Sample records for eastern snake river

  1. Columbia-Snake River Irrigators Association Eastern Oregon Irrigators Association

    E-print Network

    Columbia-Snake River Irrigators Association Eastern Oregon Irrigators Association Northwest Irrigation Utilities Recommendation for Amendment to the Northwest Power Planning Council For the Columbia River Basin June15,2001 #12;2 Columbia-Snake River Irrigators Association Eastern Oregon Irrigators

  2. Late Quaternary constructional development of the Axial Volcanic Zone, eastern Snake River Plain, Idaho

    E-print Network

    Wetmore, Paul H.

    Late Quaternary constructional development of the Axial Volcanic Zone, eastern Snake River Plain volcanic ridge that trends northeast across the middle of the eastern Snake River Plain, and acts as a drainage divide that separates the Snake River watershed tot eh southeast from the Big Lost watershed

  3. Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain,

    E-print Network

    Distinctive upper mantle anisotropy beneath the High Lava Plains and Eastern Snake River Plain and continuing with the still- ongoing volcanism in the High Lava Plains (HLP) and eastern Snake River Plain (SRP waves; shear wave splitting; high lava plains; Snake River Plain; Yellowstone. Index Terms: 8137

  4. The Yellowstone-Snake River Plain seismic profilling experiment: Crustal structure of the eastern Snake River Plain

    Microsoft Academic Search

    L. W. Braile; R. B. Smith; J. Ansorge; M. R. Baker; M. A. Sparlin; C. Prodehl; M. M. Schilly; J. H. Healy; St. Mueller; K. H. Olsen

    1982-01-01

    Seismic refraction profiles recorded along the eastern Snake River Plain (ESRP) in southeastern Idaho during the 1978 Yellowstone-Snake River Plain cooperative seismic profiling experiment are interpreted to infer the crustal velocity and attenuation (Q-1) structure of the ESRP. Travel-time and synthetic seismogram modeling of a 250 km reversed refraction profile as well as a 100 km detailed profile indicate that

  5. IGNIMBRITES OF THE EASTERN SNAKE RIVER PLAIN: EVIDENCE FOR MAJOR CALDERA-FORMING ERUPTIONS

    Microsoft Academic Search

    Lisa A. Morgan; David J. Doherty; William P. Leeman

    1984-01-01

    The eastern Snake River Plain is a predominantly rhyolitic pFovince, analogous to the present-day Yellowstone Plateau volcanic field but older and further evolved. The wide- spread Quaternary basaltic lavas that now blanket the eastern Snake River Plain appear to have erupted after major rhyolitic activity ceased and represent less than 20% of the total volume of volcanic rock near the

  6. Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, Eastern Oregon

    E-print Network

    Lee, Cin-Ty Aeolus

    Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, Eastern Oregon Ivan online 26 March 2009 Keywords: Boron isotope ratios rhyolite Yellowstone Snake River Plain High Lava Plains hotspot volcanism The geochemistry of NW USA rhyolites correlates strongly with geography

  7. Streamflow gains and losses in the Snake River and ground-water budgets for the Snake River plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Kjelstrom, L.C.

    1995-01-01

    Streamflow gains and losses in the Snake River demonstrate ground-water and surface-water relations and are used to develop ground-water budgets for the Snake River plain. Budgets indicate the storage in the eastern plain increased by 24 million acre-feet from 1880 to 1952 and, in the western plain, increased by about 3 million acre-feet from 1930 to 1972. Ground-water storage throughout the plain has declined in recent years, owing to climatic variations and changing irrigation practices.

  8. Bimodal magmatism, basaltic volcanic styles, tectonics, and geomorphic processes of the eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Hughes, S.S.; Smith, R.P.; Hackett, W.R.; McCurry, M.; Anderson, S.R.; Ferdock, G.C.

    1997-01-01

    Geology presented in this field guide covers a wide spectrum of internal and surficial processes of the eastern Snake River Plain, one of the largest components of the combined late Cenozoic igneous provinces of the western United States. Focus is on widespread Quaternary basaltic plains volcanism that produced coalescent shields and complex eruptive centers that yielded compositionally evolved magmas. The guide is constructed in several parts beginning with discussion sections that provide an overview of the geology followed by road directions, with explanations, for specific locations. The geology overview briefly summarizes the collective knowledge gained, and petrologic implications made, over the past few decades. The field guide covers plains volcanism, lava flow emplacement, basaltic shield growth, phreatomagmatic eruptions, and complex and evolved eruptive centers. Locations and explanations are also provided for the hydrogeology, groundwater contamination, and environmental issues such as range fires and cataclysmic floods associated with the region.

  9. Extension of the Yellowstone plateau, eastern Snake River Plain, and Owyhee plateau

    SciTech Connect

    Rodgers, D.W.; Hackett, W.R.; Ore, H.T. (Idaho State Univ., Pocatello (USA))

    1990-11-01

    Formation of the late Cenozoic volcanic province comprising the Owyhee plateau, eastern Snake River Plain, and Yellowstone plateau has been accompanied by east-northeast-directed crustal extension. A new vector of 45 mm/yr, N56{degree}E for the migration of silicic volcanism across the volcanic province is calculated. If migration of volcanism reflects west-southwest continental drift over a mantle plume, a zone of crustal extension must separate the volcanic province from the more slowly moving North American craton. Space-time relations of basin fill in the adjacent Basin and Range province provide evidence for a zone of extension, about 125 km wide, coincident with and east of coeval silicic volcanism. Since 16 Ma, the zone of extension has migrated along with silicic volcanism, maintaining its position between the province and the unextended craton.

  10. Attempted integration of geologic and geophysical data from the Idaho National Engineering Laboratory area, Eastern Snake River Plain

    Microsoft Academic Search

    N. E. Josten; W. R. Hackett; R. P. Smith

    1993-01-01

    The Eastern Snake River Plain (ESRP) is a late-Cenozoic, bimodal volcanic province that developed synchronously with basin-and-range extension in the surrounding tectonic province. Strong geologic and geophysical contrasts exist between these two provinces. The Basin and Range is composed of northwest-trending, carbonate-bedrock ranges and alluvium-filled valleys. The ESRP is a bimodal volcanic province, with Tertiary silicic-volcanic rocks overlain by Quaternary

  11. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    SciTech Connect

    Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

  12. Contemporary Tectonic Motion of the Eastern Snake River Plain: A Campaign Global Positioning System Study

    SciTech Connect

    Suzette Payne; John Chadwick; Dave Rodgers; Teresa Vanhove

    2007-11-01

    A comparison of precision campaign GPS data from 1995 and 2004 from ten benchmarks on the eastern Snake River Plain (eSRP) has revealed that the province moved 2.8 ± 0.3 mm/yr to the SW (232.4 ± 6.3°) relative to a fixed North American reference frame. The benchmarks had no measurable displacement relative to one another at the resolution of the GPS during the nine-year study, evidence that the province moves as a rigid, non-extending block. This scenario is supported by the aseismic nature of the province and the lack of measurable horizontal stress in boreholes. However, an additional small component of intra-plain extension must also be invoked to account for the observed NW-trending volcanic rift zones that transect the eSRP. We suggest that intra-plain extension is too slow (<1 mm/yr) to measure using our campaign GPS methods, but may be sufficient over millennial time scales to accommodate rift zone formation. Slower velocities measured on three benchmarks within the neighboring Basin and Range ‘seismic parabola’ are consistent with this region serving as a zone of detachment between the North American craton and the faster-moving eSRP.

  13. The Geology of East Butte, a Rhyolitic Volcanic Dome on the Eastern Snake River Plain, Idaho

    NASA Technical Reports Server (NTRS)

    Bretches, J. E.; King, J. S.

    1985-01-01

    East Butte is a prominent volcanic dome located on the eastern Snake River Plain. It is situated 51 km west of Idaho Fallls in the southeast corner of the Idaho National Engineering facility. East Butte rises 350 meters above the Quaternary basalt flows which encircle its 2.4 kilometer diameter base. Its maximum elevation is 2003 meters above sea level. East Butte is composed dominantly of rhyolite. Armstrong and others (1975) determined a K-Ar age of 0.6 +/- m.y. for a rhyolite sample from East Butte. Detailed geologic mapping revealed East Butte to be a single, large cumulo-dome composed dominantly of rhyolite. Major element geochemical analyses indicate that the rhyolite of East Butte is mildly peralkaline (molecular excess of Na2O and K2O over Al2O3 and compositionally homogeneous. Color variations in the East Butte rhyolite result from varying amounts of chemical and physical weathering and to the degree of devitrification that the glass in the groundmass of the rhyolite underwent.

  14. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    SciTech Connect

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

    2014-02-01

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

  15. A new look at geothermal energy potential of the eastern Snake River Plain, Idaho

    SciTech Connect

    Smith, R.P.; Faulder, D.D.; Jackson, S.M. (EG and G Idaho, Inc., Idaho Falls (USA)); Hackett, W.R. (Idaho State Univ., Pocatello (USA))

    1990-06-01

    Passage of the Yellowstone plume beneath the Eastern Snake River Plain (ESRP) left a wake of silicic batholiths and associated 4 to 6 Ma rhyolitic tuffs, a 1 km thick sequence of post 4 Ma basalt lava flows, and high heat flow comparable to that of the Basin-and-Range province. U.S.G.S. (United States Geological Survey) Circular 790 estimates that accessible resources are one-third larger than those of the Cascades, but geothermal exploration and research activities on the ESRP have quietly perished. The authors believe that the ESRP merits further attention as a geothermal exploration target. In this article, the first of several by their group, they identify relevant geological and geophysical features of the ESRP, the first step toward a meaningful exploration strategy. Although exploration is hindered by the heat-sapping effects of the overlying SRP aquifer, several geological features of the ESRP suggest that viable exploration targets exist beneath the aquifer: (1) the fracture zones of buried, Neogene silicic calderas; (2) Quaternary basaltic rift zones (several NW-trending ones and an axial one), which have been persistent zones of fissuring, minor faulting, and magma transport; (3) high-angle faults and fractures around the margin of the downwarped ESRP, including NW-trending basin-and-range faults and NE-trending marginal faults; and (4) fractured or brecciated zones near Pleistocene rhyolite domes and silicic intrusions. Existing geophysical data also constrain exploration targets. Aeromagnetic surveys show NW-trending highs that intersect a NE-trending axial high; rhyolite domes and youthful basaltic volcanism are localized along the highs and at intersections. Although the ESRP is remarkably aseismic, recently installed local seismic networks have identified contemporary microearthquakes that could preserve fracture permeability to depths of several kilometers.

  16. Preliminary geological interpretation and lithologic log of the exploratory geothermal test well (INEL-1), Idaho National Enginering Laboratory, eastern Snake River Plain, Idaho

    Microsoft Academic Search

    D. J. Doherty; L. A. McBroome; M. A. Kuntz

    1979-01-01

    A 10,365 ft (3159 m) geothermal test well was drilled in the spring of 1979 at the Idaho National Engineering Laboratory, eastern Snake River Plain, Idaho. The majority of rock types encountered in the borehole are of volcanic origin. An upper section above 2445 ft (745 m) consists of basaltic lava flows and interbedded sediments of alluvial, lacustrine, and volcanic

  17. Evolution of Quaternary Tholeiitic Basalt Eruptive Centers on the Eastern Snake

    E-print Network

    Wetmore, Paul H.

    Evolution of Quaternary Tholeiitic Basalt Eruptive Centers on the Eastern Snake River Plain, Idaho tholeiitic basalt eruptive centers on the eastern Snake River Plain, Idaho, in Bill Bonnichsen, C.M. White, and Michael McCurry, eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho

  18. Age of irrigation water in ground water from the Eastern Snake River Plain Aquifer, south-central Idaho

    USGS Publications Warehouse

    Plummer, L.N.; Rupert, M.G.; Busenberg, E.; Schlosser, P.

    2000-01-01

    Stable isotope data (2H and 18O) were used in conjunction with chlorofluorocarbon (CFC) and tritium/helium-3 (3H/3He) data to determine the fraction and age of irrigation water in ground water mixtures from farmed parts of the Eastern Snake River Plain (ESRP) Aquifer in south-central Idaho. Two groups of waters were recognized: (1) regional background water, unaffected by irrigation and fertilizer application, and (2) mixtures of irrigation water from the Snake River with regional background water. New data are presented comparing CFC and 3H/3He dating of water recharged through deep fractured basalt, and dating of young fractions in ground water mixtures. The 3H/3He ages of irrigation water in most mixtures ranged from about zero to eight years. The CFC ages of irrigation water in mixtures ranged from values near those based on 3H/3He dating to values biased older than the 3H/3He ages by as much as eight to 10 years. Unsaturated zone air had CFC-12 and CFC-113 concentrations that were 60% to 95%, and 50% to 90%, respectively, of modern air concentrations and were consistently contaminated with CFC-11. Irrigation water diverted from the Snake River was contaminated with CFC-11 but near solubility equilibrium with CFC-12 and CFC-113. The dating indicates ground water velocities of 5 to 8 m/d for water along the top of the ESRP Aquifer near the southwestern boundary of the Idaho National Engineering and Environmental Laboratory (INEEL). Many of the regional background waters contain excess terrigenic helium with a 3He/4He isotope ratio of 7 x 10-6 to 11 x 10-6 (R/Ra = 5 to 8) and could not be dated. Ratios of CFC data indicate that some rangeland water may contain as much as 5% to 30% young water (ages of less than or equal to two to 11.5 years) mixed with old regional background water. The relatively low residence times of ground water in irrigated parts of the ESRP Aquifer and the dilution with low-NO3 irrigation water from the Snake River lower the potential for NO3 contamination in agricultural areas.

  19. Notice of Release of 'Discovery' Snake River Wheatgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Discovery' Snake River wheatgrass (Elymus wawawaiensis J. Carlson & Barkworth) has been released as a cultivar for use in rangeland seedings. The natural distribution of Snake River wheatgrass is limited to eastern Oregon, eastern Washington, and central and northern Idaho, but it is widely used a...

  20. Seismic Reflection Project Near the Southern Terminations of the Lost River and Lemhi Faults, Eastern Snake River Plain, Idaho

    SciTech Connect

    S. M. Jackson; G. S. Carpenter; R. P. Smith; J. L. Casper

    2006-10-01

    Thirteen seismic reflection lines were processed and interpreted to determine the southern terminations of the Lost River and Lemhi faults along the northwest boundary of the eastern Snake River Plain (ESRP). The southernmost terminations of the Arco and Howe segments were determined to support characterization of the Lost River and Lemhi fault sources, respectively, for the INL probabilistic seismic hazard analysis. Keywords:Keywords are required forExternal Release Review*Keywords  Keywords *Contacts (Type and Name are required for each row) Type ofContactContact Name  POC Editor RecordFour commercial seismic reflection lines (Arco lines 81-1 and 81-2; Howe lines 81-3 and 82-2) were obtained from the Montana Power Company. The seismic data were collected in the early 1980’s using a Vibroseis source with station and shot point locations that resulted in 12-fold data. Arco lines 81?1 and 81?2 and Howe lines 81?3 and 82?2 are located within the basins adjacent to the Arco and Howe segments, respectively. Seven seismic lines (Arco lines A1, A2, A3, and A4 and Howe lines H1, H2, and H3) were acquired by EG&G Idaho, Inc. Geosciences for this study using multiple impacts with an accelerated weight drop source. Station and shot point locations yielded 12-fold data. The seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. Two seismic lines (Arco line S2 and Howe line S4) were obtained from Sierra Geophysics. In 1984, they acquired seismic reflection data using an accelerated weight drop source with station and shot point locations that yielded 6-fold data. The two seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. In 1992 for this study, Geotrace Technologies Inc. processed all of the seismic reflection data using industry standard processing techniques. The southern termination of the Howe segment of the Lemhi fault was placed between Howe lines H1 and H2, 2.2 km south of the fault’s southernmost surface expression. In the adjacent basin, south-dipping normal faults at the northern end of Howe line 81-3 and two southwest-dipping normal faults at the northeastern end of Howe line 82-2 that can be correlated with Howe segment. South of the surface expression, two southwest-dipping normal faults on Howe line H1 can be correlated with the Howe segment. Further into the ESRP, Howe lines H2, H3, and S4 show continuous flat lying reflectors and indicate no fault offset. The southern termination of the Arco segment of the Lost River fault was placed between Arco lines S2 and A3, a distance of 4.6 km south of the fault’s southernmost surface expression. Within the basin, west-dipping normal faults interpreted on Arco lines 81-1 and 81-2 can be correlated with the Arco segment. Further south within the Arco volcanic rift zone (VRZ), three seismic lines (Arco lines A2, S2, and A3) permit two interpretations. The west- and south-dipping normal faults on Arco lines A2 and S2 could be associated with slip along the Arco segment. These normal faults have an opposite dip to an east-dipping fault on Arco line A3. The observed small-offsets (< 85 m) along the oppositely dipping normal faults can be interpreted as a graben structure that resulted from dike intrusion within the Arco VRZ. Arco line A4 further south within the Arco VRZ shows flat lyin

  1. Seismic hazards astride the boundary between the eastern Snake River Plain and northern Basin and Range Province Idaho

    SciTech Connect

    Wong, I.G.; Hemphill-Haley, M.A.; Sawyer, T.L. (Woodward-Clyde Federal Services, Oakland, CA (United States)); Coppersmith, K.J.; Youngs, R.R. (Geomatrix Consultants, San Francisco, CA (United States)); Smith, R.P.; Jackson, S.M.; Hackett, W.R. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Silva, W.J.; Stark, C.M. (Pacific Engineering and Analysis, El Cerrito, CA (United States)); Knuepfer, P.L.K. (State Univ. of New York, Binghamton, NY (United States). Dept. of Geological Sciences); Bruhn, R.L.; Wu, D. (Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics)

    1993-04-01

    The occurrence of the damaging 1983 M[sub w] 6.8 Borah Peak, Idaho earthquake, which ruptured a central segment of the Lost River fault, has increased the awareness of seismic hazards in this portion of the Northern Basin and Range Province (NBR). As a result, comprehensive deterministic and probabilistic seismic hazard analyses were performed for the Idaho National Engineering Laboratory (INEL) which is located within the eastern Snake River Plain (ESRP) but adjacent to the NBR. In this region, the most significant seismic sources are three late-Quaternary NBR normal faults, the Lost River, Lemhi and Beaverhead faults, and ESRP volcanic zones. For each source, the maximum earthquake, source geometry, recurrence and their uncertainties were estimated and incorporated into the probabilistic analysis through the use of logic trees. Recent paleoseismic trenching of the Lost River and Lemhi faults and volcanic mapping in the ESRP provided much of the data necessary to characterize the most significant seismic sources. Issues such as fault segmentation, temporal clustering, the nature of fault termination, and the maximum magnitude and recurrence of volcanic zone earthquakes were evaluated in the hazard analyses. Deterministic and probabilistic ground motions were computed using both empirical and stochastic approaches. In the deterministic analysis, the southern segments of the Lemhi fault controlled the hazard at the INEL due to their proximity and potential to generate M[sub w] [approximately]7 earthquakes. In the estimation of deterministic ground motions, potential rupture scenarios were evaluated for a Lemhi earthquake. In the probabilistic analysis, the hazard is dominated by the ESRP random earthquake, and the Lemhi and Lost River faults. The difference in the results of the two analyses points out the uncertainties in assessing seismic hazards due to random earthquakes and in regions of large but infrequent earthquakes.

  2. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and composition of alteration products. The lithologic variability in this area leads to differing water-rock interactions occurring in different parts of the drainage basin. Anthropogenic influences also affect the water; at the far downgradient end of the drainage basin, increased levels of chloride and sulfate in the groundwater suggest an increased influence of irrigation recharge. Results from both water and rock analyses are combined in geochemical modeling software to determine plausible reactions that occur in groundwater collected at the sampling sites.

  3. Brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Okubo, Chris H.

    2014-01-01

    The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.

  4. Attempted integration of geologic and geophysical data from the Idaho National Engineering Laboratory area, Eastern Snake River Plain

    SciTech Connect

    Josten, N.E.; Hackett, W.R.; Smith, R.P. (EG G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.)

    1993-04-01

    The Eastern Snake River Plain (ESRP) is a late-Cenozoic, bimodal volcanic province that developed synchronously with basin-and-range extension in the surrounding tectonic province. Strong geologic and geophysical contrasts exist between these two provinces. The Basin and Range is composed of northwest-trending, carbonate-bedrock ranges and alluvium-filled valleys. The ESRP is a bimodal volcanic province, with Tertiary silicic-volcanic rocks overlain by Quaternary mafic lavas. Patterns of ESRP volcanism and associated dike-induced surface deformation suggest that Quaternary crustal extension on the ESRP is accommodated by intrusion of basaltic dikes along northwest-trending volcanic-rift zones. This contrasts with recurrent seismogenic slip along northwest-trending, segmented normal faults in the adjacent Basin and Range tectonic province. The authors present new geophysical compilations, and they attempt to correlate these data with the surface distribution of volcanic-rift zones and other mapped geologic features near the Idaho National Engineering Laboratory. Numerous, northwest-trending aeromagnetic anomalies do not always correspond with mapped volcanic-rift zones, which are expected to be underlain by mafic-dike swarms. Northwest-trending gravity anomalies also cross the ESRP, but their widths suggest broadly distributed masses rather than narrow rift zones. The spatial and temporal distribution of volcanic-rift zones on the ESRP has important implications for regional tectonics and seismicity, as well as the assessment of seismic- and volcanic hazards at the Idaho National Engineering Laboratory. Discrepancies among the data sets suggest that older, buried volcanic-rift zones may have existed in a different configuration than is currently indicated by surficial geology. Alternatively, the geophysical signatures of non-rift-zone features may be indistinguishable from those of volcanic-rift zones.

  5. Application of a parameter-estimation technique to modeling the regional aquifer underlying the eastern Snake River plain, Idaho

    USGS Publications Warehouse

    Garabedian, Stephen P.

    1986-01-01

    A nonlinear, least-squares regression technique for the estimation of ground-water flow model parameters was applied to the regional aquifer underlying the eastern Snake River Plain, Idaho. The technique uses a computer program to simulate two-dimensional, steady-state ground-water flow. Hydrologic data for the 1980 water year were used to calculate recharge rates, boundary fluxes, and spring discharges. Ground-water use was estimated from irrigated land maps and crop consumptive-use figures. These estimates of ground-water withdrawal, recharge rates, and boundary flux, along with leakance, were used as known values in the model calibration of transmissivity. Leakance values were adjusted between regression solutions by comparing model-calculated to measured spring discharges. In other simulations, recharge and leakance also were calibrated as prior-information regression parameters, which limits the variation of these parameters using a normalized standard error of estimate. Results from a best-fit model indicate a wide areal range in transmissivity from about 0.05 to 44 feet squared per second and in leakance from about 2.2x10 -9 to 6.0 x 10 -8 feet per second per foot. Along with parameter values, model statistics also were calculated, including the coefficient of correlation between calculated and observed head (0.996), the standard error of the estimates for head (40 feet), and the parameter coefficients of variation (about 10-40 percent). Additional boundary flux was added in some areas during calibration to achieve proper fit to ground-water flow directions. Model fit improved significantly when areas that violated model assumptions were removed. It also improved slightly when y-direction (northwest-southeast) transmissivity values were larger than x-direction (northeast-southwest) transmissivity values. The model was most sensitive to changes in recharge, and in some areas, to changes in transmissivity, particularly near the spring discharge area from Milner Dam to King Hill.

  6. Large-volume Rhyolite Genesis in Caldera Complexes of the Snake River Plain: Insights

    E-print Network

    Bindeman, Ilya N.

    Large-volume Rhyolite Genesis in Caldera Complexes of the Snake River Plain: Insights from-volume rhyolites in the shallow crust is an im- portant, yet enigmatic, process in the Snake River Plain and world in eastern Idaho. Heise is arguably the best site to evaluate shallow rhyolite genesis in the Snake River

  7. Depth to water in the eastern Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    USGS Publications Warehouse

    Maupin, Molly A.

    1992-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  8. Evidence for Right-lateral Shear Along the Northwest Margin of the Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.

    2007-12-01

    Previous investigators have proposed that extension within the eastern Snake River Plain (ESRP) is accommodated by intrusion of dikes at a rate similar to the rate of extension in the surrounding Basin and Range. This hypothesis is primarily based on the lack of strike-slip offset along the northwest physiographic boundary of the ESRP, the lack of seismicity within the ESRP relative to the surrounding active Basin and Range, and the presence of NW-trending volcanic rift zones within the ESRP. The ESRP is a 400-km long region within the track of the Yellowstone Hotspot that extends from southern Idaho northeast into northwestern Wyoming. GPS data compiled for this study are used to test this hypothesis. Several institutions including the Idaho National Laboratory, National Geodetic Survey, Rensselaer Polytechnic Institute, and University of Utah observed GPS stations from 1994 to 2007 within the ESRP and surrounding region. The GPS velocities show the average orientation of horizontal GPS velocities in the adjacent northwest Basin and Range region is similar to the average orientation for the ESRP (N113°W vs N91°W, respectively), but the average magnitude of horizontal GPS velocities in the Basin and Range (1.4 ± 0.3 mm/yr) is less than that for the ESRP (2.2 ± 0.3 mm/yr). Additionally, the adjacent northwest Basin and Range extends at about 9 x 10-9 /yr with most of the deformation localized along three NW-trending normal faults (Lost River, Lemhi, and Beaverhead). In contrast, the ESRP extends at a rate that is an order of magnitude lower than the adjacent northwest Basin and Range and we see little indication of extension along the Great Rift or other volcanic rift zones over the 400 km length. The GPS differential motion along the region of the ESRP adjacent to the northwest Basin and Range indicates a NE-trending zone of right-lateral shear. Preliminary inversions of GPS velocities, earthquakes, faults, and volcanic features indicate this zone of right-lateral shear is located 10-20 km from the physiographic boundary between the ESRP and adjacent Basin and Range.

  9. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

  10. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

  11. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

  12. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

  13. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon ...Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

  14. Analysis of steady-state flow and advective transport in the eastern Snake River Plain aquifer system, Idaho

    USGS Publications Warehouse

    Ackerman, D.J.

    1995-01-01

    Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails Reservoir and covers an area of nearly 1,000 square miles. This compartment, which receives recharge from an area of intensive surface-water irrigation, is apparently fairly stable. The other intermediate-scale compartment near Mud Lake covers an area of 300 square miles. The stability and size of this compartment are uncertain, but are assumed to be in a state of change. Traveltimes for advective flow from the water table to discharge points in the regional compartment ranged from 12 to 350 years for 80 percent of the particles; in the intermediate-scale flow compartment near American Falls Reservoir, from 7 to 60 years for 80 percent of the particles; and in the intermediate-scale compartment near Mud Lake, from 25 to 100 years for 80 percent of the particles. Traveltimes are sensitive to porosity and assumptions regarding the importance of the strength of internal sinks, which represent ground-water pumpage. A decrease in porosity results in shorter traveltimes but not a uniform decrease in traveltime, because the porosity and thickness is different in each model layer. Most flow was horizontal and occurred in the top 500 feet of the aquifer. An important limitation of the model is the assumption of steady-state flow. The most recent trend in the flow system has been a decrease in recharge since 1987 because of an extended drought and changes in land use. A decrease in flow through the system will result in longer traveltimes than those predicted for a greater flow. Because the interpretation of the model was limited to flow on a larger scale, and did not consider individual wells or well fields, the interpretations were not seriously limited by the discretization of well discharge. The interpretations made from this model also were limited by the discretization of the major discharge areas. Near discharge areas, pathlines might not be representative at the resolution of the grid. Most improvement in the estimates of ground-waterflow directions and travelt

  15. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    SciTech Connect

    L. D. Cecil; L. L. Knobel; J. R. Green (USGS); S. K. Frape (University of Waterloo)

    2000-06-01

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

  16. An Assessment of Lower Snake River Hydrosystem Alternatives on Survival and Recovery of Snake River Salmonids

    E-print Network

    REFERENCES Websites An Assessment of Lower Snake River Hydrosystem Alternatives on Survival and Recovery of Snake River Salmonids http://www.nwfsc.noaa.gov/afis/ Columbia River article http://www.umatilla.nsn.us/main.html Economics of Snake River Salmon Recovery http://www.columbiaconversations.org/pages/Economics/Economics_Snake

  17. Iodine-129 in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho, 2010-12

    USGS Publications Warehouse

    Bartholomay, Roy C.

    2013-01-01

    From 1953 to 1988, approximately 0.941 curies of iodine-129 (129I) were contained in wastewater generated at the Idaho National Laboratory (INL) with almost all of this wastewater discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC). Most of the wastewater containing 129I was discharged directly into the eastern Snake River Plain (ESRP) aquifer through a deep disposal well until 1984; lesser quantities also were discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. During 2010–12, the U.S. Geological Survey in cooperation with the U.S. Department of Energy collected groundwater samples for 129I from 62 wells in the ESRP aquifer to track concentration trends and changes for the carcinogenic radionuclide that has a 15.7 million-year half-life. Concentrations of 129I in the aquifer ranged from 0.0000013±0.0000005 to 1.02±0.04 picocuries per liter (pCi/L), and generally decreased in wells near the INTEC, relative to previous sampling events. The average concentration of 129I in groundwater from 15 wells sampled during four different sample periods decreased from 1.15 pCi/L in 1990–91 to 0.173 pCi/L in 2011–12. All but two wells within a 3-mile radius of the INTEC showed decreases in concentration, and all but one sample had concentrations less than the U.S. Environmental Protection Agency maximum contaminant level of 1 pCi/L. These decreases are attributed to the discontinuation of disposal of 129I in wastewater and to dilution and dispersion in the aquifer. The decreases in 129I concentrations, in areas around INTEC where concentrations increased between 2003 and 2007, were attributed to less recharge near INTEC either from less flow in the Big Lost River or from less local snowmelt and anthropogenic sources. Although wells near INTEC sampled in 2011–12 showed decreases in 129I concentrations compared with previously collected data, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed small increases. These slight increases are attributed to variable discharge rates of wastewater that eventually moved to these well locations as a pulse of water from a particular disposal period. Wells sampled for the first time around the Naval Reactors Facility had 129I concentrations slightly greater than background concentrations in the ESRP aquifer. These concentrations are attributed to possible leakage from landfills at the Naval Reactors Facility or seepage from air emission deposits from INTEC, or both. In 2012, the U.S. Geological Survey collected discrete groundwater samples from 25 zones in 11 wells equipped with multilevel monitoring systems to help define the vertical distribution of 129I in the aquifer. Concentrations ranged from 0.000006±0.000004 to 0.082±0.003 pCi/L. Two new wells completed in 2012 showed variability of up to one order of magnitude of concentrations of 129I among various zones. Two other wells showed similar concentrations of 129I in all three zones sampled. Concentrations were well less than the maximum contaminant level in all zones.

  18. 33 CFR 117.1058 - Snake River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Snake River. 117.1058 Section 117.1058...Requirements Washington § 117.1058 Snake River. (a) The draw of the Burlington...Northern Santa Fe railroad bridge across the Snake River at mile 1.5 between Pasco...

  19. 33 CFR 117.1058 - Snake River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Snake River. 117.1058 Section 117.1058...Requirements Washington § 117.1058 Snake River. (a) The draw of the Burlington...Northern Santa Fe railroad bridge across the Snake River at mile 1.5 between Pasco...

  20. 33 CFR 117.1058 - Snake River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Snake River. 117.1058 Section 117.1058...Requirements Washington § 117.1058 Snake River. (a) The draw of the Burlington...Northern Santa Fe railroad bridge across the Snake River at mile 1.5 between Pasco...

  1. 33 CFR 117.1058 - Snake River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Snake River. 117.1058 Section 117.1058...Requirements Washington § 117.1058 Snake River. (a) The draw of the Burlington...Northern Santa Fe railroad bridge across the Snake River at mile 1.5 between Pasco...

  2. 33 CFR 117.1058 - Snake River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Snake River. 117.1058 Section 117.1058...Requirements Washington § 117.1058 Snake River. (a) The draw of the Burlington...Northern Santa Fe railroad bridge across the Snake River at mile 1.5 between Pasco...

  3. Preliminary geological interpretation and lithologic log of the exploratory geothermal test well (INEL-1), Idaho National Engineering Laboratory, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Doherty, David J.; McBroome, Lisa Ann; Kuntz, Mel A.

    1979-01-01

    A 10,365 ft (3,159 m) geothermal test well was drilled in the spring of 1979 at the Idaho National Engineering Laboratory, eastern Snake River Plain, Idaho: The majority of rock types encountered in the borehole are of volcanic origin. An upper section above 2,445 ft (745 m) consists of basaltic lava flows and interbedded .sediments of alluvial, lacustrine, and volcanic origin. A lower section below 2,445 ft (745 m) consists exclusively of rhyolitic welded ash-flow tuffs, air-fall ash deposits, nonwelded ash-flow ruffs, and volcaniclastic sediments. The lithology and thickness of the rhyolitic rocks suggest that they are part of an intracaldera fill.

  4. Field and Geochemical Study of Table Legs Butte and Quaking Aspen Butte, Eastern Snake River Plain, Idaho: An Analog to the Morphology of Small Shield Volcanoes on Mars

    NASA Technical Reports Server (NTRS)

    Brady, S. M.; Hughes, S. S.; Sakimoto, S. E. H.; Gregg, T. K. P.

    2004-01-01

    Mars Orbiter Laser Altimeter (MOLA) data allows insight to Martian features in great detail, revealing numerous small shields in the Tempe region, consisting of low profiles and a prominent summit caps . Terrestrial examples of this shield morphology are found on the Eastern Snake River Plain (ESRP), Idaho. This plains-style volcanism [2] allows an analog to Martian volcanism based on topographic manifestations of volcanic processes . Recent studies link the slope and morphology of Martian volcanoes to eruptive process and style . The ESRP, a 400km long, 100km wide depression, is host to hundreds of tholeiitic basalt shields, which have low-profiles built up over short eruptive periods of a few months or years . Many of these smaller scale shields (basal diameters rarely exceed 5km) display morphology similar to the volcanoes in the Tempe region of Mars . Morphological variations within these tholeiitic shields are beautifully illustrated in their profiles.

  5. 1. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, VIEW OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, VIEW OF NORTH ELEVATION OF INTAKE ON EAST SIDE OF DAM - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  6. Chemical Constituents in Groundwater from Multiple Zones in the Eastern Snake River Plain Aquifer at the Idaho National Laboratory, Idaho, 2005-08

    USGS Publications Warehouse

    Bartholomay, Roy C.; Twining, Brian V.

    2010-01-01

    From 2005 to 2008, the U.S. Geological Survey's Idaho National Laboratory (INL) Project office, in cooperation with the U.S. Department of Energy, collected water-quality samples from multiple water-bearing zones in the eastern Snake River Plain aquifer. Water samples were collected from six monitoring wells completed in about 350-700 feet of the upper part of the aquifer, and the samples were analyzed for major ions, selected trace elements, nutrients, selected radiochemical constituents, and selected stable isotopes. Each well was equipped with a multilevel monitoring system containing four to seven sampling ports that were each isolated by permanent packer systems. The sampling ports were installed in aquifer zones that were highly transmissive and that represented the water chemistry of the top four to five model layers of a steady-state and transient groundwater-flow model. The model's water chemistry and particle-tracking simulations are being used to better define movement of wastewater constituents in the aquifer. The results of the water chemistry analyses indicated that, in each of four separate wells, one zone of water differed markedly from the other zones in the well. In four wells, one zone to as many as five zones contained radiochemical constituents that originated from wastewater disposal at selected laboratory facilities. The multilevel sampling systems are defining the vertical distribution of wastewater constituents in the eastern Snake River Plain aquifer and the concentrations of wastewater constituents in deeper zones in wells Middle 2051, USGS 132, and USGS 103 support the concept of groundwater flow deepening in the southwestern part of the INL.

  7. Steady-state and transient models of groundwater flow and advective transport, Eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, Idaho

    USGS Publications Warehouse

    Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.

    2010-01-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters estimated for the transient calibration included specific yield for five of the seven hydrogeologic zones. The zones represent five rock units and parts of four rock units with abundant interbedded sediment. All estimates of hydraulic conductivity were nearly within 2 orders of magnitude of the maximum expected value in a range that exceeds 6 orders of magnitude. The estimate of vertical anisotropy was larger than the maximum expected value. All estimates of specific yield and their confidence intervals were within the ranges of values expected for aquifers, the range of values for porosity of basalt, and other estimates of specific yield for basalt. The steady-state model reasonably simulated the observed water-table altitude, orientation, and gradients. Simulation of transient flow conditions accurately reproduced observed changes in the flow system resulting from episodic infiltration from the Big Lost River and facilitated understanding and visualization of the relative importance of historical differences in infiltration in time and space. As described in a conceptual model, the numerical model simulations demonstrate flow that is (1) dominantly horizontal through interflow zones in basalt and vertical anisotropy resulting from contrasts in hydraulic conductivity of various types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. The numerical models were reparameterized, recalibrated, and analyzed to evaluate alternative conceptualizations or implementations of the conceptual model. The analysis of the reparameterized models revealed that little improvement in the model could come from alternative descriptions of sediment content, simulated aquifer thickness, streamflow infiltration, and vertical head distribution on the downgradient boundary. Of the alternative estimates of flow to or from the aquifer, only a 20 percent decrease in

  8. Mechanics of brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2013-12-01

    The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy permeability, a decrease from the ~9400 millidarcy permeability typical of the non-deformed, poorly-welded tuff. As such, these bands would have acted to slow to the circulation of local fluids through the tuff cone, possibly reducing the slopes' stability further. Future work will employ slope stability models to investigate the tendency for slumping of these tuffs shortly after their emplacement, accounting for water-saturated conditions and the effects of eruption-related seismicity. These results will improve current understanding of the mechanics of fault growth within basaltic tuff and enable more rigorous assessments of the hazards posed by slope instability on active phreatomagmatic tuff cones.

  9. 3. NORTH SIDE OF DIVERSION DAM ON THE SNAKE RIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTH SIDE OF DIVERSION DAM ON THE SNAKE RIVER SHOWING HEADGATE ON THE NORTH BANK. VIEW IS TO THE NORTH-NORTHWEST. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  10. 2. UPSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. UPSTREAM SIDE OF DIVERSION DAM ON THE SNAKE RIVER, LOOKING SOUTH-SOUTHWEST. NOTE BANK REINFORCEMENT ON LEFT AND SPILLWAY ON RIGHT. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  11. 5. GENERAL VIEW FROM SOUTH BANK OF SNAKE RIVER LYONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW FROM SOUTH BANK OF SNAKE RIVER LYONS FERRY BRIDGE TO THE RIGHT, JOSO HIGH (UNION PACIFIC RAILROAD) BRIDGE TO THE LEFT - Snake River Bridge at Lyons' Ferry, State Route 261 spanning Snake River, Starbuck, Columbia County, WA

  12. 1978 Yellowstone-eastern Snake River Plain seismic profiling experiment: Data and upper crustal structure of the Yellowstone region

    SciTech Connect

    Schilly, M.M.; Smith, R.B.; Braile, L.W.; Ansorge, J.

    1982-04-10

    Eleven in-line refraction profiles, recorded to distances of 300 km, and one azimuthal fan plot were constructed from data recorded with a 150-station array in the Yellowstone National Park area during the 1978 Yellowstone-Snake River Plain seismic experiment. Interpretations of the data suggest that the crustal P wave velocity model for the Yellowstone region is characterized by (1) an averaged 10-km-thick upper crustal layer, V/sub p/ = 6.0 km/s, (2) an average crustal velocity of 6.3 km/s, and (3) a total crustal thickness of 44 km. Velocity models are presented for profiles that emphasize the upper crust and show (1) a decrease in the depth to the top of the upper crustal crystalline basement from 5 km in southwestern Yellowstone near Island Park to 1 km at the northeast side of the Yellowstone Plateau that is interpreted as a progressive thinning of the silicic surface volcanic layer to the northeast and (2) evidence for a large lateral inhomogeneity interpreted to be a low-velocity body, with a decrease of at least 10% in P wave velocity, located beneath the northeast corner of the Yellowstone Plateau. The low-velocity zone coincides with a local -30-mgal residual gravity anomaly and is located beneath part of the Sour Creek resurgent dome and part of the Hot Springs Basin, the largest hydrothermal system in Yellowstone. The low-velocity body has a maximum depth to the top of 3 km and a minimum depth to the bottom of 9 km and may represent a zone of partial melt. In comparison to the thermally undisturbed upper crust of the surrounding Rocky Mountains the upper crust of the northeastern Yellowstone plateau appears laterally inhomogeneous in velocity and layer thickness, suggesting effects of thermal and magma intrusion, whereas the lower crust appears relatively homogeneous.

  13. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...natural falls, and Dworshak and Hells Canyon Dams). Adjacent riparian zones are...natural falls, and Dworshak and Hells Canyon Dams) to Snake River sockeye salmon in the...Columbia River upstream to Hells Canyon Dam. Critical habitat also includes...

  14. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...natural falls, and Dworshak and Hells Canyon Dams). Adjacent riparian zones are...natural falls, and Dworshak and Hells Canyon Dams) to Snake River sockeye salmon in the...Columbia River upstream to Hells Canyon Dam. Critical habitat also includes...

  15. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...natural falls, and Dworshak and Hells Canyon Dams). Adjacent riparian zones are...natural falls, and Dworshak and Hells Canyon Dams) to Snake River sockeye salmon in the...Columbia River upstream to Hells Canyon Dam. Critical habitat also includes...

  16. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...natural falls, and Dworshak and Hells Canyon Dams). Adjacent riparian zones are...natural falls, and Dworshak and Hells Canyon Dams) to Snake River sockeye salmon in the...Columbia River upstream to Hells Canyon Dam. Critical habitat also includes...

  17. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...natural falls, and Dworshak and Hells Canyon Dams). Adjacent riparian zones are...natural falls, and Dworshak and Hells Canyon Dams) to Snake River sockeye salmon in the...Columbia River upstream to Hells Canyon Dam. Critical habitat also includes...

  18. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2007-08

    USGS Publications Warehouse

    Fisher, Jason C.; Twining, Brian V.

    2011-01-01

    During 2007 and 2008, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected quarterly depth-discrete measurements of fluid pressure and temperature in six boreholes located in the eastern Snake River Plain aquifer of Idaho. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Hydraulic heads (head) and water temperatures in boreholes were monitored at 86 hydraulically-isolated depth intervals located 448.0 to 1,377.6 feet below land surface. The calculation of head is most sensitive to fluid pressure and the altitude of the pressure transducer at each port coupling; it is least sensitive to barometric pressure and water temperature. An analysis of errors associated with the head calculation determined the accuracy of an individual head measurement at +/- 2.3 feet. Many of the sources of measurement error are diminished when considering the differences between two closely-spaced readings of head; therefore, a +/- 0.1 foot measurement accuracy was assumed for vertical head differences (and gradients) calculated between adjacent monitoring zones. Vertical head and temperature profiles were unique to each borehole, and were characteristic of the heterogeneity and anisotropy of the eastern Snake River Plain aquifer. The vertical hydraulic gradients in each borehole remained relatively constant over time with minimum Pearson correlation coefficients between head profiles ranging from 0.72 at borehole USGS 103 to 1.00 at boreholes USGS 133 and MIDDLE 2051. Major inflections in the head profiles almost always coincided with low permeability sediment layers. The presence of a sediment layer, however, was insufficient for identifying the location of a major head change in a borehole. The vertical hydraulic gradients were defined for the major inflections in the head profiles and were as much as 2.2 feet per foot. Head gradients generally were downward in boreholes USGS 133, 134, and MIDDLE 2050A, zero in boreholes USGS 103 and 132, and exhibited a reversal in direction in borehole MIDDLE 2051. Water temperatures in all boreholes ranged from 10.2 to 16.3 degrees Celsius. Boreholes USGS 103 and 132 are in an area of concentrated volcanic vents and fissures, and measurements show water temperature decreasing with depth. All other measurements in boreholes show water temperature increasing with depth. A comparison among boreholes of the normalized mean head over time indicates a moderately positive correlation.

  19. 4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROPOSED SECTION OF DIVERSION DAM ACROSS SNAKE RIVER, SHEET 1 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  20. 3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROFILE AND ALIGNMENT OF DAM ACROSS WEST CHANNEL OF SNAKE RIVER, SHEET 3 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  1. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Navigable Waters 1 2012-07-01 2012-07-01 false Snake River. 117.385 Section 117.385 Navigation and Navigable...REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile...

  2. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Navigable Waters 1 2013-07-01 2013-07-01 false Snake River. 117.385 Section 117.385 Navigation and Navigable...REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile...

  3. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Navigable Waters 1 2014-07-01 2014-07-01 false Snake River. 117.385 Section 117.385 Navigation and Navigable...REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile...

  4. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Navigable Waters 1 2010-07-01 2010-07-01 false Snake River. 117.385 Section 117.385 Navigation and Navigable...REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile...

  5. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Navigable Waters 1 2011-07-01 2011-07-01 false Snake River. 117.385 Section 117.385 Navigation and Navigable...REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile...

  6. Depth to water in the western Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    USGS Publications Warehouse

    Maupin, Molly A.

    1991-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  7. Lower Snake River Subbasin Management Plan WDFW March 2004 1

    E-print Network

    Lower Snake River Subbasin Management Plan WDFW ­ March 2004 1 Lower Snake River Subbasin Management Plan Introduction The Lower Snake River subbasin is located in Whitman, Garfield, Columbia, Asotin subbasin in the Ecoregion. The Lower Snake River Subbasin encompasses an area of approximately 1

  8. Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

    2012-01-01

    Lower Granite Dam impounds the Snake and Clearwater Rivers in eastern Washington and northern Idaho, forming Lower Granite Reservoir. Since 1975, the U.S. Army Corps of Engineers has dredged sediment from the Lower Granite Reservoir and the Snake and Clearwater Rivers in eastern Washington and northern Idaho to keep navigation channels clear and to maintain the flow capacity. In recent years, other Federal agencies, Native American governments, and special interest groups have questioned the negative effects that dredging might have on threatened or endangered species. To help address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected and analyzed bed-sediment core samples (hereinafter cores) in Lower Granite Reservoir and impounded or backwater affected parts of the Snake and Clearwater Rivers. Cores were collected during the spring and fall of 2010 from submerged sampling locations in the Lower Granite Reservoir, and Snake and Clearwater Rivers. A total of 69 cores were collected by using one or more of the following corers: piston, gravity, vibrating, or box. From these 69 cores, 185 subsamples were removed and submitted for grain size analyses, 50 of which were surficial-sediment subsamples. Fifty subsamples were also submitted for major and trace elemental analyses. Surficial-sediment subsamples from cores collected from sites at the lower end of the reservoir near the dam, where stream velocities are lower, generally had the largest percentages of silt and clay (more than 80 percent). Conversely, all of the surficial-sediment subsamples collected from sites in the Snake River had less than 20 percent silt and clay. Most of the surficial-sediment subsamples collected from sites in the Clearwater River contained less than 40 percent silt and clay. Surficial-sediment subsamples collected near midchannel at the confluence generally had more silt and clay than most surficial-sediment subsamples collected from sites on the Snake and Clearwater Rivers or even sites further downstream in Lower Granite Reservoir. Two cores collected at the confluence and all three cores collected on the Clearwater River immediately upstream from the confluence were extracted from a thick sediment deposit as shown by the cross section generated from the bathymetric surveys. The thick sediment deposits at the confluence and on the Clearwater River may be associated with floods in 1996 and 1997 on the Clearwater River. Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

  9. Snakes! Snakes! Snakes!

    ERIC Educational Resources Information Center

    Nature Naturally, 1983

    1983-01-01

    Designed for students in grades 4-6, the teaching unit presents illustrations and facts about snakes. Topics include common snakes found in the United States, how snakes eat, how snakes shed their skin, poisonous snakes, the Eastern Indigo snake, and the anatomy of a snake. A student page includes a crossword puzzle and surprising snake facts. A…

  10. Comparison of Plains Volcanism in the Tempe Terra Region of Mars to the Eastern Snake River Plains, Idaho with Implications for Geochemical Constraints

    NASA Technical Reports Server (NTRS)

    Weren, S. L.; Sakimoto, S. E. H.; Hughes, S. S.; Gregg, T. K. P.

    2004-01-01

    The Eastern Snake River Plains (ESRP) in Idaho have long been considered a terrestrial analog for the plains volcanism like that evident in Syria Planum and Tempe Terra, Mars. Both the ESRP and Tempe Terra are sediment-blanketed volcanic fields in areas with significant extensional faulting. Similar volcanic features can be observed throughout both study areas using field analysis and DEMs of the ESRP and the Mars Global Surveyor (MGS) data from Mars. These features include flow fields, low shields, shields with steep summits, and fissure eruptions. A few other volcanic features, such as cinder cones, which suggest variable compositions, volatile interactions, and multiple volcanic events can be seen in both areas. The eruptions in both the ESRP and Tempe Terra generally originate from the fissures creating elongate, multi-vent shields as well as isolated or aligned single vent shields. Many of these show evidence of radial flow patterns from summit craters as well as lava tube fed flows. The volcanoes of Tempe Terra display some of the global latitudinal parameter trends of small volcanoes on Mars. Some of these trends may be explained by the variation of volatile content and compositional variation across Mars. However, within Tempe Terra no significant local latitudinal trends can be seen in edifice attributes and not all variations are explained by global trends. This study builds upon previous studies of the Tempe Terra region and the ESRP in order to develop a more detailed representation of features and topographic data. Using these data we attempt to help constrain the composition and eruptive style of the Tempe Terra volcanoes by correlating them with the similar and quantified ESRP variations.

  11. 2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF DRAWING, PLAN, SHEET 5 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  12. Geologic map and profiles of the north wall of the Snake River Canyon, Thousand Springs and Niagara quadrangles, Idaho

    USGS Publications Warehouse

    Covington, H.R.; Weaver, Jean N.

    1991-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snake River underlies most of the eastern plain. The aquifer is composed of basaltic rocks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface but is deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat lying basaltic and sedimentary rocks of the eastern Snake River Plain aquifer, which discharges from the northern canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along the describes the geologic occurrence of springs along the northern wall of the Snake River canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Sam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.

  13. Optimization of water-level monitoring networks in the eastern Snake River Plain aquifer using a kriging-based genetic algorithm method

    USGS Publications Warehouse

    Fisher, Jason C.

    2013-01-01

    Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells can be removed from the USGS-INL network before the water table map degradation accelerates. The optimal network designs indicate the robustness of the network design tool. Observation wells were removed from high well-density areas of the network while retaining the spatial pattern of the existing water-table map.

  14. Snake River Fall Chinook Salmon Productivity Nez Perce Tribe

    E-print Network

    Snake River Fall Chinook Salmon Productivity Jay Hesse Nez Perce Tribe Department of Fisheries Office US Fish and Wildlife Service, PO BOX 18, Ahsahka, ID 93520 (208) 476-7242 Snake River fall Chinook) remaining critical uncertainties. Historical abundance of fall Chinook salmon in the Snake River Basin

  15. LSRCP Response to ISRP Snake River Fall Chinook Program Review

    E-print Network

    LSRCP Response to ISRP Snake River Fall Chinook Program Review ISRP's major recommendations Snake River fall Chinook. ......... The LSRCP fall Chinook program needs to be balanced the fall Chinook recovery plan has not been finalized. The Lower Snake River Compensation Plan (LSRCP

  16. High-precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho

    SciTech Connect

    Geslin, J.K.; Link, P.K. [Idaho State Univ., Pocatello, ID (United States). Dept. of Geology] [Idaho State Univ., Pocatello, ID (United States). Dept. of Geology; Fanning, C.M. [Australian National Univ., Canberra (Australia). Research School of Earth Sciences] [Australian National Univ., Canberra (Australia). Research School of Earth Sciences

    1999-04-01

    The Big Lost trough is an upper Pliocene to Holocene sedimentary basin containing volcanic sills in the northeastern Snake River Plain, Idaho. The basin receives sediment primarily from Basin and Range fluvial systems of the Big Lost River, Little Lost River, and Birch Creek. The Big Lost trough contains a >200-m-thick succession of lacustrine, fluvial, eolian, and playa sediments, recording high-frequency Quaternary climatic fluctuations interbedded with basalt flows. Alternating deposition of clay-rich lacustrine sediments and sandy fluvial and eolian sediments in the central part of the basin was in response to the interaction of fluvial and eolian systems with Pleistocene Lake Terreton. The source areas for modern sands from the fluvial systems can be differentiated by using both petrography and U/Pb age spectra from detrital-zircon populations. Provenance data from subsurface sands indicate that the Big Lost trough was supplied with sand largely deposited by the Big Lost River, with local redeposition by eolian processes, similar to the modern depositional system. Provenance and stratigraphic data suggest that during Pleistocene wet climate cycles, the center of the basin was dominated by lacustrine sedimentation; during dry climate cycles, the base level dropped, the Big Lost River prograded across the basin, and the eolian system became active. At least seven climate oscillations are recorded in strata deposited between {approximately}140 and {approximately}1250 ka.

  17. Snake River sockeye salmon estimated adult LGR

    E-print Network

    Snake River sockeye salmon # smolts estimated adult LGR migrating from returns returns Valley-up of the adults returning in 2009, allows us to consider SAR's for sockeye salmon relative to the percent to LGR smolt- to-adult return is 0.08% for the 2005 outmigration. For the 2007 outmigration, the valley

  18. MIDDLE SNAKE RIVER PRODUCTIVITY AND NUTRIENT ASSESSMENT

    EPA Science Inventory

    From 1992 to 1994, the University of Idaho conducted a research project on the water quality- limited section of the MIddle Snake River from Twin Falls downstream to Upper Salmon Falls Dam in an effort to determine the relationship between the nutrients and sediments entering thi...

  19. SNAKE RIVER TRANSECT STUDY, JULY 1969

    EPA Science Inventory

    This study documents conditions at Station 153018 located on the Snake River (17040104, 170402, 170501) 7 miles downstream from the Lewiston-Clarkston bridge. Diurnal and spatial variances occurring at the station were observed during a 24-hour period. On February 25 through 29...

  20. A conceptual model of ground-water flow in the eastern Snake River Plain aquifer at the Idaho National Laboratory and vicinity with implications for contaminant transport

    USGS Publications Warehouse

    Ackerman, Daniel J.; Rattray, Gordon W.; Rousseau, Joseph P.; Davis, Linda C.; Orr, Brennon R.

    2006-01-01

    Ground-water flow in the west-central part of the eastern Snake River Plain aquifer is described in a conceptual model that will be used in numerical simulations to evaluate contaminant transport at the Idaho National Laboratory (INL) and vicinity. The model encompasses an area of 1,940 square miles (mi2) and includes most of the 890 mi2 of the INL. A 50-year history of waste disposal associated with research activities at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. A thorough understanding of the fate and movement of these contaminants in the subsurface is needed by the U.S. Department of Energy to minimize the effect that contaminated ground water may have on the region and to plan effectively for remediation. Three hydrogeologic units were used to represent the complex stratigraphy of the aquifer in the model area. Collectively, these hydrogeologic units include at least 65 basalt-flow groups, 5 andesite-flow groups, and 61 sedimentary interbeds. Three rhyolite domes in the model area extend deep enough to penetrate the aquifer. The rhyolite domes are represented in the conceptual model as low permeability, vertical pluglike masses, and are not included as part of the three primary hydrogeologic units. Broad differences in lithology and large variations in hydraulic properties allowed the heterogeneous, anisotropic basalt-flow groups, andesite-flow groups, and sedimentary interbeds to be grouped into three hydrogeologic units that are conceptually homogeneous and anisotropic. Younger rocks, primarily thin, densely fractured basalt, compose hydrogeologic unit 1; younger rocks, primarily of massive, less densely fractured basalt, compose hydrogeologic unit 2; and intermediate-age rocks, primarily of slightly-to-moderately altered, fractured basalt, compose hydrogeologic unit 3. Differences in hydraulic properties among adjacent hydrogeologic units result in much of the large-scale heterogeneity and anisotropy of the aquifer in the model area, and differences in horizontal and vertical hydraulic conductivity in individual hydrogeologic units result in much of the small-scale heterogeneity and anisotropy of the aquifer in the model area. The inferred three-dimensional geometry of the aquifer in the model area is very irregular. Its thickness generally increases from north to south and from west to east and is greatest south of the INL. The interpreted distribution of older rocks that underlie the aquifer indicates large changes in saturated thickness across the model area. The boundaries of the model include physical and artificial boundaries, and ground-water flows across the boundaries may be temporally constant or variable and spatially uniform or nonuniform. Physical boundaries include the water-table boundary, base of the aquifer, and northwest mountain-front boundary. Artificial boundaries include the northeast boundary, southeast-flowline boundary, and southwest boundary. Water flows into the model area as (1) underflow (1,225 cubic feet per second (ft3/s)) from the regional aquifer (northeast boundary-constant and nonuniform), (2) underflow (695 ft3/s) from the tributary valleys and mountain fronts (northwest boundary-constant and nonuniform), (3) precipitation recharge (70 ft3/s) (constant and uniform), streamflow-infiltration recharge (95 ft3/s) (variable and nonuniform), wastewater return flows (6 ft3/s) (variable and nonuniform), and irrigation-infiltration recharge (24 ft3/s) (variable and nonuniform) across the water table (water-table boundary-variable and nonuniform), and (4) upward flow across the base of the aquifer (44 ft3/s) (uniform and constant). The southeast-flowline boundary is represented as a no-flow boundary. Water flows out of the model area as underflow (2,037 ft3/s) to the regional aquifer (southwest boundary-variable and nonuniform) and as ground-water withdrawals (45 ft3/s) (water table boundary-variable and nonuniform). Ground-water flow i

  1. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009–10

    USGS Publications Warehouse

    Twining, Brian V.; Fisher, Jason C.

    2012-01-01

    During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles provide evidence for stratification and mixing of water types along the southern boundary of the Idaho National Laboratory. Vertical head and temperature change were quantified for each of the nine multilevel monitoring systems. The vertical head gradients were defined for the major inflections in the head profiles and were as high as 2.1 feet per foot. Low vertical head gradients indicated potential vertical connectivity and flow, and large gradient inflections indicated zones of relatively low vertical connectivity. Generally, zones that primarily are composed of fractured basalt displayed relatively small vertical head differences. Large head differences were attributed to poor vertical connectivity between fracture units because of sediment layering and/or dense basalt. Groundwater temperatures in all boreholes ranged from 10.2 to 16.3?C. Normalized mean hydraulic head values were analyzed for all nine multilevel monitoring wells for the period of record (2007-10). The mean head values suggest a moderately positive correlation among all boreholes, which reflects regional fluctuations in water levels in response to seasonality. However, the temporal trend is slightly different when the location is considered; wells located along the southern boundary, within the axial volcanic high, show a strongly positive correlation.

  2. Female Eastern Hog-nosed Snakes (Heterodon platirhinos) choose nest sites that produce

    E-print Network

    Blouin-Demers, Gabriel

    #12;Female Eastern Hog-nosed Snakes (Heterodon platirhinos) choose nest sites that produce characteristics in- volved in nest-site selection in Eastern Hog-nosed Snakes (Heterodon platirhinos Latreille with 21 randomly selected sites. Eastern Hog-nosed Snakes selected open, grassy sites with less herbs

  3. Amphibia-Reptilia 32 (2011): 424-427 Eastern Garter Snakes (Thamnophis sirtalis) with proportionally

    E-print Network

    Blouin-Demers, Gabriel

    2011-01-01

    Amphibia-Reptilia 32 (2011): 424-427 Eastern Garter Snakes (Thamnophis sirtalis sexual size dimorphism and trophic morphology dimorphism in Eastern Garter Snakes (Thamnophis sirtalis examined SSD and TMD in Eastern Garter Snakes (Thamnophis sirtalis). Our first objective was to verify

  4. Eastern indigo snakes became federally protected as threatened under the Endangered Species Act

    E-print Network

    Georgia, University of

    Eastern indigo snakes became federally protected as threatened under the Endangered Species Act, capture, keep, or kill an eastern indigo snake without specific state and/or federal permits. Eastern indigo snakes use a wide variety of habitats ranging from very wet to very dry. They tend to stay

  5. Lymphosarcoma in an Eastern king snake and a rhinoceros viper.

    PubMed

    Jacobson, E; Calderwood, M B; French, T W; Iverson, W; Page, D; Raphael, B

    1981-12-01

    An antemortem diagnosis of lymphosarcoma was made in a captive Eastern king snake and a rhinoceros viper. The Eastern king snake died on the 1st day after biopsy of a liver nodule, and necropsy revealed multiple tumor nodules throughout all major organ systems. The rhinoceros viper died after chemotherapy with cytosine arabinoside. The major gross lesion was a large paracolonic coelomic tumor that extended into the adjacent musculature and subcutaneous tissue of the lateral abdominal wall. The immediate cause of death of the rhinoceros viper was believed to be severe renal tubular necrosis. PMID:6895746

  6. UPPER/MIDDLE SNAKE RIVER BASIN STATUS REPORT, 1975

    EPA Science Inventory

    The Snake River (17040104, 170402, 170501) begins with relatively high water quality, with nutrient levels below those considered potentially causative to algal activity. Below Heise, nutrient concentrations rise and the quality of the river is degraded. Phosphorus enters the S...

  7. ECOLOGICAL RISK ASSESSMENT FOR THE MIDDLE SNAKE RIVER, IDAHO

    EPA Science Inventory

    An ecological risk assessment was completed for the Middle Snake River, Idaho. In this assessment, mathematical simulations and field observations were used to analyze exposure and ecological effects and to estimate risk. The Middle Snake River which refers to a 100 km stret...

  8. Geologic map and profiles of the north wall of the Snake River Canyon, Pasadena Valley and Ticeska quadrangles, Idaho

    USGS Publications Warehouse

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snaked River underlies the most of the eastern plain. The aquifer is composed of basaltic ricks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in few areas. The Snake River had excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges from the north canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.

  9. Geologic map and profiles of the north wall of the Snake River Canyon, Bliss, Hagerman, and Tuttle quadrangles, Idaho

    USGS Publications Warehouse

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snake River underlies most of the eastern plain. The aquifer is composed of basaltic rocks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill (fig. 1). To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.

  10. Effect of spill on adult salmon passage delay at Columbia River and Snake River dams

    E-print Network

    Washington at Seattle, University of

    Effect of spill on adult salmon passage delay at Columbia River and Snake River dams W. Nicholas dams in the Columbia/Snake River hydrosystem may delay the upstream passage of the adults. To evaluate the potential effects of spill on adult passage we evaluated the historical relationship between the day

  11. UPPER SNAKE RIVER BASIN WATER QUALITY ASSESSMENT, 1976

    EPA Science Inventory

    This package contains information for the Upper Snake River Basin, Idaho (170402, 17040104). The report contains a water quality assessment approach which will assist EPA planners, land agencies, and state and local agencies in identifying probably nonpoint sources and determini...

  12. COLUMBIA/SNAKE RIVER TEMPERATURE TOTAL MAXIMUM DAILY LOAD (TMDL)

    EPA Science Inventory

    EPA and the States of Idaho, Oregon and Washington are working in coordination with the Columbia River Tribes to establish a temperature TMDL for the mainstems of the Columbia and Snake Rivers. Both rivers are on state 303(d) lists of impaired waters for exceedances of water qua...

  13. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1997 Annual Report.

    SciTech Connect

    Muir, William D.; Connor, William P.; Arnsberg, Billy D.

    1999-03-01

    In 1997, the National Marine Fisheries Service, the U.S. Fish and Wildlife Service, and the Nez Perce Tribe completed the third year of research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin.

  14. Thermal influence on defensive behaviours of the Eastern garter snake, Thamnophis sirtalis

    Microsoft Academic Search

    KELLY M PASSEK; JAMES C GILLINGHAM

    1997-01-01

    The influence of body temperature on the defensive behaviours of the Eastern garter snake was investigated. Snakes encountered in the field were grabbed by hand at mid-body to imitate the attack of a predator or were approached in the same manner but without any contact by the investigator. Behavioural responses were related to snake body and ambient temperatures. When approached

  15. Spatial ecology of arboreal snakes (Hoplocephalus stephensii, Elapidae) in an eastern Australian forest

    Microsoft Academic Search

    M. Fitzgerald; R. Shine; F. Lemckert

    2002-01-01

    Stephens' Banded Snakes ( Hoplocephalus stephensii Krefft 1869) are large (to 1 m), highly arboreal elapid snakes, restricted to mesic forested areas along the eastern coast of Australia. Radiotelemetric monitoring of 16 individuals at Whian Whian State Forest in north-eastern New South Wales over 25 months provided the first data on spatial ecology of this threatened taxon. Two major influences

  16. Riparian vegetation of the Snake River in Washington State

    Microsoft Academic Search

    R. C. Phillips; L. Mettler

    1994-01-01

    In January 1992, the US Army Corps of Engineers selected reservoir drawdown and lowered pool elevation as the preferred alternative in the Columbia River Salmon Flow Measured Options Analysis\\/Environmental Impact Statement (EIS). During March 1992, reservoirs upstream from Lower Granite and Little Goose Dams on the Snake River were drawn down below the minimum operating pool (MOP), which is 5

  17. 75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ...Power Administration Electrical Interconnection of the Lower Snake River Wind Energy Project AGENCY: Bonneville Power Administration...System. The power would be generated from their proposed Lower Snake River Wind Energy Project (Wind Project) in Garfield and...

  18. Snake River Steelhead Straying Risk To Oregon Mid-C Steelhead Populations and

    E-print Network

    Snake River Steelhead Straying Risk To Oregon Mid-C Steelhead Populations and Transportation-C steelhead populations and abundance of naturally spawning Snake River hatchery strays · Relationship recovery. · Snake River Hatchery strays comprise a substantial proportion of spawners in the Deschutes

  19. 18 April 2008 Summary of available information on straying of Snake River steelhead in the

    E-print Network

    18 April 2008 [1] Summary of available information on straying of Snake River steelhead-source Snake River steelhead. Most of the latter were PIT-tagged as juveniles as part of the transportation-source fish are more valuable for estimating (permanent) straying because stream of origin (Snake River) has

  20. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain

    E-print Network

    Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho By Kim S. Perkins saturated hydraulic conductivity of Snake River Plain aquifer sediments at the Idaho National Laboratory

  1. 77 FR 3115 - Safety Zone; Grain-Shipment Vessels, Columbia and Snake Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...Grain-Shipment Vessels, Columbia and Snake Rivers AGENCY: Coast Guard, DHS. ACTION...while they are located on the Columbia and Snake Rivers. This safety zone extends to waters...persons and property on the Columbia and Snake rivers when vessels begin arriving at...

  2. 77 FR 42327 - Proposed Supplementary Rules for the Morley Nelson Snake River Birds of Prey National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ...Supplementary Rules for the Morley Nelson Snake River Birds of Prey National Conservation...approximately 483,700-acre Morley Nelson Snake River Birds of Prey National Conservation...and Record of Decision (ROD). The Snake River Birds of Prey NCA RMP...

  3. SOURCE AND EFFECT OF ACID ROCK DRAINAGE IN THE SNAKE RIVER WATERSHED, SUMMIT COUNTY, COLORADO

    E-print Network

    SOURCE AND EFFECT OF ACID ROCK DRAINAGE IN THE SNAKE RIVER WATERSHED, SUMMIT COUNTY, COLORADO Drainage in the Snake River Watershed, Summit County, Colorado Thesis directed by Dr. Diane M. McKnight The Snake River Watershed in Summit County, Colorado has both anthropogenic (historical mining) and natural

  4. Lithospheric topography, tilted plumes, and the track of the Snake RiverYellowstone hot spot

    E-print Network

    Shervais, John W.

    Lithospheric topography, tilted plumes, and the track of the Snake River­Yellowstone hot spot John; published 24 September 2008. [1] The trace of the Snake River­Yellowstone hot spot is the world's best), Lithospheric topography, tilted plumes, and the track of the Snake River­Yellowstone hot spot, Tectonics, 27

  5. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2011-13

    USGS Publications Warehouse

    Twining, Brian V.; Fisher, Jason C.

    2015-01-01

    Normalized mean head values were analyzed for all 11 multilevel monitoring wells for the period of record (2007–13). The mean head values suggest a moderately positive correlation among all boreholes and generally reflect regional fluctuations in water levels in response to seasonal climatic changes. Boreholes within volcanic rift zones and near the southern boundary (USGS 103, USGS 105, USGS 108, USGS 132, USGS 135, USGS 137A) display a temporal correlation that is strongly positive. Boreholes in the Big Lost Trough display some variations in temporal correlations that may result from proximity to the mountain front to the northwest and episodic flow in the Big Lost River drainage system. For example, during June 2012, boreholes MIDDLE 2050A and MIDDLE 2051 showed head buildup within the upper zones when compared to the June 2010 profile event, which correlates to years when surface water was reported for the Big Lost River several months preceding the measurement period. With the exception of borehole USGS 134, temporal correlation between MLMS wells completed within the Big Lost Trough is generally positive. Temporal correlation for borehole USGS 134 shows the least agreement with other MLMS boreholes located within the Big Lost Trough; however, borehole USGS 134 is close to the mountain front where tributary valley

  6. Climate Change, Fish, Agriculture, and Power: Impacts and Implications for Future Snake River Water Resources Management

    Microsoft Academic Search

    N. T. VanRheenen; R. N. Palmer; A. F. Hamlet; D. P. Lettenmaier

    This paper describes the approach taken in a study exploring water resources impacts associated with climate change scenarios in the Snake River basin in the Pacific Northwest. The Snake River is an extremely important river within the Columbia River basin that supports significant agricultural activity. Recently, a series of dams on this river have been targeted for removal because of

  7. Trends in organic pollutants and lipids in juvenile Snake River spring Chinook salmon with different outmigrating histories through the Lower Snake and Middle Columbia Rivers

    Microsoft Academic Search

    Mary R. Arkoosh; Stacy Strickland; Ahna Van Gaest; Gina M. Ylitalo; Lyndal Johnson; Gladys K. Yanagida; Tracy K. Collier; Joseph P. Dietrich

    2011-01-01

    A three-year field study was conducted from 2006 to 2008 to monitor the spatial and temporal trends of organic pollutants in migrating juvenile Snake River spring Chinook salmon (Oncorhynchus tshawytscha) sampled from the Lower Snake and Middle Columbia River Basins. Specifically, hatchery-reared juvenile salmon were monitored as they navigated the Federal Columbia River Power System (FCRPS) by either transport barge

  8. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2009–11

    USGS Publications Warehouse

    Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

    2013-01-01

    Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or equal to reporting levels in water samples collected at various depths. Tritium concentrations in water from wells completed in shallow perched groundwater at the Advanced Test Reactor Complex (ATR Complex) were less than the reporting levels. Tritium concentrations in deep perched groundwater at the ATR Complex equaled or exceeded the reporting level in 12 wells during at least one sampling event during 2009–11 at the ATR Complex. Concentrations of strontium-90 in water from 20 of 76 aquifer wells sampled during April or October 2011 exceeded the reporting level. Strontium-90 was not detected within the ESRP aquifer beneath the ATR Complex. During at least one sampling event during 2009–11, concentrations of strontium-90 in water from 10 wells completed in deep perched groundwater at the ATR Complex equaled or exceeded the reporting levels. During 2009–11, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all aquifer wells and in all wells equipped with MLMS. Concentrations of cesium-137 were equal to or slightly above the reporting level in 8 aquifer wells and from 2 wells equipped with MLMS. The concentration of chromium in water from one well south of the ATR Complex was 97 micrograms per liter (?g/L) in April 2011, just less than the maximum contaminant level (MCL) of 100 ?g/L. Concentrations of chromium in water samples from 69 other wells sampled ranged from 0.8 ?g/L to 25 ?g/L. During 2009–11, dissolved chromium was detected in water from 15 wells completed in perched groundwater at the ATR Complex. In 2011, concentrations of sodium in water from most wells in the southern part of the INL were greater than the background concentration of 10 milligrams per liter (mg/L); the highest concentrations were at or near the Idaho Nuclear Engineering and Technology Center (INTEC). After the newpercolation ponds were put into service in 2002 southwest of the INTEC, concentrations of sodium in water samples from the Rifle Range well rose steadily until 2008, w

  9. MIDDLE REACH OF THE SNAKE RIVER: WATER QUALITY MONITORING

    EPA Science Inventory

    The purpose of the project was to collect, analyze, assemble, and assess water quality data and resulting chemical/nutrient loads entering and transported in the Middle Snake River Reach of Idaho, between Milner Dam and King Hill. Studies were conducted during the period of 1990 ...

  10. WATER QUALITY STUDY: MIDDLE SNAKE RIVER, IDAHO, 1970

    EPA Science Inventory

    A water quality study of the Middle Snake River (17060103, 17060101, 17050201) was initiated in July 1968 to gather data in support of Department of the interior testimony presented before the Federal Power Commission license application hearings on High Mountain Sheep Dam. Unus...

  11. UPPER SNAKE RIVER BASIN WATER QUALITY STATUS, 1973

    EPA Science Inventory

    Historically, the Upper Snake River, Idaho from Milner Dam to the Idaho-Wyoming border (170402, 17040104) has experienced high bacteria concentrations and massive algal blooms. Algal blooms not only affect aesthetics, but also contribute to depressions of dissolved oxygen. The ...

  12. WATER QUALITY CONTROL STUDY, MIDDLE SNAKE RIVER WATER RESOURCES DEVELOPMENT

    EPA Science Inventory

    On February 5, 1964, the Federal Power Commission issued a license to Pacific Northwest Power Company for construction and operation of its proposed High Mountain Sheep Project on the Snake River (170602, 170501). This investigation by the Federal Water Pollution Control Adminis...

  13. Characterization and Evaluation of Snake River Wheatgrass Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to germinate and establish quickly on arid-rangelands is critical if revegatation plantings are to be successful. Native grasses generally have reduced seed production and are often difficult to establish (poor seedling vigor). Snake River wheatgrass (Elymus lanceolatus ssp. wawawaiens...

  14. Research, Monitoring and Evaluation Lower Snake River tributaries Prepared by: Washington Department of Fish and Wildlife

    E-print Network

    DRAFT Research, Monitoring and Evaluation ­ Lower Snake River tributaries Prepared by: Washington limited funds to accomplishing the most critical work. Within the Lower Snake River subbasin, the subbasin a comprehensive RM&E plan for the small tributaries in the Lower Snake Subbasin. The plan will pull from regional

  15. UPPER SNAKE RIVER BASIN, PRELIMINARY BASIN EVALUATION

    EPA Science Inventory

    The purpose of this paper was to provide a process and a plan by which the Environmental Protection Agency can insure that water quality goals established in the Water Pollution Control Act Amendments of 1972 are met in the waters of the Upper Snake Basin (17040201, 17040206, 170...

  16. SPECIES PROFILE: EASTERN INDIGO SNAKE (DTYMARCHON CORAIS COUPERI) ON MILITARY INSTALLATIONS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    The eastern indigo snake (Dtymarchon corais couperi) is an uncommon, large-bodied snake occurring in the southeastern United States, primarily in southern Alabama and Georgia and most of Florida. The U.S. Fish and Wildlife Service listed the species as Federally threatened in 197...

  17. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    SciTech Connect

    Williams, John G.; Bjomn (Bjornn), Theodore C.

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).

  18. Habitat fragmentation effects on annual survival of the federally protected eastern indigo snake

    USGS Publications Warehouse

    Breininger, D.R.; Mazerolle, M.J.; Bolt, M.R.; Legare, M.L.; Drese, J.H.; Hines, J.E.

    2012-01-01

    The eastern indigo snake (Drymarchon couperi) is a federally listed species, most recently threatened by habitat loss and habitat degradation. In an effort to estimate snake survival, a total of 103 individuals (59 males, 44 females) were followed using radio-tracking from January 1998 to March 2004 in three landscape types that had increasing levels of habitat fragmentation: (1) conservation cores; (2) conservation areas along highways; (3) suburbs. Because of a large number of radio-tracking locations underground for which the state of snakes (i.e. alive or dead) could not be assessed, we employed a multistate approach to model snake apparent survival and encounter probability of live and dead snakes. We predicted that male snakes in suburbs would have the lowest annual survival. We found a transmitter implantation effect on snake encounter probability, as snakes implanted on a given occasion had a lower encounter probability on the next visit compared with snakes not implanted on the previous occasion. Our results indicated that adult eastern indigo snakes have relatively high survival in conservation core areas, but greatly reduced survival in conservation areas along highways and in suburbs. These findings indicate that habitat fragmentation is likely to be the critical factor for species' persistence.

  19. Reevalution of background iodine-129 concentrations in water from the Snake River Plain Aquifer, Idaho, 2003

    USGS Publications Warehouse

    Cecil, L. DeWayne; Hall, L. Flint; Green, Jaromy R.

    2003-01-01

    Background concentrations of iodine-129 (129I, half-life = 15.7 million years) resulting from natural production in the earth?s atmosphere, in situ production in the earth by spontaneous fission of uranium-238(238U), and fallout from nuclear weapons tests conducted in the 1950s and 1960s were reevaluated on the basis of 52 analyses of ground- and surface-water samples collected from the eastern Snake River Plain in southeastern Idaho. The background concentration estimated using the results of a subset of 30 ground-water samples analyzed in this reevaluation is 5.4 attocuries per liter (aCi/L; 1 aCi = 10-18 curies) and the 95-percent nonparametric confidence interval is 5.2 to 10.0 aCi/L. In a previous study, a background 129I concentration was estimated on the basis of analyses of water samples from 16 sites on or tributary to the eastern Snake River Plain. At the 99-percent confidence level, background concentrations of 129I in that study were less than or equal to 8.2 aCi/L. During 1993?94, 34 water samples from 32 additional sites were analyzed for 129I to better establish the background concentrations in surface and ground water from the eastern Snake River Plain that is presumed to be unaffected by wastedisposal practices at the Idaho National Engineering and Environmental Laboratory (INEEL). Surface water contained larger 129I concentrations than water from springs and wells contained. Because surface water is more likely to be affected by anthropogenic fallout and evapotranspiration, background 129I concentrations were estimated in the current research using the laboratory results of ground-water samples that were assumed to be unaffected by INEEL disposal practices.

  20. Thermal influence on defensive behaviours of the Eastern garter snake, Thamnophis sirtalis

    PubMed

    Passek; Gillingham

    1997-09-01

    The influence of body temperature on the defensive behaviours of the Eastern garter snake was investigated. Snakes encountered in the field were grabbed by hand at mid-body to imitate the attack of a predator or were approached in the same manner but without any contact by the investigator. Behavioural responses were related to snake body and ambient temperatures. When approached without contact, snakes with higher body temperatures fled more often than snakes with lower body temperatures. Snakes that showed body flattening or flattening with mouth gaping had significantly lower average body temperatures than snakes that showed mouth gaping without flattening, those that showed neither mouth gaping nor flattening or those that showed biting (both with and without mouth gaping and flattening). The energetic constraints of a lower body temperature appear to influence the defensive behaviours of garter snakes. Colder snakes are more likely to show body flattening; warmer snakes either flee or, if they are unable to flee, are more likely to show more mouth gaping, biting or none of these behaviours.1997The Association for the Study of Animal Behaviour PMID:9299047

  1. Contemporary Deformation within the Snake River Plain and Northern Basin and Range Province, USA

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.

    2007-05-01

    GPS velocities, earthquakes, faults, and volcanic features are used to evaluate contemporary deformation within the Snake River Plain (SRP) and surrounding northern Basin and Range Province. The SRP is a prominent low- relief physiographic feature that extends from eastern Oregon through southern Idaho and into northwestern Wyoming, USA. The Eastern Snake River Plain (ESRP) is a 400-km long, NE-trending volcanic province that is characterized by bimodal volcanism, which represents the track of the Yellowstone Hotspot currently located in Wyoming. The Western Snake River Plain (WSRP) is a 300-km long, NW-trending graben that extends into eastern Oregon. The WSRP is an extensional basin that formed adjacent to an earlier position of the Yellowstone Hotspot in southern Idaho. Previous geodetic investigations suggest the ESRP and, perhaps the WSRP, have GPS velocities indicative of rigid block motion of the SRP along its physiographic boundaries. GPS data compiled for this study are used to test this hypothesis. Several institutions including the National Geodetic Survey, Idaho National Laboratory, Rensselaer Polytechnic Institute, and University of Utah observed GPS stations from 1994 to 2006 within the SRP and surrounding region. Horizontal velocities show generally consistent N110°W orientations with an average rate of 1.5 ± 0.3 mm/yr (for 11 stations) along most of the ESRP and adjacent northwest Basin and Range, although some Basin and Range velocities are less and may be influenced by post viscoelastic relaxation following the 1983 Mw 6.9 normal-faulting Borah Peak, Idaho earthquake. GPS velocities with an average rate of 1.9 ± 0.3 mm/yr (for 5 stations) change orientation to N95°W at a distance of 190 km from the Yellowstone Hotspot within the southern region of the ESRP and adjacent Basin and Range. Within the WSRP, GPS velocities have an average rate of 2.0 ± 0.5 mm/yr (for 7 stations) and change orientation to N40°W. These GPS velocities are more consistent with those in eastern Oregon, a region that is rotating clockwise relative to North America. To assess possible rotations and strain rates, we invert GPS horizontal velocities, geologic fault slip rates, earthquake-derived fault slip vector azimuths, and volcanic dike extension rates. We interpret GPS velocities to describe the relative motions of coherent regions of consistent strain within the SRP and surrounding Basin and Range Province.

  2. 78 FR 23588 - Final Supplementary Rules for the Morley Nelson Snake River Birds of Prey National Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ...Supplementary Rules for the Morley Nelson Snake River Birds of Prey National Conservation...approximately 483,700-acre Morley Nelson Snake River Birds of Prey National Conservation...and Record of Decision (ROD). The Snake River Birds of Prey NCA RMP...

  3. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report

    Microsoft Academic Search

    Mike Peterson; Kurtis Plaster; Laura Redfield; Jeff Heindel; Paul Kline

    2008-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on

  4. LIMNOLOGY OF THE LOWER SNAKE RIVER RESERVOIRS IN IDAHO AND WASHINGTON

    EPA Science Inventory

    This interim report highlights research completed in 1975 and 1976 on the joint Washington State University-University of Idaho limnological study on the lower Snake River (17050201, 170601). The objective of this study was to describe the aquatic ecology of the Snake River just...

  5. Two Alternative Juvenile Life History Types for Fall Chinook Salmon in the Snake River Basin

    Microsoft Academic Search

    William P. Connor; John G. Sneva; Kenneth F. Tiffan; R. Kirk Steinhorst; Doug Ross

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however,

  6. An examination of scale-dependent resource use by Eastern Hognose snakes in southcentral New Hampshire.

    SciTech Connect

    LaGory, K. E.; Walston, L. J.; Goulet, C; Van Lonkhuyzen, R. A.; Najjar, S.; Andrews, C.; Environmental Science Division; Univ. of New Hampshire; U.S. Air Force

    2009-11-01

    The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 {+-} 14.7 ha) was similar to that reported in other parts of the species range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.

  7. White sturgeon spawning areas in the lower Snake River

    USGS Publications Warehouse

    Parsley, M.J.; Kappenman, K.M.

    2000-01-01

    We documented 17 white sturgeon Acipenser transmontanus spawning locations in the Snake River from the mouth to Lower Granite Dam (river km 0 to 173). Spawning locations were determined by the collection of fertilized eggs on artificial substrates or in plankton nets. We collected 245 eggs at seven locations in McNary Reservoir, 22 eggs at three locations in Ice Harbor Reservoir, 30 eggs from two locations in Lower Monumental Reservoir, and 464 eggs at five locations in Little Goose Reservoir. All 17 locations were in high water velocity areas and between 1.0 and 7.0 km downstream from a hydroelectric dam. The documentation of spawning areas is important because this habitat is necessary to maintain natural and viable populations.

  8. Exploratory and defensive behaviours change with sex and size in eastern garter snakes (Thamnophis sirtalis)

    E-print Network

    Blouin-Demers, Gabriel

    and sex in Thamnophis sirtalis. I conducted three behavioural trials to elicit three separate responsesExploratory and defensive behaviours change with sex and size in eastern garter snakes (Thamnophis sirtalis) Zac Maillet This thesis is being submitted in partial fulfillment of the requirements for a BSc

  9. Snakes of the Savannah River Plant with Information About Snakebite Prevention and Treatment.

    ERIC Educational Resources Information Center

    Gibbons, Whit

    This booklet is intended to provide information on the snakes of South Carolina, to point out the necessary steps to avoid a snakebite, and to indicate the current medical treatment for poisonous snakebite. It includes a checklist of South Carolina reptiles and a taxonomic key for the identification of snakes in the Savannah River Plant. Three…

  10. UPPER/MIDDLE SNAKE RIVER WATER QUALITY ANALYSIS, MAY 1973 TO MAY 1974

    EPA Science Inventory

    This study was an attempt to determine the behavior of incoming nutrients in the upper Snake reservoir system and to track their flow through the upper and central Snake River (17040104, 170402, 170501). The study found that American Falls Reservoir is an overall sink for total ...

  11. Detection of Eastern Equine Encephalomyelitis Virus RNA in North American Snakes

    PubMed Central

    Bingham, Andrea M.; Graham, Sean P.; Burkett-Cadena, Nathan D.; White, Gregory S.; Hassan, Hassan K.; Unnasch, Thomas R.

    2012-01-01

    The role of non-avian vertebrates in the ecology of eastern equine encephalomyelitis virus (EEEV) is unresolved, but mounting evidence supports a potential role for snakes in the EEEV transmission cycle, especially as over-wintering hosts. To determine rates of exposure and infection, we examined serum samples from wild snakes at a focus of EEEV in Alabama for viral RNA using quantitative reverse transcription polymerase chain reaction. Two species of vipers, the copperhead (Agkistrodon contortrix) and the cottonmouth (Agkistrodon piscivorus), were found to be positive for EEEV RNA using this assay. Prevalence of EEEV RNA was more frequent in seropositive snakes than seronegative snakes. Positivity for the quantitative reverse transcription polymerase chain reaction in cottonmouths peaked in April and September. Body size and sex ratios were not significantly different between infected and uninfected snakes. These results support the hypothesis that snakes are involved in the ecology of EEEV in North America, possibly as over-wintering hosts for the virus. PMID:23033405

  12. 33 CFR 117.1007 - Elizabeth River-Eastern Branch.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Elizabeth River-Eastern Branch. 117.1007 Section...Requirements Virginia § 117.1007 Elizabeth River—Eastern Branch. (a) The draw...over the Eastern Branch of the Elizabeth River in Norfolk, VA. The controller...

  13. HENRY'S FORK AND SNAKE RIVER BASIN, IDAHO - WATER QUALITY REPORT, 1973

    EPA Science Inventory

    Reported problems in the Henrys Fork and Snake River Basin (17040202, 17040203, 17040201) include bacteria levels exceeding water quality standards, dissolved oxygen standards violations, and excessive algal blooms resulting in aesthetic problems and contributing to DO depression...

  14. Bimodal basalt-rhyolite magmatism in the central and western Snake River Plain, Idaho and Oregon

    USGS Publications Warehouse

    McCurry, M.; Bonnichsen, B.; White, C.; Godchaux, M.M.; Hughes, S.S.

    1997-01-01

    The purpose of this trip is to examine Miocene to Pleistocene basalt and rhyolite flows, ignimbrites and hypabyssal intrusions in a transect from the western Snake River Plain graben across the older part of the Snake River Plain "hot-spot-track." The earlier, dominantly explosive rhyolitic phase of volcanism will be examined primarily in the Cassia Mountains, near Twin Falls, Idaho. The second day of the field trip will focus on the Graveyard Point intrusion, a strongly differentiated diabase sill in easternmost Oregon. This late Tertiary sill is well exposed from floor to roof in sections up to 150 m thick, and is an example of the type of solidified shallow magma chamber that may be present beneath some Snake River Plain basalt volcanoes. The field trip will conclude with an examination of the diverse styles of effusive and explosive basaltic volcanism in the central and western Snake River Plain.

  15. SNAKE AND CLEARWATER RIVERS, PRESENT AND POST-IMPOUNDMENT WATER QUALITY CONDITIONS, 1964

    EPA Science Inventory

    This report presents information on present water quality conditions in the Snake and Clearwater Rivers (17060107, 17060103, 17060306) in the vicinity of Lewiston, Idaho and Clarkston, Washington. It discusses how changes in the streams characteristics resulting from the constru...

  16. Recommendations for Amendments--Mainstem Columbia/Snake Rivers Elements of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program

    E-print Network

    Recommendations for Amendments--Mainstem Columbia/Snake Rivers Elements of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program By Ed Chaney, Director, Northwest Columbia/Snake Rivers elements of the Council's 2000 Columbia River Basin Fish and Wildlife Program

  17. The Effects of Whirling Disease on Growth and Survival of Snake River Cutthroat and Colorado River Rainbow Trout Fingerlings

    Microsoft Academic Search

    Cory R. Sipher; Eric P. Bergersen

    2005-01-01

    Two sizes of fingerling Snake River cutthroat trout Oncorhynchus clarkii behnkei and Colorado River rainbow trout O. mykiss were raised at hatcheries testing negative for Myxobolus cerebralis and stocked into the Dolores and Cache la Poudre rivers from 1999 to 2001. Populations were resampled over a 2-year period to determine which species and size combination had the highest growth and

  18. WATER QUALITY INVESTIGATIONS OF SNAKE RIVER AND PRINCIPAL TRIBUTARIES FROM WALTERS FERRY TO WEISER, IDAHO. 1971

    EPA Science Inventory

    Stream surveys conducted from 18 October to 10 November 1971 revealed that water upstream of the Boise River was relatively unpolluted, however, bacterial standards were violated. In the reach of the Snake River between the mouth of the Boise River and Weiser (170501), gross vio...

  19. Compilation of references on geology and hydrology of the Snake River drainage basin above Weiser, Idaho

    USGS Publications Warehouse

    Bassick, M.D.

    1986-01-01

    More than 1,100 references concerning geology and hydrology of the Snake River drainage basin above Weiser, Idaho, are compiled as part of the U.S. Geological Survey 's RASA (Regional Aquifer-System Analysis) study of the Snake River Plain. The list of references is intended as a primary source of information for investigators concerned with previous studies in the basin. Reference numbers correlate with a key-word index to help the user select and locate desired references. (USGS)

  20. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected during the study show seasonal differences in all measured parameters. In particular, surprisingly high concentrations of chlorophyll-a were measured at all three main study sites in winter and early spring, likely due to changes in algal populations. Discharge conditions and dissolved orthophosphorus concentrations are key drivers for chlorophyll-a on a seasonal and annual basis on the Snake River. Discharge conditions and upstream periphyton growth are most likely the key drivers for chlorophyll-a in the Boise River. Phytoplankton growth is not limited or driven by nutrient availability in the Boise River. Lower discharges and minimal substrate disturbance in WY2010 in comparison with WY2009 may have caused prolonged and increased periphyton and macrophyte growth and a reduced amount of sloughed algae in suspension in the summer of WY2010. Chlorophyll-a measured in samples commonly is used as an indicator of sestonic algae biomass, but chlorophyll-a concentrations and fluorescence may not be the most appropriate surrogates for algae growth, eutrophication, and associated effects on beneficial uses. Assessment of the effects of algae growth on beneficial uses should evaluate not only sestonic algae, but also benthic algae and macrophytes. Alternatively, continuous monitoring of dissolved oxygen detects the influence of aquatic plant respiration for all types of algae and macrophytes and is likely a more direct measure of effects on beneficial uses such as aquatic habitat. Most measured water-quality parameters in the Snake River were statistically different upstream and downstream of the confluence with the Boise River. Higher concentrations and loads were measured at the downstream site (Snake River at Nyssa) than the upstream site (Snake River near Adrian) for total phosphorus, dissolved orthophosphorus, total nitrogen, dissolved nitrite and nitrate, suspended sediment, and turbidity. Higher dissolved oxygen concentrations and pH were measured at the upstream site (Snake River near Adrian) than the downstream site (Snake River at Nyssa). Contributions from the

  1. UPPER SNAKE RIVER PRIORITY BASIN ACCOMPLISHMENT PLAN, APRIL 1973

    EPA Science Inventory

    The Upper Snake Accomplishment Basin (17040104, 170402, 170501) is defined as the Idaho and Oregon portions of 2 STORET Basins, the Upper Snake Basin and the Central Snake Basin. The Basin drains approximately 62,100 square miles in Southern Idaho and Southeastern Oregon. Four ...

  2. Effects of dams and impoundments on migrations of juvenile chinook salmon and steelhead from the Snake River, 1966 to 1975

    Microsoft Academic Search

    HOWARD L. RAYMOND

    1979-01-01

    Migrations of juvenile chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, from tributaries of the Snake River were monitored as far downstream as the Dalles Dam on the Columbia River in most years during the period 1966 to 1975. New dams constructed on the Snake River adversely affected survival and delayed migrations of juveniles. Significant loses of juveniles in 1972

  3. A review of crust and upper mantle structure studies of the Snake River Plain-Yellowstone volcanic system: A major lithospheric anomaly in the western U.S.A.

    USGS Publications Warehouse

    Iyer, H.M.

    1984-01-01

    The Snake River Plain-Yellowstone volcanic system is one of the largest, basaltic, volcanic field in the world. Here, there is clear evidence for northeasterly progression of rhyolitic volcanism with its present position in Yellowstone. Many theories have been advanced for the origin of the Snake River Plain-Yellowstone system. Yellowstone and Eastern Snake River Plain have been studied intensively using various geophysical techniques. Some sparse geophysical data are available for the Western Snake River Plain as well. Teleseismic data show the presence of a large anomalous body with low P- and S-wave velocities in the crust and upper mantle under the Yellowstone caldera. A similar body in which compressional wave velocity is lower than in the surrounding rock is present under the Eastern Snake River Plain. No data on upper mantle anomalies are available for the Western Snake River Plain. Detailed seismic refraction data for the Eastern Snake River Plain show strong lateral heterogeneities and suggest thinning of the granitic crust from below by mafic intrusion. Available data for the Western Snake River Plain also show similar thinning of the upper crust and its replacement by mafic material. The seismic refraction results in Yellowstone show no evidence of the low-velocity anomalies in the lower crust suggested by teleseismic P-delay data and interpreted as due to extensive partial melting. However, the seismic refraction models indicate lower-than-normal velocities and strong lateral inhomogeneities in the upper crust. Particularly obvious in the refraction data are two regions of very low seismic velocities near the Mallard Eake and Sour Creek resurgent domes in the Yellowstone caldera. The low-velocity body near the Sour Creek resurgent dome is intepreted as partially molten rock. Together with other geophysical and thermal data, the seismic results indicate that a sub-lithospheric thermal anomaly is responsible for the time-progressive volcanism along the Eastern Snake River Plain. However, the exact mechanism responsible for the volcanism and details of magma storage and migration are not yet fully understood. ?? 1984.

  4. Bold Colors in a Cryptic Lineage: Do Eastern Indigo Snakes Exhibit Color Dimorphism?

    PubMed Central

    Deitloff, Jennifer; Johnson, Valerie M.; Guyer, Craig

    2013-01-01

    Many species exhibit variation in the color of their scales, feathers, or fur. Various forms of natural selection, such as mimicry, crypsis, and species recognition, as well as sexual selection, can influence the evolution of color. Eastern Indigo Snakes (Drymarchon couperi), a federally threatened species, have coloration on the sides of the head and the chin that can vary from black to red or cream. Despite significant conservations efforts for this species, little is known about its biology in the field. Past researchers have proposed that the color variation on the head and chin is associated with the sex of the individual. Alternatively, color might vary among individuals because it is controlled by genes that are under natural selection or neutral evolution. We tested these alternative hypotheses by examining whether coloration of the sublabial, submaxillary, and ventral scales of this species differed by sex or among clutches. We used color spectrometry to characterize important aspects of color in two ways: by examining overall color differences across the entire color spectrum and by comparing differences within the ultraviolet, yellow, and red colorbands. We found that Eastern Indigo Snakes do not exhibit sexual dichromatism, but their coloration does vary among clutches; therefore, the pattern of sexual selection leading to sexual dichromatism observed in many squamates does not appear to play a role in the evolution and maintenance of color variation in Eastern Indigo Snakes. We suggest that future studies should focus on determining whether color variation in these snakes is determined by maternal effects or genetic components and if color is influenced by natural selection or neutral evolutionary processes. Studying species that exhibit bright colors within lineages that are not known for such coloration will contribute greatly to our understanding of the evolutionary and ecological factors that drive these differences. PMID:23691245

  5. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    SciTech Connect

    Williams, John G.; Bjornn (Bjomn), Theodore C.

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on the Clearwater River to collect data on survival detection probabilities, and travel time.

  6. Predation on Juvenile Salmonids by Smallmouth Bass in the Lower Granite Reservoir System, Snake River

    Microsoft Academic Search

    George P. Naughton; David H. Bennett; Ken B. Newman

    2004-01-01

    We estimated the consumption of juvenile salmon Oncorhynchus spp. and steelhead O. mykiss by smallmouth bass Micropterus dolomieu in the tailrace and forebay of the Lower Granite Dam and compared this consumption with that in the two major river arms of the upper Lower Granite Reservoir, Snake River, Idaho–Washington. We examined over 9,700 smallmouth bass stomachs from April through August

  7. Radiogenic Isotope Constraints on Plume - Lithosphere Interaction Beneath the Snake River Plain

    Microsoft Academic Search

    B. B. Hanan; J. W. Shervais; S. K. Vetter

    2006-01-01

    The Snake River Plain (SRP), an 800 km swath of volcanic centers that stretch across southern Idaho to western Wyoming-Montana, represents about 16 Myr of volcanic activity that took place as the NA continent migrated over a relatively fixed magma source, or hotspot. Volcanic activity in the SRP began with the eruption of the main phase of the Columbia River

  8. Geology and Wine 11. Terroir of the Western Snake River Plain, Idaho, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article explores unique factors that shape the terroir of Idaho’s principal wine grape-growing district. Most Idaho wine grape vineyards are located in the Western Snake River Plain (WSRP) rift basin (~43°N, ~114°W) on soils derived from lake, river, or wind-blown sediments, volcanic events, a...

  9. TRIBUTARY AND MAINSTEM WATER QUALITY MONITORING OF THE MIDDLE SNAKE RIVER

    EPA Science Inventory

    The Idaho Department of Health and Welfare, Division of Environmental Quality conducted water quality sampling in the mainstem and major tributaries of the Snake River between Twin Falls Reservoir and Upper Salmon Falls Dam. Sampling was conducted at nine river mainstem stations ...

  10. Assessing Hydrosystem Influence on Delayed Mortality of Snake River Stream-Type Chinook Salmon

    Microsoft Academic Search

    Howard A. Schaller; Charles E. Petrosky

    2007-01-01

    Snake River stream-type Chinook salmon Oncorhynchus tshawytscha exhibited substantial delayed mortality despite recent improvements in oceanic and climatic conditions. These salmon declined sharply with the completion of the Columbia River hydrosystem in addition to other anthropogenic impacts and changes in oceanic conditions. Previous analytical approaches have compared management options for halting the population decline. The predicted benefits of these options

  11. Geothermal Systems In The Snake River Plain Idaho Characterized By The Hotspot Project

    NASA Astrophysics Data System (ADS)

    Nielson, D. L.; Delahunty, C.; Shervais, J. W.

    2012-12-01

    The Snake River Plain (SRP) is potentially the largest geothermal province in the world. It is postulated that the SRP results from passage of the North American Plate over the Yellowstone mantle plume. This has resulted in felsic, caldera-related volcanism followed by voluminous eruptions of basalt. Compilations of subsurface temperature data demonstrate the masking effect of the Snake River Aquifer. As a consequence, here has been little serious geothermal exploration within the center of the plain; although there are numerous examples of low-temperature fluids, as well as the Raft River geothermal system, on the southern flanks of the SRP. Project Hotspot was designed to investigate the geothermal potential of the SRP through the coring and subsequent scientific evaluation of three holes, each representing a different geothermal environment. These are located at Kimama, north of Burley, in the center of the plain; at Kimberly near Twin Falls on the southern margin of the plain; and at Mountain Home Air Force base in the central part of the western SRP. Both the Kimberly and Mountain Home sites are located in areas that have warm wells and hot springs, whereas, the Kimama site has neither surface nor subsurface thermal manifestations. All of the sites studied here were sampled using slim hole coring techniques in conjunction with a bottom hole temperature probe developed by DOSECC. Our first hole at Kimama in the center of the eastern SRP was cored to a depth of 1,912 m. Temperature measurements showed the SRP fresh water aquifer extends to a depth of 965 m and masks the underlying high temperature gradient of 74.5oC/Km. The core hole at Kimberly reached a depth of 1,959 m and demonstrated a large low-temperature resource of >50oC below 800 m. A core hole at Mountain Home AFB in the eastern SRP reached a depth of 1,821 m and demonstrated the presence of an intermediate- to high-temperature artesian resource that has a clear magmatic association, with measured temperatures of up to 140oC and extrapolated equilibrium temperatures of 150oC. Calculated equilibrium temperatures of the artesian water samples vary from ~134oC to 154oC (Lachmar et al 2012; GRC Transactions). The Kimama hole greatly expanded the depth extent of the Snake River aquifer. However, beneath the masking effect of the aquifer, high temperature gradients were encountered suggesting that high-temperature resources could be present, but their identification could be difficult. The Kimberly hole demonstrated that low-temperature resources along the southern flank of the SRP can have considerable depth extent and are higher volume than previously anticipated. The overall architecture of this large low-temperature system deserves further investigation. Hole MH-2 Mountain Home AFB in the central part of the western SRP has encountered the upper part of a high temperature geothermal resource that also remains to be fully evaluated.

  12. The River Damned The Proposed Removal of the Lower Snake River Dams

    NSDL National Science Digital Library

    Alan Paul Price

    2002-01-01

    In this dilemma case, Congresswoman Madeline Gibson must cast her vote on the fate of the lower Snake River dams. The stakeholders in this decision represent government agencies, small businesses, large industries, farmers, local tribes, environmentalists, and sports fishermen, and include among them many of her own family members. The case illustrates the conflicts that can arise when environmental concerns force people to reconsider long-standing policies with significant benefits and often entrenched supporters. Developed for an introductory-level environmental geology course, the case could also be used in environmental as well as biology courses.

  13. Organochlorine residue levels in Mississippi River water snakes in southern Louisiana

    SciTech Connect

    Sabourin, T.D.; Stickle, W.B.; Michot, T.C.; Villars, C.E.; Garton, D.W.; Mushinsky, H.R.

    1984-04-01

    This study was designed to determine the usefulness of water snakes in pollution monitoring. This was accomplished by assessing the organochlorine load in tissues of snakes inhabiting three sites along the Mississippi River near Baton Rouge, Louisiana. Two species of water snakes, Nerodia rhombifera and Nerodia cyclopion, were chosen for analysis of chlorinated hydrocarbons. Fishes account for 95.2 and 98.4%, respectively, of the total volume of food consumed by N. rhombifera and N. cyclopion. Thus, the organochlorine load of both species should reflect considerable biomagnification relative to water column levels.

  14. Age at ocean entry of Snake River Basin fall Chinook salmon and its significance to adult returns prior to summer spill at Lower Granite, Little

    E-print Network

    Age at ocean entry of Snake River Basin fall Chinook salmon and its significance to adult returns that juvenile Snake River Basin fall Chinook salmon migrated seaward during summer and fall and entered began to: (1) describe age at ocean-entry for the Snake River Basin population of full-term wild adults

  15. Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park, Wyoming, USA

    E-print Network

    Marston, Richard A.

    Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park In 1906, the Bureau of Reclamation created Jackson Lake Dam on the Snake River in what later became Grand Teton National Park. The geomorphic, hydrologic and vegetation adjustments downstream of the dam have

  16. Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS --HUA WATER QUALITY PROJECT FINAL REPORT

    E-print Network

    O'Laughlin, Jay

    Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER QUALITY PROJECT FINAL water quality within the HUA used in #12;2 -- Erosion Control IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER QUALITY PROJECT FINAL REPORT this 8-year project was improved erosion control methods. Erosion control

  17. Inter- and intraspecific variation in mercury bioaccumulation by snakes inhabiting a contaminated river floodplain.

    PubMed

    Drewett, David V V; Willson, John D; Cristol, Daniel A; Chin, Stephanie Y; Hopkins, William A

    2013-04-01

    Although mercury (Hg) is a well-studied contaminant, knowledge about Hg accumulation in snakes is limited. The authors evaluated Hg bioaccumulation within and among four snake species (northern watersnakes, Nerodia sipedon; queen snakes, Regina septemvittata; common garter snakes, Thamnophis sirtalis; and rat snakes, Elaphe obsoleta [Pantherophis alleghaniensis]) from a contaminated site on the South River (Waynesboro, VA, USA) and two nearby reference sites. Total Hg (THg) concentrations in northern watersnake tail tissue at the contaminated site ranged from 2.25 to 13.84 mg/kg dry weight (mean: 4.85 ± 0.29), or 11 to 19 times higher than reference sites. Blood THg concentrations (0.03-7.04 mg/kg wet wt; mean: 2.24 ± 0.42) were strongly correlated with tail concentrations and were the highest yet reported in a snake species. Within watersnakes, nitrogen stable isotope values indicated ontogenetic trophic shifts that correlated with THg bioaccumulation, suggesting that diet plays a substantial role in Hg exposure. Female watersnakes had higher mean THg concentrations (5.67 ± 0.46 mg/kg) than males (4.93 ± 0.49 mg/kg), but no significant differences between sexes were observed after correcting for body size. Interspecific comparisons identified differences in THg concentrations among snake species, with more aquatic species (watersnakes and queen snakes) accumulating higher mean concentrations (5.60 ± 0.40 and 4.59 ± 0.38 mg/kg in tail tissue, respectively) than the more terrestrial species, garter snakes and rat snakes (1.28 ± 0.32 and 0.26 ± 0.09 mg/kg, respectively). The results of the present study warrant further investigation of potential adverse effects and will aid in prioritizing conservation efforts. PMID:23401211

  18. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1994 Annual Report.

    SciTech Connect

    Achord, Stephen; Matthews, Gene M.; Kamikawa, Daniel J.

    1995-09-01

    The goals of this study are to (1) characterize the outmigration timing of different wild stocks of spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence outmigration timing. The authors PIT tagged wild spring/summer chinook salmon parr in the Snake River Basin in 1993, and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, and McNary Dams during spring, summer, and fall 1994. This report details their findings.

  19. Optimal husbandry of hatchling Eastern Indigo Snakes (Drymarchon couperi) during a captive head-start program.

    PubMed

    Wines, Michael P; Johnson, Valerie M; Lock, Brad; Antonio, Fred; Godwin, James C; Rush, Elizabeth M; Guyer, Craig

    2015-05-01

    Optimal husbandry techniques are desirable for any headstart program, but frequently are unknown for rare species. Here we describe key reproductive variables and determine optimal incubation temperature and diet diversity for Eastern Indigo Snakes (Drymarchon couperi) grown in laboratory settings. Optimal incubation temperature was estimated from two variables dependent on temperature, shell dimpling, a surrogate for death from fungal infection, and deviation of an egg from an ovoid shape, a surrogate for death from developmental anomalies. Based on these relationships and size at hatching we determined optimal incubation temperature to be 26°C. Additionally, we used incubation data to assess the effect of temperature on duration of incubation and size of hatchlings. We also examined hatchling diets necessary to achieve optimal growth over a 21-month period. These snakes exhibited a positive linear relationship between total mass eaten and growth rate, when individuals were fed less than 1711?g of prey, and displayed constant growth for individuals exceeding 1711?g of prey. Similarly, growth rate increased linearly with increasing diet diversity up to a moderately diverse diet, followed by constant growth for higher levels of diet diversity. Of the two components of diet diversity, diet evenness played a stronger role than diet richness in explaining variance in hatchling growth. These patterns document that our goal of satiating snakes was achieved for some individuals but not others and that diets in which total grams consumed over the first 21 months of life is distributed equivalently among at least three prey genera yielded the fastest growth rates for hatchling snakes. Zoo Biol. 34:230-238, 2015. © 2015 Wiley Periodicals Inc. PMID:25866094

  20. Scientific Drilling in the Snake River Plain: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Hughes, S. S.; Geist, D.; Vetter, S. K.

    2006-12-01

    The Snake River-Yellowstone volcanic province has long been linked to the concept of lithospheric drift over a fixed mantle thermal anomaly or hotspot. This concept is reinforced by seismic tomography that images this anomaly to depths around 500 km, but alternative proposals still present a serious challenge. Basaltic volcanism spans a significant age range and basaltic volcanism in the western SRP lies well off the hotspot track and cannot be related directly to the hotspot in any simple way. The plume-track age progression is documented by rhyolite volcanic centers, but even these represent extended time periods that overlap in age with adjacent centers. Scientific drilling projects carried out over the last two decades have made significant contributions to our understanding of both basaltic and rhyolitic volcanism associated with the Snake River-Yellowstone hotspot system. Because these drill holes also intercept sedimentary interbeds or, in the case of the western SRP, thick sections of Pliocene and Pleistocene sediments, they have also contributed to our understanding of basin formation by thermal collapse in the wake of the hotspot passage or by rifting, paleoclimate of the interior west, and groundwater systems in volcanic rocks. Many of these drill holes are associated with the Idaho National Laboratory (INL) in the eastern plain; others were drilled for geothermal or petroleum exploration. The latter include older holes that were not instrumented or logged in detail, but which still provide valuable stratigraphic controls. We focus here on the result of basalt drilling, which have been high-lighted in recent publications. Basaltic volcanism in the Snake River plain is dominated by olivine tholeiites that have major and trace element characteristics of ocean island basalt: the range in MgO is similar to MORB, but Ti, Fe, P, K, Sr, Zr and LREE/HREE ratios are all higher. Recent studies of basalts from the drill holes show that they evolved by fractionation in a mid-crustal sill complex that has been imaged seismically. Further, the chemical and isotopic systematics of these basalts require assimilation of consanguineous mafic material inferred to represent previously intruded sills. Major and trace element modeling suggest formation of the primary melts by melting of a source similar to E- MORB source. Trace element systematics document mixing between a plume-like source and a more depleted source that is not DMM. A similar more depleted source is inferred for Hawaii, suggesting that it is not continental lithosphere. Future scientific drilling in the SRP is the focus of Project HOTSPOT, a multi-disciplinary initiative that seeks to document time-space variations in the SRP-Yellowstone volcanic system. A workshop sponsored by the International Continental Drilling Program was held in May 2006 to develop a targeted program of scientific drilling that examines the entire plume-lithosphere system across a major lithospheric boundary, with holes targeting basalt, rhyolite, and sediments. These drill holes will complement geophysical studies of continental dynamics (e.g., Earthscope), as well as current studies centered on Yellowstone. Additional components of a targeted drilling program include studies of lacustrine sediments that document paleoclimate change in North America during the Pliocene—Pleistocene and fluid flow at deeper crustal levels.

  1. Fish Growth DRAFT: 2 April 8, 1999 Growth of Snake River chinook salmon

    E-print Network

    Washington at Seattle, University of

    Fish Growth DRAFT: 2 April 8, 1999 Growth of Snake River chinook salmon W. Nicholas Beer Columbia energy density in consumption for bio-energetics modeling. 6. Interpretation of growth indicators. 7. Suggestions for growth modeling. #12;Fish Growth DRAFT: 2 April 8, 1999 1: Summary

  2. MIDDLE REACH OF THE SNAKE RIVER: WATER QUALITY AND BENTHIC BIOMONITORING

    EPA Science Inventory

    This study examined spatial and temporal trends in water quality, sestonic and benthic algal concentrations, and benthic macroinvertebrate taxa richness, population density, and biomass at nine stations along the Middle Snake River from Pillar Falls to Upper Salmon Falls Dam. Pri...

  3. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1996 Annual Report.

    SciTech Connect

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    1997-07-01

    We PIT tagged wild spring/summer chinook salmon parr in the Snake River Basin in 1995 and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams during spring and summer 1996.

  4. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000 Annual Report.

    SciTech Connect

    Achord, Stephen (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2001-08-01

    This report details the 2000 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989.

  5. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1999 Annual Report.

    SciTech Connect

    Achord, Stephen

    2001-06-01

    This report details the 1999 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989.

  6. AN ANALYSIS OF MINIMUM FLOW REQUIREMENTS IN THE SNAKE, BLACKFOOT, AND PORTNEUF RIVERS. 1976

    EPA Science Inventory

    This study was done in support of an analysis of the State of Idahos Water Plan. The report analyzes the impact of low flows upon dissolved oxygen in the Snake, Blackfoot, and Portneuf Rivers, Idaho (17040201, 17040206). A steady-state water quality model (Yearsley, 1975) was u...

  7. MIDDLE SNAKE RIVER, IDAHO WATER QUALITY STUDY, PHASE I. 1990-1991

    EPA Science Inventory

    Water quality samples from 55 stations in the Middle Snake River (17060103, 17060101) for the period June 1990 through July 1991 were successfully obtained and field and laboratory data entered into the database. Weekly sampling on aquaculture facilities, and biweekly sampling o...

  8. 1.2000-2009 time-series return information for Snake River: a. Fall Chinook Salmon

    E-print Network

    #12;Content: 1.2000-2009 time-series return information for Snake River: a. Fall Chinook Salmon b. Sockeye Salmon c. Summer Steelhead d. Spring/Summer Chinook Salmon 2.2010 run-size forecasts for: a. Sockeye Salmon b. Spring/Summer Chinook Salmon #12;#12;Species: Run: Origin: Period: Chinook Salmon Fall

  9. Monitoring the Migrations of Wild Snake River Spring\\/Summer Chinook Salmon Smolts, 1998 Annual Report

    Microsoft Academic Search

    Stephen Achord; Eric E. Hockersmith; Gordon A. Axel

    2000-01-01

    This reports details the 1998 study results from an ongoing project to monitor the migration behavior of wild spring\\/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends observed in the cumulative data resulting from this project; data has been collected from Oregon and Idaho streams since 1989. The project was initiated after 3 years of

  10. Migration and bioenergetics of juvenile Snake River fall Chinook salmon Daniel Widener

    E-print Network

    Washington at Seattle, University of

    Migration and bioenergetics of juvenile Snake River fall Chinook salmon Daniel Widener A thesis: Aquatic and Fishery Sciences #12;#12;University of Washington Abstract Migration and Bioenergetics outmigration of Pacific salmon are well known, the proximate mechanisms informing migration in individuals

  11. Identification and Enumeration of Steelhead Kelts at a Snake River Hydroelectric Dam

    Microsoft Academic Search

    Allen F. Evans; Roy E. Beaty; Martin S. Fitzpatrick; Ken Collis

    2004-01-01

    Improvement of iteroparity rates in U.S. Endangered Species Act (ESA)-listed Snake River populations of steelhead Oncorhynchus mykiss requires a means of distinguishing prespawn (mature) steelhead from postspawners (kelts) and sufficient kelt abundance to aid recovery efforts. We used ultrasound imaging of gonads to identify and enumerate prespawn steelhead and kelts incidentally collected in the juvenile bypass facility at Lower Granite

  12. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    SciTech Connect

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  13. Reanalysis and Interpretation of 25 Years of Snake–Columbia River Juvenile Salmonid Survival Studies

    Microsoft Academic Search

    Shane A. Bickford; John R. Skalski

    2000-01-01

    Tagging studies to estimate salmonid smolt survival during out-migration have been an integral component of hydroproject mitigation programs for decades in the Snake–Columbia River basin. Fifty-three smolt survival investigations from 1971 to 1996 were reexamined to identify general patterns for survival of smolts through turbines, spillbays, and river reaches. Average survival that measured both direct and indirect effects from turbine

  14. Habitat use in basking Northern water ( Nerodia sipedon ) and Eastern garter ( Thamnophis sirtalis ) snakes in urban New Jersey

    Microsoft Academic Search

    Joanna Burger; Christian Jeitner; Heather Jensen; Megan Fitzgerald; Stacey Carlucci; Sheila Shukla; Sean Burke; Robert Ramos; Michael Gochfeld

    2004-01-01

    The habitat use of basking northern water (Nerodia sipedon) and Eastern garter (Thamnophis sirtalis) snakes was examined along the Raritan Canal, an urbanized area of central New Jersey. There were significant differences between the two species with respect to cloud cover, canopy cover, and the distance to the path and the water, but not with respect to percent of the

  15. SNAKE RIVER BASIN, WATER QUALITY CONTROL AND MANAGEMENT, SEPTEMBER 1968

    EPA Science Inventory

    This report summarizes the findings of studies which have provided the impetus to Federal-State water pollution control planning in the Snake Basin (17040104, 170402, 170501) since 1962. It tells where pollution exists and why it exists. It tells what corrective action has alre...

  16. Summary of Radiological Monitoring of Columbia and Snake River Sediment, 1988 Through 2004

    SciTech Connect

    Patton, Gregory W.; Dirkes, Roger L.

    2007-10-01

    From 1988 through 2004, samples of upper-layer sediments from the Columbia River and Snake River were collected under the Hanford Site Surface Environmental Surveillance Project to document concentrations and trends of radionuclides. Low concentrations of potassium-40, cesium-137, uranium isotopes, and plutonium isotopes were detected consistently in sediment samples over the entire sampling period. The concentrations of most radionuclides were similar to values measured upstream of the Hanford Site behind Priest Rapids Dam. For all locations, the concentrations of radionuclides in sediment samples from the Columbia and Snake rivers were below concentrations that would result in a 1-mrem effective dose equivalent to a hypothetical exposed individual using a shoreline exposure scenario (i.e., 500 hr/yr of external dose). The DOE limit for public exposure is 100 mrem/yr.

  17. EFFECTS OF WASTE DISCHARGES ON WATER QUALITY OF THE SNAKE RIVER AND ROCK CREEK, TWIN FALLS AREA, IDAHO. 1971

    EPA Science Inventory

    Comprehensive water quality investigations in the Snake River Basin, Twin Falls Area (17040212) were conducted from November 2 to 17, 1971. Studies included an evaluation of municipal and industrial wastewater treatment facilities. Subsequently, stream surveys were conducted on...

  18. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary

    Microsoft Academic Search

    Michael P. Faler; Glen Mendel; Carl Fulton

    2008-01-01

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on

  19. Measuring Water Levels in the Eastern Snake River Plain Aquifer

    USGS Multimedia Gallery

    USGS hydrologic technician Jayson Blom collects a water-level measurement at a monitoring well on the U.S. Department of Energy's Idaho National Laboratory site. During the summer of 2014, water levels measured at the site reached all-time lows....

  20. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    SciTech Connect

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  1. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    SciTech Connect

    Not Available

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  2. The Snake River Plain, Idaho - Representative of a new category of volcanism

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1982-01-01

    Studies of the volcanic geology of the Snake River Plain, Idaho, and comparison with other basaltic regions suggest a new category of volcanic activity, termed basaltic plains volcanism. Typified by the Snake River Plain, this style of volcanism is intermediate between basaltic flood (or plateau) eruptions and Hawaiian volcanism. Characteristics that are common to both Hawaiian and plains volcanism are: multiple lava flow units which erupt primarily from point sources, formation of low shields, and frequent emplacement through lava tubes or channels. Characteristics that are common to both flood basalts and plains volcanism are: high volume flows, vents aligned along rift zones, and planar surfaces. The recognition of plains volcanism in other areas provides a means to interpret the style of eruption and volcanic history.

  3. Snake River Plain, Idaho: Representative of a new category of volcanism

    SciTech Connect

    Greeley, R.

    1982-04-10

    Studies of the volcanic geology of the Snake River Plain, Idaho, and comparison with other basaltic regions suggest a new category of volcanic activity, termed basaltic plains volcanism. Typified by the Snake River Plain, this style of volcanism is intermediate between basaltic flood (or plateau) eruptions and Hawaiian volcanism. Characteristics that are common to both Hawaiian and plains volcanism are: multiple lava flow units which erupt primarily from point sources, formation of low shields, and frequent emplacement through lava tubes channels. Characteristics that are common to both flood basalts and plains volcanism are: high volume flows, vents aligned along rift zones, and planar surfaces. The recognition of plains in other areas provides a means to interpret the style of eruption and volcanic history.

  4. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  5. Transmissivity of the Snake River Plain aquifer at the Idaho National Engineering Laboratory, Idaho

    Microsoft Academic Search

    Ackerman

    1991-01-01

    Aquifer-test data of 183 single-well tests at 94 wells in the Snake River Plain aquifer were analyzed to estimate values of transmissivity. Estimates of transmissivity for individual wells range from 1.1 to 7.6 à 10⁵ feet squared per day, nearly 6 orders of magnitude. These data were determined in a consistent manner and are useful for describing the distribution of

  6. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect

    Stovall, Stacey H.

    1994-08-01

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  7. South Fork Snake River/Palisades Wildlife Mitigation Project: Environmental assessment

    SciTech Connect

    NONE

    1995-09-01

    BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land and conservation easement acquisition and wildlife habitat enhancement measures. These measures would be implemented on selected lands along the South Fork of the Snake River between Palisades Dam and the confluence with the Henry`s Fork, and on portions of the Henry`s Fork located in Bonneville, Madison, and Jefferson Counties, Idaho. BPA has prepared an Environmental Assessment evaluating the proposed project. The EA also incorporates by reference the analyses in the South Fork Snake River Activity/Operations Plan and EA prepared jointly in 1991 by the Bureau of Land Management and the Forest Service. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  8. Population dynamics of the Concho Water Snake in rivers and reservoirs

    USGS Publications Warehouse

    Whiting, M.J.; Dixon, J.R.; Greene, B.D.; Mueller, J.M.; Thornton, O.W., Jr.; Hatfield, J.S.; Nichols, J.D.; Hines, J.E.

    2008-01-01

    The Concho Water Snake (Nerodia harteri paucimaculata) is confined to the Concho-Colorado River valley of central Texas, thereby occupying one of the smallest geographic ranges of any North American snake. In 1986, N. h. paucimaculata was designated as a federally threatened species, in large part because of reservoir projects that were perceived to adversely affect the amount of habitat available to the snake. During a ten-year period (1987-1996), we conducted capture-recapture field studies to assess dynamics of five subpopulations of snakes in both natural (river) and man-made (reservoir) habitats. Because of differential sampling of subpopulations, we present separate results for all five subpopulations combined (including large reservoirs) and three of the five subpopuiations (excluding large reservoirs). We used multistate capture-recapture models to deal with stochastic transitions between pre-reproductive and reproductive size classes and to allow for the possibility of different survival and capture probabilities for the two classes. We also estimated both the finite rate of increase (??) for a deterministic, stage-based, female-only matrix model using the average litter size, and the average rate of adult population change, ??, which describes changes in numbers of adult snakes, using a direct capture-recapture approach to estimation. Average annual adult survival was about 0.23 and similar for males and females. Average annual survival for subadults was about 0.14. The parameter estimates from the stage-based projection matrix analysis all yielded asymptotic values of ?? < 1, suggesting populations that are not viable. However, the direct estimates of average adult ?? for the three subpopulations excluding major reservoirs were ?? = 1.26, SE??(??) = 0.18 and ?? = 0.99, SE??(??) = 0.79, based on two different models. Thus, the direct estimation approach did not provide strong evidence of population declines of the riverine subpopulations, but the estimates are characterized by substantial uncertainty. ?? 2008 by the American Society of Ichthyologists and Herpetologists.

  9. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    SciTech Connect

    Hanrahan, T.P. [Pacific Northwest National Laboratory

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement estimates for fall of 2000 indicate more than 9000 adult fall Chinook salmon returned to this area, accounting for more than 2100 redds within a 5 km section of river.

  10. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    SciTech Connect

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 in order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the repository by Washington Department of Fish and Wildlife and Columbia River Intertribal Fish Commission, respectively. To date, a total of 3,928 Columbia River salmon and steelhead gamete samples and three Kootenai River white sturgeon are preserved in the repository. Samples are stored in independent locations at the University of Idaho (UI) and Washington State University (WSU).

  11. Validation of a shed skin corticosterone enzyme immunoassay in the African House Snake (Lamprophis fuliginosus) and its evaluation in the Eastern Massasauga Rattlesnake (Sistrurus catenatus catenatus).

    PubMed

    Berkvens, Charlene N; Hyatt, Crystal; Gilman, Christine; Pearl, David L; Barker, Ian K; Mastromonaco, Gabriela F

    2013-12-01

    This study investigates the use of an enzyme immunoassay to measure keratin glucocorticoid concentrations in reptilian shed skins. Keratin glucocorticoid concentrations were compared to fecal glucocorticoid concentrations during the period of keratin growth in the African House Snake (Lamprophis fuliginosus) and the Eastern Massasauga Rattlesnake (Sistrurus catenatus catenatus). Biochemical validation was performed for the shed skin and fecal corticosterone enzyme immunoassays in the African House Snake. Biological and physiological validations were attempted in the African House Snake. A statistically significant positive association was detected between shed skin corticosterone and the mean fecal corticosterone metabolites from 3 weeks before to 1 week after the previous ecdysis in the African House Snake. A statistically significant difference was not detected between the shed skin corticosterone concentrations of the minimally handled control and the weekly handled (or experimentally stressed) African House Snakes. Adrenocorticotropic hormone stimulation did not result in the physiological validation anticipated for shed skin corticosterone concentrations in the African House Snake. PMID:23994033

  12. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2001-2002 Annual Report.

    SciTech Connect

    Ward, David L.; Kern, J. Chris; Hughes, Michele L.

    2003-12-01

    We report on our progress from April 2001 through March 2002 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  13. UPPER SNAKE RIVER, MAIN STEM (LAKE WALCOTT TO IDAHO-WYOMING BORDER), IDAHO. WATER QUALITY STATUS REPORT 1977

    EPA Science Inventory

    This study sampled 17 water quality stations in the Upper Snake River, Idaho (1704) on a bi-weekly basis. The area extended from Heise and Rexburg to the Raft River. Two point sources (Idaho Falls and Blackfoot Sewage Treatment Plants) and 2 tributaries (Blackfoot and Raft Rive...

  14. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.

    SciTech Connect

    Ward, David L.; Kern, J. Chris; Hughes, Michele L. (Oregon Department of Fish and Wildlife)

    2004-02-01

    We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  15. Survey of Pathogens in Hatchery Chinook Salmon with Different Out-Migration Histories through the Snake and Columbia Rivers

    Microsoft Academic Search

    A. L. Van Gaest; J. P. Dietrich; D. E. Thompson; D. A. Boylen; S. A. Strickland; T. K. Collier; F. J. Loge; M. R. Arkoosh

    2011-01-01

    The operation of the Federal Columbia River Power System (FCRPS) has negatively affected threatened and endangered salmonid populations in the Pacific Northwest. Barging Snake River spring Chinook salmon Oncorhynchus tshawytscha through the FCRPS is one effort to mitigate the effect of the hydrosystem on juvenile salmon out-migration. However, little is known about the occurrence and transmission of infectious agents in

  16. Structure along the northwest edge of the Snake River Plain interpreted from seismic refraction

    NASA Astrophysics Data System (ADS)

    Pankratz, Leroy W.; Ackermann, Hans D.

    1982-04-01

    The results of a seismic refraction survey at the Idaho National Engineering Laboratory along the northwest boundary of the Snake River Plain show that velocities of the volcanic rocks beneath the Plain increase from 1.5 km/s at the surface to 5.2-5.5 km/s at depths between approximately 2200 and 2500 m. An exploration well in the area (INEL-1) encountered Cenozoic volcanic rock with some interbedded sediments to a depth of 2460 m underlain by 700 m of a rhyodacite porphyry. The refraction data demonstrate a nearly vertical faultlike discontinuity of about 1000-m displacement beneath the plain, about 1.8 km from the southeast flank of the Arco Hills (Lost River Range). Whether this discontinuity represents the northwest flank of the Snake River Plain graben, the east flank of the Lost River Range fault, Or a caldera wall is not known. The results further indicate that Paleozoic rocks may extend beneath the plain as far as 5.6 km southeastward from the Arco Hills.

  17. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    SciTech Connect

    Faler, Michael P. [U.S. Fish and Wildlife Service; Mendel, Glen; Fulton, Carl [Washington Department of Fish and Wildlife

    2008-11-20

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

  18. Estuarine and early-marine survival of transported and in-river migrant Snake River spring Chinook salmon smolts

    PubMed Central

    Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.; McKern, John L.

    2012-01-01

    Many juvenile Snake River Chinook salmon are transported downriver to avoid hydroelectric dams in the Columbia River basin. As mortality to the final dam is ?50%, transported fish should return as adults at roughly double the rate of nontransported fish; however, the benefit of transportation has not been realized consistently. “Delayed” mortality caused by transportation-induced stress is one hypothesis to explain reduced returns of transported fish. Differential timing of ocean entry is another. We used a large-scale acoustic telemetry array to test whether survival of transported juvenile spring Chinook is reduced relative to in-river migrant control groups after synchronizing ocean entry timing. During the initial 750?km, 1 month long migration after release, we found no evidence of decreased estuarine or ocean survival of transported groups; therefore, decreased survival to adulthood for transported Chinook is likely caused by factors other than delayed effects of transportation, such as earlier ocean entry. PMID:22690317

  19. Characteristics of fish assemblages and related environmental variables for streams of the upper Snake River basin, Idaho and western Wyoming, 1993-95

    USGS Publications Warehouse

    Maret, Terry R.

    1997-01-01

    limited designation for the middle reach of the Snake River between Milner Dam and King Hill and provide a framework for developing indices of biotic integrity by using fish assemblages to evaluate water quality of streams in the upper Snake River Basin.

  20. Envir202b Earth, Air, Water: the Human Context Winter 2003 F. Stahr The River Dammed: Proposed Removal of the Lower Snake River Dams A Case Study

    E-print Network

    Envir202b ­ Earth, Air, Water: the Human Context Winter 2003 F. Stahr The River Dammed: Proposed Removal of the Lower Snake River Dams ­ A Case Study Assignment & Schedule for Day 2 We will next work as your group will be asked to answer the following questions: 1) What changes (if any) to the dams

  1. A Comparison of Migration Rates of Radio and PIT-Tagged Adult Snake River Chinook Salmon through the Columbia River Hydropower System

    Microsoft Academic Search

    Alicia L. Matter; Benjamin P. Sandford

    2003-01-01

    Documentation of adult salmonid migration behavior in the Columbia River drainage is critically needed to assess the effects of dams on travel time and passage. In 2000, we compared the upstream travel times of passive integrated transponder (PIT)-tagged and radio-tagged adult chinook salmon Oncorhynchus tshawytscha from Bonneville Dam on the lower Columbia River to Lower Granite Dam on the Snake

  2. Effect of activities at the Idaho National Engineering and Environmental Laboratory on the water quality of the Snake River Plain aquifer in the Magic Valley study

    USGS Publications Warehouse

    Bartholomay, Roy C.

    1998-01-01

    Radiochemical and chemical constituents in wastewater generated at facilities of the Idaho National Engineering and Environmental Laboratory (INEEL) (figure 1) have been discharged to waste-disposal ponds and wells since the early 1950 s. Public concern has been expressed that some of these constituents could migrate through the Snake River Plain aquifer to the Snake River in the Twin Falls-Hagerman area Because of these concerns the U.S. Department of Energy (DOE) requested that the U.S. Geological Survey (USGS) conduct three studies to gain a greater understanding of the chemical quality of water in the aquifer. One study described a one-time sampling effort for radionuclides, trace elements, and organic compounds in the eastern part of the A&B Irrigation District in Minidoka County (Mann and Knobel, 1990). Another ongoing study involves sampling for tritium from 19 springs on the north side of the Snake River in the Twin Falls-Hagerman area (Mann, 1989; Mann and Low, 1994). A third study an ongoing annual sampling effort in the area between the southern boundary of the INEEL and Hagerman (figure 1) (hereafter referred to as the Magic Valley study area), is being conducted with the Idaho Department of Water Resources in cooperation with the DOE. Data for a variety of radiochemical and chemical constituents from this study have been published by Wegner and Campbell (1991); Bartholomay, Edwards, and Campbell (1992, 1993, 1994a, 1994b); and Bartholomay, Williams, and Campbell (1995, 1996, 1997b). Data discussed in this fact sheet were taken from these reports. An evaluation of data collected during the first four years of this study (Bartholomay Williams, and Campbell, 1997a) showed no pattern of water-quality change for radionuclide data as concentrations randomly increased or decreased. The inorganic constituent data showed no statistical change between sample rounds.

  3. Three-Dimensional Geophysical Structure of the Yellowstone / Snake River Plain Hotspot System: Is a Deep Mantle Plume Required?

    NASA Astrophysics Data System (ADS)

    Fouch, M. J.; James, D. E.; Kelbert, A.; Egbert, G. D.; Wagner, L. S.; Carlson, R. W.; Roth, J. B.

    2011-12-01

    Providing new constraints on the origin of the Yellowstone / Snake River Plain (YSRP) hotspot system is an important contribution enabled the EarthScope program. This age-progressive track of rhyolitic volcanism has long been hypothesized as resulting from a deep mantle plume. Here we present an integrated view of new results from EarthScope seismic and magnetotelluric (MT) data that shed new light on the deep structure and dynamics of the YSRP system. Nearly all new body wave tomographic models utilizing EarthScope data show a distinct swath of strongly reduced seismic wavespeeds extending laterally from the central SRP to Yellowstone, extending to depths of no greater than ~200 km. There is no evidence for a singular, concentrated conduit of reduced velocities below 200 km, as expected from a focused mantle plume upwelling. Surface wave tomography shows similar patterns for the YSRP region, with shear wavespeeds consistent with partial melt zones within the YSRP crust and uppermost mantle extending to depths of ~125 km, and aligned with the widespread distribution of Quaternary basaltic volcanism all along the SRP. Results from regional 3D MT models show focused zones of highly conductive crust and upper mantle, with the strongest conductivities in the uppermost mantle residing beneath the central Snake River Plain and the largest contrasts extending to ~100km depth. Given the paucity of evidence for a present-day plume, we explore geophysical proxies in the mantle flow field for past plume-related dynamics, appealing to proxies for mantle flow. Data from several seismic anisotropy studies confirm that the Yellowstone region exhibits little evidence for vertical mantle flow across the region. Further, the downgoing Juan de Fuca plate, imaged clearly in the tomographic studies, would provide a barrier to an upwelling mantle plume. An alternative to the plume model involves mantle flow around a stranded fragment of the Farallon plate whose northern edge parallels the SRP, and whose eastern edge is beneath Yellowstone. Flow of deep mantle around this sinking portion of the Farallon would introduce ascending mantle beneath the whole of the YSRP, not just Yellowstone, and could also explain the significant tectonomagmatism of the Columbia River flood basalt event and continuing volcanic activity on the High Lava Plains.

  4. Iodine-129 in the Snake River Plain Aquifer at and Near the Idaho National Laboratory, Idaho, 2003 and 2007

    USGS Publications Warehouse

    Bartholomay, Roy C.

    2009-01-01

    From 1953 to 1988, wastewater containing approximately 0.94 curies of iodine-129 (129I) was generated at the Idaho National Laboratory (INL) in southeastern Idaho. Almost all of this wastewater was discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC) on the INL site. Most of the wastewater was discharged directly into the eastern Snake River Plain aquifer through a deep disposal well until 1984; however, some wastewater also was discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. In 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, collected samples for 129I from 36 wells used to monitor the Snake River Plain aquifer, and from one well used to monitor a perched zone at the INTEC. Concentrations of 129I in the aquifer ranged from 0.0000066 +- 0.0000002 to 0.72 +- 0.051 picocuries per liter (pCi/L). Many wells within a 3-mile radius of the INTEC showed decreases of as much as one order of magnitude in concentration from samples collected during 1990-91, and all of the samples had concentrations less than the Environmental Protection Agency's Maximum Contaminant Level (MCL) of 1 pCi/L. The average concentration of 129I in 19 wells sampled during both collection periods decreased from 0.975 pCi/L in 1990-91 to 0.249 pCi/L in 2003. These decreases are attributed to the discontinuation of disposal of 129I in wastewater after 1988 and to dilution and dispersion in the aquifer. Although water from wells sampled in 2003 near the INTEC showed decreases in concentrations of 129I compared with data collected in 1990-91, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed slight increases. These slight increases may be related to variable discharge rates of wastewater that eventually moved to these well locations as a mass of water from a particular disposal period. In 2007, the USGS collected samples for 129I from 36 wells that are used to monitor the aquifer south of INTEC and from 2 wells that are used to monitor perched zones at INTEC. Concentrations of 129I in the eastern Snake River Plain aquifer ranged from 0.000026 +- 0.000002 to 1.16 +- 0.04 pCi/L, and the concentration at one well exceeded the maximum contaminant level (1 pCi/L) for public drinking water supplies. The average concentration of 19 wells sampled in 2003 and 2007 did not differ; however, slight increases and decreases of concentrations in several areas around the INTEC were evident in the aquifer. The decreases are attributed to the discontinued disposal and to dilution and dispersion in the aquifer. The increases may be due to the movement into the aquifer of remnant perched water below the INTEC. In 2007, the USGS also collected samples from 31 zones in 6 wells equipped with multi-level WestbayTM packer sampling systems to help define the vertical distribution of 129I in the aquifer. Concentrations ranged from 0.000011 +- 0.0000005 to 0.0167 +- 0.0007 pCi/L. For three wells, concentrations of 129I between zones varied one to two orders of magnitude. For two wells, concentrations varied for one zone by more than an order of magnitude from the wells' other zones. Similar concentrations were measured from all five zones sampled in one well. All of the 31 zones had concentrations two or more magnitudes below the maximum contaminant level.

  5. Monitoring and Simulating the 3-D Density Currents at the Confluence of the Snake and Clearwater Rivers

    SciTech Connect

    Cook, Chris B.; Richmond, Marshall C.

    2004-12-01

    Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater River, a major tributary to the Lower Snake River, and to improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional density currents at the Clearwater and Snake River confluence and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model was also applied. By utilizing both field data and a numerical model, a more holistic view of the 3-D density currents was discovered than by either method alone. During this process, it was discovered that several predictable stratification patterns would develop depending upon the discharge ratio and the thermal gradient between the two rivers. These results illustrate the complex hydrodynamic structure at the confluence of the Clearwater and Snake Rivers, which has previously been shown by fish biologists to be a difficult passage zone for migrating salmonids of various life stages.

  6. Tritium concentrations in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho

    USGS Publications Warehouse

    Mann, L.J.

    1989-01-01

    Concern has been expressed that some of the approximately 30,900 curies of tritium disposed to the Snake River Plain aquifer from 1952 to 1988 at the INEL (Idaho National Engineering Laboratory) have migrated to springs discharging to the Snake River in the Twin Falls-Hagerman area. To document tritium concentrations in springflow, 17 springs were sampled in November 1988 and 19 springs were sampled in March 1989. Tritium concentrations were less than the minimum detectable concentration of 0.5 pCi/mL (picocuries/mL) in November 1988 and less than the minimum detectable concentration of 0.2 pCi/mL in March 1989; the minimum detectable concentration was smaller in March 1989 owing to a longer counting time in the liquid scintillation system. The maximum contaminant level of tritium in drinking water as established by the U.S. Environmental Protection Agency is 20 pCi/mL. U.S. Environmental Protection Agency sample analyses indicate that the tritium concentration has decreased in the Snake River near Buhl since the 1970's. In 1974-79, tritium concentrations were less than 0.3 +/-0.2 pCi/mL in 3 of 20 samples; in 1983-88, 17 of 23 samples contained less than 0.3 +/-0.2 pCi/mL of tritium; the minimum detectable concentration is 0.2 pCi/mL. On the basis of decreasing tritium concentrations in the Snake River, their correlation to cessation of atmospheric weapons tests tritium concentrations in springflow less than the minimum detectable concentration, and the distribution of tritium in groundwater at the INEL, aqueous disposal of tritium at the INEL has had no measurable effect on tritium concentrations in springflow from the Snake River Plain aquifer and in the Snake River near Buhl. (USGS)

  7. Paleomagnetic correlation of ignimbrites along the southern margin of the central Snake River Plain, Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Finn, D. R.; Coe, R. S.; Spinardi, F.; Reichow, M. K.; Knott, T.; McDonnell, L.; Cunningham, D.; Branney, M.

    2011-12-01

    Mid-late Miocene explosive volcanism associated with the Yellowstone hotspot occurred in the central Snake River Plain, for example at the 12.5-11.3 Ma Bruneau-Jarbidge and 10-8.6 Ma Twin Falls eruptive centres. The volcanism was characterized by high-temperature rhyolitic caldera-forming super-eruptions, some exceeding 450 km3. To determine the number and scales and of these giant eruptions we are investigating successions of outflow ignimbrites at the southern and northern margins of the plain. The ignimbrites are exposed discontinuously in widely spaced (50-200 km) mountain ranges and are typically extensive, intensely welded and rheomorphic. Paleomagnetic characterization of individual (paleosol-bounded) eruption-units together with field, petrographic and chemical characterization will aid in stratigraphic correlation between distant sections. By correlating and mapping the eruption-units we can better estimate how the frequencies and volumes of the super-eruptions changed during eastward progression of Yellowstone hotspot volcanism. This information helps distinguish between effects of thermal flux, crustal structure, and tectonics on magmatic history of this continental large igneous province. Additionally, large caldera collapse events dramatically modify landscapes, and location and scale of calderas may have significantly contributed to Snake River Plain topography. Over 300 paleomagnetic cores were collected in September 2010 from the Cassia Hills, Rogerson Graben, and Bruneau-Jarbidge regions in the southern margin of the Snake River Plain. We drilled 10 oriented cores per eruption unit at reference sections from each location and demagnetized them with alternating-field (AF) and thermal demagnetization techniques. In some cases AF treatment up to 200 mT was unable to completely destroy a specimen's natural remnant magnetization and so thermal treatment was used to finish the experiment. Zjiderveld diagrams from AF, thermal and hybrid experiments show nice linear trends to the origin and all agree well in direction. Unblocking temperatures generally ranged from 530-580° C, suggesting magnetite is the primary magnetic mineral. Some specimens, however, have an additional component with an unblocking temperature of <350° C, which could be titanomagnetite or secondary titanomagnemite. Thermomagnetic experiments are underway to identify these components. Magnetic polarities of ignimbrites from the Cassia Hills and Rogerson Graben are exclusively normal, whereas normal and reversed polarities are found in the Bruneau-Jarbidge region. Although most ignimbrites cooled in a normal field, smaller variations in this direction of the field are typically still resolvable to within a few centuries. Characterization of this secular variation and anisotropy of magnetic susceptibility are our principal paleomagnetic tools to fingerprint and correlate individual ignimbrite eruption units across the southern Snake River Plain.

  8. A simulation study of factors controlling white sturgeon recruitment in the Snake River

    USGS Publications Warehouse

    Jager, H.I.; Van Winkle, W.; Chandler, J.A.; Lepla, K.B.; Bates, P.; Counihan, T.D.

    2002-01-01

    Five of the nine populations of white sturgeon Acipenser transmontanus, located between dams on the Middle Snake River, have declined from historical levels and are now at risk of extinction. One step towards more effectively protecting and managing these nine populations is ranking factors that influence recruitment in each of these river segments. We developed a model to suggest which of seven mechanistic factors contribute most to lost recruitment in each river segment: (1) temperature-related mortality during incubation, (2) flow-related mortality during incubation, (3) downstream export of larvae, (4) limitation of juvenile and adult habitat, (5) mortality of all ages during summer episodes of poor water quality in reservoirs, (6) entrainment mortality of juveniles and adults, and (7) angling mortality. We simulated recruitment with, and without, each of the seven factors, over a typical series of hydrologic years. We found a hierarchical pattern of limitation. In the first tier, river segments with severe water quality problems grouped together. Poor water quality during summer had a strong negative effect on recruitment in the river segments between Swan Falls Dam and Hell's Canyon Dam. In the second tier, river segments with better water quality divided into short river segments and longer river segments. Populations in short river segments were limited by larval export. Populations in longer river segments tended to be less strongly limited by any one factor. We also found that downstream effects could be important, suggesting that linked populations cannot be viewed in isolation. In two cases, the effects of a factor on an upstream population had a significant influence on its downstream neighbors. ?? 2002 by the American Fisheries Society.

  9. Major sources of nitrogen input and loss in the upper Snake River basin, Idaho and western Wyoming, 1990

    USGS Publications Warehouse

    Rupert, Michael

    1996-01-01

    A mass balance of total nitrogen input and loss in Gooding, Jerome, Lincoln, and Twin Falls Counties suggests that more than 6,000,000 kg (6,600 tons) of total nitrogen is input in this four-county area than is discharged by the Snake River. This excess nitrogen probably is utilized by aquatic vegetation in the Snake River (causing eutrophication), stored as nitrogen in soil, stored as nitrate in the ground water and eventually discharged through the springs, utilized by noncrop vegetation, and lost through denitrification.

  10. Population dynamics of the Concho water snake in rivers and reservoirs

    USGS Publications Warehouse

    Whiting, M.J.; Dixon, J.R.; Greene, B.D.; Mueller, J.M.; Thornton, O.W., Jr.; Hatfield, J.S.; Nichols, J.D.; Hines, J.E.

    2008-01-01

    The Concho Water Snake (Nerodia harteri paucimaculata) is confined to the Concho-Colorado River valley of central Texas, thereby occupying one of the smallest geographic ranges of any North American snake. In 1986, N. h. paucimaculata was designated as a federally threatened species, in large part because of reservoir projects that were perceived to adversely affect the amount of habitat available to the snake. During a ten-year period (1987-1996), we conducted capture-recapture field studies to assess dynamics of five subpopulations of snakes in both natural (river) and man-made (reservoir) habitats. Because of differential sampling of subpopulations, we present separate results for all five subpopulations combined (including large reservoirs) and three of the five subpopulations (excluding large reservoirs). We used multistate capture-recapture models to deal with stochastic transitions between pre-reproductive and reproductive size classes and to allow for the possibility of different survival and capture probabilities for the two classes. We also estimated both the finite rate of increase (l) for a deterministic, stage-based, female-only matrix model using the average litter size, and the average rate of adult population change, l 8 , which describes changes in numbers of adult snakes, using a direct capture-recapture approach to estimation. Average annual adult survival was about 0.23 and similar for males and females. Average annual survival for subadults was about 0.14. The parameter estimates from the stage-based projection matrix analysis all yielded asymptotic values of 8 < 1, suggesting populations that are not viable. However, the direct estimates of average adult l for the three subpopulations excluding major reservoirs were l 8 = 1.26, SE8(l 8 ) = 0.18 and l 8 = 0.99, SE8(l 8 ) = 0.79, based on two different models. Thus, the direct estimation approach did not provide strong evidence of population declines of the riverine subpopulations, but the estimates are characterized by substantial uncertainty.

  11. Anthropogenic Impacts of Recreational Use on Sandbars in Hells Canyon on the Snake River, Idaho

    NASA Astrophysics Data System (ADS)

    Morehead, M. D.

    2014-12-01

    Sandbars along large rivers are important cultural, recreational, and natural resources. In modern, historic and prehistoric times the sandbars have been used for camping, hunting, fishing and recreational activities. Sandbars are a dynamic geomorphic unit of the river system that stores and exchanges sand with the main river channel. Both natural and anthropogenic changes to river systems affect the size, shape and dynamics of sandbars. During high spring flows, the Snake River can resupply and build the sand bars. During the lower flows of the summer and fall the sand is redistributed to lower levels by natural and anthropogenic forces, where it can be remobilized by the river and exported from the bar. During the summer and fall high use season many people camp and recreate on the bars and redistribute the sand. This study utilizes change detection from repeat high resolution terrestrial LiDAR scanning surveys to study the impacts humans have on the sandbars in Hells Canyon. Nearly a decade of annual LiDAR and Bathymetric surveys were used to place these recreational impacts into the context of overall sandbar dynamics.

  12. Bridging Basalts and Rhyolites in the Yellowstone-Snake River Plain Volcanic Province: the Elusive Intermediate Step

    NASA Astrophysics Data System (ADS)

    Szymanowski, D.; Ellis, B. S.; Bachmann, O.; Guillong, M.; Phillips, W. M.

    2014-12-01

    Many magmatic provinces produce strongly bimodal volcanism with abundant mafic and silicic magmas yet a scarcity of intermediate compositions (55-65 wt % SiO2). In such bimodal settings, much debate revolves around whether the basaltic magmas act as heat sources to melt pre-existing crust, or whether they are the parents to the silicic magmas (fractionation dominated evolution). Commonly, this scarcity of intermediate compositions has been used to support models involving large degrees of crustal melting. We present evidence of intermediate liquids associated with rhyolite petrogenesis in a famously bimodal province, the Yellowstone-Snake River Plain (YSRP) volcanic area in the western USA. The intermediate (57-67 wt % SiO2) liquids with compositions representing liquid lines of descent are preserved as melt inclusions in pyroxene crystals from two rhyolitic ignimbrites erupted from the 6.6-4.5 Ma Heise volcanic field in eastern Idaho. The host pyroxenes also yield major and trace element compositions in equilibrium with intermediate melts prior to significant plagioclase fractionation. The occurrence of such intermediate melts, most likely typically erased in the high temperature rhyolitic ignimbrites of the YSRP by diffusive re-equilibration, supports the importance of assimilation-fractional crystallisation (AFC) as a primary petrogenetic process. The crystal fractionation driving magma compositions towards the erupted rhyolites requires that unerupted cumulate reservoirs are left behind in the mid-crust - a conclusion supported by earlier seismic studies.

  13. Seasonal shifts in shelter and microhabitat use of drymarchon couperi (eastern indigo snake) in Georgia

    USGS Publications Warehouse

    Hyslop, N.L.; Cooper, R.J.; Meyers, J.M.

    2009-01-01

    Drymarchon couperi (Eastern Indigo Snake), a threatened species of the southeastern Coastal Plain of the United States, has experienced population declines because of extensive habitat loss and degradation across its range. In Georgia and northern Florida, the species is associated with longleaf pine habitats that support Gopherus polyphemus (Gopher Tortoise) populations, the burrows of which D. couperi uses for shelter. The extent that D. couperi uses these burrows, in addition to the use of other underground shelters and the microhabitat features associated with these structures is largely unknown. From 2003 through 2004, we conducted a radiotelemetry study of D. couperi (n = 32) to examine use of shelters and microhabitat in Georgia. We used repeated measures regression on a candidate set of models created from a priori hypotheses using principal component scores, derived from analysis of microhabitat data to examine microhabitat use at underground shelters. Proportion of locations recorded underground did not differ seasonally or between sexes. In winter, we recorded >0.90 of underground locations at tortoise burrows. Use of these burrows was less pronounced in spring for males. Females used abandoned tortoise burrows more frequently than males year-round and used them on approximately 0.60 of their underground locations during spring. Microhabitat use at underground shelters was most influenced by season compared to sex, site, or body size. Females in spring and summer used more open microhabitat compared to males, potentially in response to gestation. Our results suggest that the availability of suitable underground shelters, especially G. polyphemus burrows, may be a limiting factor in the northern range of D. couperi, with important implications for its conservation. ?? 2009 by the American Society of Ichthyologists and Herpetologists.

  14. Slab-controlled Tectonomagmatism of the Pacific Northwest: A Holistic view of Columbia River, High Lava Plains, and Snake River Plain/Yellowstone Volcanism

    NASA Astrophysics Data System (ADS)

    James, D. E.; Fouch, M. J.; Long, M. D.; Druken, K. A.; Wagner, L. S.; Chen, C.; Carlson, R. W.

    2012-12-01

    We interpret post-20 Ma tectonomagmatism across the U.S. Pacific Northwest in the context of subduction related processes. While mantle plume models have long enjoyed favor as an explanation for the post 20-Ma magmatism in the region, conceptually their support has hinged almost entirely on two major features: (1) Steens/Columbia River flood basalt volcanism (plume head); and (2) The Snake River Plain/Yellowstone hotspot track (plume tail). Recent work, synthesized in this presentation, suggests that these features are more plausibly the result of mantle dynamical processes driven by southerly truncation of the Farallon/Juan de Fuca subduction zone and slab detachment along the evolving margin of western North America (Long et al., 2012; James et al., 2011). Plate reconstructions indicate that shortening of the subduction zone by the northward migration of the Mendocino triple junction resulted in a significant increase in the rate of trench retreat and slab rollback ca 20 Ma. Both numerical modeling and physical tank experiments in turn predict large-scale mantle upwelling and flow around the southern edge of the rapidly retreating slab, consistent both with the observed Steens/Columbia River flood volcanism and with the strong E-W mantle fabric observed beneath the region of the High Lava Plains of central and eastern Oregon. The High Lava Plains and Snake River Plain time-progressive volcanism began concurrently about 12 Ma, but along highly divergent tracks and characterized by strikingly different upper mantle structure. Crustal and upper mantle structure beneath the High Lava Plains exhibits evidence typical of regional extension; i.e. thin crust, flat and sharp Moho, and an uppermost mantle with low velocities but otherwise largely devoid of significant vertical structure. In contrast, the Snake River Plain exhibits ultra-low mantle velocities to depths of about 180 km along the length of the hotspot track. Seismic images of the upper mantle in the depth range 300-600 km show that a northern segment of the orphaned Farallon plate lies sub-horizontally in the mantle transition zone parallel to and along the length of the SRP. The images also provide evidence for present-day upwelling from the deep upper mantle around the northern edge of the remnant slab beneath SRP as well as around its leading tip beneath Yellowstone. These results, coupled with petrologic and geochemical constraints, provide compelling support for a subduction model that accounts for virtually all post-20 Ma Cenozoic volcanism and structural deformation in the Cascadian back arc. James, D.E., Fouch, M.J., Carlson, R.W., Roth, J.B., 2011. Slab fragmentation, edge flow, and the origin of the Yellowstone hotspot track. Earth and Planetary Science Letters 311, 124-135. Long, M.D., Till, C.B., Druken, K.A., Carlson, R.W., Wagner, L.S., Fouch, M.J., James, D.E., Grove, T.L., Schmerr, N., Kincaid, C., 2012. Mantle dynamics beneath the Pacific Northwest and generation of voluminous back-arc volcanism. G-cubed in press.

  15. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  16. Snake River Sockeye Salmon Habitat and Limnological Research; 1993 Annual Report.

    SciTech Connect

    Teuscher, David (Shoshone-Bannock Tribes, Fort Hall, ID); Wurtsbaugh, Wayne A. (Utah State University, Department of Fisheries and Wildlife, Ecology Center and Watershed Science Unit); Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID)

    1994-06-01

    In 1990 the Shoshone-Bannock Tribes (SBT) petitioned the National Marine Fisheries Service (NMFS) to list Snake River Sockeye salmon as endangered. As a result, Snake River Sockeye were listed and the Bonneville Power Administration (BPA) began funding efforts to enhance sockeye stocks. Recovery efforts include development of a brood stock program, genetics work, describing fish community dynamics in rearing lakes, and completing limnology studies. The SBT, in cooperation with Idaho Department of Fish and Game (IDFG), are directing fish community and limnology studies. IDFG is managing the brood stock program. The University of Idaho and NMFS are completing genetics work. Part I of this document is the SBT 1993' annual report that describes findings related to fish community research. Part II is a document completed by Utah State University (USU). The SBT subcontracted USU to complete a limnology investigation on the Sawtooth Valley Lakes. Management suggestions in Part II are those of USU and are not endorsed by the SBT and may not reflect the opinions of SBT biologists.

  17. Evaluation of Reconnection Options for White Sturgeon in the Snake River Using a Population Viability Model

    SciTech Connect

    Jager, Yetta [ORNL; Bevelhimer, Mark S [ORNL; Chandler, James A. [Idaho Power Company; Lepla, Ken B. [Idaho Power Company; Van Winkle, Webb [Van Windle Environmental Consulting

    2007-01-01

    Abstract.- This paper describes a simulation study of reconnection options for white sturgeon Acipenser transmontanus subpopulations in adjacent river segments above and below CJ Strike Dam on the Snake River, Idaho, USA. In contrast to the downstream river segment, the upstream river segment is long and has areas that are suitable for spawning during normal and wet hydrologic conditions. We evaluated demographic and genetic consequences of upstream and downstream passage using different model assumptions about trashrack spacing and density dependent effects on the spawning interval. Our genetic results predict that, although reconnection would introduce new alleles to the upstream subpopulation, it would also preserve alleles from the downstream subpopulation by propagating them in the larger subpopulation above the dam. Our demographic results predict that halving the space between trashracks would have large and unequivocal benefits, whereas the effects of reconnection would be smaller and more sensitive to model assumptions. Simulated upstream passage tended to benefit both subpopulations only in the absence of density dependent limitation. In the presence of density dependence, the combination of halved trashrack spacing and upstream and downstream passage produced the best results. Narrower trashracks kept spawning adults in the upstream segment with spawning habitat, while allowing their progeny to migrate downstream. Screening appears to be the best option for such a species in this configuration of a long river segment acting as a demographic source above a short one acting as a demographic sink.

  18. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    USGS Publications Warehouse

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to target various sediment grain sizes. Laser diffraction and turbidity also were tested as surrogate technologies. Models between SSC and surrogate variables were developed using ordinary least-squares regression. Acoustic backscatter using the high frequency ADVM at each site was the best predictor of sediment, explaining 93 and 92 percent of the variability in SSC and matching sediment sample data within +8.6 and +10 percent, on average, at the Clearwater River and Snake River study sites, respectively. Additional surrogate models were developed to estimate sand and fines fractions of suspended sediment based on acoustic backscatter. Acoustic backscatter generally appears to be a better estimator of suspended sediment concentration and load over short (storm event and monthly) and long (annual) time scales than transport curves derived solely from the regression of conventional sediment measurements and streamflow. Changing grain sizes, the presence of organic matter, and aggregation of sediments in the river likely introduce some variability in the model between acoustic backscatter and SSC.

  19. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    SciTech Connect

    Faulkner, James R.; Smith, Steven G.; Muir, William D. [Northwest Fisheries Science Center

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2008 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. For yearling Chinook salmon, overall percentages for combined release groups used in survival analyses in the Snake River were 80% hatchery-reared and 20% wild. For steelhead, the overall percentages were 65% hatchery-reared and 35% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.939 for yearling Chinook salmon and 0.935 for steelhead.

  20. Oxygen and strontium isotopic studies of basaltic lavas from the Snake River plain, Idaho

    USGS Publications Warehouse

    Leeman, William P.; Whelan, Joseph F.

    1983-01-01

    The Snake Creek-Williams Canyon pluton of the southern Snake Range crops out over an area of about 30 km2, about 60 km southeast of Ely, Nev. This Jurassic intrusion displays large and systematic chemical and mineralogical zonation over a horizontal distance of 5 km. Major-element variations compare closely with Dalyls average andesite-dacite-rhyolite over an SiO2 range of 63 to 76 percent. For various reasons it was originally thought that assimilation played a dominant role in development of the Snake Creek-Williams Canyon pluton. However, based on modeling of more recently obtained trace element and isotopic data, we have concluded that the zonation is the result of in-situ fractional crystallization, with little assimilation at the level of crystallization. This report summarizes data available for each of the mineral species present in the zoned intrusion. Special attention has been paid to trends We present oxygen and strontium isotopic data for olivine tholeiites, evolved (that is, differentiated and (or) contaminated) lavas, rhyolites, and crustal- derived xenoliths from the Snake River Plain. These data show that the olivine tholeiites are fairly uniform in d80 (5.1 to 6.2) and 87Sr/86Sr (0.7056 to 0.7076) and reveal no correlation between these ratios. The tholeiites are considered representative of mantle-derived magmas that have not interacted significantly with crustal material or meteoric water. The evolved lavas display a wider range in d 80 (5.6 to 7.6) and 87Sr/86Sr (0.708 to 0.717) with positive correlations between these ratios in some suites but not in others. Crustal xenoliths have high and variable 8?Sr/86Sr (0.715 to 0.830) and d80 values that vary widely (6.7 to 9.2) and are a few permil greater than d80 values of the Snake River basalts. Thus, isotopic data for the evolved lavas are permissive of small degrees of contamination by crustal rocks similar to the most d80-depleted xenoliths. The d80 enrichments in some evolved lavas also are consistent with crystal fractionation processes and do not necessarily require bulk interaction with crustal rocks. Enrichment in d80 but not in 87Sr/86Sr in one suite of evolved lavas suggests that crustal contamination may not be essential to the petrogenesis of those lavas. Other suites of evolved lavas display large variations in 87Sr/86Sr that reflect at least some selective contamination with 87St. Bulk solid/liquid oxygen-isotope fractionation factors (a's) calculated for the evolved lavas from Craters of the Moon National Monument are comparatively large. These a's are dependent upon the nature and proportions of phases removed by crystal fractionation; basaltic lava a's differ from latitic lava a?s in accordance with different phenocryst assemblages in these rocks. Snake River Plain rhyolites are isotopically distinct from both the analyzed crustal xenoliths and olivine tholeiites. Their origin remains poorly understood, but crustal or sub-crustal sources may be viable. In the first case, they must be derived by anatexis of material distinct from the analyzed crustal xenoliths. In the second case, they must be derived from material unlike the source for tholeiites. No cogenetic relation with the tholeiites seems likely on the basis of available data. that might relate to the variation in the chemical petrology of the pluton.

  1. THE EFFECTS OF WATER RIGHTS AND IRRIGATION TECHNOLOGY ON STREAMFLOW AUGMENTATION COST IN THE SNAKE RIVER BASIN

    Microsoft Academic Search

    David B. Willis; Jose Vaz Caldas; W. Marshall Frasier; Norman K. Whittlesey; Joel R. Hamilton

    1998-01-01

    Three species of salmon in the Snake River Basin have been listed as endangered. Recovery efforts for these fish include attempts to obtain increased quantities of water during smolt migration periods to improve habitat in the lower basin. Agriculture is the dominant user of surface flows in this region. This study investigates farmer cost of a contingent water contract requiring

  2. A Model-Based Assessment of the Potential Response of Snake River Spring–Summer Chinook Salmon to Habitat Improvements

    Microsoft Academic Search

    Peter McHugh; Phaedra Budy; Howard Schaller

    2004-01-01

    The current recovery strategy for threatened Snake River Chinook salmon Oncorhynchus tshawytscha relies heavily on improvements to the quality of freshwater spawning and rearing habitat; however, the potential survival benefit from these actions is unknown. To address this issue, we created a model for predicting the early freshwater survival rates (egg to smolt) of this species as a function of

  3. Influences of Habitat and Hybridization on the Genetic Structure of Redband Trout in the Upper Snake River Basin, Idaho

    Microsoft Academic Search

    Christine C. Kozfkay; Matthew R. Campbell; Kevin A. Meyer; Daniel J. Schill

    2011-01-01

    The genetic structure of redband trout Oncorhynchus mykiss gairdnerii in the upper Snake River basin was investigated at various scales using 13 microsatellite loci. The majority of the genetic variation was partitioned between streams, although differentiation among watersheds was significant. This diversity was probably historically partitioned at the watershed scale when steelhead O. mykiss (anadromous rainbow trout) were present, with

  4. WATER QUALITY ASSESSMENT OF THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING - ENVIRONMENTAL SETTING, 1980-92.

    EPA Science Inventory

    Data summarized in this report are used in companion reports to help define the relations among land use, water use, water quality, and biological conditions. The upper Snake River Basin (1704) is located in southeastern Idaho and northwestern Wyoming and includes small parts of...

  5. Discovery of a Balkan fresh-water fauna in the Idaho formation of Snake River Valley, Idaho

    USGS Publications Warehouse

    Dall, W.H.

    1925-01-01

    In 1866 Gabb described Melania taylori and Lithasia antiqua "from a fresh-water deposit on Snake River, Idaho Territory, on the road from Fort Boise to the Owyhee mining country. Collected by A. Taylor." He states that a small bivalve, perhaps a Sphaerium, was associated with them.

  6. COLONIZATION OF BENTHIC INVERTEBRATES ON ARTIFICIAL SUBSTRATES IN THE SNAKE AND BEAR RIVER DRAINAGES, 1975-1976

    EPA Science Inventory

    This study was conducted as part of a continuing monitoring program by the EPA on the physical, chemical, and biological parameters of waterways of the United States. The principal objective was to assess benthic invertebrate communities in the Snake and Bear River systems (1704...

  7. MAJOR SOURCES OF NITROGEN INPUT AND LOSS IN THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING, 1990.

    EPA Science Inventory

    Total nitrogen input and loss from cattle manure, fertilizer, legume crops, precipitation, and domestic septic systems in the upper Snake River Basin, Idaho and western Wyoming (1704), were estimated by county for water year 1990. The purpose of these estimations was to rank inp...

  8. WATER QUALITY CONDITIONS IN THE MILNER REACH, SNAKE RIVER, SOUTH-CENTRAL IDAHO, OCTOBER 18-21 1977

    EPA Science Inventory

    During late October 1977, water discharge form Minidoka Dam into the Milner reach of the Snake River was less than 22 cubic meters per second, compared to normal flows for that time of year of about 42 cubic meters per second or more. To determine if impared water-wquality condi...

  9. Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling

    Microsoft Academic Search

    Cynthia L. Rakowski; John A. Serkowski; Marshall C. Richmond; William A. Perkins

    2010-01-01

    Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the

  10. Geologic Map of Upper Cretaceous and Tertiary Strata and Coal Stratigraphy of the Paleocene Fort Union Formation, Rawlins-Little Snake River Area, South-Central Wyoming

    USGS Publications Warehouse

    Hettinger, R.D.; Honey, J.G.; Ellis, M.S.; Barclay, C.S.V.; East, J.A.

    2008-01-01

    This report provides a map and detailed descriptions of geologic formations for a 1,250 square mile region in the Rawlins-Little Snake River coal field in the eastern part of the Washakie and Great Divide Basins of south-central Wyoming. Mapping of geologic formations and coal beds was conducted at a scale of 1:24,000 and compiled at a scale of 1:100,000. Emphasis was placed on coal-bearing strata of the China Butte and Overland Members of the Paleocene Fort Union Formation. Surface stratigraphic sections were measured and described and well logs were examined to determine the lateral continuity of individual coal beds; the coal-bed stratigraphy is shown on correlation diagrams. A structure contour and overburden map constructed on the uppermost coal bed in the China Butte Member is also provided.

  11. Quantification of the Probable Effects of Alternative In-River Harvest Regulations on Recovery of Snake River Fall Chinook Salmon : Final Report March 1996.

    SciTech Connect

    Cramer, Steven P.; Vigg, Steven

    1996-03-01

    The goal of this study was to quantify the probable effects that alternative strategies for managing in-river harvest would have on recovery of Snake River fall chinook salmon. This report presents the analysis of existing data to quantify the way in which various in-river harvest strategies catch Snake River bright (SRB) fall chinook. Because there has been disagreement among experts regarding the magnitude of in-river harvest impacts on Snake River fall chinook, the authors compared the results from using the following three different methods to estimate in-river harvest rates: (1) use of run reconstruction through stock accounting of escapement and landings data to estimate harvest rate of SRB chinook in Zone 6 alone; (2) use of Coded Wire Tag (CWT) recoveries of fall chinook from Lyons Ferry Hatchery in a cohort analysis to estimate age and sex specific harvest rates for Zone 6 and for below Bonneville Dam; (3) comparison of harvest rates estimated for SRB chinook by the above methods to those estimated by the same methods for Upriver Bright (URB) fall chinook.

  12. 4. HEADGATE AND FLUME AT THE BEGINNING OF THE SNAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. HEADGATE AND FLUME AT THE BEGINNING OF THE SNAKE RIVER DITCH PASSING THROUGH BEAVER POND AREA, LOOKING EAST-SOUTHEAST. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  13. The Effects of River Impoundment and Hatchery Rearing on the Migration Behavior of Juvenile Steelhead in the Lower Snake River, Washington

    Microsoft Academic Search

    John M. Plumb; Russell W. Perry; Noah S. Adams; Dennis W. Rondorf

    2006-01-01

    We used radiotelemetry to monitor the migration behavior of juvenile hatchery and wild steelhead Oncorhynchus mykiss as they migrated through Lower Granite Reservoir and Dam on the lower Snake River, Washington. From 1996 to 2001, we surgically implanted radio transmitters in 1,540 hatchery steelhead and 1,346 wild steelhead. For analysis, we used the inverse Gaussian distribution to describe travel time

  14. Simultaneously Extracted Metals/Acid-Volatile Sulfide and Total Metals in Surface Sediment from the Hanford Reach of the Columbia RIver and the Lower Snake River

    SciTech Connect

    Patton, Gregory W.; Crecelius, Eric A.

    2001-01-24

    Metals have been identified as contaminants of concern for the Hanford Reach because of upriver mining, industrial activities, and past nuclear material production at the US Department of Energy's Hanford Site. This study was undertaken to better understand the occurrence and fate of metals in sediment disposition areas in the Columbia and Snake Rivers.

  15. The behavioral response of basking Northern water (Nerodia sipedon) and Eastern garter (Thamnophis sirtalis) snakes to pedestrians in a New Jersey park

    Microsoft Academic Search

    Joanna Burger

    2001-01-01

    Considerable attention has been devoted to the effects of people on birds and mammals, usually in wilderness or semiwilderness, but relatively little has been directed at reptiles in heavily populated areas. This paper examines the role of investigators and pedestrians on Northern water (Nerodia sipedon) and Eastern garter (Thamnophis sirtalis) snakes basking along a canal in New Jersey. The protocol

  16. Large-volume, low-?18O rhyolites of the central Snake River Plain, Idaho, USA

    USGS Publications Warehouse

    Boroughs, Scott; Wolff, John; Bonnichsen, Bill; Godchaux, Martha; Larson, Peter

    2005-01-01

    The Miocene Bruneau-Jarbidge and adjacent volcanic fields of the central Snake River Plain, southwest Idaho, are dominated by high-temperature rhyolitic tuffs and lavas having an aggregate volume estimated as 7000 km3. Samples from units representing at least 50% of this volume are strongly depleted in 18O, with magmatic feldspar ?18OVSMOW (Vienna standard mean ocean water) values between ?1.4‰ and 3.8‰. The magnitude of the 18O depletion and the complete lack of any rhyolites with normal values (7‰–10‰) combine to suggest that assimilation or melting of a caldera block altered by near- contemporaneous hydrothermal activity is unlikely. Instead, we envisage generation of the high-temperature rhyolites by shallow melting of Idaho Batholith rocks, under the influence of the Yellowstone hotspot, affected by Eocene meteoric-hydrothermal events. The seeming worldwide scarcity of strongly 18O-depleted rhyolites may simply reflect a similar scarcity of suitable crustal protoliths.

  17. Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain

    USGS Publications Warehouse

    Honjo, N.; Bonnichsen, B.; Leeman, W.P.; Stormer, J.C., Jr.

    1992-01-01

    Voluminous mid-Miocene rhyolitic ash-flow tuffs and lava flows are exposed along the northern and southern margins of the central and western Snake River Plain. These rhyolites are essentially anhydrous with the general mineral assemblage of plagioclase ??sanidine ?? quartz + augite + pigeonite ?? hypersthene ?? fayalitic olivine + Fe-Ti oxides + apatite + zircon which provides an opportunity to compare feldspar, pyroxene, and Fe-Ti oxide equilibration temperatures for the same rocks. Estimated pyroxene equilibration temperatures (based on the geothermometers of Lindsley and coworkers) range from 850 to 1000??C, and these are well correlated with whole-rock compositions. With the exception of one sample, agreement between the two-pyroxene thermometers tested is well within 50??C. Fe-Ti oxide geothermometers applied to fresh magnetite and ilmenite generally yield temperatures about 50 to 100??C lower than the pyroxene temperatures, and erratic results are obtained if these minerals exhibit effects of subsolidus oxidation and exsolution. Results of feldspar thermometry are more complicated, and reflect uncertainties in the thermometer calibrations as well as in the degree of attainment of equilibrium between plagioclase and sanidine. In general, temperatures obtained using the Ghiorso (1984) and Green and Usdansky (1986) feldspar thermometers agree with the pyroxene temperatures within the respective uncertainties. However, uncertainties in the feldspar temperatures are the larger of the two (and exceed ??60??C for many samples). The feldspar thermometer of Fuhrman and Lindsley (1988) produces systematically lower temperatures for many of the samples studied. The estimated pyroxene temperatures are considered most representative of actual magmatic temperatures for these rhyolites. This range of temperatures is significantly higher than those for rhyolites from many other suites, and is consistent with the hypothesis that the Snake River Plain rhyolitic magmas formed by partial fusion of relatively dry (e.g. granulitic) crustal lithologies. ?? 1992 Springer-Verlag.

  18. Analysis of data on nutrients and organic compounds in ground water in the upper Snake River basin, Idaho and western Wyoming, 1980-91

    USGS Publications Warehouse

    Rupert, Michael G.

    1994-01-01

    Nutrient and organic compound data from the U.S. Geological Survey and the U.S. Environmental Protection Agency STORET data bases provided information for development of a preliminary conceptual model of spatial and temporal ground-water quality in the upper Snake River Basin. Nitrite plus nitrate (as nitrogen; hereafter referred to as nitrate) concentrations exceeded the Federal drinking-water regulation of 10 milligrams per liter in three areas in Idaho" the Idaho National Engineering Laboratory, the area north of Pocatello (Fort Hall area), and the area surrounding Burley. Water from many wells in the Twin Falls area also contained elevated (greater than two milligrams per liter) nitrate concentrations. Water from domestic wells contained the highest median nitrate concentrations; water from industrial and public supply wells contained the lowest. Nitrate concentrations decreased with increasing well depth, increasing depth to water (unsaturated thickness), and increasing depth below water table (saturated thickness). Kjeldahl nitrogen concentrations decreased with increasing well depth and depth below water table. The relation between kjeldahl nitrogen concentrations and depth to water was poor. Nitrate and total phosphorus concentrations in water from wells were correlated among three hydrogeomorphic regions in the upper Snake River Basin, Concentrations of nitrate were statistically higher in the eastern Snake River Plain and local aquifers than in the tributary valleys. There was no statistical difference in total phosphorus concentrations among the three hydrogeomorphic regions. Nitrate and total phosphorus concentrations were correlated with land-use classifications developed using the Geographic Information Retrieval and Analysis System. Concentrations of nitrate were statistically higher in area of agricultural land than in areas of rangeland. There was no statistical difference in concentrations between rangeland and urban land and between urban land and agricultural land. There was no statistical difference in total phosphorus concentrations among any of the land-use classifications. Nitrate and total phosphorus concentrations also were correlated with land-use classifications developed by the Idaho Department of Water Resources for the Idaho part of the upper Snake River Basin. Nitrate concentrations were statistically higher in areas of irrigated agriculture than in areas of dryland agriculture and rangeland. There was no statistical difference in total phosphorus concentrations among any of the Idaho Department of Water Resources land-use classifications. Data were sufficient to assess long-term trends of nitrate concentrations in water from only eight wells: four wells north of Burley and four wells northwest of Pocatello. The trend in nitrate concentrations in water from all wells in upward. The following organic compounds were detected in ground water in the upper Snake River Basin: cyanazine, 2,4-D DDT, dacthal, diazinon, dichloropropane, dieldrin, malathion, and metribuzin. Of 211 wells sampled for organic compounds, water from 17 contained detectable concentrations.

  19. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect

    Hanrahan, Timothy P.

    2007-02-01

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  20. [Mortality from snake bites, wild and domestic animal bites and arthropod stings in the savannah zone of eastern Senegal].

    PubMed

    Trape, J F; Pison, G; Guyavarch, E; Mane, Y

    2002-08-01

    From 1976 to 1999, we conducted a prospective study of overall and cause-specific mortality among the population of 42 villages of south-eastern Senegal. Of 4,228 deaths registered during this period, 26 were brought on by snakebites, 4 by invertebrate stings and 8 by other wild or domestic animals. The average annual mortality rate from snakebite was 14 deaths per 100,000 population. Among persons aged 1 year or more, 0.9% (26/2,880) of deaths were caused by snakebite and this cause represented 28% (26/94) of the total number of deaths by accident. We also investigated the snake fauna of the area. Of 1,280 snakes belonging to 34 species that were collected, one-third were dangerous and the proportion of Viperidae, Elapidae and Atractaspididae was 23%, 11% and 0.6%, respectively. The saw-scaled viper Echis ocellatus was the most abundant species (13.6%). Other venomous species were Causus maculatus (6.5%), Naja katiensis (5.5%), Bitis arietans (2.7%), Elapsoidea trapei (2.4%), Naja nigricollis (1.2%), Naja melanoleuca (1.1%), Atractaspis aterrima (0.4%), Dendroaspis polylepis (0.3%) and Naja haje (0.1%). PMID:12404858

  1. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report.

    SciTech Connect

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2004-04-01

    We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Fourteen radio-tags were recovered shortly after tagging, and as a result, 21 remained in the river through December 31, 2003. Four bull trout that were radio-tagged in spring 2002 were known to survive and carry their tags through the spring and/or summer of 2003. One of these fish spent the winter near river mile (RM) 13.0; the other 3 over-wintered in the vicinity of the Tucannon Hatchery between RM 34 and 36. Twenty-one radio tags from bull trout tagged in 2002 were recovered during the spring and summer, 2003. These tags became stationary the winter of 2002/2003, and were recovered between RM 11 and 55. We were unable to recover the remaining 15 tags from 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. We observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from the headwaters downstream to river mile 6.4, near Lower Monumental Pool. As in 2002, we did not conduct work associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the Federal hydropower system on the mainstem Snake River. Transmission tests of submerged ATS model F1830 radio-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20 and 30 ft. Tests were conducted using an ATS R-4000 Receiver equipped with an ''H'' antenna at 200 and 700 feet above water surface from a helicopter. Audible detection and frequency separation were possible at both elevations. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we are planning to reduce the size of the radio tags that we implant, and delay most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

  2. Assessment of habitat of wildlife communities on the Snake River, Jackson, Wyoming

    USGS Publications Warehouse

    Schroeder, Richard L.; Allen, Arthur W.

    1992-01-01

    The composition of the wildlife community in western riparian habitats is influenced by the horizontal and vertical distribution of vegetation, the physical complexity of the channel, and barriers to movement along the corridor. Based on information from the literature and a workshop, a model was developed to evaluate the wildlife community along the Snake River near Jackson, Wyoming. The model compares conditions of the current or future years with conditions in 1956, before constructions of levees along the river. Conditions in 1956 are assumed to approximate the desirable distribution of plant cover types and the associated wildlife community and are used as a standard of comparison in the model. The model may be applied with remotely sensed data and is compatible with a geographic information systems analysis. In addition to comparing existing or future conditions with conditions in 1956, the model evaluated floodplain and channel complexity and assesses anthropogenic disturbance and its potential effect on the quality of wildlife habitat and movements of wildlife in the riparian corridor.

  3. Seasonal Survival, Movement, and Habitat Use of Age0 Rainbow Trout in the Henrys Fork of the Snake River, Idaho

    Microsoft Academic Search

    Matthew G. Mitro; Alexander V. Zale

    2002-01-01

    We quantified seasonal abundances, apparent survival rates, movements, and habitat use of age-0 rainbow trout Oncorhynchus mykiss in a 25-km reach of the Henrys Fork of the Snake River, Idaho, to determine what factors limit recruitment to the population. Natural production of rainbow trout occurred in each year of the study (1995-1997) and ranged from 158,000 to 306,000 age-0 fish

  4. Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho

    Microsoft Academic Search

    S. R. Anderson; M. J. Liszewski

    1997-01-01

    The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile² area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite

  5. Inventory of site-derived ³Cl in the Snake River plain aquifier, Idaho National Engineering Laboratory, Idaho

    Microsoft Academic Search

    1995-01-01

    Radioactive waste management practices at the U.S. Department of Energy`s Idaho National Engineering Laboratory (INEL) in Idaho have introduced ³Cl (T = 301,000 yr) into the Snake River Plain aquifer underlying the site. The ³Cl is believed to originate from neutron activation of stable ³Cl in nuclear fuels (principally) and in reactor cooling\\/process water. Wastewater releases of ³H at the

  6. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    Microsoft Academic Search

    G. S. Johnson; D. B. Frederick

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells.

  7. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2004-2005 Annual Report.

    SciTech Connect

    Rien, Thomas A.; Hughes, Michele L.; Kern, J. Chris (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2006-03-01

    We report on our progress from April 2004 through March 2005 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  8. White Sturgeon Mitgation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2003-2004 Annual Report.

    SciTech Connect

    Rein, Thomas A.; Hughes, Michele L.; Kern, J. Chris (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2005-08-01

    We report on our progress from April 2003 through March 2004 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  9. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat, and exacerbating adverse water quality conditions. A reduction in carry over can lead to seasonal reductions in instream flows, which may also negatively affect fish, wildlife, and recreation in Idaho. The Idaho Water Rental Pilot Project does provide opportunities to protect and enhance resident fish and wildlife habitat by improving water quality and instream flows. Control of point sources, such as sewage and industrial discharges, alone will not achieve water quality goals in Idaho reservoirs and streams. Slow, continuous releases of rented water can increase and stabilize instream flows, increase available fish and wildlife habitat, decrease fish displacement, and improve water quality. Island integrity, requisite for waterfowl protection from mainland predators, can be maintained with improved timing of water releases. Rebuilding Snake River salmon and steelhead runs requires a cooperative commitment and increased flexibility in system operations to increase flow velocities for fish passage and migration. Idaho's resident fish and wildlife resources require judicious management and a willingness by all parties to liberate water supplies equitably.

  10. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    NASA Astrophysics Data System (ADS)

    Arntzen, E. V.; Miller, B.

    2012-12-01

    Water bodies, such as freshwater lakes, are known to be net emitters of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes in Eastern Washington on the Snake and Columbia Rivers by sampling tributary, mainstem, embayment, forebay, and tailrace areas for N2O, CH4, and CO2 during winter and summer, 2012. At each sampling location, GHG measurement pathways included surface gas flux, dissolved gases within the surface water column, ebullition within shallow embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate net GHG emissions from hydropower. Emissions of N2O and CH4 were greatest within embayments, ranging up to 6.8 mg/l and 78 mg/l, respectively. Carbon dioxide tended to be greater in embayments and in forebay environments of the hydroelectric projects, exceeding 1800 mg/l and 5,900 mg/l in these areas, respectively. Concentrations of N2O and CH4 tended to be greatest in samples that were collected directly from hyporheic pore-water, while CO2 was most prevalent within the surface water column.

  11. Ground water for irrigation in the Snake River Basin in Idaho

    USGS Publications Warehouse

    Mundorff, Maurice John; Crosthwaite, E.G.; Kilburn, Chabot

    1964-01-01

    The Snake River basin, in southern Idaho, upstream from the mouth of the Powder River in Oregon, includes more than 50 percent of the land area and 65 percent of the total population of the State. More than 2.5 million acres of land is irrigated ; irrigation agriculture and industry allied with agriculture are the basis of the economy of the basin. Most of the easily developed sources of surface water are fully utilized, and few storage sites remain where water could be made available to irrigate lands under present economic conditions. Because surface-water supplies have be come more difficult to obtain, use of ground water has increased greatly. At the present time (1959), about 600,000 acres of land is irrigated with ground water. Ground-water development has been concentrated in areas where large amounts of water are available beneath or adjacent to tracts of arable land and where the depth to water is not excessive under the current economy. Under these criteria, many of the most favorable areas already have been developed; however, tremendous volumes of water are still available for development. In some places, water occurs at depths considered near or beyond the limit for economic recovery, whereas in some other places, water is reasonably close to the surface but no arable land is available in the vicinity. In other parts of the basin large tracts of arable land are without available water supply. Thus the chief tasks in development of the ground-water resources include not only locating and evaluating ground-water supplies but also the planning necessary to bring the water to the land. Irrigation began in the 1860's ; at the present time more than 10 million acre feet of surface water, some of which is recirculated water, is diverted annually for irrigation of more than 2.5 million acres. Diversion of this large quantity of water has had a marked effect on the ground-water regimen. In some areas, the water table has risen more than 100 feet and the discharge of some springs has more than doubled. Large-scale development of ground water began after World War II, and it is estimated that in 1959 about 1,500,000 acre-feet of ground water was pumped for irrigation of the 600,000 acres irrigated wholly with ground water in addition to a substantial amount of ground water pumped to supplement surface-water supplies. Ground water is also the principal source of supply for municipal, industrial, and domestic use. The water regimen in the Snake River basin is greatly influenced by the geology. The rocks forming the mountains are largely consolidated rocks of low permeability; however, a fairly deep and porous subsoil has formed on them by decay and disintegration of the parent rock. Broad intermontane valleys and basins are partly filled with alluvial sand and gravel. The subsoil and alluvial materials are utilized very little as a source of water supply but are important as seasonal ground-water reservoirs because they store water during periods of high rainfall and snowmelt. Discharge from these reservoirs maintains stream flow during periods of surface runoff. Because these aquifers are fairly thin, they drain rapidly and are considerably depleted at the end of each dry cycle. The plain and plateau areas and tributary valleys, on the other hand, are underlain chiefly by rocks of high permeability and porosity. These rocks, mostly basaltic lava flows and alluvial materials, constitute a reservoir which fluctuates only slightly from season to season. Large amounts' of water are withdrawn from them for irrigation and other uses, and discharge from the Snake Plain aquifer is an important part of the total flow of the Snake River downstream from Hagerman Valley. The ultimate source of ground water in the basin is precipitation on the basin. In the mountainous areas, aquifers mostly are recharged directly by precipitation. On the other hand, in the plains, lowlands, and valleys which contain the principal aquifers

  12. Snake River Sockeye Salmon Habitat and Limnological Research; 1994 Annual Report.

    SciTech Connect

    Teuscher, David (Shoshone-Bannock Tribes, Fort Hall, ID); Wurtsbaugh, Wayne A. (Utah State University, Department of Fisheries and Wildlife, Ecology Center and Watershed Science Unit)

    1995-05-01

    Snake River sockeye salmon were listed as endangered in 1991. Since then, the Shoshone-Bannock Tribes (SBT) have been involved in a multi-agency recovery effort. The purpose of this document is to report activities completed in the rearing environments of the Sawtooth Valley Lakes, central Idaho. SBT objectives for 1995 included: continuing population monitoring and spawning habitat surveys; estimating smolt carrying capacity of the lakes, and supervising limnology and barrier modification studies. Hydroacoustic estimates of O. nerka densities in the Sawtooth Valley lakes ranged from 32 to 339 fish/ha. Densities were greatest in Stanley followed by Redfish (217 fish/ha), Pettit (95 fish/ha), and Alturas. Except for Alturas, population abundance estimates were similar to 1993 results. In Alturas Lake, O. nerka abundance declined by approximately 90%. In 1994, about 142,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lakes wa s 19,000 and 2,000 fry, respectively. Egg to fry survival was 11%, 13%, and 7% in Fishhook, Alturas and Stanley Lake Creeks. Kokanee spawning in Fishhook Creek was slightly lower than 1993 estimates but similar to the mean escapement since 1991. About 9,200 kokanee entered the creek in 1994 compared to 10,800 in 1993. Escapement for Stanley Lake Creek was only 200, a 68% reduction from 1993. Conversely, O. nerka spawning densities increased to 3,200 in Alturas Lake Creek, up from 200 the previous year.

  13. Vulnerability of the Snake River Basin and subbasins to climatic changes

    NASA Astrophysics Data System (ADS)

    Hoekema, D. J.; Sinnathamby, S.; Jin, X.; Sridhar, V. R.

    2009-12-01

    Starting largely with the Reclamation Act of 1902, which called for federal aid to assist agricultural development in the West, the arid to semi-arid Snake River Plain was transformed into one of the western United States most productive agricultural regions. This act paved the way for the federal government to construct more than 20 major storage reservoirs within the basin, which supply irrigation to over 3.8 million acres. Since summertime precipitation in the plain averages only a few inches, large scale development of the region was not possible without the capture and storage of spring runoff behind a series of reservoirs. A large body of research makes clear that as the climate continues to change with warmer wintertime temperatures and earlier spring runoff, this region will see a considerable decline in winter snowpack. This research will link a water resource management model to the Soil Water Assessment Tool (SWAT), to determine the vulnerability of various subbasins under historic and future climate change scenarios. SWAT allows a spatial analysis of the hydrologic changes within the basin, while the water resource management model determines the size and location of irrigation shortages within the basin.

  14. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1998 Annual Report.

    SciTech Connect

    Achord, Stephen; Hockersmith, Eric E.; Axel, Gordon A. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2000-12-01

    This reports details the 1998 study results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends observed in the cumulative data resulting from this project; data has been collected from Oregon and Idaho streams since 1989. The project was initiated after 3 years of detection data from PIT-tags (passive-integrated-transponder tags) had shown distinct differences in migration patterns between wild and hatchery fish. Data showing these patterns had originated from tagging and interrogation operations begun in 1988 to evaluate a smolt transportation program conducted by the National Marine Fisheries Service (NMFS) for the US Army Corps of Engineers. In 1991, the Bonneville Power Administration began a cooperative effort with NMFS to expand tagging and interrogation of wild fish for this project. Project goals were to characterize the outmigration timing of these fish, to determine whether consistent migration patterns would emerge, and to investigate the influence of environmental factors on the timing and distribution of these migrations. In 1992, the Oregon Department of Fish and Wildlife (ODFW) began an independent program of PIT tagging wild chinook salmon parr in the Grande Ronde and Imnaha River Basins in northeast Oregon. Since then, ODFW has reported all tagging, detection, and timing information on fish from these streams. However, with ODFW concurrence, NMFS will continue to report arrival timing of these fish at Lower Granite Dam. We continued to tag fish from Idaho in all years subsequent to 1992. Principal results from our tagging and interrogation efforts during 1997-1998 are given.

  15. Iodine-129 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Mann, L.J.; Chew, E.W.; Morton, J.S.; Randolph, R.B.

    1988-01-01

    From 1953 to 1983, an estimated 0.01 to 0.136 Ci (curies)/year of iodine-129 were contained in wastewater generated by the ICPP (Idaho Chemical Processing Plant) at the Idaho National Engineering Laboratory. The wastewater was directly discharged to the Snake River Plain aquifer through a deep disposal well until February 9, 1984, when the well was replaced by an unlined infiltration pond; a second pond was put into use on October 17, 1985. For 1984-86, the annual amount of iodine-129 in wastewater discharged to the ponds ranged from 0.0064 to 0.039 Ci. In August 1986, iodine-129 concentrations in water from 35 wells near the ICPP ranged from less than the reporting level to 3.6 +or-0.4 pCi/L (picocuries/L). By comparison, in April 1977 the water from 20 wells contained a maximum of 27 +or-1 pCi/L of iodine-129; in 1981, the maximum concentration in water from 32 wells was 41 +or-2 pCi/L. The average concentrations of iodine-129 in water from 18 wells that were sampled in 1977, 1981 and 1986 were 4.0, 6.7 and 1.3 pCi/L, respectively. The marked decrease in the iodine-129 concentration from 1981 to 1986 is the result of three factors: (1) The amount of iodine-129 disposed annually; (2) a change from the routine use of the disposal well to the infiltration ponds; and (3) a dilution of the iodine-129 in the aquifer by recharge from the Big Lost River. (USGS)

  16. Cost-effective management alternatives for Snake river chinook salmon: A biological-economic synthesis

    USGS Publications Warehouse

    Halsing, D.L.; Moore, M.R.

    2008-01-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can provide valuable tools for science-based policy and management.

  17. Bathymetry Differencing to Quantify Volumetric Change within the Snake River in Hells Canyon

    NASA Astrophysics Data System (ADS)

    Welcker, C. W.; Hensleigh, J.; Wheaton, J. M.; Anderson, K.; Butler, M.; Hocker, B.

    2013-12-01

    A nearly complete baseline multibeam echosounder (MBES) survey of the 90 km of the Hells Canyon Reach of the Snake River that runs along the border of Idaho and Oregon, US was collected to monitor volumetric change in the sediment resources of this reach (e.g. fall Chinook salmon spawning gravel and beach-building sand). This baseline will be compared to future MBES surveys to determine the impact of the Hells Canyon Complex (HCC) that cuts off the supply of coarse sediment from the relatively small, unimpounded upstream area. MBES surveying is unique from other survey methods (terrestrial LiDAR scanning (TLS)), aerial LiDAR, RTK-GPS, or photogrammetry) in ways that lead to unique errors in the point measurements. For example, unlike static TLS acquisition, MBES surveys are performed from a moving platform that relies on GPS positioning, which introduces one of the largest sources of error into the point cloud. Because the GPS antenna is on the Earth's surface, this error is more extreme and more variable than aerial surveys where the sky view is unobstructed. Beyond the GPS positional accuracy, the errors of each MBES survey point are impacted by the geometry of the beam angle and range, which determine the beam footprint. The extremely rugged river bottom in the Hells Canyon Reach magnifies the error of the points when they are interpolated into a surface for differencing. The methods presented here account for both error sources in the surface (point and interpolation) in order to accurately determine the volumetric change between surveys.

  18. Chemical weathering in the Three Rivers region of Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Noh, Hyonjeong; Huh, Youngsook; Qin, Jianhua; Ellis, Andre

    2009-04-01

    Three large rivers - the Chang Jiang (Yangtze), Mekong (Lancang Jiang) and Salween (Nu Jiang) - originate in eastern Tibet and run in close parallel over 300 km near the eastern Himalayan syntaxis. Seventy-four river water samples were collected mostly during the summer season from 1999 to 2004. Their major element compositions vary widely, with total dissolved solids (TDS) ranging from 31 to 3037 mg/l, reflecting the complex geologic makeup of the vast drainage basins. The major ion distribution of the main channel samples primarily reflects the weathering of carbonates. Evaporite dissolution prevails in the headwater samples of the Chang Jiang in the Tibetan Plateau interior, as evidenced by the high TDS (928 and 3037 mg/l) and the Na-Cl dominant major element composition. Local tributary samples of the Mekong and Salween, draining the Lincang Batholith and the Tengchong Volcano, show distinctive silicate weathering signatures. We used five reservoirs - rain, halite, sulfate, carbonate, and silicate - in a forward model to calculate the contribution from silicate weathering to the total dissolved load and to estimate the consumption rate of atmospheric CO 2 by silicate weathering. Carbonate weathering accounts for about 50% of the total cationic charge (TZ +) in the samples of the Mekong and the Salween exiting the Tibetan Plateau. In the "exit" sample of the Chang Jiang, 45% of TZ + is from halite dissolution inherited from the extreme headwater tributaries in the interior of the plateau, and carbonates contribute only 26% to the TZ +. The net rate of CO 2 consumption by silicate weathering is (103-121) × 10 3 mol km -2 year -1, lower than the rivers draining the Himalayan front. GIS-based analyses indicate that runoff and relief can explain 52% of the spread in the rate of atmospheric CO 2 drawdown by silicate weathering, but other climatic (temperature, precipitation, potential evapotranspiration) and geomorphic (elevation, slope) factors also show collinearity. Only qualitative conclusions can be drawn for the significance of lithology due to lack of digitized lithologic information. The effect of the peculiar drainage pattern due to tectonic forcing is not readily apparent in the major element composition or in increased chemical weathering rates. The 87Sr/ 86Sr ratios and the silicate weathering rates are in general lower in the Three Rivers than in the rivers draining the Himalayan front.

  19. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas

    SciTech Connect

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

    2004-09-24

    The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only two sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude changes in discharge, these flux reversals had minimal effect on emergence timing estimates. Indeed, the emergence timing estimates at all sites was largely unaffected by the changes in river stage resulting from hydropower operations at Hells Canyon Dam. Our results indicate that the range of emergence timing estimates due to differences among the eggs from different females can be as large as or larger than the emergence timing estimates due to site differences (i.e., bed temperatures within and among sites). We conclude that during the 2002-2003 fall chinook salmon incubation period, hydropower operations of Hells Canyon Dam had an insignificant effect on fry emergence timing at the study sites. It appears that short-term (i.e., hourly to daily) manipulations of discharge from the Hells Canyon Complex during the incubation period would not substantially alter egg pocket incubation temperatures, and thus would not affect fry emergence timing at the study sites. However, the use of hydropower operational manipulations at the Hells Canyon Complex to accelerate egg incubation and fry emergence should not be ruled out on the basis of only one water year's worth of study. Further investigation of the incubation environment of Snake River fall chinook salmon is warranted based on the complexity of hyporheic zone characteristics and the variability of surface/subsurface interactions among dry, normal, and wet water years.

  20. Oxbow Fish Hatchery Snake River Sockeye Salmon Smolt Program, 2008 Annual Report.

    SciTech Connect

    Banks, Duane D. [Oregon Department of Fish and Wildlife

    2009-11-14

    This contract proposal is in response to the Federal Columbia River Power System Biological Opinion Implementation Plan/Update Proposed Action (UPA) associated with increasing the number of Snake River sockeye smolts by 150,000. To accomplish this proposal the cooperation and efforts of three government entities has been planned (e.g., Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), and the National Marine Fisheries Service (NMFS)). Improvements at the IDFG Eagle Fish Hatchery and NMFS Burley Creek Hatchery will focus on increasing sockeye salmon captive broodstock and egg production. Improvements at the ODFW Oxbow Fish Hatchery will be made to accommodate the incubation, hatching and rearing of 150,000 sockeye salmon smolts for release into Idaho's Sawtooth Valley, Upper Salmon River near IDFG's Sawtooth Fish Hatchery and/or Redfish Lake Creek 1.4 km downstream of Redfish Lake. Modifications to Oxbow Fish Hatchery (ODFW) will include retro-fit existing pond drains so pond cleaning effluent water can be routed to the pollution abatement pond, and modifications to the abatement pond. Also included in this project as an added phase, was the rerouting of the hatchery building effluent water to meet state DEQ guidelines for the use of formalin to treat salmonid eggs. Some additional funding for the described Oxbow Hatchery modifications will come from Mitchell Act Funding. All personnel costs associated with this project will come from Mitchell Act funding. Due to heavy work load issues, being under staffed, and two emergency projects in the spring and summer of 2006, ODFW engineers were not able to complete all plans and get them out for bid in 2006. As a result of these circumstances retro-fitting pond drains and modifications to the abatement pond was carried over into fiscal year 2007-2008. A no cost time extension to the contract was approved by BPA. The format for this report will follow the standard format for Statement of Work Report (SOW), which includes sub-categories Work Element (WE), and within the WE the Milestone Titles.

  1. Upper Snake Provincial Assessment May 2004 APPENDIX 4-1--UPPER SNAKE PROVINCE PROJECT INVENTORY

    E-print Network

    Upper Snake Provincial Assessment May 2004 1 APPENDIX 4-1--UPPER SNAKE PROVINCE PROJECT INVENTORY both had major planning projects for the water resources and land management in the Snake River is just protected from development. #12;Upper Snake Provincial Assessment May 2004 2 Table 1. Snake

  2. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    SciTech Connect

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura; Heindel, Jeff; Kline, Paul

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from Redfish Lake in 2007. The hatchery origin component originated from a 2006 fall presmolt direct-release. The juvenile out-migrant traps on Alturas Lake Creek and Pettit Lake Creek were operated by the SBT from April 19 to May 23, 2007 and April 18 to May 29, 2007, respectively. The SBT estimated 1,749 natural origin and 4,695 hatchery origin sockeye salmon smolts out-migrated from Pettit Lake and estimated 8,994 natural origin and 6,897 hatchery origin sockeye salmon smolts out-migrated from Alturas Lake in 2007. The hatchery origin component of sockeye salmon out-migrants originated from fall presmolt direct-releases made to Pettit and Alturas lakes in 2006. In 2007, the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC) chose to have all Snake River sockeye salmon juveniles (tagged and untagged) transported due to potential enhanced survival. Therefore, mainstem survival evaluations were only conducted to Lower Granite Dam. Unique PIT tag interrogations from Sawtooth Valley juvenile out-migrant traps to Lower Granite Dam were utilized to estimate survival rates for out-migrating sockeye salmon smolts. Survival rate comparisons were made between smolts originating from Redfish, Alturas, and Pettit lakes and the various release strategies. Alturas Lake hatchery origin smolts tagged at the out-migrant trap recorded the highest survival rate of 78.0%. In 2007, 494 hatchery origin adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 195 areas of excavation in the lake from spawning events. This was the highest number of redds observed in Redfish Lake since the program was initiated. Suspected redds were approximately 3 m x 3 m in size and were constructed by multiple pairs of adults. To monitor the predator population found within the lakes, we monitored bull trout spawning in Fishhook Creek, a tributary to Redfish Lake; and in Alpine Creek, a tributary to Alturas Lake. This represented the tenth consecutive year that the index reaches have been surveyed on these two streams. Adult counts (41 adults) and redd counts (22 redds

  3. Post-Release Performance of Natural and Hatchery Subyearling Fall Chinook Salmon in the Snake and Clearwater Rivers.

    SciTech Connect

    Connor, William P.

    2008-04-01

    In 2006, we continued a multi-year study to compare smolt-to-adult return rate (SAR) ratios between two groups of Snake River Basin fall Chinook salmon Oncorhynchus tshawytscha that reached the sea through a combination of either (1) transportation and inriver migration or (2) bypass and inriver migration. We captured natural subyearlings rearing along the Snake and Clearwater rivers and implanted them with passive integrated transponder (PIT) tags, but knew in advance that sample sizes of natural fish would not be large enough for precise comparisons of SAR ratios. To increase sample sizes, we also cultured Lyons Ferry Hatchery subyearlings under a surrogate rearing strategy, implanted them with PIT tags, and released them into the Snake and Clearwater rivers to migrate seaward. The surrogate rearing strategy involved slowing growth at Dworshak National Fish Hatchery to match natural subyearlings in size at release as closely as possible, while insuring that all of the surrogate subyearlings were large enough for tagging (i.e., 60-mm fork length). Surrogate subyearlings were released from late May to early July 2006 to coincide with the historical period of peak beach seine catch of natural parr in the Snake and Clearwater rivers. We also PIT tagged a large representative sample of hatchery subyearlings reared under a production rearing strategy and released them into the Snake and Clearwater rivers in 2006 as part of new research on dam passage experiences (i.e., transported from a dam, dam passage via bypass, dam passage via turbine intakes or spillways). The production rearing strategy involved accelerating growth at Lyons Ferry Hatchery, sometimes followed by a few weeks of acclimation at sites along the Snake and Clearwater rivers before release from May to June. Releasing production subyearlings has been suggested as a possible alternative for making inferences on the natural population if surrogate fish were not available. Smoltto-adult return rates are not reported here, but will be presented in future reports written after workshops and input by federal, state, and tribal researchers. In this report, we compared the postrelease performance of natural subyearlings to the postrelease performance of surrogate and production subyearlings. We made this comparison to help the fisheries community determine which of the two hatchery rearing strategies produced fish that were more similar to natural subyearlings. We compared the following attributes of postrelease performance (1) detection dates at dams, (2) detections during the implementation of summer spill, (3) travel times, (4) migrant sizes, and (5) the joint probability of migration and survival. Overall, we found that postrelease performance was more similar between natural and surrogate subyearlings than between natural and production subyearlings. Further, the similarity between natural and surrogate subyearlings was greater in 2006 than in 2005, partly as the result of changes in incubation and early rearing practices we recommended based on 2005 results.

  4. Snake River Sockeye Salmon Captive Broodstock Program, Research Element : Project Progress Report, 2000 Annual Report.

    SciTech Connect

    Hebdon, J. Lance (Jason Lance); Castillo, Jason; Kline, Paul A.

    2002-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacks and one jill were captured at Idaho Department of Fish and Game's Sawtooth Fish Hatchery. In 2000, progeny from the captive broodstock program were released using four strategies: eyed-eggs were placed in Pettit Lake; age-0 presmolts were released to all three lakes in October; age-1 smolts were released to Redfish Lake Creek, and hatchery-produced adult sockeye salmon were released to Redfish and Alturas lakes for volitional spawning in September. Anadromous adult sockeye salmon were released to all three lakes. Total kokanee abundance in Redfish Lake was estimated at 10,268, which was the lowest abundance since 1991. Abundance of kokanee in Alturas Lake was estimated at 125,462, which was one of the highest values recorded since 1991. Abundance of kokanee in Pettit Lake was estimated at 40,599, which is the third highest value recorded since 1991. Upon the recommendation of the Stanley Basin Sockeye Technical Oversight Committee, the National Marine Fisheries Service reopened the kokanee fishery on Redfish Lake in 1995 in an attempt to reduce kokanee numbers. Anglers fished an estimated 3,063 hours and harvested approximately 67 kokanee during the 2000 season. Angler effort and harvest were also monitored on Alturas Lake during 2000. Effort on Alturas Lake was 5,190 hours, and harvest of kokanee was 407 fish. Anglers harvested an estimated 11% of the catchable rainbow trout planted into Alturas Lake. The out-migrant trap on Redfish Lake Creek was operated from April 12 to June 14, 2000. A total of 126 wild/natural and 2,378 hatchery-produced sockeye salmon smolts were captured, and total out-migration was estimated at 302 wild/natural and 6,926 hatchery-produced smolts. Estimates of smolt out-migration to Lower Granite Dam (LGR) were made by release strategy and were based on PIT-tag interrogations. An estimated 115 wild/natural smolts passed LGR from Redfish Lake. An estimated 6,987 hatchery-produced smolts released as presmolts into Sawtooth basin lakes passed LGR. None of the 148 age-1 smolts released to Redfish Lake Creek were detected at LGR. Two hundred fifty-seven anadromous sockeye returned to the Sawtooth basin in 2000. All were progeny of the captive broodstock program. The majority (200) of the adults that returned were released back to lakes in the basin for natural spawning along with hatchery produced adults. Redfish Lake received 164 adult sockeye salmon, and 20 to 29 areas of excavation were sighted. Alturas Lake received 77 adult sockeye salmon, and 14 to 19 areas of excavation were sighted. Pettit Lake received 28 adult sockeye salmon. No areas of excavation were noted in Pettit Lake, but spawning was suspected to have occurred in water too deep for observation. ndex reaches on principal tributary streams of Redfish and Alturas lakes were surveyed in August and September 2000 to track bull trout population response to no-harvest fishing regulations. Similar numbers of adult bull trout were observed in both systems, but twice as many redds were observed in Fishhook Creek. Redd counts in both streams have increased since monitoring began in 1998.

  5. Iodine-129 in the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho, 1990-91

    USGS Publications Warehouse

    Mann, L.J.; Beasley, T.M.

    1994-01-01

    From 1953 to 1990, an estimated 0.56 to 1.18 curies of iodine-129 were contained in wastewater generated by the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. The waste- water was discharged directly to the Snake River Plain aquifer through a deep disposal well prior to February 1984 and through unlined disposal ponds in 1984-90. The wastewater did not contain measurable concentrations of iodine-129 in 1989-90. Samples were collected from 51 wells that obtain water from the Snake River Plain aquifer and 1 well that obtains water from a perched ground-water zone. The samples were analyzed for iodine-129 using an accelerator mass spectrometer which is two to six orders of magnitude more sensitive than neutron- activation methods. Therefore, iodine-129 was detectable in samples from a larger number of wells distributed over a larger area than previously was possible. Ground-water flow velocities calculated using iodine-129 data are estimated to be at least 6 feet per day. These velocities compare favorably with those of 4 to 10 feet per day calculated from tritium data and tracer studies at wells down- gradient from the ICPP. In 1990-91, concentrations of iodine-129 in water samples from wells that obtain water from the Snake River Plain aquifer ranged from less than 0.0000006+0.0000002 to 3.82.+0.19 picocuries per liter (pCi/L). The mean concentration in water from 18 wells was 0.81+0.19 pCi/L as compared with 1.30+0.26 pCi/L in 1986. The decrease in the iodine-l29 concentrations from 1986 to 1990-91 chiefly was the result of a decrease in the amount of iodine-129 disposed of annually, and changes in disposal techniques.

  6. Survival of radio-implanted drymarchon couperi (Eastern Indigo Snake) in relation to body size and sex

    USGS Publications Warehouse

    Hyslop, N.L.; Meyers, J.M.; Cooper, R.J.; Norton, T.M.

    2009-01-01

    Drymarchon couperi (eastern indigo snake) has experienced population declines across its range primarily as a result of extensive habitat loss, fragmentation, and degradation. Conservation efforts for D. couperi have been hindered, in part, because of informational gaps regarding the species, including a lack of data on population ecology and estimates of demographic parameters such as survival. We conducted a 2- year radiotelemetry study of D. couperi on Fort Stewart Military Reservation and adjacent private lands located in southeastern Georgia to assess individual characteristics associated with probability of survival. We used known-fate modeling to estimate survival, and an information-theoretic approach, based on a priori hypotheses, to examine intraspecific differences in survival probabilities relative to individual covariates (sex, size, size standardized by sex, and overwintering location). Annual survival in 2003 and 2004 was 0.89 (95% CI = 0.73-0.97, n = 25) and 0.72 (95% CI = 0.52-0.86; n = 27), respectively. Results indicated that body size, standardized by sex, was the most important covariate determining survival of adult D. couperi, suggesting lower survival for larger individuals within each sex. We are uncertain of the mechanisms underlying this result, but possibilities may include greater resource needs for larger individuals within each sex, necessitating larger or more frequent movements, or a population with older individuals. Our results may also have been influenced by analysis limitations because of sample size, other sources of individual variation, or environmental conditions. ?? 2009 by The Herpetologists' League, Inc.

  7. Winter Habitat Use by Cutthroat Trout in the Snake River near Jackson, Wyoming

    USGS Publications Warehouse

    Harper, D.D.; Farag, A.M.

    2004-01-01

    Winter habitat use by Yellowstone cutthroat trout Oncorhynchus clarki bouvieri was monitored with radiotelemetry during November-March 1998-2001 in channelized and unaltered sections of the Snake River near Jackson, Wyoming. The use of run and off-channel pool habitat was significantly correlated to water temperature; run use was most frequent when mean water temperature exceeded 1.0??C, and off-channel pool use was greatest when mean water temperature was below 1.0??C. Available habitat was surveyed during winter 1999-2000 and was compared with actual habitat use. This comparison indicated that cutthroat trout avoided riffle habitat, selected deep runs, and strongly selected off-channel pool habitat. Large, deep, off-channel pools with groundwater influence were uncommon in the study area but were frequently selected as over-wintering habitat in the channelized section during all three study years. During 2000-2001, mainstem water temperatures were significantly colder than in 1998-1999 or 1999-2000, and anchor ice was observed more frequently in 2000-2001 than in 1998-1999 or 1999-2000 (on 18 d versus 5 d and 3 d, respectively). Mean water temperatures in off-channel pools were not significantly different among years. Depth and shelf ice were most frequently identified as cover elements in the channelized section. Run habitat was more common and used more frequently upstream of the channelized section. Large woody debris was more common and selected more frequently as cover in the unaltered section than in the channelized section.

  8. Partial Anhysteretic Anisotropy Measured in the Greys Landing Ignimbrite of the Central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rea-Downing, G. H.; Finn, D. R.; Coe, R. S.; Brown, E. D.; Reichow, M. K.; Knott, T.; Branney, M. J.

    2014-12-01

    Magnetic remanence directions recorded in the glassy sub-lithologies of mid-Miocene rheomorphic Snake River Plain ignimbrites are often discrepant compared to the more reliable directions in crystalline centers and underlying baked paleosols. The rocks have undergone no tectonic strain, and the rheomorphic deformation preserved in the rock occurs at ˜800°C, above magnetic blocking temperatures. Accounting for the discrepantly shallow directions is critical for the use of magnetic remanence for stratigraphic correlation and structural/tectonic reconstructions. Here we present paleomagnetic and rock magnetic data from the Grey's Landing Ignimbrite that demonstrate a strong magnetic anisotropy carried by pseudo-single to single domain magnetite grains which deflect the remanence direction by up to 40°. Strongly lineated anisotropic samples collected at distant sections ( ˜20 km separation) have their remanence deflected toward the respective flow directions inferred from their directions of maximum magnetic susceptibility (K1). Shallow K1 directions in the basal vitrophyre cause a shallowing of magnetic remanence, while a range of steep to shallow K1 directions in the folded upper vitrophyre cause both a steepening and shallowing of the remanence, respectively. There is a strong relationship between the magnitudes of remanence deflection, anisotropy of thermal remanence, coercivity, and strength of natural remanent magnetization between individual samples. There is also a strong relationship between the magnitudes of partial anisotropy of anhysteretic remanent magnetization (pAARM) and the deflection of the remanence vector difference directions, which both increase significantly with higher alternating magnetic fields. Correction of the vector difference direction using the inverse of the pAARM tensor for the same AF range is moderately successful. Previous work suggests that curvilinear demagnetization trends in the basal vitrophyre of an ignimbrite were evidence of grain rotation below the unblocking temperature. This work, however, shows that this observation is sometimes caused by a magnetic anisotropy that is increasingly larger in grains with higher coercivity (and probably also unblocking temperature).

  9. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2001 Annual Report.

    SciTech Connect

    Hebdon, J. Lance; Castillo, Jason; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999, when six jacks and one jill were captured at Idaho Department of Fish and Game's Sawtooth Fish Hatchery. In 2001, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to all three lakes in October and to Pettit and Alturas lakes in July; age-1 smolts were released to Redfish Lake Creek, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September along with anadromous adult sockeye salmon that returned to the Sawtooth basin and were not incorporated into the captive broodstock program. Kokanee population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September. Only age-0 and age-1 kokanee were captured on Redfish Lake, resulting in a population estimate of 12,980 kokanee. This was the second lowest kokanee abundance estimated since 1990. On Alturas Lake age-0, age-1, and age-2 kokanee were captured, and the kokanee population was estimated at 70,159. This is a mid range kokanee population estimate for Alturas Lake, which has been sampled yearly since 1990. On Pettit Lake only age-1 kokanee were captured, and the kokanee population estimate was 16,931. This estimate is in the midrange of estimates of the kokanee population in Pettit Lake, which has been sampled yearly since 1992. We continue to have difficulty capturing age-0 kokanee in the midwater trawl on Pettit Lake. Angler surveys were conducted on Redfish and Alturas lakes to estimate kokanee harvest and to estimate return to creel for hatchery rainbow trout planted in Alturas Lake. We failed to encounter any kokanee that had been harvested in 88 angler interviews conducted between May 26 and August 7, resulting in an estimated kokanee harvest of zero. On Alturas Lake, we again failed to encounter any harvested kokanee in 116 angler interviews, resulting in an estimated kokanee harvest of zero. We estimated that anglers harvested 9.5% of the 6,598 rainbow trout planted in Alturas Lake. We estimated that 110 wild/natural and 9,616 hatchery-produced sockeye salmon smolts out-migrated from Redfish Lake in 2001. This was the lowest estimate of unmarked smolt out-migration since monitoring began in 1991. The trap on Redfish Lake Creek was operated from April 22 to June 6, 2001 to estimate out-migration. Mean travel times for PIT-tagged smolts from Redfish Lake Creek Trap to Lower Granite Dam was 10.3 days for wild/natural smolts and 10.6 days for hatchery-produced smolts. Based on cumulative unique PIT tag interrogations from Sawtooth basin traps to mainstem Snake and Columbia river dams, the Redfish Lake wild/natural smolts, Redfish fall direct presmolts group, and Alturas Lake fall direct presmolts recorded the highest detection rates. In 2001, 65 hatchery-raised and 14 anadromous adult sockeye salmon were released to Redfish Lake for natural spawning. We observed 12 to 15 areas of excavation in the lake that were possible redds. We monitored bull trout spawning on Fishhook Creek, a tributary to Redfish Lake, and on Alpine Creek, a tributary to Alturas Lake. This represented the fourth consecutive year that the index reaches have been surveyed on these two streams. Adult counts on Fishhook Creek were similar to previous years as were redd counts. On Alpine Creek, bull trout numbers were also similar to previous years, but the number of redds observed increased over prev

  10. Survival Estimates for the Passage of Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 1998 Annual Report.

    SciTech Connect

    Smith, Steven G.

    2000-03-01

    This report provides reach survival and travel time estimates for PIT-tagged hatchery and wild juvenile steelhead and yearling chinook salmon in the Snake and Columbia Rivers during 1998. Estimates of post-detection bypass survival for yearling chinook salmon at McNary Dam are also reported. Results are reported primarily in the form of data tables and figures with minimal description of methods and analysis. Detailed information on the methodology and statistical models used for this report is provided in five previous annual reports on this study, which are cited here.

  11. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1994 Annual Report.

    SciTech Connect

    Muir, William D.

    1995-02-01

    In 1994, the National Marine Fisheries Service and the University of Washington completed the second year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through the dams and reservoirs of the Snake River. Actively migrating smolts were collected at selected locations above, at, and below Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Survival estimates were calculated using the Single-Release, Modified Single-Release, and Paired-Release Models.

  12. Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1996 Annual Report.

    SciTech Connect

    Schrank, Boyd P.

    1998-03-01

    Increased spill at dams has commonly brought dissolved gas supersaturation higher than levels established by state and federal water quality criteria in the Columbia and Snake Rivers. These increased spill volumes are intended to provide safe passage for migrating juvenile salmon. However, dissolved gas supersaturation resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1996, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Priest Rapids Reservoir and downstream from Bonneville, Priest Rapids, and Ice Harbor Dams.

  13. Comparative Studies on the Fungi and Bio-Chemical Characteristics of Snake Gourd (Trichosanthes curcumerina Linn) and Tomato (Lycopersicon esculentus Mill) in Rivers State, Nigeria

    NASA Astrophysics Data System (ADS)

    Chuku, E. C.; Ogbonna, D. N.; Onuegbu, B. A.; Adeleke, M. T. V.

    Comparative studies on the fungi and biochemical characteristics of Tomatoes (Lycopersicon esculentus Mill) and the Snake gourd (Trichosanthes curcumerina Linn) products were investigated in Rivers State using various analytical procedures. Results of the proximate analysis of fresh snake gourd and tomatoes show that the essential minerals such as protein, ash, fibre, lipid, phosphorus and niacin contents were higher in snake gourd but low in carbohydrate, calcium, iron, vitamins A and C when compared to the mineral fractions of tomatoes which has high values of calcium, iron, vitamins A and C. The mycoflora predominantly associated with the fruit rot of tomato were Fusarium oxysporium, Fusarium moniliforme, Rhizopus stolonifer and Aspergillus niger, while other fungi isolates from Snake gourd include Rhizopus stolonifer, Aspergillus niger, Aspergillus tamari, Penicillium ita/icum and Neurospora crassa. Rhizopus stolonifer and Aspergillus niger were common spoilage fungi to both the Tomato and Snake gourd. All the fungal isolates were found to be pathogenic. The duration for storage of the fruits at room temperature (28±1°C) showed that Tomato could store for 5 days while Snake gourd stored for as much as 7 days. Sensory evaluation shows that Snake gourd is preferred to Tomatoes because of its culinary and medicinal importance.

  14. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08

    USGS Publications Warehouse

    Davis, Linda C.

    2010-01-01

    Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April or October 2008, reportable concentrations of tritium in groundwater ranged from 810 ? 70 to 8,570 ? 190 picocuries per liter (pCi/L), and the tritium plume extended south-southwestward in the general direction of groundwater flow. Tritium concentrations in water from wells completed in shallow perched groundwater at the ATRC were less than the reporting levels. Tritium concentrations in deep perched groundwater exceeded the reporting level in 11 wells during at least one sampling event during 2006-08 at the ATRC. Tritium concentrations from one or more zones in each well were reportable in water samples collected at various depths in six wells equipped with multi-level WestbayTM packer sampling systems. Concentrations of strontium-90 in water from 24 of 52 aquifer wells sampled during April or October 2008 exceeded the reporting level. Concentrations ranged from 2.2 ? 0.7 to 32.7 ? 1.2 pCi/L. Strontium-90 has not been detected within the eastern Snake River Plain aquifer beneath the ATRC partly because of the exclusive use of waste-disposal ponds and lined evaporation ponds rather than using the disposal well for radioactive-wastewater disposal at ATRC. At the ATRC, the strontium-90 concentration in water from one well completed in shallow perched groundwater was less than the reporting level. During at least one sampling event during 2006-08, concentrations of strontium-90 in water from nine wells completed in deep perched groundwater at the ATRC were greater than reporting levels. Concentrations ranged from 2.1?0.7 to 70.5?1.8 pCi/L. At the Idaho Nuclear Technology and Engineering Center (INTEC), the reporting level was exceeded in water from two wells completed in deep perched groundwater. During 2006-08, concentrations of cesium-137, plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all wells and all zones in wells equipped with multi-level WestbayTM packer sampling systems

  15. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin ; Volume 1 ; Evaluation of the 1995 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin Using Program RealTime

    Microsoft Academic Search

    Richard L

    1997-01-01

    This project was initiated in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of the project include: (1) to address the need for further synthesis of historical tagging and other biological information to improve understanding and to help identify future research and analysis needs; (2)

  16. Flow Augmentation and Reservoir Drawdown : Strategies for Recovery of Threatened and Endangered Stocks of Salmon in the Snake River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 2 of 11.

    SciTech Connect

    Giorgi, Albert E.

    1993-06-01

    The premise for flow augmentation is based on the argument that increasing water velocity increases smolt migration speed, which in turn improves smolt survival through reservoirs and at ocean entry. The purpose of this document is to examine key technical issues regarding the benefits of flow augmentation as a strategy for improving survival of downstream migrants. Reservoir drawdown, an altemative strategy for increasing water velocity through the mainstream Snake and Columbia rivers will also be examined. Data sets and analyses that pertain to Snake River stocks will be emphasized, particularly those stocks currently listed as threatened or endangered. This document focuses on treating two smolt responses that can be useful in reflecting the effects of flow augmentation, or increased water velocity; travel time or migration speed, and survival. Although there has been recent interest in using migrational timing as a measure of flow effects that response reflects principally the temporal initiation of the migration event and does not provide a performance measure once fish are in transit between two locations.

  17. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    SciTech Connect

    Cramer, Steven P.; Neeley, Doug

    1993-06-01

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

  18. Project Hotspot: Linear accumulation rates of late Cenozoic basalt at Kimama, Idaho, and implications for crustal strain and subsidence rates of the central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.

    2013-12-01

    Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal contraction. An even faster tectonic rate is likely, given the evidence for decreasing surface elevation through time. We propose that tectonic subsidence was a necessary condition for maintaining basalt eruption over such a long duration -- it would inhibit the growth of a topographic plateau and maintain an appropriate level of neutral buoyancy for the periodically ascending mantle-derived magma

  19. Rivers

    NSDL National Science Digital Library

    2011-08-15

    This video segment from IdahoPTV's D4K takes you on a trip down Idaho's Snake River near 1000 Springs and Blur Heart Springs while it explains how rivers are formed, their uses, and how they make valleys, canyons and even plains.

  20. Absolute healing of pyroclasts during rheomorphic welding of ignimbrites in the Snake River Plain, USA

    NASA Astrophysics Data System (ADS)

    Lavallee, Y.; Dingwell, D. B.; Hess, K.; Andrews, G.; Russell, K. J.

    2009-05-01

    The architectural description of ignimbrites often shows evidence for post-deposition development of a rheomorphic, ductile shear zone - a feature which may strongly affect the progression of pyroclastic flows; especially in large volcanic fields. Rheological experiments were performed on a welded rheomorphic unit from the Grey's Landing ignimbrite in the Snake River Plain to characterize its behaviour and assess the degree of welding. The investigated sample contains 5 vol.% open pores and is made of approximately 5 vol.% crystals bathing in a relatively degassed, peraluminous glass containing 79 wt.% SiO2. Pre-eruptive temperature determination from geothermometry on pyroxenes yielded values at around 900-1050 C. Dilatometric measurements suggest a calorimetric glass transition temperature during deposition of approximately 845 C and a H2O content of approximately 0.04 wt.%. Repeated series of heating and cooling using an advanced dilatometric technique shows an increase of the glass transition temperature to 880 C, which is in accordance with degassing of approximately 0.02 wt.% H2O. Complementary investigation using a uniaxial press revealed an absence of strain rate dependence of the viscosity (1010.78 Pa·s) at a temperature of 900°;C and at strain rates up to 2.5 x 10-4 s-1. Under similar conditions, a fully degassed lava with an equivalent composition would yield a comparable viscosity of 1010.89 Pa·s. Our findings may help constrain the flare up of the Grey's Landing ignimbrite. The presence of small amounts of water in the glass and the narrow temperature window between the residence in the reservoir and the transition to a glass (which would have mechanically locked this unit in place) in the flow indicates a high discharge rate and rapid post-fragmentation deposition, mass agglutination and welding. Moreover, the Newtonian character of this welded unit suggests that healing of the pyroclastic flow was absolute (that is, no thixotropic effects from the pores remain), and thus that the term 'lava-like' is adequate to rheologically describe rheomorphic pyroclastic flows.

  1. Spatial/temporal patterns of Quaternary faulting in the southern limb of the Yellowstone-Snake River Plain seismic parabola, northeastern Basin and Range margin

    SciTech Connect

    McCalpin, J.P. (GEO-HAZ Consultants, Estes Park, CO (United States))

    1993-04-01

    During the period 1986--1991, 11 backhoe trenches were excavated across six Quaternary faults on the northeastern margin of the Basin and Range province. These faults comprise the southern limb of a parabola of Quaternary faults and historic moderate-magnitude earthquakes which is roughly symmetrical about the Snake River Plain, and heads at the Yellowstone hot spot. Fifteen Holocene paleoseismic events have been bracketed by radiocarbon or thermoluminescence ages. On the six central faults, the latest rupture event occurred in a relatively short time interval between 3 ka and 6 ka. The period between 6 ka and the end of the latest glaciation (ca. 15 ka) was a period of relative tectonic quiescence on the central faults, but not on the two end faults with higher slip rates (Wasatch and Teton faults). Southward-younging of events in the 3--6 ka period may indicate that temporally-clustered faulting was initiated at the Yellowstone hot spot. Faults at the same latitude, such as the Star Valley-Grey's River pair of faults, or the East Cache-Bear Lake-Rock Creek system of faults, show nearly identical timing of latest rupture events within the pairs or systems. Faults at common latitudes probably sole into the same master decollement, and thus are linked mechanically like dominoes. The timing of latest ruptures indicates that faulting on the westernmost fault preceded faulting on successively more eastern faults by a few hundred years. This timing suggests that slip on the westernmost faults mechanically unloaded the system, causing tectonic instabilities farther east.

  2. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2005-2006 Annual Report.

    SciTech Connect

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2006-05-01

    In 2005, the National Marine Fisheries Service and the University of Washington completed the thirteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 18,439 hatchery steelhead, 5,315 wild steelhead, and 6,964 wild yearling Chinook salmon at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the ''single-release model''). Primary research objectives in 2005 were: (1) Estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss. (2) Evaluate relationships between survival estimates and migration conditions. (3) Evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2005 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here.

  3. Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer, Idaho National Engineering and Environmental Laboratory, Idaho, 1996 through 1998

    SciTech Connect

    R. C. Bartholomay; B. J. Tucker; L. C. Davis; M. R. Greene

    2000-09-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering and Environmental Laboratory (INEEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEEL to determine hydrologic trends and to delineate the movement to radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1996-98. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEEL decreased or remained constant during 1996-98. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption process, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEEL were variable during 1996-98.

  4. WATER QUALITY ASSESSMENT OF THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING - SUMMARY OF AQUATIC BIOLOGICAL DATA FOR SURFACE WATER THROUGH 1992

    EPA Science Inventory

    The initial phase of this study involved compiling data to describe the current (1992) and historical aquatic biological conditions of surface water in the Snake River Basin (1704). To assess water quality of the basin, at least 26 different macroinvertebrate and fish community ...

  5. ANALYSIS OF DATA ON NUTRIENTS AND ORGANIC COMPOUNDS IN GROUND WATER IN THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING, 1980-91

    EPA Science Inventory

    Nutrient and organic compound data from the U.S. Geological Survey and the U.S. Environmental Protection Agency STORET data bases provided information for development of a preliminary conceptual model of spatial and temporal ground-water quality in the upper Snake River Basin (17...

  6. ASSESSMENT OF SELECTED CONSTITUENTS IN THE SURFACE WATER OF THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING, WATER YEARS 1975-1989.

    EPA Science Inventory

    In 1991, a water-quality investigation of the upper Snake River Basin (1704) was initiated as part of the USGS National Water-Quality Assessment Program. Nearly 9,000 analyses of nutrients and suspended sediment from more than 450 stations were retrieved from the U.S. Environmen...

  7. BIOLOGICAL METRIC DEVELOPMENT FOR THE ASSESSMENT OF NONPOINT POLLUTION IN THE SNAKE RIVER ECOREGION OF SOUTHERN IDAHO, 1990-91 FINAL REPORT

    EPA Science Inventory

    The purpose of this project was to develop and test a biological assessment program for representative streams in the Snake River Basin ecoregion of southern Idaho. A habitat analysis component was included to provide an independent measure of environmental conditions. The over...

  8. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1992 through 1995

    Microsoft Academic Search

    R. C. Bartholomay; B. J. Tucker; D. J. Ackerman; M. J. Liszewski

    1997-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical

  9. Estimation of hydraulic properties and development of a layered conceptual model for the Snake River plain aquifer at the Idaho National Engineering Laboratory, Idaho

    Microsoft Academic Search

    D. B. Frederick; G. S. Johnson

    1996-01-01

    The Idaho INEL Oversight Program, in association with the University of Idaho, Idaho Geological Survey, Boise State University, and Idaho State University, developed a research program to determine the hydraulic properties of the Snake River Plain aquifer and characterize the vertical distribution of contaminants. A straddle-packer was deployed in four observation wells near the Idaho Chemical Processing Plant at the

  10. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    Microsoft Academic Search

    R. C. Bartholomay; B. R. Orr; M. J. Liszewski; R. G. Jensen

    1995-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of

  11. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2003-2004 Annual Report.

    SciTech Connect

    Achord, Stephen; Hodge, Jacob M.; Sandford, Benjamin P.

    2005-06-01

    This report provides information on PIT-tagging of wild Chinook salmon parr in Idaho in 2003 and the subsequent monitoring of these fish and similarly tagged fish from Oregon. We report estimated parr-to-smolt survival and arrival timing of these fish at Lower Granite Dam, as well as interrogation data collected at several other sites throughout the Snake and Columbia River system. This research continues studies that began under Bonneville Power Administration (BPA) funding in 1991. Results from previous study years were reported by Achord et al. (1994; 1995a,b; 1996a; 1997; 1998; 2000; 2001a,b; 2002, 2003, 2004). Goals of this ongoing study are: (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer Chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence migration patterns. (4) Characterize the migration behavior and estimate survival of different wild juvenile fish stocks as they emigrate from their natal rearing areas. This study provides critical information for recovery planning, and ultimately recovery for these ESA-listed wild fish stocks. In 2003-2004, we also continued to measure water temperature, dissolved oxygen, specific conductance, turbidity, water depth, and pH at five monitoring stations in the Salmon River Basin, Idaho for the Baseline Environmental Monitoring Program. These data, along with parr/smolt migration, survival, and timing data, will help to discern patterns or characteristic relationships between fish movement/survival and environmental factors.

  12. Hydrogeology and water quality in the Snake River alluvial aquifer at Jackson Hole Airport, Jackson, Wyoming, September 2008-June 2009

    USGS Publications Warehouse

    Wright, Peter R.

    2010-01-01

    The hydrogeology and water quality of the Snake River alluvial aquifer, at the Jackson Hole Airport in northwest Wyoming, was studied by the U.S. Geological Survey in cooperation with the Jackson Hole Airport Board and the Teton Conservation District during September 2008-June 2009. Hydrogeologic conditions were characterized using data collected from 14 Jackson Hole Airport wells. Groundwater levels are summarized in this report and the direction of groundwater flow, hydraulic gradients, and estimated groundwater velocity rates in the Snake River alluvial aquifer underlying the study area are presented. Analytical results of chemical, dissolved gas, and stable isotopes are presented and summarized. Seasonally, the water table at Jackson Hole Airport was lowest in early spring and reached its peak in July, with an increase of 12 to 14 feet between April and July 2009. Groundwater flow was predominantly horizontal but had the hydraulic potential for downward flow. The direction of groundwater flow was from the northeast to the west-southwest. Horizontal groundwater velocities within the Snake River alluvial aquifer at the airport were estimated to be about 26 to 66 feet per day. This indicates that the traveltime from the farthest upgradient well to the farthest downgradient well was approximately 53 to 138 days. This estimate only describes the movement of groundwater because some solutes may move at a rate much slower than groundwater flow through the aquifer. The quality of the water in the alluvial aquifer generally was considered good. The alluvial aquifer was a fresh, hard to very hard, calcium carbonate type water. No constituents were detected at concentrations exceeding U.S. Environmental Protection Agency Maximum Contaminant Levels, and no anthropogenic compounds were detected at concentrations greater than laboratory reporting levels. The quality of groundwater in the alluvial aquifer generally was suitable for domestic and other uses; however, dissolved iron and manganese were detected at concentrations exceeding the U.S. Environmental Protection Agency Secondary Maximum Contaminant Levels for drinking water in two monitoring wells. These secondary standards are esthetic guidelines only and are nonenforceable. Iron and manganese are likely both natural components of the geologic materials in the area and may have become mobilized in the aquifer due to reduction/oxidation (redox) processes. Additionally, measurements of dissolved-oxygen concentrations and analyses of major ions and nutrients indicate reducing conditions exist at two of the seven wells sampled. Reducing conditions in an otherwise oxic aquifer system are indicative of an upgradient or in-situ source of organic carbon. The nature of the source of organic carbon at the airport could not be determined. View report for unabridged abstract.

  13. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000-2001 Annual Report.

    SciTech Connect

    Achord, Stephen; Axel, Gordon A.; Hockersmith, Eric E.

    2002-07-01

    This report details the 2001 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these data in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers.

  14. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2000-2001 Annual Report.

    SciTech Connect

    Kern, J. Chris; Ward, David L.; Farr, Ruth A. (Oregon Department of Fish and Wildlife)

    2002-02-01

    We report on our progress from April 2000 through March 2001 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), the U.S. Fish and Wildlife Service (USFWS; Report E), and Oregon State University (OSU; Report F). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 2000 through March 2001 are listed.

  15. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam, 1999-2000 Annual Report.

    SciTech Connect

    Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

    2001-04-01

    We report on our progress from April 1999 through March 2000 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), and the U.S. Fish and Wildlife Service (USFWS; Report E). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1999 through March 2000 are given.

  16. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 1998-1999 Annual Report.

    SciTech Connect

    Ward, David L.

    2000-12-01

    The authors report on their progress from April 1998 through March 1999 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), U.S. Fish and Wildlife Service (USFWS; Report D), Columbia River Inter-Tribal Fish Commission (CRITFC; Report E), and the University of Idaho (UI; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1998 through March 1999 are given.

  17. Comparative evaluation of molecular diagnostic tests for Nucleospora salmonis and prevalence in migrating juvenile salmonids from the Snake River, USA

    USGS Publications Warehouse

    Badil, Samantha; Elliott, Diane G.; Kurobe, Tomofumi; Hedrick, Ronald P.; Clemens, Kathy; Blair, Marilyn; Purcell, Maureen K.

    2011-01-01

    Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

  18. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    SciTech Connect

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat suitability criteria to measured and modeled habitat data from the Snake River study areas. Channel morphology data from the Wanapum reference reach and the Snake River study areas were evaluated to identify geomorphically suitable fall Chinook salmon spawning habitat. The results of this study indicate that a majority of the Ice Harbor and Lower Granite study areas contain suitable fall Chinook salmon spawning habitat under existing hydrosystem operations. However, a large majority of the currently available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study areas is of low quality. The potential for increasing, through modifications to hydrosystem operations (i.e., minimum pool elevation of the next downstream dam), the quantity or quality of fall Chinook salmon spawning habitat appears to be limited. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Ice Harbor study area decreased as the McNary Dam forebay elevation was lowered from normal to minimum pool elevation. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Lower Granite study area increased as the Little Goose Dam forebay elevation was lowered from normal to minimum pool elevation; however, 97% of the available habitat was categorized within the range of lowest quality. In both the Ice Harbor and Lower Granite study areas, water velocity appears to be more of a limiting factor than water depth for fall Chinook salmon spawning habitat, with both study areas dominated by low-magnitude water velocity. The geomorphic suitability of both study areas appears to be compromised for fall Chinook salmon spawning habitat, with the Ice Harbor study area lacking significant bedforms along the longitudinal thalweg profile and the Lower Granite study area lacking cross-sectional topographic diversity. To increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area, modifications to hydroelectric dam operations beyond those evaluated in this study likely would be necessary. M

  19. Stratigraphy of the unsaturated zone and uppermost part of the Snake River Plain aquifer at test area north, Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Anderson, S.R.; Bowers, B.

    1995-06-01

    A complex sequence of basalt flows and sedimentary interbeds underlies Test Area North (TAN) at the Idaho National Engineering Laboratory in eastern Idaho. Wells drilled to depths of at least 500 feet penetrate 10 basalt-flow groups and 5 to 10 sedimentary interbeds that range in age from about 940,000 to 1.4 million years. Each basalt-flow group consists of one or more basalt flows from a brief, single or compound eruption. All basalt flows of each group erupted from the same vent, and have similar ages, paleomagnetic properties, potassium contents, and natural-gamma emissions. Sedimentary interbeds consist of fluvial, lacustrine, and eolian deposits of clay, silt, sand, and gravel that accumulated for hundreds to hundreds of thousands of years during periods of volcanic quiescence. Basalt and sediment are elevated by hundreds of feet with respect to rocks of equivalent age south and cast of the area, a relation that is attributed to past uplift at TAN. Basalt and sediment are unsaturated to a depth of about 200 feet below land surface. Rocks below this depth are saturated and make up the Snake River Plain aquifer. The effective base of the aquifer is at a depth of 885 feet below land surface. Detailed stratigraphic relations for the lowermost part of the aquifer in the depth interval from 500 to 885 feet were not determined because of insufficient data. The stratigraphy of basalt-flow groups and sedimentary interbeds in the upper 500 feet of the unsaturated zone and aquifer was determined from natural-gamma logs, lithologic logs, and well cores. Basalt cores were evaluated for potassium-argon ages, paleomagnetic properties, petrographic characteristics, and chemical composition. Stratigraphic control was provided by differences in ages, paleomagnetic properties, potassium content, and natural-gamma emissions of basalt-flow groups and sedimentary interbeds.

  20. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin ; Volume 1 ; Evaluation of the 1995 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin Using Program RealTime.

    SciTech Connect

    Townsend, Richard L.

    1997-06-01

    This project was initiated in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of the project include: (1) to address the need for further synthesis of historical tagging and other biological information to improve understanding and to help identify future research and analysis needs; (2) to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to assist in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; and (3) to design better analysis tools for evaluation programs; and (4) to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community.

  1. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  2. 9. VIEW OF VILLAGE FROM LEFT BANK (SOUTH) OF SNAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF VILLAGE FROM LEFT BANK (SOUTH) OF SNAKE RIVER, FACING NORTHEAST. FOREGROUND SHOWS TYPICAL ROCK FORMATIONS. COTTAGE 281, NOT VISIBLE IN PHOTO #8, IS VISIBLE. - Swan Falls Village, Snake River, Kuna, Ada County, ID

  3. Strain Rates and Contemporary Deformation in the Snake River Plain and Surrounding Basin and Range From GPS and Seismicity

    SciTech Connect

    S. J. Payne; R. McCaffrey; R. W. King

    2008-08-01

    New horizontal GPS velocities along with earthquakes, faults, and volcanic features are used to assess how strain is accommodated in the Northern Basin and Range Province. We used GPS phase data collected from 1994 to 2007 to estimate horizontal velocities for 132 stations within the Snake River Plain (SRP) and surrounding basin and range. These velocities show regional scale clockwise rotation indicating basal driving forces beyond those associated with the Yellowstone Hotspot. Within the western Centennial Tectonic Belt (CTB), the GPS measurements indicate the basin and range is extending at a rate between 5x10-9/yr and 10x10-9/yr, which is an order of magnitude greater than the strain rate we observe with GPS in the SRP, explaining its low seismicity. Between these two regions is the “Centennial Shear Zone”, a NE-trending zone of right-lateral shear with estimated slip rates that increase northeastward from 0.9±0.3 mm/yr in the SW to 1.7±0.2 mm/yr in NE. We interpret the new GPS velocities to indicate: 1) right-lateral shear may be accommodated by strike-slip earthquakes on NE-trending faults in the Centennial Shear Zone; 2) three basin and range faults (Lost River, Lemhi, and Beaverhead) do not extend into the SRP, but instead terminate at the SRP margin; and 3) extension in the SRP occurs at a much lower rate than the rate of normal faulting in the western CTB.

  4. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    SciTech Connect

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E. [Fish Ecology Division, Northwest Fisheries Science Center

    2009-07-09

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m2) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.

  5. Snake bites

    MedlinePLUS

    ... bites by any of the following: Cobra Copperhead Coral snake Cottonmouth (water moccasin) Rattlesnake Various snakes found ... Swelling Thirst Tiredness Tissue damage Weakness Weak pulse Coral snake bites may be painless at first. Major ...

  6. SNAKE SPECIES RICHNESS IN RELATION TO HABITAT IN THE POST OAK SAVANNAH OF EAST CENTRAL TEXAS 

    E-print Network

    Putegnat, John

    2006-07-11

    observed or captured. The most abundant species were the plain-bellied water snake (Nerodia erythrogaster), western ribbon snake (Thamnophis proximus), and eastern coachwhip (Masticophis flagellum). The least abundant species were the brown snake (Storeria...

  7. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado

    USGS Publications Warehouse

    Theobald, P.K., Jr.; Lakin, H.W.; Hawkins, D.B.

    1963-01-01

    The oxidation of disseminated pyrite in relatively acid schists and gneisses of the Snake River drainage basin provides abundant iron sulfate and sulfuric acid to ground and surface water. This acid water dissolves large quantities of many elements, particularly aluminum and surprisingly large quantities of elements, such as magnesium and zinc, not expected to be abundant in the drainage basin. The adjoining drainage to the west, Deer Creek, is underlain by basic rocks, from which the water inherits a high pH. Despite the presence of base- and precious- metal veins in the drainage basin of Deer Creek, it carries less metal than the Snake River. The principal precipitate on the bed of the Snake River is hydrated iron oxide with small quantities of the other metals. In Deer Creek manganese oxide is precipitated with iron oxide and large quantities of other metals are carried down with this precipitate. Below the junction of these streams the pH stabilizes at a near-neutral value. Iron is removed from the Snake River water at the junction, and aluminum is precipitated for some distance downstream. The aluminum precipitate carries down other metals in concentrations slightly less than that in the manganese precipitate on Deer Creek. The natural processes observed in this junction if carried to a larger scale could provide the mechanism described by Ansheles (1927) for the formation of bauxite. In the environment described, geochemical exploration by either water or stream sediment techniques is difficult because of (1) the extreme pH differential between the streams above their junction and (2) the difference in the precipitates formed on the streambeds. ?? 1963.

  8. Assessment of selected constituents in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1975-89

    USGS Publications Warehouse

    Clark, Gregory M.

    1994-01-01

    A more extensive data-collection program in the upper Snake River Basin is needed to address a number of water-quality issues. These include an analysis of effects of land use on the quality of surface water; quantification of mass movement of nutrients and suspended sediment at key locations in the basin; distribution of aquatic organisms; and temporal and spatial distribution of pesticides in surface water, bottom sediment, and biota.

  9. Movement, Swimming Speed, and Oxygen Consumption of Juvenile White Sturgeon in Response to Changing Flow, Water Temperature, and Light Level in the Snake River, Idaho

    Microsoft Academic Search

    David R. Geist; Richard S. Brown; Valerie Cullinan; Steve R. Brink; Ken Lepla; Phil Bates; James A. Chandler

    2005-01-01

    The flow of the Snake River downstream of Hells Canyon Dam, Idaho, frequently fluctuates as dam operators alter the amount of electrical load generated in response to moment-to-moment power needs (termed load-following). Flow fluctuations due to load-following have the potential to increase the energy used by juvenile white sturgeon Acipenser transmontanus that move to avoid unfavorable habitat or that alter

  10. Radiological survey of exposed shorelines and islands of the Columbia River between Vernita and the Snake River confluence

    Microsoft Academic Search

    Sula

    1980-01-01

    This document describes a radiological survey which was performed to evaluate the magnitude and distribution of radioactive contamination on the exposed shorelines of the Columbia River along and downstream of the Hanford Site. The area encompassed by the survey includes the low-lying exposed land on both sides of the river from the uppermost point of production reactor discharge into the

  11. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    SciTech Connect

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399) downstream to the upper end of Lower Granite Reservoir near rkm 240. We randomly selected 14 fall Chinook salmon spawning locations as study sites, which represents 25% of the most used spawning areas throughout the HCR. Interactions between river water and pore water within the riverbed (i.e., hyporheic zone) at each site were quantified through the use of self-contained temperature and water level data loggers suspended inside of piezometers. Surrounding the piezometer cluster at each site were 3 artificial egg pockets. In mid-November 2002, early-eyed stage fall Chinook salmon eggs were placed inside of perforated polyvinyl chloride (PVC) tubes, along with a temperature data logger, and buried within the egg pockets. Fall Chinook salmon eggs were also incubated in the laboratory for the purpose of developing growth curves that could be used as indicators of emergence timing. The effects of discharge on vertical hydrologic exchange between the river and riverbed were inferred from measured temperature gradients between the river and riverbed, and the application of a numerical model. The hydrologic regime during the 2002-2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only 2 of 14 sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude

  12. Serpentoanisocladium sinense n. g., n. sp. (Digenea: Cryptogonimidae) from the eastern water snake Sinonatrix percarinata (Boulenger) (Serpentes: Colubridae) in Guizhou Province, China.

    PubMed

    Tkach, Vasyl V; Bush, Sarah E

    2010-07-01

    Serpentoanisocladium sinense n. g., n. sp. (Digenea: Cryptogonimidae) is described from the intestine of the eastern water snake Sinonatrix percarinata (Boulenger) (Serpentes: Colubridae) from Guizhou Province, China. This digenean is morphologically most similar to members of Anisocladium Looss, 1902 and, to a lesser extent, Anisocoelium Lühe, 1900, which are parasites of marine teleost fish in the Mediterranean and Black Seas. The new genus and species can be differentiated from the two known species of Anisocladium by the position of the vitellarium in relation to the gonads and seminal vesicle, a much longer oesophagus, a shorter caecum only reaching the anterior margin of the anterior testis, the presence of a muscular sucker-like gonotyl, the lack of circumoral spines and the peculiar position of the uterus, which is confined to the same half of the body as the longer caecum. The new genus and species can be differentiated from the only known species of Anisocoelium by the substantially higher body length to width ratio, a much longer oesophagus, the arrangement of the vitelline follicles, the postovarian versus pre-ovarian seminal receptacle, the presence of a well-defined muscular gonotyl and the length of the shorter caecum. A diagnosis of the new genus and a description of the new species are provided. This is the first cryptogonimid found in snakes from China and the first cryptogonimid reported from S. percarinata. PMID:20532852

  13. Shallow-water longshore drift-fed submarine fan deposition (Moisie River Delta, Eastern Canada)

    E-print Network

    St-Ong, Guillaume

    ORIGINAL Shallow-water longshore drift-fed submarine fan deposition (Moisie River Delta, Eastern Submarine canyons and associated submarine fans are in some cases located at the end of a littoral cell to the discovery of an unusu- ally shallow submarine fan (60 m) located at the end of a littoral cell. Sediment

  14. Prevalence and recurrence of escaped farmed Atlantic salmon ( Salmo salar ) in eastern North American rivers

    Microsoft Academic Search

    Matthew R. J. Morris; Dylan J. Fraser; Anthony J. Heggelin; Frederick G. Whoriskey; Jonathan W. Carr; Shane F. O'Neil; Jeffrey A. Hutchings

    2008-01-01

    Knowledge of the prevalence of escaped farmed fishes in the wild is an essential first step to assessing the risk resulting from interactions between farmed and wild fishes. This is especially important in eastern North America, where Atlantic salmon (Salmo salar) aquaculture occurs near wild Atlantic salmon rivers and where many wild salmon popula- tions are severely depressed. Here, we

  15. Response of active tectonics on the alluvial Baghmati River, Himalayan foreland basin, eastern India

    Microsoft Academic Search

    Vikrant Jain; R. Sinha

    2005-01-01

    Active tectonics in a basin plays an important role in controlling a fluvial system through the change in channel slope. The Baghmati, an anabranching, foothills-fed river system, draining the plains of north Bihar in eastern India has responded to ongoing tectonic deformation in the basin. The relatively flat alluvial plains are traversed by several active subsurface faults, which divide the

  16. Cambrian?Silurian oceanic rocks, upper Howqua River, eastern Victoria: Tectonic implications

    Microsoft Academic Search

    C. L. Fergusson

    1998-01-01

    A Cambrian?Silurian succession, with basal mafic volcanic rocks and chert along with much more widespread upper units of quartz?rich turbidites and black siliceous shale, is exposed in the upper Howqua River area of eastern Victoria and forms much of the basement of the Tabberabbera Zone. This succession is typical of the stratigraphy of upper oceanic successions that are widely preserved

  17. East Butte: A volcanic dome of the Eastern Snake River Plain, Idaho

    NASA Technical Reports Server (NTRS)

    Bretches, J. E.; King, J. S.

    1984-01-01

    Preliminary mapping shows East Butte to be a single, large cumulo-dome composed dominantly of rhyolite which can be classified into three main groups based on color and structure. The rhyolite of East Butte is aphanitic with phenocrysts of sanidine and quartz which vary from 1 to 5 mm in length. Vesicular reddish black inclusions of basalt up to 10 cm in length, found in all varieties of the East Butte rhyolites are believed to have originated from fragmentation of the basalt walls of the conduit by rhyolitic magma as it was emplaced. Most of the inclusions contain plagioclase phenocrysts. These phenocrysts measure up to 1 to 2 cm in length and have a typical euhedral, tabular habit. A 250-m diameter depression which has the appearance of a crater is located at the top of East Butte. Evidence supporting the fact that the depression is a crater is displayed by three small (3 to 5 m in height) mounds of massive rhyolite which border the depression.

  18. Eastern Snake River Plain Aquifer Levels Reach All-Time Lows

    USGS Multimedia Gallery

    During the summer of 2014, water levels in mointoring wells at the Idaho National Laboratory site reached all-time lows. USGS scientists investigated hydrologic influences on water-level declines and how future declines might jeopardize some wells in the monitoring network....

  19. Sea level as affected by river runoff, Eastern United States

    USGS Publications Warehouse

    Meade, R.H.; Emery, K.O.

    1971-01-01

    Variations in annual river inflow account for 7 to 21 percent of the total variation in average annual sea level along the Atlantic and Gulf of Mexico coasts of the United States. This compares with 29 to 68 percent of the total variation that can be attributed to the secular rise of sea level, and with 10 to 50 percent of the variation that cannot be attributed to either the river inflow or the secular rise.

  20. Final Environmental Assessment and Finding of No Significant Impact: White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam

    SciTech Connect

    N /A

    2003-04-23

    Bonneville Power Administration (BPA) is proposing to fund the White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Project. The project proposes to continue to carry out harvest monitoring and stock status updates coordinated with fisheries management planning, annual young-of-the year recruitment indexing, research, experimental artificial propagation, and transport of white sturgeon to less densely populated areas of the river(s). Additionally, release of hatchery-reared juveniles is proposed to evaluate release strategies. Actions will take place in the following Columbia River mainstem reaches: Bonneville, The Dalles, John Day, and McNary Reservoirs; Hanford Reach, as well as the Wanapum and Rock Island Reservoirs; and the following Snake River mainstem reaches: Ice Harbor, Lower Monumental and Little Goose Reservoirs. Spawning and rearing are undertaken at established hatcheries at McNary Dam and also the Abernathy Fish Technology Center. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1367, April 2003) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

  1. Snake bite: coral snakes.

    PubMed

    Peterson, Michael E

    2006-11-01

    North American coral snakes are distinctively colored beginning with a black snout and an alternating pattern of black, yellow, and red. They have fixed front fangs and a poorly developed system for venom delivery, requiring a chewing action to inject the venom. The severity of a coral snake bite is related to the volume of venom injected and the size of the victim. The length of the snake correlates positively with the snakes venom yield. Coral snake venom is primarily neurotoxic with little local tissue reaction or pain at the bite site. The net effect of the neurotoxins is a curare like syndrome. In canine victims there have been reports of marked hemolysis with severe anemia and hemoglobinuria. The onset of clinical signs may be delayed for as much as 10 to 18 hours. The victim begins to have alterations in mental status and develops generalized weakness and muscle fasciculations. Progression to paralysis of the limbs and respiratory muscles then follows. The best flied response to coral snake envenomation is rapid transport to a veterinary medical facility capable of 24 hour critical care and assisted ventilation. First aid treatment advocated in Australia for Elapid bites is the immediate use of a compression bandage. The victim should be hospitalized for a minimum of 48 hours for continuous monitoring. The only definitive treatment for coral snake envenomation is the administration of antivenin (M. fulvius). Once clinical signs of coral snake envenomation become manifest they progress with alarming rapidity and are difficult to reverse. If antivenin is not available or if its administration is delayed, supportive care includes respiratory support. Assisted mechanical ventilation can be used but may have to be employed for up to 48 to 72 hours. PMID:17265902

  2. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    SciTech Connect

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the south in the Great Basin and not localized extension in the Basin and Range or Yellowstone hotspot volcanism. We propose that the GPS velocity field reflects the regional deformation pattern since at least 15-12 Ma, with clockwise rotation over the Northern Basin and Range Province consistent with Basin and Range extension initiating 16 Ma. The region modified by hotspot volcanism has a low-strain rate. If we assume the low rate of deformation is reflected in the length of time between eruptions on the order of 10{sup 4} to >10{sup 6} yrs, the low-strain field in the Snake River Plain and Owyhee-Oregon Plateau would extend through the Quaternary.

  3. Assessment of nutrients, suspended sediment, and pesticides in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1991-95

    USGS Publications Warehouse

    Clark, Gregory M.

    1997-01-01

    Quality Assessment Program. As part of the investigation, intensive monitoring was conducted during water years 1993 through 1995 to assess surface-water quality in the basin. Sampling and analysis focused on nutrients, suspended sediments, and pesticides because of nationwide interest in these constituents. Concentrations of nutrients and suspended sediment in water samples from 19 sites in the upper Snake River Basin, including nine on the main stem, were assessed. In general, concentrations of nutrients and suspended sediment were smaller in water from the 11 sites upstream from American Falls Reservoir than in water from the 8 sites downstream from the reservoir where effects from land-use activities are most pronounced. Median concentrations of dissolved nitrite plus nitrate as nitrogen at the 19 sites ranged from less than 0.05 to 1.60 milligrams per liter; total phosphorus as phosphorus, less than 0.01 to 0.11 milligrams per liter; and suspended sediment, 4 to 72 milligrams per liter. Concentrations of nutrients and suspended sediment in the main stem of the Snake River, in general, increased downstream. The largest concentrations in the main stem were in the middle reach of the Snake River between Milner Dam and the outlet of the upper Snake River Basin at King Hill. Significant differences (p Nutrient and suspended sediment inputs to the middle Snake reach were from a variety of sources. During water year 1995, springs were the primary source of water and total nitrogen to the river and accounted for 66 and 60 percent of the total input, respectively. Isotope and water-table information indicated that the springs derived most of their nitrogen from agricultural activities along the margins of the Snake River. Aquacultural effluent was a major source of ammonia (82 percent), organic nitrogen (30 percent), and total phosphorus (35 percent). Tributary streams were a major source of organic nitrogen (28 percent) and suspended sediment (58 percent). In proportion to its discharge (less than 1 percent), the Twin Falls sewage-treatment plant was a major source of total phosphorus (13 percent). A comparison of discharge and loading in water year 1995 with estimates of instream transport showed a good correlation (relative difference of less than 15 percent) for discharge, total organic nitrogen, dissolved nitrite plus nitrate, total nitrogen, and total phosphorus. Estimates of dissolved ammonia and suspended sediment loads correlated poorly with instream transport; relative differences were about 79 and 61 percent, respectively. The pesticides EPTC, atrazine, desethylatrazine, metolachlor, and alachlor were the most commonly detected in the upper Snake River Basin and accounted for about 75 percent of all pesticide detections. All pesticides detected were at concentrations less than 1 microgram per liter and below water-quality criteria established by the U.S. Environmental Protection Agency. In samples collected from two small agriculturally dominated tributary basins, the largest number and concentrations of pesticides were detected in May and June following early growing season applications. At one of the sites, the pesticide atrazine and its metabolite desethylatrazine were detected throughout the year. On the basis of 37 samples collected basinwide in May and June 1994, total annual subbasin applications and instantaneous instream fluxes of EPTC and atrazine showed logarithmic relations with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about 0.0001 percent of the annual quantity applied, whereas the median daily flux of atrazine was between 0.001 and 0.01 percent.

  4. Evaluating the Effects of Constriction by Levees on a Dynamic Gravel-Bed River through Morphological Sediment Budgeting and Bed Mobility Studies, Snake River, WY

    NASA Astrophysics Data System (ADS)

    Leonard, C.; Legleiter, C. J.

    2014-12-01

    High-energy gravel-bed rivers are subject to a range of management practices used to control the system's dynamic behavior. The Snake River, near Jackson, WY, offers an opportunity to study the morphological effects of management practices through a comparison of a reach confined by levees to an unmanaged reach just upstream within Grand Teton National Park (GTNP). I hypothesize that levees have reduced sediment supply by disconnecting the river from its banks and increased transport capacity by increasing flow velocity. Together, these effects accentuate the sediment deficit in the leveed reach. To test this I am developing a morphological sediment budget from GTNP to Wilson, WY, using LiDAR data from 2007 and 2012. This analysis will yield insight as to how sediment transport varies between the relatively natural reach in GTNP and the leveed reach downstream. A problem inherent to morphological budgets is the inability to decipher when change occurs within the budget timeframe. To combat this, a partial mobility study was executed using 300 PIT tagged gravels within the leveed reach. Gravels were relocated to decipher how bed mobility and sediment transport varied with grain size under a range of hydraulic conditions. These results are then used to estimate a critical discharge representing the inception of bed motion and geomorphic change. The critical discharge will be used to reconstruct the timing of bed mobility based on streamflow records and thus deconvolve when morphological change occurred during the sediment budget period. I further hypothesize that a greater imbalance between transport capacity and sediment supply in the leveed reach causes the bed to armor, resulting in larger critical shear stresses and implying that the bed will be mobilized only during greater discharge events. To test this hypothesis I will measure armor ratios within the leveed reach and examine how bed mobility differs between the two reaches by comparing the results of our partial mobility study to a previous tracer study within GTNP.

  5. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume II : Evaluation of the 1996 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin using Program RealTime

    Microsoft Academic Search

    John R. Skalski; Richard L. Townsend; Dean Yasuda

    1998-01-01

    This project was initiated in 1991 in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of this project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and identify future research and analysis needs; (2)to assist

  6. Radiocarbon studies of latest Pleistocene and Holocene lava flows of the Snake River Plain, Idaho: Data, lessons, interpretations

    NASA Astrophysics Data System (ADS)

    Kuntz, Mel A.; Spiker, Elliott C.; Rubin, Meyer; Champion, Duane E.; Lefebvre, Richard H.

    1986-03-01

    Latest Pleistocene-Holocene basaltic lava fields of the Snake River Plain, Idaho, have been dated by the radiocarbon method. Backhoe excavations beneath lava flows typically yielded carbon-bearing, charred eolian sediment. This material provided most of the samples for this study; the sediment typically contains less than 0.2% carbon. Charcoal fragments were obtained from tree molds but only from a few backhoe excavations. Contamination of the charred sediments and charcoal by younger carbon components is extensive; the effects of contamination were mitigated but appropriate pretreatment of samples using acid and alkali leaches. Twenty of the more than 60 lava flows of the Craters of the Moon lava field have been dated; their ages range from about 15,000 to about 2000 yr B.P. The ages permit assignment of the flows to eight distinct eruptive periods with an average recurrence interval of about 2000 yr. The seven other latest Pleistocene-Holocene lava fields were all emplaced in short eruptive bursts. Their 14C ages (yr B.P.) are: Kings Bowl (2222± 100), Wapi (2270 ± 50), Hells Half Acre (5200 ± 150), Shoshone (10,130 ± 350), North Robbers and South Robbers (11.980 ± 300), and Cerro Grande (13,380 ± 350).

  7. Stochastic Model of Fracture Frequency Heterogeneity in a Welded Tuff EGS reservoir, Snake River Plain, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Moody, A.; Fairley, J. P., Jr.

    2014-12-01

    In light of recent advancements in reservoir enhancement and injection tests at active geothermal fields, there is interest in investigating the geothermal potential of widespread subsurface welded tuffs related to caldera collapse on the Snake River Plain (SRP). Before considering stimulation strategies, simulating heat extraction from the reservoir under in-situ fracture geometries will give a first-order estimation of extractable heat. With only limited deep boreholes drilled on the SRP, few analyses of the bulk hydrologic properties of the tuffs exist. Acknowledging the importance of the spatial heterogeneity of fractures to the permeability and injectivity of reservoirs hosted in impermeable volcanic units, we present fracture distributions from ICDP hole 5036-2A drilled as a part of Project HOTSPOT. The core documents more than 1200 m of largely homogeneous densely welded tuff hosting an isothermal warm-water reservoir at ~60? C. Multiple realizations of a hypothetical reservoir are created using sequential indicator algorithms that honor the observed vertical fracture frequency statistics. Results help form criteria for producing geothermal energy from the SRP.

  8. Distinguishing between natural and hatchery Snake River fall Chinook salmon subyearlings in the field using body morphology

    USGS Publications Warehouse

    Tiffan, K.F.; Connor, W.P.

    2011-01-01

    We used body morphology to distinguish between natural- and hatchery-origin subyearling fall Chinook salmon Oncorhynchus tshawytscha in rearing areas of the Snake River and at a downstream dam during seaward migration. Using subjective eye and body shape characteristics, field personnel correctly classified 88.9–100% of natural subyearlings (N = 626) and 90.0–100% of hatchery subyearlings (N = 867) in rearing areas from 2001 to 2008. The morphological characteristics used by these personnel proved to have a quantitative basis, as was shown by digital photography and principal components analysis. Natural subyearlings had smaller eyes and pupils, smaller heads, deeper bodies, and shorter caudal peduncles than their hatchery counterparts during rearing and at the dam. A discriminant function fitted from this set of morphological characteristics classified the origin of fish during rearing and at the dam with over 97% accuracy. We hypothesize that these morphological differences were primarily due to environmental influences during incubation and rearing because it is highly probable that a large portion of the natural juveniles we studied were the offspring of hatchery × hatchery mating in the wild. The findings in this paper might provide guidance for others seeking to differentiate between natural and hatchery fish.

  9. Downstream movement of fall Chinook salmon juveniles in the lower Snake River reservoirs during winter and early spring

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Mullins, Frank; Steinhorst, R. Kirk

    2012-01-01

    We conducted a 3-year radiotelemetry study in the lower Snake River to (1) determine whether juvenile fall Chinook salmon Oncorhynchus tshawytscha pass dams during winter, when bypass systems and structures designed to prevent mortality are not operated; (2) determine whether downstream movement rate varies annually, seasonally, and from reservoir to reservoir; and (3) identify some of the factors that contribute to annual, seasonal, and spatial variation in downstream movement rate. Fall Chinook salmon juveniles moved downstream up to 169 km and at a sufficiently fast rate (7.5 km/d) such that large percentages (up to 93%) of the fish passed one or more dams during the winter. Mean downstream movement rate varied annually (9.2–11.3 km/d), increased from winter (7.5 km/d) to spring (16.4 km/d), and increased (from 6.9 to 16.8 km/d) as fish moved downstream from reservoir to reservoir. Fish condition factor at tagging explained some of the annual variation in downstream movement rate, whereas water particle velocity and temperature explained portions of the seasonal variation. An increase in migrational disposition as fish moved downstream helped to explain the spatial variation. The potential cost of winter movement might be reduced survival due to turbine passage at a time when the bypass systems and spillway passage structures are not operated. Efforts to understand and increase passage survival of winter migrants in large impoundments might help to rehabilitate some imperiled anadromous salmonid populations.

  10. Occurrence and flux of selected pesticides in surface water of the upper snake River Basin, Idaho and western Wyoming

    USGS Publications Warehouse

    Clark, G.M.

    1997-01-01

    During May and June 1994, 37 water samples were collected at 31 sites in the upper Snake River Basin and analyzed for 83 pesticides and pesticide metabolites. EPTC, atrazine, and the atrazine metabolite deethylated atrazine were the most frequently detected and were found in 30, 20, and 13 of the samples, respectively. Fifteen additional pesticides were detected at least once. All the compounds detected were at concentrations of less than 1 microgram per liter. Total annual applications of EPTC and atrazine within subbasins and their instantaneous instream fluxes have a logarithmic relation with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about O. 0001% of the annual amount applied in a subbasin, whereas the median daily flux of atrazine was between 0.001 and 0.01%. The difference in fluxes between EPTC and atrazine probably results from differences in their physical properties and in the method and timing of application.

  11. A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL

    SciTech Connect

    Prahl, C.J.

    1992-01-01

    Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps.

  12. Radiocarbon studies of latest Pleistocene and Holocene lava flows of the Snake River Plain, Idaho: Data, lessons, interpretations

    USGS Publications Warehouse

    Kuntz, M.A.; Spiker, E. C.; Rubin, M.; Champion, D.E.; Lefebvre, R.H.

    1986-01-01

    Latest Pleistocene-Holocene basaltic lava fields of the Snake River Plain, Idaho, have been dated by the radiocarbon method. Backhoe excavations beneath lava flows typically yielded carbon-bearing, charred eolian sediment. This material provided most of the samples for this study; the sediment typically contains less than 0.2% carbon. Charcoal fragments were obtained from tree molds but only from a few backhoe excavations. Contamination of the charred sediments and charcoal by younger carbon components is extensive; the effects of contamination were mitigated but appropriate pretreatment of samples using acid and alkali leaches. Twenty of the more than 60 lava flows of the Craters of the Moon lava field have been dated; their ages range from about 15,000 to about 2000 yr B.P. The ages permit assignment of the flows to eight distinct eruptive periods with an average recurrence interval of about 2000 yr. The seven other latest Pleistocene-Holocene lava fields were all emplaced in short eruptive bursts. Their 14C ages (yr B.P.) are: Kings Bowl (2222?? 100), Wapi (2270 ?? 50), Hells Half Acre (5200 ?? 150), Shoshone (10,130 ?? 350), North Robbers and South Robbers (11.980 ?? 300), and Cerro Grande (13,380 ?? 350). ?? 1986.

  13. Assessing the accuracy of thermoluminescence for dating baked sediments beneath late Quaternary lava flows, Snake River Plain, Idaho

    SciTech Connect

    Forman, S.L.; Pierson, J. [Ohio State Univ., Columbus, OH (United States)] [Ohio State Univ., Columbus, OH (United States); Valentine, G. [Los Alamos National Lab., NM (United States)] [and others] [Los Alamos National Lab., NM (United States); and others

    1994-08-10

    Baked sediments beneath lava flows on the Snake River Plain, Idaho, with independent age control by either {sup 14}C or K/Ar dating were analyzed to evaluate the accuracy of the thermoluminescence (TL) technique. The age of flows ranges from {approximately}2 to 100 ka and multiple TL analyses by the total bleach method yielded ages that overlap at one sigma with independent chronologic control. The TL signal of one sample of baked sediment beneath a lava flow with an inferred age of at least 641 {plus_minus} 54 ka was near saturation, perhaps reflecting a relatively high environmental dose rate, and is not datable by TL. This study underscores several major limitations of luminescence geochronology, the natural spatial and temporal variability in environmental radioactivity and the susceptibility of silicate minerals to the growth and retention of a luminescence signal. Despite these limitations, the results demonstrate the utility of luminescence geochronology to date volcanic eruptive events during the Quaternary. 39 refs., 7 figs., 4 tabs.

  14. Geophysical logging studies in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory: Wells 44, 45, and 46

    SciTech Connect

    Morin, R.H.; Paillet, F.L.; Taylor, T.A. [Geological Survey, Denver, CO (United States); Barrash, W. [Idaho Dept. of Health and Welfare, Boise, ID (United States)

    1993-05-01

    A geophysical logging program was undertaken to vertically profile changes in the hydrology and hydrochemistry of the Snake River Plain aquifer underlies the Idaho National Engineering Laboratory (INEL). Field investigations were concentrated within an area west of the Idaho Chemical Processing Plant (ICPP) in three wells that penetrated the upper 190 feet of the aquifer. The logs obtained in these wells consisted of temperature, caliper, nuclear (neutron porosity and gamma-gama density), natural gamma, borehole televiewer, gamma spectral, and thermal flowmeter (with and without pumping). The nuclear, caliper, and televiewer logs are used to delineate individual basalt flows or flow units and to recognize breaks between flows or flow units at interflow contact zones and sedimentary interbeds. The temperature logs and flowmeter measurements obtained under ambient hydraulic head conditions identified upward fluid-circulation patterns in the three wells. Gamma-spectral analyses performed at several depths in each well showed that the predominant source of gamma radiation in the formation at this site originates mainly from potassium ({sup 40}K). However, {sup 137}Cesium was detected at 32 feet below land surface in well 45. An empirical investigation of the effect of source-receiver spacing on the response of the neutron-porosity logging tool was attempted in an effort to understand the conditions under which this tool might be applied to large-diameter boreholes in-unsaturated formations.

  15. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    SciTech Connect

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

  16. A summary of regional water quality for Eastern UK rivers

    Microsoft Academic Search

    A. J. Robson; C. Neal

    1997-01-01

    Variations in water quality and chemical loads are described for UK rivers draining to the North Sea. These variations are related to regional differences in geology, climate, land use and population distribution. The study uses water quality data collected under the Harmonised Monitoring Scheme. Regional maps of average concentrations and tables of loads, concentrations and loads per unit area are

  17. Genetic diversity of riperian populations of glycyrrhiza lepidota along the salmon and snake rivers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycyrrhiza lepidota Pursh (Fabaceae; American wild licorice), is a nitrogen-fixing, perennial, facultative riparian species present along many dryland rivers in western North America, including the U.S., southern Canada and northern Mexico. Like Glycyrrhiza glabra, common licorice native to Europe,...

  18. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report

    Microsoft Academic Search

    Michael P. Faler; Glen W. Mendel; Carl Fulton

    2004-01-01

    We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout

  19. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2004 Annual Report

    Microsoft Academic Search

    Michael P. Faler; Glen W. Mendel; Carl Fulton

    2005-01-01

    We sampled and released 313 bull trout (Salvelinus confluentus) from the Tucannon River in 2004. Passive Integrated Transponder (PIT) tags were inserted in 231 of these individuals, and we detected existing PIT tags in an additional 44 bull trout. Twenty-five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Ten

  20. NON POINT SOURCE BASIN STATUS EVALUATION, LOWER SNAKE RIVER BASIN, IDAHO, JULY 1976

    EPA Science Inventory

    Region 10 has developed a nonpoint source assessment approach to assist EPA planners, land agencies, and state and local agencies in identifying probable nonpoint sources and determining their effect upon the fishable-swimmable aspect of Regional streams and rivers. Generally th...

  1. Survival Estimates for the Passage of Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2002-2003 Annual Report.

    SciTech Connect

    Muir, William D.; Smith, Steven G.; Zabel, Richard W. (NOAA Fisheries, Northwest Fisheries Center, Seattle, WA)

    2003-07-01

    In 2002, the National Marine Fisheries Service and the University of Washington completed the tenth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,891 hatchery steelhead at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the ''Single-Release Model''). Primary research objectives in 2002 were to (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2002 for PIT-tagged yearling chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Results for summer-migrating chinook salmon will be reported separately.

  2. Estimates of gains and losses for reservoirs on the Snake River from Blackfoot to Milner, Idaho, for selected periods, 1912 to 1983

    USGS Publications Warehouse

    Kjelstrom, L.C.

    1988-01-01

    Croplands in the semiarid central part of the Snake River Plain are dependent on the availability of irrigation water, most of which comes from the Snake River. Allocation of irrigation water from the river requires that gains and losses be determined for American Falls Reservoir, Lake Walcott, and Milner Lake. From 1912 to 1983, average ungaged inflow to American Falls Reservoir , determined from monthly water budgets, was 2,690 cu ft/sec. About 94% of this inflow was spring discharge and groundwater seepage; the remainder was from small tributaries and irrigation-return flow. Ungaged inflow estimated from water budgets for various periods correlated favorably with measured discharge of two springs and water levels in two wells. Discharge of Spring Creek was a better indicator of ungaged inflow than groundwater levels. Therefore, correlation with Spring Creek discharge was used in estimating ungaged inflow to American Falls Reservoir in 1983. Daily water budget calculations of ungaged inflow to American Falls Reservoir are less variable when storage changes are determined by using three stage-recording stations rather than one. Water budgets do not indicate large amounts of leakage from American Falls Reservoir, but small amounts of leakage are indicated because flow in downstream springs increased about 25% after reservoir storage began in 1926. Water budgets for Lake Walcott and Milner Lake show average annual net gains (1951-83) to Lake Walcott and Milner Lake of 245 and 290 cu ft/sec. These amounts are verified by monthly water budgets when discharge in the Snake River is low, and measured and estimated sources of inflow. Gains and losses estimated from daily water budgets are variable, owing to inadequate determination of (1) changes in reservoir storage, (2) streamflow, (3) lake surface precipitation, and (4) lake surface evaporation. Backwater effects are accounted for in the process used to determine storage in Milner Lake. (Author 's abstract)

  3. Plasma insulin-like growth factor-I concentrations in yearling chinook salmon (Oncorhynchus tshawytscha) migrating from the Snake River Basin, USA

    USGS Publications Warehouse

    Congleton, J.L.; Biga, P.R.; Peterson, B.C.

    2003-01-01

    During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.

  4. THE FALLACY OF UPPER SNAKE FLOW AUGMENTATION THERE IS NO NEED TO DRAIN IDAHO FOR SALMON

    E-print Network

    APPENDIX 1 THE FALLACY OF UPPER SNAKE FLOW AUGMENTATION THERE IS NO NEED TO DRAIN IDAHO FOR SALMON......................................................................................................................... 2 Overview of Idaho and the Upper Snake Basin.................................................................. 3 Hydrology of the Upper Snake River

  5. Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Si-Liang; Chetelat, Benjamin; Yue, Fujun; Zhao, Zhiqi; Liu, Cong-Qiang

    2014-07-01

    To better understand chemical weathering and controlling processes in the Yalong River of the eastern Tibetan Plateau, this study presents major ion concentrations and stable isotopes of the dissolved loads. The isotopic compositions (?13C-DIC, ?34S and ?18O-SO4) of the dissolved loads are very useful to quantify solute sources and define the carbon budget related with chemical weathering in riverine systems. The isotopic composition of sulphate demonstrates that most of the sulphate is derived from sulphide oxidation, particularly in the upper reach of the Yalong River. The correlations between ?13C-DIC, water chemistry and isotopes of sulphate, suggest that the carbon dynamics are mainly affected by carbonate weathering by sulphuric acid and equilibration processes. Approximately 13% of the dissolved inorganic carbon in the Yalong River originates from carbonate weathering by strong acid. The CO2 consumption rates are estimated to be 2.8 × 105 mol/km2/yr and 0.9 × 105 mol/km2/yr via carbonate and silicate weathering in the Yalong River, respectively. In this study, the influence of sulphide oxidation and metamorphic CO2 on the carbon budget is estimated for the Yalong River draining the eastern Tibetan Plateau.

  6. Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: identification of directly hemolytic phospholipases A2.

    PubMed

    Arce-Bejarano, Ruth; Lomonte, Bruno; Gutiérrez, José María

    2014-11-01

    Intravascular hemolysis has been described in envenomings by the Eastern coral snake, Micrurus fulvius, in dogs. An experimental model of intravascular hemolysis was developed in mice after intravenous (i.v.) injection of M. fulvius venom. Within one hr, there was prominent hemolysis, associated with a drastic drop in hematocrit, morphological alterations of erythrocytes, hemoglobinemia, and hemoglobinuria. Hemoglobin was identified in urine by mass spectrometry. Histological sections of kidney revealed abundant hyaline casts, probably corresponding to hemoglobin. This effect was abrogated by p-bromophenacyl bromide, indicating that it is caused by phospholipases A2 (PLA2). A monospecific anti-Micrurus nigrocinctus antivenom neutralized hemolytic activity in vivo. When tested in vitro with erythrocytes of various species, a clear difference in susceptibility was observed. Mouse and dog erythrocytes showed the highest susceptibility, whereas human and rabbit erythrocytes were not affected at the experimental conditions tested. The higher susceptibility of dog and mouse erythrocytes correlates with a high ratio of phosphatidylcholine/sphingomyelin in erythrocyte plasma membrane. When mouse erythrocytes were subjected to mechanical stress, after incubation with venom, hemolysis increased significantly, suggesting that both phospholipid hydrolysis by PLA2s and mechanical stress associated with rheological factors are likely to contribute to cell lysis in vivo. Several PLA2s isolated from this venom reproduced the hemolytic effect, and the complete amino acid sequence of one of them (fraction 17), which also induces myotoxicity, is reported. Since very few PLA2s inducing intravascular hemolysis have been described from snake venoms, this enzyme is a valuable tool to identify the structural determinants of hemolytic activity. The mouse model described in this study may be useful to explore the pathophysiology of intravascular hemolysis. PMID:25088177

  7. cDNA cloning of a snake venom metalloproteinase from the eastern diamondback rattlesnake (Crotalus adamanteus), and the expression of its disintegrin domain with anti-platelet effects.

    PubMed

    Suntravat, Montamas; Jia, Ying; Lucena, Sara E; Sánchez, Elda E; Pérez, John C

    2013-03-15

    A 5' truncated snake venom metalloproteinase was identified from a cDNA library constructed from venom glands of an eastern diamondback rattlesnake (Crotalus adamanteus). The 5'-rapid amplification of cDNA ends (RACE) was used to obtain the 1865 bp full-length cDNA sequence of a snake venom metalloproteinase (CamVMPII). CamVMPII encodes an open reading frame of 488 amino acids, which includes a signal peptide, a pro-domain, a metalloproteinase domain, a spacer, and an RGD-disintegrin domain. The predicted amino acid sequence of CamVMPII showed a 91%, 90%, 83%, and 82% sequence homology to the P-II class enzymes of C. adamanteus metalloproteinase 2, Crotalus atrox CaVMP-II, Gloydius halys agkistin, and Protobothrops jerdonii jerdonitin, respectively. Disintegrins are potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion. Therefore, the disintegrin domain (Cam-dis) of CamVMPII was amplified by PCR, cloned into a pET-43.1a vector, and expressed in Escherichia coli BL21. Affinity purified recombinantly modified Cam-dis (r-Cam-dis) with a yield of 8.5 mg/L culture medium was cleaved from the fusion tags by enterokinase cleavage. r-Cam-dis was further purified by two-step chromatography consisting of HiTrap™ Benzamidine FF column, followed by Talon Metal affinity column with a final yield of 1 mg/L culture. r-Cam-dis was able to inhibit all three processes of platelet thrombus formation including platelet adhesion with an estimated IC(50) of 1 nM, collagen- and ADP-induced platelet aggregation with the estimated IC(50)s of 18 and 6 nM, respectively, and platelet function on clot retraction. It is a potent anti-platelet inhibitor, which should be further investigated for drug discovery to treat stroke patients or patients with thrombotic disorders. PMID:23313448

  8. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2001-2002 Annual Report

    Microsoft Academic Search

    Michael P. Faler; Glen W. Mendel; Carl Fulton

    2003-01-01

    We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0 C or higher on a regular basis. Six radio-tags were recovered

  9. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.

    SciTech Connect

    Mallette, Christine [Oregon Department of Fish and Wildlife

    2009-07-28

    We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  10. Rhyolites in the Kimberly Drill Core, Project Hotspot: First Intracaldera Ignimbrite from the Central Snake River Plain, Idaho?

    NASA Astrophysics Data System (ADS)

    Christiansen, E. H.; McCurry, M. O.; Champion, D. E.; Bolte, T.; Holtz, F.; Knott, T.; Branney, M. J.; Shervais, J. W.

    2013-12-01

    The rhyolites on the track of the Yellowstone hotspot are the classic examples of continental hotspot volcanism and the study of surface outcrops is maturing rapidly. However, in the central part of the track, where silicic volcanism is most voluminous, compositionally distinctive, and isotopically most anomalous, study of these large magma systems has been hindered because eruptive sources are buried. The 2 km Kimberly core helps fill that gap; it penetrates through surficial basalt, deep into the rhyolitic underpinnings on the southern margin of the province. The Kimberly core is dominated by thick sections of rhyolite lava and welded ignimbrite, with basalt-sediment intercalations between 241 m and 424 m depth. We tentatively interpret the core to include a thick intracaldera tuff. Our preliminary studies suggest that there are three major rhyolite units in the core. Rhyolite 3, the uppermost unit, is a nearly 130 m thick, low-silica rhyolite lava. Rhyolite 2 is the most highly evolved with ~75% silica and distinctively resorbed quartz. Rhyolite 1 is at least 1,340 m thick (the base was not cut by the core), has no apparent flow contacts or cooling breaks, and may represent a single, thick intracaldera ignimbrite. Paleomagnetic inclinations form a curious V-shaped profile, shallowing by about 18? between 700 and 1700 m depth. We interpret this to be the result of slower cooling of the mid-part of the thick intracaldera ignimbrite. The lower unit is a low-silica rhyolite with high concentrations of Fe2O3 and TiO2--among the highest of any known ignimbrite on the SRP. It is chemically distinct from the upper units, very homogeneous, not vertically zoned, and lacks multiple populations of phenocrysts. It somewhat resembles the regionally extensive ~10 Ma outflow tuff of Wooden Shoe Butte. However, this is one of several large, petrologically similar ignimbrites as young as 8.6 Ma exposed in the Cassia Mountains south of the hole, so further work is needed. Like most rhyolites from the Snake River Plain, all 3 units have the characteristics of A-type rhyolites with high concentrations of alkalies, high Fe/Mg and TiO2/MgO ratios, as well as high concentrations Nb, Y, Zr and Ga. Initial analyses of plag, cpx, and qtz show that all three units are low ?18O rhyolites, like most from the Central Snake River Plain-- ?18O in feldspar ranges from 1‰ in Rhyolite 1 to 3‰ in Rhyolites 2 and 3. In the thick lower ignimbrite, whole-rock ?18O increases systematically from the base upward (0.5‰ to as much as 9‰ in the altered top and ?D ranges from -140 to -180‰). Whole rock variations correlate with water content, apparently controlled by secondary clay. We suggest that these characteristics were largely imposed by their derivation from partial melting of basaltic sills and surrounding older crust. The low ?18O values reflect recycling of hydrothermally altered crustal rocks and indicate progressive incorporation of more hydrothermally altered material into the younger magmas. More work is needed to establish correlation with regional units, understand the emplacement of the rhyolites and their volcanic setting, and ascertain the origin of these distinctive low ?18O, A-type rhyolites.

  11. Tritium, stable isotopes, and nitrogen in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho, 1990-93

    USGS Publications Warehouse

    Mann, L.J.; Low, W.H.

    1994-01-01

    In 1990-93, water from 19 springs along the north side of the Snake River near Twin Falls and Hagerman contained from 9.2+0.6 to 78.4+5.1 picocuries per liter (pCi/L) of tritium. The springs were placed into three categories based on their locations and tritium concentrations: Category I was the upstream most and contained from 52.8+3.2 to 78.4+5.1 pCi/L of tritium; Category 11 was downstream from those in Category I and contained from 9.2+0.6 to 18.6+1.2 pCi/L; and Category III was the farthest downstream and contained from 28.3+1.9 to 47.7+3.2 pCi/L. Differences in tritium concentrations in the Category I, II, and III springs are a function of the ground-water flow regime, land use, and irrigation practices in and hydraulically upgradient from each category of springs. A comparatively large part of the water from the Category I springs is derived from recharge in heavily irrigated areas in which the irrigation water largely is diverted from the Snake River. A large part of the recharge for Category II springs occurs as much as 140 miles upgradient. Tritium concentrations in Category III springs indicate an intermediate proportion of the recharge is from excess applied-irrigation water. The concept that recharge from excess applied- irrigation water from the Snake River has affected tritium in the aquifer is supported by isotopic and nitrogen data. Deuterium and oxygen-18 isotopic values, and nitrite plus nitrate as nitrogen concentrations in the flow of some springs has been impacted by irrigation.

  12. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1997 Annual Report.

    SciTech Connect

    Achord, Stephen; Eppard, M. Brad; Hockersmith, Eric E. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    1998-05-01

    In August 1996, we PIT tagged and released 1,360 wild chinook salmon parr in the South Fork of the Salmon River and two of its tributaries in Idaho. During spring and summer 1997, the overall adjusted percentage of PIT-tagged fish from Idaho detected at six downstream dams averaged 18.3% (range 16.0 to 27.3% depending on stream of origin). Peak detections of all wild spring/summer chinook salmon smolts (from Idaho and Oregon) at Lower Granite Dam occurred during variable but increasing river flows in April. High river flows from mid-April to mid-May moved most of these fish through Lower Granite Dam, with 50 and 90% passage occurring on 24 April and 21 May, respectively. From 1989 to 1996, peak detections of wild spring/summer chinook salmon smolts were highly variable and generally independent of river flows before about 9 May at this dam; however, during these years (including 1997), peak detections of wild fish coincided with periods of peak flow at the dam from 9 May to the end of May. In both 1995 and 1996, in excess of 90% of the wild fish had migrated past Lower Granite Dam by the time peak flows occurred in June. In 1989, we observed a period of peak detections of wild fish that coincided with peak flows at the dam in June. After examining chinook salmon smolt passage timing at the dams over the last 9 years, it has become clear that flow is only one of several factors that influence passage timing. Other factors, such as annual climatic conditions, water temperature, turbidity, physiological development, variability in stock behavior, fish size, and other yet unknown conditions may equally affect wild smolt passage timing at dams. As additional environmental monitors and traps are installed in study streams, we will be able to more accurately monitor parr and smolt movements out of rearing areas and examine the relationships of these movements to environmental parameters within the streams. Mapped over time, this information will provide the basis for accurately predicting the migrational timing of different wild stocks as they migrate downstream through the hydropower system.

  13. Evidence for Fractionation and Recharge of Basaltic Magma Chambers: Kimama Butte, Snake River Plain, Idaho Michelle Hurst1 and Eric H. Christiansen2

    E-print Network

    Seamons, Kent E.

    Evidence for Fractionation and Recharge of Basaltic Magma Chambers: Kimama Butte, Snake River Plain Butte Twin Falls Boise 0 50 100 150 200 250 300 350 400 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Ni -13 -12 -11 -10 Temperature (°C) Kimama Butte McKinney Butte Leeman (1976) 2.0 2.5 3.0 3.5 4.0 4.5 Ti

  14. Development of a network-based information infrastructure to facilitate hydrosystems and fisheries planning in the Columbia-Snake River Basin

    SciTech Connect

    Johnson, G.E.; Scheibe, T.D.

    1995-07-01

    This report describes the development of an information-exchange system on the World Wide Web to aid balancing Columbia-Snake River Basin hydropower operations and passage optimization for endangered anadromous salmonids. During the 1995 fish migration season, a working prototype of the service is being evaluated with input and guidance from the Federal fisheries agencies. Lessons learned will be used to enhance the service`s value and implement suggested changes for full-scale implementation during 1996 and ensuing years. Illustrations of the system`s World Wide Web pages, and documentation of the service`s fundamental concepts and methods, are included in the report.

  15. Amplitude and phase normalization of seismograms from multiple seismograph recording systems for the Yellowstone-Snake River Plain seismic refraction experiment

    SciTech Connect

    Baker, M.R.; Braile, L.W.; Smith, R.B.

    1982-04-10

    A z transform filter theory method for the normalization of the instrument responses of several seismographs is presented. In this method, an inverse filter is derived by consideration of the seismometer/recorder characteristics which may be applied to a given seismogram to convert the system frequency response to that of a reference system. Inverse filters are derived for the seismographs used on the 1978 Yellowstone-Snake River Plain seismic profiling experiment. It is shown by application to these data that the inverse filters are effective in amplitude normalization and that their use allows improvement in the amplitude and waveform character of seismic record sections.

  16. Detection of major river bed changes in the River Ebro (north-eastern Spain)

    NASA Technical Reports Server (NTRS)

    Espejo, R.; Torrent, J.; Roquero, C.

    1973-01-01

    The application or ERTS-1 data to determine the major river bed changes of the Ebro River in northeastern Spain is discussed. Image quality was good enough to permit a clear identification of the river course and bands MSS 5 and 7 proved to be the most useful for this purpose. Reflectance for band 5 was high due to the high sediment content of the water and sufficed to identify the river. Features like bodies of water related to old channels and depressions were only apparent in band 7.

  17. Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate plus nitrate as nitrogen in ground water in the Idaho part of the western Snake River Plain

    USGS Publications Warehouse

    Donato, Mary M.

    2000-01-01

    As ground water continues to provide an ever-growing proportion of Idaho?s drinking water, concerns about the quality of that resource are increasing. Pesticides (most commonly, atrazine/desethyl-atrazine, hereafter referred to as atrazine) and nitrite plus nitrate as nitrogen (hereafter referred to as nitrate) have been detected in many aquifers in the State. To provide a sound hydrogeologic basis for atrazine and nitrate management in southern Idaho—the largest region of land and water use in the State—the U.S. Geological Survey produced maps showing the probability of detecting these contaminants in ground water in the upper Snake River Basin (published in a 1998 report) and the western Snake River Plain (published in this report). The atrazine probability map for the western Snake River Plain was constructed by overlaying ground-water quality data with hydrogeologic and anthropogenic data in a geographic information system (GIS). A data set was produced in which each well had corresponding information on land use, geology, precipitation, soil characteristics, regional depth to ground water, well depth, water level, and atrazine use. These data were analyzed by logistic regression using a statistical software package. Several preliminary multivariate models were developed and those that best predicted the detection of atrazine were selected. The multivariate models then were entered into a GIS and the probability maps were produced. Land use, precipitation, soil hydrologic group, and well depth were significantly correlated with atrazine detections in the western Snake River Plain. These variables also were important in the 1998 probability study of the upper Snake River Basin. The effectiveness of the probability models for atrazine might be improved if more detailed data were available for atrazine application. A preliminary atrazine probability map for the entire Snake River Plain in Idaho, based on a data set representing that region, also was produced. In areas where this map overlaps the 1998 map of the upper Snake River Basin, the two maps show broadly similar probabilities of detecting atrazine. Logistic regression also was used to develop a preliminary statistical model that predicts the probability of detecting elevated nitrate in the western Snake River Plain. A nitrate probability map was produced from this model. Results showed that elevated nitrate concentrations were correlated with land use, soil organic content, well depth, and water level. Detailed information on nitrate input, specifically fertilizer application, might have improved the effectiveness of this model.

  18. Of Tigers, Ghosts and Snakes: Children's Social Cognition in the Context of Conflict in Eastern Sri Lanka

    Microsoft Academic Search

    Jo Boyden

    This paper is based on field research with Tamil children and adolescents in the war-affected district of Batticaloa in eastern Sri Lanka. It examines young people's experiences of conflict in terms of their social worlds and their relations with the Liberation Tigers of Tamil Elam (LTTE), finding both to be permeated with ambiguity and dissonance. According to established understandings of

  19. Drainage areas in the James River basin in eastern South Dakota

    USGS Publications Warehouse

    Benson, Rick D.; Freese, M.E.; Amundson, F.D.; Wipf, V.J.

    1987-01-01

    The James River of eastern South Dakota contains an important surface-water supply for the agricultural economy within the basin. Proposed water-resource development has prompted numerous hydrologic studies of the James River. To aid in planning for future development, the map delineates all named stream basins, and all unnamed basins larger than 10 square miles within the James River basin South Dakota and lists by stream name and area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey seven and one-half minute topographic maps. Two tables list areas of drainage basins, reaches, and noncontributing areas and drainage areas above gaging stations. (USGS)

  20. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    SciTech Connect

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and estimate survival of different wild juvenile fish stocks as they emigrate from their natal rearing areas. This study provides critical information for recovery planning, and ultimately recovery for these ESA-listed wild fish stocks. This report provides information on PIT tagging of wild chinook salmon parr in 2002 and the subsequent monitoring of these fish. Fish were monitored as they migrated through two in-stream PIT-tag monitoring systems in lower Valley Creek and at juvenile migrant traps in 2002 and 2003 as well as through interrogation systems at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams during 2003. Fish were also monitored by the PIT-tag trawl in the mouth of the Columbia River in 2003. In 2002-2003, we also continued to collect environmental data for the Baseline Environmental Monitoring Program, which was developed from 1993 to 1997. The project was designed to collect data for use in conjunction with data on parr and smolt movements to discern patterns or characteristic relationships between these movements and environmental factors. Water quality data collected consist of water temperature, dissolved oxygen, specific conductance, turbidity, water depth, and pH measured at five monitoring stations in the Salmon River Basin, Idaho.

  1. Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013

    SciTech Connect

    Harnish, Ryan A.; Colotelo, Alison HA; Li, Xinya; Ham, Kenneth D.; Deng, Zhiqun

    2014-12-15

    In 2012 and 2013, Pacific Northwest National Laboratory conducted a study that summarized the passage proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged-kelts. Kelts were also tagged with Passive Integrated Transponder tags to monitor passage through juvenile bypass systems and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify individual, behavioral, environmental and dam operation variables that were related to passage and survival of steelhead kelts that passed through FCRPS dams. Bayesian model averaging of multivariable logistic regression models was used to identify the environmental, temporal, operational, individual, and behavioral variables that had the highest probability of influencing the route of passage and the route-specific survival probabilities for kelts that passed Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams in 2012 and 2013. The posterior probabilities of the best models for predicting route of passage ranged from 0.106 for traditional spill at LMN to 0.720 for turbine passage at LGS. Generally, the behavior (depth and near-dam searching activity) of kelts in the forebay appeared to have the greatest influence on their route of passage. Shallower-migrating kelts had a higher probability of passing via the weir and deeper-migrating kelts had a higher probability of passing via the JBS and turbines than other routes. Kelts that displayed a higher level of near-dam searching activity had a higher probability of passing via the spillway weir and those that did less near-dam searching had a higher probability of passing via the JBS and turbines. The side of the river in which kelts approached the dam and dam operations also affected route of passage. Dam operations and the size and condition of kelts were found to have the greatest effect on route-specific survival probabilities for fish that passed via the spillway at LGS. That is, longer kelts and those in fair condition had a lower probability of survival for fish that passed via the spillway weir. The survival of spillway weir- and deep-spill passed kelts was positively correlated with the percent of the total discharge that passed through turbine unit 4. Too few kelts passed through the traditional spill, JBS, and turbine units to evaluate survival through these routes. The information gathered in this study describes Snake River steelhead kelt passage behavior, rates, and distributions through the FCRPS as well as provide information to biologists and engineers about the dam operations and abiotic conditions that are related to passage and survival of steelhead kelts.

  2. Assimilation of rhyolitic magma by basaltic recharge in the Bruneau-Jarbidge eruptive center, Snake River Plain (USA)

    NASA Astrophysics Data System (ADS)

    Morgavi, D.; de Campos, C. P.; Lavallee, Y.; Morgan, L. A.; Perugini, D.; Dingwell, D. B.

    2010-12-01

    Volcanic and magmatic activities in the Snake River Plain (SRP) have been characterised by a notably bimodal geochemical signature. The Bruneau-Jarbidge eruptive center (BJEC), in the southwestern SRP, is a fine example in which basaltic magma injection led to partial melting of the crust and different degrees of assimilation and eruption (Leeman et al., 2008). The BJEC is a 95 km by 55 km structural basin formed, ca.12 to 8 Ma, by multiple eruptions of rhyolitic pyroclastic and lava flows. The silicic eruptive phase is intercalated with a series of basaltic lava flows (e.g. Bonnichsen et al., 2008). Here, we assess the physical and chemical interaction of basaltic and rhyolitic magmas to help constrain the time scales of assimilation in the older southwestern SRP magma reservoirs. The Mary’s Creek basalt (MCB) and the Cougar Point Tuff unit V (CPTV) were chosen as end-members, based on work by Cathey and Nash (2009). The experimental procedure is: 1) geochemical analysis of the original samples using x-ray fluorescence (XRF) and electron microprobe, 2) determination of the temperature dependence of the viscosity of each sample using concentric cylinder and micropenetration methods, 3) magmatic assimilation of the end-members using a Couette geometry, and 4) geochemical analysis of the mixed product. Our geochemical analysis confirms that our end-members contain 49 wt. % SiO2 (MCB) and 76 wt. % SiO2 (CPTV), (c.f., Cathey and Nash, 2009). The dry superliquidus viscosities indicate that at 1450 °C, the CPTV and MCB melts have a viscosities of ~1.2x10^4 Pa*s and ~3x10^0 Pa*s, respectively - yielding a viscosity ratio of rhyolitic to basaltic magma of ca. 4x10^3. Assimilation experiments are being performed at 1450 °C, under laminar fluid conditions (Reynolds number of ca. 10^-7). Although recent numerical models (e.g., Jellinek and Kerr, 1999) suggest magma mixing to be inefficient under low Reynolds numbers and high viscosity ratios, we are hereby testing whether mixing by diffusion/ convection is a viable mechanism in the SRP. Bonnichsen B. et al. Bull. Volcanology 70, 315-342. Cathey H.E. Nash, B.P. 2009. J.Volcanol. Geotherm. Res. 188, 173-185. Leeman W.P. et al, 2008. In: Dynamics of crustal magma transfer, storage and differentiation, pp. 235-259. Jellinek A.M., Kerr R.C. 1999. J. Geophy. Res. 104, 7203-7218.

  3. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume II : Evaluation of the 1996 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin using Program RealTime.

    SciTech Connect

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1998-07-01

    This project was initiated in 1991 in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of this project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to aid management in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community.

  4. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam: Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1997-1998 Annual Report

    Microsoft Academic Search

    David L

    1999-01-01

    The authors report on their progress from April 1997 through March 1998 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative

  5. Concentrations, loads, and sources of polychlorinated biphenyls, Neponset River and Neponset River Estuary, eastern Massachusetts

    USGS Publications Warehouse

    Breault, Robert F.

    2011-01-01

    Polychlorinated biphenyls (PCBs) are known to contaminate the Neponset River, which flows through parts of Boston, Massachusetts, and empties into the Neponset River Estuary, an important fish-spawning area. The river is dammed and impassable to fish. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Fish and Game, Division of Ecological Restoration, Riverways Program, collected, analyzed, and interpreted PCB data from bottom-sediment, water, and (or) fish-tissue samples in 2002, 2004-2006. Samples from the Neponset River and Neponset River Estuary were analyzed for 209 PCB congeners, PCB homologs, and Aroclors. In order to better assess the overall health quality of river-bottom sediments, sediment samples were also tested for concentrations of 31 elements. PCB concentrations measured in the top layers of bottom sediment ranged from 28 nanograms per gram (ng/g) just upstream of the Mother Brook confluence to 24,900 ng/g measured in Mother Brook. Concentrations of elements in bottom sediment were generally higher than background concentrations and higher than levels considered toxic to benthic organisms according to freshwater sediment-quality guidelines defined by the U.S. Environmental Protection Agency. Concentrations of dissolved PCBs in water samples collected from the Neponset River (May 13, 2005 to April 28, 2006) averaged about 9.2 nanograms per liter (ng/L) (annual average of monthly values); however, during the months of August (about 16.5 ng/L) and September (about 15.6 ng/L), dissolved PCB concentrations were greater than 14 ng/L, the U.S. Environmental Protection Agency's freshwater continuous chronic criterion for aquatic organisms. Concentrations of PCBs in white sucker (fillets and whole fish) were all greater than 2,000 ng/g wet wt, the U.S. Environmental Protection Agency's guideline for safe consumption of fish: PCB concentrations measured in fish-tissue samples collected from the Tileston and Hollingsworth and Walter Baker Impoundments were 3,490 and 2,450 ng/g wet wt (filleted) and 6,890 and 4,080 ng/g wet wt (whole fish). Total PCB-congener concentrations measured in the whole bodies of estuarine bait fish (common mummichog) averaged 708 ng/g wet wt. PCBs that pass from the Neponset River to the Neponset River Estuary are either dissolved or associated with particulate matter (including living and nonliving material) suspended in the water column. A small proportion of PCBs may also be transported as part of the body burden of fish and wildlife. During the period May 13, 2005 to April 28, 2006, about 5,100 g (3.8 L or 1 gal) of PCBs were transported from the Neponset River to the Neponset River Estuary. Generally, about one-half of these PCBs were dissolved in the water column and the other half were associated with particulate matter; however, the proportion that was either dissolved or particulate varied seasonally. Most PCBs transported from the river to the estuary are composed of four or fewer chlorine atoms per biphenyl molecule. The data suggest that widespread PCB contamination of the lower Neponset River originated from Mother Brook, a Neponset River tributary, starting sometime around the early 1950s or earlier. In 1955, catastrophic dam failure caused by flooding likely released PCB-contaminated sediment downstream and into the Neponset River Estuary. PCBs from this source area likely continued to be released after the flood and during subsequent rebuilding of downstream dams. Today (2007), PCBs are mostly trapped behind these dams; however, some PCBs either diffuse or are entrained back into the water column and are transported downstream by river water into the estuary or volatilize into the atmosphere. In addition to the continuing release of PCBs from historically contaminated bottom sediment, PCBs are still (2007) originating from source areas along Mother and Meadow Brook as well as other sources along the river and Boston Harbor. PCBs from the river (transported by river water) and from the harbor (transported by tidal action) appear to have contaminat

  6. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    SciTech Connect

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  7. An Update of Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer and Perched-Water Zones, Idaho National Laboratory, Idaho, Emphasis 2002-05

    USGS Publications Warehouse

    Davis, Linda C.

    2008-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer and perched-water zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched-water zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched-water wells in the USGS ground-water monitoring networks during 2002-05. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged primarily from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2001 to March-May 2005, water levels in wells declined throughout the INL area. The declines ranged from about 3 to 8 feet in the southwestern part of the INL, about 10 to 15 feet in the west central part of the INL, and about 6 to 11 feet in the northern part of the INL. Water levels in perched water wells declined also, with the water level dropping below the bottom of the pump in many wells during 2002-05. For radionuclides, concentrations that equal 3s, wheres s is the sample standard deviation, represent a measurement at the minimum detectable concentration, or 'reporting level'. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2002-05. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In October 2005, reportable concentrations of tritium in ground water ranged from 0.51+or-0.12 to 11.5+or-0.6 picocuries per milliliter and the tritium plume extended south-southwestward in the general direction of ground-water flow. Tritium concentrations in water from several wells southwest of the Idaho Nuclear Technology and Engineering Center (INTEC) decreased or remained constant as they had during 1998-2001, with the exception of well USGS 47, which increased a few picocuries per milliliter. Most wells completed in shallow perched water at the Reactor Technology Complex (RTC) were dry during 2002---05. Tritium concentrations in deep perched water exceeded the reporting level in nine wells at the RTC. The tritium concentration in water from one deep perched water well exceeded the reporting level at the INTEC. Concentrations of strontium-90 in water from 14 of 34 wells sampled during October 2005 exceeded the reporting level. Concentrations ranged from 2.2+or-0.7 to 33.1+or-1.2 picocuries per liter. However, concentrations from most wells remained relatively constant or decreased since 1989. Strontium-90 has not been detected within the eastern Snake River Plain aquifer beneath the RTC partly because of the exclusive use of waste-disposal ponds and lined evaporation ponds rather than the disposal well for radioactive-wastewater disposal at RTC. At the RTC, strontium-90 concentrations in water from six wells completed in deep perched ground water exceeded the reporting level during 2002-05. At the INTEC, the reporting level was exceeded in water from three wells completed in deep perched ground water. During 2002-05, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all wells sampled at the INL. During 2002-05, concentrations of cesium-137 in water from all wells sa

  8. Three new species of Alburnoides (Teleostei: Cyprinidae) from Euphrates River, Eastern Anatolia, Turkey.

    PubMed

    Turan, Davut; Kaya, Cüneyt; Ekmekçi, F Güler; Do?an, Esra

    2014-01-01

    Three new species of Alburnoides, Alburnoides emineae sp. n., Alburnoides velioglui sp. n., Alburnoides recepi sp. n., are described from the Euphrates River drainages (Persian Gulf basin) in eastern Anatolia, Turkey. Alburnoides emineae, from Beyazsu Stream (south-eastern Euphrates River drainage), is distinguished from all species of Alburnoides in Turkey and adjacent regions by a combination of the following characters (none unique to the species): a well developed ventral keel between pelvic and anal fins, commonly scaleless or very rarely 1-2 scales covering the anterior portion of the keel; a deep body (depth at dorsal-fin origin 31-36% SL); 37-43 + 1-2 lateral-line scales, 13½-15½ branched anal-fin rays; number of total vertebrae 41-42, modally 41, comprising 20-21 abdominal and 20-21 caudal vertebrae. Alburnoides velioglui, from S?rl?, Karasu, Divri?i and Sultansuyu streams (northern and northeastern Euphrates River drainages), is distinguished by a poorly developed ventral keel, completely scaled; a moderately deep body (depth at dorsal-fin origin 24-29% SL); 45-53 + 1-2 lateral-line scales, 11½ -13½ branched anal-fin rays; number of total vertebrae 41-42, modally 42, comprising 20-22 abdominal and 20-21 caudal vertebrae. Alburnoides recepi, from Merzimen Stream (southern Euphrates River drainage), is distinguished by a well developed ventral keel, completely scaleless; a deep body (depth at dorsal-fin origin 29-34% SL); 47-56 + 2-3 lateral-line scales; 13½-16½ branched anal-fin rays; number of total vertebrae 38-40, comprising 19-21 abdominal and 18-20 caudal vertebrae. PMID:24869683

  9. T-snakes: Topology adaptive snakes

    Microsoft Academic Search

    Tim McInerney; Demetri Terzopoulos

    1999-01-01

    We present a new class of deformable contours (snakes) and apply them to the segmentation of medical images. Our snakes are defined in terms of an affine cell image decomposition (ACID). The 'snakes in ACID' framework significantly extends conventional snakes, enabling topological flexibility among other features. The resulting topology adaptive snakes, or 'T-snakes', can be used to segment some of

  10. The Female Reproductive Cycle of the Neotropical Snake Atractus pantostictus (Fernandes and Puorto, 1993) from South-eastern Brazil.

    PubMed

    de Resende, F C; Nascimento, L B

    2015-06-01

    Data on reproductive activity of fossorial species are limited because the specimens are difficult to be observed and captured. Here in, we present the reproductive cycle of female Atractus pantostictus, a fossorial neotropical species, and the sexual maturity of males and females in south-eastern Brazil. The female reproductive cycle of A. pantostictus is seasonal, with vitellogenic follicles being found from September to April and eggs in November, February, March and April with the number varying between two and four. Spermatozoa were found in the lumen of the glandular and non-glandular uterus in females collected during the rainy season. Sperm storage tubules were found in the posterior infundibulum of the females, where the storage of sperm occurs for a short time. The storage may occur because mating and ovulation are dissociated. PMID:25041410

  11. Response of active tectonics on the alluvial Baghmati River, Himalayan foreland basin, eastern India

    NASA Astrophysics Data System (ADS)

    Jain, Vikrant; Sinha, R.

    2005-09-01

    Active tectonics in a basin plays an important role in controlling a fluvial system through the change in channel slope. The Baghmati, an anabranching, foothills-fed river system, draining the plains of north Bihar in eastern India has responded to ongoing tectonic deformation in the basin. The relatively flat alluvial plains are traversed by several active subsurface faults, which divide the area in four tectonic blocks. Each tectonic block is characterized by association of fluvial anomalies viz. compressed meanders, knick point in longitudinal profiles, channel incision, anomalous sinuosity variations, sudden change in river flow direction, river flow against the local gradient and distribution of overbank flooding, lakes, and waterlogged area. Such fluvial anomalies have been identified on the repetitive satellite images and maps and interpreted through DEM and field observations to understand the nature of vertical movements in the area. The sub-surface faults in the Baghmati plains cut across the river channel and also run parallel which have allowed us to observe the effects of longitudinal and lateral tilting manifested in avulsions and morphological changes.

  12. COLONIZATION OF BENTHIC INVERTEBRATES ON ARTIFICIAL SUBSTRATES IN THE SNAKE, SPOKANE, CLARK FORK, AND BEAR RIVER DRAINAGES, 1977

    EPA Science Inventory

    This study was conducted as part of a continuing monitoring program by the EPA on the physical, chemical, and biological parameters of waterways of the United States. The principal objective was to assess benthic invertebrate communities in the Snake, Spokane, Clark Fork, and Be...

  13. Numerically Simulating the Hydrodynamic and Water Quality Environment for Migrating Salmon in the Lower Snake River, 2002-2003 Technical Report.

    SciTech Connect

    Cook, C.; Richmond, M.; Coleman, A. (Pacific Northwest National Laboratory)

    2003-06-01

    Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater and Lower Snake Rivers and to improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional hydrodynamic and thermal conditions at the Clearwater and Snake River confluence and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. Hydrodynamic, water quality, and meteorological conditions around the reservoir were monitored at frequent intervals, and this effort is continuing in 2003. Monitoring of the reservoir is a multi-year endeavor, and this report spans only the first year of data collection. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model has been applied. This model uses field data as boundary conditions and has been applied to the entire 2002 field season. Numerous data collection sites were within the model domain and serve as both calibration and validation locations for the numerical model. Errors between observed and simulated data varied in magnitude from location to location and from one time to another. Generally, errors were small and within expected ranges, although, as additional 2003 field data becomes available, model parameters may be improved to minimize differences between observed and simulated values. A two-dimensional, laterally-averaged hydrodynamic and water quality model was applied to the three reservoirs downstream of LGR (the pools behind Little Goose, Lower Monumental, and Ice Harbor Dams). A two-dimensional model is appropriate for these reservoirs because observed lateral thermal variations during summer and fall 2002 were almost negligible; however, vertical thermal variations were quite large (see USACE 2003). The numerical model was applied to each reservoir independently to simulate the time period between May 1 and October 1, 2002. Differences between observed and simulated data were small, although improvements to model coefficients may be performed as additional thermal data, collected in the reservoirs during 2003, becomes available.

  14. Extraction and distribution of organochlorine compounds in eastern Lake Erie and Niagara River water

    SciTech Connect

    Driscoll, M.S.

    1992-01-01

    A chromic acid digestion extraction technique was compared to conventional solvent extraction for recovery of a series of organochlorine compounds (chlorinated benzenes, polychlorinated biphenyls, DDT, DDE, mirex and photomirex) from centrifuged water collected at two sites along the Niagara River, between 1/22/86 and 1/7/87. The sampling sites were located near the river's inlet at Fort Erie, Ontario and close to the river's outlet to Lake Ontario at Niagara-on-the-Lake Ontario. The digestion technique was more efficient than conventional solvent extraction. Relative recovery (undigested/digested) decreased exponentially with increasing log K[sub ow]. This implies that digestion-extraction recovers both the fraction dissolved and the fraction bound to dissolved organic matter (DOM), while conventional solvent extraction only recovers the dissolved fraction. As the time compounds equilibrated with the DOM increased, the extraction efficiencies by conventional extraction decreased while the efficiencies by digestion extraction remained 100%. Results obtained with the digestion technique were also more reproducible than those with conventional solvent extraction. the relative recoveries also varied between the two sites. Using conventional solvent extraction PCB concentrations appeared to decrease by about 13% along the length of the river while with digestion extraction the PCBs increased by approximately 33%. To study the homogeneity of water in the eastern basin of Lake Erie, uncentrifuged water samples collected from the inlet of the Niagara River at Fort Erie, Ontario, were compared to samples collected from Lake Erie at Sturgeon Point, New York for the period from 7/24/86 to 1/24/87. The average concentrations of four PCB congeners, total organic carbon, turbidity and conductance were similar at the two sampling sites. The average p,p[prime]-DDE concentration was 0.53 ng/L at Fort Erie but only 0.28 ng/L at Sturgeon Point.

  15. Evaluation of the 2008 Predictions of Run-Timing and Survival of Wild Migrant Yearling Chinook and Steelhead on the Columbia and Snake Rivers.

    SciTech Connect

    Beer, W. Nicholas; Iltis, Susannah; Anderson, James J.

    2009-01-01

    Columbia Basin Research uses the COMPASS model on a daily basis during the outmigration of Snake River Chinook and steelhead smolts to predict downstream passage and survival. Fish arrival predictions and observations from program RealTime along with predicted and observed environmental conditions are used to make in-season predictions of arrival and survival to various dams in the Columbia and Snake Rivers. For 2008, calibrations of travel and survival parameters for two stocks of fish-Snake River yearling PIT-tagged wild chinook salmon (chin1pit) and Snake River PIT-tagged steelhead (lgrStlhd)-were used to model travel and survival of steelhead and chinook stocks from Lower Granite Dam (LWG) or McNary Dam (MCN) to Bonneville Dam (BON). This report summarizes the success of the COMPASS/RealTime process to model these migrations as they occur. We compared model results on timing and survival to data from two sources: stock specific counts at dams and end-of-season control survival estimates (Jim Faulkner, NOAA, pers. comm. Dec. 16, 2008). The difference between the predicted and observed day of median passage and the Mean Absolute Deviation (MAD) between predicted and observed arrival cumulative distributions are measures of timing accuracy. MAD is essentially the average percentage error over the season. The difference between the predicted and observed survivals is a measure of survival accuracy. Model results and timing data were in good agreement from LWG to John Day Dam (JDA). Predictions of median passage days for the chin1pit and lgrStlhd stocks were 0 and 2 days (respectively) later than observed. MAD for chin1pit and lgrStlhd stocks at JDA were 2.3% and 5.9% (respectively). Between JDA and BON modeling and timing data were not as well matched. At BON, median passage predictions were 6 and 10 days later than observed and MAD values were 7.8% and 16.0% respectively. Model results and survival data were in good agreement from LWG to MCN. COMPASS predicted survivals of 0.77 and 0.69 for chin1pit and lgrStlhd, while the data control's survivals were 0.79 and 0.68. The differences are 0.02 and 0.01 (respectively), nearly identical. However, from MCN to BON, COMPASS predicted survivals of 0.74 and 0.69 while the data controls survivals were 0.47 and 0.53 respectively. Differences of 0.27 and 0.16. In summary: Travel and survival of chin1pit and lgrStlhd stocks were well modeled in the upper reaches. Fish in the lower reaches down through BON suffered unmodeled mortality, and/or passed BON undetected. A drop in bypass fraction and unmodeled mortality during the run could produce such patterns by shifting the observed median passage day to appear artificially early.

  16. Ecology of the Southeastern Crowned Snake, Tantilla coronata

    E-print Network

    Todd, Brian

    Ecology of the Southeastern Crowned Snake, Tantilla coronata Brian D. Todd1 , John D. Willson1 studies of the ecology of small-bodied snakes. Here, we describe the ecology and demography of the Southeastern Crowned Snake (Tantilla coronata) based on 1,640 captures on the Savannah River Site in the Upper

  17. Savannah River Site Eastern Transportation Hub: A Concept For a DOE Eastern Packaging, Staging and Maintenance Center - 13143

    SciTech Connect

    England, Jeffery L. [Savannah River National Laboratory, Aiken, South Carolina (United States)] [Savannah River National Laboratory, Aiken, South Carolina (United States); Adams, Karen; Maxted, Maxcine; Ruff Jr, Clarence [U.S. Department of Energy, Savannah River Site, Aiken, SC (United States)] [U.S. Department of Energy, Savannah River Site, Aiken, SC (United States); Albenesius, Andrew; Bowers, Mark D.; Fountain, Geoffrey; Hughes, Michael [Savannah River Nuclear Solutions, Aiken, SC (United States)] [Savannah River Nuclear Solutions, Aiken, SC (United States); Gordon, Sydney [National Security Technologies, LLC, Las Vegas, NV (United States)] [National Security Technologies, LLC, Las Vegas, NV (United States); O'Connor, Stephen [U.S. Department of Energy, HQ DOE, EM-33, Germantown MD (United States)] [U.S. Department of Energy, HQ DOE, EM-33, Germantown MD (United States)

    2013-07-01

    The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow for efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose of packagings on a project-by-project basis. This initiative provides significant savings in packaging costs and acceleration of project schedules. In addition to certified packaging, the PSMC would be well suited for select designs of 7A Type A packaging and Industrial Packaging. (authors)

  18. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer, Idaho National Laboratory, Idaho, Emphasis 1999-2001

    USGS Publications Warehouse

    Davis, Linda C.

    2006-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from wells in the USGS ground-water monitoring networks during 1999-2001. Water in the Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. Water levels in wells rose in the northern and west-central parts of the INL by 1 to 3 feet, and declined in the southwestern parts of the INL by up to 4 feet during 1999-2001. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 1999-2001. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge. Tritium concentrations in water samples decreased as much as 8.3 picocuries per milliliter (pCi/mL) during 1999-2001, ranging from 0.43?0.14 to 13.6?0.6 pCi/mL in October 2001. Tritium concentrations in five wells near the Idaho Nuclear Technology and Engineering Center (INTEC) increased a few picocuries per milliliter from October 2000 to October 2001. Strontium-90 concentrations decreased or remained constant during 1999-2001, ranging from 2.1?0.6 to 42.4?1.4 pCi/L in October 2001. During 1999-2001, concentrations of cesium-137, plutonium-238, and plutonium-239, -240 (undivided) were less than the reporting level in water samples from all wells sampled at the INL. The concentration of americium-241 in one sample was 0.003?0.001 pCi/L, the reporting level for that constituent. Cobalt-60 was not detected in any samples collected during 1999-2001. Changes in detectable concentrations of nonradioactive chemical constituents in water from the Snake River Plain aquifer at the INL varied during 1999-2001. In October 2001, water from one well south of the Reactor Technology Complex (RTC) [known as the Test Reactor Area (TRA) until 2005] contained 139 micrograms per liter (?g/L) of chromium, a decrease from the concentration of 168 ?g/L detected in October 1998. Other water samples contained from less than 16.7 to 21.3 ?g/L of chromium. In October 2001, concentrations of sodium in water samples from most of the wells in the southern part of the INL were larger than the background concentration of 10 mg/L, but were similar to or slightly less than October 1998 concentrations. The largest sodium concentration was 75 milligrams per liter (mg/L) in water from well USGS 113. In 2001, chloride concentrations in most water samples from the INTEC and the Central Facilities Area (CFA) exceeded ambient concentrations of 10 and 20 mg/L, respectively. Chloride concentrations in water from wells near the RTC were less than 20 mg/L. At the Radioactive Waste Management Complex (RWMC), chloride concentrations in water from wells USGS 88, 89, and 120 were 81, 40, and 23 mg/L, respectively. Concentrations of chloride in all other wells near the RWMC were less than 19 mg/L. During 2001, concentrations of sulfate in water from two wells near the RTC, two wells near the RWMC, and one well near the CFA exceeded 40 mg/L, the estimated background concentration of sulfate in the Snake River

  19. Using fill terraces to understand incision rates and evolution of the Colorado River in eastern Grand Canyon, Arizona

    Microsoft Academic Search

    Joel L. Pederson; Matt D. Anders; Tammy M. Rittenhour; Warren D. Sharp; John C. Gosse; Karl E. Karlstrom

    2006-01-01

    The incision and aggradation of the Colorado River in eastern Grand Canyon through middle to late Quaternary time can be traced in detail using well-exposed fill terraces dated by a combination of optically stimulated luminescence, uranium series, and cosmogenic nuclide dating. This fluvial history provides the best bedrock incision rate for this important landscape and highlights the complications and advantages

  20. Changes in organic matter from surface waters to continental slope sediments off the São Francisco River, eastern Brazil

    Microsoft Academic Search

    Tim C Jennerjahn; Venugopalan Ittekkot

    1999-01-01

    Suspended matter, settling particles and sediments from the continental margin off the São Francisco, the largest river of eastern Brazil, were analyzed for amino acids, hexosamines and carbohydrates. Their concentrations and spectral distributions are comparable to those observed in other marine regions and exhibit variations which are related to the degree of dilution with lithogenic material. Preferential degradation and transformation

  1. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2004-2005 Annual Report.

    SciTech Connect

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2005-10-01

    In 2004, the National Marine Fisheries Service and the University of Washington completed the twelfth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,621 hatchery steelhead, 8,128 wild steelhead, and 9,227 wild yearling Chinook salmon at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2004 were to (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2004 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2004 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. Overall, the percentages for combined release groups used in survival analyses were 68% hatchery-reared yearling Chinook salmon and 32% wild. For steelhead, the overall percentages were 73% hatchery-reared and 27% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.923 for yearling Chinook salmon and 0.860 for steelhead. Respective average survival estimates for yearling Chinook salmon and steelhead were 0.875 and 0.820 from Little Goose Dam tailrace to Lower Monumental Dam tailrace; 0.818 and 0.519 from Lower Monumental Dam tailrace to McNary Dam tailrace (including passage through Ice Harbor Dam); and 0.809 and 0.465 from McNary Dam tailrace to John Day Dam tailrace. Survival for yearling Chinook salmon from John Day Dam tailrace to Bonneville Dam tailrace (including passage through The Dalles Dam) was 0.735. We were unable to estimate survival through this reach for steelhead during 2004 because too few fish were detected at Bonneville Dam due to operation of the new corner collector at the second powerhouse. Combining average estimates from the Snake River smolt trap to Lower Granite Dam, from Lower Granite Dam to McNary Dam, and from McNary Dam to Bonneville Dam, estimated annual average survival through the entire hydropower system from the head of Lower Granite reservoir to the tailrace of Bonneville Dam (eight projects) was 0.353 (s.e. 0.045) for Snake River yearling Chinook salmon. We could not empirically estimate survival through the entire system for steelhead in 2004 because of low detection rates for this species at Bonneville Dam. For yearling spring Chinook salmon released in the Upper Columbia River, estimated survival from point of release to McNary Dam tailrace was 0.484 (s.e. 0.005) for fish released from Leavenworth Hatchery, 0.748 (s.e. 0.015) for fish released from Entiat Hatchery, 0.738 (s.e. 0.036) for fish released from Winthrop Hatchery, and 0.702 (s.e. 0.048) and 0.747 (s.e.0.047) for those from Methow Hatchery, Chewuch Pond and

  2. Chemical analyses of ground water related to geothermal investigations in the Teton River area, eastern Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1979-01-01

    Water samples from 31 wells and springs in eastern Idaho and western Wyoming were collected to help evaluate the potential geothermal resources in the Teton River area. Water analyses included anions and cations, oxygen-18, deuterium, and several minor elements. Actual temperature of the thermal waters ranged from 23 to 49C. Estimated aquifer temperatures, as derived from geochemical thermometers, ranged from 45 to 145C based on sodium-potassium-calcium ratios. Using the cation thermometer, two analyses indicated aquifer temperatures lower than actual measured temperatures. Using a mixing model method, estimated temperatures ranged from 205 to 320C, the higher being of questionable value. The different methods used showed little correlation. Based on isotope data, the warm waters may be of local meteoric origin and not heated enough to react significantly with aquifer rocks; or, they originated as precipitation at high altitude and great distance from the area. (Woodard-USGS)

  3. Breeding season demography and movements of Eastern Towhees at the Savannah River Site, South Carolina

    USGS Publications Warehouse

    Krementz, D.G.; Powell, L.A.

    2000-01-01

    The Eastern Towhee (Pipilo erythrophthalmus) has undergone population declines across much of its range, especially in New England. Despite being a widespread and, at one time, a common species, relatively little is known about its natural history, ecology, or demographics. We conducted baseline research on Eastern Towhees at the Savannah River Site, South Carolina, in 1995 and 1996 to estimate breeding season survival rates, nest success rates, breeding densities, and daily movements. We also were interested in whether towhees had differences in survival and movement rates between young and mature managed pine stands. We found that survival rates during the breeding season of radio-marked towhees did not vary by sex or stand type. Daily nest success rates were very low [0.629 + 0.088 (SE)] as a result of high predation levels. Abundance estimates adjusted for sampling effort differed between years. In 1995, the abundance estimate was significantly lower in mature stands (7.1 + 0.47) than in-young stands (9.6 + 0.60) while in 1996, there was no different between mature stands (26.2 ? 5.67) and young stands (16.5 ? 3.39). Average daily movements by radio-marked towhees did not vary by sex or stand type. Movements among adjacent stands were common, and sometimes great distances.

  4. Chlorinated hydrocarbon concentrations in plasma of the Lake Erie water snake (Nerodia sipedon insularum) and northern water snake (Nerodia sipedon sipedon) from the Great Lakes basin in 1998.

    PubMed

    Bishop, C A; Rouse, J D

    2000-11-01

    From the Great Lakes basin, concentrations of 59 congener-specific polychlorinated biphenyls (PCBs) and 14 organochlorine pesticides were measured in blood plasma of northern water snake (Nerodia sipedon sipedon) and Lake Erie water snake (Nerodia sipedon insularum), which is endangered in Canada. In 1998, four male adult Lake Erie water snakes were sampled from Pelee Island, western Lake Erie; four male northern water snakes were sampled at Little Lake, about 20 km north of Parry Sound in central Ontario; and four adult gravid female northern water snakes were sampled from Garden Island, eastern Lake Ontario. The blood plasma was pooled by site for a total of three samples analyzed. The Pelee Island sample from male Lake Erie water snakes contained less than half the lipid concentration (0.349%) than samples from the other sites, but it was the most contaminated with PCBs, even on a wet weight basis. Summed concentration of individual PCBs in the Pelee Island sample was 167 ng/g (wet weight), which was 14-fold higher than the next most contaminated sample, which was from Little Lake. The plasma sample from Little Lake contained 12 ng/g (WW) and was four times more contaminated with PCBs than the sample from female snakes from Garden Island, Lake Ontario. Organochlorine pesticide concentrations in plasma were relatively similar among sites. None of the pesticides was found above trace concentrations (0.1-0.9 ng/g) except pp'-DDE, which occurred at 2-5 ng/g among sites. PCB congener patterns in the Lake Erie water snakes were compared to PCB patterns in plasma of common snapping turtle (Chelydra serpentina serpentina) from Lake Ontario, herring gull eggs (Larus argentatus) from western Lake Erie, and mudpuppy eggs (Necturus maculosus) from the Detroit River. The PCB patterns in water snake and herring gull sample were most similar, followed by the pattern in snapping turtle plasma. The presence of more lower-chlorinated chlorobiphenyls in the mudpuppy eggs relative to the other species made this sample distinct from the water snake, gull, and turtle. PMID:11031311

  5. Pendulum Snake

    NSDL National Science Digital Library

    2012-07-12

    In this physics activity, learners assemble and/or investigate a pendulum "snake." Several large steel hex-nuts are suspended on strings of successively increasing length to form a series of pendulums with successively increasing periods. When all pendulums are released simultaneously with the same amplitude, they gradually form an undulating snake-like pattern, and then undergo further changes which are fascinating from both a visual and mathematical perspective.

  6. Hydrothermal alteration and melting of the crust during the Columbia River Basalt-Snake River Plain transition and the origin of low-?18O rhyolites of the central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Colón, Dylan P.; Bindeman, Ilya N.; Ellis, Ben S.; Schmitt, Axel K.; Fisher, Christopher M.

    2015-05-01

    We present compelling isotopic evidence from ~15 Ma rhyolites that erupted coeval with the Columbia River Basalts in southwest Idaho's J-P Desert and the Jarbidge Mountains of northern Nevada at that suggests that the Yellowstone mantle plume caused hydrothermal alteration and remelting of diverse compositions of shallow crust in the area where they erupted. These rhyolites also constitute the earliest known Miocene volcanism in the vicinity of the Bruneau-Jarbidge and Twin Falls (BJTF) volcanic complexes, a major center of voluminous (103-104 km3) low-?18O rhyolitic volcanism that was previously defined as being active from 13 to 6 Ma. The Jarbidge Rhyolite has above-mantle ?18O (?18O of +7.9‰ SMOW) and extremely unradiogenic ?Hf (- 34.7) and ?Nd (- 24.0). By contrast, the J-P Desert units are lower in ?18O (+4.5 to 5.8‰), and have more moderately unradiogenic whole-rock ?Hf (- 20.3 to - 8.9) and ?Nd (- 13.4 to - 7.7). The J-P Desert rhyolites are geochemically and petrologically similar to the younger rhyolites of the BJTF center (the one exception being their high ?18O values), suggesting a common origin for J-P Desert and BJTF rhyolites. The presence of low-?18O values and unradiogenic Nd and Hf isotopic compositions, both of which differ greatly from the composition of a mantle differentiate, indicate that some of these melts may be 50% or more melted crust by volume. Individual J-P Desert units have isotopically diverse zircons, with one lava containing zircons ranging from - 0.6‰ to + 6.5‰ in ?18O and from - 29.5 to - 2.8 in ?Hf. Despite this diversity, zircons all have Miocene U/Pb ages. The range of zircon compositions fingerprints the diversity of their source melts, which in turn allow us to determine the compositions of two crustal end-members which melted to form these rhyolites. These end-members are: 1) Archean basement with normal to high-?18O and unradiogenic ?Hf and 2) hydrothermally altered, shallow, young crust with low-?18O (0-1‰) and more radiogenic ?Hf. We suggest that the shallow crust's low-?18O composition is the result of hydrothermal alteration which was driven by a combination of normal faulting and high heat fluxes from intruding Yellowstone plume-derived basalts shortly prior to the onset of silicic magmatism. Furthermore, zircon diversity in the J-P Desert units suggests rapid assembly of zircon-bearing melts of varying isotopic composition prior to eruption, creating well-mixed magmas with heterogeneous zircons. We suggest that this hydrothermal priming of the crust followed by remelting upon further heating may be a common feature of intraplate mantle plume volcanism worldwide.

  7. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008 Report of Research.

    SciTech Connect

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E. [Northwest Fisheries Science Center

    2009-05-26

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m{sup 2}) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.

  8. Time-series studies of drainage pattern and morphological features along the Leitha river (Eastern Austria)

    NASA Astrophysics Data System (ADS)

    Zámolyi, A.; Draganits, E.; Doneus, M.; Fera, M.; Griebl, M.

    2009-04-01

    Geomorphologic mapping and drainage network analysis was conducted in the Southern Vienna Basin on the Leitha and Fischa rivers. The study area belongs to an active pull-apart basin between the Eastern Alps and the Carpathians that started to subside in Karpatian times (~ 17 Ma), but with still active faults, proven by fault scarps and earth quakes. The investigated rivers are important tributaries to the Danube river and run through a region that has been subject to settlement since Neoltihic times. Thus, interaction between land use, settlement pattern and river dynamics can be studied. Several datasets are integrated to perform a comprehensive overview of geomorphological, as well as river dynamic changes in the landscape. During an earlier stage of this investigation a map of paleochannel distribution including the location and shape of the paleochannels was extracted from color-infrared and RGB digital orthophotos. Based on this map the location, character and shape of palaeomeanders is studied on different georeferenced historic maps (Timár et al., 2006; Biszak et al., 2007) in order to derive a time-series study. The paleochannels extracted from the digital orthophotos show a good coincidence with the depicted rivers on the historic maps. This partly allows quite well constrained age estimates of the paleochannel sections. The investigated maps are the Walter maps, the First, Second and Third Military Survey of the Habsburg/Austro-Hungarian Empire. Mapping of the Walter maps was conducted 1754-56 (Ulbrich, 1952), the First, Second and Third Military Surveys were mapped in this area in the time-span of 1782-1785, 1819-1869, and 1872-1873, respectively (Kretschmer et al., 2004). This sequence of georeferenced historical maps allows to study only a very short time-span (1755 - 1873) compared to the geological time scale. However, the characteristics of river dynamics special for the study area can be derived and, considering certain assumptions, extrapolated to a wider time range. Within the observable time period the Leitha river preserved its meandering characteristics. Small shifts of the mean channel towards E or W can be detected. A disadvantage of the maps previous to the Third Military Survey is the lack of contour lines. On these maps, variation in terrain elevation was mapped „a la vue" and rather depicted as changes in slope of the terrain by applying hatchures showing a density increase with higher slope. This method provided a very plastic overview of changes in the terrain, but the reading of absolute or relative elevations is not possible. According to this, geomorphologic observations from these maps are constricted to the comparison of the horizontal position of elevated areas and the change of their outline. This study shows that historical maps provide an essential tool to investigate younger river dynamics and sensitively show the impact of anthropological modifications as well as active tectonics. Biszak, S., Timár, G., Molnár, G., Jankó, A. (2007): Digitized maps of the Habsburg Empire - The third military survey, Österreichisch-Ungarische Monarchie, 1869-1887, 1:75000. DVD-issue, Arcanum, Budapest. ISBN 978-963-73-7451-7 Kretschmer, I., Dörflinger, J., Wawrick, F. (2004): Österreichische Kartographie. Wiener Schiften zur Geographie und Kartographie - Band 15. Institut für Geographie und Regionalforschung der Universität Wien, Wien. Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p. ISBN 963-7374-33-7 Ulbrich K. (1952): Die Grenzkarte Ungarn-Niederösterreich von C. J. Walter (1754 - 56). Burgenländische Heimatblätter, 14, 108-121

  9. Isotope provenance of Eastern Himalayan rivers draining to the south into India, Nepal and Bhutan.

    NASA Astrophysics Data System (ADS)

    Gemignani, Lorenzo; Wijbrans, Jan; Najman, Yani; van der Beek, Peter

    2015-04-01

    The two syntaxis of the Himalaya (Eastern and western) are exhuming anomalously fast compared to the rest of Himalaya , and various hypothesis and models have been proposed to explain this, including coupled tectonic-erosion model of (Tectonic Aneurism)1-2 and ductile extrusion of weak lower crust from beneath Tibet by 'channel flow' 3 . The Namche Barwa metamorphic massif constitutes the eastern syntaxis of the belt and has experienced a complex history of uplift and deformation both influenced by intense fluvial erosion associated with the Yarlung-Tzangpo. Therefore, the Himalayas represent a unique natural laboratory where the interactions between the tectonics, erosion, climate and drainage evolution can be investigated. The purpose of the work is to understand in collaboration with other PhD students and European researchers collaborating in the iTECC Marie Curie Initial training Network the importance of processes involving the complex links and feedbacks between climate, tectonics and erosion. In this multi-disciplinary and multi-technique study the mains goals will be to assess the timing of rapid exhumation, to determine provenance source area exhumation of the syntaxis in relation to the big river capture event that has implicates the Yarlung-Tsangpo by the Brahmaputra, and the effect of the dilution of the syntaxis signal 's downstream. During the work the 40Ar/39Ar dating of single-grain detrital micas technique will be used to analyze smaller and younger grains using newly developed high sensitivity multi-collection noble gas mass spectrometry. Detrital zircon fission-track is perform to provides robust cooling age time of the sources terrains. Input from eastern syntaxis has been identified in the Brahmaputra sedimentary record by the appearance of very young grains (from 10 Ma to 6 Ma)4. To compare and to increase the previously collected data, fifteen samples from the Yarlung-Brahmaputra River system and from tributaries draining the Himalaya, the Arakan belt and the Shillong plateau, have been collected in the Arunachal Pradesh and Assam regions of the North-east India. The sampling work, and subsequent 40Ar/39Ar dating of single-grain micas, are used to determine provenance source area exhumation to obtain an overview of the age and the tectonic processes that have driven the exhumation of the Himalayan syntaxes in the late Neogene exhumation history. At a later stage the focus will be on the Ganges drainage system to obtain a more detailed overview of the processes laid by the late stage of the exhumation of the Eastern Himalaya. In this scenario is it possible to assume a Neogene rapid exhumation of the eastern syntaxis or is simply the effect of dilution which prevents the young ages doing to high erosion rate affecting the Namche Barwa from the last millions of years. How is the distribution of the syntaxis signal's in the main Siang and Brahmaputra drainage system at different position upstream and downstream, and how this aspect is related with influence of the main Himalayan tributaries, are questions to investigate.

  10. Geographic patterns of introgressive hybridization between native Yellowstone cutthroat trout ( Oncorhynchus clarkii bouvieri) and introduced rainbow trout ( O. mykiss ) in the South Fork of the Snake River watershed, Idaho

    Microsoft Academic Search

    Kelly Gunnell; Michelle K. Tada; Felicia A. Hawthorne; Ernest R. Keeley; Margaret B. Ptacek

    2008-01-01

    Throughout its native range, the Yellowstone cutthroat trout (YCT), Oncorhynchus clarkii bouvieri, is declining dramatically in both abundance and distribution as a result of introgression with introduced rainbow trout\\u000a (RBT), O. mykiss. We sampled over 1,200 trout from the South Fork of the Snake River (SFSR) watershed, in southeastern Idaho and western Wyoming,\\u000a and measured the extent of introgression of

  11. Results of 2001 Groundwater Sampling in Support of Conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the Vicinity of the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Meachum, T.R.

    2002-04-26

    This report summarizes the results of sampling five groundwater monitoring wells in the vicinity of the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory in 2001. Information on general sampling practices, quality assurance practices, parameter concentrations, representativeness of sampling results, and cumulative cancer risk are presented. The information is provided to support a conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the vicinity of the Idaho Nuclear Technology and Engineering Center.

  12. Results of 2001 Groundwater Sampling in Support of Conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the Vicinity of the INTEC at the INEEL

    SciTech Connect

    Meachum, Teresa Ray

    2002-04-01

    This report summarizes the results of sampling five groundwater monitoring wells in the vicinity of the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory in 2001. Information on general sampling practices, quality assurance practices, parameter concentrations, representativeness of sampling results, and cumulative cancer risk are presented. The information is provided to support a conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the vicinity of the Idaho Nuclear Technology and Engineering Center.

  13. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    SciTech Connect

    Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-07-01

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  14. Hydrogeology and water quality in the Snake River alluvial aquifer at Jackson Hole Airport, Jackson, Wyoming, water years 2011 and 2012

    USGS Publications Warehouse

    Wright, Peter R.

    2013-01-01

    The hydrogeology and water quality of the Snake River alluvial aquifer at the Jackson Hole Airport in northwest Wyoming was studied by the U.S. Geological Survey, in cooperation with the Jackson Hole Airport Board, during water years 2011 and 2012 as part of a followup to a previous baseline study during September 2008 through June 2009. Hydrogeologic conditions were characterized using data collected from 19 Jackson Hole Airport wells. Groundwater levels are summarized in this report and the direction of groundwater flow, hydraulic gradients, and estimated groundwater velocity rates in the Snake River alluvial aquifer underlying the study area are presented. Analytical results of groundwater samples collected from 10 wells during water years 2011 and 2012 are presented and summarized. The water table at Jackson Hole Airport was lowest in early spring and reached its peak in July or August, with an increase of 12.5 to 15.5 feet between April and July 2011. Groundwater flow was predominantly horizontal but generally had the hydraulic potential for downward flow. Groundwater flow within the Snake River alluvial aquifer at the airport was from the northeast to the west-southwest, with horizontal velocities estimated to be about 25 to 68 feet per day. This range of velocities slightly is broader than the range determined in the previous study and likely is due to variability in the local climate. The travel time from the farthest upgradient well to the farthest downgradient well was approximately 52 to 142 days. This estimate only describes the average movement of groundwater, and some solutes may move at a different rate than groundwater through the aquifer. The quality of the water in the alluvial aquifer generally was considered good. Water from the alluvial aquifer was fresh, hard to very hard, and dominated by calcium carbonate. No constituents were detected at concentrations exceeding U.S. Environmental Protection Agency maximum contaminant levels or health advisories; however, reduction and oxidation (redox) measurements indicate oxygen-poor water in many of the wells. Gasoline-range organics, three volatile organic compounds, and triazoles were detected in some groundwater samples. The quality of groundwater in the alluvial aquifer generally was suitable for domestic and other uses; however, dissolved iron and manganese were detected in samples from many of the monitor wells at concentrations exceeding U.S. Environmental Protection Agency secondary maximum contaminant levels. Iron and manganese likely are both natural components of the geologic materials in the area and may have become mobilized in the aquifer because of redox processes. Additionally, measurements of dissolved-oxygen concentrations and analyses of major ions and nutrients indicate reducing conditions exist at 7 of the 10 wells sampled. Measurements of dissolved-oxygen concentrations (less than 0.1 to 9 milligrams per liter) indicated some variability in the oxygen content of the aquifer. Dissolved-oxygen concentrations in samples from 3 of the 10 wells indicated oxic conditions in the aquifer, whereas low dissolved-oxygen concentrations (less than 1 milligram per liter) in samples from 7 wells indicated anoxic conditions. Nutrients were present in low concentrations in all samples collected. Nitrate plus nitrite was detected in samples from 6 of the 10 monitored wells, whereas dissolved ammonia was detected in small concentrations in 8 of the 10 monitored wells. Dissolved organic carbon concentrations generally were low. At least one dissolved organic carbon concentration was quantified by the laboratory in samples from all 10 wells; one of the concentrations was an order of magnitude higher than other detected dissolved organic carbon concentrations, and slightly exceeded the estimated range for natural groundwater. Samples were collected for analyses of dissolved gases, and field analyses of ferrous iron, hydrogen sulfide, and low-level dissolved oxygen were completed to better understand the redox conditions of the alluvial aquifer. Dissolved gas

  15. Preliminary Fracture Description from Core, Lithological Logs, and Borehole Geophysical Data in Slimhole Wells Drilled for Project Hotspot: the Snake River Geothermal Drilling Project

    NASA Astrophysics Data System (ADS)

    Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.

    2011-12-01

    The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at 2,000 m depth is 102°C. The rock types at Kimama and Kimberly are primarily basalt and rhyolite, respectively, with interbedded thin sedimentary layers. We identify anomalies in the physical properties of igneous rocks using porosity logs (neutron and acoustic), lithology logs (gamma ray and magnetic susceptibility) and fracture/saturation logs (televiewer and electrical resistivity). The core will be used to constrain the geophysical data and confirm the ability to identify permeability in fracture zones and saturated zones through analysis of the wireline log data. The matrix porosity of these igneous lithologies is near zero aside from porosity from vugs and vesicles. However, open and sealed fractures indicate that mineralizing fluids form connected pathways in the rock. Core samples show a series of alteration phases, including amygdaloidal fine-grained calcite and secondary clays. The geophysical data will be used to predict anomalies in lithology and identify open fractures and saturated zones with high permeability.

  16. White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.

    SciTech Connect

    Nez Perce Tribe Resources Management Staff, (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-09-01

    White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of white sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates of early life stages by modifying flows in the HCR, reducing mortality imposed by the catch and release fishery, augmenting natural production through translocation or hatchery releases, and assessing detrimental effects of contaminants on reproductive potential. These proposed actions were evaluated by assessing their relative potential to affect population growth rate and by determining the feasibility of their execution, including a realistic timeframe (short-term, mid-term, long-term) for their implementation and evaluation. A multi-pronged approach for management was decided upon whereby various actions will be implemented and evaluated under different timeframes. Priority management actions include: Action I- Produce juvenile white sturgeon in a hatchery and release into the management area; Action G- Collect juvenile white sturgeon from other populations in the Snake or Columbia rivers and release them into the management area; and Action D- Restore white sturgeon passage upriver and downriver at Lower Snake and Idaho Power dams. An integral part of this approach is the continual monitoring of performance measures to assess the progressive response of the population to implemented actions, to evaluate the actions efficacy toward achieving objectives, and to refine and redirect strategies if warranted.

  17. Snake Venom

    NSDL National Science Digital Library

    Sohmer, Rachel.

    2003-01-01

    The following collection of Web sites explores the properties and novel medical uses of snake venom. The first Web site (1), a ThinkQuest prizewinner, is one part of a well-crafted and informative guide to the earth's poisonous plants and animals. This particular Web page offers a good introduction to snake venom, including a table detailing the effect and concentration of the different proteins found in venom that can kill or paralyze prey. The next Web site comes from The Reptile House, a commercial breeder and supplier of reptiles and amphibians, and presents photos and facts about the ten deadliest snakes on the planet (2). A straightforward description of the three types of venomous snakes (opisthoglyphs, proteroglyphs, and solenoglyphs) and a short overview of the properties of venom is available from www.venomous.com, a privately hosted Web site (3). The next Web site comes from the online companion to the PBS Nature documentary: The Serpent's Tooth (4). The site contains an engaging article about the intrepid Bill Haast, director of the Miami Serpentarium, who "has been bitten by venomous snakes more than 160 times -- and lived to tell the tale." Howard Reinert, another snake biologist and (surprise!) snakebite victim, relates his experiences with a "dry" bite and the real thing in the next Web site from AnimalPlanet.com (5). The site also includes audio segments of experts discussing the physiological effects of snake venom and what to do if bitten by a rattlesnake. Is rattlesnake venom evolving? Research suggests that North American rattlesnake venom has become increasingly potent -- the focus of an interesting article from the American Museum of Natural History (6). The article also provides a detailed introduction to rattlesnakes and their deadly venom. Scientists around the world have been exploring the possible medicinal uses of venom, and not just for antivenin. The last two Web sites relate just some of the work being done in this area. The BBC news article recounts efforts to determine whether certain snake venoms contain chemicals that could prevent heart attacks and strokes (7). Likewise, scientists at the Howard Hughes Medical Center (8) have found a protein in snake venom that could offer a way to explore how nicotine and other drugs turn on the "pleasure centers" of the brain.

  18. 'Snake River (SR)-type' volcanism at the Yellowstone hotspot track: Distinctive products from unusual, high-temperature silicic super-eruptions

    USGS Publications Warehouse

    Branney, M.J.; Bonnichsen, B.; Andrews, G.D.M.; Ellis, B.; Barry, T.L.; McCurry, M.

    2008-01-01

    A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) large-volume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarse-grained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing low-profile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6-8), and involved H2O-poor, low-??18O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900-1,050??C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli or fiamme, and the rhyolite extrusions are small volume silicic domes and coule??es. SR-type volcanism seems to have occurred at numerous times in Earth history, because elements of the facies association occur within some other volcanic fields, including Trans-Pecos Texas, Etendeka-Paran, Lebombo, the English Lake District, the Proterozoic Keewanawan volcanics of Minnesota and the Yardea Dacite of Australia. ?? Springer-Verlag 2007.

  19. Hydro-economic Risk Assessment in the Eastern Nile River Basin

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Mohamed, Y.

    2013-12-01

    In 2011, the Ethiopian government announced plans for the construction of the Grand Renaissance Dam (GRD) on the Blue Nile, just east of its border with Sudan, at a cost of almost 5 billion dollars. The project is expected to generate over 15 TWh of energy and will include a reservoir of more than 60 km3 capacity, which roughly corresponds to the average annual flow of the Blue Nile. This project is part of a larger scheme, by the government, to expand its hydroelectric power capacity, however, the scheme faces strong opposition from downstream Egypt and Sudan. Egypt and Sudan are highly dependent on flows that originate in Ethiopia (it has been estimated that 86% of Nile flow originates in the Ethiopian highlands). The Ethiopian government argues that the dam would supply electricity for Ethiopians as well as generate surplus energy for export to neighboring countries. The Ethiopians also argue that the huge reservoir would generate positive externalities downstream by reducing floods and providing more constant and predictable lows. This study attempts to provide an independent analysis of the hydrologic and economic risks faced by downstream countries when GRD will be online. To achieve this, an integrated, stochastic hydro-economic model of the entire Eastern Nile basin is used to analyze various development and management scenarios. The results indicate that if countries agree to co- operative management of the Eastern Nile River basin, GRD would indeed significantly increase basin-wide benefits, especially in Ethiopia and in Sudan. An alternative management scenario, whereby GRD would be operated by Sudan and Egypt, does not yield significant economic gains in these countries. However, massive unilateral irrigation developments in Ethiopia will be detrimental for all countries, including Ethiopia itself, due to the huge opportunity costs involved.

  20. Seasonal Diet of the Otter (Lutra lutral L.) in Natural River Ecosystems of South-Eastern Lithuania

    Microsoft Academic Search

    Laima Baltr?nait?

    2006-01-01

    The seasonal diet of the otter (Lutra lutra L.) was studied in seven rivers of south-eastern Lithuania: Merkys, Šal?ia, ?la, Gr?da, Skroblus, Žeimena and Mera. The diet was investigated through scat analysis. The frequency of occurrence (FO) and biomass consumed (BC) were estimated. Fish and amphibians made the bulk of the otter diet (45.7–80.2% BC, 58.4–85.2% FO and 9.9–51.5% BC,

  1. Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of deer creek with the Snake River, Summit County, Colorado

    USGS Publications Warehouse

    McKnight, D.M.; Bencala, K.E.; Zellweger, G.W.; Aiken, G.R.; Feder, G.L.; Thorn, K.A.

    1992-01-01

    Organic solute sorption by hydrous iron and aluminum oxides was studied in an acidic, metal-enriched stream (the Snake River) at its confluence with a pristine stream (Deer Creek). From 1979 to 1986, typically 40% of the dissolved organic carbon (DOC) was removed from solution by sorption onto aluminum and iron oxides, which precipitate as the two streamwaters mix. Upstream DOC concentrations, which increase during snowmelt, were identified as the most significant variables in a multiple regression for determining the DOC concentration below the confluence, and the extent of Al and Fe precipitation was much less significant. On hourly timescales, removal of Al and Fe varied erratically but DOC removal was steady, indicating that "sorbable" organic solutes are sorbed either by precipitating oxides or by oxides on the streambed. Characterization of two reactive DOC fractions (fulvic and hydrophilic acids) showed that sorption results in chemical fractionation. Molecules with greater contents of aromatic moieties, carboxylic acid groups, and amino acid residues were preferentially sorbed, which is consistent with the ligand exchange-surface complexation model.

  2. Comparison of migration rate and survival between radio-tagged and PIT-tagged migrant yearling chinook salmon in the Snake and Columbia rivers

    USGS Publications Warehouse

    Hockersmith, E.E.; Muir, W.D.; Smith, S.G.; Sandford, B.P.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2003-01-01

    A study was conducted to compare the travel times, detection probabilities, and survival of migrant hatchery-reared yearling chinook salmon Oncorhynchus tshawytscha tagged with either gastrically or surgically implanted sham radio tags (with an imbedded passive integrated transponder [PIT] tag) with those of their cohorts tagged only with PIT tags in the Snake and Columbia rivers. Juvenile chinook salmon with gastrically implanted radio tags migrated significantly faster than either surgically radio-tagged or PIT-tagged fish, while migration rates were similar among surgically radio-tagged and PIT-tagged fish. The probabilities of PIT tag detection at downstream dams varied by less than 5% and were not significantly different among the three groups. Survival was similar among treatments for median travel times of less than approximately 6 d (migration distance of 106 km). However, for both gastrically and surgically radio-tagged fish, survival was significantly less than for PIT-tagged fish, for which median travel times exceeded approximately 10 d (migration distance of 225 km). The results of this study support the use of radio tags to estimate the survival of juvenile chinook salmon having a median fork length of approximately 150 mm (range, 127-285 mm) and a median travel time of migration of less than approximately 6 d.

  3. A monoclinic, pseudo-orthorhombic Au-Hg mineral of potential economic significance in Pleistocene Snake River alluvial deposits of southeastern Idaho

    USGS Publications Warehouse

    Desborough, G.A.; Foord, E.E.

    1992-01-01

    A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors

  4. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  5. Evaluation of the prototype surface bypass for salmonid smolts in Spring 1996 and 1997 at Lower Granite Dam on the Snake River, Washington

    USGS Publications Warehouse

    Johnson, G.E.; Adams, N.S.; Johnson, R.L.; Rondorf, D.W.; Dauble, D.D.; Barila, T.Y.

    2000-01-01

    In spring 1996 and 1997, we studied the prototype surface bypass and collector (SBC) at Lower Granite Dam on the Snake River in Washington. Our objectives were to determine the most efficient SBC configuration and to describe smolt movements and swimming behavior in the forebay. To do this, we used hydroacoustic and radiotelemetry techniques. The SBC was retrofitted onto the upstream face of the north half of the powerhouse to test the surface bypass method of diverting smolts from turbines. The SBC had three entrances, with mean velocities ranging from 0.37 to 1.92 m/s, and it discharged 113 m3/s through its outlet at Spill Bay 1, which was adjacent to the powerhouse. Different SBC configurations were created by altering the size and shape of entrances. During spring 1996 and 1997, river discharge was well above normal (123 and 154% of average, respectively). Powerhouse operations caused a strong downward component of flow upstream of the SBC. Many smolts (primarily steelhead and secondarily chinook salmon) were observed actively swimming upward in the water column. There were four times as many smolts diverted from turbines per unit volume of water with SBC flow than with spill flow, which indicated that the SBC may be an especially important bypass consideration in moderate- or low-flow years. The highest SBC efficiency (the proportion of total fish passing through the north half of the powerhouse by all routes that passed through the SBC) for any configuration tested was about 40%. Although no single SBC configuration stood out as the most efficient, the horizontal surface and maximum area configurations, or some combination of the two, are worth further investigation because they were moderately efficient.

  6. Endemicity of vesical schistosomiasis in the Ebonyi Benue river valley, south eastern Nigeria.

    PubMed

    Anosike, Jude C; Okere, Anthony N; Nwoke, Bertram E B; Chukwu, Joyce U; Nwosu, Dennis C; Njoku-Tony, Roseline F; Oguwuike, Thaddeus U; Ezike, Monica N; Godwin; Okogun, R A; Obasi, Chikezie U; Ogbusu, Fidelia I; Onyirioha, Caroline U; Ajero, Chigbo M; Dike, Martins U

    2003-06-01

    The investigation on the prevalence of patent and clinically severe infections with Schistosoma haematobium was carried out amongst inhabitants of Ebonyi Benue river valley, South Eastern Nigeria between August 2000 and June 2001. The inhabitants are predominantly farmers. Of the 3296 subjects examined from 15 randomly selected villages in the valley, 776 (23.5%) were excreting the eggs of S. haematobium in their urine. Infection rates varied between 18.9% and 30.6%. The severity of infection calculated by arithmetic mean egg counts (AMEC) and geometric mean egg counts (GMEC) varied significantly between the age groups and the villages (P < 0.05). The prevalence and severity of infection increased with age from 0 to 25 years and decreased thereafter. Symptoms associated with the disease include visible hematuria (63.1%), suprapubic pain (10.3%) and stranguary (9.9%). While 65 positive persons had more than one symptom, 64 of the positive persons had no noticeable symptoms. Visible hematuria showed moderate sensitivity and high specificity for the disease. Female genital schistosomiasis (FGS) of the lower reproductive tract was recorded in 19 females of child bearing age that complained of severe suprapubic pain. Eight snail species were recorded in the stagnant ponds and both Bulinus globosus and B. truncatus were infected with schistosome cercariae. The factors contributing to these observations and feasible control measures are discussed. PMID:12872529

  7. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    NASA Astrophysics Data System (ADS)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated from ongoing radionuclide (Pb-210 and Cs-137) and pollen analysis of the fluvial sediment sequences. However, based on the established chronology and geomorphic field relationships, it is plausible that the archaeological complex represents a late medieval site linked to Dunmoe Castle (14th to 17th century AD), which overlooks the floodplain.

  8. Ziplock Snakes

    Microsoft Academic Search

    Walter M. Neuenschwander; Pascal Fua; Lee Iverson; Gábor Székely; Olaf Kübler

    1997-01-01

    We propose a snake-based approach that allows a user to specify only the distant end pointsof the curve he wishes to delineate without having to supply an almost complete polygonalapproximation. This greatly simplifies the initialization process and yields excellent convergenceproperties. This is achieved by using the image information around the end points to provideboundary conditions and by introducing an optimization

  9. Sensitivity of SWAT simulated streamflow to climatic changes within the Eastern Nile River basin

    NASA Astrophysics Data System (ADS)

    Mengistu, D. T.; Sorteberg, A.

    2012-02-01

    The hydrological model SWAT was run with daily station based precipitation and temperature data for the whole Eastern Nile basin including the three subbasins: the Abbay (Blue Nile), BaroAkobo and Tekeze. The daily and monthly streamflows were calibrated and validated at six outlets with station-based streamflow data in the three different subbasins. The model performed very well in simulating the monthly variability while the validation against daily data revealed a more diverse performance. The simulations indicated that around 60% of the average annual rainfalls of the subbasins were lost through evaporation while the estimated runoff coefficients were 0.24, 0.30 and 0.18 for Abbay, BaroAkobo and Tekeze subbasins, respectively. About half to two-thirds of the runoff could be attributed to surface runoff while the other contributions came from groundwater. Twenty hypothetical climate change scenarios (perturbed temperatures and precipitation) were conducted to test the sensitivity of SWAT simulated annual streamflow. The result revealed that the annual streamflow sensitivity to changes in precipitation and temperature differed among the basins and the dependence of the response on the strength of the changes was not linear. On average the annual streamflow responses to a change in precipitation with no temperature change were 19%, 17%, and 26% per 10% change in precipitation while the average annual streamflow responses to a change in temperature and no precipitation change were -4.4% K-1, -6.4% K-1, and -1.3% K-1 for Abbay, BaroAkobo and Tekeze river basins, respectively. 47 temperature and precipitation scenarios from 19 AOGCMs participating inCMIP3 were used to estimate future changes in streamflow due to climate changes. The climate models disagreed on both the strength and the direction of future precipitation changes. Thus, no clear conclusions could be made about future changes in the Eastern Nile streamflow. However, such types of assessment are important as they emphasise the need to use several an ensemble of AOGCMs as the results strongly dependent on the choice of climate models.

  10. Seasonal Movement and Distribution of Fluvial Adult Bull Trout in Selected Watersheds in the Mid-Columbia River and Snake River Basins

    PubMed Central

    Starcevich, Steven J.; Howell, Philip J.; Jacobs, Steven E.; Sankovich, Paul M.

    2012-01-01

    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID:22655037

  11. Hydrogeology of the eastern part of the Salt River Valley area, Maricopa and Pinal Counties, Arizona

    USGS Publications Warehouse

    Laney, R.L.; Hahn, Mary Ellen

    1986-01-01

    The Salt River Valley is a major agricultural and metropolitan area in semiarid south-central Arizona. Groundwater in the permeable sedimentary deposits underlying the area is a major water supply for agricultural, municipal, and industrial users. Groundwater levels have declined as much as 400 ft in recent years. Management of the remaining groundwater resources and their protection from contamination will require knowledge of the hydrogeologic framework and the water-bearing characteristics of the sedimentary units in the groundwater system. The rocks in the eastern part of the Salt River Valley are divided into six units--crystalline rocks, extrusive rocks, red units, lower unit, middle unit, and upper unit. The crystalline and extrusive rocks underlie the basin and form virtually impermeable hydrologic boundaries. The red, lower, middle and upper sedimentary units contain most of the groundwater. The red unit contains usable quantities of ground water, principally near Scottsdale, where it yields as much as 1 ,000 gallons/min (gpm) of water to wells. The lower unit, which makes up the largest volume of sedimentary deposits, consists mostly of mudstone, clay, silt, and evaporite deposits that may be as much as 10,000 ft thick in the central part of the basin. Wells tapping the mudstone, clay, silt yield 50 (gpm) or less but the conglomerate and the sand and gravel may yield as much as 3,500 gpm. The middle unit is the principal water-bearing unit in the basin and consists mostly of silt, siltstone, and silty sand and gravel. The unit is as much as 1,000 ft thick in the central part of the basin and as much as 700 ft is saturated. The unit will yield as much as 1,000 gpm where the saturated thickness is at least 500 ft. Locally, north of Mesa, the unit yields as much as 4,000 gpm. The upper unit is gravel, sand, and silt and is saturated only in a small area in the southwestern part of the basin. Where saturated, the unit may yield as much as 4,500 gpm. The upper unit transmits recharge derived from sheet flow, from flood flow in ephemeral streams, and from irrigation to the water table. (Author 's abstract)

  12. Shallow-water longshore drift-fed submarine fan deposition (Moisie River Delta, Eastern Canada)

    NASA Astrophysics Data System (ADS)

    Normandeau, Alexandre; Lajeunesse, Patrick; St-Onge, Guillaume

    2013-08-01

    Submarine canyons and associated submarine fans are in some cases located at the end of a littoral cell where they act as conduits for the transfer of eroded terrigenous sediments to the marine environment. Such fans are generally found in deep-water settings at >500 m water depth. Offshore the Moisie River Delta (NW Gulf of St. Lawrence, Eastern Canada), high-resolution multibeam bathymetry and seismic data led to the discovery of an unusually shallow submarine fan (?60 m) located at the end of a littoral cell. Sediment is transported westward on the shallow coastal shelf, as demonstrated by the downcurrent displacement of oblique nearshore sandbars where the shelf narrows to less than 1 km. The steep slope near the end of the littoral cell is incised by a channel that feeds a submarine fan composed of smaller channels and depositional lobes. According to existing Holocene evolution models for the region, the fan formed within the last 5,000 years. Its evolution is largely due to the transport of sediment by longshore drift. Multibeam echosounder and seismic data also reveal that the gravity-driven accretion of the submarine fan is characterized mainly by two processes, i.e., frequent small-scale, downslope migration of sandwaves on the slope, and more episodic slumping/turbidity-current activity in the deeper part of the fan. This study documents that, besides their common deep-water location, smaller-scale submarine fans can occur also in very shallow water, implying that they could be more frequent than previously thought both in modern environments and in the rock record.

  13. Snakes antibodies.

    PubMed

    Gambón-Deza, Francisco; Sánchez-Espinel, Christian; Mirete-Bachiller, Serafín; Magadán-Mompó, Susana

    2012-09-01

    Immunoglobulins are basic molecules of the immune system of vertebrates. In previous studies we described the immunoglobulins found in two squamata reptiles, Anolis carolinensis and Eublepharis macularius. Snakes are squamata reptiles too but they have undergone an extreme evolutionary process. We therefore wanted to know how these changes affected their immunoglobulin coding genes. To perform this analysis we studied five snake transcriptomes and two genome draft sequences. Sequences coding for immunoglobulin M (IgM), immunoglobulin D (IgD) and two classes of immunoglobulin Y (IgY - named IgYa and IgYb-) were found in all of them. Moreover, the Thamnophis elegans transcriptome and Python molurus genome draft sequences showed a third class of IgY, the IgYc, whose constant region only presents three domains and lacks the CH2. All data suggest that the IgYb is the evolutionary origin of this IgYc. An exhaustive search of the light chains were carried out, being lambda the only light chain found in snakes. The results provide a clear picture of the immunoglobulins present in the suborder Serpentes. PMID:22426516

  14. The ternary Qz-Ab-Or system as a geobarometer for natural rhyolite: new experiments and implications for the Snake River Plain silicic magmas

    NASA Astrophysics Data System (ADS)

    Almeev, R.; Bolte, T.; Holtz, F.; Nash, B. P.

    2012-12-01

    It is well known that the synthetic haplogranitic Qz-Ab-Or system provides a basis for estimating the depth and volatile activity of rhyolitic magma chambers if natural melts are coexisting with quartz and two feldspars. However, small but significant amounts of Ca and Fe are always present in natural rhyolites, implying that the projection of natural compositions onto the Qz-Ab-Or ternary system can only be used qualitatively. Blundy and Cashman [1] proposed a correction procedure for water-rich melts to account for the Anorthite (An) content, but the accuracy of this method has not been verified experimentally. We conducted a series of crystallization experiments at various pressures (50, 200 and 500 MPa) and water activities (0.2 to 1) to determine the crystallization temperature of tectosilicates, and to constrain the position of cotectic lines and eutectic compositions in high silica rhyolites when projected onto the Qz-Ab-Or plane. The starting compositions were representatives of low-H2O rhyolites of the Snake River Plain-Yellowstone province which contained different normative contents of An and Hypersthene (Hy). The glass compositions from experimental runs that coexist with three tectosilicates are shifted towards the Qtz-Or sideline of the ternary diagram (to more Qz-rich compositions) when compared to the compositions of minima and eutectic points determined experimentally in the haplogranitic system at water-saturated conditions. Our new experimental results also indicate that the correction proposed by [1] is not fully successful to account for the small amounts of An (and Hy) when projecting natural compositions in the Qz-Ab-Or plane. In addition, for a given composition, the position of the cotectic line is mainly dependent on pressure and only slightly on water activity. Thus, glass compositions quenched from melts in equilibrium with quartz and at least one feldspar (glass inclusions or matrix glass) may be useful to constrain pre-eruptive pressure, provided that the cotectic compositions are well-constrained for natural hydrous systems. Using this approach with the composition of glasses from the Bruneau Jarbidge eruptive center (central Snake River Plain), it can be noted that the Qtz-Ab-Or contents of natural rhyolitic glasses plot along a trend with approximately constant Qtz content between the 500 and the 200 MPa water-undersaturated cotectic lines. The interpolated data suggest a pressure of 300-400 MPa (~9-12km), which is consistent with pressures (<500 MPa) deduced from the experimentally determined phase relationships. Lower normative Qtz in the natural fallout glasses is more consistent with slightly lower pressures (200-300 MPa; ?10km) for these eruptive units. In general, this pressure range determined in this study is consistent with previous estimations [2] (e.g., Leeman et al., 2008). [1] Blundy J and Cashman KV (2001) CMP, 140, 631-650. [2] Leeman WP et al., (2008) Geol.Soc.Lon.Spec.Publ. 304, 235-259.

  15. Agricultural land-use classification using landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming

    USGS Publications Warehouse

    Maupin, Molly A.

    1997-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the upper Snake River Basin study unit, land- and water-use data were used to describe activities that have potential effects on water quality, including biological conditions, in the basin. Land-use maps and estimates of water use by irrigated agriculture were needed for Gooding, Jerome, Lincoln, and Minidoka Counties (south-central Idaho), four of the most intensively irrigated counties in the study unit. Land use in the four counties was mapped from Landsat Thematic Mapper imagery data for the 1992 water year using the SPECTRUM computer program. Land-use data were field verified in 108 randomly selected sections (640 acres each); results compared favorably with land-use maps from other sources. Water used for irrigation during the 1992 water year was estimated using land-use and ancillary data. In 1992, a drought year, estimated irrigation withdrawals in the four counties were about 2.9 million acre-feet of water. Of the 2.9 million acre-feet, an estimated 2.12 million acre-feet of water was withdrawn from surface water, mainly the Snake River, and nearly 776,000 acre-feet was withdrawn from ground water. One-half of the 2.9 million acre-feet of water withdrawn for irrigation was considered to be lost during conveyance or was returned to the Snake River; the remainder was consumptively used by crops during the growing season.

  16. Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect

    S. R. Anderson; M. A. Kuntz; L. C. Davis

    1999-02-01

    The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near the INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.

  17. Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal)

    NASA Astrophysics Data System (ADS)

    Cunha, Pedro P.; Almeida, Nelson A. C.; Aubry, Thierry; Martins, António A.; Murray, Andrew S.; Buylaert, Jan-Pieter; Sohbati, Reza; Raposo, Luis; Rocha, Leonor

    2012-09-01

    In the uppermost reach of the Lower Tejo River (eastern central Portugal), where the river crosses two quartzite ridges that separate the Ródão (upstream) and Arneiro (downstream) depressions, Palaeolithic artefacts have been recovered from three lower river terrace levels and a cover unit of aeolian sands. This paper presents data on the discovery of archaeological artefacts from the terrace levels and the aeolian sands that can be linked to Middle and Upper Palaeolithic industries from new field sites at Tapada do Montinho and Castelejo. The archaeological data when placed in a geomorphological, sedimentary and chronological framework, contribute new information on the understanding of human occupation in western Iberia during cold-climate episodes of the last 62 to 12 ka; and especially during the cooler and driest conditions that occurred between 32 and 12 ka, when the climate favoured aeolian sediment transport. In the Lower Tejo River, the integration of absolute age datasets with archaeological, geomorphological and sedimentary data indicate that in westernmost Iberia the first appearance of artefacts in river terrace sediments suggests that the earliest marker for human occupation dates from the lower Acheulian (Lower Palaeolithic), probably corresponding to an age of ~ 340 ka. Data also suggest, for the first time, that Acheulian lithic industries were replaced by Middle Palaeolithic ones (namely the Levallois stone knapping technique) by ~ 160 ka (~ MIS6). Middle Palaeolithic industries were later replaced by Upper Palaeolithic industries at 32 ka. The post 32 ka period, dominated by aeolian sediment transport, is related to the onset of cold-dry climate conditions which resulted in low river flow discharges, floodplain exposure and reworking by NW winds. This cold-dry period is coeval with the disappearance of Megafauna and associated Neanderthal communities, and the replacement of the Middle Palaeolithic industries by Upper Palaeolithic ones in this westernmost part of Europe.

  18. Digital modeling of radioactive and chemical waste transport in the aquifer underlying the Snake River Plain at the National Reactor Testing Station, Idaho

    USGS Publications Warehouse

    Robertson, J.B.

    1974-01-01

    Industrial and low-level radioactive liquid wastes at the National Reactor Testing Station (NRTS) in Idaho have been disposed to the Snake River Plain aquifer since 1952. Monitoring studies have indicated that tritium and chloride have dispersed over a 15-square mile (39-square kilometer) area of the aquifer in low but detectable concentrations and have only migrated as far as 5 miles (8 kilometers) downgradient from discharge points. The movement of cationic waste solutes, particularly 90Sr and 137Cs, has been significantly retarded due to sorption phenomena, principally ion exchange. 137Cs has shown no detectable migration in the aquifer and 90Sr has migrated only about 1.5 miles (2 kilometers) from the Idaho Chemical Processing Plant (ICPP) discharge well, and is detectable over an area of only 1.5 square miles ( 4 square kilometers) of the aquifer. Digital modeling techniques have been applied successfully to the analysis of the complex waste-transport system by utilizing numerical solution of the coupled equations of groundwater motion and mass transport. The model includes the effects of convective transport, flow divergence, two-dimensional hydraulic dispersion, radioactive decay, and reversible linear sorption. The hydraulic phase of the model uses the iterative, alternating direction, implicit finite-difference scheme to solve the groundwater flow equations, while the waste-transport phase uses a modified method of characteristics to solve the solute transport equations simulated by the model. The modeling results indicate that hydraulic dispersion (especially transverse) is a much more significant influence than previously suggested by earlier studies. The model has been used to estimate future waste migration patterns for varied assumed hydrological and waste conditions up through the year 2000. The hydraulic effects of recharge from the Big Lost River have an important (but not predominant) influence on the simulated future migration patterns. For the assumed conditions, the model indicates that detectable concentrations of waste chloride and tritium could move as much as 15 miles (24 kilometers) downgradient from the original discharge points by the year 2000. However, the model shows 90Sr moving only 2 to 3 miles (3 to 5 kilometers) downgradient in the same time. The model may also be used to estimate the effects of the various future waste disposal practices and hydrologic conditions on subsequent migration of waste products.

  19. Stratigraphy of the Mesaverde Group in the central and eastern greater Green River Basin, Wyoming, Colorado, and Utah

    SciTech Connect

    Roehler, H.W.

    1990-01-01

    This paper identifies and correlates lithostratigraphic and chronostratigraphic units and maps the paleogeography of the Upper Cretaceous Mesaverde Group in the central and eastern greater Green River basin of Wyoming, Colorado, and Utah. The purpose is to develop a stratigraphic framework for a group of formations in a large area where previous investigations were incomplete and partly inaccurate. The stratigraphic information presented contributes to the understanding of the sedimentary and tectonic evolution of the greater Green River basin and to the origin and distribution of mineral resources. The paper is entirely stratigraphic in approach. Correlations are based on the physical continuity of lithologic units and are supported by ammonite zonation. Maps and cross sections are constructed to scale. The consistent use of stylized columnar sections, hypothetical depositional models, and cartoons for illustrations has been avoided. No new stratigraphic names are introduced, and no nomenclature problems are discussed.

  20. The Ephemeroptera fauna of the Meurthe River in north-eastern France

    Microsoft Academic Search

    Gilles Jacquemin

    2009-01-01

    Since 1987, 20 years of investigations on the river Meurthe from its springs to its confluence with the river Moselle have revealed at least 43 species of Ephemeroptera, i.e. almost two-thirds of the regional diversity. The typical assemblages occurring in upper and middle courses are described; these parts of the river can be considered as “reference streams” for the region,

  1. Eastern Han's Cunning Depiction

    NASA Astrophysics Data System (ADS)

    Chiu, B. C.

    1998-09-01

    It is still only speculation, but an earlier visit to a Han dynasty (202 BC - 220 AD) tomb has started the idea, and a recently found study of another Han tomb has convinced me it is worth pursuing. What it is is that the ancient Chinese Sky Animal which represents North was not the turtle or tortoise until about the time of Han. My own visit was to an Eastern (later period) Han tomb which had been moved to a museum near the ancient capital of Luoyang. The ceiling of the inner chamber was rounded, made of brick. Drawings of a tiger and a red bird were clear to the west and south. A rounded object was at the north. Outside the tomb was a sign which said it was 'cun,' which means village. Chinese characters often have homonyms, but 'cun' has few. I have also visited the neolithic village of Banpo, near the Yellow River in the north. It has noticeably large and deep trenches to keep out wild animals, and one separates the residential area from the business area. This village is dated earlier than 4000 BC. The trenches definitely remind me of later depictions of the turtle with a snake wound about it. The recent findings of a tomb at Puyang with shapes of tiger and dragon have dated it to 3000 BC. Nothing was placed at the south side. Something was at the north, but one might argue about that. Finally, I found this article in Chinese Studies in Archaeology (1979), translated by S. Cahill of UC, Berkeley, called "Analysis of the Western Han Murals in the Luouyang Tomb of Bo Qianqiu" by Sun Zuoyun. Although Western Han is earlier than Eastern, the pictures in the tomb were well preserved. There were tiger, dragon, vermilion bird, and other animals, but no tortoise. Instead, there was a sun with a bird inside, and the moon with a frog. Several hundred miles north of the Yellow River, there is the Amur River. The natives there had robes decorated with snakes, lizards, and frogs, and other animals, but no turtle. Later reasons for having the turtle or tortoise is a separate problem. My point here is that the Sky Animals which represented life on Earth, did not represent a real turtle in the north. Perhaps they wanted an animal to represent a neolithic village of the north, slow and hard-shelled.

  2. IRRIGATION WASTEWATER DISPOSAL WELL STUDIES--SNAKE PLAIN AQUIFER

    EPA Science Inventory

    An investigation was conducted to evaluate the impact of irrigation disposal well practices on the water quality of the Snake Plain aquifer. A study site was selected where the geology was determined to be characteristic of areas in the Snake River Plain where irrigation disposal...

  3. Snakes and Their Control 

    E-print Network

    Texas Wildlife Services

    2008-04-15

    T here are many different kinds of snakes in Texas, but only rattlesnakes (Crotalus spp.), copperheads (Agkistrodon contortrix), cotton- mouths (Agkistrodon piscivorus) and coral snakes (Micrurus spp.) are poisonous and should be avoided...- tions in the area also will help to discourage snakes by eliminating their food supply. and their Control SNAKES Figure 1. (clockwise from top left) Rattlesnake, cottonmouth, copperhead, coral snake (photos courtesy of the Texas Parks and Wildlife...

  4. Washington Department of Fish and Wildlife Smolt Monitoring Program; Lower Granite Dam on the Snake River, Washington, 1996 Annual Report.

    SciTech Connect

    Verhey, Peter; Ross, Doug; Morrill, Charles (Washington Department of Fish and Wildlife, Olympia, WA)

    1996-10-01

    The 1996 fish collection season at Lower Granite was characterized by high spring flows, spill, cool spring and early summer water temperatures and comparatively low numbers of fish, particularly yearling chinook, collected and transported. A total of 5,227,672 juvenile salmonids were collected at Lower Granite, the fewest since 1986. Of these, 5,117,685 were transported to release sites below Bonneville Dam, 4,990,798 by barge and 126,887 by truck. An additional 102,430 fish were bypassed back to the river, most of these being part of the National Marine Fisheries Service transportation evaluation study. New extended length submersible bar screens (ESBS) and new vertical barrier screens were installed in all units and a prototype surface collector was installed in front of units 4, 5 and 6 and operated from 23 April through 3 June. Smolt Monitoring Program and National Biologic Survey biologists examined 4,581 fish, collected at the separator, for symptoms of Gas Bubble Disease.

  5. Ocean Carrying Capacity : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 6 of 11.

    SciTech Connect

    Lichatowich, Jim

    1993-06-01

    The northeast Pacific is comprised of four fishery production domains: The gulf of Alaska, a coastal downwelling zone, a coastal upwelling zone and a transition zone. Salmon from the Columbia River enter the sea in the upwelling zone. Marine survival of coho salmon in the Oregon Production Index area has been the subject of extensive study. Variability in marine survival of coho salmon appears to be determined in the first month at sea while the fish are still in local marine areas in the upwelling zone. There is stronger evidence that upwelling might influence vulnerability to predation. A broader ecosystem view which considers salmon as a member of a complex marine community offers additional insight and raises new questions regarding the marine mortality of salmon. The pelagic fish community in the upwelling zone has undergone dramatic change in the last 50 years. That change is consistent with the historical record, however, the system has not completed a full cycle of change (as it has in the past) since the stocks have been subjected to intense commercial and sport exploitation. Salmon seem to be responding to shifts in productivity in the coastal upwelling zone.

  6. A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho: Part 3: Lake Walcott-Bonanza Lake area

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1974-01-01

    Direct-current resistivity soundings and exploratory drilling suggest that the basalt of the Snake River Group is relatively thin in the area along the Snake River that is topographically suitable for pumping large quantities of ground water in exchange for surface water. The formations underlying the Snake River Group appear to have low permeability and probably would not yield large amounts of water. Previous studies have indicated that the southern edge of the Snake Plain aquifer extended to the Snake River. Data presented in this report implies that, in general, the southern boundary should, in fact, be several miles north of the river.

  7. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    SciTech Connect

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the Snake River Basin averaged 0.45% (SE=0.11%), including age-1-ocean returns, for release years 1996 through 2003. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2003), it was estimated that on average approximately 86% of the total integrated mortality for nontransported, tagged hatchery spring and summer Chinook, and 74% for steelhead, occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the systemwide T/I are weighted averages of the dam-specific T/I ratios for each transport dam (with {ge} 5,000 tagged fish transported), weighted by the probabilities of being transported at each dam. The systemwide T/I compares the observed SAR under the existing transportation system with the expected SAR if the transportation system had not been operated. Estimates of 1.0 indicate that the systemwide transportation program has no effect on SAR, while estimates > 1.0 indicate that the transportation program increases SAR. Excluding the 2001 release group, the geometric mean of the systemwide T/I estimates for hatchery spring Chinook salmon from the Snake River Basin was 1.15 (SE=0.03) for release years 1997 through 2003. The geometric mean of the systemwide T/I estimates for hatchery summer Chinook salmon from the Snake River Basin was 1.28 (SE=0.13) for release years 1997 through 2000 and 2003. Estimates were much higher for the 2001 release groups. These estimates reflect transportation from Lower Granite and/or Little Goose for most release years, depending on the number of tagged smolts actually transported at each dam during each release year. Differential post-Bonneville mortality (D) is the ratio of post-Bonneville survival to Lower Granite Dam of transported fish to that of nontransported ('inriver') fish. Excluding the 2001 release year, the geometric mean of the D estimates for hatchery spring Chinook salmon from the Snake River Basin

  8. Implications of the miocene(?) crooked ridge river of northern arizona for the evolution of the colorado river and grand canyon

    USGS Publications Warehouse

    Lucchitta, Ivo; Holm, Richard F.; Lucchitta, Baerbel K.

    2013-01-01

    The southwesterly course of the probably pre–early Miocene and possibly Oligocene Crooked Ridge River can be traced continuously for 48 km and discontinuously for 91 km in northern Arizona (United States). The course is visible today in inverted relief. Pebbles in the river gravel came from at least as far northeast as the San Juan Mountains (Colorado). The river valley was carved out of easily eroded Jurassic and Cretaceous rocks whose debris overloaded the river with abundant detritus, probably steepening the gradient. After the river became inactive, the regional drainage network was rearranged three times, and the nearby Four Corners region was lowered 1–2 km by erosion. The river provides constraints on the early evolution of the Colorado River and Grand Canyon. Continuation of this river into lakes in Arizona or Utah is unlikely, as is integration through Grand Canyon by lake spillover. The downstream course of the river probably was across the Kaibab arch in a valley roughly coincident with the present eastern Grand Canyon. Beyond this point, the course may have continued to the drainage basin of the Sacramento River, or to the proto–Snake River drainage. Crooked Ridge River was beheaded by the developing San Juan River, which pirated its waters and probably was tributary to a proto–Colorado River, flowing roughly along its present course west of the Monument upwarp.

  9. Research on the physical properties of geothermal reservoir rocks. Summary report on collection of samples of volcanic rocks for petrophysical studies. Progress report 1. [From the Snake River Plain, the Columbia Plateaus, the Cascade Range, the Modoc, south central Nevada, and Jemez volcanic fields

    Microsoft Academic Search

    L. T. Grose; G. V. Keller

    1976-01-01

    Rock samples were collected from the Snake River Plain volcanic depression of Idaho, the Columbia Plateau's volcanic basin located in southeastern Washington, northeastern Oregon, and western Idaho, the Modoc volcanic province of northeastern California, the volcanic fields of south central Nevada, and the Jemez volcanic field of north central New Mexico. Strategy governing sample selection is described. From each field,

  10. Modern geomorphology in a post-glacial landscape and implications for river restoration, eastern Yosemite Valley, Yosemite National Park, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.; Roche, J. W.

    2011-12-01

    Yosemite National Park, USA, is one of the most popular national parks in the country with over 3.9 million visitors annually. The majority of tourists visit a relatively small area around the Merced River in scenic eastern Yosemite Valley, which has resulted in degradation to the river and streambanks. The National Park Service is updating the long-term management plan for the Merced River which includes river restoration. A key component determining the success of future river restoration efforts is the transport and supply of sediment. For this study, we investigate the modern geomorphology of the eastern Yosemite Valley region. For the watershed and reach analyses, we draw from a variety of topographic and hydrologic records, including 20-years of data from permanent cross sections, aerial and ground-based LiDAR surveys, and a nearly 100-year hydrologic record. In addition, we utilize hydraulic and sediment transport models to investigate channel velocities, bed shear stress and sediment transport at the reach scale. From the watershed-scale analysis, it is likely that large-scale remnant glacial features exert a primary control on the sediment supply to the study area with relatively small volumes of both suspended and bedload sediment being contributed to the study site. Two of the three major watersheds, Tenaya Creek and the upper Merced River, likely contribute only small amounts of bedload downstream due to low-gradient depositional reaches. Though little-known, the third major watershed, Illilouette Creek, is the only watershed capable of contributing larger amounts of bedload material, though the bedload material is likely contributed only during high flow events. High flows in the Yosemite Valley region have two different distributions: large early winter storm events above the 20-year return interval, and moderate snowmelt flows at and below the 20-year return interval. Sediment transport analyses indicate that bedload transport is dominated by relatively frequent (<2 year) snowmelt flow events and that the coarsest material in the reach (>110 mm) is mobile during these flows. The permanent cross sections record large topographic changes, including infilling at key bars, associated with the 1997 flood, the largest recorded early winter event (100-year return interval). Following snowmelt events post-1997, cross sections are returning to near pre-1997 levels. The cross section data suggest there is likely a disconnect between sediment supplied to the reach and sediment transport, with the majority of sediment supply occurring during large early winter events while the majority of sediment transport occurs during snowmelt events. An implication of our findings for river restoration in this area of the Merced River is that the ability of the channel to rebuild streambanks is relatively low, given the low suspended sediment supply. In contrast, bedload transport is relatively frequent and occurs in significant quantities, suggesting that river restoration involving bed recovery (e.g. recovery of pools formed by riprap or bridges) should be relatively rapid if obstructions are removed.

  11. Seismic velocity and Q-structure of the upper mantle lid and low velocity zone for the Eastern Great Basin

    SciTech Connect

    Olsen, K.H.; Braile, L.W.; Johnson, P.A.

    1980-12-01

    A 100-km-long record section of NTS explosions recorded in the eastern Snake River Plains (7 /sup 0/<..delta..<8 /sup 0/) shows the cusp of critical refractions from the steepened P velocity gradient at the bottom of the upper mantle LVZ. Synthetic seismograms calculated with a modified reflectivity program have been used to derive a regional velocity model of the upper mantle beneath the eastern Great Basin. The model suggests that observed very weak P/sub n/ arrivals are due to a slight negative velocity gradient below the Moho and that no high velocity mantle lid exists in this region.

  12. Mercury concentrations in wild mink ( Mustela vison) and river otters ( Lontra canadensis) collected from eastern and Atlantic Canada: Relationship to age and parasitism

    Microsoft Academic Search

    Katherine Klenavic; Louise Champoux; O'Brien Mike; Pierre-Y. Daoust; R. Douglas Evans; Hayla E. Evans

    2008-01-01

    Total mercury (Hg) concentrations were measured in the fur, brain and liver of wild mink (Mustela vison) and river otters (Lontra canadensis) collected from eastern and Atlantic Canada. Total Hg concentrations in fur were strongly correlated with levels in the brain and liver. There was no difference in tissue concentrations between male and female mink; however, female otters had significantly

  13. Nesting Results and Initial Habitat Assessment of the Nesting Box Trail for Sialia sialis (Eastern Bluebird) In the Powell River Project Education Center

    Microsoft Academic Search

    C. A. Burkart; A. Russo; J. Church; G. Brooks; J. Collins; S. Collins; A. Christian; M. Head; A. Rutherford; Evan Reynolds

    2007-01-01

    A nesting box trail for the Eastern Blue Bird was established along the fence line adjacent to the barn located at the Powell River Education Center. The trail consisted of eight pairs of boxes. Each pair consisted of one box with a solid roof and one with a screen roof which left the box open to the elements, but protected

  14. Nesting Results and Initial Habitat Assessment of the Nesting Box Trail for Sialia sialis (Eastern Bluebird) In the Powell River Project Education Center Year 2: Expansion

    Microsoft Academic Search

    C. A. Burkart; A. Russo; L. Clayton; T. J. Davis; V. Fleming; J. Genco; J. Mays

    The nesting box trail for the Eastern Blue Bird was expanded to a second field that is part of the Powell River Education Center. The new sites consist of paired boxes with the same design as the boxes used the first year of the study; each pair consisted of one box with a solid roof and one with a screen

  15. Water Withdrawals, Use, and Wastewater Return Flows in the Concord River Basin, Eastern Massachusetts, 1996-2000

    USGS Publications Warehouse

    Barlow, Lora K.; Hutchins, Linda M.; DeSimone, Leslie A.

    2009-01-01

    Water withdrawals, use, and wastewater return flows for the Concord River Basin were estimated for the period 1996-2000. The study area in eastern Massachusetts is 400 square miles in area and includes the basins of two major tributaries, the Assabet and Sudbury Rivers, along with the Concord River, which starts at the confluence of the two tributaries. About 400,000 people lived in the basin during the study period, on the basis of an analysis of census data, land use, and population density. Public water systems served an estimated 87 percent of the people in the basin, and public wastewater systems served an estimated 65 percent of the basin population. The estimates of water withdrawals, use, wastewater return flows, and imports and exports for the Concord River Basin and 25 subbasins provide information that can be used in hydrologic analyses such as water budgets and can guide water-resources allocations for human and environmental needs. Withdrawals in the basin were estimated at 12,700 million gallons per year (Mgal/yr) during the study period, of which 10,100 Mgal/yr (about 80 percent) were withdrawn by public water-supply systems and 2,650 Mgal/yr were self-supplied by individual users. Water use in the basin and subbasins was estimated by using water withdrawals, average per capita use rates (about 72 gallons per day per person), land-use data, estimated population densities, and other information. Total water use in the basin, which included imports, was 19,200 Mgal/yr and was provided mostly (86.2 percent) by public supply. Domestic use (11,300 Mgal/yr) was the largest component, accounting for about 60 percent of total water use in the basin. Commercial use (3,770 Mgal/yr), industrial use (1,330 Mgal/yr), and agricultural use (including golf-course irrigation; 562 Mgal/yr) accounted for 19.6, 6.9, and 2.9 percent, respectively, of total use. Water that was unaccounted for in public-supply systems was estimated at 2,260 Mgal/yr, or 11.8 percent of total water use in the basin. Wastewater return flows discharged in the basin were estimated at 11,800 Mgal/yr, of which 6,620 Mgal/yr were discharged from municipal wastewater-treatment facilities to surface waters and 5,190 Mgal/yr were self-disposed through septic systems to ground water; wastewater disposed through septic systems was generated by both public- and self-supply use. Water use and management in the Concord River Basin resulted in an estimated import of 6,460 Mgal/yr of potable water for public supply and an estimated export of 6,590 Mgal/yr of wastewater. Water was imported into the Assabet, Sudbury, and Lower Concord (the area draining directly to the Concord River) River Basins for public supply. Wastewater was imported into the Assabet River Basin, but exported from the Sudbury and Lower Concord River Basins. Of the 25 subbasins in the Concord River Basin for which water use was analyzed, 20 subbasins imported potable water, 4 subbasins exported potable water (Fort Meadow Brook, Indian Brook, Lower Sudbury River, and Whitehall Brook), and potable water was neither imported nor exported in one subbasin (Elizabeth Brook). Wastewater was imported into the Assabet Headwaters, Assabet Main Stem, and Hop Brook subbasins; wastewater was neither imported to nor exported from the Elizabeth Brook, Nashoba Brook, and Pine Brook subbasins; and wastewater was exported from all other subbasins. Water use and management in the basin also resulted in a net transfer of water from ground water to surface water, discharged as wastewater, of about 4,000 Mgal/yr.

  16. Middle Snake Subbasins Inventory

    E-print Network

    Middle Snake Subbasins Inventory May 2004 Compiled by Ecovista Contracted by Shoshone-Paiute Tribes #12;Middle Snake Subbasins Inventory i May 2004 Table of Contents 1 INTRODUCTION ................................................................................................................................. 1 2 CURRENT MANAGEMENT

  17. Drainage areas in the Vermillion River basin in eastern South Dakota

    USGS Publications Warehouse

    Benson, Rick D.; Freese, M.D.; Amundson, Frank D.

    1988-01-01

    Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)

  18. Topologically Adaptable Snakes

    Microsoft Academic Search

    Tim Mcinerney; Demetri Terzopoulos

    1995-01-01

    This paper presents a topologically adaptable snakes model for image segmentation and object representation. The model is embedded in the framework of domain subdi- vision using simplicial decomposition. This framework ex- tends the geometric and topological adaptability of snakes while retaining all of the features of traditional snakes, s uch as user interaction, and overcoming many of the limitations of

  19. Snakes: Active contour models

    Microsoft Academic Search

    Michael Kass; Andrew P. Witkin; Demetri Terzopoulos

    1988-01-01

    A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number

  20. The Charles River, Eastern Massachusetts: Scientific Information in Support of Environmental Restoration

    USGS Publications Warehouse

    Weiskel, Peter K.

    2007-01-01

    Human activity has profoundly altered the Charles River and its watershed over the past 375 years. Restoration of environmental quality in the watershed has become a high priority for private- and public-sector organizations across the region. The U.S. Environmental Protection Agency and the Massachusetts Executive Office of Environmental Affairs worked together to coordinate the efforts of the various organizations. One result of this initiative has been a series of scientific studies that provide critical information concerning some of the major hydrologic and ecological concerns in the watershed. These studies have focused upon: * Streamflows - Limited aquifer storage, growing water demands, and the spread of impervious surfaces are some of the factors exacerbating low summer streamflows in headwater areas of the watershed. Coordinated management of withdrawals, wastewater returns, and stormwater runoff could substantially increase low streamflows in the summer. Innovative approaches to flood control, including preservation of upstream wetland storage capacity and construction of a specially designed dam at the river mouth, have greatly reduced flooding in the lower part of the watershed in recent decades. * Water quality - Since the mid-1990s, the bacterial quality of the Charles River has improved markedly, because discharges from combined sewer overflows and the number of illicit sewer connections to municipal storm drains have been reduced. Improved management of stormwater runoff will likely be required, however, for full attainment of State and Federal water-quality standards. Phosphorus inputs from a variety of sources remain an important water-quality problem. * Fish communities and habitat quality - The Charles River watershed supports a varied fish community of about 20 resident and migratory species. Habitat conditions for fish and other aquatic species have improved in many parts of the river system in recent years. However, serious challenges remain, including the control of nutrients, algae, and invasive plants, mitigation of dam impacts, addressing remaining sources of bacteria to the river, and remediation of contaminated bottom habitat and the nontidal salt wedge in the lower river.

  1. SNAKE CALIBRATION IN RHIC.

    SciTech Connect

    RANJBAR,V.; BAI,M.; LUCCIO,A.; MACKAY,W.W.; ROSER,T.; LEET,S.Y.

    2002-06-02

    A proper understanding of the response of the spin orientation due to the currents in the four helices which make up each snake is necessary to control spin tune, avoid snake resonances and facilitate the operation of the RHIC spin flipper. The effect of the helical dipole snakes in RHIC is to rotate the spin orientation an angle {mu} about an axis at an angle {phi} in the horizontal plane. With two snakes the combined effect gives rise to a spin precession frequency which is determined by the {mu} and {phi} angles at each snake. Depolarization or spin flipping can occur when this spin tune is near an external driving frequency. We employed the RHIC spin flipper in this way to determine the spin tune and thus verify spin tune predictions based upon previous field measurements of the snake. We also considered the response of snake resonances locations to spin tune as another way of verifying spin tune predictions.

  2. Optimal operation of a multipurpose multireservoir system in the Eastern Nile River Basin

    Microsoft Academic Search

    Q. Goor; C. Halleux; Y. Mohamed; A. Tilmant

    2010-01-01

    The upper Blue Nile River Basin in Ethiopia is a largely untapped resource despite its huge potential for hydropower generation and irrigated agriculture. Controversies exist as to whether the numerous infrastructural development projects that are on the drawing board in Ethiopia will generate positive or negative externalities downstream in Sudan and Egypt. This study attempts at (1) examining the (re-)operation

  3. Optimal operation of a multipurpose multireservoir system in the Eastern Nile River Basin

    Microsoft Academic Search

    Q. Goor; C. Halleux; Y. Mohamed; A. Tilmant

    2010-01-01

    The upper Blue Nile River Basin in Ethiopia is a largely untapped resource despite its huge potential for hydropower generation and irrigated agriculture. Controversies exist as to whether the numerous infrastructural development projects that are on the drawing board in Ethiopia will generate positive or negative externalities downstream in Sudan and Egypt. This study attempts at 1) examining the (re-)operation

  4. THE AGE OF UPPER PALEOLITHIC SITES IN THE MIDDLE DNIEPER RIVER BASIN OF EASTERN EUROPE

    Microsoft Academic Search

    I Zaitseva

    This paper discusses the comparative chronology of Upper Paleolithic sites in the Middle Dnieper River basin, based on archaeological and radiocarbon evidence. Three chronological periods of the development of the Upper Paleolithic are distinguished in this area. According to the data obtained, the third period is similar to the European Magdalenian, yet it s economies were different. The base of

  5. Lithological controls on bedrock river incision and valley formation in the eastern South African Interior

    NASA Astrophysics Data System (ADS)

    Keen-Zebert, A.; Tooth, S.; Stuart, F. M.

    2014-12-01

    Resistant bedrock outcrop can exert strong control on river long profile adjustment, upstream transmission of base level fall, and valley development, particularly in post-orogenic settings. Though resistant dolerite (diabase) outcrop in river beds provides a key control on fluvial landscape dynamics in the South African interior, the rates and patterns of change have remained poorly constrained. Cosmogenic 3He measurements made in this study are the first known estimates of river incision and valley development rates in South African dolerite and yield new insight on valley evolution. Bed incision and valley development rates on three short reaches of the Klip River, Mooi River, and Schoonspruit vary as a function of local geomorphic context though cross-sectional patterns of valley denudation are broadly similar among the sites. Channel bed incision occurs primarily through hydraulic plucking of joint-bounded dolerite blocks and minor subaerial weathering with rates varying from ~12-254 m/My. Subaerial denudation on the low-relief valley tops varies from ~20-50 m/My and the valley side denudation rates vary from ~11-12 m/My. At each of the study sites, channel bed and valley top denudation rates are approximately in balance for long intervals of time but valley side denudation rates are negligible. Valleys are roughly in topographic steady state, maintaining cross-sectional depth and width while lowering in pace with the broader landscape. The steady state condition can be interrupted by transient periods of enhanced channel bed incision that deepen the valley. In this post-orogenic setting, enhanced bed incision is typically accomplished by knickpoints that arise from a variety of intrinsic factors including enhanced rates of block plucking (owing to variation in weathering and structure) and incision into underlying weaker lithologies. Knickpoints correlate closely with resistant dolerite outcrop in the study area, and are long-lived (commonly > 105 years) features of river long profiles with positions, morphologies, and retreat rates that are unrelated to uplift timing and magnitude. The results demonstrate the critical role of river incision through resistant lithologies as a driver of fluvial landscape dynamics.

  6. Ecotoxicological Risks of Potential Toxicants for Brown Tree Snake Control on Guam

    Microsoft Academic Search

    John J. Johnston; Richard E. Mauldin; Peter J. Savarie; Joseph E. Brooks; Thomas M. Primus

    2001-01-01

    The brown tree snake (Boiga irregularis) is a nocturnal, arboreal, rear-fanged, mildly venomous, colubrid snake which can reach lengths of up to 2.3 m and weigh as much as 2 kg(1). Originally, the species' range included the northern and eastern coasts of Australia, Papua New Guinea and nearby islands (2). It is believed that sometime in the 19501s, that snakes

  7. PALEODRAINAGES OF THE EASTERN SAHARA - THE RADAR RIVERS REVISITED (SIR - A/B IMPLICATIONS FOR A MID - TERTIARY TRANS - AFRICAN DRAINAGE SYSTEM).

    USGS Publications Warehouse

    McCauley, John F.; Breed, Carlos S.; Schaber, Gerald G.; McHugh, William P.; Issawi, Bahay; Haynes, C. Vance; Grolier, Maurice J.; El Kilani, Ali

    1986-01-01

    A complex history of Cenozoic fluvial activity in the presently hyperarid eastern Sahara is inferred from Shuttle Imaging Radar (SIR) data and postflight field investigations in southwest Egypt and northwest Sudan. SIR images were coregistered with Landsat and existing maps as a guide to exploration of the buried paleodrainages (radar rivers) first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers: RR-1, RR-2, and RR-3. A generalized model of the radar rivers, based on field studies and regional geologic relations, shows apparent changes in river regimen since the large valleys were established during the late Paleogene-early Neogene eras. SIR-based mapping of these paleodrainages, although incomplete, reveals missing links in an area once thought to be devoid of master streams.

  8. Impacts of the Columbia River Hydroelectric System on Main-Stem Habitats of Fall Chinook Salmon

    Microsoft Academic Search

    Dennis D. Dauble; Timothy P. Hanrahan; David R. Geist; Michael J. Parsley

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and

  9. Combined effect of mid-level jets and atmospheric rivers on winter precipitation in the eastern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Backes, T. M.; Schumer, R.; Kaplan, M.; Redmond, K. T.; Mejia, J.

    2013-12-01

    Deep, narrow corridors of concentrated water vapor transport referred to as 'atmospheric rivers' (ARs) are an important contributor to extreme precipitation in the western United States. This study takes a closer look at the climatology of AR events that generate precipitation on the eastern slopes of the Sierra Nevada, with a particular focus on the Tahoe basin. Daily measurements of winter precipitation recorded at 7 National Climatic Data Center weather stations in and around the Tahoe basin are examined for the period from WY1974-2012 and the Climate Prediction Center/National Centers for Environmental Prediction gridded daily precipitation analysis is used to extend these results along the length of the Sierra Crest from WY1949-2012. An inventory of AR landfall dates is generated using the National Centers for Environmental Prediction-National Center for Atmospheric Research model reanalysis and soundings from Oakland (KOAK) are used to look at upper atmospheric conditions, including the presence of low- and mid-level jets on storm days. The percentage of winter season precipitation that falls during AR events varies only slightly with distance from the Sierra Crest. However, a relationship between 2-day precipitation intensity and distance from the Sierra Crest is observed for AR events that coincided with the presence of a mid-level jet at Oakland; no strong relationship is observed for non-AR storms where a mid-level jet was present or for AR events where no mid-level jet was present. These results suggest that strong mid-level vapor transport is an important factor controlling extreme AR precipitation along the eastern slopes of Sierra Nevada.

  10. Draft Inventory Upper Snake Province

    E-print Network

    Draft Inventory Upper Snake Province Submitted To The Northwest Power and Conservation Council ...........................................................................................................1 Bonneville Power Administration Funded Projects within the Upper Snake Province Needed Future Actions within the Upper Snake Subbasin.........................22 Needed Future Actions

  11. Seismic stratigraphy of the quaternary Yellow River delta, Bohai Sea, eastern China

    NASA Astrophysics Data System (ADS)

    Cui, Shuguo; Liu, Huaishan; Tong, Siyou; Zhang, Jin; Wu, Zhiqiang; Wu, Jinlong

    2008-01-01

    The upper 40 m of stratigraphy of the Yellow River (Huang He) subaqueous delta has been well documented, but the nature of the underlying strata is currently unknown at high-resolution. To address this deficiency we used a Geopulse seismic system to image shallow sedimentary deposits up to 120 m deep on the Yellow River delta. High-resolution seismic reflection images were processed with a series of specific techniques (e.g. swelling attenuation, dynamic s/n filter; f-x deconvolution, predictive deconvolution dipscan stack), and used with borehole data to investigate the Quaternary offshore sequences in the Yellow River (Huang He) delta. Repetitive sequences were observed and interpreted as containing layers of transgressive and regressive deposits. Six seismic transgressive and regressive cycles are identified. Unit M6F-C6F correlates with a relative sea-level rise (173-157 ka) and fall (231-173 ka), while Unit M5F-C5F is associated with a relative sea-level rise (124-100 ka) and fall (157-124 ka). Unit M4F-C4F spans a period of sea-level fall at 100-87 ka, followed by a rise at 87-76 ka. Unit M3F-C3F is a transgressive-regressive cycle dated as 76-58 ka. Unit M2F-C2F correlates with relative sea level fall at 58.2-36 ka and subsequent rise at 36-22 ka. Unit M1F-C1F was deposited during relative sea level fall (22-18 ka), followed by a rise, especially since 8.5 ka.

  12. Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Lingling; Huh, Youngsook; Qin, Jianhua; Du, Gu; van Der Lee, Suzan

    2005-11-01

    We examined the fluvial geochemistry of the Huang He (Yellow River) in its headwaters to determine natural chemical weathering rates on the northeastern Qinghai-Tibet Plateau, where anthropogenic impact is considered small. Qualitative treatment of the major element composition demonstrates the dominance of carbonate and evaporite dissolution. Most samples are supersaturated with respect to calcite, dolomite, and atmospheric CO 2 with moderate (0.710-0.715) 87Sr/ 86Sr ratios, while six out of 21 total samples have especially high concentrations of Na, Ca, Mg, Cl, and SO 4 from weathering of evaporites. We used inversion model calculations to apportion the total dissolved cations to rain-, evaporite-, carbonate-, and silicate-origin. The samples are either carbonate- or evaporite-dominated, but the relative contributions of the four sources vary widely among samples. Net CO 2 consumption rates by silicate weathering (6-120 × 10 3 mol/km 2/yr) are low and have a relative uncertainty of ˜40%. We extended the inversion model calculation to literature data for rivers draining orogenic zones worldwide. The Ganges-Brahmaputra draining the Himalayan front has higher CO 2 consumption rates (110-570 × 10 3 mol/km 2/yr) and more radiogenic 87Sr/ 86Sr (0.715-1.24) than the Upper Huang He, but the rivers at higher latitudes are similar to or lower than the Upper Huang He in CO 2 uptake by silicate weathering. In these orogenic zones, silicate weathering rates are only weakly coupled with temperature and become independent of runoff above ˜800 mm/yr.

  13. Drought assessment using a multivariate drought index in the Huaihe River basin of Eastern China

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zeng, M.; Wang, H.; Li, P.; Wang, K.; Yu, M.

    2015-06-01

    The Huaihe River Basin having China's highest population density (662 persons per km2) lies in a transition zone between the climates of North and South China, and is thus prone to drought. Therefore, the paper aims to develop an appropriate drought assessment approach for drought assessment in the Huaihe River basin, China. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by use of the Xin'anjiang model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. The MDI, the Standardized Precipitation Index (SPI) and the self-calibrating Palmer Drought Severity Index (sc-PDSI) time series on a monthly scale were computed and compared during 1988, 1999/2000 and 2001 drought events. The results show that the MDI exhibited certain advantages over the sc-PDSI and the SPI in monitoring drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.

  14. Magnetic Properties of a Fluvial Chronosequence From the Eastern Wind River Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Quinton, E. E.; Dahms, D. E.; Geiss, C. E.

    2010-12-01

    In order to constrain the rate of magnetic enhancement in glacial fluvial sediments, we sampled modern soils from eight fluvial terraces in the East Wind River Range in Wyoming. Soil profiles up to 1.2 meters deep were described in the field and sampled in five cm intervals from a series of hand-dug pits or natural river-bank exposure. The age of the studied profiles are estimated to range from >600 ka to modern. They include Sacagawea Ridge, Bull Lake and Pinedale-age fluvial terraces as well as one Holocene profile. To characterize changes in magnetic properties we measured low-field magnetic susceptibility, anhysteretic remanent magnetization, isothermal remanent magnetization and S-ratios for all, and hysteresis loops for a selected sub-set of samples. Our measurements show no clear trend in magnetic enhancement with estimated soil age. The observed lack of magnetic enhancement in the older soils may be due to long-term deflation, which continuously strips off the magnetically enhanced topsoil. It is also possible that the main pedogenic processes, such as the development of well-expressed calcic horizons destroy or mask the effects of long-term magnetic enhancement.

  15. Effects of the Rate of Releases from Sam Rayburn Reservoir on the Aeration Capacity of the Angelina River, Eastern Texas

    USGS Publications Warehouse

    Rawson, Jack; Goss, Richard L.; Rathbun, Ira G.

    1980-01-01

    A three-phase study was conducted during July and August 1979 to determine the effects of varying release rates through the power-outlet works at Sam Rayburn Reservoir, eastern Texas, on aeration capacity of a 14-mile reach of the Angelina River below Sam Rayburn Dam. The dominant factors that affected the aeration capacity during the study time were time of travel and the dissolved-oxygen deficit of the releases. Aeration was low throughout the study but increased in response to increases in the dissolved-oxygen deficit and the duration of time that the releases were exposed to the atmosphere (time of travel). The average concentration of dissolved oxygen sustained by release of 8,800 cubic feet per second decreased from 5.0 milligrams per liter at a site near the power outlet to 4.8 milligrams per liter at a site about 14 miles downstream; the time of travel averaged about 8 hours. The average concentration of dissolved oxygen in flow sustained by releases of 2,200 cubic feet per second increased from 5.2 to 5.5 milligrams per liter; the time of travel averaged about 20 hours. (USGS)

  16. The geochemistry characteristic and dating of cold seepage carbonates of the Pearl River Mouth Basin, eastern of South China Sea

    NASA Astrophysics Data System (ADS)

    Fang, Yunxin; Fu, Shaoying

    2015-04-01

    Cold seepage carbonates are usually formed by the interaction of methane oxidizing archaea, sulfate reducing bacteria and cold seepage which contain abundant venting hydrocarbon gases. The presence of cold seepage carbonates on the seabed is one of the evidences that the area exist venting hydrocarbon gases, which are usually result by the dissociation of gas hydrate. The cold seepage property and fluid flow rate can influence the oxidation-deoxidation environment of the bottom water and sediment. Many previous studies focused on the mineral composition, microstructure, elemental composition, isotope composition of the cold seepage carbonates and isotopic dating for the cold seepage carbonates. The isotopic dating for the cold seepage carbonates can provide the information of the gas hydrate formation and dissociation in some area of the South China Sea. High precision TIMS-U dating and 14C dating are used as routine method for the dating of the Quaternary carbonates and fossils. The cold seepage carbonates in the study include the samples collected by ROV on the seabed and the drilling for gas hydrate in the Pearl River Mouth Basin, eastern of the South China Sea. The authigenic carbonate occurred in different depth in the A, B and C drilling site. They may be represent different events of gas hydrate formation and dissociation in the Quaternary. The dating study for all the cold seepage carbonates can provide the relative accurate eras of the gas hydrate dissociation events in certain area of the South China Sea.

  17. Daily water and sediment discharges from selected rivers of the eastern United States; a time-series modeling approach

    USGS Publications Warehouse

    Fitzgerald, Michael G.; Karlinger, Michael R.

    1983-01-01

    Time-series models were constructed for analysis of daily runoff and sediment discharge data from selected rivers of the Eastern United States. Logarithmic transformation and first-order differencing of the data sets were necessary to produce second-order, stationary time series and remove seasonal trends. Cyclic models accounted for less than 42 percent of the variance in the water series and 31 percent in the sediment series. Analysis of the apparent oscillations of given frequencies occurring in the data indicates that frequently occurring storms can account for as much as 50 percent of the variation in sediment discharge. Components of the frequency analysis indicate that a linear representation is reasonable for the water-sediment system. Models that incorporate lagged water discharge as input prove superior to univariate techniques in modeling and prediction of sediment discharges. The random component of the models includes errors in measurement and model hypothesis and indicates no serial correlation. An index of sediment production within or between drain-gage basins can be calculated from model parameters.

  18. Changes in the glacier extent and surface elevation along the Ningchan and Shuiguan river source, eastern Qilian Mountains, China

    NASA Astrophysics Data System (ADS)

    Cao, Bo; Pan, Baotian; Wang, Jie; Shangguan, Donghui; Wen, Zhenling; Qi, Wentao; Cui, Hang; Lu, Yaoyang

    2014-05-01

    We investigate the changes at nine glaciers in the Ningchan and Shuiguan river source, eastern Qilian Mountains, between 1972 and 2010. According to analysis of topographic maps and multispectral satellite data, all nine glaciers in the study area have retreated, by a maximum of 250 ± 57.4 m and a minimum of 91 ± 57.4 m. The total glacier area decreased by 1.20 km2, corresponding to 9.9% of the glacierized area in 1972. Comparing the two DEMs generated from the topographic maps and Real-Time Kinematic GPS data, the mean glacier thinning rate was 0.64 m yr- 1 between 1972 and 2010. The most significant thinning generally occurred on the termini. The ice-volume loss was about 106.8 ± 46.7 × 10- 3 km3 (equal to 90.8 ± 39.7 × 10- 3 km3 w.e.), which suggested a mean water discharge of 0.1 ± 0.05 m3/s during 1972-2010. Based on analysis of meteorological data, the summer temperature (June-August) tends to increase over a similar time period. The consistency of temperature increase and glacier shrinkage allows us to suggest that air temperature plays an important role in glacier changes in this region.

  19. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    SciTech Connect

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    2008-12-03

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in this series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release groups were pooled across the entire Snake River Basin upstream of Lower Granite Dam for this report. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.92% with an estimated standard error (dSE) of 0.25% for wild spring and summer Chinook salmon for tagged groups released from 1996 through 2004, omitting age-1-ocean (jack) returns. Only for the 1999 and 2000 release years did the wild Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for wild steelhead from the Snake River Basin averaged 0.63% (dSE = 0.15%), including age-1-ocean returns, for release years 1996 through 2004. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2004), it was estimated that on average approximately 83% of the total integrated mortality for nontransported, tagged wild spring and summer Chinook, and 78% for steelhead (omitting the 2001 release year), occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the dam-specific T/I for Lower Granite Dam were available for the 2003 and 2004 release years for both wild Chinook salmon and wild steelhead. The estimated T/I for Lower Granite was significantly > 1.0 for Chinook in 2004 (P < 0.0001) and for steelhead in both 2003 (P < 0.0001) and 2004 (P < 0.0001), indicating that for these release years, wild fish transported at Lower Granite returned there in higher proportions than fish that were returned to the river at Lower Granite, or that passed Lower Granite without detection as juveniles. Annual estimates of the dam-specific T/I for Little Goose Dam were available for wild Chinook salmon for both 2003 and 2004. The estimated T/I for Little Goose was significantly > 1.0 for wild Chinook in 2004 (P = 0.0024), but not in 2003 (P = 0.1554). Differential post-Bonneville mortality (D) is the ratio of pos

  20. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    Microsoft Academic Search

    D. A. Neitzel; T. J. Frest

    1992-01-01

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the

  1. Water budgets for selected watersheds in the Delaware River basin, eastern Pennsylvania and western New Jersey

    USGS Publications Warehouse

    Sloto, Ronald A.; Buxton, Debra E.

    2005-01-01

    This pilot study, done by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission, developed annual water budgets using available data for five watersheds in the Delaware River Basin with different degrees of urbanization and different geological settings. A basin water budget and a water-use budget were developed for each watershed. The basin water budget describes inputs to the watershed (precipitation and imported water), outputs of water from the watershed (streamflow, exported water, leakage, consumed water, and evapotranspiration), and changes in ground-water and surface-water storage. The water-use budget describes water withdrawals in the watershed (ground-water and surface-water withdrawals), discharges of water in the watershed (discharge to surface water and ground water), and movement of water of water into and out of the watershed (imports, exports, and consumed water). The water-budget equations developed for this study can be applied to any watershed in the Delaware River Basin. Data used to develop the water budgets were obtained from available long-term meteorological and hydrological data-collection stations and from water-use data collected by regulatory agencies. In the Coastal Plain watersheds, net ground-water loss from unconfined to confined aquifers was determined by using ground-water-flow-model simulations. Error in the water-budget terms is caused by missing data, poor or incomplete measurements, overestimated or underestimated quantities, measurement or reporting errors, and the use of point measurements, such as precipitation and water levels, to estimate an areal quantity, particularly if the watershed is hydrologically or geologically complex or the data-collection station is outside the watershed. The complexity of the water budgets increases with increasing watershed urbanization and interbasin transfer of water. In the Wissahickon Creek watershed, for example, some ground water is discharged to streams in the watershed, some is exported as wastewater, and some is exported for public supply. In addition, ground water withdrawn outside the watershed is imported for public supply or imported as wastewater for treatment and discharge in the watershed. A GIS analysis was necessary to quantify many of the water-budget components. The 89.9-square mile East Branch Brandywine Creek watershed in Pennsylvania is a rural watershed with reservoir storage that is underlain by fractured rock. Water budgets were developed for 1977-2001. Average annual precipitation, streamflow, and evapotranspiration were 46.89, 21.58, and 25.88 inches, respectively. Some water was imported (average of 0.68 inches) into the watershed for public-water supply and as wastewater for treatment and discharge; these imports resulted in a net gain of water to the watershed. More water was discharged to East Branch Brandywine Creek than was withdrawn from it; the net discharge resulted in an increase in streamflow. Most ground water was withdrawn (average of 0.25 inches) for public-water supply. Surface water was withdrawn (average of 0.58 inches) for public-water and industrial supply. Discharge of water by sewage-treatment plants and industries (average of 1.22 inches) and regulation by Marsh Creek Reservoir caused base flow to appear an average of 7.2 percent higher than it would have been without these additional sources. On average, 67 percent of the difference was caused by sewage-treatment-plant and industrial discharges, and 33 percent was caused by regulation of the Marsh Creek Reservoir. Water imports, withdrawals, and discharges have been increasing as the watershed becomes increasingly urbanized. The 64-square mile Wissahickon Creek watershed in Pennsylvania is an urban watershed underlain by fractured rock. Water budgets were developed for 1987-98. Average annual precipitation, streamflow, and evapotranspiration were 47.23, 22.24, and 23.12 inches, respectively. The watershed is highly u

  2. Connectivity and colluvial sediment dynamics in the Saldur River basin, Eastern Italian Alps

    NASA Astrophysics Data System (ADS)

    Brardinoni, Francesco; Scotti, Riccardo; Cavalli, Marco; Mair, Volkmar

    2015-04-01

    We present an integrated approach that aims to: (i) document the spatial distribution of mass-wasting activity and sediment production in the Saldur River basin (97 km2); (ii) detect causal linkages between mass-wasting intensity and the potential spatial distribution of discontinuous permafrost; (iii) identify source-to-sink colluvial sedimentary pathways as modulated by the spatial organization of active and relict glacial and periglacial depositional landforms; and (iv) test the reliability of a geomorphometry-based index of sediment connectivity. In so doing we compare spatial patterns of process-based and structural geomorphic connectivity. To these ends, we map rock glaciers, protalus ramparts and moraines, and compile a field- and air photo-based multi-temporal (1959-1969-1982-1997-2000-2006-2008-2011) inventory of colluvial sediment sources. We then combine these data with two historical datasets of debris flow and landslide events (both implemented and maintained by the Autonomous Province of Bolzano) and analyse mass-wasting spatial distribution and intensity in relation to proximity to glacier fronts, intact and relict periglacial landforms, and a permafrost index map (i.e., PermaNET; http://www.permanet-alpinespace.eu/). This work is part of SedAlp (www.sedalp.eu), a project funded through the Alpine Space Programme.

  3. New State Record Lengths and Associated Natural History Notes for some Illinois Snakes

    Microsoft Academic Search

    Jason J. Kolbe; Luke J. Harmon; Daniel A. Warner

    Record length snakes of four species and associated natural history information are reported from Carroll and Whiteside Counties, Illinois. Three of the snakes ( Heterodon nasicus nasicus, Pituophis melanoleucus sayi, and Thamnophis sirtalis sirtalis) were captured in sand prairie habitat and the other ( Elaphe vulpina vulpina) on a muddy bank of the Mississippi River. A large brood from the

  4. Distribution and Diversity of Escherichia coli Populations in the South Nation River Drainage Basin, Eastern Ontario, Canada ?

    PubMed Central

    Lyautey, Emilie; Lu, Zexun; Lapen, David R.; Wilkes, Graham; Scott, Andrew; Berkers, Tanya; Edge, Thomas A.; Topp, Edward

    2010-01-01

    We investigated the prevalence and diversity of Escherichia coli strains isolated from surface waters from multiple watersheds within the South Nation River basin in eastern Ontario, Canada. The basin is composed of mixed but primarily agricultural land uses. From March 2004 to November 2007, a total of 2,004 surface water samples were collected from 24 sampling sites. E. coli densities ranged from undetectable to 1.64 × 105 CFU 100 ml?1 and were correlated with stream order and proximity to livestock production systems. The diversity of 21,307 E. coli isolates was characterized using repetitive extragenic palindromic PCR (rep-PCR), allowing for the identification of as many as 7,325 distinct genotypes, without capturing all of the diversity. The community was temporally and spatially dominated by a few dominant genotypes (clusters of more than 500 isolates) and several genotypes of intermediary abundance (clustering between 10 and 499 isolates). Simpson diversity indices, assessed on a normalized number of isolates per sample, ranged from 0.050 to 0.668. Simpson indices could be statistically discriminated on the basis of year and stream order, but land use, discharge, weather, and water physical-chemical properties were not statistically important discriminators. The detection of Campylobacter species was associated with statistically lower Simpson indices (greater diversity; P < 0.05). Waterborne E. coli isolates from genotypes of dominant and intermediary abundance were clustered with isolates obtained from fecal samples collected in the study area over the same period, and 90% of the isolates tested proved to share genotypes with fecal isolates. Overall, our data indicated that the densities and distribution of E. coli in these mixed-use watersheds were linked to stream order and livestock-based land uses. Waterborne E. coli populations that were distinct from fecal isolates were detected and, on this basis, were possibly naturalized E. coli strains. PMID:20038693

  5. Cumulative potential hydrologic impacts of surface coal mining in the eastern Powder River structural basin, northeastern Wyoming

    USGS Publications Warehouse

    Martin, L.J.; Naftz, D.L.; Lowham, H.W.; Rankl, J.G.

    1988-01-01

    There are 16 existing and six proposed surface coal mines in the eastern Powder River structural basin of northeastern Wyoming. Coal mining companies predict water level declines of 5 ft or more in the Wasatch aquifer to extend form about 1,000 to about 2,000 ft beyond the mine pits. The predicted 5 ft water level decline in the Wyodak coal aquifer generally extends 4-8 mi beyond the lease areas. About 3,000 wells are in the area of potential cumulative water level declines resulting from all anticipated mining. Of these 3,000 wells, about 1,200 are outside the areas of anticipated mining: about 1,000 wells supply water for domestic or livestock uses, and about 200 wells supply water for municipal, industrial, irrigation, and miscellaneous uses. The 1,800 remaining wells are used by coal mining companies. Future surface coal mining probably will result in postmining groundwater of similar quality to that currently present in the study area. By use of geochemical modeling techniques, the results of a hypothetical reaction path exercise indicate the potential for marked improvements in postmining water quality because of chemical reactions as postmining groundwater with a large dissolved solids concentration (3,540 mg/L) moves into a coal aquifer with relatively small dissolved solids concentrations (910 mg/L). Results of the modeling exercise also indicate geochemical conditions that are most ideal for large decreases in dissolved solids concentrations in coal aquifers receiving recharge from a spoil aquifer. (Lantz-PTT)

  6. Soil erosion on road and railways embankments in the Canyoles river Basin. Eastern Spain.

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Antonio, Giménez-Morera; Félix Ángel, González-Peñaloza; María, Burguet; Paulo, Pereira; José Reyes, Ruiz

    2013-04-01

    Mediterranean landscapes are man-made. Its human ecosystems are characterized by a high population density, a long history of human settlement and an intense exchange of goods and people (Cerdà et al., 2010). This was possible due to a dense road network, most of it created during the Roman Empire. Modern roads and railways increased drastically during the last 30 years in the Mediterranean. Spain is a clear example of the acceleration of the road and railway infrastructures (Bel, 2005), especially during the 1960s as the tourism started to become a big issue in this part of the World. The increase in road and railways during the last 30 years resulted in a new transport system in Spain, which is based on high-speed railways and motorways. The characteristic of these infrastructures is that they were built by means of embankments, and little is now about the erosional response of those embankments to rainfall. The objective of this research is to assess the soil losses measured in road and railway embankments. The Canyoles River watershed was selected as an example of a region with a dense and recently developed modern network of roads, motorways and railway. The Canyoles river watershed is the natural path between the Mediterranean coast and Central Spain, the capital of the country and the touristic regions. Two motorways and two railways were built or re-built during the last two years and this paper assesses their impact on soil and water losses. As soil erosion rates are dependent on the high intensity - low frequency rainfall events, rainfall simulation experiments (40 experiments) were conducted (1 m2 plots; 60 minutes duration; 78 mm h-1 intensity) were carried out over plots on 2 railway (n=10 + 10) and motorway (n=10 + 10) research sites in August 2011, under very dry conditions. Soil moisture was below 5 % in the top 2 cm soil layer. The vegetation cover was very low in the two road and two railway embankments as the average cover was 4.2 % ranging from 1 to 7 %. Time to ponding was 135.8 seconds, ranging from 131.1 and 158.7 seconds within four road embankments. Time to runoff was also very quick, with 367 seconds, ranging from 326.9 to 376.9 seconds after the start of the rain. The runoff outlet was reached after 402.08 seconds, ranging from 367.1 to 428.5 seconds. Runoff was 56.25 % of the rainfall, ranging from 54.93 % in the Road1 embankments to 57.08 % on the Railway1 embamkments. Sediment concentration was 41.41 g l-1 in average for the 40 rainfall simulation experiments and ranged from 40.20 to 42.54 g l-1. After 78 mm h-1 (156 liters on the 2m2 plots) of simulated rainfall during one hour, the total runoff collected was 87.75 %, with a very low variability within the four studied embankments an the 40 research plots (9 % variation coefficient). The sediment yield collected during the 25-year return period experiments resulted in 3.67 Kg in average values with again a low spatial variability (18 % variation coefficient). The soil erosion registered in the four-studied road and railway embankments reached a value of 18.25 Mg ha-1 h-1. The results shown above demonstrate that the water and soil losses in the road embankments under intense thunderstorms are very high, which is a general trend in Mediterranean ecosystems due to the climatologically conditions and the lack of restoration and rehabilitation strategies (Cerdà, 2007). The comparison with other research under different land uses show that the soil losses are very high on the road embankments due to the impact of the slope and the bare soil (Bakr et al., 2012) and show higher erosion rates than the unpaved forest roads (Jordán and Martínez Zavala, 2008). Scrublands, meadows, forest, and agriculture land in general show much lower soil losses at the study area (García Orenes et al., 2009). This is why most of the current research is developing strategies to control the soil and water losses (Persyn et al., 2004: Xu et al., 2006; de Oñae et al., 2009). This paper concludes that the soil erosion on road and railways are not sustainable and th

  7. Heavy Guadalquivir River discharge detection with satellite altimetry: The case of the eastern continental shelf of the Gulf of Cadiz (Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Gómez-Enri, J.; Escudier, R.; Pascual, A.; Mañanes, R.

    2015-03-01

    In situ water levels in the Guadalquivir River estuary mouth show the effect of strong river freshwater discharges on the monthly means of the sea level on a yearly basis. Accurate altimeter products oriented toward coastal zones are increasing the number of potential applications at different spatiotemporal scales. The present work is focused on the analysis of the sea-level variability in the eastern shelf of the Gulf of Cadiz (between North Africa and the southwestern side of the Iberian Peninsula), adjacent to the Guadalquivir River estuary. Sixteen years (1994-2009) of along-track and standard AVISO maps of sea-level anomalies (SLAs) have been used to generate a new high-resolution product with increased spatiotemporal resolution. The use of a bathymetry constraint and smaller correlation scales in the methodology developed to generate high-resolution altimeter products improves the characterization of the mesoscale signals in the coastal strip adjacent to the estuary due to strong river freshwater discharges. This has been confirmed by the analysis of along-track SLA data in the vicinity of the estuary. The daily evolution (2 weeks) of the sea level obtained in the event of December 2009 might be related to the river plume extension observed by optical Moderate Resolution Imaging Spectrometer (MODIS) images. The spatiotemporal distribution of the altimeter tracks available in the study area might compromise the mapping capabilities to capture coastal and fine-scale features.

  8. SRO -NERP-1 THE SAVANNAH RIVER PLANT

    E-print Network

    Georgia, University of

    SRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S- significant, each specieshas at least a potential effect on our existence. Snakes not only have an indirect

  9. Stratigraphy of the unsaturated zone and uppermost part of the Snake River Plain aquifer at test area north, Idaho National Engineering Laboratory, Idaho

    Microsoft Academic Search

    S. R. Anderson; B. Bowers

    1995-01-01

    A complex sequence of basalt flows and sedimentary interbeds underlies Test Area North (TAN) at the Idaho National Engineering Laboratory in eastern Idaho. Wells drilled to depths of at least 500 feet penetrate 10 basalt-flow groups and 5 to 10 sedimentary interbeds that range in age from about 940,000 to 1.4 million years. Each basalt-flow group consists of one or

  10. Molecular phylogeny of the Australian venomous snake genus Hoplocephalus (Serpentes, Elapidae) and conservation genetics of the threatened H. stephensii

    Microsoft Academic Search

    Scott J. Keogh; Ian A. W. Scott; Mark Fitzgerald; Richard Shine

    2003-01-01

    The Australian elapid snakeHoplocephalus stephensii (Stephens' BandedSnake) is patchily distributed in disjunctforest remnants in eastern Australia and islisted as threatened in both states in which itoccurs (Qld and NSW). Here we focus on thephylogeography of H. stephensii toaddress (1) the genetic distinctiveness of thistaxon within its genus and (2) the level ofgenetic diversity present within and betweendisjunct populations from throughout

  11. Native metals and intermetallic compounds in heavy concentrate halos of the Ol'khovaya-1 River, Kamchatsky Mys Peninsula, eastern Kamchatka

    NASA Astrophysics Data System (ADS)

    Sandimirova, E. I.; Sidorov, E. G.; Chubarov, V. M.; Ibragimova, E. K.; Antonov, A. V.

    2014-12-01

    Various native metals (Pb, Sn, Bi, and Cu) and intermetallic compounds (Au-Pb), (Au-Ag-Pb-Sb), (Pb-Sb), (Pb-Sn), and (Au-Ag-Pb-Sn) have been revealed in placer gold deposits in the Ol'khovaya-1 River and heavy concentrate halos on the Kamchatsky Mys Peninsula, eastern Kamchatka. Interrelations (intergrowths and inclusions) of these metals and intermetallic compounds with gold and host rocks show that they are of natural origin and genetically related to the hydrothermal metasomatic alteration of the Kamchatsky Mys ultramafic massif.

  12. Atlas of the Columbia River Basin

    E-print Network

    Jenny, Bernhard

    ;YakimaRiver Willam ett e R. Spokane R. SnakeRiver S a l m o n R . Pend O rielle R. KootenaiR iv er J ohn. Spokane R. SnakeRiver S a l m o n R . Pend O rielle R. KootenaiR iv er J ohn Day River Flathead Kelowna Spokane Kamloops Victoria Tacoma Calgary Seattle Portland Vancouver 14,441 ft. R O C K Y M O U N

  13. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam: Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1997-1998 Annual Report.

    SciTech Connect

    Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

    1999-02-01

    The authors report on their progress from April 1997 through March 1998 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), National Marine Fisheries Service (NMFS; Report D), U.S. Fish and Wildlife Service (USFWS; Report E), and Columbia River Inter-Tribal Fish Commission (CRITFC; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of the work from April 1997 through March 1998 listed.

  14. Columbia River White Sturgeon Genetics and Early Life History: Population Segregation and Juvenile Feeding Behavior, 1987 Final Report

    Microsoft Academic Search

    Brannon; Ernest L

    1988-01-01

    The geographic area of the genetics study broadly covered the distribution range of sturgeon in the Columbia from below Bonneville Dam at Ilwaco at Lake Roosevelt, the Upper Snake River, and the Kootenai River. The two remote river sections provided data important for enhancement considerations. There was little electrophoretic variation seen among individuals from the Kootenai River. Upper Snake river

  15. Chemical constituents in groundwater from multiple zones in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009-13

    USGS Publications Warehouse

    Bartholomay, Roy C.; Hopkins, Candice B.; Maimer, Neil V.

    2015-01-01

    Tritium concentrations in relation to basaltic flow units indicate the presence of wastewater influence in multiple basalt flow groups; however, tritium is most abundant in the South Late Matuyama flow group in the southern boundary wells. The concentrations of wastewater constituents in deep zones in wells Middle 2051, USGS 132, USGS 105, and USGS 103 support the concept of groundwater flow deepening in the southwestern corner of the INL, as indicated by the INL groundwater-flow model.

  16. Smolt Migration Characteristics and Mainstem Snake and Columbia River Detection Rates of PIT-Tagged Grande Ronde and Imnaha River Naturally Produced Spring Chinook Salmon, Annual Reports 1993, 1994, 1995 : Fish Research Project, Oregon.

    SciTech Connect

    Walters, Timothy R.; Carmichael, Richard W.; Keefe, MaryLouise

    1996-04-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995.

  17. Snake Robots.com

    NSDL National Science Digital Library

    One of the latest developments in robotics is flexible, snake-like machines that could be used for such activities as Martian landscape exploration because they are highly flexible, adaptable, and maneuverable into tight spaces and over relatively large obstacles. Snake Robots.com comes from robotics engineer Gavin Miller who developed his own "snakes" with inspiration from his work on physically-based computer animation at Alias Research, Inc. and Apple Computer, Inc. (Note: this private site is not affiliated with those corporations.) Visitors to Miller's site can see color videos, with audio, of his incredibly life-like serpents (.mpeg). Links to other snake robot sites are provided along with information about upcoming museum exhibitions and articles.

  18. Assessment of the risks for human health of adenoviruses, hepatitis A virus, rotaviruses and enteroviruses in the Buffalo River and three source water dams in the Eastern Cape.

    PubMed

    Chigor, Vincent N; Sibanda, Timothy; Okoh, Anthony I

    2014-06-01

    Buffalo River is an important water resource in the Eastern Cape Province of South Africa. The potential risks of infection constituted by exposure to human enteric viruses in the Buffalo River and three source water dams along its course were assessed using mean values and static quantitative microbial risk assessment (QMRA). The daily risks of infection determined by the exponential model [for human adenovirus (HAdV) and enterovirus (EnV)] and the beta-Poisson model (for hepatitis A virus (HAV) and rotavirus (RoV)) varied with sites and exposure scenario. The estimated daily risks of infection values at the sites where the respective viruses were detected, ranged from 7.31 × 10(-3) to 1 (for HAdV), 4.23 × 10(-2) to 6.54 × 10(-1) (RoV), 2.32 × 10(-4) to 1.73 × 10(-1) (HAV) and 1.32 × 10(-4) to 5.70 × 10(-2) (EnV). The yearly risks of infection in individuals exposed to the river/dam water via drinking, recreational, domestic or irrigational activities were unacceptably high, exceeding the acceptable risk of 0.01% (10(-4) infection/person/year), and the guideline value used as by several nations for drinking water. The risks of illness and death from infection ranged from 6.58 × 10(-5) to 5.0 × 10(-1) and 6.58 × 10(-9) to 5.0 × 10(-5), respectively. The threats here are heightened by the high mortality rates for HAV, and its endemicity in South Africa. Therefore, we conclude that the Buffalo River and its source water dams are a public health hazard. The QMRA presented here is the first of its kinds in the Eastern Cape Province and provides the building block for a quantitatively oriented local guideline for water quality management in the Province. PMID:24676673

  19. Studies on the bacteriological qualities of the Buffalo River and three source water dams along its course in the Eastern Cape Province of South Africa.

    PubMed

    Chigor, Vincent N; Sibanda, Timothy; Okoh, Anthony I

    2013-06-01

    The Buffalo River and its dams are major surface water sources used for fresh produce irrigation, raw water abstraction and recreation in parts of the Eastern Cape Province in South Africa. Over a 12-month period (August 2010 to July 2011), we assessed the bacteriological qualities of water from the river and 3 source water dams along its course. Faecal indicator bacteria (FIB), including total coliform (TC), faecal coliform (FC) and enterococci (ENT) counts, were high and ranged as follows: 1.9 × 10(2)-3.8 × 10(7), 0-3.0 × 10(5) and 0-5.3 × 10(5) cfu/100 ml for TC, FC and ENT, respectively. Significantly (P<0.05) higher concentrations of FC and ENT were observed at the sampling sites located at the lower reaches of the river compared to the upper reaches, and at Bridle Drift Dam compared to the other two dams. FIB counts mostly exceeded the recommended maximum values suggested by national and international guidelines for safe fresh produce irrigation, domestic applications, full-contact recreation and livestock watering. These results show that the bacteriological qualities of the Buffalo River and dams were poor, and suggest that sewage was dumped into the Buffalo River during the study period. Urban runoffs and effluents of wastewater treatment plants appear to be important sources of faecal contamination in the river. We conclude that these water bodies represent significant public health hazards. Provision of adequate sanitary infrastructure will help prevent source water contamination, and public health education aimed at improving personal, household and community hygiene is imperative. PMID:23238595

  20. An Analysis of Variables Influencing the Migration of Juvenile Salmonids in the Columbia River Basin

    Microsoft Academic Search

    Thomas J. Berggren; Margaret J. Filardo

    1993-01-01

    The amount of time that it takes juvenile chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss to migrate (travel time) at different river flows through index reaches in the Snake and Columbia rivers was analyzed with bivariate- and multiple-regression models. Smolt travel time estimates for yearling chinook salmon and steelhead in the Snake River, steelhead in the middle Columbia River,

  1. Sexual size dimorphism in garter snakes (Thamnophis sirtalis), water snakes (Nerodia sipedon) and black ratsnakes (Elaphe obsoleta)

    E-print Network

    Blouin-Demers, Gabriel

    Sexual size dimorphism in garter snakes (Thamnophis sirtalis), water snakes (Nerodia sipedon snakes (Thamnophis sirtalis), northern water snakes (Nerodia sipedon) and black ratsnakes (Elaphe SSD in three species of snake, two with female biased SSD, garter snakes (Thamnophis sirtalis

  2. Comparison between GVF snake and ED snake in segmenting microcalcifications

    Microsoft Academic Search

    Siti Salmah Yasiran; Abdul Kadir Jumaat; Mazani Manaf; Arsmah Ibrahim; W. A. R Wan Eny Zarina; Aminah Malek; Mohamed Faris Laham; Rozi Mahmud

    2011-01-01

    Snake, active contour or deformable active contour has been widely used in medical image segmentation area. In this paper, comparison between Gradient Vector Flow (GVF) snake and Enhanced Distance (ED) snake in segmenting microcalcifications is carried out. The performance is measured based on actual area of the average percentage difference traced by expert radiologists. Results obtained shows that the values

  3. Snake Hells Canyon Subbasin Assessment

    E-print Network

    Snake Hells Canyon Subbasin Assessment May 2004 Prepared for the Northwest Power and Conservation, Ecovista Angela Sondenaa, Nez Perce Tribe Darin Saul, Ecovista #12;Snake Hells Canyon Subbasin Assessment Table of Contents 0 INTRODUCTION TO SNAKE HELLS CANYON SUBBASIN ASSESSMENT............ 1 1 SUBBASIN

  4. Snake Hells Canyon Subbasin Inventory

    E-print Network

    Snake Hells Canyon Subbasin Inventory May 2004 Prepared for the Northwest Power and Conservation .................................................................................................................................. 62 8 APPENDIX A APRE SUMMARIES FOR HELLS CANYON SUBBASIN.................. 63 Snake Hells Canyon Subbasin Inventory i May 2004 #12;LIST OF FIGURES FIGURE 1.LAND MANAGEMENT IN THE SNAKE HELLS CANYON

  5. Snakes: An Integrated Unit Plan.

    ERIC Educational Resources Information Center

    Lawrence, Lisa

    This document presents an integrated unit plan on snakes targeting second grade students. Objectives of the unit include developing concepts of living things, understanding the contribution and importance of snakes to the environment, and making connections between different disciplines. The unit integrates the topic of snakes into the areas of…

  6. Lizards & Snakes Booklist for Educators

    NSDL National Science Digital Library

    This Lizards & Snakes: Alive! reference list has a half dozen books that are recommended for learning more about squamates. The author, publisher, publishing date and a brief description are given for each title. The list includes field guides to snake species, tips for snake husbandry, and college and scholarly texts.

  7. Functional Prediction of Snake Neurotoxins

    Microsoft Academic Search

    Seng Hong SEAH; Chee Keong KWOH; Vladimir BRUSIC; Meena Kishore SAKHARKAR; Geok See NG

    2006-01-01

    Snake neurotoxins are important experimental tool in pharmacological research. Over the years, the number of snake neurotoxin sequences identified is increasing at a very fast pace. However, only a small portion of them are experimentally characterized from more than 200,000 variants estimated to exist in nature. In this paper, we report a systematic functional analysis on snake neurotoxins using a

  8. Geospatial Investigation into Groundwater Pollution and Water Quality Supported by Satellite Data: A Case Study from the Evros River (Eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Elias, Dimitriou; Angeliki, Mentzafou; Vasiliki, Markogianni; Maria, Tzortziou; Christina, Zeri

    2014-06-01

    Managing water resources, in terms of both quality and quantity, in transboundary rivers is a difficult and challenging task that requires efficient cross-border cooperation and transparency. Groundwater pollution risk assessment and mapping techniques over the full catchment area are important tools that could be used as part of these water resource management efforts, to estimate pollution pressures and optimize land planning processes. The Evros river catchment is the second largest river in Eastern Europe and sustains a population of 3.6 million people in three different countries (Bulgaria, Turkey and Greece). This study provides detailed information on the main pollution sources and pressures in the Evros catchment and, for the first time, applies, assesses and evaluates a groundwater pollution risk mapping technique using satellite observations (Landsat NDVI) and an extensive dataset of field measurements covering different seasons and multiple years. We found that approximately 40 % of the Greek part of the Evros catchment is characterized as of high and very high pollution risk, while 14 % of the study area is classified as of moderate risk. Both the modeled and measured water quality status of the river showed large spatiotemporal variations consistent with the strong anthropogenic pressures in this system, especially on the northern and central segments of the catchment. The pollutants identified illustrate inputs of agrochemicals and urban wastes in the river. High correlation coefficients ( R between 0.79 and 0.85) were found between estimated pollution risks and measured concentrations of those chemical parameters that are mainly attributed to anthropogenic activities rather than in situ biogeochemical processes. The pollution risk method described here could be used elsewhere as a decision support tool for mitigating the impact of hazardous human activities and improving management of groundwater resources.

  9. Levels and distribution of Dechlorane Plus and related compounds in surficial sediments of the Qiantang River in eastern China: the results of urbanization and tide.

    PubMed

    Sun, Jianqiang; Zhang, Anping; Fang, Li; Wang, Junliang; Liu, Weiping

    2013-01-15

    Dechloranes, including Mirex, Dechlorane 602 (Dec 602), Dechlorane 603 (Dec 603), Dechlorane 604 (Dec 604) and Dechlorane Plus (DP), are a class of chlorinated flame retardants. To investigate the effect of urbanization and tide on the distribution of Dechloranes in sediment, we assayed surficial sediments collected from the Qiantang River in eastern China for the presence of these chemicals. The concentrations of Mirex, Dec 602, Dec 603, and DP ranged from below detection limit (BLD) to 0.68 ng/g dry weight (dw), BLD-0.048 ng/g dw, BLD-0.026 ng/g dw, and BLD-1.1 ng/g dw, respectively. Dechloranes 604 was not detected in any sediment samples. It was evident that local urban and industrial activities were the primary source of DP in surficial sediments in the Qiantang River, which was supported by the fact that the average DP concentration of sediment samples in urban sites was approximately three-fold higher than that in rural sites. An extremely high concentration of DP at a reservoir site in a rural area indicated that a dam can block the movement of DP in the Qiantang River by slowing down the river current and making the reservoir the primary sink of DP. Furthermore, the spatial distribution of Dechloranes suggested that concentrations of Dechloranes in sediment in the tide zone were much lower than those in the non-tidal zone, indicating that tide played an important role in transportation and re-distribution of Dechloranes in sediments of the Qiantang River. PMID:23183230

  10. Simulated Effects of Year 2030 Water-Use and Land-Use Changes on Streamflow near the Interstate-495 Corridor, Assabet and Upper Charles River Basins, Eastern Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; DeSimone, Leslie A.; Weiskel, Peter K.

    2008-01-01

    Continued po