- to late 1970's. Topics include a history of prediction efforts, the measurement of physical parameters in areas where earthquakes occur, and the development of a model upon which predictions could be based. The efforts centered around Parkfield, California, whose well-known seismic history allowed the development of a 'characteristic Parkfield earthquake' model and led to a formal prediction that a moderate-size earthquake would occur at Parkfield between 1985 and 1993. However, the anticipated earthquake did not occur until September 2004.

  5. Putting Down Roots in Earthquake Country

    NSDL National Science Digital Library

    Putting Down Roots in Earthquake Country is an informational Web site provided by the Southern California Earthquake Center. Citizens can learn about the San Andreas fault, other California faults, how to build and maintain an earthquake safe house, how to survive an earthquake, how they are measured and what the magnitude means, common earthquake myths, and much more. As a safety and an educational site, this unique resource does a good job of presenting a lot of information, illustrations, and graphics in an easy-to-follow format that helps explain this powerful and potentially deadly natural occurrence.

  6. Earthquake Precursors in Thermal Infrared Data

    NASA Astrophysics Data System (ADS)

    Alqassim, S. S.; Vanderbilt, V. C.

    2010-12-01

    As part of an agreement between NASA and the Arab Youth Venture Foundation (AYVF), three engineering students from the United Arab Emirates (UAE) participated in a 10-week experiential learning program this summer. This educational program is managed by the NASA Ames Research Center Office of Education and Public Outreach and is administered by the Education Associates Program (EAP). One of the research projects under this program tested the hypothesis that signals emitted by the Earths surface prior to the occurrence of an earthquake, including thermal infrared (TIR) emissions, can be detected through appropriate analysis of data collected by the Moderate-resolution Imaging Spectroradiometer (MODIS) satellite sensors. After applying a set of preprocessing algorithms to the satellite data, we analyzed MODIS images showing the TIR emitted by a ground area in the days prior to an eventual earthquake. We used computing tools and software, such as MATLAB and ENVI, to isolate these pre-seismic signals from the background noise. The development of a technique to monitor pre-seismic signals holds promise in finding a method to predict earthquakes.

  7. Pain Reduction and Financial Incentives to Improve Glucose Monitoring Adherence in a Community Health Center

    PubMed Central

    Huntsman, Mary Ann H.; Olivares, Faith J.; Tran, Christina P.; Billimek, John; Hui, Elliot E.

    2014-01-01

    Self-monitoring of blood glucose is a critical component of diabetes management. However, patients often do not maintain the testing schedule recommended by their healthcare provider. Many barriers to testing have been cited, including cost and pain. We present a small pilot study to explore whether the use of financial incentives and pain-free lancets could improve adherence to glucose testing in a community health center patient population consisting largely of non-English speaking ethnic minorities with low health literacy. The proportion of patients lost to follow-up was 17%, suggesting that a larger scale study is feasible in this type of setting, but we found no preliminary evidence suggesting a positive effect on adherence by either financial incentives or pain-free lancets. Results from this pilot study will guide the design of larger-scale studies to evaluate approaches to overcome the variety of barriers to glucose testing that are present in disadvantaged patient populations. PMID:25486531

  8. United States Federal Radiological Monitoring and Assessment Center; evaluation and assessment methodology, standards, and procedures manual

    SciTech Connect

    Kerns, K.C.; Smith, J.M.; Blanchard, R.L.; Burson, Z.G. [EG& G Energy Measurements, Las Vegas, NV (United States). Remote Sensing Lab.]|[National Air and Radiation Environmental Lab., Montgomery, AL (United States)]|[Sanford Cohen and Associates, Inc., McLean, VA (United States)

    1994-09-01

    In the event of a major radiological emergency, the United States (US) Federal Radiological Emergency Response Plan (FRERP) authorizes the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC). The FRMAC is established to coordinate the Federal off-site monitoring and assessment activities, and is comprised of representatives from several Federal agencies and Department of Energy (DOE) contractors who provide assistance to the state(s) and Lead Federal Agency (LFA). The Evaluation and Assessment (E&A) Division of the FRMAC is responsible for receiving, storing and interpreting environmental surveillance data to estimate the potential health consequences to the population in the vicinity of the accident site. The E&A Division has commissioned the preparation of a methodology and procedures manual which will result in a consistent approach by Division members in carrying out their duties. The first edition of this manual is nearing completion. In this paper, a brief review of the structure of the FRMAC (with emphasis on the E&A Division) is presented. The contents of the E&A manual are briefly described as are future plans for expansion of this work.

  9. Atmospheric monitoring of a perfluorocarbon tracer at the 2009 ZERT Center experiment

    NASA Astrophysics Data System (ADS)

    Pekney, Natalie; Wells, Arthur; Rodney Diehl, J.; McNeil, Matthew; Lesko, Natalie; Armstrong, James; Ference, Robert

    2012-02-01

    Field experiments at Montana State University are conducted for the U.S. Department of Energy as part of the Zero Emissions Research and Technology Center (ZERT) to test and verify monitoring techniques for carbon capture and storage (CCS). A controlled release of CO 2 with an added perfluorocarbon tracer was conducted in July 2009 in a multi-laboratory study of atmospheric transport and detection technologies. Tracer plume dispersion was measured with various meteorological conditions using a tethered balloon system with Multi-Tube Remote Samplers (MTRS) at elevations of 10 m, 20 m, and 40 m above ground level (AGL), as well as a ground-based portable tower with monitors containing sorbent material to collect the tracer at 1 m, 2 m, 3 m, and 4 m AGL. Researchers designed a horizontal grid of sampling locations centered at the tracer plume source, with the tower positioned at 10 m and 30 m in both upwind and downwind directions, and the MTRS spaced at 50 m and 90 m downwind and 90 m upwind. Tracer was consistently detected at elevated concentrations at downwind sampling locations. With very few exceptions, higher tracer concentrations correlated with lower elevations. Researchers observed no statistical difference between sampling at 50 m and 90 m downwind at the same elevation. The US EPA AERMOD model applied using site-specific information predicted transport and dispersion of the tracer. Model results are compared to experimental data from the 2009 ZERT experiment. Successful characterization of the tracer plume simulated by the ZERT experiment is considered a step toward demonstrating the feasibility of remote sampling with unmanned aerial systems (UAS's) at future sequestration sites.

  10. Short Term Earthquake Forecasts at Koyna, India

    NASA Astrophysics Data System (ADS)

    Gupta, H. K.; Shashidhar, D.; Mallika, K.; Purnachandra Rao, N.; Srinagesh, D.; Satyanarayana, H.; Saha, S.; Naik, R. T.

    2010-12-01

    At the Koyna reservoir in western India, beginning form August 2005, earthquake activity is monitored in real time, and successful short term forecasts have been made of M~ 4 earthquakes. The basis of these forecasts is the observation of nucleation that precedes such earthquakes. Here we report that a total of 29 earthquakes in the magnitude range of 3.5 to 5.1 occurred in the region during the period of August 2005 through May 2010 (Figure 1). These earthquakes could broadly be put in three zones. Zone-A has been most active accounting for 18 earthquakes, while 5 in Zone-B and 6 in Zone-C are occurred (Figure 2). Earthquakes in Zone-A are found to be preceded by well-defined nucleation, while that is not the case with zones B and C. This indicates the complexity of the earthquakes processes and the fact that even in a small seismically active area of only 30 km x 20 km earthquake forecast is difficult. Figure 1: Seismic activity in the Koyna-Warna region during August 2005 to May 2010. In the inset India map indicates the study region. Figure 2: Earthquakes of magnitude range 3.5 - 5.1 in the Koyna-Warna region during August 2005 - May 2010. Zone A indicates area in which all of the M 3.5 and above earthquakes preceded by nucleation, where as in Zone B and Zone C nucleation was not observed.

  11. EARTHQUAKE PREDICTION: A GLOBAL REVIEW AND LOCAL RESEARCH

    Microsoft Academic Search

    M. A. Mubarak; Muhammad Shahid Riaz; Muhammad Awais; Zeeshan Jilani; Nabeel Ahmad; Muhammad Irfan; Farhan Javed; Aftab Alam; Mahmood Sultan

    2009-01-01

    radius of more than 300 km for an earthquake of magnitude 6. Furthermore, use of dedicated satellites to monitor earthquake precursors from space has been presented. In addition to ground based research, the countries involved in space based research on earthquake prediction include France, Russia, Italy, Mexico, Japan, the UK, Ukraine and the USA. A plan is also presented for

  12. Incorporating Fundamentals of Climate Monitoring into Climate Indicators at the National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Arndt, D. S.

    2014-12-01

    In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.

  13. The 2004 Parkfield earthquake: Test of the electromagnetic precursor hypothesis

    Microsoft Academic Search

    Stephen K. Park; William Dalrymple; Jimmy C. Larsen

    2007-01-01

    A controversy has existed for 30 years concerning the possibility of earthquake prediction using electromagnetic precursors. Long-term electromagnetic monitoring prior to, during, and after the M6.0 earthquake at Parkfield, California, on 28 September 2004 now provides a definitive test of this hypothesis. During the earthquake our instruments recorded clearly documented electrical signals from an earthquake: impulsive changes of up to

  14. VERY LARGE ARRAY MONITORING OF 1720 MHz OH MASERS TOWARD THE GALACTIC CENTER

    SciTech Connect

    Pihlstroem, Y. M.; Mesler, R. A. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Sjouwerman, L. O., E-mail: ylva@unm.edu [National Radio Astronomy Observatory, P.O. Box 0, Lopezville Road 1001, Socorro, NM 87801 (United States)

    2011-10-20

    We present the first variability study of the 1720 MHz OH masers located in the Galactic center. Most of these masers are associated with the interaction between the supernova remnant Sgr A East and the interstellar medium, but a few masers are associated with the circumnuclear disk (CND). The monitoring program covered five epochs and a timescale of 20-195 days, during which no masers disappeared and no new masers appeared. All masers have previously been detected in a single-epoch observation about one year prior to the start of the monitoring experiment, implying relatively stable conditions for the 1720 MHz OH masers. No extreme variability was detected. The masers associated with the northeastern interaction region between the supernova remnant and the +50 km s{sup -1} molecular cloud show the highest level of variability. This can be explained with the +50 km s{sup -1} molecular cloud being located behind the supernova remnant and with a region of high OH absorbing column density along the line of sight. Possibly, the supernova remnant provides additional turbulence to the gas in this region, through which the maser emission must travel. The masers in the southern interaction region are located on the outermost edge of Sgr A East, the line of sight of which is not covered by either absorbing OH gas or a supernova remnant, in agreement with the much lower variability level observed. Similarly, the masers associated with the CND show little variability, consistent with those arising through collisions between relatively large clumps of gas in the CND and no significant amount of turbulent gas along the line of sight.

  15. Predicting Earthquakes

    NSDL National Science Digital Library

    Five moderate-to-strong earthquakes struck California in June 2005. Could the cluster of quakes be a harbinger of the Big One? Another earthquake-prone area, New Madrid, near Memphis, Tennessee, has had more than its share of impressive quakes and strain is building along its fault lines. This radio broadcast discusses these two seismic zones, the new data based on years of GPS (Global Positioning System) measurements that may give scientists more information, and how the Earth generates the stress which leads to earthquakes. There is also discussion of the danger of tsunamis in the Virgin Islands and the need for a worldwide tsunami warning network. The broadcast is 18 minutes in length.

  16. The regional earthquake research and prediction NETWORK

    Microsoft Academic Search

    S. Mavrodiev

    2006-01-01

    A project for complex regional NETWORK for prediction the earthquake s time place epicenter depth magnitude and intensity using reliable precursors is proposed and shortly analyzed The precursors list includes usual geophysical and seismological monitoring of the region including hydrochemical monitoring of water sources and their Radon and Helium concentrations crust temperature and hydrogeodeformation field monitoring of the electromagnetic field

  17. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two directional techniques were employed, resulting in three mapped, potential epicenters. The remaining, weaker signals presented similar directionality results to more epicentral locations. In addition, the directional results of the Timpson field tests lead to the design and construction of a third prototype antenna. In a laboratory setting, experiments were created to fail igneous rock types within a custom-designed Faraday Cage. An antenna emplaced within the cage detected EM emissions, which were both reproducible and distinct, and the laboratory results paralleled field results. With a viable system and continuous monitoring, a fracture cycle could be established and observed in real-time. Sequentially, field data would be reviewed quickly for assessment; thus, leading to a much improved earthquake forecasting capability. The EM precursor determined by this method may surpass all prior precursor claims, and the general public will finally receive long overdue forecasting.

  18. The Swift X-ray monitoring campaign of the center of the Milky Way

    E-print Network

    Degenaar, N; Miller, J M; Reynolds, M T; Kennea, J; Gehrels, N

    2015-01-01

    In 2006 February, shortly after its launch, Swift began monitoring the center of the Milky Way with the onboard X-Ray Telescope using short 1-ks exposures performed every 1-4 days. Between 2006 and 2014, over 1200 observations have been obtained, amounting to ~1.2 Ms of exposure time. This has yielded a wealth of information about the long-term X-ray behavior of the supermassive black hole Sgr A*, and numerous transient X-ray binaries that are located within the 25'x25' region covered by the campaign. In this review we highlight the discoveries made during these first nine years, which includes 1) the detection of seven bright X-ray flares from Sgr A*, 2) the discovery of the magnetar SGR J1745-29, 3) the first systematic analysis of the outburst light curves and energetics of the peculiar class of very-faint X-ray binaries, 4) the discovery of three new transient X-ray sources, 5) exposing low-level accretion in otherwise bright X-ray binaries, and 6) the identification of a candidate X-ray binary/millisecon...

  19. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    PubMed

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw. PMID:13678290

  20. Discrimination of quarry blasts and earthquakes in the vicinity of Istanbul using soft computing techniques

    NASA Astrophysics Data System (ADS)

    Y?ld?r?m, Eray; Glba?, Ali; Horasan, Gndz; Do?an, Emrah

    2011-09-01

    The purpose of this article is to demonstrate the use of feedforward neural networks (FFNNs), adaptive neural fuzzy inference systems (ANFIS), and probabilistic neural networks (PNNs) to discriminate between earthquakes and quarry blasts in Istanbul and vicinity (the Marmara region). The tectonically active Marmara region is affected by the Thrace-Eski?ehir fault zone and especially the North Anatolian fault zone (NAFZ). Local MARNET stations, which were established in 1976 and are operated by the Kandilli Observatory and Earthquake Research Institute (KOERI), record not only earthquakes that occur in the region, but also quarry blasts. There are a few quarry-blasting areas in the Gaziosmanpa?a, atalca, merli, and Hereke regions. Analytical methods were applied to a set of 175 seismic events (2001-2004) recorded by the stations of the local seismic network (ISK, HRT, and CTT stations) operated by the KOERI National Earthquake Monitoring Center (NEMC). Out of a total of 175 records, 148 are related to quarry blasts and 27 to earthquakes. The data sets were divided into training and testing sets for each region. In all the models developed, the input vectors consist of the peak amplitude ratio (S/P ratio) and the complexity value, and the output is a determination of either earthquake or quarry blast. The success of the developed models on regional test data varies between 97.67% and 100%.

  1. Earthquake Formation

    NSDL National Science Digital Library

    Integrated Teaching and Learning Program,

    Students learn about the structure of the earth and how an earthquake happens. In one activity, students make a model of the earth including all of its layers. In a teacher-led demonstration, students learn about continental drift. In another activity, students create models demonstrating the different types of faults.

  2. UNU Monitor

    Microsoft Academic Search

    Juha I. Uitto

    1995-01-01

    UNU Monitor is a quarterly review of the United Nations University's (UNU) current research, publications and forthcoming projects in the area of global environmental change. This issue's Monitor features a report by Haresh C Shah UNU Visiting Scholar and Chairman of the Civil Engineering Department at Stanford University, USA, on the increase in global earthquake risk. The article also includes

  3. Earthquake and tsunami forecasts: relation of slow slip events to subsequent earthquake rupture.

    PubMed

    Dixon, Timothy H; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-12-01

    The 5 September 2012 M(w) 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr-Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential. PMID:25404327

  4. Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture

    PubMed Central

    Dixon, Timothy H.; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-01-01

    The 5 September 2012 Mw 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in MohrCoulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential. PMID:25404327

  5. Joint Workshop on Slow earthquakes, 2014: "The prospects for studies of slow earthquakes toward Nankai Megaquake

    E-print Network

    Yamamoto, Hirosuke

    , Synchronous changes in the seismic activity and ocean-bottom hydrostatic pressure off the Kii Peninsula 16-Tonankai earthquake. We also focus on seismic and geodetic monitoring of slow earthquake at sea-bottom as well distribution and seismicity rate 13:25-13:50 (I09) Roy Hyndman, ETS Tremor and Slip at Cascadia, SW Japan

  6. Cooperative Monitoring Center Occasional Paper/11: Cooperative Environmental Monitoring in the Coastal Regions of India and Pakistan

    SciTech Connect

    Rajen, Gauray

    1999-06-01

    The cessation of hostilities between India and Pakistan is an immediate need and of global concern, as these countries have tested nuclear devices, and have the capability to deploy nuclear weapons and long-range ballistic missiles. Cooperative monitoring projects among neighboring countries in South Asia could build regional confidence, and, through gradual improvements in relations, reduce the threat of war and the proliferation of weapons of mass destruction. This paper discusses monitoring the trans-border movement of flow and sediment in the Indian and Pakistani coastal areas. Through such a project, India and Pakistan could initiate greater cooperation, and engender movement towards the resolution of the Sir Creek territorial dispute in their coastal region. The Joint Working Groups dialogue being conducted by India and Pakistan provides a mechanism for promoting such a project. The proposed project also falls within a regional framework of cooperation agreed to by several South Asian countries. This framework has been codified in the South Asian Seas Action Plan, developed by Bangladesh, India, Maldives, Pakistan and Sri Lanka. This framework provides a useful starting point for Indian and Pakistani cooperative monitoring in their trans-border coastal area. The project discussed in this paper involves computer modeling, the placement of in situ sensors for remote data acquisition, and the development of joint reports. Preliminary computer modeling studies are presented in the paper. These results illustrate the cross-flow connections between Indian and Pakistani coastal regions and strengthen the argument for cooperation. Technologies and actions similar to those suggested for the coastal project are likely to be applied in future arms control and treaty verification agreements. The project, therefore, serves as a demonstration of cooperative monitoring technologies. The project will also increase people-to-people contacts among Indian and Pakistani policy makers and scientists. In the perceptions of the general public, the project will crystallize the idea that the two countries share ecosystems and natural resources, and have a vested interest in increased collaboration.

  7. Reply to "Comment on 'Operational Earthquake Forecasting: Status of Knowledge and Guidelines for Implementation by Jordan et al. [2011]'

    E-print Network

    Reply to "Comment on 'Operational Earthquake Forecasting: Status of Knowledge and Guidelines Commission on Earthquake Forecasting (ICEF) report [Jordan et al. 2011], Crampin [2012] claims Yamaoka11, Jochen Zschau12 1 Southern California Earthquake Center, Los Angeles, USA 2 University

  8. Earthquakes and plate tectonics.

    USGS Publications Warehouse

    Spall, H.

    1982-01-01

    Earthquakes occur at the following three kinds of plate boundary: ocean ridges where the plates are pulled apart, margins where the plates scrape past one another, and margins where one plate is thrust under the other. Thus, we can predict the general regions on the earth's surface where we can expect large earthquakes in the future. We know that each year about 140 earthquakes of magnitude 6 or greater will occur within this area which is 10% of the earth's surface. But on a worldwide basis we cannot say with much accuracy when these events will occur. The reason is that the processes in plate tectonics have been going on for millions of years. Averaged over this interval, plate motions amount to several mm per year. But at any instant in geologic time, for example the year 1982, we do not know, exactly where we are in the worldwide cycle of strain build-up and strain release. Only by monitoring the stress and strain in small areas, for instance, the San Andreas fault, in great detail can we hope to predict when renewed activity in that part of the plate tectonics arena is likely to take place. -from Author

  9. The wireless networking system of Earthquake precursor mobile field observation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.

    2012-12-01

    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within an acceptable range and do not affect real-time observation curve. After field running test and earthquake tracking project applications, the field mobile observation wireless networking system is operate normally, various function have good operability and show good performance, the quality of data transmission meet the system design requirements and play a significant role in practical applications.

  10. Network for Earthquake Engineering Simulation (NEES)NEED IMPACT STATEMENT

    E-print Network

    Ginzel, Matthew

    Network for Earthquake Engineering Simulation (NEES)NEED IMPACT STATEMENT INITIATIVE In October E. Brown, Jr. Network for Earthquake Engineering Simulation, or NEES, which is an integral component of the U.S. National Earthquake Hazards Reduction Program (NEHRP). Purdue's NEEScomm Center serves

  11. 77 FR 53225 - National Earthquake Prediction Evaluation Council (NEPEC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ...USGS-GX12GG00995NP00] National Earthquake Prediction Evaluation Council (NEPEC...to Public Law 96-472, the National Earthquake Prediction Evaluation Council (NEPEC...the U.S. Geological Survey National Earthquake Information Center (NEIC), 1711...

  12. Investigations of Anomalous Earthquakes at Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Shuler, Ashley Elizabeth

    This dissertation investigates the link between volcanic unrest and the occurrence of moderate-to-large earthquakes with a specific type of focal mechanism. Vertical compensated-linear-vector-dipole (vertical-CLVD) earthquakes have vertical pressure or tension axes and seismic radiation patterns that are inconsistent with the double-couple model of slip on a planar fault. Prior to this work, moderate-to-large vertical-CLVD earthquakes were known to be geographically associated with volcanic centers, and vertical-CLVD earthquakes were linked to a tsunami in the Izu-Bonin volcanic arc and a subglacial fissure eruption in Iceland. Vertical-CLVD earthquakes are some of the largest and most anomalous earthquakes to occur in volcanic systems, yet their physical mechanisms remain controversial largely due to the small number of observations. Five vertical-CLVD earthquakes with vertical pressure axes are identified near Nyiragongo volcano in the Democratic Republic of the Congo. Three earthquakes occur within days of a fissure eruption at Nyiragongo, and two occur several years later in association with the refilling of the lava lake in the summit crater of the volcano. Detailed study of these events shows that the earthquakes have slower source processes than tectonic earthquakes with similar magnitudes and locations. All five earthquakes are interpreted as resulting from slip on inward-dipping ring-fault structures located above deflating shallow magma chambers. The Nyiragongo study supports the interpretation that vertical-CLVD earthquakes may be causally related to dynamic physical processes occurring inside the edifices or magmatic plumbing systems of active volcanoes. Two seismicity catalogs from the Global Centroid Moment Tensor (CMT) Project are used to search for further examples of shallow earthquakes with robust vertical-CLVD focal mechanisms. CMT solutions for approximately 400 target earthquakes are calculated and 86 vertical-CLVD earthquakes are identified near active volcanoes. Together with the Nyiragongo study, this work increases the number of well-studied vertical-CLVD earthquakes from 14 to 101. Vertical-CLVD earthquakes have focal depths in the upper 10 km of the Earth's crust, and 80% have centroid locations within 30 km of an active volcanic center. Vertical-CLVD earthquakes are observed near several different types of volcanoes in a variety of geographic and tectonic settings, but most vertical-CLVD earthquakes are observed near basaltic-to-andesitic stratovolcanoes and submarine volcanoes in subduction zones. Vertical-CLVD earthquakes are linked to tsunamis, volcanic earthquake swarms, effusive and explosive eruptions, and caldera collapse, and approximately 70% are associated with documented volcanic eruptions or episodes of volcanic unrest. Those events with vertical pressure axes typically occur after volcanic eruptions initiate, whereas events with vertical tension axes commonly occur before the start of volcanic unrest. Both types of vertical-CLVD earthquakes have longer source durations than tectonic earthquakes of the same magnitude. The isotropic and pure vertical-CLVD components of the moment tensor cannot be independently resolved using our long-period seismic dataset. As a result, several physical mechanisms can explain the retrieved deviatoric vertical-CLVD moment tensors, including dip-slip motion on ring faults, volume exchange between two reservoirs, the opening and closing of tensile cracks, and volumetric sources. An evaluation of these mechanisms is performed using constraints obtained from detailed studies of individual vertical-CLVD earthquakes. Although no single physical mechanism can explain all of the characteristics of vertical-CLVD earthquakes, a ring-faulting model consisting of slip on inward- or outward-dipping ring faults triggered by the inflation or deflation of a shallow magma chamber can account for their seismic radiation patterns and source durations, as well as their temporal relationships with volcanic unrest. The observation that most vertical-CLVD earthquakes a

  13. KiMS: Kids' Health Monitoring System at day-care centers using wearable sensors and vocabulary-based acoustic signal processing

    Microsoft Academic Search

    Abhishek Basak; Seetharam Narasimhan; Swarup Bhunia

    2011-01-01

    Wearable sensors for healthcare and wireless health monitoring are rapidly becoming ubiquitous. They enable remote, accurate and low-cost health monitoring and can provide personal healthcare with timely detection of health issues. In this paper, we present a novel integrated system for monitoring children at day-care centers in order to facilitate proper care of health issues and overall wellbeing, including early

  14. Darwin's earthquake.

    PubMed

    Lee, Richard V

    2010-07-01

    Charles Darwin experienced a major earthquake in the Concepcin-Valdivia region of Chile 175 years ago, in February 1835. His observations dramatically illustrated the geologic principles of James Hutton and Charles Lyell which maintained that the surface of the earth was subject to alterations by natural events, such as earthquakes, volcanoes, and the erosive action of wind and water, operating over very long periods of time. Changes in the land created new environments and fostered adaptations in life forms that could lead to the formation of new species. Without the demonstration of the accumulation of multiple crustal events over time in Chile, the biologic implications of the specific species of birds and tortoises found in the Galapagos Islands and the formulation of the concept of natural selection might have remained dormant. PMID:21038753

  15. Improvements of the RST (Robust Satellite Techniques) approach for the thermal monitoring of the earthquake prone areas: an analysis on Italian peninsula in the period 2004-2012

    NASA Astrophysics Data System (ADS)

    Genzano, N.; Paciello, R.; Pergola, N.; Tramutoli, V.

    2013-12-01

    In the past, a Robust Satellite data analysis Technique (RST) was proposed to investigate possible relations between earthquake occurrence and space-time fluctuations of Earth's emitted TIR radiation observed from satellite. Based on a statistically definition of 'TIR anomalies' it allowed their identification even in very different natural (e.g. related to atmosphere and/or surface) and observational (e.g. related to time/season, but also to solar and satellite zenithal angles) conditions. RST approach has been implemented on different, polar and geostationary satellite systems (e.g. MSG/SEVIRI, GOES/IMAGER, EOS/MODIS, NOAA/AVHRR, etc.) and to earthquakes with a wide range of magnitudes (from 4.0 to 7.9) occurred in different tectonic contexts in all the world. In this paper, in order to further reduce false positives due to particular meteorological conditions, a refined RST approach is presented and validated on a long time series (9 years) of TIR satellite records collected by the geostationary satellite sensor MSG/SEVIRI over the Italian peninsula. The space-time persistence analysis performed on TIR anomaly maps shows: - a significant reduction of false positives; - several sequences of TIR anomalies, in a significant space-time relation with earthquakes with M>4. The relations among particular features of TIR anomalies (e.g. space-time extension and intensity) and earthquakes (e.g. magnitude, depth, focal mechanism) will be also discussed.

  16. Research on Earthquake Precursor in E-TEC: A Study on Land Surface Thermal Anomalies Using MODIS LST Product in Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, W. Y.; Wu, M. C.

    2014-12-01

    Taiwan has been known as an excellent natural laboratory characterized by rapid active tectonic rate and high dense seismicity. The Eastern Taiwan Earthquake Research Center (E-TEC) is established on 2013/09/24 in National Dong Hwa University and collaborates with Central Weather Bureau (CWB), National Center for Research on Earthquake Engineering (NCREE), National Science and Technology Center for Disaster Reduction (NCDR), Institute of Earth Science of Academia Sinica (IES, AS) and other institutions (NCU, NTU, CCU) and aims to provide an integrated platform for researchers to conduct the new advances on earthquake precursors and early warning for seismic disaster prevention in the eastern Taiwan, as frequent temblors are most common in the East Taiwan rift valley. E-TEC intends to integrate the multi-disciplinary observations and is equipped with stations to monitor a wide array of factors of quake precursors, including seismicity, GPS, strain-meter, ground water, geochemistry, gravity, electromagnetic, ionospheric density, thermal infrared remote sensing, gamma radiation etc, and will maximize the value of the data for researches with the range of monitoring equipment that enable to predict where and when the next devastated earthquake will strike Taiwan and develop reliable earthquake prediction models. A preliminary study on earthquake precursor using monthly Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) data before 2013/03/27 Mw6.2 Nantou earthquake in Taiwan is presented. Using the statistical analysis, the result shows the peak of the anomalous LST that exceeds a standard deviation of LST appeared on 2013/03/09 and became less or none anomalies observed on 2013/03/16 before the main-shock, which is in consist with the phenomenon observed by other researchers. This preliminary experimental result shows that the thermal anomalies reveal the possibility to associate surface thermal phenomena before the strong earthquakes.

  17. Clinical observation of atrial threshold monitoring algorithm: a single center experience

    PubMed Central

    She, Jianqing; Zhou, Jing; Hu, Zhan; Xia, Yulong

    2015-01-01

    Objective: To observe the atrial capture management in an atrial threshold monitoring algorithm. By calculating the enabling rate of the atrial threshold monitoring algorithm and comparing atrial thresholds measured automatically and manually, we evaluate its safety, reliability and applicability in clinical practice. Methods and results: Data were collected at implant, start of atrial threshold monitoring, visits scheduled 1 month, 2 months and 4 months thereafter, and upon notification of adverse events. Atrial threshold monitoring algorithm was enabled in 94 patients, while in 38 not, indicating an enabling rate of 71.2%. Causes of the unsuccessful attempts to enable automatic atrial threshold include tachycardia (2, 5.3%), and atrial safety margin not met (36, 94.7%). A total of 88 pairs of atrial thresholds measured automatically and manually were gained. The auto threshold was 0.528 0.270 V, and the manual threshold was 0.580 0.223 V. There is a strict correlation between the automatic measurements and those conducted manually by the physician with a P < 0.05. No significant differences were observed during the 1-month, 2-month and 4-month follow-up. Conclusion: Atrial threshold monitoring algorithm is safe, reliable and applicable over time. Atrial threshold monitoring tested atrial threshold was demonstrated to be clinically equivalent to the manual atrial threshold test. The addition of atrial threshold monitoring will benefit the patients by reducing energy cost and enhancing pacemaker safety. PMID:26131207

  18. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    SciTech Connect

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraq's Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing:A CSM describing the hydrogeologic regime and contaminant issues,recommendations for future groundwater characterization activities, anddescriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  19. Cooperative Monitoring Center Occasional Paper/7: A Generic Model for Cooperative Border Security

    SciTech Connect

    Netzer, Colonel Gideon

    1999-03-01

    This paper presents a generic model for dealing with security problems along borders between countries. It presents descriptions and characteristics of various borders and identifies the threats to border security, while emphasizing cooperative monitoring solutions.

  20. Analysis of Instrumentation to Monitor the Hydrologic Performance of Green Infrastructure at the Edison Environmental Center

    EPA Science Inventory

    Infiltration is one of the primary functional mechanisms of green infrastructure stormwater controls, so this study explored selection and placement of embedded soil moisture and water level sensors to monitor surface infiltration and infiltration into the underlying soil for per...

  1. The development of a remote monitoring system for the Nuclear Science Center reactor

    E-print Network

    Jiltchenkov, Dmitri Victorovich

    2002-01-01

    With funding provided by Nuclear Energy Research Initiative (NERI), design of Secure, Transportable, Autonomous Reactors (STAR) to aid countries with insufficient energy supplies is underway. The development of a new monitoring system that allows...

  2. A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

    SciTech Connect

    Mark Schanfein

    2009-07-01

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called direct-use material which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

  3. Is Your Class a Natural Disaster? It can be... The Real Time Earthquake Education (RTEE) System

    Microsoft Academic Search

    J. S. Whitlock; K. Furlong

    2003-01-01

    In cooperation with the U.S. Geological Survey (USGS) and its National Earthquake Information Center (NEIC) in Golden, Colorado, we have implemented an autonomous version of the NEIC's real-time earthquake database management and earthquake alert system (Earthworm). This is the same system used professionally by the USGS in its earthquake response operations. Utilizing this system, Penn State University students participating in

  4. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for recurrence, duration, and frequency response. At the Southern California field sites, one loop antenna was positioned for omni-directional reception and also detected a strong First Schumann Resonance; however, additional Schumann Resonances were absent. At the Timpson, TX field sites, loop antennae were positioned for directional reception, due to earthquake-induced, hydraulic fracturing activity currently conducted by the oil and gas industry. Two strong signals, one moderately strong signal, and approximately 6-8 weaker signals were detected in the immediate vicinity. The three stronger signals were mapped by a biangulation technique, followed by a triangulation technique for confirmation. This was the first antenna mapping technique ever performed for determining possible earthquake epicenters. Six and a half months later, Timpson experienced two M4 (M4.1 and M4.3) earthquakes on September 2, 2013 followed by a M2.4 earthquake three days later, all occurring at a depth of five kilometers. The Timpson earthquake activity now has a cyclical rate and a forecast was given to the proper authorities. As a result, the Southern California and Timpson, TX field results led to an improved design and construction of a third prototype antenna. With a loop antenna array, a viable communication system, and continuous monitoring, a full fracture cycle can be established and observed in real-time. In addition, field data could be reviewed quickly for assessment and lead to a much more improved earthquake forecasting capability. The EM precursors determined by this method appear to surpass all prior precursor claims, and the general public will finally receive long overdue forecasting.

  5. Monitoring seismic wave velocity changes associated with the Mw 7.9 Wenchuan earthquake: increasing the temporal resolution using curvelet filters

    NASA Astrophysics Data System (ADS)

    Stehly, Laurent; Froment, Brnice; Campillo, Michel; Liu, Qi Yuan; Chen, Jiu Hui

    2015-06-01

    The aim of this study is to improve the temporal resolution of seismic wave velocity variations measured using ambient noise correlations. We first reproduce the result obtained by Chen et al. using a network of 21 broad-band stations ideally located around the fault system activated during the Wenchuan earthquake.We measure a velocity drop of 0.07 per cent that was associated with the main shock, with a temporal resolution of 30 days. To determine whether this velocity drop is co-seismic or post-seismic, we attempt to increase the temporal resolution of our observations. By taking advantage of the properties of the curvelet transform, we increase the signal-to-noise ratio of the daily correlations computed between each station pair. It is then possible to measure the velocity drop associated with the Wenchuan earthquake with a temporal resolution of 1 day. This shows that the velocity drop started on 2008 May 12, which was the day of the earthquake, and the velocity reached its lowest value 2 days after the main shock. Moreover, there was a second velocity drop on 2008 May 27, which might relate to strong aftershocks.

  6. Using of Remote Sensing Techniques for Monitoring the Earthquakes Activities Along the Northern Part of the Syrian Rift System (LEFT-LATERAL),SYRIA

    NASA Astrophysics Data System (ADS)

    Dalati, Moutaz

    Earthquake mitigation can be achieved with a better knowledge of a region's infra-and substructures. High resolution Remote Sensing data can play a significant role to implement Geological mapping and it is essential to learn about the tectonic setting of a region. It is an effective method to identify active faults from different sources of Remote Sensing and compare the capability of some satellite sensors in active faults survey. In this paper, it was discussed a few digital image processing approaches to be used for enhancement and feature extraction related to faults. Those methods include band ratio, filtering and texture statistics . The experimental results show that multi-spectral images have great potentials in large scale active faults investigation. It has also got satisfied results when deal with invisible faults. Active Faults have distinct features in satellite images. Usually, there are obvious straight lines, circular structures and other distinct patterns along the faults locations. Remotely Sensed imagery Landsat ETM and SPOT XS /PAN are often used in active faults mapping. Moderate and high resolution satellite images are the best choice, because in low resolution images, the faults features may not be visible in most cases. The area under study is located Northwest of Syria that is part of one of the very active deformation belt on the Earth today. This area and the western part of Syria are located along the great rift system (Left-Lateral or African- Syrian Rift System). Those areas are tectonically active and caused a lot of seismically events. The AL-Ghab graben complex is situated within this wide area of Cenozoic deformation. The system formed, initially, as a result of the break up of the Arabian plate from the African plate. This action indicates that these sites are active and in a continual movement. In addition to that, the statistic analysis of Thematic Mapper data and the features from a digital elevation model ( DEM )produced from SAR interferometer show the existence of spectral structures at the same sites. The Arabian plate is moving in a NNW direction, whereas the African plate is moving to the North. The left-lateral motion along the Dead Sea Fault accommodates the difference in movement rate between both plates. The analysis of TM Space Imagery and digital image processing of spectral data show that the lineaments along AL-Ghab graben maybe considered as linear conjunctions accompanied with complex fracturing system. This complex is affected by distance stresses accompanied with intensive forces. The digital image processing of Radar imagery showing the presence of active and fresh faulting zones along the AL-Ghab graben. TM and SAR-DTM data, also showed a gradual color tone and interruptions of linear-ellipse shapes which reflecting the presence of discontinuity contours along the fault zone extension .This features refer to abundance of surface morphological features indicate to Fresh Faults. Recent faulting is expressed as freshly exposed soil within the colluvial apron visible by its light tone color. These indicators had been proved by field checks. Furthermore, the statistic digital analysis of the spectral data show that there are distribution of spectral plumes. These plumes are decreasing in intensity and color contrast from the center of the site to the direction of its edges.

  7. Internet Geography: Earthquakes

    NSDL National Science Digital Library

    This site is part of GeoNet Internet Geography, a resource for pre-collegiate British geography students and their instructors. This page focuses on earthquakes and how they occur. Topics covered include the effects of earthquakes, measuring earthquakes, and case studies about specific recent earthquakes.

  8. EARTHQUAKE PREPAREDNESS FOR LABORATORIES

    E-print Network

    Polly, David

    EARTHQUAKE PREPAREDNESS FOR LABORATORIES By: Christopher E. Kohler (Environmental Health and Safety) and Walter E. Gray (Indiana Geological Survey) Earthquakes occur with little or no warning, and so planning of an earthquake. While most historical earthquakes were minor, Indiana's proximity to two seismic zones

  9. 2011 TOHOKUCHIHOTAIHEIYOU OKI EARTHQUAKE

    E-print Network

    Guillas, Serge

    2011 TOHOKUCHIHOTAIHEIYOU OKI EARTHQUAKE M. HORI Earthquake Research Institute, University of Tokyo Seminar on the Honshu Earthquake & Tsunami UCL Institute for Risk & Disaster Reduction March 24, 2011 #12;Earthquake Details Magnitude in Richter scale 9.0 Moment Magnitude 9.0 Location 38.03N, 143.15E Depth

  10. Mechanism of tsunami earthquakes

    Microsoft Academic Search

    Hiroo Kanamori

    1972-01-01

    The mechanism of the Aleutian islands earthquake of 1946 and the Sanriku earthquake of 1896 is studied on the basis of the data on seismic waves from 5 to 100 s and on tsunamis. These earthquakes generated, despite their relatively small earthquake magnitude, two of the largest and most widespread tsunamis in history. The data obtained at different periods are

  11. Simulating Earthquakes for Science and Society: New Earthquake Visualizations Ideal for Use in Science Communication

    Microsoft Academic Search

    R. M. de Groot; M. L. Benthien

    2006-01-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently have gained visibility via television news coverage in Southern California. These types of visualizations are becoming pervasive in the teaching and learning of concepts related to earth science. Computers have opened up

  12. Earthquake Hazards Program: NEIC Near Real Time Earthquake List

    NSDL National Science Digital Library

    The United States Geological Survey's National Earthquake Information Center site offers readers near real time updates of seismological events worldwide. As one can gather from a glimpse at the report, our planet is in a near constant state of geophysical change and upheaval, given the numerous earthquakes registered on a daily basis by the NEIC, sometimes up to a dozen or more. Readers will discover that the NEIC Web site lists, in chronological order, the earthquakes of the past several days, each with its own hyperlink to separate pages that detail geographic location and magnitude of specific events, as well as the faults responsible for geological upsets. Beyond the above, the site lists activity for the past week and month -- all with charts, maps, and detailed descriptions of regions cited.

  13. User-centered development and testing of a monitoring system that provides feedback regarding physical functioning to elderly people

    PubMed Central

    Vermeulen, Joan; Neyens, Jacques CL; Spreeuwenberg, Marieke D; van Rossum, Erik; Sipers, Walther; Habets, Herbert; Hewson, David J; de Witte, Luc P

    2013-01-01

    Purpose To involve elderly people during the development of a mobile interface of a monitoring system that provides feedback to them regarding changes in physical functioning and to test the system in a pilot study. Methods and participants The iterative user-centered development process consisted of the following phases: (1) selection of user representatives; (2) analysis of users and their context; (3) identification of user requirements; (4) development of the interface; and (5) evaluation of the interface in the lab. Subsequently, the monitoring and feedback system was tested in a pilot study by five patients who were recruited via a geriatric outpatient clinic. Participants used a bathroom scale to monitor weight and balance, and a mobile phone to monitor physical activity on a daily basis for six weeks. Personalized feedback was provided via the interface of the mobile phone. Usability was evaluated on a scale from 1 to 7 using a modified version of the Post-Study System Usability Questionnaire (PSSUQ); higher scores indicated better usability. Interviews were conducted to gain insight into the experiences of the participants with the system. Results The developed interface uses colors, emoticons, and written and/or spoken text messages to provide daily feedback regarding (changes in) weight, balance, and physical activity. The participants rated the usability of the monitoring and feedback system with a mean score of 5.2 (standard deviation 0.90) on the modified PSSUQ. The interviews revealed that most participants liked using the system and appreciated that it signaled changes in their physical functioning. However, usability was negatively influenced by a few technical errors. Conclusion Involvement of elderly users during the development process resulted in an interface with good usability. However, the technical functioning of the monitoring system needs to be optimized before it can be used to support elderly people in their self-management. PMID:24039407

  14. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    NASA Astrophysics Data System (ADS)

    Ramdhan, Mohamad; Nugraha, Andri Dian; Widiyantoro, Sri; Mtaxian, Jean-Philippe; Valencia, Ayunda Aulia

    2015-04-01

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 1800. Owing to this situation the stations from BMKG seismic network can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.

  15. Listening to Earthquakes

    NSDL National Science Digital Library

    At this website, users can listen to the 'sounds' produced by earthquakes. Scientists have taken recordings of vibrations that occur during earthquakes and transformed them into sound files by speeding them up. Through listening, people can better understand the shaking that occurs during earthquakes. An interactive listening quiz lets students hear and compare earthquakes that occurred near each other, but from faults of different lengths. There is also a collection of sounds from historical earthquakes, such as the 1992 magnitude 7.3 Landers Earthquake, and a download page where sounds from various earthquakes can be obtained as .wav files.

  16. Center of Excellence in Structural Health Monitoring Fall Meeting Dates: 3-4 November 2008

    E-print Network

    ), Naval Air Forces. In this position, he was responsible for naval aviation maintenance operations across, and the Army's lead, of the National Rotorcraft Technology Center, and Associate Director for Systems, Aviation Research, Development, and Engineering Center, Army Aviation and Missile Command. From July 2000 through

  17. CTEPP NC DATA COLLECTED ON FORM 05: CHILD DAY CARE CENTER PRE-MONITORING QUESTIONNAIRE

    EPA Science Inventory

    This data set contains data concerning the potential sources of pollutants at the day care center including the chemicals that have been applied in the past at the day care center by staff members or by commercial contractors. The day care teacher was asked questions related to t...

  18. CTEPP-OH DATA COLLECTED ON FORM 05: CHILD DAY CARE CENTER PRE-MONITORING QUESTIONNAIRE

    EPA Science Inventory

    This data set contains data for CTEPP-OH concerning the potential sources of pollutants at the day care center including the chemicals that have been applied in the past at the day care center by staff members or by commercial contractors. The day care teacher was asked questions...

  19. Virtual Courseware: Earthquake

    NSDL National Science Digital Library

    Gary Novak

    2000-04-25

    Virtual Earthquake is an interactive web-based program designed to introduce the concepts of how an earthquake epicenter is located and how the Richter magnitude of an earthquake is determined. Virtual Earthquake shows the recordings of an earthquake's seismic waves detected by instruments far away from the earthquake. The instrument recording the seismic waves is called a seismograph and the recording is a seismogram. The point of origin of an earthquake is called its focus and the point on the earth's surface directly above the focus is the epicenter. You are to locate the epicenter of an earthquake by making simple measurements on three seismograms that are generated by the Virtual Earthquake program. Additionally, you will be required to determine the Richter Magnitude of that quake from the same recordings. Richter Magnitude is an estimate of the amount of energy released during an earthquake.

  20. CTEPP DATA COLLECTION FORM 07: CHILD DAY CARE CENTER POST-MONITORING

    EPA Science Inventory

    This data collection form is used to provide information on the child's daily activities and potential exposures to pollutants at their homes. It includes questions on chemicals applied and cigarettes smoked at the home over the 48-hr monitoring period. It also collects informati...

  1. CTEPP NC DATA COLLECTED ON FORM 07: CHILD DAY CARE CENTER POST-MONITORING

    EPA Science Inventory

    This data set contains data concerning the child?s daily activities and potential exposures to pollutants at their homes. It included questions on chemicals applied and cigarettes smoked at the home over the 48-h monitoring period. It also collected information on the child?s han...

  2. CTEPP-OH DATA COLLECTED ON FORM 07: CHILD DAY CARE CENTER POST-MONITORING

    EPA Science Inventory

    This data set contains data concerning the child?s daily activities and potential exposures to pollutants at their homes for CTEPP-OH. It included questions on chemicals applied and cigarettes smoked at the home over the 48-h monitoring period. It also collected information on th...

  3. Japanese earthquake predictability experiment with multiple runs before and after the 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Tsuruoka, H.; Yokoi, S.

    2013-12-01

    The current Japanese national earthquake prediction program emphasizes the importance of modeling as well as monitoring for a sound scientific development of earthquake prediction research. One major focus of the current program is to move toward creating testable earthquake forecast models. For this purpose, in 2009 we joined the Collaboratory for the Study of Earthquake Predictability (CSEP) and installed, through an international collaboration, the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan. We started Japanese earthquake predictability experiment on November 1, 2009. The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year and 3 years) and 3 testing regions called 'All Japan,' 'Mainland,' and 'Kanto.' A total of 160 models, as of August 2013, were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. We will present results of prospective forecast and testing for periods before and after the 2011 Tohoku-oki earthquake. Because a seismic activity has changed dramatically since the 2011 event, performances of models have been affected very much. In addition, as there is the problem of authorized catalogue related to the completeness magnitude, most models did not pass the CSEP consistency tests. Also, we will discuss the retrospective earthquake forecast experiments for aftershocks of the 2011 Tohoku-oki earthquake. Our aim is to describe what has turned out to be the first occasion for setting up a research environment for rigorous earthquake forecasting in Japan.

  4. Soil Dynamics and Earthquake Engineering 27 (2007) 564576 Earthquake damage detection in the Imperial County Services Building

    E-print Network

    Southern California, University of

    2007-01-01

    ; Seismic monitoring; Structural health monitoring; Frequency response; Vibration; Earthquake response and further develop structural health monitoring methods. This paper presents an analysis of inter is monitoring the health of the structure, to detect damage as it occurs, and issue an early warning after

  5. Upgrading the Digital Electronics of the PEP-II Bunch Current Monitors at the Stanford Linear Accelerator Center

    SciTech Connect

    Kline, Josh; /SLAC

    2006-08-28

    The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995) field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.

  6. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the velocity structure of central Chile to improve the real-time monitoring.

  7. EARTHQUAKE TRIGGERING AND SPATIAL-TEMPORAL RELATIONS IN THE VICINITY OF YUCCA MOUNTAIN, NEVADA

    SciTech Connect

    na

    2001-02-08

    It is well accepted that the 1992 M 5.6 Little Skull Mountain earthquake, the largest historical event to have occurred within 25 km of Yucca Mountain, Nevada, was triggered by the M 7.2 Landers earthquake that occurred the day before. On the premise that earthquakes can be triggered by applied stresses, we have examined the earthquake catalog from the Southern Great Basin Digital Seismic Network (SGBDSN) for other evidence of triggering by external and internal stresses. This catalog now comprises over 12,000 events, encompassing five years of consistent monitoring, and has a low threshold of completeness, varying from M 0 in the center of the network to M 1 at the fringes. We examined the SGBDSN catalog response to external stresses such as large signals propagating from teleseismic and regional earthquakes, microseismic storms, and earth tides. Results are generally negative. We also examined the interplay of earthquakes within the SGBDSN. The number of ''foreshocks'', as judged by most criteria, is significantly higher than the background seismicity rate. In order to establish this, we first removed aftershocks from the catalog with widely used methodology. The existence of SGBDSN foreshocks is supported by comparing actual statistics to those of a simulated catalog with uniform-distributed locations and Poisson-distributed times of occurrence. The probabilities of a given SGBDSN earthquake being followed by one having a higher magnitude within a short time frame and within a close distance are at least as high as those found with regional catalogs. These catalogs have completeness thresholds two to three units higher in magnitude than the SGBDSN catalog used here. The largest earthquake in the SGBDSN catalog, the M 4.7 event in Frenchman Flat on 01/27/1999, was preceded by a definite foreshock sequence. The largest event within 75 km of Yucca Mountain in historical time, the M 5.7 Scotty's Junction event of 08/01/1999, was also preceded by foreshocks. The monitoring area of the SGBDSN has been in a long period of very low moment release rate since February of 1999. The seismicity catalog to date suggests that the next significant (M > 4) earthquake within the SGBDSN will be preceded by foreshocks.

  8. Cooperative Monitoring Center Occasional Paper/9: De-Alerting Strategic Ballistic Missiles

    SciTech Connect

    Connell, Leonard W.; Edenburn, Michael W.; Fraley, Stanley K.; Trost, Lawrence C.

    1999-03-01

    This paper presents a framework for evaluating the technical merits of strategic ballistic missile de-alerting measures, and it uses the framework to evaluate a variety of possible measures for silo-based, land-mobile, and submarine-based missiles. De-alerting measures are defined for the purpose of this paper as reversible actions taken to increase the time or effort required to launch a strategic ballistic missile. The paper does not assess the desirability of pursuing a de-alerting program. Such an assessment is highly context dependent. The paper postulates that if de-alerting is desirable and is used as an arms control mechanism, de-alerting measures should satisfy specific cirteria relating to force security, practicality, effectiveness, significant delay, and verifiability. Silo-launched missiles lend themselves most readily to de-alerting verification, because communications necessary for monitoring do not increase the vulnerabilty of the weapons by a significant amount. Land-mobile missile de-alerting measures would be more challenging to verify, because monitoring measures that disclose the launcher's location would potentially increase their vulnerability. Submarine-launched missile de-alerting measures would be extremely challlenging if not impossible to monitor without increasing the submarine's vulnerability.

  9. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    NASA Astrophysics Data System (ADS)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the results, we observed significant correlations between ground magnetic pulsations and solar wind speed at difference earthquake epicenter depths. The details of the analysis will be discussed in the presentation.

  10. Monitoring

    DOEpatents

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  11. Seismic Monitoring in Haiti

    USGS Multimedia Gallery

    Following the devastating 2010 Haiti earthquake, the USGS has been helping with earthquake awareness and monitoring in the country, with continued support from the U.S. Agency for International Development (USAID). This assistance has helped the Bureau des Mines et de l'Energie (BME) in Port-au-Prin...

  12. Anomalous Schumann resonance observed in China, possibly associated with Honshu, Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Ouyang, X. Y.; Zhang, X. M.; Shen, X. H.; Miao, Y. Q.

    2012-04-01

    Schumann resonance (hereafter SR) occurs in the cavity between the Earth and the ionosphere, and it is originated by the global lightning activities [1]. Some recent publications showed that anomalous SR phenomena may occur before major earthquakes [2-4]. Considering good prospects for the application of SR in Earthquake monitoring, we have established four observatories in Yunnan province, a region with frequent seismicity in the southwest of China. Our instruments can provide three components of magnetic field in 0-30 Hz, including BNS(North-South component), BEW(East-West component) and BV (Vertical component). The sample frequency is 100 Hz. In this research, we use high quality data recorded at Yongsheng observatory (geographic coordinates: 26.7 N, 100.77E) to analyze SR phenomena to find out anomalous effects possibly related with the Ms9.0 Earthquake (epicenter: 38.297 N, 142.372 E) near the east coast of Honshu, Japan on 11 March 2011. We select the data 15 days before and after the earthquake. SR in BNS and SR in BEWappear different in background characteristics. Frequencies of four SR modes in BNSare generally higher than that in BEW. Amplitude of SR in BNSis strong at around 05:00 LT, 15:00 LT and 23:00 LT of the day, while amplitude of SR in BEW is just intense around 16:00 LT, corresponding to about 08:00 UT. Because American, African and Asian thunderstorm centers play their dominant roles respectively in the intervals of 21:00UT1h, 15:00UT1h and 08:00UT1h [1, 3], we can see that SR in BEWis most sensitive to signals from Asian center and SR in BNS is in good response to three centers. SR in BNS and SR in BEW have presented different features in the aspect of anomalous effects related with earthquakes. BEW component gives us a clear picture of anomalous SR phenomena, which are characterized by increase in amplitude of four SR modes and increase in frequency at first SR mode several days before the earthquake. The amplitude of four SR modes began to increase four days before Honshu earthquake (7th March). And this continued to the day of the earthquake (11th March). Then it fell to the usual intensity after the earthquake (12th March). The frequency at first SR mode in BEW unconventionally exceeded the first mode frequency in BNS with an enhancement of 0.7 Hz on 8th and 9th March. We did not find similar anomalous effects in BNS. The anomalous effects in BEW may be caused by interference between direct path from Asian center to the observatory and disturbed path scattered by the perturbation in the ionosphere over Honshu. More detailed analysis is going on. 1. Nickolaenko A P and Hayakawa M, Resonances in the Earth-ionosphere cavity. 2002: Kluwer Academic Pub. 2. Hayakawa M, Ohta K, Nickolaenko A P, et al. Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan. Annales geophysicae,2005. pp. 1335-1346. 3. Hayakawa M, Nickolaenko A P, Sekiguchi M, et al., Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan) in possible association with an earthquake in Taiwan. Nat. Hazards Earth Syst. Sci, 2008. 8(6): p. 1309-1316. 4. Ohta K, Izutsu J, and Hayakawa M, Anomalous excitation of Schumann resonances and additional anomalous resonances before the 2004 Mid-Niigata prefecture earthquake and the 2007 Noto Hantou Earthquake. Physics and Chemistry of the Earth, Parts A/B/C, 2009. 34(6-7): p. 441-448.

  13. Earthquake Magnitude - Linking Earthquake Magnitude and Intensity

    NSDL National Science Digital Library

    Eric Baer

    Earthquake magnitude is commonly used to represent the size of an earthquake. However, most people want to understand how much impact or damage earthquakes do. These two concepts are linked by shaking. Earthquake magnitude can be measured in a variety of ways, most commonly moment magnitude or Richter magnitude. Shaking is measured in units of acceleration, (often a percentage of g). Damage or intensity can be measured by the modified Mercalli intensity (MMI) scale. In this activity, students will model earthquakes of various magnitudes to determine the amount of shaking that these quakes will cause. They will then convert the shaking to modified Mercalli intensity and generate an isoseismal map for a M8 and M6 earthquake. Uses geophysics to solve problems in other fields Addresses student misconceptions

  14. Space technologies for short-term earthquake warning

    Microsoft Academic Search

    S. A. Pulinets

    2006-01-01

    Recent theoretical and experimental studies explicitly demonstrated the ability of space technologies to identify and monitor the specific variations at near-earth space plasma, atmosphere and ground surface associated with approaching severe earthquakes (named as earthquake precursors) which appear several days (from 1 to 5) before the seismic shock over the seismically active areas. Several countries and private companies are in

  15. Space technologies for short-term earthquake warning

    Microsoft Academic Search

    S. Pulinets

    2004-01-01

    Recent theoretical and experimental studies explicitly demonstrated the ability of space technologies to identify and monitor the specific variations at near-earth space plasma, atmosphere and ground surface associated with approaching severe earthquakes (named as earthquake precursors) appearing several days (from 1 to 5) before the seismic shock over the seismically active areas. Several countries and private companies are in the

  16. Rapid Earthquake Viewer

    NSDL National Science Digital Library

    The Rapid Earthquake Viewer (REV) provides access to earthquake data from seismograph recording stations around the world. The Earthquake View lets users select an earthquake and see data at various stations. The Station View allows users to see if any ground motion has been recorded at a particular station. Lesson plans are being developed for REV, aimed primarly at the middle school level. The resource provides several techniques to help users contextualize and understand seismic data. REV is related to GEE, the Global Earthquake Explorer, a fully-functional earthquake analysis tool.

  17. Avian Flu / Earthquake Prediction

    NSDL National Science Digital Library

    This radio broadcast includes a discussion of the avian flu spreading though Southeast Asia, Russia and parts of Europe. Topics include whether the outbreak is a pandemic in the making, and what preparations might be made to control the outbreak. The next segment of the broadcast discusses earthquake prediction, in light of the 2005 earthquake in Pakistan. Two seismologists discuss what was learned in the Parkfield project, an experiment in earthquake prediction conducted in California. Other topics include the distribution of large versus small earthquakes; how poor construction magnifies earthquake devastation; and the relationship of plate tectonics to the Pakistan earthquake.

  18. Hatfield Marine Science Center Dynamic Revetment Project DSL Permit # 45455-FP. Monitoring Report. February, 2014.

    EPA Science Inventory

    Stabilization of the Yaquina Bay shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) campus became necessary to halt erosion that threatened both HMSC critical infrastructure (seawater storage tank) and public access to the HMSC Nature Trail. A Dyn...

  19. CTEPP DATA COLLECTION FORM 05: CHILD DAY CARE CENTER PRE-MONITORING QUESTIONNAIRE

    EPA Science Inventory

    This data collection form is used to identify the potential sources of pollutants at the day care center. The day care teacher is asked questions related to the age of their day care building; age and frequency of cleaning carpets or rugs; types of heating and air conditioning de...

  20. Hatfield Marine Science Center Dynamic Revetment Project DSL permit # 45455-FP, Monitoring Report February, 2015

    EPA Science Inventory

    Stabilization of the Yaquina Bay shoreline along the northeastern edge of the Hatfield Marine Science Center (HMSC) campus became necessary to halt erosion that threatened both HMSC critical infrastructure (seawater storage tank) and public access to the HMSC Nature Trail. A Dyn...

  1. Cooperative Monitoring Center Occasional Paper/8: Cooperative Border Security for Jordan: Assessment and Options

    SciTech Connect

    Qojas, M.

    1999-03-01

    This document is an analysis of options for unilateral and cooperative action to improve the security of Jordan's borders. Sections describe the current political, economic, and social interactions along Jordan's borders. Next, the document discusses border security strategy for cooperation among neighboring countries and the adoption of confidence-building measures. A practical cooperative monitoring system would consist of hardware for early warning, command and control, communications, and transportation. Technical solutions can expand opportunities for the detection and identification of intruders. Sensors (such as seismic, break-wire, pressure-sensing, etc.) can warn border security forces of intrusion and contribute to the identification of the intrusion and help formulate the response. This document describes conceptual options for cooperation, offering three scenarios that relate to three hypothetical levels (low, medium, and high) of cooperation. Potential cooperative efforts under a low cooperation scenario could include information exchanges on military equipment and schedules to prevent misunderstandings and the establishment of protocols for handling emergency situations or unusual circumstances. Measures under a medium cooperation scenario could include establishing joint monitoring groups for better communications, with hot lines and scheduled meetings. The high cooperation scenario describes coordinated responses, joint border patrols, and sharing border intrusion information. Finally, the document lists recommendations for organizational, technical, and operational initiatives that could be applicable to the current situation.

  2. Supercomputing meets seismology in earthquake exhibit

    ScienceCinema

    Blackwell, Matt; Rodger, Arthur; Kennedy, Tom

    2014-07-22

    When the California Academy of Sciences created the "Earthquake: Evidence of a Restless Planet" exhibit, they called on Lawrence Livermore to help combine seismic research with the latest data-driven visualization techniques. The outcome is a series of striking visualizations of earthquakes, tsunamis and tectonic plate evolution. Seismic-wave research is a core competency at Livermore. While most often associated with earthquakes, the research has many other applications of national interest, such as nuclear explosion monitoring, explosion forensics, energy exploration, and seismic acoustics. For the Academy effort, Livermore researchers simulated the San Andreas and Hayward fault events at high resolutions. Such calculations require significant computational resources. To simulate the 1906 earthquake, for instance, visualizing 125 seconds of ground motion required over 1 billion grid points, 10,000 time steps, and 7.5 hours of processor time on 2,048 cores of Livermore's Sierra machine.

  3. Supercomputing meets seismology in earthquake exhibit

    SciTech Connect

    Blackwell, Matt; Rodger, Arthur; Kennedy, Tom

    2013-10-03

    When the California Academy of Sciences created the "Earthquake: Evidence of a Restless Planet" exhibit, they called on Lawrence Livermore to help combine seismic research with the latest data-driven visualization techniques. The outcome is a series of striking visualizations of earthquakes, tsunamis and tectonic plate evolution. Seismic-wave research is a core competency at Livermore. While most often associated with earthquakes, the research has many other applications of national interest, such as nuclear explosion monitoring, explosion forensics, energy exploration, and seismic acoustics. For the Academy effort, Livermore researchers simulated the San Andreas and Hayward fault events at high resolutions. Such calculations require significant computational resources. To simulate the 1906 earthquake, for instance, visualizing 125 seconds of ground motion required over 1 billion grid points, 10,000 time steps, and 7.5 hours of processor time on 2,048 cores of Livermore's Sierra machine.

  4. Retrospective stress-forecasting of earthquakes

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to retrospectively stress-forecasting ~17 earthquakes ranging in magnitude from a M1.7 swarm event in N Iceland, to the 1999 M7.7 Chi-Chi Earthquake in Taiwan, and the 2004 Mw9.2 Sumatra-Andaman Earthquake (SAE). Before SAE, the changes in SWS were observed at seismic stations in Iceland at a distance of ~10,500km the width of the Eurasian Plate, from Indonesia demonstrating the 'butterfly wings' sensitivity of the New Geophysics of a critically microcracked Earth. At that time, the sensitivity of the phenomena had not been recognised, and the SAE was not stress-forecast. These results have been published at various times in various formats in various journals. This presentation displays all the results in a normalised format that allows the similarities to be recognised, confirming that observations of SWS time-delays can stress-forecast the times, magnitudes, and in some circumstances fault-breaks, of impending earthquakes. Papers referring to these developments can be found in geos.ed.ac.uk/home/scrampin/opinion. Also see abstracts in EGU2015 Sessions: Crampin & Gao (SM1.1), Liu & Crampin (NH2.5), and Crampin & Gao (GD.1).

  5. Retrofitting Laboratory Fume Hoods With Face Velocity Monitors at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Wagner, Ingrid E.; Bold, Margaret D.; Diamond, David B.; Kall, Phillip M.

    1997-01-01

    Extensive use and reliance on laboratory fume hoods exist at LeRC for the control of chemical hazards (nearly 175 fume hoods). Flow-measuring devices are necessary to continually monitor hood performance. The flow-measuring device should he tied into an energy management control system to detect problems at a central location without relying on the users to convey information of a problem. Compatibility concerns and limitations should always be considered when choosing the most effective flow-measuring device for a particular situation. Good practice on initial hood design and placement will provide a system for which a flow-measuring device may be used to its full potential and effectiveness.

  6. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  7. Earthquakes - Discover Our Earth

    NSDL National Science Digital Library

    Institute for the Study of the Continents (INSTOC) Geoscience Information Project

    This site, from Cornell University, describes the origins, effects, measurement, and consequences of earthquakes. The site includes an overview and an exercise section that discusses key points pertaining to earthquakes, followed up with three activities.

  8. Earthquakes in Your State

    NSDL National Science Digital Library

    This activity is part of Planet Diary and is an online investigation of where earthquakes occur. Students research past earthquakes to see if any have occurred in their region. This activity has an accompanying page of websites for further research.

  9. Speeding earthquake disaster relief

    USGS Publications Warehouse

    Mortensen, Carl; Donlin, Carolyn; Page, Robert A.; Ward, Peter

    1995-01-01

    In coping with recent multibillion-dollar earthquake disasters, scientists and emergency managers have found new ways to speed and improve relief efforts. This progress is founded on the rapid availability of earthquake information from seismograph networks.

  10. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  11. First Observation of Coseismic Seafloor Crustal Deformation due to M7 Class Earthquakes in the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Ikuta, R.; Ando, M.; Okuda, T.; Sugimoto, S.; Besana, G. M.; Kuno, M.

    2005-12-01

    The Mw7.3 and 7.5 earthquakes (Off Kii-Peninsula Earthquakes) occurred close to the source region of the anticipated Tonankai Trough in September 5, 2004. The focal mechanisms of the two earthquakes have no low angle nodal planes, which shows that the earthquakes are intraplate earthquakes in the Philippine Sea Plate. We observed coseismic horizontal displacement due to the Off Kii-Peninsula Earthquakes by means of a system for observing seafloor crustal deformation, which is the first observation of coseismic seafloor displacement in the world. We have developed a system for observing seafloor crustal deformation. The observation system is composed of 1) acoustic measurement between a ship transducer and sea-bottom transponders, and 2) kinematic GPS positioning of the observation vessel. We have installed a seafloor benchmark close to the epicenters of the Off Kii-Peninsula Earthquakes. The benchmark is composed of three sea-bottom transponders. The location of benchmark is defined as the weight center of the three transponders. We can determine the location of benchmark with an accuracy of about 5 cm at each observation. We have repeatedly measured the seafloor benchmark six times up to now: 1) July 12-16 and 21-22, 2004, 2) November 9-10, 3) January 19, 2005, 4) May 18-20, 5) July 19-20, and 6) August 18-19 and 29-30. The Off Kii-Peninsula Earthquakes occurred during the above monitoring period. The coseismic horizontal displacement of about 21 cm toward SSE was observed at our seafloor benchmark. The displacement is 3.5 times as large as the maximum displacement observed by on land GPS network in Japan, GEONET. The monitoring of seafloor crustal deformation is effective to detect the deformations associated with earthquakes occurring in ocean areas. This study is promoted by "Research Revolution 2002" of Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to the captain and crews of Research Vessel, Asama, of Mie Prefectural Science and Technology Promotion Center, Japan.

  12. The Impact of the Wenchuan Earthquake on Birth Outcomes

    PubMed Central

    Tan, Cong E.; Li, Hong Jun; Zhang, Xian Geng; Zhang, Hui; Han, Pei Yu; An, Qu; Ding, Wei Jun; Wang, Mi Qu

    2009-01-01

    Background Earthquakes and other catastrophic events frequently occurring worldwide can be considered as outliers and cause a growing and urgent need to improve our understanding of the negative effects imposed by such disasters. Earthquakes can intensively impact the birth outcomes upon psychological and morphological development of the unborn children, albeit detailed characteristics remain obscure. Methods and Findings We utilized the birth records at Du Jiang Yan and Peng Zhou counties to investigate the birth outcomes as a consequence of a major earthquake occurred in Wenchuan, China on May 12, 2008. Totally 13,003 of neonates were recorded, with 6638 and 6365 for pre- and post- earthquake, respectively. Significant low birthweight, high ratio of low birthweight, and low Apgar scores of post-earthquake group were observed. In contrast, the sex ratio at birth, birth length and length of gestation did not show statistical differences. The overall ratio of birth-defect in the post-earthquake (1.18%) is statistically high than that of pre-earthquake (0.99%), especially for those in the first trimester on earthquake day (1.47%). The birth-defect spectrum was dramatically altered after earthquake, with the markedly increased occurrences of ear malformations. The ratio of preterm birth post-earthquake (7.41%) is significant increased than that of pre-earthquake (5.63%). For the birth outcomes of twins, significant differences of the ratio of twins, birth weight, ratio of low birthweight and birth-defect rate were observed after earthquake. Conclusion A hospital-based study of birth outcomes impacted by the Wenchuan earthquake shows that the earthquake was associated with significant effects on birth outcomes, indicating it is a major monitor for long-term pregnant outcomes. PMID:19997649

  13. ULF magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake

    NASA Astrophysics Data System (ADS)

    Bernardi, A.; Fraser-Smith, A. C.; McGill, P. R.; Villard, O. G.

    1991-08-01

    Anomalous measurements of the ultra-low frequency (ULF) magnetic field fluctuations prior to the magnitude 7.1 Loma Prieta earthquake of October 17, 1989, have been studied. For the past few years we have been monitoring fluctuations of the magnetic field of the Earth in the ULF range at Corralitos, California; our instruments were located 7 km from the epicenter of the earthquake. We have observed four anomalies in our data which may turn out to be precursors to the earthquake. First we observe narrowband noise fluctuations centered at 0.1 Hz and estimated to have a bandwidth of 0.00143-0.00167 Hz, i.e. a Q value of 60-70. The narrowband fluctuations appear to have a maximum equivalent amplitude of over 1400 pT/?Hz which is roughly 31 dB higher than the typical quiet average amplitude background levels. These fluctuations begin around September 12 and last until October 5. Next we observe the appearance of additive wideband noise fluctuations beginning around October 5 and continuing until the occurrence of the earthquake. These wideband fluctuations, which cover almost the entire 0.01-10 Hz frequency range of the system, have an average amplitude that is approximately 19 dB larger than typical levels in the 0.01-0.02 Hz band. Thirdly, we observe an atypical decrease in noise levels in the 0.2-5 Hz band throughout the day prior to the earthquake. The fourth anomaly is a jump in the power of magnetic field fluctuations, mostly in the 0.01-0.5 Hz band, in the three hours preceding the earthquake. This activity reached its highest level in the lowest 0.01-0.02 Hz band, and had a magnitude of roughly 60000 pT/?Hz, which is about 40 dB larger than typical background noise levels in the band. Our anomalous measurements do not appear to be the result of any magnetic field fluctuations generated in the upper atmosphere or to movement of our sensor caused by shocks preceding the quake. In describing these anomalous magnetic field fluctuations, both electrokinetic and piezoelectric theories of the generation of magnetic field fluctuations prior to earthquakes suggest wideband fluctuations. In our measurements, we have observed both wideband and narrowband fluctuations, so that our narrowband measurements do not seem to be easily explicable by the above theories. However, the wideband fluctuations could turn out to be attributable to the above mechanisms, since at the monitored frequencies, the skin depths of electromagnetic waves are comparable with the distances from our sensors to the earthquake focus, and therefore our measurements would not be unexpected.

  14. Real-Time Earthquake Analysis for Disaster Mitigation (READI) Network

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2014-12-01

    Real-time GNSS networks are making a significant impact on our ability to forecast, assess, and mitigate the effects of geological hazards. I describe the activities of the Real-time Earthquake Analysis for Disaster Mitigation (READI) working group. The group leverages 600+ real-time GPS stations in western North America operated by UNAVCO (PBO network), Central Washington University (PANGA), US Geological Survey & Scripps Institution of Oceanography (SCIGN project), UC Berkeley & US Geological Survey (BARD network), and the Pacific Geosciences Centre (WCDA project). Our goal is to demonstrate an earthquake and tsunami early warning system for western North America. Rapid response is particularly important for those coastal communities that are in the near-source region of large earthquakes and may have only minutes of warning time, and who today are not adequately covered by existing seismic and basin-wide ocean-buoy monitoring systems. The READI working group is performing comparisons of independent real time analyses of 1 Hz GPS data for station displacements and is participating in government-sponsored earthquake and tsunami exercises in the Western U.S. I describe a prototype seismogeodetic system using a cluster of southern California stations that includes GNSS tracking and collocation with MEMS accelerometers for real-time estimation of seismic velocity and displacement waveforms, which has advantages for improved earthquake early warning and tsunami forecasts compared to seismic-only or GPS-only methods. The READI working group's ultimate goal is to participate in an Indo-Pacific Tsunami early warning system that utilizes GNSS real-time displacements and ionospheric measurements along with seismic, near-shore buoys and ocean-bottom pressure sensors, where available, to rapidly estimate magnitude and finite fault slip models for large earthquakes, and then forecast tsunami source, energy scale, geographic extent, inundation and runup. This will require cooperation with other real-time efforts around the Pacific Rim in terms of sharing, analysis centers, and advisory bulletins to the responsible government agencies. The IAG's Global Geodetic Observing System (GGOS), in particular its natural hazards theme, provides a natural umbrella for achieving this objective.

  15. School Safety and Earthquakes.

    ERIC Educational Resources Information Center

    Dwelley, Laura; Tucker, Brian; Fernandez, Jeanette

    1997-01-01

    A recent assessment of earthquake risk to Quito, Ecuador, concluded that many of its public schools are vulnerable to collapse during major earthquakes. A subsequent examination of 60 buildings identified 15 high-risk buildings. These schools were retrofitted to meet standards that would prevent injury even during Quito's largest earthquakes. US

  16. Earthquake and Schools. [Videotape].

    ERIC Educational Resources Information Center

    Federal Emergency Management Agency, Washington, DC.

    Designing schools to make them more earthquake resistant and protect children from the catastrophic collapse of the school building is discussed in this videotape. It reveals that 44 of the 50 U.S. states are vulnerable to earthquake, but most schools are structurally unprepared to take on the stresses that earthquakes exert. The cost to the

  17. WIND TURBINES AND EARTHQUAKES

    Microsoft Academic Search

    U. Ritschel; I. Warnke; J. Kirchner; B. Meussen

    Presenter: U. Ritschel, Physicist and Managing Director of Windrad Engineering GmbH Abstract: Modern wind turbines have been mainly erected in regions where earthquakes are rare or normally weak. More recently wind farms in Africa, Asia ad southern Europe have been developed where stability under earthquakes becomes an issue. So far earthquake loads have been analyzed with methods adapted from civil

  18. Forecasting Earthquakes Using Paleoseismology

    NSDL National Science Digital Library

    This online article, from Earth: Inside and Out, takes a look at how paleoseismologists study the sediment around faults to help predict future earthquakes. It covers the role faults play in earthquakes and how sediment evidence is used to reconstruct a site's earthquake history.

  19. Children's Ideas about Earthquakes

    ERIC Educational Resources Information Center

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered

  20. Redefining Earthquakes and the Earthquake Machine

    ERIC Educational Resources Information Center

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models

  1. Usefulness of long-term video-EEG monitoring in children at a tertiary care center.

    PubMed

    Onay, Selin; Yaln?zo?lu, Dilek; Topu, Meral; Turanl?, Gzide

    2013-01-01

    The value of video-electroencephalographic monitoring (EEG-VM) in evaluating patients with epileptic disorders constitutes a major research field. This study investigates the usefulness of inpatient long-term EEG-VM for pediatric neurology patients under four headings: pre-surgical evaluation; seizure classification; epileptic seizure and non-epileptic paroxysmal event differentiation; and antiepileptic drug (AED) treatment modification. A retrospective study of 101 patients over a one-year period was carried out. The results showed that following EEG-VM, 57.4% of the patients were referred for discussion to the epilepsy surgery conference regarding resective surgery, and of these, 31% were deemed to be surgical candidates. The seizure classification assigned to the patients before EEG-VM changed in 73.3% of the patients after EEG-VM. Regarding the differentiation between epileptic seizure and non-epileptic paroxysmal events, a diagnosis of psychogenic non-epileptic seizure (PNES) was made in 4% of the patients after EEG-VM. EEG-VM outcomes led to the modification of AED treatment in 68.3% of the patients. These significant alterations demonstrate the usefulness of EEG-VM in the management of pediatric neurology patients. PMID:24577976

  2. Operational earthquake forecasting can enhance earthquake preparedness

    USGS Publications Warehouse

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time?dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazardground?motion exceedance probabilities as well as short?term rupture probabilitiesin concert with the long?term forecasts of probabilistic seismic?hazard analysis (PSHA).

  3. Earthquake Hazard in the Heart of the Homeland

    USGS Publications Warehouse

    Gomberg, Joan; Schweig, Eugene

    2007-01-01

    Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois. Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana. Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?

  4. Section D. Anisotropic rock physics and related studies D4-1 GEMS: the opportunity for stress-forecasting all damaging earthquakes

    E-print Network

    damaging earthquakes (M 5) worldwide, the range of benefits would include: a long-term stress forecasting words: earthquake stress-forecasting; GEMS; Global Earthquake stress-Monitoring System; New Geophysics to a New Geophysics, and a paradigm shift in forecasting earthquakes (Crampin et al. 2008). Large

  5. 1906 San Francisco Earthquake Tsunami

    NSDL National Science Digital Library

    Tsunami and Earthquake Research at the USGS

    A series of visualizations of the tsunami generated by the 1906 earthquake. Included are maps of the San Andreas fault offshore, in San Francisco Bay, diagrams of the magnitude of the slip under the San Francisco Bay, and animations of wave height following the earthqake. Two separate animations are featured as QuickTime movies; one is centered on the Golden Gate Bridge, the other shows the whole San Francisco Bay.

  6. Precursory signals around epicenters and local active faults prior to inland or coastal earthquakes

    NASA Astrophysics Data System (ADS)

    Valizadeh Alvan, Habibeh

    Although earthquakes are still considered as unpredictable phenomenon but scientific efforts during the past decade have revealed some pronounced changes in the quality and quantity of some materials and natural phenomenon on and above the earths surface taking place before strong shakes. Pre-earthquake physical and chemical interactions in the earths ground may cause anomalies in temperature, surface latent heat flux (SLHF), relative humidity, upwelling index and chlorophyll-a (Chl-a) concentration on the ground or sea surface. Earthquakes are triggered when the energy accumulated in rocks releases causing ruptures in place of faults. The main purpose of this study is to explore and demonstrate possibility of any changes in surface temperature or latent heat flux before, during and after earthquakes. We expect that variations in these factors are accompanied with the increase of Chl-a concentration on the sea surface and upwelling events prior to coastal earthquake events. For monitoring the changes in surface temperature we used NOAA-AVHRR and microwave radiometers like AMSR-E/Aqua data. SLHF data and upwelling indices are provided by National Centers for Environmental Prediction (NCEP) Reanalysis Project and Pacific Fisheries Environmental Laboratory (PFEL) respectively. Chl-a concentration is also available in MODIS website. Our detailed analyses show significant increase of SLHF and upwelling of nutrient-rich water prior to the main events which is attributed to the raise in surface temperature and Chl-a concentration at that time. Meaningful increases in temperature, relative humidity and SLHF variations from weeks before the earthquakes in epicentral areas and along local active faults are revealed. In addition, considerable anomalies in Chl-a concentration are also attributed to the raise in upwelling index.

  7. Continuous Glucose Monitoring Accuracy Results Vary between Assessment at Home and Assessment at the Clinical Research Center

    PubMed Central

    Luijf, Yoeri M.; Avogaro, Angelo; Benesch, Carsten; Bruttomesso, Daniela; Cobelli, Claudio; Ellmerer, Martin; Heinemann, Lutz; Mader, Julia K.; DeVries, J. Hans

    2012-01-01

    Background Continuous glucose monitoring system (CGMS) accuracy is of critical importance both in delivering therapeutic value and as a component of a closed-loop system. This study aims at assessing the differences between accuracy assessments of CGMS at home and at the clinical research center (CRC). Methods Twelve patients with type 1 diabetes used the Dexcom SEVEN PLUS (DexCom, Inc.) CGMS for 7 days. Patients performed ?6 finger pricks [self-measurement of blood glucose (SMBG)] per day while at home. Reference blood glucose measurements were taken during a 24 h CRC admission (YSI 2300 STAT Plus). Continuous glucose monitoring system data were compared with YSI and SMBG values. Outcome measures included mean absolute relative difference (MARD) and Clarke error grid analysis (CEGA). Results During CRC admission, the MARD of CGMS vs YSI glucose values was 19.2% (n = 509)significantly higher than 16.8% at home (n = 611) (p = .004). In the hypoglycemic range, MARD was 23.9% at CRC (n = 26)not significantly different from 41.6% at home (n = 39) (p = .269). In the hyperglycemic range, CRC MARD at 20.3% (n = 115) was significantly higher than home MARD at 11.2% (n = 118) (p = .001). Clarke error grid analysis showed no significant difference in distribution of data pairs (overall p = .317). Conclusions This study illustrates the importance of the setting used when assessing CGMS accuracy. Continuous glucose monitoring system accuracy at home appeared better than at the CRC. This is probably due to the higher sampling rate of reference measurements, feasible only in the CRC. Testing CGMS accuracy in the CRC provides valuable information over and above home testing. PMID:23063036

  8. Rapid Fault Rupture Characterization Using Seismic Arrays: Application to the Sumatra Earthquakes and Tsunami Warning

    NASA Astrophysics Data System (ADS)

    Hsu, V.

    2006-12-01

    The 26 December 2004 Sumatra earthquake along the Andaman-Sumatra subduction zone was the third largest ever recorded (Mw 9.2) by modern seismic instruments. It has also the longest ruptured fault segment ever observed (1200 km). And it has the largest tsunami casualty (250,000 people) ever experienced. Three months later and about 190 km to the SE along the Sunda Trench, another Mw 8.7 earthquake occurred on 28 March 2005 killing another 1,300 people. Seventeen months later and about 1,700 km further to the SE the Mw 7.7 Java earthquake occurred on July 17, 2006 killing another 500 people. The Sunda trench seems to be experiencing a sequence of ruptures along its entire length and more large tsunamigenic earthquakes seems possible. All three earthquakes showed extra long duration of P wave signals indicating long rupture length. In this study, I will use the recently made available IMS (International Monitoring System) seismic array data to study the rupture characteristics of the three earthquakes. The KSRS primary station located in South Korea is first used to study the 26 Dec 2004 earthquake. There are two arrays at KSRS. The 19-element short- period (SP) array with 2 km element spacing and the 7-element long-period (LP) array with 20 km element spacing. The array processing technique called frequency-wave number (fk) analysis was used to determine the back azimuth of the seismic signal. The LP array was first used (with 6 elements) and the fk back azimuth for the P waves changed smoothly from 230 to 251 degrees during the 500 seconds of P wave signal. The intersection of the two back azimuths with the Andaman-Sumatra subduction zone outlined the 1200 km ruptured fault segment of the 26 December 2004 earthquake. The SP array was tried next and the results were comparable with the LP array. The successful application of fk analysis of P wave signal to track rupture propagation of large earthquakes is encouraging. This means that tsunami warning centers can quicly determine the rupture nature and assess the tsunamigenic potential of large earthquakes using the initial P signal from arrays. Same successful applications were made using other IMS arrays at Chiang Mai, Thailand and Alice Spring, Australia. The seismic array data analysis was also applied to the other two Indonesian earthquakes. The 28 March 2005 Mw 8.7 earthquake has about 140 seconds of P duration and fk analysis did not show a clear single-direction rupture propagation. This earthquake has more complicated rupture process. The 17 July 2006 Mw 7.7 Java earthquake has a P duration of 160 seconds longer than that of the Mw 8.7 event. The total rupture length and P duration indicate a slow rupture process.

  9. Predicting catastrophic earthquakes

    NSDL National Science Digital Library

    Iwata et al.

    This resource provides an abstract. This article discusses a method based on the magnitude-frequency distribution of previous earthquakes in a region. It is used to examine the probability of a small earthquake growing into a catastrophic one. When a small earthquake is detected in a region where a catastrophic one is expected, early warning systems can be modified to determine the probability that this earthquake will grow in magnitude. It was found that if the observed earthquake magnitude reaches 6.5, the estimated probability that the final magnitude will reach 7.5 is between 25 and 41 percent.

  10. Developing stress-monitoring sites using cross-hole seismology to stress-forecast the times and magnitudes of future earthquakes

    E-print Network

    Developing stress-monitoring sites using cross-hole seismology to stress-forecast the times 2000 Abstract A new understanding of rockmass deformation suggests that changing stress in the crust almost all rocks in the crust. These stress-aligned micro cracks cause the widely observed splitting

  11. Earthquake forecasting and warning

    SciTech Connect

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  12. Crustal earthquake triggering by modern great earthquakes on subduction zone thrusts

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Sherrod, Brian

    2014-02-01

    Among the many questions raised by the recent abundance of great (M > 8.0) subduction thrust earthquakes is their potential to trigger damaging earthquakes on crustal faults within the overriding plate and beneath many of the world's densely populated urban centers. We take advantage of the coincident abundance of great earthquakes globally and instrumental observations since 1960 to assess this triggering potential by analyzing centroids and focal mechanisms from the centroid moment tensor catalog for events starting in 1976 and published reports about the M9.5 1960 Chile and M9.2 1964 Alaska earthquake sequences. We find clear increases in the rates of crustal earthquakes in the overriding plate within days following all subduction thrust earthquakes of M > 8.6, within about 10 of the triggering event centroid latitude and longitude. This result is consistent with dynamic triggering of more distant increases of shallow seismicity rates at distances beyond 10, suggesting that dynamic triggering may be important within the near field too. Crustal earthquake rate increases may also follow smaller M > 7.5 subduction thrust events, but because activity typically occurs offshore in the immediately vicinity of the triggering rupture plane, it cannot be unambiguously attributed to sources within the overriding plate. These observations are easily explained in the context of existing earthquake scaling laws.

  13. Lab 5 : Earthquakes --I: Locating an Earthquake Introduction

    E-print Network

    Chen, Po

    they design earthquake resistant structures. There are two main types of body waves, each traveling 1 Lab 5 : Earthquakes -- I: Locating an Earthquake Introduction Earthquakes have had a profound impact on nearly all human societies. In the past, earthquake activity was explained by myths

  14. Sex difference and earthquake experience effects on earthquake victims

    Microsoft Academic Search

    Veysel Yilmaz; Sengul Cangur; H. Eray elik

    2005-01-01

    This study investigated whether sex differences and earthquake experiences affect the earthquake victims as to their future expectations, their reactions during the earthquake and their first feelings after the earthquake. Especially, conditional relationships among reaction, expectation and first feeling by sex and earthquake experiences were investigated. Graphical Log-linear models were used in order to determine the interaction structure among the

  15. Post-earthquake building safety assessments for the Canterbury Earthquakes

    USGS Publications Warehouse

    Marshall, J.; Barnes, J.; Gould, N.; Jaiswal, K.; Lizundia, B.; Swanson, David; Turner, F.

    2012-01-01

    This paper explores the post-earthquake building assessment program that was utilized in Christchurch, New Zealand following the Canterbury Sequence of earthquakes beginning with the Magnitude (Mw.) 7.1 Darfield event in September 2010. The aftershocks or triggered events, two of which exceeded Mw 6.0, continued with events in February and June 2011 causing the greatest amount of damage. More than 70,000 building safety assessments were completed following the February event. The timeline and assessment procedures will be discussed including the use of rapid response teams, selection of indicator buildings to monitor damage following aftershocks, risk assessments for demolition of red-tagged buildings, the use of task forces to address management of the heavily damaged downtown area and the process of demolition. Through the post-event safety assessment program that occurred throughout the Canterbury Sequence of earthquakes, many important lessons can be learned that will benefit future response to natural hazards that have potential to damage structures.

  16. Engaging Students in Earthquake Science

    NASA Astrophysics Data System (ADS)

    Cooper, I. E.; Benthien, M.

    2004-12-01

    The Southern California Earthquake Center Communication, Education, and Outreach program (SCEC CEO) has been collaborating with the University of Southern California (USC) Joint Education Project (JEP) and the Education Consortium of Central Los Angeles (ECCLA) to work directly with the teachers and schools in the local community around USC. The community surrounding USC is 57 % Hispanic (US Census, 2000) and 21% African American (US Census, 2000). Through the partnership with ECCLA SCEC has created a three week enrichment intersession program, targeting disadvantaged students at the fourth/fifth grade level, dedicated entirely to earthquakes. SCEC builds partnerships with the intersession teachers, working together to actively engage the students in learning about earthquakes. SCEC provides a support system for the teachers, supplying them with the necessary content background as well as classroom manipulatives. SCEC goes into the classrooms with guest speakers and take the students out of the classroom on two field trips. There are four intersession programs each year. SCEC is also working with USC's Joint Education Project program. The JEP program has been recognized as one of the "oldest and best organized" Service-Learning programs in the country (TIME Magazine and the Princeton Review, 2000). Through this partnership SCEC is providing USC students with the necessary tools to go out to the local schools and teach students of all grade levels about earthquakes. SCEC works with the USC students to design engaging lesson plans that effectively convey content regarding earthquakes. USC students can check out hands-on/interactive materials to use in the classrooms from the SCEC Resource Library. In both these endeavors SCEC has expanded our outreach to the local community. SCEC is reaching over 200 minority children each year through our partnerships, and this number will increase as our programs grow.

  17. Oscillating brittle and viscous behavior through the earthquake cycle in the Red River Shear Zone: Monitoring flips between reaction and textural softening and hardening

    NASA Astrophysics Data System (ADS)

    Wintsch, Robert P.; Yeh, Meng-Wan

    2013-03-01

    Microstructures associated with cataclasites and mylonites in the Red River shear zone in the Diancang Shan block, Yunnan Province, China show evidence for both reaction hardening and softening at lower greenschist facies metamorphic conditions. The earliest fault-rocks derived from Triassic porphyritic orthogneiss protoliths are cataclasites. Brittle fractures and crushed grains are cemented by newly precipitated quartz. These cataclasites are subsequently overprinted by mylonitic fabrics. Truncations and embayments of relic feldspars and biotites show that these protolith minerals have been dissolved and incompletely replaced by muscovite, chlorite, and quartz. Both K-feldspar and plagioclase porphyroclasts are truncated by muscovite alone, suggesting locally metasomatic reactions of the form: 3K-feldspar + 2H+ = muscovite + 6SiO2(aq) + 2K+. Such reactions produce muscovite folia and fish, and quartz bands and ribbons. Muscovite and quartz are much weaker than the reactant feldspars and these reactions result in reaction softening. Moreover, the muscovite tends to align in contiguous bands that constitute textural softening. These mineral and textural modifications occurred at constant temperature and drove the transition from brittle to viscous deformation and the shift in deformation mechanism from cataclasis to dissolution-precipitation and reaction creep. These mylonitic rocks so produced are cut by K-feldspar veins that interrupt the mylonitic fabric. The veins add K-feldspar to the assemblage and these structures constitute both reaction and textural hardening. Finally these veins are boudinaged by continued viscous deformation in the mylonitic matrix, thus defining a late ductile strain event. Together these overprinting textures and microstructures demonstrate several oscillations between brittle and viscous deformation, all at lower greenschist facies conditions where only frictional behavior is predicted by experiments. The overlap of the depths of greenschist facies conditions with the base of the crustal seismic zone suggests that the implied oscillations in strain rate may have been related to the earthquake cycle.

  18. Uplift and Subsidence Associated with the Great Aceh-Andaman Earthquake of 2004

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The magnitude 9.2 Indian Ocean earthquake of December 26, 2004, produced broad regions of uplift and subsidence. In order to define the lateral extent and the downdip limit of rupture, scientists from Caltech, Pasadena, Calif.; NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Scripps Institution of Oceanography, La Jolla, Calif.; the U.S. Geological Survey, Pasadena, Calif.; and the Research Center for Geotechnology, Indonesian Institute of Sciences, Bandung, Indonesia; first needed to define the pivot line separating those regions. Interpretation of satellite imagery and a tidal model were one of the key tools used to do this.

    These pre-Sumatra earthquake (a) and post-Sumatra earthquake (b) images of North Sentinel Island in the Indian Ocean, acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft, show emergence of the coral reef surrounding the island following the earthquake. The tide was 30 plus or minus 14 centimeters lower in the pre-earthquake image (acquired November 21, 2000) than in the post-earthquake image (acquired February 20, 2005), requiring a minimum of 30 centimeters of uplift at this locality. Observations from an Indian Coast Guard helicopter on the northwest coast of the island suggest that the actual uplift is on the order of 1 to 2 meters at this site.

    In figures (c) and (d), pre-earthquake and post-earthquake ASTER images of a small island off the northwest coast of Rutland Island, 38 kilometers east of North Sentinel Island, show submergence of the coral reef surrounding the island. The tide was higher in the pre-earthquake image (acquired January 1, 2004) than in the post-earthquake image (acquired February 4, 2005), requiring subsidence at this locality. The pivot line must run between North Sentinel and Rutland islands. Note that the scale for the North Sentinel Island images differs from that for the Rutland Island images.

    The tidal model used for this study was based on data from JPL's Topex/Poseidon satellite. The model was used to determine the relative sea surface height at each location at the time each image was acquired, a critical component used to quantify the deformation.

    The scientists' method of using satellite imagery to recognize changes in elevation relative to sea surface height and of using a tidal model to place quantitative bounds on coseismic uplift or subsidence is a novel approach that can be adapted to other forms of remote sensing and can be applied to other subduction zones in tropical regions.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  19. Plotting Earthquakes with Near Real-Time Data

    NSDL National Science Digital Library

    Bill Slattery

    This activity only requires access to the internet to link to the United States Geological Survey National Earthquake Information Center website and a physiographic chart of the world that has longitude/latitude. Several scientific supply houses sell such physiographic charts. Students plot weekly earthquake data from the NEIC website for several weeks, then work in groups to explain the results.

  20. Science on a Sphere- Japan Earthquake and Tsunami Wave Heights

    NSDL National Science Digital Library

    3 animations provide a visual of the March 11, 2011 Japan Earthquake and Tsunami. Predicted Tsunami wave heights from the Center for Tsunami Research, Real-Time Earthquake dataset of hourly images from Feb. 19, 2011 to March 24, 2011. A third video merges these two datasets.

  1. The Distribution of Earthquakes: An Earthquake Deficit?

    NSDL National Science Digital Library

    John Marquis

    In this activity, students use online resources to investigate the occurrence of earthquakes in Southern California to decide if there has been a 'deficit', that is, not enough earthquakes in the area in historical time to release the amount of strain energy that plate tectonics is constantly supplying to the crust. In the first two parts, they must determine the appropriate year to begin their study of historic earthquake records (from 1860-1900), and then they must decide if the energy released by past earthquakes has been equivalent to the amount of energy accumulating through the action of plate tectonics over the same number of years. In part three, they perform an analysis of their findings by answering a set of questions. References are included.

  2. Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2006

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl

    2008-01-01

    Between January 1 and December 31, 2006, AVO located 8,666 earthquakes of which 7,783 occurred on or near the 33 volcanoes monitored within Alaska. Monitoring highlights in 2006 include: an eruption of Augustine Volcano, a volcanic-tectonic earthquake swarm at Mount Martin, elevated seismicity and volcanic unrest at Fourpeaked Mountain, and elevated seismicity and low-level tremor at Mount Veniaminof and Korovin Volcano. A new seismic subnetwork was installed on Fourpeaked Mountain. This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field during 2006, (2) a description of earthquake detection, recording, analysis, and data archival systems, (3) a description of seismic velocity models used for earthquake locations, (4) a summary of earthquakes located in 2006, and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2006.

  3. WenChuan Earthquake: A Great Quake in the GPS Deformation GAP?

    Microsoft Academic Search

    L. Li; C. Yong

    2010-01-01

    The horizontal velocity of crust movement measured by Global Position System (GPS) has been used as indication to the activities of faults, as well as an important index to describe possibilities of earthquake risk for special areas. The great earthquake occurred on May 12, 2008 with magnitude of M8.0, reported by China Earthquake Networks Center, was located in the middle

  4. Title: Earthquake Information for International Students To all International Students at the University of Tokyo

    E-print Network

    Miyashita, Yasushi

    Title: Earthquake Information for International Students To all International Students devastated by the massive earthquake and tsunami that occurred on March 11, 2011. In Tokyo, planned rolling: http://dir.u-tokyo.ac.jp/en/Center/ International Advising Room earthquake-related information: http

  5. Assessment of point process models for earthquake forecasting Andrew Bray1

    E-print Network

    Schoenberg, Frederic Paik (Rick)

    Assessment of point process models for earthquake forecasting Andrew Bray1 and Frederic Paik Models for forecasting earthquakes are currently tested prospectively in well- organized testing centers some of these tests and residual methods for determining the goodness-of-fit of earthquake forecasting

  6. Retrospective Evaluation of Earthquake Forecasts during the 2010-12 Canterbury, New Zealand, Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Werner, M. J.; Marzocchi, W.; Taroni, M.; Zechar, J. D.; Gerstenberger, M.; Liukis, M.; Rhoades, D. A.; Cattania, C.; Christophersen, A.; Hainzl, S.; Helmstetter, A.; Jimenez, A.; Steacy, S.; Jordan, T. H.

    2014-12-01

    The M7.1 Darfield, New Zealand (NZ), earthquake triggered a complex earthquake cascade that provides a wealth of new scientific data to study earthquake triggering and the predictive skill of statistical and physics-based forecasting models. To this end, the Collaboratory for the Study of Earthquake Predictability (CSEP) is conducting a retrospective evaluation of over a dozen short-term forecasting models that were developed by groups in New Zealand, Europe and the US. The statistical model group includes variants of the Epidemic-Type Aftershock Sequence (ETAS) model, non-parametric kernel smoothing models, and the Short-Term Earthquake Probabilities (STEP) model. The physics-based model group includes variants of the Coulomb stress triggering hypothesis, which are embedded either in Dieterich's (1994) rate-state formulation or in statistical Omori-Utsu clustering formulations (hybrid models). The goals of the CSEP evaluation are to improve our understanding of the physical mechanisms governing earthquake triggering, to improve short-term earthquake forecasting models and time-dependent hazard assessment for the Canterbury area, and to understand the influence of poor-quality, real-time data on the skill of operational (real-time) forecasts. To assess the latter, we use the earthquake catalog data that the NZ CSEP Testing Center archived in near real-time during the earthquake sequence and compare the predictive skill of models using the archived data as input with the skill attained using the best available data today. We present results of the retrospective model comparison and discuss implications for operational earthquake forecasting.

  7. United States Geological Survey, Earthquake Hazards Program: Earthquake Research

    NSDL National Science Digital Library

    This site describes the research activities of the Earthquake Hazards Program (EHP) of the United States Geological Survey (USGS). The activities include: borehole geophysics and rock mechanics, crustal deformation, earthquake information, earthquake geology and paleoseismology, hazards, seismology and earth structure, and strong motion seismology, site response, and ground motion. Other links include: earthquake activity, earthquake facts and education, earthquake products, hazards and preparedness, regional websites, and seismic networks.

  8. Earthquake resistant design

    NSDL National Science Digital Library

    Lawrence L. Malinconico

    After having learned about earthquakes in class, through readings and earlier lab assignments, students (in groups of two) are asked to design and construct (using balsa wood, string, paper and glue) a three-story building designed to minimize the effects of shear-wave vibrations that occur during an earthquake. The students are required to research the design concepts on their own and most of the construction work occurs outside of the regular laboratory period. The structures are tested for strength a week before the earthquake occurs - can they support the required load for each floor? On earthquake day, the buildings a tested for a "design earthquake" and then each group is given the opportunity to see how "large" and earthquake their structure can withstand - both in terms of frequency and amplitude variations. In addition to building the structure, each team has to submit a paper reflecting on why they designed and built the structure the way they did.

  9. Earthquakes and Volcanoes

    NSDL National Science Digital Library

    Medina, Philip

    This unit provides an introduction for younger students on earthquakes, volcanoes, and how they are related. Topics include evidence of continental drift, types of plate boundaries, types of seismic waves, and how to calculate the distance to the epicenter of an earthquake. There is also information on how earthquake magnitude and intensity are measured, and how seismic waves can reveal the Earth's internal structure. A vocabulary list and downloadable, printable student worksheets are provided.

  10. Earthquakes Influenced by Water

    Microsoft Academic Search

    Chi-Yuen Wang; Michael Manga

    \\u000a Thus far, we have focused on the effects of earthquakes on hydrological processes. This is not a one-way relationship. Changes\\u000a in pore pressure can also induce earthquakes. In this chapter we thus discuss several ways in which hydrology influences seismicity.\\u000a While the term and induced and triggered\\u000a are often used interchangeably, we endeavor to refer to triggered earthquakes when the

  11. Thermal omens before earthquakes

    Microsoft Academic Search

    De-Fu Liu; Ke-Yin Peng; Wei-He Liu; Ling-Yi Li; Jian-Sheng Hou

    1999-01-01

    The calefacient phenomenon in the vicinity of the epicenter before an earthquake has observed. It shows that there exists\\u000a some abnormal information of heat radiation in the seismogenic zone. It might be helpful to open up a new research field of\\u000a survey the hot omen of earthquake and to improve the capability of earthquake prediction by using the satellite remote

  12. Decade Plan (2010-2020) for the Study on Earthquake Predictability: Challenges and Opportunities in China (Invited)

    Microsoft Academic Search

    Z. Wu; G. Liu; H. Ma; C. Jiang; L. Zhou; Z. Shao; Y. Wu; R. Yan; W. Yan; Y. Li; H. Peng

    2009-01-01

    Since the beginning of 2009, the Department for Earthquake Monitoring and Prediction of China Earthquake Administration (CEA) has been organizing the planning for the study on earthquake predictability for the period 2010-2020. Invited by the organizers of this session, this presentation briefly introduces the planning works, the strategies for the planning, and the research priorities proposed in the plan. Lessons

  13. Locating Earthquake Epicenters

    NSDL National Science Digital Library

    Pinter, Nicholas

    In this exercise, students use data from the 1994 Northridge, California, earthquake to locate the earthquake and its time of occurrence, and plot data from Central and South America on a map to delineate plate boundaries. Introductory materials explain how earthquakes are caused, describe the types of seismic waves, and explain that the difference in arrival times may be used to calculate distance to the earthquake. Each portion of the exercise includes instructions, datsets, maps, travel-time graphs, study questions, and tables for entering data. A bibliography is also provided.

  14. Earthquakes of the Holocene.

    USGS Publications Warehouse

    Schwartz, D.P.

    1987-01-01

    Areas in which significant new data and insights have been obtained are: 1) fault slip rates; 2) earthquake recurrence models; 3) fault segmentation; 4) dating past earthquakes; 5) paleoseismicity in the E and central US; 6) folds and earthquakes, and 7) future earthquake behavior. Summarizes important trends in each of these research areas based on information published between June 1982 and June 1986 and preprints of papers in press. The bibliography for this period contains mainly referred publications in journals and books.-from Author

  15. Are Earthquake Magnitudes Clustered?

    SciTech Connect

    Davidsen, Joern; Green, Adam [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2011-03-11

    The question of earthquake predictability is a long-standing and important challenge. Recent results [Phys. Rev. Lett. 98, 098501 (2007); ibid.100, 038501 (2008)] have suggested that earthquake magnitudes are clustered, thus indicating that they are not independent in contrast to what is typically assumed. Here, we present evidence that the observed magnitude correlations are to a large extent, if not entirely, an artifact due to the incompleteness of earthquake catalogs and the well-known modified Omori law. The latter leads to variations in the frequency-magnitude distribution if the distribution is constrained to those earthquakes that are close in space and time to the directly following event.

  16. Rapid Earthquake Viewer Tutorial

    NSDL National Science Digital Library

    This tutorial is designed to help you and your students become familiar with the Rapid Earthquake Viewer (REV), an interactive website that provides access to earthquake data from seismograph stations around the world. REV gathers earthquake data from seismic networks around the Earth and posts information about recent notable earthquakes so you can see where they happened and view the seismograms from global seismograph stations. REV also lets you see if any seismic activity has registered on seismograph stations in your area or other areas around the world. It is recommended that you and your students go through this tutorial before initiating other lessons involving REV.

  17. Earthquakes Learning Module

    NSDL National Science Digital Library

    Rita Haberlin

    This earthquake unit was designed to be used with a college course in physical geography. From this module, students learn the location of areas in the United States with the greatest potential for earthquake shaking and the hazards presented by earthquakes. They also learn how geological conditions and building construction affect the amount of destruction during an earthquake. Seismographs and the Richter scale are also covered. The module contains a study guide and outline notes, study questions, and a practice quiz. One feature of the module is a web exploration section with links to fifteen outside sites that augment the instruction.

  18. Geotechnical Earthquake Engineering Portal

    NSDL National Science Digital Library

    Site aiming to provide useful and educational information in geotechnical earthquake engineering. The site involves topics such as: liquefaction engineering, seismic slope analysis and soil structure interaction.

  19. Missing Great Earthquakes

    NASA Astrophysics Data System (ADS)

    Hough, S. E.; Martin, S.

    2013-12-01

    The occurrence of three earthquakes with Mw greater than 8.8, and six earthquakes larger than Mw8.5, since 2004 has raised interest in the long-term rate of great earthquakes. Past studies have focused on rates since 1900, which roughly marks the start of the instrumental era. Yet substantial information is available for earthquakes prior to 1900. A re-examination of the catalog of global historical earthquakes reveals a paucity of Mw ? 8.5 events during the 18th and 19th centuries compared to the rate during the instrumental era (Hough, 2013, JGR), suggesting that the magnitudes of some documented historical earthquakes have been underestimated, with approximately half of all Mw?8.5 earthquakes missing or underestimated in the 19th century. Very large (Mw?8.5) magnitudes have traditionally been estimated for historical earthquakes only from tsunami observations given a tautological assumption that all such earthquakes generate significant tsunamis. Magnitudes would therefore tend to be underestimated for deep megathrust earthquakes that generated relatively small tsunamis, deep earthquakes within continental collision zones, earthquakes that produced tsunamis that were not documented, outer rise events, and strike-slip earthquakes such as the 11 April 2012 Sumatra event. We further show that, where magnitudes of historical earthquakes are estimated from earthquake intensities using the Bakun and Wentworth (1997, BSSA) method, magnitudes of great earthquakes can be significantly underestimated. Candidate 'missing' great 19th century earthquakes include the 1843 Lesser Antilles earthquake, which recent studies suggest was significantly larger than initial estimates (Feuillet et al., 2012, JGR; Hough, 2013), and an 1841 Kamchatka event, for which Mw9 was estimated by Gusev and Shumilina (2004, Izv. Phys. Solid Ear.). We consider cumulative moment release rates during the 19th century compared to that during the 20th and 21st centuries, using both the Hough (2013) compilation and the Global Earthquake Model (GEM) catalog released in June, 2013. The GEM catalog includes three 19th century earthquakes of M8.5 and three M8.4s, and no 19th century earthquakes larger than 8.5. Cumulative moment release rates are notoriously difficult to estimate, but using the Hough (2013) compilation the 19th century moment release rate appears to be roughly half of the rate during the instrumental era; using the GEM catalog the 19th century rate appears to be roughly the instrumental rate. Thus, either 1) the global moment release rate varies by a factor of two or more on century time scales, or 2) the best available historical catalogs significantly underestimate great earthquake magnitudes and overall moment release rates. One can also consider whether magnitudes of great earthquakes were systematically underestimated during the first half of the 20th century, prior to the advent of long-period seismometry. We consider whether the 19th century moment release rate can be made consistent with the rate during the instrumental era using individual event magnitudes within the uncertainties estimated by past published studies. Lastly we consider the expected variability in global moment release rate, assuming a linear b-value up to Mmax9.5 and a Poissonian rate.

  20. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    SciTech Connect

    O`Brien, G.M.

    1993-07-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p {number_sign}1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p {number_sign}1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells.

  1. Crowd-Sourced Global Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Brooks, B. A.; Glennie, C. L.; Murray, J. R.; Langbein, J. O.; Owen, S. E.; Iannucci, B. A.; Hauser, D. L.

    2014-12-01

    Although earthquake early warning (EEW) has shown great promise for reducing loss of life and property, it has only been implemented in a few regions due, in part, to the prohibitive cost of building the required dense seismic and geodetic networks. However, many cars and consumer smartphones, tablets, laptops, and similar devices contain low-cost versions of the same sensors used for earthquake monitoring. If a workable EEW system could be implemented based on either crowd-sourced observations from consumer devices or very inexpensive networks of instruments built from consumer-quality sensors, EEW coverage could potentially be expanded worldwide. Controlled tests of several accelerometers and global navigation satellite system (GNSS) receivers typically found in consumer devices show that, while they are significantly noisier than scientific-grade instruments, they are still accurate enough to capture displacements from moderate and large magnitude earthquakes. The accuracy of these sensors varies greatly depending on the type of data collected. Raw coarse acquisition (C/A) code GPS data are relatively noisy. These observations have a surface displacement detection threshold approaching ~1 m and would thus only be useful in large Mw 8+ earthquakes. However, incorporating either satellite-based differential corrections or using a Kalman filter to combine the raw GNSS data with low-cost acceleration data (such as from a smartphone) decreases the noise dramatically. These approaches allow detection thresholds as low as 5 cm, potentially enabling accurate warnings for earthquakes as small as Mw 6.5. Simulated performance tests show that, with data contributed from only a very small fraction of the population, a crowd-sourced EEW system would be capable of warning San Francisco and San Jose of a Mw 7 rupture on California's Hayward fault and could have accurately issued both earthquake and tsunami warnings for the 2011 Mw 9 Tohoku-oki, Japan earthquake.

  2. A new seismic discriminant for earthquakes and explosions

    Microsoft Academic Search

    Bradley B. Woods; Donald V. Helmberger

    1993-01-01

    With the spread of nuclear weapons technology, more regions of the world need to be monitored in order to verify nuclear nonproliferation and limited test-ban treaties. Seismic monitoring is the primary means to remotely sense contained underground explosions ``Bolt, 1976; Dahlman and Israelson, 1977''. Both underground explosions and earthquakes generate seismic energy, which propagates through the Earth as elastic waves.

  3. Earthquake Preparedness and Response

    NSDL National Science Digital Library

    This portal provides access to a variety of governmental, charitable, and private websites with information on earthquake preparedness. Information is available for citizens, responders, planners, and engineers. There are also links to a variety of publications on how to prepare for an earthquake, and to government and non-government first response organizations.

  4. Earthquakes for Kids

    NSDL National Science Digital Library

    2002-12-13

    These resources include sections on the latest quakes, science project ideas, puzzles and games, online activities, a glossary, and cool earthquake facts. In addition, there is an Ask A Geologist section, and earthquake FAQs. One link leads to a teacher page with grade level topics and educational materials.

  5. Testing earthquake forecast hypotheses

    Microsoft Academic Search

    R. Console

    2001-01-01

    This paper outlines methodological aspects of the statistical evaluation of earthquake forecast hypotheses. The recent debates concerning predictability of earthquakes clearly show how this problem is centred on the difficulty of systematically testing the numerous methodologies that in the years have been proposed and sustained by the supporters of prediction. This difficulty starts, sometimes, from the lack of a quantitative

  6. Earthquakes and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.

  7. Implications for earthquake risk reduction in the United States from the Kocaeli, Turkey, earthquake of August 17, 1999

    USGS Publications Warehouse

    U.S. Geological Survey

    2000-01-01

    This report documents implications for earthquake risk reduction in the U.S. The magnitude 7.4 earthquake caused 17,127 deaths, 43,953 injuries, and displaced more than 250,000 people from their homes. The report warns that similar disasters are possible in the United States where earthquakes of comparable size strike the heart of American urban areas. Another concern described in the report is the delayed emergency response that was caused by the inadequate seismic monitoring system in Turkey, a problem that contrasts sharply with rapid assessment and response to the September Chi-Chi earthquake in Taiwan. Additionally, the experience in Turkey suggests that techniques for forecasting earthquakes may be improving.

  8. 1NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing Monitoring and control of binary gas mixtures

    E-print Network

    Rubloff, Gary W.

    1NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing Improved precursor delivery Research Center for Environmentally Benign Semiconductor Manufacturing Issues with delivery of solid MOCVD

  9. Demand surge following earthquakes

    USGS Publications Warehouse

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  10. Earthquake Notification Services

    NSDL National Science Digital Library

    The US Geological Survey Earthquake Hazards Web site contains the Earthquake Notification Services page and service. Users can subscribe to three email lists that include BIGQUAKE -- which sends a message whenever an earthquake with a magnitude of 5.5 or greater occurs anywhere in the world or a magnitude of 4.5 or greater occurs within the 50 US states -- and QEDPOST -- which sends a daily message of the earthquakes located 7 days prior to the current day -- and MTALL -- which sends a message that contains the estimate of the seismic moment tensor for earthquakes with either a body-wave magnitude or surface wave magnitude of 5.5 or greater. Seismologists and other related professionals will appreciate being able to stay abreast of the latest tectonic activity with this helpful tool.

  11. On numerical earthquake prediction

    NASA Astrophysics Data System (ADS)

    Shi, Yaolin; Zhang, Bei; Zhang, Siqi; Zhang, Huai

    2014-06-01

    Can earthquakes be predicted? How should people overcome the difficulties encountered in the study of earthquake prediction? This issue can take inspiration from the experiences of weather forecast. Although weather forecasting took a period of about half a century to advance from empirical to numerical forecast, it has achieved significant success. A consensus has been reached among the Chinese seismological community that earthquake prediction must also develop from empirical forecasting to physical prediction. However, it is seldom mentioned that physical prediction is characterized by quantitatively numerical predictions based on physical laws. This article discusses five key components for numerical earthquake prediction and their current status. We conclude that numerical earthquake prediction should now be put on the planning agenda and its roadmap designed, seismic stations should be deployed and observations made according to the needs of numerical prediction, and theoretical research should be carried out.

  12. Modeling earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  13. 1 INTRODUCTION Korea has a long history of earthquakes. Earthquake

    E-print Network

    Spencer Jr., B.F.

    1 INTRODUCTION Korea has a long history of earthquakes. Earthquake events are well documented by those historic and recent earthquakes was not very high, and it is believed that Korea belongs to a low to moderate seismicity zone. However, after the Northridge and Kobe earthquakes, there was a growing concern

  14. Earthquake Early Warning Starts Nationwide in Japan

    NASA Astrophysics Data System (ADS)

    Hoshiba, Mitsuyuki; Kamigaichi, Osamu; Saito, Makoto; Tsukada, Shin'ya; Hamada, Nobuo

    2008-02-01

    When an earthquake occurs, a certain amount of time elapses before destructive seismic energy hits nearby population centers. Though this time is measured on the order of seconds, depending on the proximity of the rupture to a given city or town, a new public safety program in Japan is taking advantage of the fact that seismic energy travels slower than electronic communication.

  15. DEVELOPMENT OF EARTHQUAKE ASSESSMENT METHODOLOGY IN NCREE

    Microsoft Academic Search

    Chin-Hsun Yeh; Chin-Hsiung Loh; Keh-Chyuan Tsai

    In order to promote researches in seismic hazard analysis, engineering structural damage assessment, and socio-economic loss estimation in Taiwan, the National Science Council started the HAZ-Taiwan project in 1998. The National Center for Research on Earthquake Engineering also develops the associated application software \\

  16. Earthquakes Living Lab: Geology and the 1906 San Francisco Earthquake

    NSDL National Science Digital Library

    2014-09-18

    Students examine the effects of geology on earthquake magnitudes and how engineers anticipate and prepare for these effects. Using information provided through the Earthquakes Living Lab interface, students investigate how geology, specifically soil type, can amplify the magnitude of earthquakes and their consequences. Students look in-depth at the historical 1906 San Francisco earthquake and its destruction thorough photographs and data. They compare the 1906 California earthquake to another historical earthquake in Kobe, Japan, looking at the geological differences and impacts in the two regions, and learning how engineers, geologists and seismologists work to predict earthquakes and minimize calamity. A worksheet serves as a student guide for the activity.

  17. Ground Water Resources and Earthquake Hazards: Ancient and Modern Perspectives

    Microsoft Academic Search

    Yuri Gorokhovich; Lee Ullmann

    \\u000a Hydrologic responses to earthquakes such as water level oscillations in monitoring wells and flow changes in streams have\\u000a been known for decades. However, damage to aquifers and changes in groundwater supplies represents an earthquake hazard that\\u000a has received relatively little attention from the scientific community. Yet, its impact is high as it leaves well infrastructure\\u000a without water, results in water

  18. Regional characterization of mine blasts, earthquakes, mine tremors, and nuclear explosions using the intelligent seismic event identification system. Final report, 1 April 1992-1 July 1993

    SciTech Connect

    Baumgardt, D.R.

    1993-07-31

    This report describes the results of a study of the Intelligent Seismic Event Identification System (ISEIS) which was installed at the Center for Seismic Studies and applied to regional events in the Intelligent Monitoring System (IMS) database. A subset of IMS data has been collected for known events in a database called the Ground Truth Database (GTD) and these events were processed by ISEIS. This has shown that the regional high-frequency PIS ratio discriminates between explosions and earthquakes in the Vogtland region recorded at the GERESSS array. Mine tremors in the Lubin and Upper Silesia resemble earthquakes. Lg spectral ratio was found to separate explosions and earthquakes in the Vogtland region, but the Lubin and Upper Silesia region mine tremors had large scatter. An evaluation was made of the discrimination rules in the ISEIS expert system on the events in four regions (Vogtland. Lubin, Upper Silesia, and Steigen) in the GTD. This report also describes the results of the analysis of the December 31, 1992 event which occurred near the Russian test site on Novaya Zemlya. Analysis of Pn/Sn ratios at NORESS indicated that these ratios were comparable to those measured for Kola Peninsula mine blasts, although the propagation paths were different. The ratios were only slightly greater than those observed for earthquakes in the Greenland Sea. The August 1. 1986 event recorded was re-analyzed and also found to resemble mine blasts. However, other discriminants indicate that the event was probably an earthquake.

  19. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    SciTech Connect

    Saragoni, G. Rodolfo [Department of Civil Engineering, Universidad of Chile (Chile)

    2008-07-08

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand.

  20. Hydrologic and geochemical monitoring in Long Valley caldera, Mono County, California, 1986

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Steinemann, A.C.; Clark, M.D.

    1989-01-01

    The U.S. Geological Survey continued to monitor hydrologic and geochemical conditions in the Long Valley caldera during 1986. The monitoring is directed toward detecting changes in the hydrologic system caused by tectonic or magmatic processes. Data collected during 1986 include chemical and isotopic composition of water from selected streams sites, springs, and wells; pumpage from four geothermal wells; flow rates of selected springs and stream sites; mean daily water or gas temperatures at selected sites; mean daily atmospheric pressures and water level at selected wells, and precipitation records for two sites. Seismicity within the caldera persisted at a relatively low level compared with the more active periods of 1978-84. The most significant events of seismicity that affected hydrologic monitoring sites in Long Valley during 1986 occurred during July , in response to the Chalfant Valley earthquakes, centered about 20 miles southeast of the caldera. Water level records for three wells show distinct responses to the Chalfant Valley earthquakes. (USGS)

  1. Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2008

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.

    2009-01-01

    Between January 1 and December 31, 2008, the Alaska Volcano Observatory (AVO) located 7,097 earthquakes of which 5,318 occurred within 20 kilometers of the 33 volcanoes monitored by the AVO. Monitoring highlights in 2008 include the eruptions of Okmok Caldera, and Kasatochi Volcano, as well as increased unrest at Mount Veniaminof and Redoubt Volcano. This catalog includes descriptions of: (1) locations of seismic instrumentation deployed during 2008; (2) earthquake detection, recording, analysis, and data archival systems; (3) seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2008; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2008.

  2. Evaluating real-time air-quality data as earthquake indicator.

    PubMed

    Hsu, Shih-Chieh; Huang, Yi-Tang; Huang, Jr-Chung; Tu, Jien-Yi; Engling, Guenter; Lin, Chuan-Yao; Lin, Fei-Jan; Huang, Chao-Hao

    2010-05-01

    A catastrophic earthquake, namely the 921-earthquake, occurred with a magnitude of M(L)=7.3 in Taiwan on September 21, 1999, causing severe disaster. The evaluation of real-time air-quality data, obtained by the Taiwan Environmental Protection Administration (EPA), revealed a staggering increase in ambient SO(2) concentrations by more than one order of magnitude across the island several hours prior to the earthquake, particularly at background stations. The abrupt increase in SO(2) concentrations likely resulted from seismic-triggered degassing instead of air pollution. An additional case of a large earthquake (M(L)=6.8), occurring on March 31, 2002, was examined to confirm our observations of significantly enhanced SO(2) concentrations in ambient air prior to large earthquakes. The coincidence between large earthquakes and increases in trace gases during the pre-quake period (several hours) indicates the potential of employing air-quality monitoring data to forecast catastrophic earthquakes. PMID:20226499

  3. Earthquake forecasting and its verification

    Microsoft Academic Search

    James R. Holliday; Kazuyoshi Z. Nanjo; Kristy F. Tiampo; John B. Rundle; Donald L. Turcotte

    2005-01-01

    No proven method is currently available for the reliable short time\\u000aprediction of earthquakes (minutes to months). However, it is possible to make\\u000aprobabilistic hazard assessments for earthquake risk. These are primarily based\\u000aon the association of small earthquakes with future large earthquakes. In this\\u000apaper we discuss a new approach to earthquake forecasting. This approach is\\u000abased on a

  4. Historic Earthquakes in Southern California

    NSDL National Science Digital Library

    This page contains a map of southern California with epicenters of earthquakes shown as circles of different sizes and colors. The size and color of each earthquake symbol corresponds to its magnitude, as indicated by a scale on the map. Clicking on an epicenter takes the user to a page of information about that earthquake. Earthquakes dating back to 1812 are shown. Also available on this page are links to fault maps, earthquake animations, and other indexes of seismological information.

  5. Measuring Earthquakes: Intensity Maps

    NSDL National Science Digital Library

    This set of exercises will introduce students to the construction of earthquake intensity maps, familiarize them with the Modified Mercalli Intensity Scale, and give them the opportunity to build their own maps online in order to locate the epicenter of an earthquake. In the first exercise, they will use intensity data from the 1986 North Palm Springs, California earthquake to create an isoseismal map. In the second, they will use a special interactive page of dynamic HTML to plot intensities that they assign based on reports, and attempt to determine the epicenter based on the area of highest intensity.

  6. Earthquakes and emergence

    NASA Astrophysics Data System (ADS)

    Earthquakes and emerging infections may not have a direct cause and effect relationship like tax evasion and jail, but new evidence suggests that there may be a link between the two human health hazards. Various media accounts have cited a massive 1993 earthquake in Maharashtra as a potential catalyst of the recent outbreak of plague in India that has claimed more than 50 lives and alarmed the world. The hypothesis is that the earthquake may have uprooted underground rat populations that carry the fleas infected with the bacterium that causes bubonic plague and can lead to the pneumonic form of the disease that is spread through the air.

  7. Caltech Earthquake Engineering Research Laboratory Technical Reports

    NSDL National Science Digital Library

    The California Institute of Technology Library System and the Earthquake Engineering Research Laboratory provides the Caltech Earthquake Engineering Research Laboratory Technical Reports Web site. Visitors will find access to technical reports by browsing the categorized sets from the Center for Research on the Prevention of Natural Disasters, Dynamics Laboratory, Earthquake Engineering Research Laboratory, and the Soil Mechanics Laboratory, as well as the section entitled Policy Documents. The materials can also be viewed by year (going back to 1952) or fully searched to gain access to the full-text reports, which include offerings like Impact of Seismic Risk on Lifetime Property Values. Although the topics covered are somewhat limited on the site, those interested will appreciate the well organized and informative resources provided.

  8. Google Mapplets for Earthquakes and Volcanic Activity

    Microsoft Academic Search

    S. A. Haefner; D. Y. Venezky

    2007-01-01

    The USGS Earthquake and Volcano Hazards Programs monitor, assess, and issue warnings of natural hazards. Users can access our hazards information through our web pages, RSS feeds, and now through USGS Mapplets. Mapplets allow third party data layers to be added on top of Google Maps (http:\\/\\/maps.google.com - My Maps tab). Mapplets are created by parsing a GeoRSS feed, which

  9. Prediction of An Earthquake On A Training Course On The Mdcb Method (paper Vii) U On-site Training Course, On-Site Earthquake Prediction, Verified Within The Same Day

    Microsoft Academic Search

    W. X. Wang; Y. W. Yang

    2002-01-01

    Geology Institute, Xian Sub-Institute, Coal Science Research Institute The route for studying earthquake prediction should start with studying the distribu- tion configuration of activities of terrestrial stress at deep underground depths. The MDCB Earthquake Precursor Monitoring Instrument is a rather ideal monitoring in- strument successfully developed under guidance by such thoughts. Accordingly, these instruments very soon were welcomed and appreciated

  10. Quantitative Earthquake Prediction on Global and Regional Scales

    SciTech Connect

    Kossobokov, Vladimir G. [International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Warshavskoye sh. 79-2, Moscow, 117556 (Russian Federation); Institute de Physique du Globe de Paris, 4 Place Jussieu, Paris, 75252 (France)

    2006-03-23

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and for mega-earthquakes of M9.0+. The monitoring at regional scales may require application of a recently proposed scheme for the spatial stabilization of the intermediate-term middle-range predictions. The scheme guarantees a more objective and reliable diagnosis of times of increased probability and is less restrictive to input seismic data. It makes feasible reestablishment of seismic monitoring aimed at prediction of large magnitude earthquakes in Caucasus and Central Asia, which to our regret, has been discontinued in 1991. The first results of the monitoring (1986-1990) were encouraging, at least for M6.5+.

  11. Simulating Earthquakes for Science and Society: New Earthquake Visualizations Ideal for Use in Science Communication

    NASA Astrophysics Data System (ADS)

    de Groot, R. M.; Benthien, M. L.

    2006-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently have gained visibility via television news coverage in Southern California. These types of visualizations are becoming pervasive in the teaching and learning of concepts related to earth science. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin &Brick, 2002). Earthquakes are ideal candidates for visualization products: they cannot be predicted, are completed in a matter of seconds, occur deep in the earth, and the time between events can be on a geologic time scale. For example, the southern part of the San Andreas fault has not seen a major earthquake since about 1690, setting the stage for an earthquake as large as magnitude 7.7 -- the "big one." Since no one has experienced such an earthquake, visualizations can help people understand the scale of such an event. Accordingly, SCEC has developed a revolutionary simulation of this earthquake, with breathtaking visualizations that are now being distributed. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  12. An Atlas of ShakeMaps for Selected Global Earthquakes

    USGS Publications Warehouse

    Allen, Trevor I.; Wald, David J.; Hotovec, Alicia J.; Lin, Kuo-Wan; Earle, Paul S.; Marano, Kristin D.

    2008-01-01

    An atlas of maps of peak ground motions and intensity 'ShakeMaps' has been developed for almost 5,000 recent and historical global earthquakes. These maps are produced using established ShakeMap methodology (Wald and others, 1999c; Wald and others, 2005) and constraints from macroseismic intensity data, instrumental ground motions, regional topographically-based site amplifications, and published earthquake-rupture models. Applying the ShakeMap methodology allows a consistent approach to combine point observations with ground-motion predictions to produce descriptions of peak ground motions and intensity for each event. We also calculate an estimated ground-motion uncertainty grid for each earthquake. The Atlas of ShakeMaps provides a consistent and quantitative description of the distribution and intensity of shaking for recent global earthquakes (1973-2007) as well as selected historic events. As such, the Atlas was developed specifically for calibrating global earthquake loss estimation methodologies to be used in the U.S. Geological Survey Prompt Assessment of Global Earthquakes for Response (PAGER) Project. PAGER will employ these loss models to rapidly estimate the impact of global earthquakes as part of the USGS National Earthquake Information Center's earthquake-response protocol. The development of the Atlas of ShakeMaps has also led to several key improvements to the Global ShakeMap system. The key upgrades include: addition of uncertainties in the ground motion mapping, introduction of modern ground-motion prediction equations, improved estimates of global seismic-site conditions (VS30), and improved definition of stable continental region polygons. Finally, we have merged all of the ShakeMaps in the Atlas to provide a global perspective of earthquake ground shaking for the past 35 years, allowing comparison with probabilistic hazard maps. The online Atlas and supporting databases can be found at http://earthquake.usgs.gov/eqcenter/shakemap/atlas.php/.

  13. Earthquake resistant design

    SciTech Connect

    Dowrick, D.J.

    1988-01-01

    The author discusses recent advances in earthquake-resistant design. This book covers the entire design process, from aspects of loading to details of construction. Early chapters offer a broad theoretical background; later chapters provide rigorous coverage of practical aspects.

  14. Northridge, CA Earthquake Damage

    USGS Multimedia Gallery

    The person in this image was a USGS employee at the time this was taken. Collection of USGS still images taken after the January 17, 1994 Northridge earthquake highlighting the damage to buildings and infrastructure....

  15. To capture an earthquake

    SciTech Connect

    Ellsworth, W.L. (USGS, Menlo Park, CA (USA))

    1990-11-01

    An earthquake model based on the theory of plate tectonics is presented. It is assumed that the plates behave elastically in response to slow, steady motions and the strains concentrate within the boundary zone between the plates. When the accumulated stresses exceed the bearing capacity of the rocks, the rocks break, producing an earthquake and releasing the accumulated stresses. As the steady movement of the plates continues, strain begins to reaccumulate. The cycle of strain accumulation and release is modeled using the motion of a block, pulled across a rough surface by a spring. A model earthquake can be predicted by taking into account a precursory event or the peak spring force prior to slip as measured in previous cycles. The model can be applied to faults, e.g., the San Andreas fault, if the past earthquake history of the fault and the rate of strain accumulation are known.

  16. The ARIA project: Advanced Rapid Imaging and Analysis for Natural Hazard Monitoring and Response

    NASA Astrophysics Data System (ADS)

    Owen, S. E.; Webb, F.; Simons, M.; Rosen, P. A.; Cruz, J.; Yun, S.; Fielding, E. J.; Moore, A. W.; Hua, H.; Agram, P.; Lundgren, P.

    2012-12-01

    ARIA is a joint JPL/Caltech coordinated effort to automate geodetic imaging capabilities for hazard response and societal benefit. Over the past decade, space-based geodetic measurements such as InSAR and GPS have provided new assessment capabilities and situational awareness on the size and location of earthquakes following seismic disasters and on volcanic eruptions following magmatic events. Geodetic imaging's unique ability to capture surface deformation in high spatial and temporal resolution allow us to resolve the fault geometry and distribution of slip associated with any given earthquake in correspondingly high spatial & temporal detail. In addition, remote sensing with radar provides change detection and damage assessment capabilities for earthquakes, floods and other disasters that can image even at night or through clouds. These data sets are still essentially hand-crafted, and thus are not generated rapidly and reliably enough for informing decision-making agencies and the public following an earthquake. We are building an end-to-end prototype geodetic imaging data system that would form the foundation for an envisioned operational hazard response center integrating InSAR, GPS, seismology, and modeling to deliver monitoring, actionable science, and situational awareness products. This prototype exploits state-of-the-art analysis algorithms from technologists and scientists, These algorithms enable the delivery of actionable products from larger data sets with enhanced modeling and interpretation, and the development of next generation techniques. We are collaborating with USGS scientists in both the earthquake and volcano science program for our initial data product infusion. We present our progress to date on development of prototype data system and demonstration data products, and example responses we have run such as generating products for the 2011 M9.0 Tohoku-oki, M6.3 Christchurch earthquakes, the 2011 M7.1 Van earthquake, and several simulated earthquake response exercises.

  17. Coastal Dynamics during Earthquakes

    Microsoft Academic Search

    Andrzej Sawicki Waldemar

    2008-01-01

    The results of research on some aspects of coastal dynamics during earthquakes, carried out in the Institute of Hydro-Engineering, are summarized. The attention is focused on the liquefaction-related phenomena, like modeling the earthquake-induced generation of pore-pressures and subsequent liquefaction of subsoil, the behavior of liquefied soil, underwater landslides, sinking of structures in a liquefied seabed and large displacements of quay-walls.

  18. Focus of an Earthquake

    NSDL National Science Digital Library

    McGraw-Hill

    This simple Flash animation by McGraw-Hill shows the relationship between earthquake focus and earthquake epicenter which is found directly above the focus. Also displayed in the animation are the fault plane, fault scarp, and fault trace. The animation is part of a collection of animations and movies related to Physical Geology published by McGraw-Hill. http://highered.mcgraw-hill.com/sites/0072402466/student_view0/chapter16/animations_and_movies.html

  19. Connecting Earthquakes and Violins

    NSDL National Science Digital Library

    James Ringlein

    2005-11-01

    Violins, earthquakes, and the "singing rod" demonstration all have something in common--stick-slip frictional motion. This article begins with a typical classroom experiment used to understand the transition between sticking and slipping, proceeds to a mechanical earthquake model that is truly "stick-slip" as scientists describe it, and progresses to acoustic examples of the same phenomenon in action. Other interesting cases involving frictional effects are described.

  20. Virtual Courseware: Earthquake

    NSDL National Science Digital Library

    This interactive exercise lets students investigate how seismic waves are used to locate the epicenter of an earthquake and determine its magnitude. They will place virtual seismic stations on an interactive map, trigger a virtual explosion, and measure the difference in arrival times of S- and P-waves generated by the explosion. Using this data, they can determine the distance to each station and use triangulation to determine the epicenter of the earthquake.

  1. Tectonics, Earthquakes, Volcanoes

    NSDL National Science Digital Library

    Camille Holmgren

    Students do background reading on plate tectonics and associated geologic hazards. In the first part of this exercise, students use on-line courseware from California State University, Los Angeles (Virtual Earthquake) to investigate seismograph records and use these records to determine earthquake epicenters and magnitudes. In the second part, they complete a crossword puzzle designed to help them master new vocabulary related to plate tectonics.

  2. Magnitude and location of historical earthquakes in Japan and implications for the 1855 Ansei Edo earthquake

    USGS Publications Warehouse

    Bakun, W.H.

    2005-01-01

    Japan Meteorological Agency (JMA) intensity assignments IJMA are used to derive intensity attenuation models suitable for estimating the location and an intensity magnitude Mjma for historical earthquakes in Japan. The intensity for shallow crustal earthquakes on Honshu is equal to -1.89 + 1.42MJMA - 0.00887?? h - 1.66log??h, where MJMA is the JMA magnitude, ??h = (??2 + h2)1/2, and ?? and h are epicentral distance and focal depth (km), respectively. Four earthquakes located near the Japan Trench were used to develop a subducting plate intensity attenuation model where intensity is equal to -8.33 + 2.19MJMA -0.00550??h - 1.14 log ?? h. The IJMA assignments for the MJMA7.9 great 1923 Kanto earthquake on the Philippine Sea-Eurasian plate interface are consistent with the subducting plate model; Using the subducting plate model and 226 IJMA IV-VI assignments, the location of the intensity center is 25 km north of the epicenter, Mjma is 7.7, and MJMA is 7.3-8.0 at the 1?? confidence level. Intensity assignments and reported aftershock activity for the enigmatic 11 November 1855 Ansei Edo earthquake are consistent with an MJMA 7.2 Philippine Sea-Eurasian interplate source or Philippine Sea intraslab source at about 30 km depth. If the 1855 earthquake was a Philippine Sea-Eurasian interplate event, the intensity center was adjacent to and downdip of the rupture area of the great 1923 Kanto earthquake, suggesting that the 1855 and 1923 events ruptured adjoining sections of the Philippine Sea-Eurasian plate interface.

  3. Charles Darwin's earthquake reports

    NASA Astrophysics Data System (ADS)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of the rending of strata, at a point not very deep below the surface of the earth' and when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the problems which began to discuss only during the last time. Earthquakes often precede volcanic eruptions. According to Darwin, the earthquake-induced shock may be a common mechanism of the simultaneous eruptions of the volcanoes separated by long distances. In particular, Darwin wrote that the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;'. According to Darwin the crust is a system where fractured zones, and zones of seismic and volcanic activities interact. Darwin formulated the task of considering together the processes studied now as seismology and volcanology. However the difficulties are such that the study of interactions between earthquakes and volcanoes began only recently and his works on this had relatively little impact on the development of geosciences. In this report, we discuss how the latest data on seismic and volcanic events support the Darwin's observations and ideas about the 1835 Chilean earthquake. The material from researchspace. auckland. ac. nz/handle/2292/4474 is used. We show how modern mechanical tests from impact engineering and simple experiments with weakly-cohesive materials also support his observations and ideas. On the other hand, we developed the mathematical theory of the earthquake-induced catastrophic wave phenomena. This theory allow to explain the most important aspects the Darwin's earthquake reports. This is achieved through the simplification of fundamental governing equations of considering problems to strongly-nonlinear wave equations. Solutions of these equations are constructed with the help of analytic and numerical techniques. The solutions can model different strongly-nonlinear wave phenomena which generate in a variety of physical context. A comparison with relevant experimental observations is also presented.

  4. Local Earthquake Magnitude Scale and Seismicity Rate for the Ethiopian Rift

    Microsoft Academic Search

    Derek Keir; G. W. Stuart; A. Jackson; A. Ayele

    2006-01-01

    A calibrated local earthquake magnitude scale is essential for quanti- tative analyses of seismicity. In Ethiopia, effective monitoring of earthquakes and resulting assessment of seismic hazard are especially important as regions with seis- mic and volcanic activity coincide with regions of economic significance and popu- lation growth. We have developed a local magnitude (ML) scale for the northern Main Ethiopian

  5. Coseismic Changes of groundwater level due to the 2003 MW6.8 Chengkung Earthquake

    Microsoft Academic Search

    P. Wang; Y. Chia; Y. Chang; J. Hu; R. Lee

    2007-01-01

    Changes of groundwater levels induced by the MW6.8 Chengkung earthquake on 10 December 2003 were recorded in 123 out of 519 monitoring wells in Taiwan. The earthquake resulted from displacement of Chihshang fault along the Longitudinal Valley, which is the boundary between the Eurasian Plate and Philippine Sea plate in the eastern Taiwan. The 123 wells were placed primarily in

  6. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    Microsoft Academic Search

    Yehuda Bock; Duncan C. Agnew; Peng Fang; Joachim F. Genrich; Bradford H. Hager; Thomas A. Herring; Robert W. King; Shawn Larsen; J.-B. Minster; Keith Stark; Shimon Wdowinski; Frank K. Wyatt

    1993-01-01

    The first measurements are reported for a major earthquake by a continuously operating GPS network, the permanent GPS Genetic ARRY (PGGA) in southern California. The Landers and Big Bear earthquakes of June 28, 1992 were monitored by daily observations. Ten weeks of measurements indicate significant coseismic motion at all PGGA sites, significant postseismic motion at one site for two weeks

  7. Decade Plan (2010-2020) for the Study on Earthquake Predictability: Challenges and Opportunities in China (Invited)

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Liu, G.; Ma, H.; Jiang, C.; Zhou, L.; Shao, Z.; Wu, Y.; Yan, R.; Yan, W.; Li, Y.; Peng, H.

    2009-12-01

    Since the beginning of 2009, the Department for Earthquake Monitoring and Prediction of China Earthquake Administration (CEA) has been organizing the planning for the study on earthquake predictability for the period 2010-2020. Invited by the organizers of this session, this presentation briefly introduces the planning works, the strategies for the planning, and the research priorities proposed in the plan. Lessons and experiences of the 2008 Wenchuan earthquake play an important role in such planning. In China, earthquake forecast/prediction is used in a broader sense, from seismic hazard analysis considering very long time scales, to long-term earthquake forecast with decade time scales, further to intermediate-term forecast mainly with annual time scale, and to short and imminent-term earthquake prediction - the earthquake prediction traditionally understood, and at last to the estimation of the type of earthquake sequence and the probability of strong aftershocks. Study on earthquake predictability in China also has a broader sense, from seismo-tectonics to the physics of earthquakes. Making full use of the present knowledge of earthquake predictability to serve the reduction of earthquake disasters is one of the methodologies of Chinese seismological agency. The concept monitoring and modeling for prediction plays an important role in considering the objectives of the planned R&D activities. Since recent years there has been a fast development of observation facilities in China. How to make full use of the observational data produced by these facilities is one of the key issues for the next decade. Chinese continent has different units of seismo-tectonics, with different characteristics of seismicity and different needs from the society for the reduction of earthquake disasters. Deployment of technologies to deal with this tectonic and seismic diversity is another key-issue in the planning. Continental China, where the public has motivations to support earthquake predictability studies, provides newly developed techniques, for example, active monitoring technique, with a good testing place.

  8. Inversion for slip distribution for the 2012 Costa Rica earthquake

    NASA Astrophysics Data System (ADS)

    McCormack, K. A.; Hesse, M. A.; Stadler, G.

    2014-12-01

    On 5 September 2012, a major megathrust earthquake (Mw=7.6) ruptured the plate interface beneath the Nicoya Peninsula, Costa Rica. This event was centered 12 km offshore of the central Nicoya coast, at a depth of 18 km. The maximum slip exceeded 2 meters, and the rupture spread outward along the plate interface to encompass 3000 km2 of the Nicoya seismogenic zone. More than 1700 aftershocks were recorded within the first 5 days. These aftershocks outlined two distinct rupture patches; one centered on the central coast and the other beneath the southern tip of the peninsula. We formulate a Bayesian inverse problem to infer the coseismic slip on the fault plane based on instantaneous surface displacements and changes in well heads in order to image the remaining "locked" patch that has been inferred previously. We compute the maximum a posteriori (MAP) estimate of the posterior slip distribution on the fault, and use a local Gaussian approximation around the MAP point to characterize the uncertainty. The elastic deformation is computed using a finite element method that allows for the spatial variation of elastic properties that has been observed in the crust overlying the seismogenic zone. We solve the optimization problem using gradients obtained from adjoints. The linearity of the inverse problem allows for the efficient solution of the optimal experimental design problem for the placement of the GPS stations to monitor the remaining locked patch. In the future, the results obtained here will provide the initial condition for a time-dependent poroelastic model for fault slip and fluid migration due to overpressure caused by a megathrust earthquake. This will provide constraints on the crustal permeability structure in a tectonically active region.

  9. Evaluation of real-time tsunami earthquake discriminants

    NASA Astrophysics Data System (ADS)

    Hagerty, M. T.; Hirshorn, B. F.; Weinstein, S.; Knight, W. R.; Whitmore, P.

    2014-12-01

    Tsunami earthquakes generate a disproportionally large tsunami for their seismic moment. For a tsunami warning center, they are especially difficult to detect in real-time since magnitude alone is insufficient to issue an alert. Recently, several methods have been developed to identify tsunami earthquakes, including: various energy magnitude estimates (e.g., MED, Lomax et al, 2007), the theta discriminant (Newman & Okal, 1998), RTerg (Newman & Convers, 2010), TACER (Convers & Newman, 2013), mHFER (Hara, 2007), and rupture duration, TR (Lomax & Michelini, 2009 & 2010). Each method makes particular assumptions about the rupture process and subsequent tsunami generation that lead to the use of different algorithms to estimate the radiated seismic energy and/or rupture duration. However, the various methods are essentially comparing these estimates to the long period seismic moment, in order to identify the unusually long durations, slow ruptures, and small stress drops that characterize tsunami earthquakes. We test the tsunami earthquake discriminants on a dataset of subduction zone earthquakes containing several tsunami earthquakes with the goal of determining which methods (or combination of methods) are well-suited to real-time implementation at the U.S. tsunami warning centers in Hawaii and Alaska. Of particular interest is the ability of each method to correctly identify known tsunami earthquakes with a minimum of false positives and with a minimum of apriori assumptions about any individual event that might bias a real-time detection system.

  10. Nevada Earthquake Response GPS Network (NEARNET)

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Hammond, W. C.; Kreemer, C.; Plag, H.

    2005-12-01

    The Nevada Bureau of Mines and Geology (NBMG), a statewide agency at the University of Nevada, has accepted the responsibility of responding to a Nevada earthquake by operating a Nevada post-earthquake technical information clearinghouse [ State of Nevada Standard Multi-Hazard Mitigation Plan, Oct 2004]. The NSMHM Plan identifies the need to be prepared to rapidly study a major event within the first few days after an earthquake. In preparation for a rapid earthquake response, the Nevada Geodetic Laboratory at NBMG has designed and has begun to implement a statewide 400-station GPS geodetic network with spatial resolution of approximately 20 km: (1) to provide existing, pre-earthquake geodetic control such that co-seismic displacements can be measured with 1 mm precision within days following any large earthquake that might affect anywhere in Nevada, (2) to monitor post-seismic deformation related to transient processes and stress transfer between active faults from days to years following large earthquakes, (3) to produce high resolution strain-rate maps toward improving neotectonic models of the Great Basin and seismic hazard assessment. From January 2004 - September 2005, 110 GPS control points have been installed and measured precisely in western Nevada and eastern California, spanning the Walker Lane and Central Nevada Seismic Belt (CNSB), where crustal strain rates are highest. Approximately 10 new control points are being added and measured every month, with approximately 30 days of continuous data collected at each point to establish epoch coordinates. NBMG now has approximately 50 GPS receivers deployed in NEARNET at any given time. A 60-station core of the NEARNET network (known as "MAGNET") spans the northern Walker Lane and CNSB at the latitude of Reno and is occupied approximately 50% of the time so that strain rates can be more rapidly resolved in this region. Aspects of the design, operation, and analysis of the NEARNET network are proving to mitigate problems that often plague GPS campaigns, and enhance the precision of coordinate time series. Preliminary crustal strain-rate maps are already becoming available using sites that have now been in operation for only just over one year. In addition to providing Nevada with an earthquake response capability, NEARNET serves multiple purposes, and is jointly funded by the State of Nevada and the Department of Energy's Geothermal Program and Yucca Mountain Project.

  11. Earthquakes and faults in southern California (1970-2010)

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.

    2012-01-01

    The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.3 in southern California (19702010). The bathymetry was generated from digital files from the California Department of Fish And Game, Marine Region, Coastal Bathymetry Project. Elevation data are from the U.S. Geological Survey National Elevation Database. Landsat satellite image is from fourteen Landsat 5 Thematic Mapper scenes collected between 2009 and 2010. Fault data are reproduced with permission from 2006 California Geological Survey and U.S. Geological Survey data. The earthquake data are from the U.S. Geological Survey National Earthquake Information Center.

  12. OpenSees: Open System for Earthquake Engineering Simulation

    NSDL National Science Digital Library

    The Open System for Earthquake Engineering Simulation (OpenSees) is a project of the Pacific Earthquake Engineering Research Center. OpenSees is an open source "software framework for developing applications to simulate the performance of structural and geotechnical systems subjected to earthquakes." The project's homepage maintains resources for users and developers, including downloadable source code, extensive documentation, and instructions on how to contribute code. Several links to other research projects that are using the OpenSees tool are provided. Additionally, an OpenSees user's workshop was held in August 2003, and the presentations from the event are available.

  13. Sun-earth environment study to understand earthquake prediction

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2007-05-01

    Earthquake prediction is possible by looking into the location of active sunspots before it harbours energy towards earth. Earth is a restless planet the restlessness turns deadly occasionally. Of all natural hazards, earthquakes are the most feared. For centuries scientists working in seismically active regions have noted premonitory signals. Changes in thermosphere, Ionosphere, atmosphere and hydrosphere are noted before the changes in geosphere. The historical records talk of changes of the water level in wells, of strange weather, of ground-hugging fog, of unusual behaviour of animals (due to change in magnetic field of the earth) that seem to feel the approach of a major earthquake. With the advent of modern science and technology the understanding of these pre-earthquake signals has become stronger enough to develop a methodology of earthquake prediction. A correlation of earth directed coronal mass ejection (CME) from the active sunspots has been possible to develop as a precursor of the earthquake. Occasional local magnetic field and planetary indices (Kp values) changes in the lower atmosphere that is accompanied by the formation of haze and a reduction of moisture in the air. Large patches, often tens to hundreds of thousands of square kilometres in size, seen in night-time infrared satellite images where the land surface temperature seems to fluctuate rapidly. Perturbations in the ionosphere at 90 - 120 km altitude have been observed before the occurrence of earthquakes. These changes affect the transmission of radio waves and a radio black out has been observed due to CME. Another heliophysical parameter Electron flux (Eflux) has been monitored before the occurrence of the earthquakes. More than hundreds of case studies show that before the occurrence of the earthquakes the atmospheric temperature increases and suddenly drops before the occurrence of the earthquakes. These changes are being monitored by using Sun Observatory Heliospheric observatory (SOHO) satellite data. Whatever the manifestations in the environment of the atmosphere or geosphere may be, there is a positive correlation of CMEs with change in magnetic field followed by aurora borealis or sudden spark of light from the sky before an earthquake. Any change in geomorphology in the pixel level, changes in groundwater level, geochemical anomalies of soils surrounding active faults and vegetation anomalies should be monitored in the mirror image position of sunspots on the earth facing side in reference to CME from the sun.

  14. Nisqually, Washington Intraplate Earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hofmeister, R.

    2001-05-01

    On February 28, 2001, the M6.8 Nisqually earthquake shook the Pacific Northwest. This intraplate event occurred within the subducting Juan de Fuca plate along the Cascadia margin. Although the damage was less than observed at most large urban earthquakes, serious damage was found in Olympia, Seattle, and Tacoma. To better serve Oregon public safety needs, DOGAMI and others surveyed the Puget Sound damage to expand our technical understanding of seismic ground response, building and lifeline behavior, and secondary hazards (landslides and liquefaction). Damage was observed in structures and areas that, for the most part, would be predicted to be vulnerable. These included: old buildings (URMs), old lifelines (4th Ave bridge in Olympia), areas with poor soil conditions (Harbor Island, Seattle; Sunset Lake, Tumwater), and steep slopes (Salmon Beach; Burien). Damage types included: structural, nonstructural, contents, lifelines, landslides, liquefaction, lateral spreading, sand boils, and settlement. In several notable places, seismic-induced ground failures significantly increased the damage. Estimated costs developed from HAZUS evaluations ranged from \\2 billion to \\3.9 billion. Historic intraplate earthquakes in the Puget Sound region, including the 1949 M7.1, 1965 M6.5, and 1999 M5.9, were not accompanied by significant aftershock events or associated with earthquake sequences. However, a recent El Salvador earthquake sequence suggests there may be particular cases of increased seismicity following large intraplate events, with implications for post-earthquake response and mitigation. The January 13, 2001 M7.6 El Salvador intraplate earthquake was followed by a M6.6 crustal event February 13, 2001 and a M5.4 intraplate event February 28, 2001.

  15. Real-time neural network earthquake profile predictor

    DOEpatents

    Leach, R.R.; Dowla, F.U.

    1996-02-06

    A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion. 17 figs.

  16. Real-time neural network earthquake profile predictor

    DOEpatents

    Leach, Richard R. (Castro Valley, CA); Dowla, Farid U. (Castro Valley, CA)

    1996-01-01

    A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion.

  17. AMBIENT AIR MONITORING AT GROUND ZERO AND LOWER MANHATTAN FOLLOWING THE COLLAPSE OF THE WORLD TRADE CENTER

    EPA Science Inventory

    The U.S. EPA National Exposure Research Laboratory (NERL) collaborated with EPA's Regional offices to establish a monitoring network to characterize ambient air concentrations of particulate matter (PM) and air toxics in lower Manhattan following the collapse of the World Trade...

  18. Activity of meropenem as serine carbapenemases evolve in US Medical Centers: monitoring report from the MYSTIC Program (2006)

    Microsoft Academic Search

    Paul R. Rhomberg; Lalitagauri M. Deshpande; Jeffrey T. Kirby; Ronald N. Jones

    2007-01-01

    The Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Surveillance Program was designed to monitor the antimicrobial potency and spectrum of meropenem, and selected broad-spectrum comparison agents against pathogens from hospitalized patients. In the 2006 (year 8 of the study) United States sample, a total of 2841 isolates (94.7% compliance) including 641 Escherichia coli, 619 Klebsiella spp., 606 Pseudomonas aeruginosa, 456

  19. Retrospective Evaluation of the Five-Year and Ten-Year CSEP-Italy Earthquake Forecasts

    E-print Network

    Werner, M J; Marzocchi, W; Wiemer, S

    2010-01-01

    On 1 August 2009, the global Collaboratory for the Study of Earthquake Predictability (CSEP) launched a prospective and comparative earthquake predictability experiment in Italy. The goal of the CSEP-Italy experiment is to test earthquake occurrence hypotheses that have been formalized as probabilistic earthquake forecasts over temporal scales that range from days to years. In the first round of forecast submissions, members of the CSEP-Italy Working Group presented eighteen five-year and ten-year earthquake forecasts to the European CSEP Testing Center at ETH Zurich. We considered the twelve time-independent earthquake forecasts among this set and evaluated them with respect to past seismicity data from two Italian earthquake catalogs. In this article, we present the results of tests that measure the consistency of the forecasts with the past observations. Besides being an evaluation of the submitted time-independent forecasts, this exercise provided insight into a number of important issues in predictabilit...

  20. Investigating Earthquakes with Google Earth

    NSDL National Science Digital Library

    Maggie Molledo

    2012-07-25

    Students will explore the relationship between earthquakes and the tectonic plate boundaries using Google Earth. Students will track earthquakes noting location, magnitude and date. Students will apply their findings to formulate an understanding the processes that shape the earth.

  1. Being Prepared for an Earthquake

    MedlinePLUS

    ... Volcanoes Wildfires Winter Weather Being Prepared for an Earthquake Language: English Espaol (Spanish) Recommend on Facebook Tweet ... has been the state most prone to serious earthquakes in recent years, there are many other fault ...

  2. Earthquake Education Environment (E3)

    NSDL National Science Digital Library

    The Earthquake Education Environment (E3) supports high-quality K-12 and undergraduate education by providing up-to-date earthquake information, authoritative technical sources and educational resources for the classroom.

  3. Tectonic Plates, Earthquakes, and Volcanoes

    NSDL National Science Digital Library

    The representation shows earthquake and volcanic activity corresponds to plate boundaries. This interactive topographical map with the ocean water removed shows the boundaries of major plates and the locations of major volcanic eruptions and earthquakes worldwide.

  4. Earthquake prediction activities and Damavand earthquake precursor test site in Iran

    NASA Astrophysics Data System (ADS)

    Mokhtari, Mohammad

    2010-01-01

    Iran has long been known as one of the most seismically active areas of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. The Alborz region in the northern part of Iran is an active EW trending mountain belt of 100 km wide and 600 km long. The Alborz range is bounded by the Talesh Mountains to the west and the Kopet Dagh Mountains to the east and consists of several sedimentary and volcanic layers of Cambrian to Eocene ages that were deformed during the late Cenozoic collision. Several active faults affect the central Alborz. The main active faults are the North Tehran and Mosha faults. The Mosha fault is one of the major active faults in the central Alborz as shown by its strong historical seismicity and its clear morphological signature. Situated in the vicinity of Tehran city, this 150-km-long N100 E trending fault represents an important potential seismic source. For earthquake monitoring and possible future prediction/precursory purposes, a test site has been established in the Alborz mountain region. The proximity to the capital of Iran with its high population density, low frequency but high magnitude earthquake occurrence, and active faults with their historical earthquake events have been considered as the main criteria for this selection. In addition, within the test site, there are hot springs and deep water wells that can be used for physico-chemical and radon gas analysis for earthquake precursory studies. The present activities include magnetic measurements; application of methodology for identification of seismogenic nodes for earthquakes of M ? 6.0 in the Alborz region developed by International Institute of Earthquake Prediction Theory and Mathematical Geophysics, IIEPT RAS, Russian Academy of Science, Moscow (IIEPT&MG RAS); a feasibility study using a dense seismic network for identification of future locations of seismic monitoring stations and application of short-term prediction of medium- and large -size earthquakes is based on Markov and extended self-similarity analysis of seismic data. The establishment of the test site is ongoing, and the methodology has been selected based on the IASPEI evaluation report on the most important precursors with installation of (i) a local dense seismic network consisting of 25 short-period seismometers, (ii) a GPS network consisting of eight instruments with 70 stations, (iii) magnetic network with four instruments, and (iv) radon gas and a physico-chemical study on the springs and deep water wells

  5. Bladder Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Diagnostic Ultrasound Corporation's Bladder Scan Monitor continuously records and monitors bladder fullness and alerts the wearer or caretaker when voiding is required. The sensor is held against the lower abdomen by a belt and connected to the monitor by a cable. The sensor obtains bladder volume data from sound waves reflecting off the bladder wall. The device was developed by Langley Research Center, the Ames Research Center and the NASA Technology Applications Team. It utilizes Langley's advanced ultrasound technology. It is licensed to the ARC for medical applications, and sublicensed to Diagnostics Ultrasound. Central monitoring systems are planned for the future.

  6. Emergency seismic and CGPS networks: a first employment for the L'Aquila Mw 6.3 earthquake

    NASA Astrophysics Data System (ADS)

    Abruzzese, L.; Avallone, A.; Cecere, G.; Cattaneo, M.; Cardinale, V.; Castagnozzi, A.; Cogliano, R.; Criscuoli, F.; D'Agostino, N.; D'Ambrosio, C.; de Luca, G.; D'Anastasio, E.; Falco, L.; Flammia, V.; Migliari, F.; Minichiello, F.; Memmolo, A.; Monachesi, G.; Moschillo, R.; Pignone, M.; Pucillo, S.; Selvaggi, G.; Zarrilli, L.; Delladio, A.; Govoni, A.; Franceschi, D.; de Martin, M.; Moretti, M.

    2009-12-01

    During the last 2 years, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) developed an important real-time temporary seismic network infrastructure in order to densify the Italian National Seismic Network in epicentral areas thus enhancing the localization of the micro-seismicity after main earthquake events. This real-time temporary seismic network is constituted by various mobile and autonomous seismic stations that in group of three are telemetered to a Very Small Aperture Terminal (VSAT). This system uses a dedicated bandwidth on UHF, Wi-Fi and satellite frequency that allows the data flow in real-time at INGV centre in Rome (and Grottaminarda as backup center). The deployment of the seismic network is managed in a geographical information systems (GIS) by particular scenarios that visualizes, for the epicentral area, information about instrumental seismicity, seismic risk, macroseismic felts and territorial data. Starting from digital terrain model, the surface spatial analysis (Viewshed, Observer Point) allows the geographic arrangement of the stations and relative scenarios. The April, 6th, 2009 Mw 6.3 L'Aquila destructive earthquake represented the first real-case to test the entire emergency seismic network infrastructure. Less than 6 hours after the earthquake occurrence, a first accelerometer station was already sending data at INGV seismic monitoring headquarters. A total number of 9 seismic stations have been installed within 3 days after the earthquake. Furthermore, 5 permanent GPS stations have been installed in the epicentral area within 1 to 9 days after the main shock to detect the post-seismic deformation induced by the earthquake. We will show and describe the details of the Emergency Seismic Network infrastructure, and the first results from the collected data.

  7. Earthquake forecasting test for Kanto district to reduce vulnerability of urban mega earthquake disasters

    NASA Astrophysics Data System (ADS)

    Yokoi, S.; Tsuruoka, H.; Nanjo, K.; Hirata, N.

    2012-12-01

    Collaboratory for the Study of Earthquake Predictability (CSEP) is a global project on earthquake predictability research. The final goal of this project is to search for the intrinsic predictability of the earthquake rupture process through forecast testing experiments. The Earthquake Research Institute, the University of Tokyo joined CSEP and started the Japanese testing center called as CSEP-Japan. This testing center provides an open access to researchers contributing earthquake forecast models applied to Japan. Now more than 100 earthquake forecast models were submitted on the prospective experiment. The models are separated into 4 testing classes (1 day, 3 months, 1 year and 3 years) and 3 testing regions covering an area of Japan including sea area, Japanese mainland and Kanto district. We evaluate the performance of the models in the official suite of tests defined by CSEP. The total number of experiments was implemented for approximately 300 rounds. These results provide new knowledge concerning statistical forecasting models. We started a study for constructing a 3-dimensional earthquake forecasting model for Kanto district in Japan based on CSEP experiments under the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters. Because seismicity of the area ranges from shallower part to a depth of 80 km due to subducting Philippine Sea plate and Pacific plate, we need to study effect of depth distribution. We will develop models for forecasting based on the results of 2-D modeling. We defined the 3D - forecasting area in the Kanto region with test classes of 1 day, 3 months, 1 year and 3 years, and magnitudes from 4.0 to 9.0 as in CSEP-Japan. In the first step of the study, we will install RI10K model (Nanjo, 2011) and the HISTETAS models (Ogata, 2011) to know if those models have good performance as in the 3 months 2-D CSEP-Japan experiments in the Kanto region before the 2011 Tohoku event (Yokoi et al., in preparation). We use CSEP-Japan experiments as a starting model of non-divided column in a depth. In the presentation, we will discuss the performance of the models comparing results of the Kanto district with those obtained in all over Japan by CSEP-Japan and also add to discuss the results of the 3-month experiments after the 2011 Tohoku earthquake to understand the learning ability of the models associated with recent seismicity of the area.

  8. Infrasonic and seismic signals from the Myanmar earthquake of November 11,2012

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zhang, Dongning; Li, Ke

    2013-04-01

    On November 11, 2012, at 01:12:38 UTC (09:12:38 Beijing Time), a strong earthquake (Mw=6.8) occurred in Myanmar. The epicenter (23.0?N,95.9?E,focal depth ~10 km) was near the town of Male, 52 km NNE of the city of Shwebo. The earthquake with a rupture length of 60-70 km resulted from right lateral movement on the Sagaing Fault related to collision between the Indo-Australian Plate and the Eurasian Plate. At a distance of 366 km from the epicenter, infrasonic and seismic signals were recorded by Tengchong seismo-acoustic array located in southwest of China for monitoring volcanic and earthquake activity, which consists of four MB2005 microbarometers with bandwidth 0.01-27Hz and four BBVS-60 seismometers with bandwidth 0.01667-50Hz arranged in a centered triangle with an aperture of about 1.8 km. PMCC provided by CEA/DASE applied to analyze infrasound data. Comparison of the infrasonic and seismic signals produced by this earthquake showed infrasonic signals with different arrival times and azimuths may be classified as local, epicentral and diffracted or secondary sourced infrasound, but seismic signals only include P, S and surface waves can produce local infrasound through ground-coupled air waves at the station. The PMCC results indicated that the infrasonic waves showed a consistent acoustic trace velocity of approximately 0.348 km/s from 09:30 to 09:36 (Beijing Time) and the azimuth of arrival changed with time from 227 to 217 degrees. There are mountain chains with altitude more than 1000 m in the east of the epicenter. Mountains shaking induced by earthquake acted as a speaker and radiated the infrasound that traveled to Tengchong seismo-acoustic array. It was worth noting that PMCC detected a group infrasound with trace velocity of approximately 0.339 km/s and arrival azimuth of 237 degree from 09:23:31 to 09:24 (Beijing Time). It may be inferred that the seismic surface wave induced by earthquake reach the mountains on the border between China Yunnan and Myanmar, then acted as a secondary sources and generated diffracted infrasound. This work is supported by the fundamental research and development project of the Institute of Geophysics,CEA(DQJB10B28).

  9. Multi-Scale Structure and Earthquake Properties in the San Jacinto Fault Zone Area

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.

    2014-12-01

    I review multi-scale multi-signal seismological results on structure and earthquake properties within and around the San Jacinto Fault Zone (SJFZ) in southern California. The results are based on data of the southern California and ANZA networks covering scales from a few km to over 100 km, additional near-fault seismometers and linear arrays with instrument spacing 25-50 m that cross the SJFZ at several locations, and a dense rectangular array with >1100 vertical-component nodes separated by 10-30 m centered on the fault. The structural studies utilize earthquake data to image the seismogenic sections and ambient noise to image the shallower structures. The earthquake studies use waveform inversions and additional time domain and spectral methods. We observe pronounced damage regions with low seismic velocities and anomalous Vp/Vs ratios around the fault, and clear velocity contrasts across various sections. The damage zones and velocity contrasts produce fault zone trapped and head waves at various locations, along with time delays, anisotropy and other signals. The damage zones follow a flower-shape with depth; in places with velocity contrast they are offset to the stiffer side at depth as expected for bimaterial ruptures with persistent propagation direction. Analysis of PGV and PGA indicates clear persistent directivity at given fault sections and overall motion amplification within several km around the fault. Clear temporal changes of velocities, probably involving primarily the shallow material, are observed in response to seasonal, earthquake and other loadings. Full source tensor properties of M>4 earthquakes in the complex trifurcation area include statistically-robust small isotropic component, likely reflecting dynamic generation of rock damage in the source volumes. The dense fault zone instruments record seismic "noise" at frequencies >200 Hz that can be used for imaging and monitoring the shallow material with high space and time details, and numerous minute local earthquakes that contribute to the high frequency "noise". Updated results will be presented in the meeting. *The studies have been done in collaboration with Frank Vernon, Amir Allam, Dimitri Zigone, Zach Ross, Gregor Hillers, Ittai Kurzon, Michel Campillo, Philippe Roux, Lupei Zhu, Dan Hollis, Mitchell Barklage and others.

  10. The CATDAT damaging earthquakes database

    Microsoft Academic Search

    J. E. Daniell; B. Khazai; F. Wenzel; A. Vervaeck

    2011-01-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used

  11. Earthquakes! Amplitude and Magnitude Connection

    NSDL National Science Digital Library

    2010-12-13

    This interdisciplinary learning activity illustrates the differences between the amplitude and magnitude of earthquakes in a mathematical context. Students will express earthquake magnitude as a logarithmic function of amplitude and express earthquake amplitude as an exponential function of magnitude. Worksheets are also included in the document.

  12. Earthquake Resistant Cathedral in Chile

    USGS Multimedia Gallery

    A cathedral in the central square of Chilln, Chile replaces the ancient cathedral that collapsed during the strong earthquake of 1939. This modern structure was constructed with earthquake resistance as the primary consideration. The only damage caused by the M 8.8 earthquake on Feb. 27, 2010 was b...

  13. March 13, 2011 Tohoku Earthquake

    E-print Network

    Miyashita, Yasushi

    March 13, 2011 Tohoku Earthquake I extend my sincere sympathies to the many people affected by the Tohoku earthquake. I pray that those affected are able to return to a peaceful existence as quickly staff have been affected by this earthquake. The situation remains unpredictable, with aftershocks

  14. Staying Safe in Earthquake Country

    E-print Network

    de Lijser, Peter

    Staying Safe in Earthquake Country David Bowman On July 29 of this year, Mother Nature sent Cal State Fullerton a wake-up call in the form of the magnitude (M) 5.4 Chino Hills earthquake. Although this earthquake did not cause any serious damage to our campus, it has served as a reminder that we do indeed live

  15. Turkish Children's Ideas about Earthquakes

    ERIC Educational Resources Information Center

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered

  16. Stochastic relation between anomalous propagation in the line-of-sight VHF radio band and occurrences of earthquakes

    NASA Astrophysics Data System (ADS)

    Motojima, K.; Haga, N.

    2013-11-01

    This paper was intended to find out any relation between anomalous line-of-sight propagation on the VHF band and occurrences of earthquakes near the VHF propagation paths. The television and FM radio broadcasting waves on the VHF band were monitored continuously over the long term. For that purpose, a multidirectional VHF band monitoring system was established and utilized. Anomalous line-of-sight propagation on the VHF band was distinguished from the monitored wave by using a statistical analysis. After the stochastic consideration, it was found out that earthquakes associated with anomalous propagation were characterized by magnitude of earthquakes M ? 4.5, and distances from epicenters L ? 75 km. The anomalous propagation was monitored on the VHF band a few days earlier the associated earthquakes occurred. Moreover, the anomaly appeared on multidirectional propagation paths simultaneously. The anomaly on the line-of-sight propagation indicates possibility of narrow focusing the area of epicenter of earthquake.

  17. Stochastic relation between anomalous propagation in the line-of-sight VHF radio band and occurrences of earthquakes

    NASA Astrophysics Data System (ADS)

    Motojima, K.; Haga, N.

    2014-08-01

    This paper was intended to find out any relation between anomalous line-of-sight propagation on the very high frequency (VHF) band and occurrences of earthquakes near the VHF propagation paths. The television and FM radio broadcasting waves on the VHF band were monitored continuously over the long term. For that purpose, a multidirectional VHF band monitoring system was established and utilized. Anomalous line-of-sight propagation on the VHF band was distinguished from the monitored wave by using a statistical analysis. After the stochastic consideration, it was found out that earthquakes associated with anomalous propagation were characterized by magnitude of earthquakes M ? 4.5, and distances from epicenters L ? 75 km. The anomalous propagation was monitored on the VHF band a few days before the associated earthquakes occurred. Moreover, the anomaly appeared on multidirectional propagation paths simultaneously. The anomaly on the line-of-sight propagation indicates the possibility of narrowly focusing the area of the epicenter of earthquake.

  18. Center of Excellence for Applied Mathematical and Statistical Research in support of development of multicrop production monitoring capability

    NASA Technical Reports Server (NTRS)

    Woodward, W. A.; Gray, H. L.

    1983-01-01

    Efforts in support of the development of multicrop production monitoring capability are reported. In particular, segment level proportion estimation techniques based upon a mixture model were investigated. Efforts have dealt primarily with evaluation of current techniques and development of alternative ones. A comparison of techniques is provided on both simulated and LANDSAT data along with an analysis of the quality of profile variables obtained from LANDSAT data.

  19. Cruise report for 01-99-SC: southern California earthquake hazards project

    USGS Publications Warehouse

    Normark, William R.; Reid, Jane A.; Sliter, Ray W.; Holton, David; Gutmacher, Christina E.; Fisher, Michael A.; Childs, Jonathan R.

    1999-01-01

    The focus of the Southern California Earthquake Hazards project is to identify the landslide and earthquake hazards and related ground-deformation processes occurring in the offshore areas that have significant potential to impact the inhabitants of the Southern California coastal region. The project activity is supported through the Coastal and Marine Geology Program of the Geologic Division of the U. S. Geological Survey (USGS) and is a component of the Geologic Division's Science Strategy under Goal 1Conduct Geologic Hazard Assessments for Mitigation Planning (Bohlen et al., 1998). The project research is specifically stated under Activity 1.1.2 of the Science Strategy: Earthquake Hazard Assessments and Loss Reduction Products in Urban Regions. This activity involves "research, seismic and geodetic monitoring, field studies, geologic mapping, and analyses needed to provide seismic hazard assessments of major urban centers in earthquake-prone regions including adjoining coastal and offshore areas." The southern California urban areas, which form the most populated urban corridor along the U.S. Pacific margin, are among a few specifically designated for special emphasis under the Division's science strategy (Bohlen et al., 1998). The primary objective of the project is to help mitigate the earthquake hazards for the Southern California region by improving our understanding of how deformation is distributed (spatially and temporally) in the offshore with respect to the onshore region. To meet this objective, we are conducting field investigations to observe the distribution, character, and relative intensity of active (i.e., primarily Holocene) deformation within the basins and along the shelf adjacent to the most highly populated areas (Fig. 1). In addition, acoustic imaging should help determine the subsurface dimensions of the faults and identify the size and frequency of submarine landslides, both of which are necessary for evaluating the potential for generating destructive tsunamis in the southern California offshore. In order to evaluate the strain associated with the offshore structures, the initial results from the field mapping under this project will be used to identify possible sites for deployment of acoustic geodetic instruments to monitor strain in the offshore region. A major goal of mapping under this project is to provide detailed geologic and geophysical information in GIS data bases that build on the earlier studies and use the new data to precisely locate active faults and to map recent submarine landslide deposits.

  20. Earthquakes Living Lab: Geology and Earthquakes in Japan

    NSDL National Science Digital Library

    Civil and Environmental Engineering Department,

    Students study how geology relates to the frequency of large-magnitude earthquakes in Japan. Using the online resources provided through the Earthquakes Living Lab, students investigate reasons why large earthquakes occur in this region, drawing conclusions from tectonic plate structures and the locations of fault lines. Working in pairs, students explore the 1995 Kobe earthquake, why it happened and the destruction it caused. Students also think like engineers to predict where other earthquakes are likely to occur and what precautions might be taken. A worksheet serves as a student guide for the activity.

  1. Seafloor earthquake measurement system, SEMS IV

    SciTech Connect

    Platzbecker, M.R.; Ehasz, J.P.; Franco, R.J.

    1997-07-01

    Staff of the Telemetry Technology Development Department (2664) have, in support of the U.S. Interior Department Mineral Management Services (MMS), developed and deployed the Seafloor Earthquake Measurement System IV (SEMS IV). The result of this development project is a series of three fully operational seafloor seismic monitor systems located at offshore platforms: Eureka, Grace, and Irene. The instrument probes are embedded from three to seven feet into the seafloor and hardwired to seismic data recorders installed top side at the offshore platforms. The probes and underwater cables were designed to survive the seafloor environment with an operation life of five years. The units have been operational for two years and have produced recordings of several minor earthquakes in that time. Sandia Labs will transfer operation of SEMS IV to MMS contractors in the coming months. 29 figs., 25 tabs.

  2. Assessing truck driver exposure at the World Trade Center disaster site: personal and area monitoring for particulate matter and volatile organic compounds during October 2001 and April 2002.

    PubMed

    Geyh, Alison S; Chillrud, Steven; Williams, D'Ann L; Herbstman, Julie; Symons, J Morel; Rees, Katherine; Ross, James; Kim, Sung Roul; Lim, Ho-Jin; Turpin, Barbara; Breysse, Patrick

    2005-03-01

    The destruction of the World Trade Center (WTC) in New York City on September 11, 2001, created a 16-acre debris field composed of pulverized and burning material significantly impacting air quality. Site cleanup began almost immediately. Cleanup workers were potentially exposed to airborne contaminants, including particulate matter, volatile organic compounds, and asbestos, at elevated concentrations. This article presents the results of the exposure assessment of one important group of WTC workers, truck drivers, as well as area monitoring that was conducted directly on site during October 2001 and April 2002. In cooperation with a local labor union, 54 drivers (October) and 15 drivers (April) were recruited on site to wear two monitors during their 12-hour work shifts. In addition, drivers were administered a questionnaire asking for information ranging from "first day at the site" to respirator use. Area monitoring was conducted at four perimeter locations during October and three perimeter locations during April. During both months, monitoring was also conducted at one location in the middle of the rubble. Contaminants monitored for included total dust (TD), PM10, PM2.5, and volatile organic compounds. Particle samples were analyzed for mass, as well as elemental and organic carbon content. During October, the median personal exposure to TD was 346 microg/m3. The maximum area concentration, 1742 microg/m3, was found in middle of the debris. The maximum TD concentration found at the perimeter was 392 microg/m3 implying a strong concentration gradient from the middle of debris outward. PM2.5/PM10 ratios ranged from 23% to 100% suggesting significant fire activity during some of the sampled shifts. During April, the median personal exposure to TD was 144 microg/m3, and the highest area concentration, 195 microg/m3, was found at the perimeter. During both months, volatile organic compounds concentrations were low. PMID:15764541

  3. [Earthquakes in El Salvador].

    PubMed

    de Ville de Goyet, C

    2001-02-01

    The Pan American Health Organization (PAHO) has 25 years of experience dealing with major natural disasters. This piece provides a preliminary review of the events taking place in the weeks following the major earthquakes in El Salvador on 13 January and 13 February 2001. It also describes the lessons that have been learned over the last 25 years and the impact that the El Salvador earthquakes and other disasters have had on the health of the affected populations. Topics covered include mass-casualties management, communicable diseases, water supply, managing donations and international assistance, damages to the health-facilities infrastructure, mental health, and PAHO's role in disasters. PMID:11293828

  4. Earthquakes and Tsunamis

    NSDL National Science Digital Library

    In this activity, by the Lane Community College MAPS GIS Program, students work in teams to evaluate Oregon cities?? tsunami evacuation plans related to a potential 8.1 coastal earthquake. Teams use additional information from a Web-based GIS to study the multi-faceted nature of earthquake damage in addition to tsunami impacts and make recommendations to improve the existing plan. The data are from the Oregon Geospatial Data Clearinghouse and the Oregon Department of Geology and Mines. On this site, visitors will find both the teacher version of the lesson plan and the student exercise, both as PDFs.

  5. Earthquake Word Searches

    NSDL National Science Digital Library

    Eric Harshbarger

    2009-10-27

    Finding the words in these word searches will help you learn about earthquakes. The words in the puzzles may be hidden horizontally, vertically, diagonally, forward, or backward. To circle a discovered word, mouse-click on one end of the word and mouse-drag to the other end of the word. Once a word is found, it will be taken off the list. There are nine word searches that you can play: famous seismologists, general earthquake terms, magnitude, Mercalli Intensity Scale, plate names, plate tectonics, Richter Magnitude Scale, seismic waves, and tsunamis.

  6. Combining earthquake forecasts using differential probability gains

    NASA Astrophysics Data System (ADS)

    Shebalin, Peter N.; Narteau, Clment; Zechar, Jeremy Douglas; Holschneider, Matthias

    2014-12-01

    We describe an iterative method to combine seismicity forecasts. With this method, we produce the next generation of a starting forecast by incorporating predictive skill from one or more input forecasts. For a single iteration, we use the differential probability gain of an input forecast relative to the starting forecast. At each point in space and time, the rate in the next-generation forecast is the product of the starting rate and the local differential probability gain. The main advantage of this method is that it can produce high forecast rates using all types of numerical forecast models, even those that are not rate-based. Naturally, a limitation of this method is that the input forecast must have some information not already contained in the starting forecast. We illustrate this method using the Every Earthquake a Precursor According to Scale (EEPAS) and Early Aftershocks Statistics (EAST) models, which are currently being evaluated at the US testing center of the Collaboratory for the Study of Earthquake Predictability. During a testing period from July 2009 to December 2011 (with 19 target earthquakes), the combined model we produce has better predictive performance - in terms of Molchan diagrams and likelihood - than the starting model (EEPAS) and the input model (EAST). Many of the target earthquakes occur in regions where the combined model has high forecast rates. Most importantly, the rates in these regions are substantially higher than if we had simply averaged the models.

  7. A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake

    Microsoft Academic Search

    Meei-Ling Lin; Chi-Che Tung

    2004-01-01

    The Chi-Chi earthquake struck central Taiwan in 1999, triggering many landslides over a broad area. A large amount of information was obtained from the field reconnaissance conducted by National Center for Research on Earthquake Engineering [NCREE, 2000. Investigation Report of the Geotechnical Hazard Caused by Chi-Chi Earthquake, Taiwan] and other follow-up investigations. The objective of this research was to analyze

  8. Seismicity Associated with the Sumatra-Andaman Islands Earthquake of 26 December 2004

    Microsoft Academic Search

    James W. Dewey; George Choy; Bruce Presgrave; Stuart Sipkin; Arthur C. Tarr; Harley Benz; Paul Earle; David Wald

    2007-01-01

    The U.S. Geological Survey\\/National Earthquake Information Center (USGS\\/NEIC) had computed origins for 5000 earthquakes in the Sumatra-Andaman Islands region in the first 36 weeks after the Sumatra-Andaman Islands mainshock of 26 December 2004. The cataloging of earthquakes of mb (USGS) 5.1 and larger is essentially complete for the time period except for the first half-day following the 26 December mainshock,

  9. Catalog of earthquake hypocenters at Alaskan Volcanoes: January 1 through December 31, 2011

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.

    2012-01-01

    Between January 1 and December 31, 2011, the Alaska Volcano Observatory (AVO) located 4,364 earthquakes, of which 3,651 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity above background levels in 2011 at these instrumented volcanic centers. This catalog includes locations, magnitudes, and statistics of the earthquakes located in 2011 with the station parameters, velocity models, and other files used to locate these earthquakes.

  10. Long term (2004-2013) correlation analysis among SSTAs (Significant Sequences of TIR Anomalies) and Earthquakes (M>4) occurrence over Greece: examples of application within a multi-parametric system for continuous seismic hazard monitoring.

    NASA Astrophysics Data System (ADS)

    Tramutoli, Valerio; Coviello, Irina; Eleftheriou, Alexander; Filizzola, Carolina; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Makris, John P.; Paciello, Rossana; Pergola, Nicola; Satriano, Valeria; vallianatos, filippos

    2015-04-01

    Real-time integration of multi-parametric observations is expected to significantly contribute to the development of operational systems for time-Dependent Assessment of Seismic Hazard (t-DASH) and earthquake short term (from days to weeks) forecast. However a very preliminary step in this direction is the identification of those parameters (chemical, physical, biological, etc.) whose anomalous variations can be, to some extent, associated to the complex process of preparation of major earthquakes. In this paper one of these parameter (the Earth's emitted radiation in the Thermal Infra-Red spectral region) is considered for its possible correlation with M?4 earthquakes occurred in Greece in between 2004 and 2013. The RST (Robust Satellite Technique) data analysis approach and RETIRA (Robust Estimator of TIR Anomalies) index were used to preliminarily define, and then to identify, Significant Sequences of TIR Anomalies (SSTAs) in 10 years (2004-2013) of daily TIR images acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite. Taking into account physical models proposed for justifying the existence of a correlation among TIR anomalies and earthquakes occurrence, specific validation rules (in line with the ones used by the Collaboratory for the Study of Earthquake Predictability - CSEP - Project) have been defined to drive the correlation analysis process. The analysis shows that more than 93% of all identified SSTAs occur in the pre-fixed space-time window around (M?4) earthquakes time and location of occurrence with a false positive rate smaller than 7%. Achieved results, and particularly the very low rate of false positives registered on a so long testing period, seems already sufficient (at least) to qualify TIR anomalies (identified by RST approach and RETIRA index) among the parameters to be considered in the framework of a multi-parametric approach to time-Dependent Assessment of Seismic Hazard (t-DASH). The added value of real-time integration of such observations with others, independently performed from ground and satellite sensors, is also shown in the case of recent events occurred in Greece.

  11. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    NASA Technical Reports Server (NTRS)

    Bock, Yehuda; Agnew, Duncan C.; Fang, Peng; Genrich, Joachim F.; Hager, Bradford H.; Herring, Thomas A.; Hudnut, Kenneth W.; King, Robert W.; Larsen, Shawn; Minster, J.-B.

    1993-01-01

    The first measurements are reported for a major earthquake by a continuously operating GPS network, the permanent GPS Genetic ARRY (PGGA) in southern California. The Landers and Big Bear earthquakes of June 28, 1992 were monitored by daily observations. Ten weeks of measurements indicate significant coseismic motion at all PGGA sites, significant postseismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  12. Satellite remote sensing in earthquake prediction. A review

    Microsoft Academic Search

    Habibeh Valizadeh Alvan; Farid Haydari Azad

    2011-01-01

    Sudden, violent movement of the earth's surface resulted of the release of energy into the atmosphere can destroy cities and claim lives. With the recent advances in space-borne data collecting methods which have made it possible monitoring the earth surface with different sensors, scientists are now able to better study the causes and signs of Earthquakes. Current researches are moving

  13. Earthquake Swarm in Armutlu Peninsula, Eastern Marmara Region, Turkey

    NASA Astrophysics Data System (ADS)

    Yavuz, Evrim; aka, Deniz; Tun, Berna; Serkan Irmak, T.; Woith, Heiko; Cesca, Simone; Lhr, Birger-Gottfried; Bar??, ?erif

    2015-04-01

    The most active fault system of Turkey is North Anatolian Fault Zone and caused two large earthquakes in 1999. These two earthquakes affected the eastern Marmara region destructively. Unbroken part of the North Anatolian Fault Zone crosses north of Armutlu Peninsula on east-west direction. This branch has been also located quite close to Istanbul known as a megacity with its high population, economic and social aspects. A new cluster of microseismic activity occurred in the direct vicinity southeastern of the Yalova Termal area. Activity started on August 2, 2014 with a series of micro events, and then on August 3, 2014 a local magnitude is 4.1 event occurred, more than 1000 in the followed until August 31, 2014. Thus we call this tentatively a swarm-like activity. Therefore, investigation of the micro-earthquake activity of the Armutlu Peninsula has become important to understand the relationship between the occurrence of micro-earthquakes and the tectonic structure of the region. For these reasons, Armutlu Network (ARNET), installed end of 2005 and equipped with currently 27 active seismic stations operating by Kocaeli University Earth and Space Sciences Research Center (ESSRC) and Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ), is a very dense network tool able to record even micro-earthquakes in this region. In the 30 days period of August 02 to 31, 2014 Kandilli Observatory and Earthquake Research Institute (KOERI) announced 120 local earthquakes ranging magnitudes between 0.7 and 4.1, but ARNET provided more than 1000 earthquakes for analyzes at the same time period. In this study, earthquakes of the swarm area and vicinity regions determined by ARNET were investigated. The focal mechanism of the August 03, 2014 22:22:42 (GMT) earthquake with local magnitude (Ml) 4.0 is obtained by the moment tensor solution. According to the solution, it discriminates a normal faulting with dextral component. The obtained focal mechanism solution is conformable with the features of local faults in the region. The spatial vicinity of the earthquake swarm and the Yalova geothermal area may suggest a physical link between the ongoing exploitation of the reservoir and the earthquake activity. Keywords: Earthquake swarm, Armutlu Peninsula, ARNET, geothermal activity

  14. Analysis of the seismicity in the region of Mirovo salt mine after 8 years monitoring

    NASA Astrophysics Data System (ADS)

    Dimitrova, Liliya; Solakov, Dimcho; Simeonova, Stela; Aleksandrova, Irena; Georgieva, Gergana

    2015-04-01

    Mirovo salt deposit is situated in the NE part of Bulgaria and 5 kilometers away from the town of Provadiya. The mine is in operation since 1956. The salt is produced by dilution and extraction of the brine to the surface. A system of chambers-pillars is formed within the salt body as a result of the applied technology. The mine is situated in a seismically quiet part of the state. The region is characterized with complex geological structure and several faults. During the last 3 decades a large number of small and moderate earthquakes (M<4.5) are realized in the close vicinity of the salt deposit. Local seismological network (LSN) is deployed in the region to monitor the local seismicity. It consists of 6 three component digital stations. A real-time data transfer from LSN stations to National Data Center (in Sofia) is implemented using the VPN and MAN networks of the Bulgarian Telecommunication Company. Common processing and interpretation of the data from LSN and the national seismic network is performed. Real-time and interactive data processing are performed by the Seismic Network Data Processor (SNDP) software package. More than 700 earthquakes are registered by the LSN within 30km region around the mine during the 8 years monitoring. First we processed the data and compile a catalogue of the earthquakes occur within the studied region (30km around the salt mine). Spatial pattern of seismicity is analyzed. A large number of the seismic events occurred within the northern and north-western part of the salt body. Several earthquakes occurred in close vicinity of the mine. Concerning that the earthquakes could be tectonic and/or induced an attempt is made to find criteria to distinguish natural from induced seismicity. To characterize and distinguish the main processes active in the area we also made waveform and spectral analysis of a number of earthquakes.

  15. Haiti and Earthquake Relief

    Microsoft Academic Search

    Louis Bertin M. Jr

    2010-01-01

    The earthquake that hit Haiti killed more than 200,000 people and left 1.5 million homeless. Although recovery efforts are continuing in full speed, daily life in haiti remains precarious and needs further assistance. Almost 2 billion dollars have been raised by governments, organizations and individuals. The emphasis now is on providing food, shelter and medical care for the ones who

  16. Earthquake Slip Classroom Exercise

    NSDL National Science Digital Library

    In this activity, students explore the 'stick-slip' mechanism of earthquake generation. They will learn about the concepts of stick-slip sliding, static friction, energy conversion, and the elastic properties of materials. Students work together to develop and test a hypothesis, make measurements, graph and write a short report on the results.

  17. Earthquake Damage Slide Show

    NSDL National Science Digital Library

    This slide show presents examples of various types of damage caused by earthquakes. Photos include structural failures in bridges and buildings, landshifts, landslides, liquefaction, fires, tsunamis, and human impacts. Supplemental notes are provided to aid instructors about the photos presented on each slide.

  18. Earthquakes Within Continents

    NSDL National Science Digital Library

    Seth Stein

    This page offers an model for explaining earthquakes that occur within continents, namely, the New Madrid seismic zone. The model, known as the Booby Trap, is an example of a complex system. A link to a video depicting the model is also provided.

  19. Earthquakes and Geology

    NSDL National Science Digital Library

    David Ozsvath

    In this activity, students investigate the relationship between intensity of ground motion and type of rock or alluvium, as seen in the 1994 Northridge, California earthquake. They will examine a map of Mercalli intensity, a cross-section showing geologic structures and rock types, and a map of surficial geology, and answer questions pertaining to amplification of ground motion and S-wave velocities.

  20. The VAN earthquake predictions

    Microsoft Academic Search

    D. A. Rhoades; F. F. Evison

    1996-01-01

    Assessment of the proposed VAN method for predicting earthquakes in Greece remains inconclusive. Authors who have attempted to evaluate the method have had to make their own subjective decisions about some features of the hypothesis, and to propose their own algorithms for testing against a null hypothesis. Different treatments of the inhomogeneity in space and time have lead to widely

  1. San Franciscso Earthquake Aftermath

    NSDL National Science Digital Library

    various

    A series of films hosted by Internet Archive that show the aftermath of the earthquake and efforts to rebuild. The films are available in a variety of file formats of varying quality, and are digitized from period silent films of the disaster. Included in the collection is an Edison newsreel from the period, as well as footage of trolley rides through the destruction.

  2. Earthquakes and Plate Tectonics

    NSDL National Science Digital Library

    This article describes the theory of plate tectonics and its relation to earthquakes and seismic zones. Materials include an overview of plate tectonics, a description of Earth's crustal plates and their motions, and descriptions of the four types of seismic zones.

  3. Aircraft noise monitoring at Naval Training Center and Marine Corps Recruit Depot, San Diego, California, in 1978 and 1979

    Microsoft Academic Search

    D. R. Schmidt; R. G. Klumpp

    1979-01-01

    Aircraft noise from Lindbergh Field was measured during 1978 and 1979 at selected locations within the Naval Training Center (NTC) and the Marine Corps Recruit Depot (MCRD) and compared with noise measured in 1972. The comparison showed that at two locations the noise level had increased and at one location it had decreased. Noise contours based on the 1978-1979 measurements

  4. Business Activity Monitoring: Real-Time Group Goals and Feedback Using an Overhead Scoreboard in a Distribution Center

    ERIC Educational Resources Information Center

    Goomas, David T.; Smith, Stuart M.; Ludwig, Timothy D.

    2011-01-01

    Companies operating large industrial settings often find delivering timely and accurate feedback to employees to be one of the toughest challenges they face in implementing performance management programs. In this report, an overhead scoreboard at a retailer's distribution center informed teams of order selectors as to how many tasks were

  5. Cooperative Monitoring Center Occasional Paper/16: The Potential of Technology for the Control of Small Weapons: Applications in Developing Countries

    SciTech Connect

    ALTMANN, JURGEN

    2000-07-01

    For improving the control of small arms, technology provides many possibilities. Present and future technical means are described in several areas. With the help of sensors deployed on the ground or on board aircraft, larger areas can be monitored. Using tags, seals, and locks, important objects and installations can be safeguarded better. With modern data processing and communication systems, more information can be available, and it can be more speedily processed. Together with navigation and transport equipment, action can be taken faster and at greater range. Particular considerations are presented for cargo control at roads, seaports, and airports, for monitoring designated lines, and for the control of legal arms. By starting at a modest level, costs can be kept low, which would aid developing countries. From the menu of technologies available, systems need to be designed for the intended application and with an understanding of the local conditions. It is recommended that states start with short-term steps, such as acquiring more and better radio transceivers, vehicles, small aircraft, and personal computers. For the medium term, states should begin with experiments and field testing of technologies such as tags, sensors, and digital communication equipment.

  6. The 1868 Hayward Earthquake Alliance: A Case Study - Using an Earthquake Anniversary to Promote Earthquake Preparedness

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Garcia, S.; Aagaard, B. T.; Boatwright, J. J.; Dawson, T.; Hellweg, M.; Knudsen, K. L.; Perkins, J.; Schwartz, D. P.; Stoffer, P. W.; Zoback, M.

    2008-12-01

    Last October 21st marked the 140th anniversary of the M6.8 1868 Hayward Earthquake, the last damaging earthquake on the southern Hayward Fault. This anniversary was used to help publicize the seismic hazards associated with the fault because: (1) the past five such earthquakes on the Hayward Fault occurred about 140 years apart on average, and (2) the Hayward-Rodgers Creek Fault system is the most likely (with a 31 percent probability) fault in the Bay Area to produce a M6.7 or greater earthquake in the next 30 years. To promote earthquake awareness and preparedness, over 140 public and private agencies and companies and many individual joined the public-private nonprofit 1868 Hayward Earthquake Alliance (1868alliance.org). The Alliance sponsored many activities including a public commemoration at Mission San Jose in Fremont, which survived the 1868 earthquake. This event was followed by an earthquake drill at Bay Area schools involving more than 70,000 students. The anniversary prompted the Silver Sentinel, an earthquake response exercise based on the scenario of an earthquake on the Hayward Fault conducted by Bay Area County Offices of Emergency Services. 60 other public and private agencies also participated in this exercise. The California Seismic Safety Commission and KPIX (CBS affiliate) produced professional videos designed forschool classrooms promoting Drop, Cover, and Hold On. Starting in October 2007, the Alliance and the U.S. Geological Survey held a sequence of press conferences to announce the release of new research on the Hayward Fault as well as new loss estimates for a Hayward Fault earthquake. These included: (1) a ShakeMap for the 1868 Hayward earthquake, (2) a report by the U. S. Bureau of Labor Statistics forecasting the number of employees, employers, and wages predicted to be within areas most strongly shaken by a Hayward Fault earthquake, (3) new estimates of the losses associated with a Hayward Fault earthquake, (4) new ground motion simulations of a Hayward Fault earthquake, (5) a new USGS Fact Sheet about the earthquake and the Hayward Fault, (6) a virtual tour of the 1868 earthquake, and (7) a new online field trip guide to the Hayward Fault using locations accessible by car and public transit. Finally, the California Geological Survey and many other Alliance members sponsored the Third Conference on Earthquake Hazards in the East Bay at CSU East Bay in Hayward for the three days following the 140th anniversary. The 1868 Alliance hopes to commemorate the anniversary of the 1868 Hayward Earthquake every year to maintain and increase public awareness of this fault, the hazards it and other East Bay Faults pose, and the ongoing need for earthquake preparedness and mitigation.

  7. Tracking unilateral earthquake rupture by P-wave polarization analysis

    NASA Astrophysics Data System (ADS)

    Bayer, B.; Kind, R.; Hoffmann, M.; Yuan, X.; Meier, T.

    2012-03-01

    Rapid estimation of earthquake rupture propagation is essential to declare an early warning for tsunami-generating earthquakes. An increasing number of seismological methods have been developed to determine rupture parameters, such as length, velocity and propagation direction, especially since the occurrence of the Sumatra-Andaman earthquake that resulted in a devastating tsunami in the Indian Ocean region. Here, we present a new method to follow the rupture process in near real time by a polarization analysis of local and regional P phases that permits a faster determination of rupture properties than using teleseismic records. The new technique has the capability to provide detailed information in less than 10 min. Originally, the method stems from a single-station earthquake location method and is expanded here to monitor P-phase polarization variations through time. As the earthquake source moves away from the hypocentre, the backazimuth of an incoming P phase is expected to change accordingly. With polarization analysis we may be able to monitor the temporal change in P-wave backazimuth to follow the rupture process in near real time. Three component P phases are scanned to determine the azimuthal variation as a function of time. The backazimuth of a moving rupture front is determined by the first eigenvector of the covariance matrix. The linearity of the particle motion is used as a measure of the quality of the data. Seismic stations at local and regional distances (?) are used. We tested the new method with a theoretical simulation and observed seismograms of the Sumatra-Andaman earthquake (2004 December 26, Mw= 9.3), and we were able to follow the rupture for the first 200 s. For larger ruptures, stations at more than 30 epicentral distances would be required. The method is also successfully applied to the Wenchuan earthquake (2008 May 12, Mw= 8.0).

  8. Rapid earthquake characterization using MEMS accelerometers and volunteer hosts following the M 7.2 Darfield, New Zealand, Earthquake

    USGS Publications Warehouse

    Lawrence, J. F.; Cochran, E.S.; Chung, A.; Kaiser, A.; Christensen, C. M.; Allen, R.; Baker, J.W.; Fry, B.; Heaton, T.; Kilb, Debi; Kohler, M.D.; Taufer, M.

    2014-01-01

    We test the feasibility of rapidly detecting and characterizing earthquakes with the Quake?Catcher Network (QCN) that connects low?cost microelectromechanical systems accelerometers to a network of volunteer?owned, Internet?connected computers. Following the 3 September 2010 M 7.2 Darfield, New Zealand, earthquake we installed over 180 QCN sensors in the Christchurch region to record the aftershock sequence. The sensors are monitored continuously by the host computer and send trigger reports to the central server. The central server correlates incoming triggers to detect when an earthquake has occurred. The location and magnitude are then rapidly estimated from a minimal set of received ground?motion parameters. Full seismic time series are typically not retrieved for tens of minutes or even hours after an event. We benchmark the QCN real?time detection performance against the GNS Science GeoNet earthquake catalog. Under normal network operations, QCN detects and characterizes earthquakes within 9.1 s of the earthquake rupture and determines the magnitude within 1 magnitude unit of that reported in the GNS catalog for 90% of the detections.

  9. Outward-Dipping Ring-Fault Structure at Rabaul Caldera as Shown by Earthquake Locations

    Microsoft Academic Search

    Jim Mori; Chris McKee

    1987-01-01

    The locations of a large number of earthquakes recorded at Rabaul caldera in Papua New Guinea from late 1983 to mid-1985 have produced a picture of this active caldera's structural boundary. The earthquake epicenters form an elliptical annulus about 10 kilometers long by 4 kilometers wide, centered in the southern part of the Rabaul volcanic complex. A set of events

  10. Crush Injury in Two Earthquake Disasters within a 3Month Period

    Microsoft Academic Search

    Necmi Kurt; Hasan Fehmi Kk; Recep Demirhan

    2003-01-01

    Background: This study describes our one-center experience in crush injury and compartment syndrome sustained in the Marmara and Dzce earthquakes that hit the region within a 3-month period. Patients and Methods: We reviewed medical records of patients with crush injuries from the two earthquakes and analyzed treatment, morbidity and mortality rates. Results: A total number of 75 patients with crush

  11. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  12. 2003-2004 Campaign GPS Geodetic Monitoring of Surface Deformation Proximal to Volcanic Centers, Commonwealth of Dominica, Lesser Antilles.

    NASA Astrophysics Data System (ADS)

    Davidson, R. T.; Turner, H. L.; Blessing, B. C.; Parra, J.; Fitzgibbon, K.; Jansma, P.; Mattioli, G.

    2004-12-01

    The Commonwealth of Dominica, located midway along the Lesser Antilles island arc, is home to several (at least eight) potentially active volcanic centers. Spurred by recent seismic crises on the island - in the south from 1998-2000 and in the north in 2003 - twelve GPS monuments were installed in two field campaigns in 2001 and 2003. All twelve sites, along with five of six newly installed sites, were occupied continuously for ~2.5 or more UTC days in 2004 using Ashtech Z-12 dual-frequency, code-phase receivers and choke ring antenna to assess the highly complex and possibly interconnected volcanic systems of Dominica. We examine data from the 2003-2004 epochs because of the highly variable, shallow seismicity preceding this period. This way one can potentially isolate the changes that occurred without the data from previous observations influencing the results. Although only two epochs have been included, data quality and reliability can be established from sites distant from volcanic centers, as such sites show consistent velocities from all three epochs of observation over the 2001-2004 period. Between 2003 and 2004, multiple sites show velocities that are inconsistent with a simple tectonic interpretation of elastic strain accumulation along the plate interface. Sites located in the vicinity of the volcanic centers in the south central part of the island are moving faster than the 3 epoch 2001-2004 average of the velocities, which is approximately 7mm/year. The four sites at which greater movement has been noted have velocities ranging from approximately 10 to 27 mm/year. We note that the largest surface deformation signal is seen in the south during the same period when the shallow seismicity was at a maximum in the north of the island. While the spatial distribution of sites remains sparse and the velocities relatively imprecise, the preliminary results may indicate shallow magmatic emplacement, geothermal fluctuations, or structural instability in that part of the island.

  13. Constraints on post-earthquake elevated landslide rate: towards forecasting of a general mechanism ?

    NASA Astrophysics Data System (ADS)

    Uchida, Taro; Marc, Odin; Sens-Schnfelder, Christoph; Sawazaki, Kaoru; Meunier, Patrick; Hovius, Niels

    2014-05-01

    We have observed elevated landslide rates after 3 continental, shallow earthquakes, the Mw 6.9 Finisterre (1993), the Mw 7.6 ChiChi (1999) and the Mw 6.8 Iwate-Miyagi (2008) earthquakes. The magnitude and recovery time of these geomorphic perturbations are not correlated with aftershocks or rainfall forcing, but may be related to substrate weakening. From these examples and some proxy observations from other current studies, it appears that the time required for landslide rates to normalize after an earthquake scales with the earthquake magnitude. In addition to these geomorphological observations, we present a seismic wave velocity monitoring technique based on ambient seismic noise, that is sensitive to changes of substrate strength. At several seismic stations in epicentreal areas of earthquakes with a strong geomorphic response, we have found a velocity drop associated with the earthquake, followed by a recovery phase lasting several years and approximately as long as the recovery time of landslide rates. Lithology appears to be a dominant control on the post-earthquake evolution of landslide rates as well as the seismic velocities at selected stations. Thus, joint geomorphic and seismic observations could allow precise forecasting of the evolution and decay of landslide risk within epicentral areas, starting from early post-earthquake seismic velocity monitoring.

  14. ISET Journal of Earthquake Technology, Paper No. 500, Vol. 46, No. 1, March 2009, pp. 117 SMOOTH SPECTRA OF HORIZONTALAND VERTICAL GROUND

    E-print Network

    Gupta, Vinay Kumar

    ISET Journal of Earthquake Technology, Paper No. 500, Vol. 46, No. 1, March 2009, pp. 117 SMOOTH*** *Seismology Research Center, International Institute of Earthquake Engineering and Seismology, Tehran, Iran **Earthquake Research Institute, University of Tokyo, Tokyo, Japan ***Iran Strong Motion Network, Building

  15. Charleston Earthquake 1886

    NSDL National Science Digital Library

    Major earthquakes may not be that common in the Southeast, but on August 31, 1886, just such a cataclysmic event shook Charleston and the surrounding area. While the entire event lasted less than a minute, it caused many deaths and injuries, along with tremendous property damage. On hand during the aftermath was George LaGrange Cook a prominent local photographer who created the series "Cook's Earthquake Views of Charleston and Vicinity". This collection featured 200 photographs that could be purchased as souvenirs. Visitors to this digital collection can view some of the items from this volume, which documents the destruction wrought by this event. Also, it is worth noting that visitors can also search for specific items of interest and browse around by subject heading.

  16. Written in Stone Earthquake Animations

    NSDL National Science Digital Library

    Jeff Sale, EdCenter Staff Scientist

    This group of brief animations shows destructive phenomena related to earthquakes and provides some advice on mitigating their effects. The collection includes an animation of Rayleigh waves, showing the reverse elliptical motion that makes them especially damaging; a demonstration of the difference in wave propagation and amplitude between hard rock and unconsolidated sediment; and an animation showing the relationship between earthquake magnitude and fault movement on the San Andreas Fault. For homeowners, there are animations depicting an unsecured cripple wall and chimney failure, with suggestions for strengthening these components. There are also animations of fault movement that occurred during specific earthquakes, including the 1994 Northridge earthquake, the 1992 Landers earthquake, and the 1906 San Francisco earthquake. The animations were developed for the educational video "Written in Stone," a project funded by and developed for the California Seismic Safety Commission.

  17. Do Earthquakes Shake Stock Markets?

    PubMed Central

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan. PMID:26197482

  18. Why Do Earthquakes Happen?

    NSDL National Science Digital Library

    This brief tutorial and activity will provide younger students with some idea how earthquakes occur. The text explains how strain builds up along a fault until the rock breaks, releasing energy in the form of seismic waves. This concept is reinforced by a simple experiment in which the students break a foam rubber block in half and then try to slide the broken halves past each other.

  19. Landslides, earthquakes, and erosion

    NASA Astrophysics Data System (ADS)

    Malamud, Bruce D.; Turcotte, Donald L.; Guzzetti, Fausto; Reichenbach, Paola

    2004-12-01

    This paper relates landslide inventories to erosion rates and provides quantitative estimates of the landslide hazard associated with earthquakes. We do this by utilizing a three-parameter inverse-gamma distribution, which fits the frequency-area statistics of three substantially 'complete' landslide-event inventories. A consequence of this general distribution is that a landslide-event magnitude mL=log NLT can be introduced, where NLT is the total number of landslides associated with the landslide event. Using this general distribution, landslide-event magnitudes mL can be obtained from incomplete landslide inventories, and the total area and volume of associated landslides, as well as the area and volume of the maximum landslides, can be directly related to the landslide-event magnitude. Using estimated recurrence intervals for three landslide events and the time span for two historical inventories, we estimate regional erosion rates associated with landslides as typically 0.1-2.5 mm year -1. We next give an empirical correlation between the earthquake magnitude, associated landslide-event magnitude, and the total volume of associated landslides. Using these correlations, we estimate that the minimum earthquake magnitudes that will generate landslides is M=4.30.4. Finally, using Gutenberg-Richter frequency-magnitude statistics for regional seismicity, we relate the intensity of seismicity in an area and the magnitude of the largest regional earthquakes to erosion rates. We find that typical seismically induced erosion rates in active subduction zones are 0.2-7 mm year -1 and adjacent to plate boundary strike-slip fault zones are 0.01-0.7 mm year -1.

  20. Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan

    Microsoft Academic Search

    M. Hayakawa; K. Ohta; A. P. Nickolaenko; Y. Ando

    2005-01-01

    The Schumann resonance phenomenon has been monitored at Nakatsugawa (near Nagoya) in Japan since the beginning of 1999, and due to the occurance of a severe earthquake (so-called Chi-chi earthquake) on 21 September 1999 in Taiwan we have examined our Schumann resonance data at Nakatsugawa during the entire year of 1999. We have found a very anomalous effect in the

  1. How to design for earthquakes

    SciTech Connect

    Degenkolb, M.J.

    1982-10-01

    This article emphasizes that the most important attribute of earthquake resistant construction is that the structure must be tied together so that it and all its components act as a unit. Earthquake force levels in most codes and standards are much less than those to be expected in a strong earthquake. It cautions that where design criteria is based only on adequate calculated strength, without regard for ductility, failures will occur.

  2. Comparing Ground Motion from Earthquakes

    NSDL National Science Digital Library

    Students use data provided in REV (Rapid Earthquake Viewer) to compare the amplitude of the seismic waves recorded as a result of ground shaking from recent earthquakes. They explore the concept of a logarithmic scale, and create a graph using a logarithmic axis. By graphing and comparing data for earthquakes of different magnitudes recorded at similar distances from the epicenter, students discover that the amount of ground motion recorded by a seismometer is a measure of magnitude.

  3. Network for Earthquake Engineering Simulation

    NSDL National Science Digital Library

    The National Science Foundation (NSF) created the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) to give researchers the tools to learn how earthquakes and tsunami impact the buildings, bridges, utility systems and other critical components of today's society. NEES is a network of 15 large-scale, experimental sites linked to a centralized data pool and earthquake simulation software which allows off-site researchers to interact in real time with any of the networked sites.

  4. The Earthquake Engineering Online Archive

    NSDL National Science Digital Library

    The Earthquake Engineering Online Archive is a database of significant publicly-funded research and development literature, data and software on earthquake, structural, and geotechnical engineering, photographs, and engravings and allegorical images from the era before photography. Users may search and download photos and other images of earthquake-related damage and effects. Low-resolution images are available free; registration and log-in are required for full-resolution imagery and other services.

  5. Assessment of Interplate and Intraplate Earthquakes

    E-print Network

    Bellam, Srigiri Shankar

    2012-10-19

    of earthquakes are observed in the surface plates, interplate and intraplate earthquakes, which are classified, based on the location of the origin of an earthquake either between two plates or within the plate respectively. Limited work has been completed...

  6. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 2012-01-01 false Earthquake hazards. 120.174 Section 120...Other Laws and Orders 120.174 Earthquake hazards. When loan proceeds are...construction must conform with the National Earthquake Hazards Reduction Program...

  7. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 2013-01-01 false Earthquake hazards. 120.174 Section 120...Other Laws and Orders 120.174 Earthquake hazards. When loan proceeds are...construction must conform with the National Earthquake Hazards Reduction Program...

  8. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 2011-01-01 false Earthquake hazards. 120.174 Section 120...Other Laws and Orders 120.174 Earthquake hazards. When loan proceeds are...construction must conform with the National Earthquake Hazards Reduction Program...

  9. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...2010-01-01 2010-01-01 false Earthquake hazards. 120.174 Section 120...Other Laws and Orders 120.174 Earthquake hazards. When loan proceeds are...construction must conform with the National Earthquake Hazards Reduction Program...

  10. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...2014-01-01 2014-01-01 false Earthquake hazards. 120.174 Section 120...Other Laws and Orders 120.174 Earthquake hazards. When loan proceeds are...construction must conform with the National Earthquake Hazards Reduction Program...

  11. Earthquake Drill using the Earthquake Early Warning System at an Elementary School

    NASA Astrophysics Data System (ADS)

    Oki, Satoko; Yazaki, Yoshiaki; Koketsu, Kazuki

    2010-05-01

    Japan frequently suffers from many kinds of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. On average, we lose about 120 people a year due to natural hazards in this decade. Above all, earthquakes are noteworthy, since it may kill thousands of people in a moment like in Kobe in 1995. People know that we may have "a big one" some day as long as we live on this land and that what to do; retrofit houses, appliance heavy furniture to walls, add latches to kitchen cabinets, and prepare emergency packs. Yet most of them do not take the action, and result in the loss of many lives. It is only the victims that learn something from the earthquake, and it has never become the lore of the nations. One of the most essential ways to reduce the damage is to educate the general public to be able to make the sound decision on what to do at the moment when an earthquake hits. This will require the knowledge of the backgrounds of the on-going phenomenon. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools. This presentation is the report of a year and half courses that we had at the model elementary school in Tokyo Metropolitan Area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1923 Kanto earthquake (M 7.9) making 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global economic repercussion. We provide the school kids with the "World Seismicity Map" to let them realize that earthquake disasters take place unequally. Then we let the kids jump in front of the seismometer with projecting the real-time data to the wall. Grouped kids contest the largest amplitude by carefully considering how to jump high but nail the landing with their teammates. Their jumps are printed out via portable printer and compared with the real earthquake which occurred even 600km away but still huge when printed out in the same scale. Actually, a magnitude 7 earthquake recorded 600km away needs an A0 paper when scaled with a jump of 10 kids printed in an A4 paper. They've got to understand what to do not to be killed with the great big energy. We also offer earthquake drills using the Earthquake Early Warning System (EEW System). An EEW System is officially introduced in 2007 by JMA (Japan Meteorological Agency) to issue prompt alerts to provide several to several ten seconds before S-wave arrives. When hearing the alarm, school kids think fast to find a place to protect themselves. It is not always when they are in their classrooms but in the chemical lab, music room which does not have any desks to protect them, or in the PE class. Then in the science class, we demonstrate how the EEW System works. A 8m long wave propagation device made with spindles connected with springs is used to visualize the P- and S-waves. In the presentation, we would like to show the paper materials and sufficient movies.

  12. Earthquake forecasting: Statistics and Information

    E-print Network

    Gertsik, V; Krichevets, A

    2013-01-01

    We present an axiomatic approach to earthquake forecasting in terms of multi-component random fields on a lattice. This approach provides a method for constructing point estimates and confidence intervals for conditional probabilities of strong earthquakes under conditions on the levels of precursors. Also, it provides an approach for setting multilevel alarm system and hypothesis testing for binary alarms. We use a method of comparison for different earthquake forecasts in terms of the increase of Shannon information. 'Forecasting' and 'prediction' of earthquakes are equivalent in this approach.

  13. Radon in earthquake prediction research.

    PubMed

    Friedmann, H

    2012-04-01

    The observation of anomalies in the radon concentration in soil gas and ground water before earthquakes initiated systematic investigations on earthquake precursor phenomena. The question what is needed for a meaningful earthquake prediction as well as what types of precursory effects can be expected is shortly discussed. The basic ideas of the dilatancy theory are presented which in principle can explain the occurrence of earthquake forerunners. The reasons for radon anomalies in soil gas and in ground water are clarified and a possible classification of radon anomalies is given. PMID:21669940

  14. Implementation of the National Incident Management System (NIMS)/Incident Command System (ICS) in the Federal Radiological Monitoring and Assessment Center(FRMAC) - Emergency Phase

    SciTech Connect

    NSTec Environmental Restoration

    2007-04-01

    Homeland Security Presidential Directive HSPD-5 requires all federal departments and agencies to adopt a National Incident Management System (NIMS)/Incident Command System (ICS) and use it in their individual domestic incident management and emergency prevention, preparedness, response, recovery, and mitigation programs and activities, as well as in support of those actions taken to assist state and local entities. This system provides a consistent nationwide template to enable federal, state, local, and tribal governments, private-sector, and nongovernmental organizations to work together effectively and efficiently to prepare for, prevent, respond to, and recover from domestic incidents, regardless of cause, size, or complexity, including acts of catastrophic terrorism. This document identifies the operational concepts of the Federal Radiological Monitoring and Assessment Center's (FRMAC) implementation of the NIMS/ICS response structure under the National Response Plan (NRP). The construct identified here defines the basic response template to be tailored to the incident-specific response requirements. FRMAC's mission to facilitate interagency environmental data management, monitoring, sampling, analysis, and assessment and link this information to the planning and decision staff clearly places the FRMAC in the Planning Section. FRMAC is not a mitigating resource for radiological contamination but is present to conduct radiological impact assessment for public dose avoidance. Field monitoring is a fact-finding mission to support this effort directly. Decisions based on the assessed data will drive public protection and operational requirements. This organizational structure under NIMS is focused by the mission responsibilities and interface requirements following the premise to provide emergency responders with a flexible yet standardized structure for incident response activities. The coordination responsibilities outlined in the NRP are based on the NIMS/ICS construct and Unified Command (UC) for management of a domestic incident. The NRP Nuclear/Radiological Incident Annex (NUC) further provides requirements and protocols for coordinating federal government capabilities to respond to nuclear/radiological Incidents of National Significance (INS) and other radiological incidents. When a FRMAC is established, it operates under the parameters of NIMS as defined in the NRP. FRMAC and its operations have been modified to reflect NIMS/ICS concepts and principles and to facilitate working in a Unified Command structure. FRMAC is established at or near the scene of the incident to coordinate radiological monitoring and assessment and is established in coordination with the U.S. Department of Homeland Security (DHS); the coordinating agency; other federal agencies; and state, local, and tribal authorities. However, regardless of the coordinating agency designation, U.S. Department of Energy (DOE) coordinates radiological monitoring and assessment activities for the initial phases of the offsite federal incident response through the Radiological Assistance Program (RAP) and FRMAC assets. Monitoring and assessment data are managed by FRMAC in an accountable, secure, and retrievable format. Monitoring data interpretations, including exposure rate contours, dose projections, and any requested radiological assessments are to be provided to the DHS; to the coordinating agency; and to state, local, and tribal government agencies.

  15. Cooperative Monitoring Center Occasional Paper/12: ENTNEA: A Concept for Enhancing Nuclear Transparency for Confidence Building in Northeast Asia

    SciTech Connect

    Nam, Man-Kwon; Shin, Sung-Tack

    1999-06-01

    Nuclear energy continues to be a strong and growing component of economic development in Northeast Asia. A broad range of nuclear energy systems already exists across the region and vigorous growth is projected. Associated with these capabilities and plans are various concerns about operational safety, environmental protection, and accumulation of spent fuel and other nuclear materials. We consider cooperative measures that might address these concerns. The confidence building measures suggested here center on the sharing of information to lessen concerns about nuclear activities or to solve technical problems. These activities are encompassed by an Enhanced Nuclear Transparency in Northeast Asia (ENTNEA) concept that would be composed of near-term, information-sharing activities and an eventual regional institution. The near-term activities would address specific concerns and build a tradition of cooperation; examples include radiation measurements for public safety and emergency response, demonstration of safe operations at facilities and in transportation, and material security in the back end of the fuel cycle. Linkages to existing efforts and organizations would be sought to maximize the benefits of cooperation. In the longer term, the new cooperative tradition might evolve into an ENTNEA institution. In institutional form, ENTNEA could combine the near-term activities and new cooperative activities, which might require an institutional basis, for the mutual benefit and security of regional parties.

  16. Monitoring the Dusty S-Cluster Object (DSO/G2) on its Orbit towards the Galactic Center Black Hole

    E-print Network

    Valencia-S., M; Zajacek, M; Peissker, F; Parsa, M; Grosso, N; Mossoux, E; Porquet, D; Jalali, B; Karas, V; Yazici, S; Shahzamanian, B; Sabha, N; Saalfeld, R; Smajic, S; Grellmann, R; Moser, L; Horrobin, M; Borkar, A; Marin, M Garcia; Dovciak, M; Kunneriath, D; Karssen, G D; Bursa, M; Straubmeier, C; Bushouse, H

    2014-01-01

    We elaborate on our Astronomer's Telegram #6285 and report in detail new near-infrared (1.45 - 2.45 microns) observations of the Dusty S-cluster Object (DSO/G2) during its approach to the black hole at the center of the Galaxy that were carried out with ESO VLT/SINFONI between February and April 2014. We detect spatially compact Br-gamma and Pa-alpha line emission from the DSO at about 30-40mas east of SgrA*. The velocity of the source, measured from the red-shifted emission, is (2700+-60) km/s. No blue-shifted emission above the noise level is detected at the position of SgrA* or upstream the presumed orbit. The full width at half maximum of the red Br-gamma line is (50+-10) Angstroms, i.e. no significant line broadening with respect to last year is observed. This is a further indication for the compactness of the source. For the moment, the flaring activity of the black hole in the near-infrared regime has not shown any statistically significant increment. We conclude that the DSO source had not yet reached...

  17. Earthquakes or Nuclear Explosions?: Seismic Clues to Dirty Deeds

    NSDL National Science Digital Library

    This activity requires students to read an article about earthquakes and nuclear explosions and answer questions about it. They discover that both earthquakes and nuclear explosions generate seismic waves that can be detected thousands of kilometers away and from the 1960s to the 1990s about one underground nuclear explosion was carried out each week. Students learn that this was how nations tested their nuclear weapons and certified them as ready for deployment. Seismology was often the only way to learn if a foreign power was developing nuclear weapons. Students will also realize that scientists pick up the seismic waves at monitoring stations and these seismic signals allow scientists to locate the explosion or earthquake and to tell the difference between the two. Students also learn about the Comprehensive Test Ban Treaty (CTBT) outlawing nuclear weapon tests that was signed by 150 nations, although by 1999 it had only been ratified by 19 of the 44 countries which had nuclear power reactors.

  18. Seismic monitoring of Central Asia territory in KNDC.

    NASA Astrophysics Data System (ADS)

    Mukambayev, Aidyn; Mikhailova, Natalia

    2015-04-01

    The Central Asia territory includes the territory of five post-Soviet countries: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. Every country has its own independent network of seismic observations and Data Processing Center aimed at every day seismic monitoring of one country territory. However, seismic hazard of Central Asia territory is stipulated by one geodynamic system that generates simultaneous large earthquakes on the territory of different countries. Thus, it is necessary to observe seismic situation for the whole region for emergency situations and for compilation of joint seismic bulletins of Central Asia region. A new contemporary network of seismic observations operated by the Institute of Geophysical Researches has been installed in Kazakhstan during last 15 years. Mainly, these are seismic arrays located throughout the country perimeter. The arrays were constructed under support of the CTBTO, and AFTAC. There are also IRIS and CAREMON stations. All data arrive to KNDC (Kazakhstan National Data Center) in real time mode. In addition, KNDC receives data in real time from stations Zalesovo (Russia), Alibek (Turkmenistan), Ala-Archa and Tokmak (Kyrgyzstan). Arrival times in the form of tables are received with 24-hours delay from almost 20 Kazakhstan stations belonging to SEME MES RK. This observation system allows monitoring the Central Asian seismicity by earthquakes with representative magnitude more than 3.5. In some regions, the events with magnitude 1.5 are recorded. As result, different products with different operativity are created for Central Asia territory: -bulletin of urgent alerts; -automatic seismic bulletin; -interactive seismic bulletin; -joint seismic operative bulletin by data arrived on-line and in table form. After that, in retrospective mode, the events nature is identified to discriminate mining explosions (up to 4000 per year) and natural earthquakes (up to 15000 per year). The results are available at KNDC web-site (www.kndc.kz), and are sent to Data Centers of different countries via e-mail. In addition, processing data are submitted to EMSC, ISC, and GSRAS.

  19. GUIDELINES FOR EARTHQUAKE RESISTANT DESIGN and EVALUATION OF EARTHQUAKE FORCES

    Microsoft Academic Search

    S. K. Bhattacharyya

    Seismic risk is the probability that social or economic consequences of earthquakes will equal or exceed specified values at a site or at several sites or in an area during a specified exposure time. The seismic risk for a project depends to a great extent on the seismic activity of the region. As most earthquakes arise from stress build-up due

  20. Generic precursors to coastal earthquakes: Inferences from Denali fault earthquake

    Microsoft Academic Search

    Ramesh P. Singh; Guido Cervone; Vijay P. Singh; Menas Kafatos

    2007-01-01

    Recent research has shown evidence of strong coupling between the atmosphere and lithosphere in coastal regions, associating abnormal atmospheric phenomena to the occurrence of strong earthquakes. Surface latent heat flux (SLHF), total column water vapor (CWV), relative humidity (RH) and total ozone column (TOC), analyzed over the epicentral region of the Denali fault earthquake of November 3, 2002, exhibit anomalous

  1. The Distribution of Earthquakes: Where Do Large Earthquakes Occur?

    NSDL National Science Digital Library

    John Marquis

    In this activity, students investigate the distribution of large earthquakes (magnitude greater than 6) in Southern California. Using online maps of earthquake epicenters in Southern California and the Los Angeles Basin, they will compare these distributions with historic distributions (1932-1996), and with respect to the locations of major fault traces.

  2. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS Earthquake Engng Struct. Dyn. (2013)

    E-print Network

    Baker, Jack W.

    2013-01-01

    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS Earthquake Engng Struct. Dyn. (2013) Published online for a structure at a specific site for nonlinear dynamic analysis. As nonlinear dynamic analysis becomes more that links nonlin- ear dynamic analysis back to probabilistic seismic hazard analysis for ground motion

  3. Groundwater-strain coupling before the 1999 Mw 7.6 Taiwan Chi-Chi earthquake

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Hung; Tang, Chi-Chia; Cheng, Kai-Chien; Wang, Chung-Ho; Wen, Strong; Lin, Cheng-Horng; Wen, Yi-Ying; Meng, Guojie; Yeh, Ta-Kang; Jan, Jyh Cherng; Yen, Horng-Yuan; Liu, Jann-Yenq

    2015-05-01

    The coupling of pre-earthquake anomalous phenomena between long-term groundwater levels recorded at 42 monitoring stations and time-varying surface strain derived from 16 GPS stations was found in the Choshuichi Alluvial Fan before the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan. The noise-free groundwater-level anomalies consistently comprised by a sequence of decrease, rise and flat phases, which agree very well with changes in strain rates computed from the GPS stations. These coupling agreements show that in addition to compression, tension can be generated before a thrust earthquake occurrence as well. This case demonstrates that short-term surface deformation as signals against noise and accuracy of pre-earthquake anomalous phenomena can be simultaneously examined by using multiple-parameter crosscheck for significantly reducing the uncertainty of earthquake precursory evaluation.

  4. Prediction Capabilities of VLF/LF Emission as the Main Precursor of Earthquake

    E-print Network

    Kachakhidze, Manana

    2013-01-01

    Recent satellite and ground-based observations proved that in earthquake preparation period in the seismogenic area we have VLF/LF and ULF electromagnetic emissions. According to the opinion of the authors of the present paper this phenomenon is more universal and reliable than other earthquake indicators. Hypothetically, in case of availability of adequate methodological grounds, in the nearest future, earth VLF/LF electromagnetic emission might be declared as the main precursor of earthquake. In particular, permanent monitoring of frequency spectrum of earth electromagnetic emission generated in the earthquake preparation period might turn out very useful with the view of prediction of large (M 5) inland earthquakes. The present paper offers a scheme of the methodology according to which the reality of the above given hypothesis can be checked up. To prove the prediction capabilities of earth electromagnetic emission we have used avalanche-like unstable model of fault formation and an analogous model of ele...

  5. Earth Exploration Toolbook Chapter: Investigating Earthquakes with ArcExplorer GIS

    NSDL National Science Digital Library

    This chapter describes the technique of preparing latitude-longitude based data so that it can be imported into a geographic information system (GIS). It describes the steps to create a map to display data and guides users through some basic geographic analyses. The focus of the chapters case study is earthquake prediction. Users download and format near real-time and historical earthquake data from the United States Geological Survey (USGS). They import the data into ArcVoyager Special Edition GIS software, and analyze patterns by querying records and overlaying datasets. Users examine earthquake distributions, monitor current earthquake activity and try to predict where the next big earthquake will occur. Any data set that specifies latitude and longitude coordinates can be prepared for importing into a GIS with the techniques described in this chapter. Examples of data sets that can be investigated include stream flow conditions, global land and sea surface temperatures, and data gathered with a GPS.

  6. Education for Earthquake Disaster Prevention in the Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Oki, S.; Tsuji, H.; Koketsu, K.; Yazaki, Y.

    2008-12-01

    Japan frequently suffers from all types of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. In the first half of this year, we already had three big earthquakes and heavy rainfall, which killed more than 30 people. This is not just for Japan but Asia is the most disaster-afflicted region in the world, accounting for about 90% of all those affected by disasters, and more than 50% of the total fatalities and economic losses. One of the most essential ways to reduce the damage of natural disasters is to educate the general public to let them understand what is going on during those desasters. This leads individual to make the sound decision on what to do to prevent or reduce the damage. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools, and ERI, the Earthquake Research Institute, is qualified to develop education for earthquake disaster prevention in the Tokyo metropolitan area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1703 Genroku earthquake (M 8.0) and the 1923 Kanto earthquake (M 7.9) which had 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global economic repercussion. To better understand earthquakes in this region, "Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area" has been conducted mainly by ERI. It is a 4-year project to develop a high-density network with 400 sites at local elementary schools. We start our education project by using the real seismograms observed at their own schoolyards, putting emphasis on the reality and causality of earthquake disasters. In this presentation, we report some of the educational demonstrations and science experiments for the school kids and their parents.

  7. Analysis of Earthquake Source Spectra in Salton Trough

    NASA Astrophysics Data System (ADS)

    Chen, X.; Shearer, P. M.

    2009-12-01

    Previous studies of the source spectra of small earthquakes in southern California show that average Brune-type stress drops vary among different regions, with particularly low stress drops observed in the Salton Trough (Shearer et al., 2006). The Salton Trough marks the southern end of the San Andreas Fault and is prone to earthquake swarms, some of which are driven by aseismic creep events (Lohman and McGuire, 2007). In order to learn the stress state and understand the physical mechanisms of swarms and slow slip events, we analyze the source spectra of earthquakes in this region. We obtain Southern California Seismic Network (SCSN) waveforms for earthquakes from 1977 to 2009 archived at the Southern California Earthquake Center (SCEC) data center, which includes over 17,000 events. After resampling the data to a uniform 100 Hz sample rate, we compute spectra for both signal and noise windows for each seismogram, and select traces with a P-wave signal-to-noise ratio greater than 5 between 5 Hz and 15 Hz. Using selected displacement spectra, we isolate the source spectra from station terms and path effects using an empirical Greens function approach. From the corrected source spectra, we compute corner frequencies and estimate moments and stress drops. Finally we analyze spatial and temporal variations in stress drop in the Salton Trough and compare them with studies of swarms and creep events to assess the evolution of faulting and stress in the region. References: Lohman, R. B., and J. J. McGuire (2007), Earthquake swarms driven by aseismic creep in the Salton Trough, California, J. Geophys. Res., 112, B04405, doi:10.1029/2006JB004596 Shearer, P. M., G. A. Prieto, and E. Hauksson (2006), Comprehensive analysis of earthquake source spectra in southern California, J. Geophys. Res., 111, B06303, doi:10.1029/2005JB003979.

  8. A continuation of base-line studies for environmentally monitoring space transportation systems at John F. Kennedy Space Center. Volume 3, part 2: Ichthyological studies, sailfin molly reproduction study

    NASA Technical Reports Server (NTRS)

    Snelson, F. F., Jr.

    1980-01-01

    The applicability of monitoring populations of Poccilia latipinna (sailfin molly) and its reproductive efforts as reliable indicators of environmental effects of aerospace activities in the Kennedy Space Center area was investigated. Results show that the sailfin molly experiences drastic fluctuations in population and reproductive success and is not an appropriate factor for monitoring to establish perturbations of the environment due to space transportation system related activities.

  9. The 2014 Greeley, Colorado Earthquakes: Science, Industry, Regulation, and Media

    NASA Astrophysics Data System (ADS)

    Yeck, W. L.; Sheehan, A. F.; Weingarten, M.; Nakai, J.; Ge, S.

    2014-12-01

    On June 1, 2014 (UTC) a magnitude 3.2 earthquake occurred east of the town of Greeley, Colorado. The earthquake was widely felt, with reports from Boulder and Golden, over 60 miles away from the epicenter. The location of the earthquake in a region long considered aseismic but now the locus of active oil and gas production prompted the question of whether this was a natural or induced earthquake. Several classic induced seismicity cases hail from Colorado, including the Rocky Mountain Arsenal earthquakes in the 1960s and the Paradox Valley earthquakes in western Colorado. In both cases the earthquakes were linked to wastewater injection. The Greeley earthquake epicenter was close to a Class II well that had been injecting waste fluid into the deepest sedimentary formation of the Denver Basin at rates as high as 350,000 barrels/month for less than a year. The closest seismometers to the June 1 event were more than 100 km away, necessitating deployment of a local seismic network for detailed study. IRIS provided six seismometers to the University of Colorado which were deployed starting within 3 days of the mainshock. Telemetry at one site allowed for real time monitoring of the ongoing seismic sequence. Local media interest was extremely high with speculation that the earthquake was linked to the oil and gas industry. The timetable of media demand for information provided some challenges given the time needed for data collection and analysis. We adopted a policy of open data and open communication with all interested parties, and made proactive attempts to provide information to industry and regulators. After 3 weeks of data collection and analysis, the proximity and timing of the mainshock and aftershocks to the C4A injection well, along with a sharp increase in seismicity culminating in an M 2.6 aftershock, led to a decision by the Colorado Oil and Gas Corporation Commission (COGCC) to recommend a temporary halt to injection at the C4A injection well. This was the first time that such action had been taken by the COGCC. This presentation provides an overview of the interactions among academic researchers, industry, media, and regulators during the period of rapid response to this earthquake sequence, and the role of seismology in informing those responses.

  10. Orthopedic Injuries Following the East Azerbaijan Earthquake

    PubMed Central

    Elmi, Asghar; Ganjpour Sales, Jafar; Tabrizi, Ali; Soleimanpour, Jafar; Mohseni, Mohammad Ali

    2013-01-01

    Background Evaluating demographic characteristics, distribution and types of orthopedic injuries following major earthquakes may be helpful in future planning for disasters. Objectives This study aimed to analyze data from trauma patients with extremity injury resulting from the earthquakes of East Azerbaijan, Iran. Patients and Methods Medical records of 686 patients admitted to Shohada hospital, Trauma Center of Tabriz University of Medical Sciences were reviewed. There were 200 patients with extremity injury assessed. Demographic characteristics and patterns of injuries in these patients were evaluated. Results In this study, there were 105 females (52.5%) and 95 males (47.5%), out of which, 6 (3%) patients with associated severe head injuries died. The most common sites of injury were lower extremities (81 patients, 41.5% of total victims) while 32 patients (16%) suffered from both upper and lower extremity injuries. Open Fractures were seen in lower extremities of 26 (13%) patients. Compartment syndrome was observed in 3 (1.5%) patients with lower limb fractures. Also, 42 (21%) patients living in Tabriz were injured while they were running away (falling down the stairs and jumping out of windows). Conclusions Extremity injuries especially open fractures of lower limbs account for the majority of hospitalized victims. Compartment syndrome is one of the main problems that should be addressed. Our study demonstrates that people still need more education regarding earthquakes and the government should direct more attention to this issue. PMID:24350141

  11. Seismic activity of the East Sea, Korea offshore earthquake sequence

    NASA Astrophysics Data System (ADS)

    PARK, E.; Park, S.; Hahm, I.; Kim, Y.

    2013-12-01

    Seismicity in Korea is known to be relatively low compared to China and Japan. But it seems to be more active historically, according to historical documents on earthquake. The magnitudes of historical earthquakes were estimated to be about 4 - 6 by previous studies and there were several events with magnitude over 6. Instrumental earthquakes recorded in 1978 - 2012 seem to be smaller than historical earthquakes, according to the Korea Meteorological Administration (KMA) catalog. Their magnitudes are smaller than 4 in general. Although epicenters of instrumental earthquakes seem to be randomly distributed on the entire Korean Peninsula, some earthquakes occur intensively in several specific areas in the East Sea and the eastern region of Jeju Island. The areas having intensive seismic activity in the East Sea are offshore regions of Uljin (Region A), Yeongdeok (Region B), and Ulsan (Region C) from north to south. Eleven earthquakes of ML 2.0 - 3.2 occurred in Region A on April 2006. The epicenters were distributed within a radius of about 0.7 km. And the focal depths were in the range of 1.6 - 13.0 km (Kang and Shin, 2006). Kang and Shin (2006) propose that the sequence is closely related to the marginal geometry of the Ulleung Basin and the regional stress regime. Seven events with ML 2.1 - 3.0 occurred between September 12 and October 17 in 2007, and four events with ML 2.3 - 3.5 did between 07 December 2008 and 13 January 2009 in Region B. The relocations of eleven events greatly improved the epicenter locations that fall within an area with a radius of about 4 km. The relocated depths are in a range of 8 km to 14 km. According to Shin et al. (2012), the distribution of epicenters and fault plane solution of the largest earthquake in the sequences implied that the earthquake sequences are closely related to the Hupo fault at the eastern margin of Hupo basin. The sequences have been considered to have swarm seismicity pattern. In this study, we analyzed the source parameters of 6 earthquakes occurred in Region C on February 19 - March 27, 2012. For analysis of this sequence, we used various data sets, including permanent stations of KMA and Broadband Seismograph Network (F-net) of the National Research Institute for Earth Science and Disaster Prevention (NIED). For the hypocenter determination, 1D velocity structure (Chang and Baag, 2006) and HYPOELLIPSE (Lahr, 1980) were used. The epicenters were distributed within a radius of about 1.5 km. And the focal depths of earthquakes were in the range of 13 - 17 km, indicating shallow events. Using the equation of Tsuboi (1954), magnitudes were estimated to be 2.0 - 3.2. To understand fault movement of earthquake sequence, focal mechanism for the largest earthquake (ML 3.2) was analyzed. According to the result, this earthquake was a oblique strike-slip fault event along either a failure plane of strike 294, dip 84 and rake 38, or that of strike 202, dip 51 and rake 169. Considering the distribution of epicenters and fault plane solution, the sequence in 2012 seems to be related to the Dolgorae Thrust Belt of complex structure. In these regions of A - C, micro earthquakes are observed persistently. Continuous monitoring and researches on these micro seismic events may be needed to understand the characteristics of seismic activity and fault movement in the margin of Ulleung Basin of the East Sea.

  12. Radon anomaly in soil gas as an earthquake precursor.

    PubMed

    Miklavci?, I; Radoli?, V; Vukovi?, B; Poje, M; Varga, M; Stani?, D; Planini?, J

    2008-10-01

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M>or=3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T. PMID:18424052

  13. Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes

    Microsoft Academic Search

    Chi-Yu King

    1980-01-01

    Subsurface soil gas along active faults in central California has been continuously monitored by the Track Etch method to test whether its radon-isotope content may show any premonitory changes useful for earthquake prediction. The monitoring network was installed in May 1975 and has since been gradually expanded to consist of more than 60 stations along a 380-km section of the

  14. Parkfield earthquakes: Characteristic or complementary?

    E-print Network

    Custodio, Susana; Archuleta, Ralph J.

    2007-01-01

    located along a line perpendicular to the fault on the SEfault planes modeled for the 1966 and 2004 earthquakes correspond to the red and blue lines,fault planes modeled for the 1966 and 2004 earthquakes correspond to the red and blue lines,

  15. Magnitude and Energy of Earthquakes

    Microsoft Academic Search

    B. Gutenberg; C. F. Richter

    1955-01-01

    IN a paper presented at a meeting of the Seismological Society of America on April 29, 19551, we have revised previous work2 on the relation of earthquake magnitude M to energy E (in ergs). Methods formerly used to extend the magnitude scale for local earthquakes to teleseisms lead to inconsistencies, so that in effect three different magnitude scales are in

  16. Probabilistic Approach To Earthquake Prediction

    Microsoft Academic Search

    Rodolfo Console; Daniela Pantosti; G. D'Addezio

    2002-01-01

    The evaluation of any earthquake forecast hypothesis requires the application of rigor- ous statistical methods. It implies a univocal definition of the model characterising the concerned anomaly or precursor, so as it can be objectively recognised in any circum- stance and by any observer. A simple definition of an earthquake forecasting hypothe- sis could consist in the identification of particular

  17. Earthquake Preparedness Checklist for Schools.

    ERIC Educational Resources Information Center

    1999

    A brochure provides a checklist highlighting the important questions and activities that should be addressed and undertaken as part of a school safety and preparedness program for earthquakes. It reminds administrators and other interested parties on what not to forget in preparing schools for earthquakes, such as staff knowledge needs, evacuation

  18. Earthquakes Threaten Many American Schools

    ERIC Educational Resources Information Center

    Bailey, Nancy E.

    2010-01-01

    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but

  19. Make an Earthquake: Ground Shaking!

    ERIC Educational Resources Information Center

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,

  20. Geochemical Challenge to Earthquake Prediction

    Microsoft Academic Search

    Hiroshi Wakita

    1996-01-01

    The current status of geochemical and groundwater observations for earthquake prediction in Japan is described. The development of the observations is discussed in relation to the progress of the earthquake prediction program in Japan. Three major findings obtained from our recent studies are outlined. (i) Long-term radon observation data over 18 years at the SKE (Suikoen) well indicate that the