Science.gov

Sample records for economically important cyanobacterium

  1. Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39

    PubMed Central

    Fujisawa, Takatomo; Narikawa, Rei; Okamoto, Shinobu; Ehira, Shigeki; Yoshimura, Hidehisa; Suzuki, Iwane; Masuda, Tatsuru; Mochimaru, Mari; Takaichi, Shinichi; Awai, Koichiro; Sekine, Mitsuo; Horikawa, Hiroshi; Yashiro, Isao; Omata, Seiha; Takarada, Hiromi; Katano, Yoko; Kosugi, Hiroki; Tanikawa, Satoshi; Ohmori, Kazuko; Sato, Naoki; Ikeuchi, Masahiko; Fujita, Nobuyuki; Ohmori, Masayuki

    2010-01-01

    A filamentous non-N2-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca2+-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis. PMID:20203057

  2. Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Čelešnik, Helena; Tanšek, Anja; Tahirović, Aneja; Vižintin, Angelika; Mustar, Jernej; Vidmar, Vita; Dolinar, Marko

    2016-01-01

    ABSTRACT In recent years, photosynthetic autotrophic cyanobacteria have attracted interest for biotechnological applications for sustainable production of valuable metabolites. Although biosafety issues can have a great impact on public acceptance of cyanobacterial biotechnology, biosafety of genetically modified cyanobacteria has remained largely unexplored. We set out to incorporate biocontainment systems in the model cyanobacterium Synechocystis sp. PCC 6803. Plasmid-encoded safeguards were constructed using the nonspecific nuclease NucA from Anabaena combined with different metal-ion inducible promoters. In this manner, conditional lethality was dependent on intracellular DNA degradation for regulated autokilling as well as preclusion of horizontal gene transfer. In cells carrying the suicide switch comprising the nucA gene fused to a variant of the copM promoter, efficient inducible autokilling was elicited. Parallel to nuclease-based safeguards, cyanobacterial toxin/antitoxin (TA) modules were examined in biosafety switches. Rewiring of Synechocystis TA pairs ssr1114/slr0664 and slr6101/slr6100 for conditional lethality using metal-ion responsive promoters resulted in reduced growth, rather than cell killing, suggesting cells could cope with elevated toxin levels. Overall, promoter properties and translation efficiency influenced the efficacy of biocontainment systems. Several metal-ion promoters were tested in the context of safeguards, and selected promoters, including a nrsB variant, were characterized by beta-galactosidase reporter assay. PMID:27029902

  3. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    SciTech Connect

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  4. Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium.

    PubMed

    Ting, Claire S; Hsieh, Chyongere; Sundararaman, Sesh; Mannella, Carmen; Marko, Michael

    2007-06-01

    In an age of comparative microbial genomics, knowledge of the near-native architecture of microorganisms is essential for achieving an integrative understanding of physiology and function. We characterized and compared the three-dimensional architecture of the ecologically important cyanobacterium Prochlorococcus in a near-native state using cryo-electron tomography and found that closely related strains have diverged substantially in cellular organization and structure. By visualizing native, hydrated structures within cells, we discovered that the MED4 strain, which possesses one of the smallest genomes (1.66 Mbp) of any known photosynthetic organism, has evolved a comparatively streamlined cellular architecture. This strain possesses a smaller cell volume, an attenuated cell wall, and less extensive intracytoplasmic (photosynthetic) membrane system compared to the more deeply branched MIT9313 strain. Comparative genomic analyses indicate that differences have evolved in key structural genes, including those encoding enzymes involved in cell wall peptidoglycan biosynthesis. Although both strains possess carboxysomes that are polygonal and cluster in the central cytoplasm, the carboxysomes of MED4 are smaller. A streamlined cellular structure could be advantageous to microorganisms thriving in the low-nutrient conditions characteristic of large regions of the open ocean and thus have consequences for ecological niche differentiation. Through cryo-electron tomography we visualized, for the first time, the three-dimensional structure of the extensive network of photosynthetic lamellae within Prochlorococcus and the potential pathways for intracellular and intermembrane movement of molecules. Comparative information on the near-native structure of microorganisms is an important and necessary component of exploring microbial diversity and understanding its consequences for function and ecology. PMID:17449628

  5. Economic importance of bats in agriculture

    USGS Publications Warehouse

    Boyles, Justin G.; Cryan, Paul M.; McCracken, Gary F.; Kunz, Thomas H.

    2011-01-01

    White-nose syndrome (WNS) and the increased development of wind-power facilities are threatening populations of insectivorous bats in North America. Bats are voracious predators of nocturnal insects, including many crop and forest pests. We present here analyses suggesting that loss of bats in North America could lead to agricultural losses estimated at more than $3.7 billion/year. Urgent efforts are needed to educate the public and policy-makers about the ecological and economic importance of insectivorous bats and to provide practical conservation solutions.

  6. Economically important sugarcane diseases in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major diseases with potential to cause economic losses in the Louisiana sugarcane industry include ratoon stunt and leaf scald caused by bacterial pathogens, mosaic and yellow leaf caused by virus pathogens, and brown and orange rusts and smut caused by fungal pathogens. The most efficient method o...

  7. Beef cattle metabiomes and their relationships with economically important phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The selection and optimization of economically important phenotypes, i.e. feed efficiency, in cattle has long been an effort devoted to host genetics, management, and diet. Feed costs remain the largest variable cost in beef production, and consequently, the improvement of feed efficiency is of sig...

  8. Global Establishment Risk of Economically Important Fruit Fly Species (Tephritidae)

    PubMed Central

    Qin, Yujia; Paini, Dean R.; Wang, Cong; Fang, Yan; Li, Zhihong

    2015-01-01

    The global invasion of Tephritidae (fruit flies) attracts a great deal of attention in the field of plant quarantine and invasion biology because of their economic importance. Predicting which one in hundreds of potential invasive fruit fly species is most likely to establish in a region presents a significant challenge, but can be facilitated using a self organising map (SOM), which is able to analyse species associations to rank large numbers of species simultaneously with an index of establishment. A global presence/absence dataset including 180 economically significant fruit fly species in 118 countries was analysed using a SOM. We compare and contrast ranked lists from six countries selected from each continent, and also show that those countries geographically close were clustered together by the SOM analysis because they have similar fruit fly assemblages. These closely clustered countries therefore represent greater threats to each other as sources of invasive fruit fly species. Finally, we indicate how this SOM method could be utilized as an initial screen to support prioritizing fruit fly species for further research into their potential to invade a region. PMID:25588025

  9. Metal levels in economically important bivalve species from Turkey.

    PubMed

    Colakoglu, S; Ulukoy, G; Ormanci, H B; Colakoglu, F A

    2012-01-01

    Concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were determined in economically important bivalve species: oyster (Ostrea edulis), wedge clam (Donax trunculus), manila clam (Ruditapes philippinarium) and warty clam (Venus verrucosa) from the Marmara and Aegean seas. Samples were collected seasonally between 2008 and 2009. Metal levels of bivalves were found in the following ranges: As 0.02-3.40, Cd 0.02-2.80, Cr 0.19-0.82, Cu 0.82-25.06, Hg < LOD-0.12, Ni 0.09-0.73, Pb 0.05-4.16 and Zn 6.85-899 mg kg(-1). The most abundant elements were Zn > Cu > As. In addition, the results showed that oysters had the highest concentrations of Zn in all seasons. The next abundant heavy metal detected was Cu in oyster and other clam species. It was concluded that in the future, these metals should be monitored regularly. PMID:24786409

  10. The Economic Importance of Human Capital in Modernization.

    ERIC Educational Resources Information Center

    Schultz, Theodore W.

    1993-01-01

    Human capital invests in new forms of physical capital, hence, human capital is key to economic progress. Lists eight attributes of human capital; for example, human capital cannot be separated from person who has it, and human capital is not visible. Human capital is necessary component when attempting to improve a person's income and welfare in…

  11. Economic importance of elk hunting in Jackson Hole, Wyoming

    USGS Publications Warehouse

    Koontz, Lynne; Loomis, John B.

    2005-01-01

    As more hunters come to an area, local businesses will purchase extra labor and supplies to meet the increase in demand for additional services. The income and employment resulting from purchases by hunter at local businesses represent the direct effects of hunter spending within the economy. In order to increase supplies to local businesses, input suppliers must also increase their purchases of inputs from other industries. The income and employment resulting from these secondary purchases by input suppliers are the indirect effects of hunter spending within the local economy. The input supplier’s new employees use their incomes to purchase goods and services. The resulting increased economic activity from new employee income is the induced effect associated with hunter spending. The indirect and induced effects are known as the secondary effects. Multipliers capture the size of the secondary effects, usually as a ratio of total effects to direct effects (Stynes, 1998). The sums of the direct and secondary effects describe the total economic impact of hunter spending in the local economy.

  12. P450's identification in two economically important psyllids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian citrus psyllid, Diaphorina citri Kuwayama and the potato psyllid Bactericera cockerelli (Sulc) are important vectors which spread bacterial agents causing Huanglongbing of citrus and Zebra Chip of Potato, respectively. These two diseases and vectors are recent invasive pests which continue...

  13. The Important Role of Physics in Industry and Economic Development

    NASA Astrophysics Data System (ADS)

    Alvarado, Igor

    2012-10-01

    Good Physics requires good education. Good education translates into good Physics professionals. The process starts early with Science, Technology, Engineering and Mathematics (STEM) education programs for Middle and High-School students. Then it continues with competitive higher education programs (2 years and 4 years) at colleges and universities designed to satisfy the needs of industry and academia. The research work conducted by graduate students in Physics (and Engineering Physics) frequently translates into new discoveries and innovations that have direct impact in society (e.g. Proton Cancer Therapy). Some of the major and largest scientific experiments in the world today are physics-centered (e.g. Large Hadron Collider-LHC) that generate employment and business opportunities for thousands of scientists, academic research groups and companies from around the world. New superconducting magnets and advanced materials that have resulted from previous research in physics are commonly used in these extreme experiments. But not all physicists will end up working at these large high-energy physics experiments, universities or National Laboratories (e.g. Fermilab); industry requires new generations of (industrial) physicists in such sectors as semiconductor, energy, space, life sciences, defense and advanced manufacturing. This work presents an industry perspective about the role of Physics in economic development and the need for a collaborative Academic-Industry approach for a more effective translational research. A series of examples will be presented with emphasis in the measurement, control, diagnostics and computing capabilities needed to translate the science (physics) into innovations and practical solutions that can benefit society as a whole.

  14. Non-terrestrial resources of economic importance to earth

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1991-01-01

    The status of research on the importation of energy and nonterrestrial materials is reviewed, and certain specific directions for new research are proposed. New technologies which are to be developed include aerobraking, in situ propellant production, mining and beneficiation of extraterresrrial minerals, nuclear power systems, electromagnetic launch, and solar thermal propulsion. Topics discussed include the system architecture for solar power satellite constellations, the return of nonterrestrial He-3 to earth for use as a clean fusion fuel, and the return to earth of platinum-group metal byproducts from processing of nonterrestrial native ferrous metals.

  15. Modeling The Economics Of PACS: What Is Important?

    NASA Astrophysics Data System (ADS)

    Saarinen, Allan O.; Haynor, David R.; Loop, John W.; Johnson, Linda; Russell, John; Mitchell, Kate; Nemerever, Marilyn

    1989-05-01

    Picture Archive and Communications Systems (PACS) represent a significant long term capital investment for radiology departments and hospitals. Many radiology departments want to acquire this new imaging technology, but they are still concerned about the cost of these systems. While a few studies have tried to quantify the costs and benefits of PACS, these studies have been limited in scope. The University of Washington is evaluating a Digital Imaging Network System (DINS) and PACS for the U.S. Army Medical Research and Development Command. Part of this evaluation includes developing a comprehensive cost model of PACS for one of the military's large health care facilities (a 400 bed hospital). The paper summarizes the methodology and multi-layered spreadsheet model developed at the University to forecast the costs and potential cost savings this health care facility might accrue if a hospital wide PACS is installed and film is eliminated. It also discusses the many important assumptions made in the model. A sensitivity analysis of the model is also presented. The model indicates that keeping PACS maintenance costs down is particularly critical to the cost effectiveness of PACS. That is, the film cost savings attributed to PACS can be largely offset by PACS equipment maintenance cost. The cost effectiveness of PACS will also hinge upon whether a number of intangible benefits, such as referring physician and support staff productivity gains can be attributed to PACS. This model also suggests that the pay back period for a hospital wide PACS will vary significantly dependent upon the mix of tangible versus intangible cost savings incorporated into the modeling process.

  16. How a cyanobacterium tells time.

    PubMed

    Dong, Guogang; Golden, Susan S

    2008-12-01

    The cyanobacterium Synechococcus elongatus builds a circadian clock on an oscillator composed of three proteins, KaiA, KaiB, and KaiC, which can recapitulate a circadian rhythm of KaiC phosphorylation in vitro. The molecular structures of all three proteins are known, and the phosphorylation steps of KaiC, the interaction dynamics among the three Kai proteins, and a weak ATPase activity of KaiC have all been characterized. An input pathway of redox-sensitive proteins uses photosynthetic function to relay light/dark information to the oscillator, and signal transduction proteins of well-known families broadcast temporal information to the genome, where global changes in transcription and a compaction of the chromosome are clock regulated. PMID:18983934

  17. Predictors of the Perceived Importance of Food Skills of Home Economics Teachers

    ERIC Educational Resources Information Center

    Fordyce-Voorham, Sandra P.

    2016-01-01

    Purpose: The purpose of this paper is to test an hypothesis that teachers' personal orientations toward food preparation, nutrition and environmental issues would be related to their perceived importance of food skills. Design/methodology/approach: Little research has been conducted on home economics teachers' views on the importance of the food…

  18. Complexity and reflexivity: two important issues for economic evaluation in health care.

    PubMed

    Lessard, Chantale

    2007-04-01

    Economic evaluations are analytic techniques to assess the relative costs and consequences of health care programmes and technologies. Their role is to provide rigorous data to inform the health care decision-making process. Economic evaluation may oversimplify complex health care decisions. These analyses often ignore important health consequences, contextual elements, relationships or other relevant modifying factors, which might not be appropriate in a multi-objective, multi-stakeholder issue. One solution would be to develop a new paradigm based on the issues of perspective and context. Complexity theory may provide a useful conceptual framework for economic evaluation in health care. Complexity thinking develops an awareness of issues including uncertainty, contextual issues, multiple perspectives, broader societal involvement, and transdisciplinarity. This points the economic evaluation field towards an accountability and epistemology based on pluralism and uncertainty, requiring new forms of lay-expert engagement and roles of lay knowledge into decision-making processes. This highlights the issue of reflexivity in economic evaluation in health care. A reflexive approach would allow economic evaluators to analyze how objective structures and subjective elements influence their practices. In return, this would point increase the integrity and reliability of economic evaluations. Reflexivity provides opportunities for critically thinking about the organization and activities of the intellectual field, and perhaps the potential of moving in new, creative directions. This paper argues for economic evaluators to have a less positivist attitude towards what is useful knowledge, and to use more imagination about the data and methodologies they use. PMID:17258367

  19. Draft genome sequence of Erwinia tracheiphila, an economically important bacterial pathogen of cucurbits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia tracheiphila is one of the most economically important pathogen of cucumbers, melons, squashes, pumpkins, and gourds, in the Northeastern and Midwestern United States, yet the molecular pathology remains uninvestigated. Here we report the first draft genome sequence of an E. tracheiphila str...

  20. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Hibiscus genus encompasses more than 300 species, but kenaf (H. cannabinus L.) and roselle (H. sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterc...

  1. The Economic Importance of Air Travel in High-Amenity Rural Areas

    ERIC Educational Resources Information Center

    Rasker, Ray; Gude, Patricia H.; Gude, Justin A.; van den Noort, Jeff

    2009-01-01

    The western United States offers a case study on the importance of access to large population centers and their markets, via road and air travel, for economic development. The vast distances between towns and cities in the American West can be a detriment to business, yet they also serve to attract technology and knowledge-based workers seeking to…

  2. Flat Mites of the World interactive identification key for economically important species in the family Tenuipalpidae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several flat mite species associated with fruit and crop trees, and ornamentals are commonly intercepted at U.S. ports-of-entry. These species complex are also the most complicated and part of the most diverse group in the flat mite family. Three of the most economically important species in the fa...

  3. Canada's Most Important Economic Investment: Increasing Access to College Education and Training. ACAATO Document

    ERIC Educational Resources Information Center

    Association of Colleges of Applied Arts and Technology of Ontario, 2004

    2004-01-01

    For Canada to succeed, all Canadians must have the opportunity to develop and use their skills and knowledge to the fullest. So said the government of Prime Minister Paul Martin in the Speech from the Throne that opened the 37th Parliament of Canada in February 2004: "Investing in people will be Canada's most important economic investment." Such…

  4. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus.

    PubMed

    Miller, Scott R; Castenholz, Richard W; Pedersen, Deana

    2007-08-01

    We have taken a phylogeographic approach to investigate the demographic and evolutionary processes that have shaped the geographic patterns of genetic diversity for a sample of isolates of the cosmopolitan thermophilic cyanobacterial Mastigocladus laminosus morphotype collected from throughout most of its range. Although M. laminosus is found in thermal areas throughout the world, our observation that populations are typically genetically differentiated on local geographic scales suggests the existence of dispersal barriers, a conclusion corroborated by evidence for genetic isolation by distance. Genealogies inferred using nitrogen metabolism gene sequence data suggest that a significant amount of the extant global diversity of M. laminosus can be traced back to a common ancestor associated with the western North American hot spot currently located below Yellowstone National Park. Estimated intragenic recombination rates are comparable to those of pathogenic bacteria known for their capacity to exchange DNA, indicating that genetic exchange has played an important role in generating novel variation during M. laminosus diversification. Selection has constrained protein changes at loci involved in the assimilation of both dinitrogen and nitrate, suggesting the historic use of both nitrogen sources in this heterocystous cyanobacterium. Lineage-specific differences in thermal performance were also observed. PMID:17557856

  5. Tropical food legumes: virus diseases of economic importance and their control.

    PubMed

    Hema, Masarapu; Sreenivasulu, Pothur; Patil, Basavaprabhu L; Kumar, P Lava; Reddy, Dodla V R

    2014-01-01

    Diverse array of food legume crops (Fabaceae: Papilionoideae) have been adopted worldwide for their protein-rich seed. Choice of legumes and their importance vary in different parts of the world. The economically important legumes are severely affected by a range of virus diseases causing significant economic losses due to reduction in grain production, poor quality seed, and costs incurred in phytosanitation and disease control. The majority of the viruses infecting legumes are vectored by insects, and several of them are also seed transmitted, thus assuming importance in the quarantine and in the epidemiology. This review is focused on the economically important viruses of soybean, groundnut, common bean, cowpea, pigeonpea, mungbean, urdbean, chickpea, pea, faba bean, and lentil and begomovirus diseases of three minor tropical food legumes (hyacinth bean, horse gram, and lima bean). Aspects included are geographic distribution, impact on crop growth and yields, virus characteristics, diagnosis of causal viruses, disease epidemiology, and options for control. Effectiveness of selection and planting with virus-free seed, phytosanitation, manipulation of crop cultural and agronomic practices, control of virus vectors and host plant resistance, and potential of transgenic resistance for legume virus disease control are discussed. PMID:25410108

  6. Draft Genome Sequence of Erwinia tracheiphila, an Economically Important Bacterial Pathogen of Cucurbits.

    PubMed

    Shapiro, Lori R; Scully, Erin D; Roberts, Dana; Straub, Timothy J; Geib, Scott M; Park, Jihye; Stephenson, Andrew G; Salaau Rojas, Erika; Liu, Quin; Beattie, Gwyn; Gleason, Mark; De Moraes, Consuelo M; Mescher, Mark C; Fleischer, Shelby G; Kolter, Roberto; Pierce, Naomi; Zhaxybayeva, Olga

    2015-01-01

    Erwinia tracheiphila is one of the most economically important pathogens of cucumbers, melons, squashes, pumpkins, and gourds in the northeastern and midwestern United States, yet its molecular pathology remains uninvestigated. Here, we report the first draft genome sequence of an E. tracheiphila strain isolated from an infected wild gourd (Cucurbita pepo subsp. texana) plant. The genome assembly consists of 7 contigs and includes a putative plasmid and at least 20 phage and prophage elements. PMID:26044415

  7. Draft Genome Sequence of Erwinia tracheiphila, an Economically Important Bacterial Pathogen of Cucurbits

    PubMed Central

    Scully, Erin D.; Roberts, Dana; Straub, Timothy J.; Geib, Scott M.; Park, Jihye; Stephenson, Andrew G.; Salaau Rojas, Erika; Liu, Quin; Beattie, Gwyn; Gleason, Mark; De Moraes, Consuelo M.; Mescher, Mark C.; Fleischer, Shelby G.; Kolter, Roberto; Pierce, Naomi; Zhaxybayeva, Olga

    2015-01-01

    Erwinia tracheiphila is one of the most economically important pathogens of cucumbers, melons, squashes, pumpkins, and gourds in the northeastern and midwestern United States, yet its molecular pathology remains uninvestigated. Here, we report the first draft genome sequence of an E. tracheiphila strain isolated from an infected wild gourd (Cucurbita pepo subsp. texana) plant. The genome assembly consists of 7 contigs and includes a putative plasmid and at least 20 phage and prophage elements. PMID:26044415

  8. Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium.

    PubMed

    Behrendt, Lars; Brejnrod, Asker; Schliep, Martin; Sørensen, Søren J; Larkum, Anthony W D; Kühl, Michael

    2015-09-01

    Chlorophyll (Chl) f is the most recently discovered chlorophyll and has only been found in cyanobacteria from wet environments. Although its structure and biophysical properties are resolved, the importance of Chl f as an accessory pigment in photosynthesis remains unresolved. We found Chl f in a cyanobacterium enriched from a cavernous environment and report the first example of Chl f-supported oxygenic photosynthesis in cyanobacteria from such habitats. Pigment extraction, hyperspectral microscopy and transmission electron microscopy demonstrated the presence of Chl a and f in unicellular cyanobacteria found in enrichment cultures. Amplicon sequencing indicated that all oxygenic phototrophs were related to KC1, a Chl f-containing cyanobacterium previously isolated from an aquatic environment. Microsensor measurements on aggregates demonstrated oxygenic photosynthesis at 742 nm and less efficient photosynthesis under 768- and 777-nm light probably because of diminished overlap with the absorption spectrum of Chl f and other far-red absorbing pigments. Our findings suggest the importance of Chl f-containing cyanobacteria in terrestrial habitats. PMID:25668158

  9. 75 FR 28652 - Certain Environmental Goods: Probable Economic Effect of Duty-Free Treatment for U.S. Imports...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... COMMISSION Certain Environmental Goods: Probable Economic Effect of Duty- Free Treatment for U.S. Imports... (Commission) instituted investigation No. 332-516, Certain Environmental Goods: Probable Economic Effect of... probable economic effect on U.S. industries and on U.S. consumers of reducing U.S. tariffs to zero...

  10. Economic Evaluation of Vaccination Programmes in Older Adults and the Elderly: Important Issues and Challenges.

    PubMed

    Dirmesropian, Sevan; Wood, James G; MacIntyre, C Raina; Beutels, Philippe; Newall, Anthony T

    2016-08-01

    High-income countries are undergoing demographic transitions towards populations with substantial larger proportions of older adults. Due to the increased susceptibility of older adults to infectious diseases and their consequences, vaccination programmes are an important health intervention to help maintain healthy ageing. While much of the existing literature suggests that current vaccination programmes targeted at older adults and the elderly are likely to be cost effective in high-income countries, we argue that it is important to more fully consider some important issues and challenges. Since the majority of vaccines have been developed for children, economic evaluations of vaccination programmes have consequentially tended to focus on this age group and on how to incorporate herd-immunity effects. While programmes targeted at older adults and the elderly may also induce some herd effects, there are other important challenges to consider in these economic evaluations. For example, age and time effects in relation to vaccine efficacy and duration of immunity, as well as heterogeneity between targeted individuals in terms of risk of infection, severity of disease and response to vaccination. For some pathogens, there is also the potential for interactions with childhood programmes in the form of herd-immunity effects. PMID:26914091

  11. Genetic manipulation of a cyanobacterium for heavy metal detoxivication

    SciTech Connect

    McCormick, P.; Cannon, G.; Heinhorst, S.

    1995-12-31

    Increasing heavy metal contamination of soil and water has produced a need for economical and effective methods to reduce toxic buildup of these materials. Biological systems use metallothionein proteins to sequester such metals as Cu, Cd, and Zn. Studies are underway to genetically engineer a cyanobacteria strain with increased ability for metallothionein production and increased sequestration capacity. Cyanobacteria require only sunlight and CO{sub 2}. Vector constructs are being developed in a naturally competent, unicellular cyanobacterium Anacystis nidulans R2. Closed copies of a yeast copper metallothionein gene have been inserted into a cyanobacterial shuttle vector as well as a vector designed for genomic integration. Transformation studies have produced recombinant cyanobacteria from both of these systems, and work is currently underway to assess the organism`s ability to withstand increasing Cu, Cd, and Zn concentrations.

  12. Population genetic structure of economically important Tortricidae (Lepidoptera) in South Africa: a comparative analysis.

    PubMed

    Timm, A E; Geertsema, H; Warnich, L

    2010-08-01

    Comparative studies of the population genetic structures of agricultural pests can elucidate the factors by which their population levels are affected, which is useful for designing pest management programs. This approach was used to provide insight into the six Tortricidae of major economic importance in South Africa. The population genetic structure of the carnation worm E. acerbella and the false codling moth T. leucotreta, analyzed using amplified fragment length polymorphism (AFLP) analysis, is presented here for the first time. These results were compared with those obtained previously for the codling moth Cydia pomonella, the oriental fruit moth Grapholita molesta, the litchi moth Cryptophlebia peltastica and the macadamia nut borer T. batrachopa. Locally adapted populations were detected over local geographic areas for all species. No significant differences were found among population genetic structures as result of population history (whether native or introduced) although host range (whether oligophagous or polyphagous) had a small but significant effect. It is concluded that factors such as dispersal ability and agricultural practices have the most important effects on genetically structuring populations of the economically important Tortricidae in South Africa. PMID:19941674

  13. [Use of geographical information systems in parasitic diseases and the importance of animal health economics].

    PubMed

    Ciçek, Hasan; Ciçek, Hatice; Senkul, Cetin; Tandoğan, Murat

    2008-01-01

    In the world, economical losses due to the parasitic diseases reach enormous ratios in animal production. Both developed and developing countries set aside a considerable budget to control these parasitic diseases. This situation aids in the improvement of control methods of parasitic diseases. Also, it causes new ways of investigation that includes observation, evaluation and prevention of parasitic diseases. The Geographical Information System (GIS) has recently become one of the most common methods utilized to provide disease information technology with computer supported technology in many countries. The most important qualities of GIS are the formation of a powerful database, continual updating and rapid provision of coordination related to units. Many factors are evaluated at the same time by the system and also, results from analysis of data related to disease and their causes could reduce or prevent economical losses due to parasitic disease. In this study, possible uses of Geographical Information Systems against parasitic diseases and an approach in terms of animal health economics were presented. PMID:18985590

  14. 75 FR 64351 - The Economic Effects of Significant U.S. Import Restraints: Seventh Update; Special Topic: Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... the Federal Register of June 17, 1992 (57 FR 27063). The first report was delivered to the USTR in... COMMISSION The Economic Effects of Significant U.S. Import Restraints: Seventh Update; Special Topic: Global... Economic Effects of Significant U.S. Import Restraints, including the scheduling of a public hearing...

  15. Economically and ecologically important plant communities in high altitude coniferous forest of Malam Jabba, Swat, Pakistan

    PubMed Central

    Sher, Hassan; Al_yemeni, Mohammad

    2010-01-01

    A study on the economically important plant communities was carried out during summer 2008 in various parts of Malam Jabba valley, Swat. The principal aim of the study was phytosociological evaluation with special reference to the occurrence of commercially important medicinal plant species in coniferous forest of the study area. Secondly to prepare ethnobotanical inventory of the plant resources of the area, as well as to evaluate the conservation status of important medicinal and aromatic plants (MAPs) through rapid vulnerable assessment (RVA) procedure. The study documented 90 species of ethnobotanical importance, out of these 71 spp used as medicinal plant, 20 spp fodder plant, 10 spp vegetables, 14 spp wild fruit, 18 spp fuel wood, 9 spp furniture and agricultural tools, 9 spp thatching, fencing and hedges, 4 spp honey bee, 2 spp evil eyes, 2 spp religious and 3 spp as poison. Phytosociologically six plant communities were found, comprising five herbs-shrubs-trees communities and one meadow community. Further study is, therefore, required to quantify the availability of species and to suggest suitable method for their production and conservation. Recommendations are also given in the spheres of training in identification, sustainable collection, value addition, trade monitoring and cooperative system of marketing. PMID:23961104

  16. Economically and ecologically important plant communities in high altitude coniferous forest of Malam Jabba, Swat, Pakistan.

    PubMed

    Sher, Hassan; Al Yemeni, Mohammad

    2011-01-01

    A study on the economically important plant communities was carried out during summer 2008 in various parts of Malam Jabba valley, Swat. The principal aim of the study was phytosociological evaluation with special reference to the occurrence of commercially important medicinal plant species in coniferous forest of the study area. Secondly to prepare ethnobotanical inventory of the plant resources of the area, as well as to evaluate the conservation status of important medicinal and aromatic plants (MAPs) through rapid vulnerable assessment (RVA) procedure. The study documented 90 species of ethnobotanical importance, out of these 71 spp used as medicinal plant, 20 spp fodder plant, 10 spp vegetables, 14 spp wild fruit, 18 spp fuel wood, 9 spp furniture and agricultural tools, 9 spp thatching, fencing and hedges, 4 spp honey bee, 2 spp evil eyes, 2 spp religious and 3 spp as poison. Phytosociologically six plant communities were found, comprising five herbs-shrubs-trees communities and one meadow community. Further study is, therefore, required to quantify the availability of species and to suggest suitable method for their production and conservation. Recommendations are also given in the spheres of training in identification, sustainable collection, value addition, trade monitoring and cooperative system of marketing. PMID:23961104

  17. Interaction effects of mercury-pesticide combinations towards a cyanobacterium

    SciTech Connect

    Stratton, G.W.

    1985-05-01

    The present study supplies interaction data for combinations of mercuric ion (supplied as mercuric chloride), atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and permethrin (3-phenoxybenzyl-(1RS)-cis,trans-3-(2,2-dichloro-vinyl)-2,2-dimethyl cyclopropanecarboxylate) when tested towards growth of the cyanobacterium (blue-green alga) Anabaena inaequalis. Mercury is one of the most important heavy metal pollutants and has been widely used in toxicology research. Atrazine is the most heavily used pesticide in the United States and its residues are widely distributed in terrestrial and aquatic ecosystems. Permethrin is an important insecticide with expanding markets and is presently being evaluated for its environmental impact. A. inaequalis has been used extensively in this laboratory in previous interaction studies.

  18. Gram-Negative Marine Bacteria: Structural Features of Lipopolysaccharides and Their Relevance for Economically Important Diseases

    PubMed Central

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2014-01-01

    Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These components not only provide cell integrity but also elicit an immune response in the host, which ranges from other marine organisms to humans. Toll-like receptor 4 and its homologs are the dedicated receptors that detect LPS and trigger the immune system to respond, often causing a wide variety of inflammatory diseases and even death. This review describes the structural organization of selected LPSes and their association with economically important diseases in marine organisms. In addition, the potential therapeutic use of LPS as an immune adjuvant in different diseases is highlighted. PMID:24796306

  19. Hospital-physician relations: the relative importance of economic, relational and professional attributes to organizational attractiveness

    PubMed Central

    2014-01-01

    Background Belgian hospitals face a growing shortage of physicians and increasingly competitive market conditions. In this challenging environment hospitals are struggling to build effective hospital-physician relationships which are considered to be a critical determinant of organizational success. Methods Employed physicians of a University hospital were surveyed. Organizational attributes were identified through the literature and two focus groups. Variables were measured using validated questionnaires. Descriptive analyses and linear regression were used to test the model and relative importance analyses were performed. Results The selected attributes predict hospital attractiveness significantly (79.3%). The relative importance analysis revealed that hospital attractiveness is most strongly predicted by professional attributes (35.3%) and relational attributes (29.7%). In particular, professional development opportunities (18.8%), hospital prestige (16.5%), organizational support (17.2%) and leader support (9.3%) were found to be most important. Besides these non-economic aspects, the employed physicians indicated pay and financial benefits (7.4%) as a significant predictor of hospital attractiveness. Work-life balance and job security were not significantly related to hospital attractiveness. Conclusions This study shows that initiatives aimed at strengthening physicians’ positive perceptions of professional and relational aspects of practicing medicine in hospitals, while assuring satisfactory financial conditions, may offer useful avenues for increasing the level of perceived hospital attractiveness. Overall, hospitals are advised to use a differentiated approach to increase their attractiveness to physicians. PMID:24884491

  20. Improving Students' Understanding of the Importance of Economic Consequences in Standard Setting: A Computerized Spreadsheet Tool.

    ERIC Educational Resources Information Center

    Ivancevich, Daniel M.; And Others

    1996-01-01

    Points out that political and economic pressures have sometimes caused the Financial Accounting Standards Board to alter standards. Presents a spreadsheet tool that demonstrates the economic consequences of adopting accounting standards. (SK)

  1. Insights into the Importance of Economic Concepts to Other Introductory Business Courses

    ERIC Educational Resources Information Center

    Prenshaw, Penelope J.; Taylor, Susan Washburn

    2007-01-01

    Economics is a building block for additional business knowledge. In most business curricula, the principles of economics sequence is a prerequisite for further business study. Economists have their own ideas of which economic concepts are most valued by business peers, but the authors are unaware of any published study which specifically asks…

  2. QTL mapping for economically important traits of common carp (Cyprinus carpio L.).

    PubMed

    Laghari, Muhammad Younis; Lashari, Punhal; Zhang, Xiaofeng; Xu, Peng; Narejo, Naeem Tariq; Xin, Baoping; Zhang, Yan; Sun, Xiaowen

    2015-02-01

    Quantitative trait loci (QTL) were analyzed for three economically important traits, i.e., body weight (BW), body length (BL), and body thickness (BT), in an F1 family of common carp holding the 190 progeny. A genetic linkage map spanning 3,301 cM in 50 linkage groups with 627 markers and an average distance of 5.6 cM was utilized for QTL mapping. Sixteen QTLs associated with all three growth-related traits were scattered across ten linkage groups, LG6, LG10, LG17, LG19, LG25, LG27, LG28, LG29, LG30, and LG39. Six QTLs for BW and five each for BL and BT explained phenotypic variance in the range 17.0-32.1%. All the nearest markers of QTLs were found to be significantly (p ≤ 0.05) related with the trait. Among these QTLs, a total of four, two (qBW30 and qBW39) related with BW, one (qBL39) associated with BL, and one (qBT29) related to BT, were found to be the major QTLs with a phenotypic variance of >20%. qBW30 and qBW39 with the nearest markers HLJ1691 and HLJ1843, respectively, show significant values of 0.0038 and 0.0031, correspondingly. QTLs qBL39 and qBT29 were found to have significant values of 0.0047 and 0.0015, respectively. Three QTLs (qBW27, qBW30, qBW39) of BW, two for BL (qBL19, qBL39), and two for BT (qBT6, qBT25) found in this study were similar to populations with different genetic backgrounds. In this study, the genomic region controlling economically important traits were located. These genomic regions will be the major sources for the discovery of important genes and pathways associated with growth-related traits in common carp. PMID:25078056

  3. The social, economic, and environmental importance of inland fish and fisheries

    USGS Publications Warehouse

    Lynch, Abigail J.; Cooke, Steven J.; Deines, Andrew M.; Bower, Shannon D.; Bunnell, David B.; Cowx, Ian G.; Nguyen, Vivian M.; Nohner, Joel K.; Phouthavong, Kaviphone; Riley, Betsy; Rogers, Mark W.; Taylor, William W.; Woelmer, Whitney; Youn, So-Jung; Beard, T. Douglas, Jr.

    2016-01-01

    Though reported capture fisheries are dominated by marine production, inland fish and fisheries make substantial contributions to meeting the challenges faced by individuals, society, and the environment in a changing global landscape. Inland capture fisheries and aquaculture contribute over 40% to the world’s reported finfish production from less than 0.01% of the total volume of water on earth. These fisheries provide food for billions and livelihoods for millions of people worldwide. Herein, using supporting evidence from the literature, we review 10 reasons why inland fish and fisheries are important to the individual (food security, economic security, empowerment), to society (cultural services, recreational services, human health and well-being, knowledge transfer and capacity building), and to the environment (ecosystem function and biodiversity, as aquatic “canaries”, the “green food” movement). However, the current limitations to valuing the services provided by inland fish and fisheries make comparison with other water resource users extremely difficult. This list can serve to demonstrate the importance of inland fish and fisheries, a necessary first step to better incorporating them into agriculture, land-use, and water resource planning, where they are currently often underappreciated or ignored.

  4. Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi

    PubMed Central

    2013-01-01

    Background Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the parasite and its vector, but also socio-economic conditions, such as levels of urbanization, poverty and education, which impact human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for the modelling of malaria risk in space and time. Methods A statistical mixed model framework is proposed to model malaria risk at the district level in Malawi, using an age-stratified spatio-temporal dataset of malaria cases from July 2004 to June 2011. Several climatic, geographic and socio-economic factors thought to influence malaria incidence were tested in an exploratory model. In order to account for the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a generalized linear mixed model was adopted, which included structured and unstructured spatial and temporal random effects. A hierarchical Bayesian framework using Markov chain Monte Carlo simulation was used for model fitting and prediction. Results Using a stepwise model selection procedure, several explanatory variables were identified to have significant associations with malaria including climatic, cartographic and socio-economic data. Once intervention variations, unobserved confounding factors and spatial correlation were considered in a Bayesian framework, a final model emerged with statistically significant predictor variables limited to average precipitation (quadratic relation) and average temperature during the three months previous to the month of interest. Conclusions When modelling malaria risk in Malawi it is important to account for spatial and temporal heterogeneity and correlation between districts. Once observed and unobserved confounding factors are allowed for

  5. Tracking cashew economically important diseases in the West African region using metagenomics.

    PubMed

    Monteiro, Filipa; Romeiras, Maria M; Figueiredo, Andreia; Sebastiana, Mónica; Baldé, Aladje; Catarino, Luís; Batista, Dora

    2015-01-01

    During the last decades, agricultural land-uses in West Africa were marked by dramatic shifts in the coverage of individual crops. Nowadays, cashew (Anacardium occidentale L.) is one of the most export-oriented horticulture crops, notably in Guinea-Bissau. Relying heavily on agriculture to increase their income, developing countries have been following a strong trend of moving on from traditional farming systems toward commercial production. Emerging infectious diseases, driven either by adaptation to local conditions or inadvertent importation of plant pathogens, are able to cause tremendous cashew production losses, with economic and social impact of which, in developing countries is often underestimated. Presently, plant genomics with metagenomics as an emergent tool, presents an enormous potential to better characterize diseases by providing extensive knowledge on plant pathogens at a large scale. In this perspective, we address metagenomics as a promising genomic tool to identify cashew fungal associated diseases as well as to discriminate the causal pathogens, aiming at obtaining tools to help design effective strategies for disease control and thus promote the sustainable production of cashew in West African Region. PMID:26175748

  6. Tracking cashew economically important diseases in the West African region using metagenomics

    PubMed Central

    Monteiro, Filipa; Romeiras, Maria M.; Figueiredo, Andreia; Sebastiana, Mónica; Baldé, Aladje; Catarino, Luís; Batista, Dora

    2015-01-01

    During the last decades, agricultural land-uses in West Africa were marked by dramatic shifts in the coverage of individual crops. Nowadays, cashew (Anacardium occidentale L.) is one of the most export-oriented horticulture crops, notably in Guinea-Bissau. Relying heavily on agriculture to increase their income, developing countries have been following a strong trend of moving on from traditional farming systems toward commercial production. Emerging infectious diseases, driven either by adaptation to local conditions or inadvertent importation of plant pathogens, are able to cause tremendous cashew production losses, with economic and social impact of which, in developing countries is often underestimated. Presently, plant genomics with metagenomics as an emergent tool, presents an enormous potential to better characterize diseases by providing extensive knowledge on plant pathogens at a large scale. In this perspective, we address metagenomics as a promising genomic tool to identify cashew fungal associated diseases as well as to discriminate the causal pathogens, aiming at obtaining tools to help design effective strategies for disease control and thus promote the sustainable production of cashew in West African Region. PMID:26175748

  7. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    NASA Astrophysics Data System (ADS)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  8. Montane and coastal species diversification in the economically important Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae).

    PubMed

    Pedraza-Lara, Carlos; Barrientos-Lozano, Ludivina; Rocha-Sánchez, Aurora Y; Zaldívar-Riverón, Alejandro

    2015-03-01

    The genus Sphenarium (Pyrgomorphidae) is a small group of grasshoppers endemic to México and Guatemala that are economically and culturally important both as a food source and as agricultural pests. However, its taxonomy has been largely neglected mainly due to its conserved interspecific external morphology and the considerable intraspecific variation in colour pattern of some taxa. Here we examined morphological as well as mitochondrial and nuclear DNA sequence data to assess the species boundaries and evolutionary history in Sphenarium. Our morphological identification and DNA sequence-based species delimitation, carried out with three different approaches (DNA barcoding, general mixed Yule-coalescent model, Bayesian species delimitation), all recovered a higher number of putative species of Sphenarium than previously recognised. We unambiguously delimit seven species, and between five and ten additional species depending on the data/method analysed. Phylogenetic relationships within the genus strongly support two main clades, one exclusively montane, the other coastal. Divergence time estimates suggest late Miocene to Pliocene ages for the origin and most of the early diversification events in the genus, which were probably influenced by the formation of the Trans-Mexican Volcanic Belt. A series of Pleistocene events could have led to the current species diversification in both montane and coastal regions. This study not only reveals an overlooked species richness for the most popular edible insect in Mexico, but also highlights the influence of the dynamic geological and climatic history of the region in shaping its current diversity. PMID:25593084

  9. A retrospective study of abattoir condemnation due to parasitic infections: economic importance in Ahwaz, southwestern Iran.

    PubMed

    Borji, Hassan; Azizzadeh, Mohammad; Kamelli, Mehrab

    2012-10-01

    A 5-yr retrospective study in livestock slaughtered in abattoirs was carried out in Khuzestan Province (southwestern Iran) to determine the prevalence of parasitic infections responsible for condemnation of slaughtered animals' carcasses and viscera. The economic importance of such infections in terms of lost meat and offal were also estimated. Between 20 March 2006 and 19 March 2011, 125,593 cattle, 1,191,871 sheep, 240,221 goats, and 25,010 buffalos were slaughtered in the study area; the livers of 58,753 (3.7%; 95% confidence interval [CI]: 3.7-3.8%), the lungs of 34,522 (2.2%; 95% CI: 2.1-2.2%), and the carcasses of 78 (0.0049% 95% CI: 0.0048-0.0049%) of these animals were condemned. Proportions of liver, lung, and carcass condemnations during the 5-yr study period in buffalos were significantly greater than the other species (P < 0.001). Frequency of liver condemnation during the 5-yr period for cattle was greater than sheep and goats (P < 0.001), but condemnation of lungs in goat was significantly greater than sheep and cattle (P < 0.001). The parasitic lesions observed in the condemned livers were attributed to Echinococcus granulosus, Fasciola hepatica, or Dicrocoelium dendriticum, or some combination of these species. All the parasitic lesions observed in the condemned lungs from cattle, sheep, goats, and buffalos are ascribed to E. granulosus. Sarcocystis spp. cysts were found in ovine and buffalo muscles, whereas Taenia sp. cysticerci were detected in bovine muscle. Muscles of goats were devoid of any parasitic lesions. Parasites were responsible for 54.1% of the condemned organs or carcasses, with a retail value (based on market prices in 2011) of $1,148,181 (U.S.) ($137,880 for cattle, $602,699 for sheep, $280,955 for goats, and $126,647 for buffalos). The parasites contributing most to the condemnation of otherwise marketable organs and flesh were E. granulosus (29.2%) and F. hepatica (18.6%). These parasites clearly remain the most common, causing

  10. Evaluating the economic costs, benefits and tradeoffs of dedicated biomass energy systems: The importance of scale

    SciTech Connect

    Graham, R.L.; Walsh, M.E.

    1995-12-31

    The economic and environmental costs, benefits and tradeoffs of bioenergy from dedicated biomass energy systems must be addressed in the context of the scale of interest. At different scales there are different economic and environmental features and processes to consider. The depth of our understanding of the processes and features that influence the potential of energy crops also varies with scale as do the quality and kinds of data that are needed and available. Finally, the appropriate models to use for predicting economic and environmental impacts change with the scale of the questions. This paper explores these issues at three scales - the individual firm, the community, and the nation.

  11. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.).

    PubMed

    Massa, Alicia N; Manrique-Carpintero, Norma C; Coombs, Joseph J; Zarka, Daniel G; Boone, Anne E; Kirk, William W; Hackett, Christine A; Bryan, Glenn J; Douches, David S

    2015-11-01

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in "Jacqueline Lee." The best SNP marker mapped ~0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ~0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597

  12. Associated effects of copy number variants on economically important traits in Spanish Holstein dairy cattle.

    PubMed

    Ben Sassi, Neila; González-Recio, Óscar; de Paz-Del Río, Raquel; Rodríguez-Ramilo, Silvia T; Fernández, Ana I

    2016-08-01

    Copy number variants (CNV) are structural variants consisting of duplications or deletions of genomic fragments longer than 1 kb that present variability in the population and are heritable. The objective of this study was to identify CNV regions (CNVR) associated with 7 economically important traits (production, functional, and type traits) in Holstein cattle: fat yield, protein yield, somatic cell count, days open, stature, foot angle, and udder depth. Copy number variants were detected by using deep-sequencing data from 10 sequenced bulls and the Bovine SNP chip array hybridization signals. To reduce the number of false-positive calls, only CNV identified by both sequencing and Bovine SNP chip assays were kept in the final data set. This resulted in 823 CNVR. After filtering by minor allele frequency >0.01, a total of 90 CNVR appeared segregating in the bulls that had phenotypic data. Linear and quadratic CNVR effects were estimated using Bayesian approaches. A total of 15 CNVR were associated with the traits included in the analysis. One CNVR was associated with fat and protein yield, another 1 with fat yield, 3 with stature, 1 with foot angle, 7 with udder depth, and only 1 with days open. Among the genes located within these regions, highlighted were the MTHFSD gene that belongs to the folate metabolism genes, which play critical roles in regulating milk protein synthesis; the SNRPE gene that is related to several morphological pathologies; and the NF1 gene, which is associated with potential effects on fertility traits. The results obtained in the current study revealed that these CNVR segregate in the Holstein population, and therefore some potential exists to increase the frequencies of the favorable alleles in the population after independent validation of results in this study. However, genetic variance explained by the variants reported in this study was small. PMID:27209136

  13. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.)

    PubMed Central

    Massa, Alicia N.; Manrique-Carpintero, Norma C.; Coombs, Joseph J.; Zarka, Daniel G.; Boone, Anne E.; Kirk, William W.; Hackett, Christine A.; Bryan, Glenn J.; Douches, David S.

    2015-01-01

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597

  14. Micropropagation of Cyclopia genistoides, an endemic South African plant of economic importance.

    PubMed

    Kokotkiewicz, Adam; Luczkiewicz, Maria; Hering, Anna; Ochocka, Renata; Gorynski, Krzysztof; Bucinski, Adam; Sowinski, Pawel

    2012-01-01

    An efficient micropropagation protocol of Cyclopia genistoides (L.) Vent., an indigenous South African shrub of economic importance, was established. In vitro shoot cultures were obtained from shoot tip fragments of sterile seedlings cultured on solid Schenk and Hildebrandt (SH) medium supplemented with 9.84 microM 6-(gamma,gamma-dimethylallylamino)purine (2iP) and 1.0 microM thidiazuron (TDZ). Maximum shoot multiplication rate [(8.2 +/- 1.3) microshoots/explant)] was observed on this medium composition. Prior to rooting, the multiplied shoots were elongated for 60 days (two 30-days passages) on SH medium with one-half sucrose concentration, supplemented with 4.92 microM indole-3-butyric acid (IBA). The rooting of explants was only possible in the case of the elongated shoots. The highest root induction rate (54.8%) was achieved on solid SH medium with one-half sucrose and one-half potassium nitrate and ammonium nitrate concentration, respectively, supplemented with 28.54 microM indole-3-acetic acid (IAA) and 260.25 microM citric acid. The plantlets were acclimatized for 30 days in the glasshouse, with the use of peat/gravel/perlite substrate (1:1:1). The highest acclimatization rate (80%) was obtained for explants rooted with the use of IAA-supplemented medium. The phytochemical profile of the regenerated plants was similar to that of the reference intact plant material. HPLC analyses showed that C. genistoides plantlets obtained by the micropropagation procedure kept the ability to produce xanthones (mangiferin and isomangiferin) and the flavanone hesperidin, characteristic of wild-growing shrubs. PMID:22486043

  15. Salt effects on functional traits in model and in economically important Lotus species.

    PubMed

    Uchiya, P; Escaray, F J; Bilenca, D; Pieckenstain, F; Ruiz, O A; Menéndez, A B

    2016-07-01

    A common stress on plants is NaCl-derived soil salinity. Genus Lotus comprises model and economically important species, which have been studied regarding physiological responses to salinity. Leaf area ratio (LAR), root length ratio (RLR) and their components, specific leaf area (SLA) and leaf mass fraction (LMF) and specific root length (SRL) and root mass fraction (RMF) might be affected by high soil salinity. We characterised L. tenuis, L. corniculatus, L. filicaulis, L. creticus, L. burtii and L. japonicus grown under different salt concentrations (0, 50, 100 and 150 mm NaCl) on the basis of SLA, LMF, SRL and RMF using PCA. We also assessed effects of different salt concentrations on LAR and RLR in each species, and explored whether changes in these traits provide fitness benefit. Salinity (150 mm NaCl) increased LAR in L. burtii and L. corniculatus, but not in the remaining species. The highest salt concentration caused a decrease of RLR in L. japonicus Gifu, but not in the remaining species. Changes in LAR and RLR would not be adaptive, according to adaptiveness analysis, with the exception of SLA changes in L. corniculatus. PCA revealed that under favourable conditions plants optimise surfaces for light and nutrient acquisition (SLA and SRL), whereas at higher salt concentrations they favour carbon allocation to leaves and roots (LMF and RMF) in detriment to their surfaces. PCA also showed that L. creticus subjected to saline treatment was distinguished from the remaining Lotus species. We suggest that augmented carbon partitioning to leaves and roots could constitute a salt-alleviating mechanism through toxic ion dilution. PMID:27007305

  16. Synergistic allelochemicals from a freshwater cyanobacterium

    PubMed Central

    Leão, Pedro N.; Pereira, Alban R.; Liu, Wei-Ting; Ng, Julio; Pevzner, Pavel A.; Dorrestein, Pieter C.; König, Gabriele M.; Vasconcelos, Vitor M.; Gerwick, William H.

    2010-01-01

    The ability of cyanobacteria to produce complex secondary metabolites with potent biological activities has gathered considerable attention due to their potential therapeutic and agrochemical applications. However, the precise physiological or ecological roles played by a majority of these metabolites have remained elusive. Several studies have shown that cyanobacteria are able to interfere with other organisms in their communities through the release of compounds into the surrounding medium, a phenomenon usually referred to as allelopathy. Exudates from the freshwater cyanobacterium Oscillatoria sp. had previously been shown to inhibit the green microalga Chlorella vulgaris. In this study, we observed that maximal allelopathic activity is highest in early growth stages of the cyanobacterium, and this provided sufficient material for isolation and chemical characterization of active compounds that inhibited the growth of C. vulgaris. Using a bioassay-guided approach, we isolated and structurally characterized these metabolites as cyclic peptides containing several unusually modified amino acids that are found both in the cells and in the spent media of Oscillatoria sp. cultures. Strikingly, only the mixture of the two most abundant metabolites in the cells was active toward C. vulgaris. Synergism was also observed in a lung cancer cell cytotoxicity assay. The binary mixture inhibited other phytoplanktonic organisms, supporting a natural function of this synergistic mixture of metabolites as allelochemicals. PMID:20534563

  17. Potential economic impact of introduction and spread of the red imported fire ant, Solenopsis invicta, in Hawaii

    USGS Publications Warehouse

    Gutrich, J.J.; VanGelder, E.; Loope, L.

    2007-01-01

    Globally, many invasive alien species have caused extensive ecological and economic damage from either accidental or intentional introduction. The red imported fire ant, Solenopsis invicta, has created billions of dollars in costs annually, spreading as an invasive species across the southern United States. In 1998, the red imported fire ant spread into California creating a highly probable future introduction via shipped products to Hawaii. This paper presents the estimation of potential economic impacts of the red imported fire ant (RIFA) to the state of Hawaii. Evaluation of impacts focuses on the economic sectors of (1) households, (2) agriculture (cattle and crop production), (3) infrastructure (cemeteries, churches, cities, electrical, telephone, and cable services, highways, hospitals and schools), (4) recreation, tourism and business (hotels/resort areas, golf courses, commercial businesses and tourists), and (5) government expenditures (with minimal intervention). The full annual economic costs of the red imported fire ant to Hawaii are estimated (in US$ 2006) to be $211 million/year, comprised of $77 million in damages and expenditures and $134 million in foregone outdoor opportunities to households and tourists. The present value of the projected costs of RIFA over a 20-year period after introduction total $2.5 billion. RIFA invasions across the globe indicate that economic cost-effective action in Hawaii entails implementation of prevention, early detection and rapid response treatment programs for RIFA. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Health Economic Data in Reimbursement of New Medical Technologies: Importance of the Socio-Economic Burden as a Decision-Making Criterion

    PubMed Central

    Iskrov, Georgi; Dermendzhiev, Svetlan; Miteva-Katrandzhieva, Tsonka; Stefanov, Rumen

    2016-01-01

    Background: Assessment and appraisal of new medical technologies require a balance between the interests of different stakeholders. Final decision should take into account the societal value of new therapies. Objective: This perspective paper discusses the socio-economic burden of disease as a specific reimbursement decision-making criterion and calls for the inclusion of it as a counterbalance to the cost-effectiveness and budget impact criteria. Results/Conclusions: Socio-economic burden is a decision-making criterion, accounting for diseases, for which the assessed medical technology is indicated. This indicator is usually researched through cost-of-illness studies that systematically quantify the socio-economic burden of diseases on the individual and on the society. This is a very important consideration as it illustrates direct budgetary consequences of diseases in the health system and indirect costs associated with patient or carer productivity losses. By measuring and comparing the socio-economic burden of different diseases to society, health authorities and payers could benefit in optimizing priority setting and resource allocation. New medical technologies, especially innovative therapies, present an excellent case study for the inclusion of socio-economic burden in reimbursement decision-making. Assessment and appraisal have been greatly concentrated so far on cost-effectiveness and budget impact, marginalizing all other considerations. In this context, data on disease burden and inclusion of explicit criterion of socio-economic burden in reimbursement decision-making may be highly beneficial. Realizing the magnitude of the lost socio-economic contribution resulting from diseases in question could be a reasonable way for policy makers to accept a higher valuation of innovative therapies. PMID:27582707

  19. Socio-Economic Hazards and Impacts of Space Weather: The Important Range Between Mild and Extreme

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.

    2015-09-01

    Society needs to prepare for more severe space weather than it has experienced in the modern technological era. To enable that we must both quantify extreme-event characteristics and analyze impacts of lesser events that are frequent yet severe enough to be informative. Exploratory studies suggest that economic impacts of a century-level space hurricane and of a century of lesser space weather "gales" may turn out to be of the same order of magnitude. The economic benefits of effective mitigation of the impacts of space gales may substantially exceed the required investments, even as these investments provide valuable information to prepare for the worst possible storms.

  20. The Importance of Economic Incentives in the Recruitment of Teachers. Final Report.

    ERIC Educational Resources Information Center

    Zarkin, Gary A.

    In light of the current increase in elementary and secondary school attendance coupled with a simultaneous decrease in college-age population between now and the end of the decade, this study assesses (1) the role of economic factors in determining the number of teachers certified and (2) the responsiveness of teachers in the "reserve pool" to…

  1. Measuring the Regional Economic Importance of Early Care and Education: The Cornell Methodology Guide

    ERIC Educational Resources Information Center

    Ribeiro, Rosaria; Warner, Mildred

    2004-01-01

    This methodology guide is designed to help study teams answer basic questions about how to conduct a regional economic analysis of the child care sector. Specific examples are drawn from a local study, Tompkins County, NY, and two state studies, Kansas and New York, which the Cornell team conducted. Other state and local studies are also…

  2. 50 CFR 14.33 - Permits to import or export wildlife at nondesignated port to alleviate undue economic hardship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false Permits to import or export wildlife at nondesignated port to alleviate undue economic hardship. 14.33 Section 14.33 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION,...

  3. Biogeochemical tracers of the marine cyanobacterium Trichodesmium

    NASA Astrophysics Data System (ADS)

    Carpenter, Edward J.; Harvey, H. Rodger; Fry, Brian; Capone, Douglas G.

    1997-01-01

    We examined the utility of several biogeochemical tracers for following the fate of the planktonic diazotrophic cyanobacterium Trichodesmium in the sea. The presence of a (CIO) fatty acid previously reported was observed in a culture of Trichodesmium but was not found in natural samples. This cyanobacterium had high concentrations of C 14 and C 16 acids, with lesser amounts of several saturated and unsaturated C 18 fatty acids. This composition was similar to that of other marine cyanobacteria. The major hydrocarbon identified was the C 17n-alkane, which was present in all samples from the five stations examined. Sterols common to algae and copepods were observed in many samples along with hopanoids representative of bacteria, suggesting a varied community structure in colonies collected from different stations. We found no unique taxonomic marker of Trichodesmium among the sterols. Measurements of the σ 15N and σ 13C in Trichodesmium samples from the SW Sargasso and NW Caribbean Seas averaged -0.4960 (range from -0.7 to -0.25960) and -12.9%0 (range from -15.2 to -11.9960), respectively, thus confirming previous observations that this cyanobacterial diazotroph has both the lowest σ 15N and highest σ 13C of any marine phytoplankter observed to date. A culture of Trichodesmium grown under diazotrophic conditions had a σ 15N between -1.3 and -3.6960. Our results support the supposition that the relatively low σ 15N and high σ 13C values observed in suspended and sediment-trapped material from some tropical and subtropical seas result from substantial input of C and N by Trichodesmium.

  4. Economics.

    PubMed

    Palley, Paul D; Parcero, Miriam E

    2016-10-01

    A review of literature in the calendar year 2015 dedicated to environmental policies and sustainable development, and economic policies. This review is divided into these sections: sustainable development, irrigation, ecosystems and water management, climate change and disaster risk management, economic growth, water supply policies, water consumption, water price regulation, and water price valuation. PMID:27620113

  5. 76 FR 41300 - Probable Economic Effect of Providing Duty-Free, Quota-Free Treatment for Imports From Least...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ...Following receipt of a request dated June 16, 2011 from the United States Trade Representative (USTR), the U.S. International Trade Commission (Commission) instituted investigation No. 332-527, Probable Economic Effect of Providing Duty-Free, Quota-Free Treatment for Imports from Least-Developed Countries, 2012 Report, under section 332(g) of the Tariff Act of 1930 (19 U.S.C. 1332(g)), for the......

  6. Quantity and economic importance of nine selected by-products used in California dairy rations.

    PubMed

    Grasser, L A; Fadel, J G; Garnett, I; DePeters, E J

    1995-04-01

    Food processing representatives, brokers, nutritionists, livestock producers, and trade associations were surveyed to quantify 9 by-products used for feeding livestock during 1992 in California. The commodities were almond hulls, dried beet pulp, wet brewers grains, wet citrus pulp, pressed citrus pulp, wet corn gluten feed, corn gluten meal, whole cottonseed, and rice bran. The 9 by-products contributed over 2.5 million tonnes and about 27% of the total feed concentrate moved within California during 1992. Market value of these 9 by-products was almost .25 billion dollars. Whole cottonseed accounted for about 31% of the total tonnage of these 9 by-products and provided about 66% of the total CP and 53% of the total NEL of these 9 by-products. The by-products were more valuable as energy sources than CP sources compared with NEL from corn and CP from soybean meal, respectively. Calculations of milk production, based on the CP content or NEL content of the by-products, showed that these 9 by-products could have contributed sufficient CP or NEL for over 31% of the milk produced in California during 1992. Ration formulations demonstrated that the economic value of by-products changed with feedstuffs available and, in general, would be used in rations over a range of market prices. PMID:7790589

  7. The economics of prescription drug prices, government intervention, and the importation of drugs from Canada.

    PubMed

    Openshaw, Matthew S

    2005-01-01

    Popular attention has focused on the skyrocketing health care costs in the United States and specifically on increasing insurance and prescription drug prices. Individuals and some local governments have advocated importing price-controlled prescription drugs from Canada to help ease the financial burden. What effects would this have on consumer prices, drug companies' incentives, and the development of new medications? PMID:16459902

  8. Description and comparison of two economically important fish species mitogenomes: Prochilodus argenteus and Prochilodus costatus (Characiformes, Prochilodontidae).

    PubMed

    Chagas, Aline Torres de Azevedo; Carmo, Anderson Oliveira; Costa, Maísa Aparecida; Resende, Leonardo Cardoso; Brandão Dias, Pedro Ferreira Pinto; Martins, Ana Paula Vimieiro; Kalapothakis, Evanguedes

    2016-07-01

    Prochilodus spp. are important Brazilian freshwater migratory fishes with substantial economic and ecological importance. Prochilodus argenteus and Prochilodus costatus are morphologically similar and a molecular species delimitation is impaired due to high degree of sequence identity among the available genetic markers. Here, the complete mitochondrial genome of P. argenteus and P. costatus and their comparison to the mitogenome of P. lineatus are described. The three species displayed a similar mtDNA annotation. A phylogenetic analysis was performed with other Characiformes species. The genus Prochilodus was recovered as a monophyletic group, as well as the family Prochilodontidae, both with high bootstrap probability. PMID:26171874

  9. Economics.

    ERIC Educational Resources Information Center

    James, L. D.

    1978-01-01

    Presents a literature review of the economic aspects of water pollution control covering publications of 1976-77. This review also includes the policy issues of water management. A list of 77 references is presented. (HM)

  10. U.S. Irrigation. Extent and Economic Importance. Agriculture Information Bulletin Number 523.

    ERIC Educational Resources Information Center

    Day, John C.; Horner, Gerald L.

    Data for the years 1974, 1978, 1982, and 1984 are used to identify the principal features of irrigated farming in the United States and to assess the importance of irrigation to the farm economy. Irrigation of U.S. acreage declined 5.6 million acres between 1978 and 1984 to 44.7 million acres. In 1982 irrigated acreage represented 6 percent of the…

  11. Economical and ecological importance of indigenous livestock and the application of assisted reroduction to their preservation.

    PubMed

    Solti, L; Crichton, E G; Loskutoff, N M; Cseh, S

    2000-01-01

    Among the many mammalian species that are threatened as the result of habitat destruction are numerous species of rare or little-known native livestock that possess features that render them ideally adapted to their environment. Because of the vital and valuable role many of these species play both to the ecology and economy of their native countries, attention is being directed towards initiating breeding programs that might insure their continued survival. This review introduces and highlights the importance of some of these indigenous species and outlines efforts currently underway to apply assisted reproductive technologies to their conservation. PMID:10735070

  12. Development of microsatellites in Labisia pumila (Myrsinaceae), an economically important Malaysian herb1

    PubMed Central

    Tnah, Lee Hong; Lee, Chai Ting; Lee, Soon Leong; Ng, Chin Hong; Ng, Kevin Kit Siong

    2014-01-01

    • Premise of the study: The exploitation of Labisia pumila for commercial demand is gradually increasing. It is therefore important that conservation is prioritized to ensure sustainable utilization. We developed microsatellites for L. pumila var. alata and evaluated their polymorphism across var. alata, var. pumila, and var. lanceolata. • Methods and Results: Ten polymorphic microsatellites of L. pumila were developed using the magnetic bead hybridization selection approach. A total of 84, 48, and 66 alleles were observed in L. pumila var. alata, var. pumila, and var. lanceolata, respectively. The species is likely a tetraploid, with the majority of the loci exhibiting up to four alleles per individual. • Conclusions: This is the first report on the development of microsatellites in L. pumila. The microsatellites will provide a good basis for investigating the population genetics of the species and will serve as a useful tool for DNA profiling. PMID:25202631

  13. Wheat forecast economics effect study. [value of improved information on crop inventories, production, imports and exports

    NASA Technical Reports Server (NTRS)

    Mehra, R. K.; Rouhani, R.; Jones, S.; Schick, I.

    1980-01-01

    A model to assess the value of improved information regarding the inventories, productions, exports, and imports of crop on a worldwide basis is discussed. A previously proposed model is interpreted in a stochastic control setting and the underlying assumptions of the model are revealed. In solving the stochastic optimization problem, the Markov programming approach is much more powerful and exact as compared to the dynamic programming-simulation approach of the original model. The convergence of a dual variable Markov programming algorithm is shown to be fast and efficient. A computer program for the general model of multicountry-multiperiod is developed. As an example, the case of one country-two periods is treated and the results are presented in detail. A comparison with the original model results reveals certain interesting aspects of the algorithms and the dependence of the value of information on the incremental cost function.

  14. Cryptic diversity and habitat partitioning in an economically important aphid species complex.

    PubMed

    Savory, F R; Ramakrishnan, U

    2015-03-01

    Cardamom Bushy Dwarf Virus (CBDV) is an aphid-borne nanovirus which infects large cardamom, Amomum subulatum (Zingiberaceae family), in the Himalayan foothills of Northeast India, Nepal and Bhutan. Two aphid species have been reported to transmit CBDV, including Pentalonia nigronervosa and Micromyzus kalimpongensis (also described as Pentalonia kalimpongensis). However, P. nigronervosa was recently split into two species which exhibit different host plant affiliations. Whilst P. nigronervosa primarily feeds on banana plants, Pentaloniacaladii (previously considered a 'form' of P. nigronervosa) typically feeds on plants belonging to the Araceae, Heliconiaceae and Zingiberaceae families. This raises the possibility that CBDV vectors that were originally described as P. nigronervosa correspond to P. caladii. Accurate identification of vector species is important for understanding disease dynamics and for implementing management strategies. However, closely related species can be difficult to distinguish based on morphological characteristics. In this study, we used molecular markers (two mitochondrial loci and one nuclear locus) and Bayesian phylogenetic analyses to identify aphid specimens collected from 148 CBDV infected plants at a range of locations and elevations throughout Sikkim and the Darjeeling district of West Bengal (Northeast India). Our results revealed the presence of a diversity of lineages, comprising up to six distinct species in at least two related genera. These included the three species mentioned above, an unidentified Pentalonia species and two lineages belonging to an unknown genus. Surprisingly, P. caladii was only detected on a single infected plant, indicating that this species may not play an important role in CBDV transmission dynamics. Distinct elevation distributions were observed for the different species, demonstrating that the community composition of aphids which feed on large cardamom plants changes across an elevation gradient

  15. Local knowledge of traditional fishermen on economically important crabs (Decapoda: Brachyura) in the city of Conde, Bahia State, Northeastern Brazil

    PubMed Central

    2012-01-01

    Background This article records the traditional knowledge of crab gatherers in the city of Conde, in the North Coast Region of Bahia State, Northeastern Brazil. Methods Data on biological and ecological aspects of economically important brachyuran crustaceans have been obtained from semi-structured interviews and in loco observations conducted from September 2007 to December 2009. A total of 57 fishermen of both genders, aged between 10 and 78 years have been interviewed (individually or collectively) in different contexts; interviewees were asked about aspects such as external morphology, life cycle, trophic ecology, and spatial and temporal distribution of the major economically important brachyuran crustaceans in the region. Seven fishing communities were visited: Siribinha, Sítio do Conde, Poças, Ilha das Ostras, Cobó, Buri and Sempre Viva. Data were analyzed by comparing the information provided by participants with those from the specialized academic literature. Results The results show that artisanal fishermen have a wide ranging and well-grounded knowledge on the ecological and biological aspects of crustaceans. Crab gatherers of Conde know about growth and reproductive behavior of the animals they interact with, especially with regard to the three major biological aspects: “molt”, “walking dance” and “spawning”. Conclusion This knowledge constitutes an important source of information that should be considered in studies of management and sustainable use of fishery resources in the North Coast Region of Bahia State. PMID:22449069

  16. The importance of actions and the worth of an object: dissociable neural systems representing core value and economic value.

    PubMed

    Brosch, Tobias; Coppin, Géraldine; Schwartz, Sophie; Sander, David

    2012-06-01

    Neuroeconomic research has delineated neural regions involved in the computation of value, referring to a currency for concrete choices and decisions ('economic value'). Research in psychology and sociology, on the other hand, uses the term 'value' to describe motivational constructs that guide choices and behaviors across situations ('core value'). As a first step towards an integration of these literatures, we compared the neural regions computing economic value and core value. Replicating previous work, economic value computations activated a network centered on medial orbitofrontal cortex. Core value computations activated medial prefrontal cortex, a region involved in the processing of self-relevant information and dorsal striatum, involved in action selection. Core value ratings correlated with activity in precuneus and anterior prefrontal cortex, potentially reflecting the degree to which a core value is perceived as internalized part of one's self-concept. Distributed activation pattern in insula and ACC allowed differentiating individual core value types. These patterns may represent evaluation profiles reflecting prototypical fundamental concerns expressed in the core value types. Our findings suggest mechanisms by which core values, as motivationally important long-term goals anchored in the self-schema, may have the behavioral power to drive decisions and behaviors in the absence of immediately rewarding behavioral options. PMID:21642352

  17. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002

    PubMed Central

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc–ccp–cesAB–cesC–cesD–bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications. PMID:27462405

  18. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.

    PubMed

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications. PMID:27462405

  19. Complete Genome Sequence of the Cyanobacterium Anabaena sp. 33047

    PubMed Central

    2016-01-01

    This study presents the complete nucleotide sequence of Anabaena sp. ATCC 33047 (Anabaena CA), a filamentous, nitrogen-fixing marine cyanobacterium, which under salt stress conditions accumulates sucrose internally. The elucidation of the genome will contribute to the understanding of cyanobacterial diversity. PMID:27516507

  20. Redundant pathways of sunscreen biosynthesis in a cyanobacterium.

    PubMed

    Spence, Edward; Dunlap, Walter C; Shick, J Malcolm; Long, Paul F

    2012-03-01

    Route of the sun block: according to empirical evidence, sun-screening mycosporine-like amino acids (MAAs) in Eukarya originate from the shikimic acid pathway, whereas in cyanobacteria, biosynthesis of the MAA shinorine reportedly occurs through the pentose phosphate pathway. However, gene deletion shows that the cyanobacterium Anabaena variabilis ATCC 29143 does not biosynthesise shinorine exclusively by this route. PMID:22278966

  1. Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    SciTech Connect

    Stockel, Jana; Jacobs, Jon M.; Elvitigala, Thanura R.; Liberton, Michelle L.; Welsh, Eric A.; Polpitiya, Ashoka D.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.

    2011-02-22

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ,30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for,5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  2. Geosciences: an important tool for the ethical advancement and the economic and cultural development of our society

    NASA Astrophysics Data System (ADS)

    Vito Graziano, Gian

    2013-04-01

    The development of a society in economic, cultural and ethical terms is always linked to the growth of the scientific and technical knowledge. It follows that the downsizing of the scientific research brings to a slower growth or even, as it is happening these days in Italy, a real cultural decay. The consequences of the economic crisis are evident to everyone, but it is precisely in times of crisis that the best strategies to restart the economy and give new cultural perspectives to society are studied. The crisis is also contrasted with ideas and ability to put them into practice. This, however, also presupposes a different cultural approach, which has to also include a review of values and beliefs, and a redefinition of the objectives to be pursued. This approach is modeled on the basis of several positive experiences that a country can boast. Among these experiences, there are those arising from the scientific culture: geology, for example, such as chemistry, biology or other sciences, can help to change vision. The research and practice of Earth sciences have important implications on the life and activities of the population and therefore the geoscientists, as active subjects in the society, should question their role and responsibilities. They should be at the service of society, especially in the fields of prevention from natural hazards and valorization of georesources. In this sense they can give important indications for economy and development of their country. The Italian Council of Geologists (Consiglio Nazionale dei Geologi - CNG) acts with the aim of highlighting the social role of geoscientists, hoping for a new cultural Renaissance, which leads to new researches, without obscurantism or prejudices. In an authoritative way, the CNG intends to put this social role before any demand from the professional category. Therefore, it has recently presented its political Manifesto, geared essentially to the good governance of the territory, to all the

  3. 50 CFR 14.33 - Permits to import or export wildlife at nondesignated port to alleviate undue economic hardship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... regulations without a permit; (2) The severity of the economic hardship that likely would result should the... nondesignated port to alleviate undue economic hardship. 14.33 Section 14.33 Wildlife and Fisheries UNITED... nondesignated port to alleviate undue economic hardship. (a) General. The Director may, upon receipt of...

  4. 50 CFR 14.33 - Permits to import or export wildlife at nondesignated port to alleviate undue economic hardship.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... regulations without a permit; (2) The severity of the economic hardship that likely would result should the... nondesignated port to alleviate undue economic hardship. 14.33 Section 14.33 Wildlife and Fisheries UNITED... nondesignated port to alleviate undue economic hardship. (a) General. The Director may, upon receipt of...

  5. 50 CFR 14.33 - Permits to import or export wildlife at nondesignated port to alleviate undue economic hardship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... regulations without a permit; (2) The severity of the economic hardship that likely would result should the... nondesignated port to alleviate undue economic hardship. 14.33 Section 14.33 Wildlife and Fisheries UNITED... nondesignated port to alleviate undue economic hardship. (a) General. The Director may, upon receipt of...

  6. 50 CFR 14.33 - Permits to import or export wildlife at nondesignated port to alleviate undue economic hardship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... regulations without a permit; (2) The severity of the economic hardship that likely would result should the... nondesignated port to alleviate undue economic hardship. 14.33 Section 14.33 Wildlife and Fisheries UNITED... nondesignated port to alleviate undue economic hardship. (a) General. The Director may, upon receipt of...

  7. The socio-economic impact of important camel diseases as perceived by a pastoralist community in Kenya.

    PubMed

    Mochabo, M O K; Kitala, P M; Gathura, P B; Ogara, W O; Eregae, E M; Kaitho, T D; Catley, A

    2006-12-01

    This paper presents the results of a study conducted in a pastoral community in Kenya using participatory appraisal approaches. The objective of the study was to assess the socio-economic impact of camel trypanosomosis (surra) according to the perceptions of the pastoralists. Four livestock grazing units were conveniently selected and in each of them, three groups of key informants comprising five to eight persons were selected for the participatory exercises. Five camel diseases were listed in order of importance according to their severity and frequency of occurrence including trypanosomosis, mange, non-specific diarrhoea, tick infestations and haemorrhagic septicaemia. The losses listed as incurred due to the five diseases were: losses in milk, meat, blood, fats and hides, dowry payments, and depreciation in sale of animals, losses due to infertility and abortions, and losses due to the cost of treatment. There was good agreement (P < 0.05) between the informant groups on the losses incurred as a result of the diseases for all the selected loss indicators. Surra and mange were given high median scores on all the indicators while non-specific diarrhoea, tick infestations, and haemorrhagic septicaemia received moderate median scores. Based on the study findings it is concluded that the camel plays a central role in the lives of Turkana pastoralists and that surra has a devastating social and economic impact. There is a need for veterinary and policy decision-makers to focus more attention on the control of surra in this arid and semi-arid area of Kenya. PMID:17283727

  8. Draft Genome Sequence of an Oscillatorian Cyanobacterium, Strain ESFC-1

    PubMed Central

    Everroad, R. Craig; Woebken, Dagmar; Singer, Steven W.; Burow, Luke C.; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Detweiler, Angela; Prufert-Bebout, Leslie

    2013-01-01

    The nonheterocystous filamentous cyanobacterium strain ESFC-1 has recently been isolated from a marine microbial mat system, where it was identified as belonging to a recently discovered lineage of active nitrogen-fixing microorganisms. Here, we report the draft genome sequence of this isolate. The assembly consists of 3 scaffolds and contains 5,632,035 bp with a GC content of 46.5%. PMID:23908279

  9. Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium.

    PubMed

    Richardson, Laurie L; Stanić, Dina; May, Amanda; Brownell, Abigael; Gantar, Miroslav; Campagna, Shawn R

    2014-01-01

    Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD) on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB) that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch's Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis. PMID:25517133

  10. Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium

    PubMed Central

    Richardson, Laurie L.; Stanić, Dina; May, Amanda; Brownell, Abigael; Gantar, Miroslav; Campagna, Shawn R.

    2014-01-01

    Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD) on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB) that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch’s Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis. PMID:25517133

  11. Genotype × genotype interactions between the toxic cyanobacterium Microcystis and its grazer, the waterflea Daphnia

    PubMed Central

    Lemaire, Veerle; Brusciotti, Silvia; van Gremberghe, Ineke; Vyverman, Wim; Vanoverbeke, Joost; De Meester, Luc

    2012-01-01

    Toxic algal blooms are an important problem worldwide. The literature on toxic cyanobacteria blooms in inland waters reports widely divergent results on whether zooplankton can control cyanobacteria blooms or cyanobacteria suppress zooplankton by their toxins. Here we test whether this may be due to genotype × genotype interactions, in which interactions between the large-bodied and efficient grazer Daphnia and the widespread cyanobacterium Microcystis are not only dependent on Microcystis strain or Daphnia genotype but are specific to genotype × genotype combinations. We show that genotype × genotype interactions are important in explaining mortality in short-time exposures of Daphnia to Microcystis. These genotype × genotype interactions may result in local coadaptation and a geographic mosaic of coevolution. Genotype × genotype interactions can explain why the literature on zooplankton–cyanobacteria interactions is seemingly inconsistent, and provide hope that zooplankton can contribute to the suppression of cyanobacteria blooms in restoration projects. PMID:25568039

  12. Genomic sequencing and microsatellite marker development for Boswellia papyrifera, an economically important but threatened tree native to dry tropical forests.

    PubMed

    Addisalem, A B; Esselink, G Danny; Bongers, F; Smulders, M J M

    2015-01-01

    Microsatellite (or simple sequence repeat, SSR) markers are highly informative DNA markers often used in conservation genetic research. Next-generation sequencing enables efficient development of large numbers of SSR markers at lower costs. Boswellia papyrifera is an economically important tree species used for frankincense production, an aromatic resinous gum exudate from bark. It grows in dry tropical forests in Africa and is threatened by a lack of rejuvenation. To help guide conservation efforts for this endangered species, we conducted an analysis of its genomic DNA sequences using Illumina paired-end sequencing. The genome size was estimated at 705 Mb per haploid genome. The reads contained one microsatellite repeat per 5.7 kb. Based on a subset of these repeats, we developed 46 polymorphic SSR markers that amplified 2-12 alleles in 10 genotypes. This set included 30 trinucleotide repeat markers, four tetranucleotide repeat markers, six pentanucleotide markers and six hexanucleotide repeat markers. Several markers were cross-transferable to Boswellia pirrotae and B. popoviana. In addition, retrotransposons were identified, the reads were assembled and several contigs were identified with similarity to genes of the terpene and terpenoid backbone synthesis pathways, which form the major constituents of the bark resin. PMID:25573702

  13. Genomic sequencing and microsatellite marker development for Boswellia papyrifera, an economically important but threatened tree native to dry tropical forests

    PubMed Central

    Addisalem, A. B.; Esselink, G. Danny; Bongers, F.; Smulders, M. J. M.

    2015-01-01

    Microsatellite (or simple sequence repeat, SSR) markers are highly informative DNA markers often used in conservation genetic research. Next-generation sequencing enables efficient development of large numbers of SSR markers at lower costs. Boswellia papyrifera is an economically important tree species used for frankincense production, an aromatic resinous gum exudate from bark. It grows in dry tropical forests in Africa and is threatened by a lack of rejuvenation. To help guide conservation efforts for this endangered species, we conducted an analysis of its genomic DNA sequences using Illumina paired-end sequencing. The genome size was estimated at 705 Mb per haploid genome. The reads contained one microsatellite repeat per 5.7 kb. Based on a subset of these repeats, we developed 46 polymorphic SSR markers that amplified 2–12 alleles in 10 genotypes. This set included 30 trinucleotide repeat markers, four tetranucleotide repeat markers, six pentanucleotide markers and six hexanucleotide repeat markers. Several markers were cross-transferable to Boswellia pirrotae and B. popoviana. In addition, retrotransposons were identified, the reads were assembled and several contigs were identified with similarity to genes of the terpene and terpenoid backbone synthesis pathways, which form the major constituents of the bark resin. PMID:25573702

  14. Quantifying the economic importance of irrigation water reuse in a Chilean watershed using an integrated agent-based model

    NASA Astrophysics Data System (ADS)

    Arnold, R. T.; Troost, Christian; Berger, Thomas

    2015-01-01

    Irrigation with surface water enables Chilean agricultural producers to generate one of the country's most important economic exports. The Chilean water code established tradable water rights as a mechanism to allocate water amongst farmers and other water-use sectors. It remains contested whether this mechanism is effective and many authors have raised equity concerns regarding its impact on water users. For example, speculative hoarding of water rights in expectations of their increasing value has been described. This paper demonstrates how farmers can hoard water rights as a risk management strategy for variable water supply, for example, due to the cycles of El Niño or as consequence of climate change. While farmers with insufficient water rights can rely on unclaimed water during conditions of normal water availability, drought years overproportionally impact on their supply of irrigation water and thereby farm profitability. This study uses a simulation model that consists of a hydrological balance model component and a multiagent farm decision and production component. Both model components are parameterized with empirical data, while uncertain parameters are calibrated. The study demonstrates a thorough quantification of parameter uncertainty, using global sensitivity analysis and multiple behavioral parameter scenarios.

  15. Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle.

    PubMed

    Kim, H; Lee, S K; Hong, M W; Park, S R; Lee, Y S; Kim, J W; Lee, H K; Jeong, D K; Song, Y H; Lee, S J

    2013-12-01

    The akirin 2 gene, located on chromosome 9 in cattle, was previously reported to be associated with nuclear factor-kappa B (NF-κB), involved in immune reactions and marbling of meat. To determine whether a single nucleotide polymorphism (SNP) in akirin 2 is associated with economically important traits of Korean native cattle, the c.*188G>A SNP DNA marker in the 3'-UTR region of akirin 2 was analyzed for its association with carcass weight, longissimus muscle area and marbling. The c.*188G>A SNP was genotyped by polymerase chain reaction restriction fragment length polymorphism, and the frequency of the AA, AG, and GG genotypes were 6.82%, 71.29% and 21.88% respectively. This SNP was significantly associated with longissimus muscle area (Bonferroni corrected P < 0.05), and marbling score (Bonferroni corrected P < 0.01). These results suggest that the c.*188G>A SNP of akirin 2 might be useful as a DNA marker for longissimus muscle area and marbling scores in Korean native cattle. PMID:23718263

  16. Insecticide Resistance and Malaria Vector Control: The Importance of Fitness Cost Mechanisms in Determining Economically Optimal Control Trajectories

    PubMed Central

    Brown, Zachary S.; Dickinson, Katherine L.; Kramer, Randall A.

    2014-01-01

    The evolutionary dynamics of insecticide resistance in harmful arthropods has economic implications, not only for the control of agricultural pests (as has been well studied), but also for the control of disease vectors, such as malaria-transmitting Anopheles mosquitoes. Previous economic work on insecticide resistance illustrates the policy relevance of knowing whether insecticide resistance mutations involve fitness costs. Using a theoretical model, this article investigates economically optimal strategies for controlling malaria-transmitting mosquitoes when there is the potential for mosquitoes to evolve resistance to insecticides. Consistent with previous literature, we find that fitness costs are a key element in the computation of economically optimal resistance management strategies. Additionally, our models indicate that different biological mechanisms underlying these fitness costs (e.g., increased adult mortality and/or decreased fecundity) can significantly alter economically optimal resistance management strategies. PMID:23448053

  17. Draft Genome Sequence of Exopolysaccharide-Producing Cyanobacterium Aphanocapsa montana BDHKU 210001

    PubMed Central

    Bhattacharyya, Sourav; Chandrababunaidu, Mathu Malar; Sen, Deeya; Panda, Arijit; Ghorai, Arpita; Bhan, Sushma; Sanghi, Neha

    2015-01-01

    We report for the first time the draft genome sequence of Aphanocapsa montana BDHKU 210001, a halotolerant cyanobacterium isolated from India. This is a marine exopolysaccharide (EPS)-producing cyanobacterium. The genome of this species is assembled into 11.50 million bases, with 296 scaffolds carrying approximately 7,296 protein-coding genes. PMID:25744997

  18. Complete Sequence and Analysis of Plastid Genomes of Two Economically Important Red Algae: Pyropia haitanensis and Pyropia yezoensis

    PubMed Central

    Wang, Li; Mao, Yunxiang; Kong, Fanna; Li, Guiyang; Ma, Fei; Zhang, Baolong; Sun, Peipei; Bi, Guiqi; Zhang, Fangfang; Xue, Hongfan; Cao, Min

    2013-01-01

    Background Pyropia haitanensis and P. yezoensis are two economically important marine crops that are also considered to be research models to study the physiological ecology of intertidal seaweed communities, evolutionary biology of plastids, and the origins of sexual reproduction. This plastid genome information will facilitate study of breeding, population genetics and phylogenetics. Principal Findings We have fully sequenced using next-generation sequencing the circular plastid genomes of P. hatanensis (195,597 bp) and P. yezoensis (191,975 bp), the largest of all the plastid genomes of the red lineage sequenced to date. Organization and gene contents of the two plastids were similar, with 211–213 protein-coding genes (including 29–31 unknown-function ORFs), 37 tRNA genes, and 6 ribosomal RNA genes, suggesting a largest coding capacity in the red lineage. In each genome, 14 protein genes overlapped and no interrupted genes were found, indicating a high degree of genomic condensation. Pyropia maintain an ancient gene content and conserved gene clusters in their plastid genomes, containing nearly complete repertoires of the plastid genes known in photosynthetic eukaryotes. Similarity analysis based on the whole plastid genome sequences showed the distance between P. haitanensis and P. yezoensis (0.146) was much smaller than that of Porphyra purpurea and P. haitanensis (0.250), and P. yezoensis (0.251); this supports re-grouping the two species in a resurrected genus Pyropia while maintaining P. purpurea in genus Porphyra. Phylogenetic analysis supports a sister relationship between Bangiophyceae and Florideophyceae, though precise phylogenetic relationships between multicellular red alage and chromists were not fully resolved. Conclusions These results indicate that Pyropia have compact plastid genomes. Large coding capacity and long intergenic regions contribute to the size of the largest plastid genomes reported for the red lineage. Possessing the largest

  19. Identification of aphid (Hemiptera: Aphididae) species of economic importance in Kenya using DNA barcodes and PCR-RFLP-based approach.

    PubMed

    Kinyanjui, G; Khamis, F M; Mohamed, S; Ombura, L O; Warigia, M; Ekesi, S

    2016-02-01

    Aphids are among pests of economic importance throughout the world. Together with transmitting plant viruses, aphids are capable of inflicting severe crop production losses. They also excrete honeydew that favours the growth of sooty mold which reduces the quality of vegetables and fruits and hence their market values. Rapid and accurate identification of aphids to the species level is a critical component in effective pest management and plant quarantine systems. Even though morphological taxonomy has made a tremendous impact on species-level identifications, polymorphism, morphological plasticity and immature stages are among the many challenges to accurate identification. In addition, their small size, presence of cryptic species and damaged specimens dictate the need for a strategy that will ensure timely and accurate identification. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based on mitochondrial cytochrome c oxidase subunit I gene and DNA barcoding were applied to identify different aphid species collected from different agro-ecological zones of Kenya. Three restriction enzymes RsaI, AluI and Hinf1 produced patterns that allowed unambiguous identification of the species except Aphis craccivora and Aphis fabae. Analyses of the barcode region indicated intraspecific and interspecific sequence divergences of 0.08 and 6.63%, respectively. DNA barcoding identified all species, including the morphologically indistinguishable A. craccivora and A. fabae and separated two subspecies of A. fabae. Based on these results, both PCR-RFLPs and DNA barcoding could provide quick and accurate tools for identification of aphid species within Aphididae subsequently aiding in effective pest management programmes and enhance plant quarantine systems. PMID:26490301

  20. Live Cell Chemical Profiling of Temporal Redox Dynamics in a Photoautotrophic Cyanobacterium

    SciTech Connect

    Sadler, Natalie C.; Melnicki, Matthew R.; Serres, Margrethe H.; Merkley, Eric D.; Chrisler, William B.; Hill, Eric A.; Romine, Margaret F.; Kim, Sangtae; Zink, Erika M.; Datta, Suchitra; Smith, Richard D.; Beliaev, Alex S.; Konopka, Allan; Wright, Aaron T.

    2014-01-01

    Protein reduction-oxidation (redox) modification is an important mechanism that allows microorganisms to sense environmental changes and initiate cellular responses. We have developed a quantitative chemical probe approach for live cell labeling of proteins that are sensitive to redox modifications. We utilize this in vivo strategy to identify 176 proteins undergoing ~5-10 fold dynamic redox change in response to nutrient limitation and subsequent replenishment in the photoautotrophic cyanobacterium, Synechococcus sp. PCC 7002. We detect redox changes in as little as 30 seconds after nutrient perturbation, and oscillations in reduction and oxidation for 60 minutes following the perturbation. Many of the proteins undergoing dynamic redox transformations participate in the major components for the production (photosystems and electron transport chains) or consumption (Calvin-Benson cycle and protein synthesis) of reductant and/or energy in photosynthetic organisms. Thus, our in vivo approach reveals new redox-susceptible proteins, in addition to validating those previously identified in vitro.

  1. Extinction of cells of cyanobacterium Anabaena circinalis in the presence of humic acid under illumination.

    PubMed

    Sun, Bing-kun; Tanji, Yasunori; Unno, Hajime

    2006-10-01

    Laboratory experiments targeting the effect of humic acid (HA) on the cell lysis of cyanobacterium Anabaena circinalis have been performed. Light irradiation was found to be an important factor for the cell lysis phenomenon, whereas intracellular hydrogen peroxide (H2O2) might be a chemical factor for the process. An exogenous H2O2 concentration of 1.0 mg l(-1) was determined as the threshold for cell survival. Our results indicated that HA or its possible product(s) of photochemical reaction can induce damage to intracellular catalase under artificial illumination, which leads intracellular H2O2 to be accumulated to an abnormally high concentration, eventually resulting in cell death. Moreover, H2O2 released into the culture from dead cells can damage other cells, which in turn brings about the population extinction. PMID:16505991

  2. Utilization of a terrestrial cyanobacterium, Nostoc sp. HK-01, for space habitation

    NASA Astrophysics Data System (ADS)

    Kimura, Shunta; Tomita-Yokotani, Kaori; Arai, Mayumi; Yamashita, Masamichi; Katoh, Hiroshi; Ajioka, Reiko; Inoue, Kotomi

    2016-07-01

    A terrestrial cyanobacterium, Nostoc sp. HK-01 (hereafter HK-01), has several useful abilities for space habitation; photosynthesis, nitrogen fixation, and space environmental tolerances to vacuum, UV, gamma-ray, heavy particle beam, low and high temperature. Space environmental tolerances are important for transportation to Mars. HK-01 can grow on Martian regolith simulant (MRS) in vitro. Furthermore, HK-01 is useful as food. HK-01 may be utilized as oxygen supply, soil formation and food material for bio-chemical circulation in closed bio-ecosystems, including space habitation such as Mars. HK-01 was adopted as a biological material for the "TANPOPO" mission (JAXA et al.,), because of their high environmental tolerances. The "TANPOPO" mission is performing the space exposure experiments on the Japan Experimental Module (JEM) of the International Space Station (ISS). The results of these experiments will show the ability of HK-01 to survive in space.

  3. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide.

    PubMed

    Zhou, Jie; Zhang, Haifeng; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2012-07-01

    Ketones are a class of important organic compounds. As the simplest ketone, acetone is widely used as solvents or precursors for industrial chemicals. Presently, million tonnes of acetone is produced worldwide annually, from petrochemical processes. Here we report a biotechnological process that can produce acetone from CO(2), by designing and creating a modularized synthetic pathway in engineered cyanobacterium Synechocystis sp. PCC 6803. The engineered Synechocystis cells are able to produce acetone (36.0 mgl(-1) culture medium) using CO(2) as the sole carbon source, thus opens the gateway for biosynthesis of ketones from CO(2). PMID:22475865

  4. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production.

    PubMed

    Basarab, J A; Beauchemin, K A; Baron, V S; Ominski, K H; Guan, L L; Miller, S P; Crowley, J J

    2013-06-01

    Genetic selection for residual feed intake (RFI) is an indirect approach for reducing enteric methane (CH4) emissions in beef and dairy cattle. RFI is moderately heritable (0.26 to 0.43), moderately repeatable across diets (0.33 to 0.67) and independent of body size and production, and when adjusted for off-test ultrasound backfat thickness (RFI fat) is also independent of body fatness in growing animals. It is highly dependent on accurate measurement of individual animal feed intake. Within-animal repeatability of feed intake is moderate (0.29 to 0.49) with distinctive diurnal patterns associated with cattle type, diet and genotype, necessitating the recording of feed intake for at least 35 days. In addition, direct measurement of enteric CH4 production will likely be more variable and expensive than measuring feed intake and if conducted should be expressed as CH4 production (g/animal per day) adjusted for body size, growth, body composition and dry matter intake (DMI) or as residual CH4 production. A further disadvantage of a direct CH4 phenotype is that the relationships of enteric CH4 production on other economically important traits are largely unknown. Selection for low RFI fat (efficient, -RFI fat) will result in cattle that consume less dry matter (DMI) and have an improved feed conversion ratio (FCR) compared with high RFI fat cattle (inefficient; +RFI fat). Few antagonistic effects have been reported for the relationships of RFI fat on carcass and meat quality, fertility, cow lifetime productivity and adaptability to stress or extensive grazing conditions. Low RFI fat cattle also produce 15% to 25% less enteric CH4 than +RFI fat cattle, since DMI is positively related to enteric methane (CH4) production. In addition, lower DMI and feeding duration and frequency, and a different rumen bacterial profile that improves rumen fermentation in -RFI fat cattle may favor a 1% to 2% improvement in dry matter and CP digestibility compared with +RFI fat cattle. Rate

  5. Chemokinetic motility responses of the cyanobacterium oscillatoria terebriformis

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Castenholz, Richard W.

    1989-01-01

    Oscillatoria terebriformis, a gliding, filamentous, thermophilic cyanobacterium, exhibited an inhibition of gliding motility upon exposure to fructose. The observed response was transient, and the duration of nonmotility was directly proportional to the concentration of fructose. Upon resumption of motility, the rate of motility was also inversely proportional to the concentration of fructose. Sulfide caused a similar response. The effect of sulfide was specific and not due to either anoxia or negative redox potential. Exposure to glucose, acetate, lactate, or mat interstitial water did not elicit any motility response.

  6. Caldoramide, a Modified Pentapeptide from the Marine Cyanobacterium Caldora penicillata.

    PubMed

    Gunasekera, Sarath P; Imperial, Lorelie; Garst, Christiana; Ratnayake, Ranjala; Dang, Long H; Paul, Valerie J; Luesch, Hendrik

    2016-07-22

    The isolation, structure determination, and biological activities of a new linear pentapeptide, caldoramide (5), from the marine cyanobacterium Caldora penicillata from Florida are described. Caldoramide (5) has structural similarities to belamide A (4), dolastatin 10 (1), and dolastatin 15 (2). We profiled caldoramide against parental HCT116 colorectal cancer cells and isogenic cells lacking oncogenic KRAS or hypoxia-inducible factors 1α (HIF-1α) and 2α (HIF-2α). Caldoramide (5) showed differential cytotoxicity for cells containing both oncogenic KRAS and HIF over the corresponding knockout cells. LCMS dereplication indicated the presence of caldoramide (5) in a subset of C. penicillata samples. PMID:27380142

  7. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    PubMed Central

    Saha, Rajib; Liu, Deng; Hoynes-O’Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Maranas, Costas D.

    2016-01-01

    ABSTRACT Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. PMID:27143387

  8. A Study of the Relative Importance of Communication and Economic Variables in Diffusion: Dwarf Wheats on Unirrigated Small Holdings in Pakistan.

    ERIC Educational Resources Information Center

    Rochin, Refugio I.

    The purpose of this paper is twofold: (1) it presents some empirical findings of the relative importance of both "economic" and "communication" variables in the diffusion of an innovation (dwarf wheats) in an unirrigated region of Pakistan which is densely populated by smallholders. The sample of farmers reported are representative of a class of…

  9. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2014-07-01

    Mycosporine-like amino acids (MAAs) are ecologically important biomolecules with great photoprotective potential. The present study aimed to investigate the biosynthesis of MAAs in the cyanobacterium Arthrospira sp. CU2556. High-performance liquid chromatography (HPLC) with photodiode-array detection studies revealed the presence of a UV-absorbing compound with an absorption maximum at 310 nm. Based on its UV absorption spectrum and ion trap liquid chromatography/mass spectrometry (LC/MS) analysis, the compound was identified as a primary MAA mycosporine-glycine (m/z: 246). To the best of our knowledge this is the first report on the occurrence of MAA mycosporine-glycine (M-Gly) in Arthrospira strains studied so far. In contrast to photosynthetic activity under UV-A radiation, the induction of the biosynthesis of M-Gly was significantly more prominent under UV-B radiation. The content of M-Gly was found to increase with the increase in exposure time under UV-B radiation. The MAA M-Gly was highly stable under UV radiation, heat, strongly acidic and alkaline conditions. It also exhibited good antioxidant activity and photoprotective ability by detoxifying the in vivo reactive oxygen species (ROS) generated by UV radiation. Our results indicate that the studied cyanobacterium may protect itself by synthesizing the UV-absorbing/screening compounds as important defense mechanisms, in their natural brightly-lit habitat with high solar UV-B fluxes. PMID:24769912

  10. Mössbauer study of cobalt and iron in the cyanobacterium (blue green alga)

    NASA Astrophysics Data System (ADS)

    Ambe, Shizuko

    1990-07-01

    Mössbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Mössbauer spectrum of the cyanobacterium cultivated with57Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B12) labeled with57Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with57Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein.

  11. Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2014-09-30

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  12. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  13. 77 FR 34781 - Importation of Tomatoes From the Economic Community of West African States Into the Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ...) is present. On August 2, 2011, we published in the Federal Register (76 FR 46209-46212, Docket No.... List of Subjects in 7 CFR Part 319 Coffee, Cotton, Fruits, Imports, Logs, Nursery stock, Plant...

  14. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis

    SciTech Connect

    Thiel, T.

    1988-03-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells.Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of P/sub i/. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent K/sub i/ values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.

  15. A New Lyngbyatoxin from the Hawaiian Cyanobacterium Moorea producens

    PubMed Central

    Jiang, Weina; Zhou, Wei; Uchida, Hajime; Kikumori, Masayuki; Irie, Kazuhiro; Watanabe, Ryuichi; Suzuki, Toshiyuki; Sakamoto, Bryan; Kamio, Michiya; Nagai, Hiroshi

    2014-01-01

    Lyngbyatoxin A from the marine cyanobacterium Moorea producens (formerly Lyngbya majuscula) is known as the causative agent of “swimmer’s itch” with its highly inflammatory effect. A new toxic compound was isolated along with lyngbyatoxin A from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies revealed the isolated compound had the same planar structure with that of lyngbyatoxin A. The results of optical rotation and CD spectra indicated that the compound was a new lyngbyatoxin A derivative, 12-epi-lyngbyatoxin A (1). While 12-epi-lyngbyatoxin A showed comparable toxicities with lyngbyatoxin A in cytotoxicity and crustacean lethality tests, it showed more than 100 times lower affinity for protein kinase Cδ (PKCδ) using the PKCδ-C1B peptide when compared to lyngbyatoxin A. PMID:24824022

  16. A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.)

    PubMed Central

    2013-01-01

    Background Faba bean (Vicia faba L.) is among the earliest domesticated crops from the Near East. Today this legume is a key protein feed and food worldwide and continues to serve an important role in culinary traditions throughout Middle East, Mediterranean region, China and Ethiopia. Adapted to a wide range of soil types, the main faba bean breeding objectives are to improve yield, resistance to biotic and abiotic stresses, seed quality and other agronomic traits. Genomic approaches aimed at enhancing faba bean breeding programs require high-quality genetic linkage maps to facilitate quantitative trait locus analysis and gene tagging for use in a marker-assisted selection. The objective of this study was to construct a reference consensus map in faba bean by joining the information from the most relevant maps reported so far in this crop. Results A combination of two approaches, increasing the number of anchor loci in diverse mapping populations and joining the corresponding genetic maps, was used to develop a reference consensus map in faba bean. The map was constructed from three main recombinant inbreed populations derived from four parental lines, incorporates 729 markers and is based on 69 common loci. It spans 4,602 cM with a range from 323 to 1041 loci in six main linkage groups or chromosomes, and an average marker density of one locus every 6 cM. Locus order is generally well maintained between the consensus map and the individual maps. Conclusion We have constructed a reliable and fairly dense consensus genetic linkage map that will serve as a basis for genomic approaches in faba bean research and breeding. The core map contains a larger number of markers than any previous individual map, covers existing gaps and achieves a wider coverage of the large faba bean genome as a whole. This tool can be used as a reference resource for studies in different genetic backgrounds, and provides a framework for transferring genetic information when using different

  17. Worst-Case Scenario Tsunami Hazard Assessment in Two Historically and Economically Important Districts in Eastern Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Armigliato, A.; Tinti, S.; Pagnoni, G.; Zaniboni, F.; Paparo, M. A.

    2015-12-01

    The portion of the eastern Sicily coastline (southern Italy), ranging from the southern part of the Catania Gulf (to the north) down to the southern-eastern end of the island, represents a very important geographical domain from the industrial, commercial, military, historical and cultural points of view. Here the two major cities of Augusta and Siracusa are found. In particular, the Augusta bay hosts one of the largest petrochemical poles in the Mediterranean, and Siracusa is listed among the UNESCO World Heritage Sites since 2005. This area was hit by at least seven tsunamis in the approximate time interval from 1600 BC to present, the most famous being the 365, 1169, 1693 and 1908 tsunamis. The choice of this area as one of the sites for the testing of innovative methods for tsunami hazard, vulnerability and risk assessment and reduction is then fully justified. This is being developed in the frame of the EU Project called ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe (Grant 603839, 7th FP, ENV.2013.6.4-3). We assess the tsunami hazard for the Augusta-Siracusa area through the worst-case credible scenario technique, which can be schematically divided into the following steps: 1) Selection of five main source areas, both in the near- and in the far-field (Hyblaean-Malta escarpment, Messina Straits, Ionian subduction zone, Calabria offshore, western Hellenic Trench); 2) Choice of potential and credible tsunamigenic faults in each area: 38 faults were selected, with properly assigned magnitude, geometry and focal mechanism; 3) Computation of the maximum tsunami wave elevations along the eastern Sicily coast on a coarse grid (by means of the in-house code UBO-TSUFD) and extraction of the 9 scenarios that produce the largest effects in the target areas of Augusta and Siracusa; 4) For each of the 9 scenarios we run numerical UBO-TSUFD simulations over a set of five nested grids, with grid cells size decreasing from 3 km in the open Ionian

  18. Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3708, Which Performs Type II Complementary Chromatic Acclimation.

    PubMed

    Hirose, Yuu; Katayama, Mitsunori; Ohtsubo, Yoshiyuki; Misawa, Naomi; Iioka, Erica; Suda, Wataru; Oshima, Kenshiro; Hanaoka, Mitsumasa; Tanaka, Kan; Eki, Toshihiko; Ikeuchi, Masahiko; Kikuchi, Yo; Ishida, Makoto; Hattori, Masahira

    2015-01-01

    To explore the variation of the light-regulated genes during complementary chromatic acclimation (CCA), we determined the complete genome sequence of the cyanobacterium Geminocystis sp. strain NIES-3708. Within the light-regulated operon for CCA, we found genes for phycoerythrin but not phycocyanin, suggesting that this cyanobacterium modulates phycoerythrin composition only (type II CCA). PMID:25953174

  19. Detection of short protein coding regions within the cyanobacterium genome: application of the hidden Markov model.

    PubMed

    Yada, T; Hirosawa, M

    1996-12-31

    The gene-finding programs developed so far have not paid much attention to the detection of short protein coding regions (CDSs). However, the detection of short CDSs is important for the study of photosynthesis. We utilized GeneHacker, a gene-finding program based on the hidden Markov model (HMM), to detect short CDSs (from 90 to 300 bases) in a 1.0 mega contiguous sequence of cyanobacterium Synechocystis sp. strain PCC6803 which carries a complete set of genes for oxygenic photosynthesis. GeneHacker differs from other gene-finding programs based on the HMM in that it utilizes di-codon statistics as well. GeneHacker successfully detected seven out of the eight short CDSs annotated in this sequence and was clearly superior to GeneMark in this range of length. GeneHacker detected 94 potentially new CDSs, 9 of which have counterparts in the genetic databases. Four of the nine CDSs were less than 150 bases and were photosynthesis-related genes. The results show the effectiveness of GeneHacker in detecting very short CDSs corresponding to genes. PMID:9097038

  20. Advances in the Function and Regulation of Hydrogenase in the Cyanobacterium Synechocystis PCC6803

    PubMed Central

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2014-01-01

    In order to use cyanobacteria for the biological production of hydrogen, it is important to thoroughly study the function and the regulation of the hydrogen-production machine in order to better understand its role in the global cell metabolism and identify bottlenecks limiting H2 production. Most of the recent advances in our understanding of the bidirectional [Ni-Fe] hydrogenase (Hox) came from investigations performed in the widely-used model cyanobacterium Synechocystis PCC6803 where Hox is the sole enzyme capable of combining electrons with protons to produce H2 under specific conditions. Recent findings suggested that the Hox enzyme can receive electrons from not only NAD(P)H as usually shown, but also, or even preferentially, from ferredoxin. Furthermore, plasmid-encoded functions and glutathionylation (the formation of a mixed-disulfide between the cysteines residues of a protein and the cysteine residue of glutathione) are proposed as possible new players in the function and regulation of hydrogen production. PMID:25365180

  1. Response of photosynthetic systems to salinity stress in the desert cyanobacterium Scytonema javanicum

    NASA Astrophysics Data System (ADS)

    Hu, Jinlu; Jin, Liang; Wang, Xiaojuan; Cai, Wenkai; Liu, Yongding; Wang, Gaohong

    2014-01-01

    The present study investigated the physiological and biochemical characteristics of Scytonema javanicum, a pioneer species isolated from desert biological crusts, under salinity stress. Pigment analysis showed that salinity decreased chlorophyll a and phycocyanin content, while low salinity increased carotenoid concentration and high salinity decreased carotenoid concentration. Salinity also inhibited CO2 assimilation rate and photosynthetic oxygen evolution in this cyanobacterium. Chlorophyll a fluorescence transient parameters (φPo, φEo, ψO, RC/ABS, RC/CS, PIABS, and PICS) were decreased under salt stress, while dVo/dto(Mo), Vj and φDo were increased. The decrease of ETRmax and Yield and the change of chlorophyll a fluorescence transients showed that salt stress had an important influence on photosynthesis. These results indicated that the effects of salinity stress on photosynthesis in S. javanicum may depend on the inhibition of electron transport and the inactivation of the reaction centers, but this inhibition may occur in the electron transport pathway at the PSII donor and acceptor sites.

  2. Membrane development in the cyanobacterium, Anacystis nidulans, during recovery from iron starvation

    SciTech Connect

    Pakrasi, H.B.; Goldenberg, A.; Sherman, L.A.

    1985-09-01

    Deprivation of iron from the growth medium results in physiological as well as structural changes in the unicellular cyanobacterium Anacystis nidulans R2. Important among these changes are alterations in the composition and function of the photosynthetic membranes. Room-temperature absorption spectra of iron-starved cyanobacterial cells show a chlorophyll absorption peak at 672 nanometers, 7 nanometers blue-shifted from its normal position at 679 nanometers. Iron-starved cells have decreased amounts of chlorophyll and phycobilins. Their fluorescence spectra (77K) have one prominent chlorophyll emission peak at 684 nanometers as compared to three peaks at 687, 696, and 717 nanometers from normal cells. Chlorophyll-protein analysis of iron-deprived cells indicated the absence of high molecular weight bands. Addition of iron to iron-starved cells induced a restoration process in which new components were initially synthesized and integrated into preexisting membranes; at later times, new membranes were assembled and cell division commenced. Synthesis of chlorophyll and phycocyanins started almost immediately after the addition of iron. The origin of the fluorescence emission at 687 and 696 nanometers is discussed in relation to the specific chlorophyll-protein complexes formed during iron reconstitution. 26 references, 2 figures, 1 table.

  3. Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis Cry proteins.

    PubMed

    Ketseoglou, Irene; Bouwer, Gustav

    2013-08-10

    An Anabaena strain (PCC 7120#11) that was genetically engineered to express Bacillus thuringiensis subsp. israelensis cry genes has shown good larvicidal activity against Anopheles arabiensis, a major vector of malaria in Africa. Response surface methodology was used to evaluate the relationship between key growth factors and the volumetric productivity of PCC 7120#11 in an indoor, flat-plate photobioreactor. The interaction of input CO₂ concentration and airflow rate had a statistically significant effect on the volumetric productivity of PCC 7120#11, as did the interaction of airflow rate and photosynthetic photon flux density. Model-based numerical optimization indicated that the optimal factor level combination for maximizing PCC 7120#11 volumetric productivity was a photosynthetic photon flux density of 154 μmol m⁻² s⁻¹ and air enriched with 3.18% (v/v) CO₂ supplied at a flow rate of 1.02 vessel volumes per minute. At the levels evaluated in the study, none of the growth factors had a significant effect on the median lethal concentration of PCC 7120#11 against An. arabiensis larvae. This finding is important because loss of mosquitocidal activity under growth conditions that maximize volumetric productivity would impact on the feasibility of using PCC 7120#11 in malaria vector control programs. The study showed the usefulness of response surface methodology for determination of the optimal growth conditions for a cyanobacterium that is genetically engineered to have larvicidal activity against malaria vectors. PMID:23732832

  4. CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002

    PubMed Central

    Yang, Yaohua; Feng, Jie; Li, Tao; Ge, Feng; Zhao, Jindong

    2015-01-01

    Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics’s usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics PMID:25632108

  5. A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    McDermott, Jason E; Oehmen, Christopher S; McCue, Lee Ann; Hill, Eric; Choi, Daniel M; Stöckel, Jana; Liberton, Michelle; Pakrasi, Himadri B; Sherman, Louis A

    2011-08-01

    Systems biology attempts to reconcile large amounts of disparate data with existing knowledge to provide models of functioning biological systems. The cyanobacterium Cyanothece sp. ATCC 51142 is an excellent candidate for such systems biology studies because: (i) it displays tight functional regulation between photosynthesis and nitrogen fixation; (ii) it has robust cyclic patterns at the genetic, protein and metabolomic levels; and (iii) it has potential applications for bioenergy production and carbon sequestration. We have represented the transcriptomic data from Cyanothece 51142 under diurnal light/dark cycles as a high-level functional abstraction and describe development of a predictive in silico model of diurnal and circadian behavior in terms of regulatory and metabolic processes in this organism. We show that incorporating network topology into the model improves performance in terms of our ability to explain the behavior of the system under new conditions. The model presented robustly describes transcriptomic behavior of Cyanothece 51142 under different cyclic and non-cyclic growth conditions, and represents a significant advance in the understanding of gene regulation in this important organism. PMID:21698331

  6. Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus.

    PubMed

    Lan, Shubin; Wu, Li; Zhang, Delu; Hu, Chunxiang

    2015-04-01

    Microalgae cultivation has recently been recognized as an important issue to deal with the increasingly prominent resource and environmental problems. In this study, desert cyanobacterium Microcoleus vaginatus was open cultivated in 4 different cultivation conditions in Qubqi Desert, and it was found Chlorella sp., Scenedesmus sp. and Navicula sp. were the main contaminating microalgal species during the cultivation. High light intensity alone was responsible for the green algae contamination, but the accompanied high temperature was beneficial to cyanobacterial growth, and the maximum biomass productivity acquired was 41.3mgL(-1)d(-1). Low temperature was more suitable for contaminating diatoms' growth, although all the microalgae (including the target and contaminating) are still demand for a degree of light intensity, at least average daily light intensity >5μEm(-2)s(-1). As a whole, cultivation time, conditions and their interaction had a significant impact on microalgal photosynthetic activity (Fv/Fm), biomass and exopolysaccharides content (P<0.001). PMID:25689308

  7. Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia.

    PubMed

    Dwiyitno; Dsikowitzky, Larissa; Nordhaus, Inga; Andarwulan, Nuri; Irianto, Hari Eko; Lioe, Hanifah Nuryani; Ariyani, Farida; Kleinertz, Sonja; Schwarzbauer, Jan

    2016-09-30

    Non-target screening analyses were conducted in order to identify a wide range of organic contaminants in sediment and animal tissue samples from Jakarta Bay. High concentrations of di-iso-propylnaphthalenes (DIPNs), linear alkylbenzenes (LABs) and polycyclic aromatic hydrocarbons (PAHs) were detected in all samples, whereas phenylmethoxynaphthalene (PMN), DDT and DDT metabolites (DDX) were detected at lower concentrations. In order to evaluate the uptake and accumulation by economic important mussel (Perna viridis) and fish species, contaminant patterns of DIPNs, LABs and PAHs in different compartments were compared. Different patterns of these contaminant groups were found in sediment and animal tissue samples, suggesting compound-specific accumulation and metabolism processes. Significantly higher concentrations of these three contaminant groups in mussel tissue as compared to fish tissue from Jakarta Bay were found. Because P. viridis is an important aquaculture species in Asia, this result is relevant for food safety. PMID:26853592

  8. Draft genome of Myxosarcina sp. strain GI1, a baeocytous cyanobacterium associated with the marine sponge Terpios hoshinota

    PubMed Central

    2015-01-01

    To date, genome sequences (complete or in draft form) from only six baeocytous cyanobacteria in four genera have been reported: Xenococcus, Chroococcidiopsis, Pleurocapsa, and Stanieria. To expand our knowledge on the diversity of baeocytous cyanobacteria, this study sequenced the genome of GI1, which is a Myxosarcina-like baeocytous cyanobacterium. GI1 is of interest not only because of its phylogenetic niche, but also because it is a cyanobiont isolated from the marine cyanobacteriosponge Terpios hoshinota, which has been shown to cause the death of corals. The ~7 Mb draft GI1 genome contains 6,891 protein-coding genes and 62 RNA genes. A comparison of genomes among the sequenced baeocytous cyanobacterial strains revealed the existence or absence of numerous discrete genes involved in nitrogen metabolism. It will be interesting to determine whether these genes are important for cyanobacterial adaptations and interactions between cyanobionts and their marine sponge hosts. PMID:26203339

  9. Isolation of full-length RNA from a thermophilic cyanobacterium.

    PubMed

    Luo, X Z; Stevens, S E

    1997-11-01

    Isolation of full-length mRNA without degradation is critical in the study of in vivo gene regulation and transcription, cDNA synthesis and reverse transcription (RT)-PCR. It is particularly difficult to isolate full-length mRNA from thermophiles, which have higher turnover rates of mRNA degradation. Mastigocladus laminosus is a thermophilic heterocystous cyanobacterium. The assay of M. laminosus cell lysates showed that RNase activity was high and was resistant to the conventional guanidine thiocyanate and 2-mercaptoethanol denaturation methods. The mRNA isolated by several conventional methods was completely degraded. A method was developed to purify full-length mRNA by a combination of fast cooling, vanadyl-ribonucleoside-complex inhibition, phenol-chloroform-isoamyl alcohol extraction, lithium chloride precipitation and the lysing of cells with the French Press. This method produced high-quality, full-length mRNA in high yield. Purified mRNA was suitable for Northern blotting, cDNA synthesis and RT-PCR. This method could be applicable to other thermophiles in which the RNase activity is high and/or is resistant to guanidine thiocyanate. PMID:9383558

  10. Purification and characterization of Microcystis aeruginosa (freshwater cyanobacterium) lectin.

    PubMed

    Yamaguchi, M; Jimbo, M; Sakai, R; Muramoto, K; Kamiya, H

    1998-03-01

    Microcystis aeruginosa, strain M228, a laboratory culture of freshwater cyanobacterium, showed hemagglutinating activity against rabbit, horse and human ABO erthrocytes. Crossed absorption tests revealed the presence of a single type of lectin in the extract of M228 strain cells. The lectin, termed MAL, was purified in combination with the affinity chromatography on acid-treated agarose gel and the gel permeation chromatography in an electrophoretically pure form. MAL was a glycoprotein containing 7.8% neutral sugars and was composed of a single polypeptide having a molecular weight of 57 kDa. Isoelectric point was estimated to be pH 6.4. Hemagglutinating activity of the lectin was inhibited effectively by N-acetyl-D-galactosamine and by glycoproteins. D-galactose and lactose also showed moderate inhibitory activity. The destruction of the hemagglutinating activity by a 2-mercaptoethanol treatment suggests the presence of intra-chain disulfide bond(s) essential for the activity in the molecule. The sequence of the amino-terminal region of MAL was determined as Val-Leu-Ala-Ser-Leu-Val-Ser-Thr-Ser-Gln-Ala-Gly-Ser-Leu-Glu-Leu-Leu- Ala [corrected]. PMID:9734343

  11. Ribulose diphosphate carboxylase of the cyanobacterium Spirulina platensis

    SciTech Connect

    Terekhova, I.V.; Chernyad'ev, I.I.; Doman, N.G.

    1986-11-20

    The ribulose diphosphate (RDP) carboxylase activity of the cyanobacterium Spirulina platensis is represented by two peaks when a cell homogenate is centrifuged in a sucrose density gradient. In the case of differential centrifugation (40,000 g, 1 h), the activity of the enzyme was distributed between the supernatant liquid (soluble form) and the precipitate (carboxysomal form). From the soluble fraction, in which 80-95% of the total activity of the enzyme is concentrated, electrophoretically homogeneous RDP carboxylase was isolated by precipitation with ammonium sulfate and centrifugation in a sucrose density gradient. The purified enzyme possessed greater electrophoretic mobility in comparison with the RDP carboxylase of beans Vicia faba. The molecular weight of the enzyme, determined by gel filtration, was 450,000. The enzyme consists of monotypic subunits with a molecular weight of 53,000. The small subunits were not detected in electrophoresis in polyacrylamide gel in the presence of SDS after fixation and staining of the gels by various methods.

  12. Construction of a cyanobacterium synthesizing cyclopropane fatty acids.

    PubMed

    Machida, Shuntaro; Shiraiwa, Yoshihiro; Suzuki, Iwane

    2016-09-01

    Microalgae have received much attention as a next-generation source of biomass energy. However, most of the fatty acids (FAs) from microalgae are multiply unsaturated; thus, the biofuels derived from them are fluid, but vulnerable to oxidation. In this study, we attempted to synthesize cyclopropane FAs in the cyanobacterium Synechocystis sp. PCC 6803 by expressing the cfa gene for cyclopropane FA synthase from Escherichia coli with the aim of producing FAs that are fluid and stable in response to oxidization. We successfully synthesized cyclopropane FAs in Synechocystis with a yield of ~30% of total FAs. Growth of the transformants was altered, particularly at low temperatures, but photosynthesis and respiration were not significantly affected. C16:1(∆9) synthesis in the desA(-)/desD(-) strain by expression of the desC2 gene for sn-2 specific ∆9 desaturase positively affected growth at low temperatures via promotion of various cellular processes, with the exceptions of photosynthesis and respiration. Estimation of the apparent activities of desaturases suggested that some acyl-lipid desaturases might recognize the lipid side chain. PMID:27263419

  13. Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis

    SciTech Connect

    Fisher, ML; Allen, R; Luo, YQ; Curtiss, R

    2013-09-10

    The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.

  14. Cryopreservation of the edible alkalophilic cyanobacterium Arthrospira platensis.

    PubMed

    Shiraishi, Hideaki

    2016-10-01

    Efficient cryopreservation conditions for the edible alkalophilic cyanobacterium Arthrospira (Spirulina) platensis were investigated using a model strain A. platensis NIES-39. As a result, it was found that more than 60% of cells were viable upon thawing, when they had been frozen at a cooling rate of approximately -1 °C min(-1) in the presence of 10% (v/v) dimethyl sulfoxide. Further examination with other Arthrospira strains showed that many of them had strain-dependent optimal conditions for cryopreservation. For example, the best freezing conditions for A. platensis SAG 21.99 were snap-freezing in liquid nitrogen in the presence of 5% (v/v) dimethyl sulfoxide, while they were slow cooling at approximately -1 °C min(-1) in the presence of 10% (v/v) methanol for A. platensis NIES-46, NIES-2308 and UTEX 1926. The variety of successful cryopreservation conditions presented in this study is useful when attempting to cryopreserve various Arthrospira strains. PMID:27240586

  15. Tilapia: profile and economic importance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nile tilapia’s various attributes and an increasing global demand for this fish make it one of the most cultured species, with a global production estimated at nearly 2.5 million tonnes in 2010, and an estimated value of approximately $5 billion. Increased demand in the U.S. market for tilapia produ...

  16. Rosaceae: Taxonomy, Economic Importance, Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents an introduction for the book Genetics and Genomics of the Rosaceae. It reviews the origins of the Rose family, Rosaceae. Theories of the origin of this plant family are given. The first descriptions by Michel Adanson and Antoine Laurent de Jussieu in the 1700s, controversial t...

  17. Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01

    PubMed Central

    Noyma, Natália P.; Silva, Thiago P.; Chiarini-Garcia, Hélio; Amado, André M.; Roland, Fábio; Melo, Rossana C. N.

    2015-01-01

    Cyanobacteria are aquatic photosynthetic microorganisms. While of enormous ecological importance, they have also been linked to human and animal illnesses around the world as a consequence of toxin production by some species. Cylindrospermopsis raciborskii, a filamentous nitrogen-fixing cyanobacterium, has attracted considerable attention due to its potential toxicity and ecophysiological adaptability. We investigated whether C. raciborskii could be affected by ultraviolet (UV) radiation. Non-axenic cultures of C. raciborskii were exposed to three UV treatments (UVA, UVB, or UVA + UVB) over a 6 h period, during which cell concentration, viability and ultrastructure were analyzed. UVA and UVA + UVB treatments showed significant negative effects on cell concentration (decreases of 56.4 and 64.3%, respectively). This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe. Over 90% of UVA + UVB- and UVA-treated cells died. UVB did not alter cell concentration, but reduced cell viability in almost 50% of organisms. Transmission electron microscopy (TEM) revealed a drastic loss of thylakoids, membranes in which cyanobacteria photosystems are localized, after all treatments. Moreover, other photosynthetic- and metabolic-related structures, such as accessory pigments and polyphosphate granules, were damaged. Quantitative TEM analyses revealed a 95.8% reduction in cell area occupied by thylakoids after UVA treatment, and reduction of 77.6 and 81.3% after UVB and UVA + UVB treatments, respectively. Results demonstrated clear alterations in viability and photosynthetic structures of C. raciborskii induced by various UV radiation fractions. This study facilitates our understanding of the subcellular organization of this cyanobacterium species, identifies specific intracellular targets of UVA and UVB radiation and reinforces the importance of UV radiation as an environmental stressor. PMID:26579108

  18. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research.

    PubMed

    Van Leeuwen, Thomas; Tirry, Luc; Yamamoto, Atsushi; Nauen, Ralf; Dermauw, Wannes

    2015-06-01

    Acaricides are one of the cornerstones of an efficient control program for phytophagous mites. An analysis of the global acaricide market reveals that spider mites such as Tetranychus urticae, Panonychus citri and Panonychus ulmi are by far the most economically important species, representing more than 80% of the market. Other relevant mite groups are false spider mites (mainly Brevipalpus), rust and gall mites and tarsonemid mites. Acaricides are most frequently used in vegetables and fruits (74% of the market), including grape vines and citrus. However, their use is increasing in major crops where spider mites are becoming more important, such as soybean, cotton and corn. As revealed by a detailed case study of the Japanese market, major shifts in acaricide use are partially driven by resistance development and the commercial availability of compounds with novel mode of action. The importance of the latter cannot be underestimated, although some compounds are successfully used for more than 30 years. A review of recent developments in mode of action research is presented, as such knowledge is important for devising resistance management programs. This includes spirocyclic keto-enols as inhibitors of acetyl-CoA carboxylase, the carbazate bifenazate as a mitochondrial complex III inhibitor, a novel class of complex II inhibitors, and the mite growth inhibitors hexythiazox, clofentezine and etoxazole that interact with chitin synthase I. PMID:26047107

  19. An economic approach to assessing import policies designed to prevent the arrival of invasive species: the case of Puccinia psidii in Hawai'i

    USGS Publications Warehouse

    Burnett, Kimberly; D'Evelyn, Sean; Loope, Lloyd; Wada, Christopher A.

    2012-01-01

    Since its first documented introduction to Hawai‘i in 2005, the rust fungus Puccinia psidii has already severely damaged Syzygium jambos (Indian rose apple) trees and the federally endangered Eugenia koolauensis (nioi). Fortunately, the particular strain has yet to cause serious damage to Metrosideros polymorpha (‘ōhi‘a), which comprises roughly 80% of the state's native forests and covers 400,000 ha. Although the rust has affected less than 5% of Hawaii's ‘ōhi‘a trees thus far, the introduction of more virulent strains and the genetic evolution of the current strain are still possible. Since the primary pathway of introduction is Myrtaceae plant material imported from outside the state, potential damage to ‘ōhi‘a can be minimized by regulating those high-risk imports. We discuss the economic impact on the state's florist, nursery, landscaping, and forest plantation industries of a proposed rule that would ban the import of non-seed Myrtaceae plant material and require a 1-year quarantine of seeds. Our analysis suggests that the benefits to the forest plantation industry of a complete ban on non-seed material would likely outweigh the costs to other affected sectors, even without considering the reduction in risk to ‘ōhi‘a. Incorporating the value of ‘ōhi‘a protection would further increase the benefit–cost ratio in favor of an import ban.

  20. TreeTFDB: An Integrative Database of the Transcription Factors from Six Economically Important Tree Crops for Functional Predictions and Comparative and Functional Genomics

    PubMed Central

    Mochida, Keiichi; Yoshida, Takuhiro; Sakurai, Tetsuya; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2013-01-01

    Crop plants, whose productivity is affected by a wide range of growing and environmental conditions, are grown for economic purposes. Transcription factors (TFs) play central role in regulation of many biological processes, including plant development and responses to environmental stimuli, by activating or repressing spatiotemporal gene expression. Here, we describe the TreeTFDB (http://treetfdb.bmep.riken.jp/index.pl) that houses the TF repertoires of six economically important tree crop species: Jatropha curcas, papaya, cassava, poplar, castor bean and grapevine. Among these, the TF repertoire of J. curcas has not been reported by any other TF databases. In addition to their basic information, such as sequence and domain features, domain alignments, gene ontology assignment and sequence comparison, information on available full-length cDNAs, identity and positions of all types of known cis-motifs found in the promoter regions, gene expression data are provided. With its newly designed and friendly interface and its unique features, TreeTFDB will enable research community to predict the functions and provide access to available genetic resources for performing comparative and functional genomics of the crop TFs, either individually or at whole family level, in a comprehensive and convenient manner. PMID:23284086

  1. Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes.

    PubMed

    Michoux, Franck; Boehm, Marko; Bialek, Wojciech; Takasaka, Kenji; Maghlaoui, Karim; Barber, James; Murray, James W; Nixon, Peter J

    2014-10-01

    The PsbQ-like protein, termed CyanoQ, found in the cyanobacterium Synechocystis sp. PCC 6803 is thought to bind to the lumenal surface of photosystem II (PSII), helping to shield the Mn4CaO5 oxygen-evolving cluster. CyanoQ is, however, absent from the crystal structures of PSII isolated from thermophilic cyanobacteria raising the possibility that the association of CyanoQ with PSII might not be a conserved feature. Here, we show that CyanoQ (encoded by tll2057) is indeed expressed in the thermophilic cyanobacterium Thermosynechococcus elongatus and provide evidence in support of its assignment as a lipoprotein. Using an immunochemical approach, we show that CyanoQ co-purifies with PSII and is actually present in highly pure PSII samples used to generate PSII crystals. The absence of CyanoQ in the final crystal structure is possibly due to detachment of CyanoQ during crystallisation or its presence in sub-stoichiometric amounts. In contrast, the PsbP homologue, CyanoP, is severely depleted in isolated PSII complexes. We have also determined the crystal structure of CyanoQ from T. elongatus to a resolution of 1.6 Å. It lacks bound metal ions and contains a four-helix up-down bundle similar to the ones found in Synechocystis CyanoQ and spinach PsbQ. However, the N-terminal region and extensive lysine patch that are thought to be important for binding of PsbQ to PSII are not conserved in T. elongatus CyanoQ. PMID:24838684

  2. Gene Transfer to the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis

    PubMed Central

    Billi, Daniela; Friedmann, E. Imre; Helm, Richard F.; Potts, Malcolm

    2001-01-01

    The coccoid cyanobacterium Chroococcidiopsis dominates microbial communities in the most extreme arid hot and cold deserts. These communities withstand constraints that result from multiple cycles of drying and wetting and/or prolonged desiccation, through mechanisms which remain poorly understood. Here we describe the first system for genetic manipulation of Chroococcidiopsis. Plasmids pDUCA7 and pRL489, based on the pDU1 replicon of Nostoc sp. strain PCC 7524, were transferred to different isolates of Chroococcidiopsis via conjugation and electroporation. This report provides the first evidence that pDU1 replicons can be maintained in cyanobacteria other than Nostoc and Anabaena. Following conjugation, both plasmids replicated in Chroococcidiopsis sp. strains 029, 057, and 123 but not in strains 171 and 584. Both plasmids were electroporated into strains 029 and 123 but not into strains 057, 171, and 584. Expression of PpsbA-luxAB on pRL489 was visualized through in vivo luminescence. Efficiencies of conjugative transfer for pDUCA7 and pRL489 into Chroococcidiopsis sp. strain 029 were approximately 10−2 and 10−4 transconjugants per recipient cell, respectively. Conjugative transfer occurred with a lower efficiency into strains 057 and 123. Electrotransformation efficiencies of about 10−4 electrotransformants per recipient cell were achieved with strains 029 and 123, using either pDUCA7 or pRL489. Extracellular deoxyribonucleases were associated with each of the five strains. Phylogenetic analysis, based upon the V6 to V8 variable regions of 16S rRNA, suggests that desert strains 057, 123, 171, and 029 are distinct from the type species strain Chroococcidiopsis thermalis PCC 7203. The high efficiency of conjugative transfer of Chroococcidiopsis sp. strain 029, from the Negev Desert, Israel, makes this a suitable experimental strain for genetic studies on desiccation tolerance. PMID:11244070

  3. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation

    PubMed Central

    Spät, Philipp; Maček, Boris; Forchhammer, Karl

    2015-01-01

    Cyanobacteria have shaped the earth's biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signaling, adaptation, and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry toward the detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labeling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phospho)proteome of Synechocystis to date, identifying 2382 proteins and 183 phosphorylation events and quantifying 2111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 h. Among the proteins with increased phosphorylation, the PII signaling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria. PMID:25873915

  4. Intercellular Diffusion of a Fluorescent Sucrose Analog via the Septal Junctions in a Filamentous Cyanobacterium

    PubMed Central

    Nürnberg, Dennis J.; Mariscal, Vicente; Bornikoel, Jan; Nieves-Morión, Mercedes; Krauß, Norbert; Herrero, Antonia

    2015-01-01

    ABSTRACT Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds. Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import system into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show that a ΔsepJ ΔfraC ΔfraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with sucrose. PMID:25784700

  5. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community

    PubMed Central

    Brauer, Verena S.; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J.; Stal, LucasJ.; Huisman, Jef

    2014-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria. PMID:25642224

  6. Diurnal rhythm of a unicellular diazotrophic cyanobacterium under mixotrophic conditions and elevated carbon dioxide.

    PubMed

    Gaudana, Sandeep B; Alagesan, Swathi; Chetty, Madhu; Wangikar, Pramod P

    2013-11-01

    Mixotrophic cultivation of cyanobacteria in wastewaters with flue gas sparging has the potential to simultaneously sequester carbon content from gaseous and aqueous streams and convert to biomass and biofuels. Therefore, it was of interest to study the effect of mixotrophy and elevated CO2 on metabolism, morphology and rhythm of gene expression under diurnal cycles. We chose a diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 as a model, which is a known hydrogen producer with robust circadian rhythm. Cyanothece 51142 grows faster with nitrate and/or an additional carbon source in the growth medium and at 3 % CO2. Intracellular glycogen contents undergo diurnal oscillations with greater accumulation under mixotrophy. While glycogen is exhausted by midnight under autotrophic conditions, significant amounts remain unutilized accompanied by a prolonged upregulation of nifH gene under mixotrophy. This possibly supports nitrogen fixation for longer periods thereby leading to better growth. To gain insights into the influence of mixotrophy and elevated CO2 on circadian rhythm, transcription of core clock genes kaiA, kaiB1 and kaiC1, the input pathway, cikA, output pathway, rpaA and representatives of key metabolic pathways was analyzed. Clock genes' transcripts were lower under mixotrophy suggesting a dampening effect exerted by an external carbon source such as glycerol. Nevertheless, the genes of the clock and important metabolic pathways show diurnal oscillations in expression under mixotrophic and autotrophic growth at ambient and elevated CO2, respectively. Taken together, the results indicate segregation of light and dark associated reactions even under mixotrophy and provide important insights for further applications. PMID:23881383

  7. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community.

    PubMed

    Brauer, Verena S; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J; Stal, LucasJ; Huisman, Jef

    2014-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria. PMID:25642224

  8. Draft Genome Sequence of a Novel Culturable Marine Chroococcalean Cyanobacterium from the South Atlantic Ocean

    PubMed Central

    Alvarenga, Danillo O.; Branco, Luis H. Z.; Varani, Alessandro M.; Brandini, Frederico P.; Fiore, Marli F.

    2015-01-01

    The novel chroococcalean cyanobacterium strain CENA595 was isolated from the deep chlorophyll maximum layer of the continental shelf of the South Atlantic Ocean. Here, we report the draft genome sequence for this strain, consisting of 60 contigs containing a total of 5,265,703 bp and 3,276 putative protein-coding genes. PMID:25908150

  9. Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a.

    SciTech Connect

    Stolyar, Sergey; Liu, Zhenfeng; Thiel, Vera; Tomsho, Lynn P.; Pinel, Nicolas; Nelson, William C.; Lindemann, Stephen R.; Romine, Margaret F.; Haruta, Shin; Schuster, Stephan C.; Bryant, Donald A.; Fredrickson, Jim K.

    2014-01-02

    The genome of the unicellular cyanobacterium, Thermosynechococcus sp. strain NK55a, isolated from Nakabusa hot spring, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to encode 2358 protein coding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.

  10. Draft Genome Sequence of Cyanobacterium Hassallia byssoidea Strain VB512170, Isolated from Monuments in India

    PubMed Central

    Singh, Deeksha; Chandrababunaidu, Mathu Malar; Panda, Arijit; Sen, Diya; Bhattacharyya, Sourav

    2015-01-01

    The draft genome assembly of Hassallia byssoidea strain VB512170 with a genome size of ~13 Mb and 10,183 protein-coding genes in 62 scaffolds is reported here for the first time. This is a terrestrial hydrophobic cyanobacterium isolated from monuments in India. We report several copies of luciferase and antibiotic genes in this organism. PMID:25745001

  11. Draft genome sequence of a novel culturable marine chroococcalean cyanobacterium from the South atlantic ocean.

    PubMed

    Rigonato, Janaina; Alvarenga, Danillo O; Branco, Luis H Z; Varani, Alessandro M; Brandini, Frederico P; Fiore, Marli F

    2015-01-01

    The novel chroococcalean cyanobacterium strain CENA595 was isolated from the deep chlorophyll maximum layer of the continental shelf of the South Atlantic Ocean. Here, we report the draft genome sequence for this strain, consisting of 60 contigs containing a total of 5,265,703 bp and 3,276 putative protein-coding genes. PMID:25908150

  12. Draft Genome Sequence of the Filamentous Cyanobacterium Leptolyngbya sp. Strain Heron Island J, Exhibiting Chromatic Acclimation

    PubMed Central

    Paul, Robin; Jinkerson, Robert E.; Buss, Kristina; Steel, Jason; Mohr, Remus; Hess, Wolfgang R.; Chen, Min

    2014-01-01

    Leptolyngbya sp. strain Heron Island is a cyanobacterium exhibiting chromatic acclimation. However, this strain has strong interactions with other bacteria, making it impossible to obtain axenic cultures for sequencing. A protocol involving an analysis of tetranucleotide frequencies, G+C content, and BLAST searches has been described for separating the cyanobacterial scaffolds from those of its cooccurring bacteria. PMID:24503993

  13. Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean's Surface

    PubMed Central

    Morris, J. Jeffrey; Johnson, Zackary I.; Szul, Martin J.; Keller, Martin; Zinser, Erik R.

    2011-01-01

    The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH). In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect) biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co-existing species

  14. Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix FP1.

    PubMed

    Carillo, Sara; Pieretti, Giuseppina; Bedini, Emiliano; Parrilli, Michelangelo; Lanzetta, Rosa; Corsaro, Maria Michela

    2014-03-31

    Cyanobacteria are aquatic and photosynthetic microorganisms, which contribute up to 30% of the yearly oxygen production on the earth. They have the distinction of being the oldest known fossils, more than 3.5 billion years old, and are one of the largest and most important groups of bacteria on earth. Cyanobacteria are an emerging source of potentially pharmacologically active products and, among these, there are the lipopolysaccharides. Despite their significant and well documented activity, very little is known about the cyanobacteria lipopolysaccharides (LPS) structure. The aim of this work is to investigate the structure of the highly TLR4-antagonist lipopolysaccharide from the cyanobacterium Oscillatoria plankthotrix FP1. The LPS was purified and analysed by means of chemical analysis and 1H and 13C NMR spectroscopy. The LPS was then degraded by Smith degradation, HF and acetic acid hydrolyses. All the obtained products were investigated in detail by chemical analysis, NMR spectroscopy and by mass spectrometry. The LPS consists of a high molecular mass and very complex molecule lacking Kdo and heptose residues, where the polysaccharide chain is mainly constituted by a backbone of 3-substituted α-l-rhamnose units. The core region is rich in galacturonic acid and mannose residues. Moreover a glycolipid portion, similar to Gram-negative lipid A, was identified. This was built up of a non phosphorylated (1'→6) linked glucosamine disaccharide, acylated with 3-hydroxylated fatty acids. In particular 3-hydroxypentadecanoic and 3-hydroxyesadecanoic acids were found, together with esadecanoic and tetradecanoic ones. Finally the presence of a galacturonic acid residue at 6-position of the distal glucosamine in place of the Kdo residue is suggested. PMID:24632212

  15. Sustained H2 Production Driven by Photosynthetic Water Splitting in a Unicellular Cyanobacterium

    PubMed Central

    Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alexander S.

    2012-01-01

    ABSTRACT The relationship between dinitrogenase-driven H2 production and oxygenic photosynthesis was investigated in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142, using a novel custom-built photobioreactor equipped with advanced process control. Continuously illuminated nitrogen-deprived cells evolved H2 at rates up to 400 µmol ⋅ mg Chl−1 ⋅ h−1 in parallel with uninterrupted photosynthetic O2 production. Notably, sustained coproduction of H2 and O2 occurred over 100 h in the presence of CO2, with both gases displaying inverse oscillations which eventually dampened toward stable rates of 125 and 90 µmol ⋅ mg Chl−1 ⋅ h−1, respectively. Oscillations were not observed when CO2 was omitted, and instead H2 and O2 evolution rates were positively correlated. The sustainability of the process was further supported by stable chlorophyll content, maintenance of baseline protein and carbohydrate levels, and an enhanced capacity for linear electron transport as measured by chlorophyll fluorescence throughout the experiment. In situ light saturation analyses of H2 production displayed a strong dose dependence and lack of O2 inhibition. Inactivation of photosystem II had substantial long-term effects but did not affect short-term H2 production, indicating that the process is also supported by photosystem I activity and oxidation of endogenous glycogen. However, mass balance calculations suggest that carbohydrate consumption in the light may, at best, account for no more than 50% of the reductant required for the corresponding H2 production over that period. Collectively, our results demonstrate that uninterrupted H2 production in unicellular cyanobacteria can be fueled by water photolysis without the detrimental effects of O2 and have important implications for sustainable production of biofuels. PMID:22872781

  16. Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium

    PubMed Central

    Ohki, Mio; Sugiyama, Kanako; Kawai, Fumihiro; Tanaka, Hitomi; Nihei, Yuuki; Unzai, Satoru; Takebe, Masumi; Matsunaga, Shigeru; Adachi, Shin-ichi; Shibayama, Naoya; Zhou, Zhiwen; Koyama, Ryuta; Takahashi, Tetsuo; Tame, Jeremy R. H.; Iseki, Mineo; Park, Sam-Yong

    2016-01-01

    Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit. PMID:27247413

  17. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120.

    PubMed

    Yan, Yu; Ye, Jun; Xue, Xi-Mei; Zhu, Yong-Guan

    2015-12-15

    Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment. PMID:26544154

  18. Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Rudolf, Mareike; Stevanovic, Mara; Kranzler, Chana; Pernil, Rafael; Keren, Nir; Schleiff, Enrico

    2016-09-01

    Many cyanobacteria secrete siderophores to sequester iron. Alternatively, mechanisms to utilize xenosiderophores have evolved. The overall uptake systems are comparable to that of other bacteria involving outer membrane transporters energized by TonB as well as plasma membrane-localized transporters. However, the function of the bioinformatically-inferred components is largely not established and recent studies showed a high diversity of the complexity of the uptake systems in different cyanobacteria. Thus, we approached the systems of the filamentous Anabaena sp. PCC 7120 as a model of a siderophore-secreting cyanobacterium. Anabaena sp. produces schizokinen and uptake of Fe-schizokinen involves the TonB-dependent transporter, schizokinen transporter (SchT), and the ABC-type transport system FhuBCD. We confirm that this system is also relevant for the uptake of structurally similar Fe-siderophore complexes like Fe-aerobactin. Moreover, we demonstrate a function of the TonB-dependent transporter IutA2 in Fe-schizokinen uptake in addition to SchT. The iutA2 mutant shows growth defects upon iron limitation, alterations in Fe-schizokinen uptake and in the transcription profile of the Fe-schizokinen uptake system. The physiological properties of the mutant confirm the importance of iron uptake for cellular function, e.g. for the Krebs cycle. Based on the relative relation of expression of schT and iutA2 as well as of the iron uptake rate to the degree of starvation, a model for the need of the co-existence of two different outer membrane transporters for the same substrate is discussed. PMID:27325117

  19. Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium.

    PubMed

    Ohki, Mio; Sugiyama, Kanako; Kawai, Fumihiro; Tanaka, Hitomi; Nihei, Yuuki; Unzai, Satoru; Takebe, Masumi; Matsunaga, Shigeru; Adachi, Shin-Ichi; Shibayama, Naoya; Zhou, Zhiwen; Koyama, Ryuta; Ikegaya, Yuji; Takahashi, Tetsuo; Tame, Jeremy R H; Iseki, Mineo; Park, Sam-Yong

    2016-06-14

    Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit. PMID:27247413

  20. The abattoir condemnation of meat because of parasitic infection, and its economic importance: results of a retrospective study in north-eastern Iran.

    PubMed

    Borji, H; Parandeh, S

    2010-12-01

    In nine districts in the north of Khorasan province, in north-eastern Iran, a 5-year retrospective study was carried out to determine the prevalences, in livestock slaughtered in abattoirs, of the parasitic infections responsible for the condemnation of the animals' carcasses and viscera (and the economic importance of such infections in terms of lost meat and offal). Between 20 March 2005 and 19 March 2010, 436,620 animals (45,360 cattle, 275,439 sheep, 115,674 goats and 147 camels) were slaughtered in the study area and the livers of 30,207 (6.9%), the lungs of 23,259 (5.3%) and the carcasses of 1072 (0.2%) of these animals were condemned. Almost all (92.4%) of the condemned livers, most (68.9%) of the condemned lungs but only 10.8% of the condemned carcasses were rejected because of parasitic infection. The parasitic lesions observed in the condemned livers were attributed to Echinococcus granulosus, Fasciola hepatica and/or Dicrocoelium dendriticum (cattle, sheep and goats) or entirely to E. granulosus (camels). All the parasitic lesions observed in the condemned lungs (which also came from cattle, sheep, goats and camels) were attributed to E. granulosus. Sarcocystis cysts and/or Taenia cysticerci were found in ovine muscle while only Taenia cysticerci were detected in bovine muscle (no parasitic lesions were observed in the muscles of the goats and camels). Parasites were responsible for 80.8% of the condemned organs or carcasses, and the value of the food lost because of parasite-related condemnation (based on market prices in 2010) was estimated to be U.S.$421,826 (U.S.$47,980 for cattle, U.S.$316,344.0 for sheep, U.S.$57,372 for goats and U.S.$130 for camels). The parasites contributing most to the condemnation of otherwise marketable organs and muscles were E. granulosus (52.2%) and D. dendriticum flukes (29.5%). These parasites clearly remain too common and cause considerable economic loss in Khorasan and, presumably, other areas of Iran. PMID:21144183

  1. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    PubMed

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  2. Molecular identification of the economically important freshwater mussels (Mollusca-Bivalvia-Unionoida) of Thailand: developing species-specific markers from AFLPs.

    PubMed

    Vannarattanarat, S; Zieritz, A; Kanchanaketu, T; Kovitvadhi, U; Kovitvadhi, S; Hongtrakul, V

    2014-04-01

    Shells of certain freshwater mussel (Unionoida) species are highly demanded and serve as raw material for a range of decorative and pharmaceutical products. In Thailand, most animals for this purpose are currently harvested from wild populations, with unionoid culture still being in its infancy. Whilst reliable species identification is a prerequisite for developing a large-scale industry, identification by morphological means is hampered by extensive phenotypic plasticity and poor knowledge of species delimitations. To facilitate alternative molecular identification, we developed species-specific markers for the three Thai unionoids with considerable economic potential (CEP): that is, Chamberlainia hainesiana, Hyriopsis desowitzi and Hyriopsis myersiana. For this purpose, amplified fragment length polymorphism (AFLP) fingerprints using 24 specific primer pairs were generated for eight samples of each CEP species and four samples of the closely related, non-CEP species Contradens contradens. Cloning and sequencing of 13 CEP species-specific AFLP bands revealed fragment collision at three occasions. In total, 16 species-specific primer pairs were designed and tested on 92 Thai specimens spanning seven species and four genera. Thereby, specificity of (1) three primers to C. hainesiana, (2) one primer to H. desowitzi + Hyriopsis bialata, (3) one primer to H. myersiana + H. bialata and (4) four primers to all three Hyriopsis species tested was confirmed. Respective multiplex PCR protocols are provided. The developed primers enable cheap, quick and reliable identification of the Thai CEP species by one to three PCRs and offer a tool for a range of additional applications within mussel culture and ecological and evolutionary research on these important organisms. PMID:24313464

  3. The Slugs of Britain and Ireland: Undetected and Undescribed Species Increase a Well-Studied, Economically Important Fauna by More Than 20%

    PubMed Central

    Rowson, Ben; Anderson, Roy; Turner, James A.; Symondson, William O. C.

    2014-01-01

    The slugs of Britain and Ireland form a well-studied fauna of economic importance. They include many widespread European species that are introduced elsewhere (at least half of the 36 currently recorded British species are established in North America, for example). To test the contention that the British and Irish fauna consists of 36 species, and to verify the identity of each, a species delimitation study was conducted based on a geographically wide survey. Comparisons between mitochondrial DNA (COI, 16S), nuclear DNA (ITS-1) and morphology were investigated with reference to interspecific hybridisation. Species delimitation of the fauna produced a primary species hypothesis of 47 putative species. This was refined to a secondary species hypothesis of 44 species by integration with morphological and other data. Thirty six of these correspond to the known fauna (two species in Arion subgenus Carinarion were scarcely distinct and Arion (Mesarion) subfuscus consisted of two near-cryptic species). However, by the same criteria a further eight previously undetected species (22% of the fauna) are established in Britain and/or Ireland. Although overlooked, none are strictly morphologically cryptic, and some appear previously undescribed. Most of the additional species are probably accidentally introduced, and several are already widespread in Britain and Ireland (and thus perhaps elsewhere). At least three may be plant pests. Some evidence was found for interspecific hybridisation among the large Arion species (although not involving A. flagellus) and more unexpectedly in species pairs in Deroceras (Agriolimacidae) and Limacus (Limacidae). In the latter groups, introgression appears to have occurred in one direction only, with recently-invading lineages becoming common at the expense of long-established or native ones. The results show how even a well-studied, macroscopic fauna can be vulnerable to cryptic and undetected invasions and changes. PMID:24740519

  4. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis.

    PubMed

    Benelli, Carla; De Carlo, Anna; Engelmann, Florent

    2013-01-01

    This paper presents the advances made over the last decade in cryopreservation of economically important vegetatively propagated fruit trees. Cryopreservation protocols have been established using both dormant buds sampled on field-grown plants and shoot tips sampled on in vitro plantlets. In the case of dormant buds, scions are partially dehydrated by storage at -5 °C, and then cooled slowly to -30 °C using low cooling rates (c.a. 1 °C/h) before immersion in liquid nitrogen. After slow rewarming and rehydration of samples, regrowth takes place either through grafting of buds on rootstocks or excision of apices and inoculation in vitro. In the case of shoot tips of in vitro plantlets, the cryopreservation techniques employed are the following: controlled rate cooling procedures involving slow prefreezing followed by immersion in liquid nitrogen or vitrification-based procedures including encapsulation-dehydration, vitrification, encapsulation-vitrification and droplet-vitrification. The current status of cryopreservation for a series of fruit tree species including Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis is presented. Routine application of cryopreservation for long-term germplasm storage in genebanks is currently limited to apple and pear, for which large cryopreserved collections have been established at NCGRP, Fort Collins (USA), using dormant buds and in vitro shoot tips, respectively. However, there are a growing number of examples of pilot scale testing experiments under way for different species in various countries. Progress in the further development and application of cryopreservation techniques will be made through a better understanding of the mechanisms involved in the induction of tolerance to dehydration and cryopreservation in frozen explants. PMID:23022736

  5. Brevipalpus californicus, B. obovatus, B. phoenicis, and B. lewisi (Acari: Tenuipalpidae): a review of their biology, feeding injury and economic importance.

    PubMed

    Childers, Carl C; French, J Victor; Rodrigues, Jose Carlos V

    2003-01-01

    The genus Brevipalpus includes most of the economically important species of Tenuipalpidae. Many Brevipalpus species reproduce by theletokous parthenogenesis while other species reproduce by male fertilization of female eggs. Previous researchers have determined that Brevipalpus californicus (Banks), B. obovatus Donnadieu, and B. phoenicis (Geijskes) females were haploid with two chromosomes. The life cycle and developmental times for these three species are reviewed. Longevity of each Brevipalpus species is two to three times greater than corresponding longevities of various tetranychid mites. Brevipalpus mites inject toxic saliva into fruits, leaves, stems, twigs, and bud tissues of numerous plants including citrus. Feeding injury symptoms on selected plants include: chlorosis, blistering, bronzing, or necrotic areas on leaves by one or more Brevipalpus mites. Premature leaf drop occurred on 'Robinson' tangerine leaves in Florida (USA). Leaf drop was observed in several sweet orange and grapefruit orchards in Texas (USA) that were heavily infested with Brevipalpus mites feeding on the twigs, leaves, and fruit. Initial circular chlorotic areas appear on both sweet orange and grapefruit varieties in association with developing populations of Brevipalpus mites in Texas. These feeding sites become progressively necrotic, darker in color, and eventually develop into irregular scab-like lesions on affected fruit. Russeting and cracking of the fruits of other plant hosts are reported. Stunting of leaves and the development of Brevipalpus galls on terminal buds were recorded on sour orange, Citrus aurantium L., seedlings heavily infested with B. californicus in an insectary. The most significant threat posed by these mites is as vectors of a potentially invasive viral disease called citrus leprosis. PMID:14756411

  6. Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora

    PubMed Central

    2013-01-01

    Background Cooperia oncophora and Ostertagia ostertagi are among the most important gastrointestinal nematodes of cattle worldwide. The economic losses caused by these parasites are on the order of hundreds of millions of dollars per year. Conventional treatment of these parasites is through anthelmintic drugs; however, as resistance to anthelmintics increases, overall effectiveness has begun decreasing. New methods of control and alternative drug targets are necessary. In-depth analysis of transcriptomic data can help provide these targets. Results The assembly of 8.7 million and 11 million sequences from C. oncophora and O. ostertagi, respectively, resulted in 29,900 and 34,792 transcripts. Among these, 69% and 73% of the predicted peptides encoded by C. oncophora and O. ostertagi had homologues in other nematodes. Approximately 21% and 24% were constitutively expressed in both species, respectively; however, the numbers of transcripts that were stage specific were much smaller (~1% of the transcripts expressed in a stage). Approximately 21% of the transcripts in C. oncophora and 22% in O. ostertagi were up-regulated in a particular stage. Functional molecular signatures were detected for 46% and 35% of the transcripts in C. oncophora and O. ostertagi, respectively. More in-depth examinations of the most prevalent domains led to knowledge of gene expression changes between the free-living (egg, L1, L2 and L3 sheathed) and parasitic (L3 exsheathed, L4, and adult) stages. Domains previously implicated in growth and development such as chromo domains and the MADF domain tended to dominate in the free-living stages. In contrast, domains potentially involved in feeding such as the zinc finger and CAP domains dominated in the parasitic stages. Pathway analyses showed significant associations between life-cycle stages and peptides involved in energy metabolism in O. ostertagi whereas metabolism of cofactors and vitamins were specifically up-regulated in the parasitic

  7. Bloom of the cyanobacterium Moorea bouillonii on the gorgonian coral Annella reticulata in Japan

    PubMed Central

    Yamashiro, Hideyuki; Isomura, Naoko; Sakai, Kazuhiko

    2014-01-01

    Coral populations are in decline due to environmental changes and biological attacks by predators and infectious diseases. Here, we report a localized bloom of the benthic filamentous cyanobacterium Moorea bouillonii (formerly Lyngbya bouillonii) observed exclusively on the gorgonian (sea fan) coral Annella reticulata at around 20 m depth in Japan. The degree of infection has reached 26% among different sizes of Annella colonies. Thick and continuous growth of Moorea may be sustained partly by symbiotic alpheid shrimp, which affix Moorea filaments to gorgonian corals for use as food and shelter. Most filaments get entangled on the coral colony, some penetrate into the stem of the coral with a swollen end like a root hair, which appears to function as an anchor in Annella. In addition to the cyanobacterium–shrimp interaction, the new trait of anchoring by the cyanobacterium into gorgonian coral may contribute to persistence of this bloom. PMID:25112498

  8. Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. strain PCC 6803

    SciTech Connect

    Flores, E.; Schmetterer, G.

    1986-05-01

    Fructose was bactericidal for the cyanobacterium Synechocystis sp. strain PCC 6803. Each of ten independently isolated fructose-resistant mutants had an alteration of the glucose transport system, measured as uptake of glucose or of 3-0-methyl-D-glucose. In the presence of the analog, the wild-type Synechocystis strain was protected against fructose. Two mutants altered in photoautotrophy were also isolated.

  9. Lyngbyabellin B, a toxic and antifungal secondary metabolite from the marine cyanobacterium Lyngbya majuscula.

    PubMed

    Milligan, K E; Marquez, B L; Williamson, R T; Gerwick, W H

    2000-10-01

    Lyngbyabellin B (1) was isolated from a marine cyanobacterium, Lyngbya majuscula, collected near the Dry Tortugas National Park, Florida. This new cyclic depsipeptide displayed potent toxicity toward brine shrimp and the fungus Candida albicans. The planar structure was deduced using 1D and 2D NMR spectroscopic methods, and the stereochemistry is proposed through a combination of NMR and chiral GC/MS analysis. PMID:11076574

  10. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii.

    PubMed

    Willis, Anusuya; Chuang, Ann W; Woodhouse, Jason N; Neilan, Brett A; Burford, Michele A

    2016-09-01

    Cylindrospermopsis raciborskii is a bloom forming cyanobacterium with complex population dynamics and toxicity. In January of 2013 a single sample was collected from surface waters in Lake Wivenhoe, Australia, and twenty-four individual trichomes were isolated. Each isolate exhibited differences in growth rate, toxin cell quota and morphology, in the absence of phylogenetic heterogeneity. This study demonstrates substantial intraspecific isolate variation within a small sample and this has implications for understanding the population dynamics of this species. PMID:27390039

  11. Alotamide A, a Novel Neuropharmacological Agent From the Marine Cyanobacterium Lyngbya bouillonii

    PubMed Central

    Soria-Mercado, Irma E.; Pereira, Alban; Cao, Zhengyu; Murray, Thomas F.; Gerwick, William H.

    2009-01-01

    Alotamide A (1), a structurally intriguing cyclic depsipeptide, was isolated from the marine mat-forming cyanobacterium Lyngbya bouillonii collected in Papua New Guinea. It features three contiguous peptidic residues and an unsaturated heptaketide with oxidations and methylations unlike those found in any other marine cyanobacterial metabolite. Pure alotamide A (1) displays an unusual calcium influx activation profile in murine cerebrocortical neurons with an EC50 of 4.18 μM. PMID:19754100

  12. Draft Genome Assembly of a Filamentous Euendolithic (True Boring) Cyanobacterium, Mastigocoleus testarum Strain BC008

    PubMed Central

    Guida, Brandon S.

    2016-01-01

    Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C% of 37.3. PMID:26823575

  13. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer

    PubMed Central

    Kothari, Ankita; Vaughn, Michael; Garcia-Pichel, Ferran

    2013-01-01

    The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural, and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 μm wide trichomes, composed of stacked disk-like short cells (2 μm long), encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells) at the breakage point. Short, sheath-less, motile filaments (hormogonia) are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1%. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp). It contained 6515 putative protein-encoding genes, of which, 43% encode proteins of known functional role, 26% corresponded to proteins with domain or family assignments, 19.6% encode conserved hypothetical proteins, and 11.3% encode apparently unique hypothetical proteins. The strain's genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen, and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose, and glycine betaine. According to its

  14. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    PubMed Central

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in

  15. Influence of Leaching Parameters on the Biological Removal of Uranium from Coal by a Filamentous Cyanobacterium

    PubMed Central

    Lorenz, Michael G.; Krumbein, Wolfgang E.

    1985-01-01

    Axenic cultures of the filamentous cyanobacterium LPP OL3 were incubated with samples of uraniumbearing coal from a German mining area. The influence of leaching parameters such as coal concentration (pulp density), initial biomass, particle size, temperature, and composition of the growth medium on the leaching of uranium from the ore by the cyanobacterial strain was studied. When low pulp densities were applied, the yield of biologically extracted uranium was optimal (reaching 96% at 1% [wt/vol] coal) and all released uranium was found in the culture liquid. Above 10% (wt/vol) coal in the medium, the amount of cell-bound uranium increased. Initial biomass concentration (protein content of the cultures) and particle size were not critical parameters of leaching by LPP OL3. However, temperature and composition of the growth medium profoundly influenced the leaching of uranium and growth of the cyanobacterium. The yield of leached uranium (at 10% [wt/vol] coal) could not be raised with a tank leaching apparatus. Also, coal ashes were not suitable substrates for the leaching of uranium by LPP OL3. In conclusion, the reactions of the cyanobacterium to variations in leaching parameters were different from reactions of acidic leaching organisms. Images PMID:16346934

  16. The extracellular-matrix-retaining cyanobacterium Nostoc verrucosum accumulates trehalose, but is sensitive to desiccation.

    PubMed

    Sakamoto, Toshio; Kumihashi, Keisuke; Kunita, Shinpei; Masaura, Takuya; Inoue-Sakamoto, Kaori; Yamaguchi, Masaaki

    2011-08-01

    The aquatic cyanobacterium Nostoc verrucosum forms macroscopic colonies, which consist of both cellular filaments and massive extracellular matrix material. In this study, the physiological features of N. verrucosum were investigated and compared with those of the anhydrobiotic cyanobacterium Nostoc commune. Nostoc verrucosum cells were sensitive to desiccation, but tolerant of freeze-thawing treatment in terms of both cell viability and photosynthetic O(2) evolution. Natural colonies of these cyanobacteria contained similar levels of chlorophyll a, carotenoids, the UV-absorbing pigments scytonemin and mycosporine-like amino acids, and uronic acid [a component of extracellular polysaccharides (EPS)]. EPS from both N. verrucosum and N. commune indicated low acidity and a high affinity for divalent cations, although their sugar compositions differed. The WspA protein, known to be a major component of the extracellular matrix of N. commune, was detected in N. verrucosum. Desiccation caused similarly high levels of trehalose accumulation in both cyanobacteria. Although previously considered relevant to anhydrobiosis in the terrestrial cyanobacterium N. commune, the data presented here suggest that extracellular matrix production and trehalose accumulation are not enough for standing extreme desiccation in N. verrucosum. PMID:21507024

  17. Ecological genomics of the newly discovered diazotrophic filamentous cyanobacterium ESFC-1

    NASA Astrophysics Data System (ADS)

    Everroad, C.; Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Lee, J.; Mayali, X.; Singer, S. W.; Stuart, R.; Weber, P. K.; Woebken, D.; Pett-Ridge, J.

    2014-12-01

    Cyanobacteria-dominated microbial mats played a key role in the evolution of the early Earth and provide a model for exploring the relationships between ecology, evolution and biogeochemistry. A recently described nonheterocystous filamentous cyanobacterium, strain ESFC-1, has been shown to be a major diazotroph year round in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16s RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence within the cyanobacteria. Consequently, the draft genome sequence of this strain has been determined. Here we report features of this genome, particularly as they relate to the ecological functions and capabilities of strain ESFC-1. One striking feature of this cyanobacterium is the apparent lack of a functional bi-directional hydrogenase typically expected to be found within a diazotroph; consortia- and culture-based experiments exploring the metabolic processes of ESFC-1 also indicate that this hydrogenase is absent. Co-culture studies with ESFC-1 and some of the dominant heterotrophic members within the microbial mat system, including the ubiquitous Flavobacterium Muricauda sp., which often is found associated with cyanobacteria in nature and in culture collections worldwide, have also been performed. We report on these species-species interactions, including materials exchange between the cyanobacterium and heterotrophic bacterium. The combination of genomics with culture- and consortia-based experimental research is a powerful tool for understanding microbial processes and interactions in complex ecosystems.

  18. The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes.

    PubMed

    Shen, Gaozhong; Gan, Fei; Bryant, Donald A

    2016-06-01

    In the evolution of different cyanobacteria performing oxygenic photosynthesis, the core complexes of the two photosystems were highly conserved. However, cyanobacteria exhibit significant diversification in their light-harvesting complexes and have flexible regulatory mechanisms to acclimate to changes in their growth environments. In the siderophilic, filamentous cyanobacterium, Leptolyngbya sp. strain JSC-1, five different isiA-family genes occur in two gene clusters. During acclimation to Fe limitation, relative transcript levels for more than 600 genes increased more than twofold. Relative transcript levels were ~250 to 300 times higher for the isiA1 gene cluster (isiA1-isiB-isiC), and ~440- to 540-fold for the isiA2-isiA3-isiA4-cpcG2-isiA5 gene cluster after 48 h of iron starvation. Chl-protein complexes were isolated and further purified from cells grown under Fe-replete and Fe-depleted conditions. A single class of particles, trimeric PSI, was identified by image analysis of electron micrographs of negatively stained PSI complexes from Fe-replete cells. However, three major classes of particles were observed for the Chl-protein supercomplexes from cells grown under iron starvation conditions. Based on LC-MS-MS analyses, the five IsiA-family proteins were found in the largest supercomplexes together with core components of the two photosystems; however, IsiA5 was not present in complexes in which only the core subunits of PSI were detected. IsiA5 belongs to the same clade as PcbC proteins in a phylogenetic classification, and it is proposed that IsiA5 is most likely involved in supercomplexes containing PSII dimers. IsiA4, which is a fusion of an IsiA domain and a C-terminal PsaL domain, was found together with IsiA1, IsiA2, and IsiA3 in complexes with monomeric PSI. The data indicate that horizontal gene transfer, gene duplication, and divergence have played important roles in the adaptive evolution of this cyanobacterium to iron starvation conditions

  19. Education for Global Leadership: The Importance of International Studies and Foreign Language Education for U.S. Economic and National Security. Executive Summary

    ERIC Educational Resources Information Center

    Committee for Economic Development, 2006

    2006-01-01

    As we begin the twenty-first century, technological, economic, political, and social forces have created a new era. Technological advancements and lower trade barriers have paved the way for the globalization of markets, bringing intense competition to the U.S. economy. Political systems and movements around the world are having a profound impact…

  20. Note to Budget Cutters: The Arts Are Good Business--Multiple Studies Point to Arts Education as an Important Economic Engine

    ERIC Educational Resources Information Center

    Olson, Catherine Applefeld

    2009-01-01

    They say desperate times call for desperate measures. But in this time of economic uncertainty, the desperate cutting of budgets for arts funding and, by extension, all types of arts education, including music, is not prudent. That is the consensus of several national and local studies, which converge on a single point--that the arts actually can…

  1. Physiological and proteomic analysis of salinity tolerance of the halotolerant cyanobacterium Anabaena sp.

    PubMed

    Yadav, Ravindra Kumar; Thagela, Preeti; Tripathi, Keshawanand; Abraham, G

    2016-09-01

    The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na(+) content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K(+) content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K(+)/Na(+) ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K(+)/Na(+). Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF-MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na(+) content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na(+) ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the

  2. Autoradiographic studies of (methyl-/sup 3/H)thymidine incorporation in a cyanobacterium (Microcystis wesenbergii)-bacterium association and in selected algae and bacteria

    SciTech Connect

    Bern, L.

    1985-01-01

    The present investigation showed by means of autoradiography that the cyanobacterium Microcystis wesenbergii did not incorporate (/sup 3/H)thymidine at nanomolar concentrations, whereas its associated heterotrophic bacteria appearing in the gelatinous cover of the cyanobacterium became labeled. Several other tested cyanobacteria and algae did not incorporate (/sup 3/H)thymidine.

  3. Genome-Wide and Heterocyst-Specific Circadian Gene Expression in the Filamentous Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Kushige, Hiroko; Kugenuma, Hideyuki; Matsuoka, Masaki; Ehira, Shigeki; Ohmori, Masayuki

    2013-01-01

    The filamentous, heterocystous cyanobacterium Anabaena sp. strain PCC 7120 is one of the simplest multicellular organisms that show both morphological pattern formation with cell differentiation (heterocyst formation) and circadian rhythms. Therefore, it potentially provides an excellent model in which to analyze the relationship between circadian functions and multicellularity. However, detailed cyanobacterial circadian regulation has been intensively analyzed only in the unicellular species Synechococcus elongatus. In contrast to the highest-amplitude cycle in Synechococcus, we found that none of the kai genes in Anabaena showed high-amplitude expression rhythms. Nevertheless, ∼80 clock-controlled genes were identified. We constructed luciferase reporter strains to monitor the expression of some high-amplitude genes. The bioluminescence rhythms satisfied the three criteria for circadian oscillations and were nullified by genetic disruption of the kai gene cluster. In heterocysts, in which photosystem II is turned off, the metabolic and redox states are different from those in vegetative cells, although these conditions are thought to be important for circadian entrainment and timekeeping processes. Here, we demonstrate that circadian regulation is active in heterocysts, as shown by the finding that heterocyst-specific genes, such as all1427 and hesAB, are expressed in a robust circadian fashion exclusively without combined nitrogen. PMID:23316037

  4. Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism

    PubMed Central

    Iijima, Hiroko; Nakaya, Yuka; Kuwahara, Ayuko; Hirai, Masami Yokota; Osanai, Takashi

    2015-01-01

    Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW) medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW) were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria. PMID:25954257

  5. Functional characterization of a member of alanine or glycine: cation symporter family in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Kageyama, Hakuto; Tanaka, Yoshito; Incharoensakdi, Aran; Takabe, Teruhiro

    2015-01-01

    Membrane proteins of amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play important roles in the regulation of cellular processes. The alanine or glycine: cation symporter (AGCS) family belongs to APC superfamily and is found in prokaryotes, but its substrate specificity remains to be clarified. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica has two putative ApagcS genes. The deduced amino acid sequence of one of genes, ApagcS1, exhibited high homology to Pseudomonas AgcS. The ApagcS1 gene was expressed in Escherichia coli JW4166 which is deficient in glycine uptake. Kinetics studies in JW4166 revealed that ApAgcS1 is a sodium-dependent glycine transporter. Competition experiments showed the significant inhibition by glutamine, asparagine, and glycine. The level of mRNA for ApagcS1 was induced by NaCl and nitrogen-deficient stresses. Uptake of glutamine by ApAgcS1 was also observed. Based on these data, the physiological role of ApAgcS1 was discussed. PMID:25421789

  6. Potassium sensitivity differs among strains of the harmful cyanobacterium Microcystis and correlates with the presence of salt tolerance genes.

    PubMed

    Sandrini, Giovanni; Huisman, Jef; Matthijs, Hans C P

    2015-08-01

    Microcystis aeruginosa is a ubiquitous harmful cyanobacterium that causes problems in eutrophic lakes. Potassium ion (K(+)) addition is one of the suggested methods to combat harmful cyanobacterial blooms. To investigate the effectiveness of this method, we compared the potassium ion sensitivity of four Microcystis strains. Microcystis strains PCC 7005 and NIES-843 were very susceptible to potassium ion concentrations of ∼ 12 mmol L(-1), whereas strain PCC 7806 and its non-toxic mutant PCC 7806 ΔmcyB were not affected by added potassium ions. The origin of the strain appears to be of importance. Strain PCC 7806 originates from brackish water and possesses genes for the synthesis of the compatible solute sucrose, the water channel protein gene aqpZ and the sodium influx gene nhaS2, whereas strains PCC 7005 and NIES-843 have a freshwater origin and lack these genes. We conclude that potassium ion addition will not be a successful mitigation strategy in brackish waters, but may temporarily suppress Microcystis blooms in freshwater lakes. However, in the long run other Microcystis strains or other cyanobacteria with a higher salt tolerance will likely take over. In addition, our results also have implications for the potassium ion concentrations of mineral media used in laboratory studies with cyanobacteria. PMID:26208527

  7. The Importance of Considering the Temporal Distribution of Climate Variables for Ecological-Economic Modeling to Calculate the Consequences of Climate Change for Agriculture

    NASA Astrophysics Data System (ADS)

    Plegnière, Sabrina; Casper, Markus; Hecker, Benjamin; Müller-Fürstenberger, Georg

    2014-05-01

    The basis of many models to calculate and assess climate change and its consequences are annual means of temperature and precipitation. This method leads to many uncertainties especially at the regional or local level: the results are not realistic or too coarse. Particularly in agriculture, single events and the distribution of precipitation and temperature during the growing season have enormous influences on plant growth. Therefore, the temporal distribution of climate variables should not be ignored. To reach this goal, a high-resolution ecological-economic model was developed which combines a complex plant growth model (STICS) and an economic model. In this context, input data of the plant growth model are daily climate values for a specific climate station calculated by the statistical climate model (WETTREG). The economic model is deduced from the results of the plant growth model STICS. The chosen plant is corn because corn is often cultivated and used in many different ways. First of all, a sensitivity analysis showed that the plant growth model STICS is suitable to calculate the influences of different cultivation methods and climate on plant growth or yield as well as on soil fertility, e.g. by nitrate leaching, in a realistic way. Additional simulations helped to assess a production function that is the key element of the economic model. Thereby the problems when using mean values of temperature and precipitation in order to compute a production function by linear regression are pointed out. Several examples show why a linear regression to assess a production function based on mean climate values or smoothed natural distribution leads to imperfect results and why it is not possible to deduce a unique climate factor in the production function. One solution for this problem is the additional consideration of stress indices that show the impairment of plants by water or nitrate shortage. Thus, the resulting model takes into account not only the ecological

  8. ESEA Reauthorization: The Importance of a World-Class K-12 Education for Our Economic Success. Hearing of the Committee on Health, Education, Labor, and Pensions, United States Senate, One Hundred Eleventh Congress, Second Session on Examining Elementary and Secondary Education Act (ESEA) Reauthorization, Focusing on K-12 Education for Economic Success (March 9, 2010). Senate Hearing 111-885

    ERIC Educational Resources Information Center

    US Senate, 2011

    2011-01-01

    This hearing of the Committee of Health, Education, Labor and Pensions focused on the reauthorization of the Elementary and Secondary Education Act. This hearing on the economic importance of having a world-class K-12 education system should remind everyone of the critical importance of this reauthorization. Well-educated Americans are the single…

  9. The importance of economic, social and cultural capital in understanding health inequalities: using a Bourdieu-based approach in research on physical and mental health perceptions.

    PubMed

    Pinxten, Wouter; Lievens, John

    2014-09-01

    In this article we adopt a Bourdieu-based approach to study social inequalities in perceptions of mental and physical health. Most research takes into account the impact of economic or social capital on health inequalities. Bourdieu, however, distinguishes between three forms of capital that can determine peoples' social position: economic, social and cultural capital. Health research examining the effects of cultural capital is scarce. By simultaneously considering and modelling indicators of each of Bourdieu's forms of capital, we further the understanding of the dynamics of health inequalities. Using data from a large-scale representative survey (N = 1825) in Flanders, Belgium, we find that each of the forms of capital has a net effect on perceptions of physical and mental health, which persists after controlling for the other forms of capital and for the effects of other correlates of perceived health. The only exception is that the cultural capital indicators are not related to mental health. These results confirm the value of a Bourdieu-based approach and indicate the need to consider economic, social and cultural capital to obtain a better understanding of social inequality in health. PMID:25040507

  10. Excitation energy relaxation in a symbiotic cyanobacterium, Prochloron didemni, occurring in coral-reef ascidians, and in a free-living cyanobacterium, Prochlorothrix hollandica.

    PubMed

    Hamada, Fumiya; Yokono, Makio; Hirose, Euichi; Murakami, Akio; Akimoto, Seiji

    2012-11-01

    The marine cyanobacterium Prochloron is a unique photosynthetic organism that lives in obligate symbiosis with colonial ascidians. We compared Prochloron harbored in four different host species and cultured Prochlorothrix by means of spectroscopic measurements, including time-resolved fluorescence, to investigate host-induced differences in light-harvesting strategies between the cyanobacteria. The light-harvesting efficiency of photosystems including antenna Pcb, PS II-PS I connection, and pigment status, especially that of PS I Red Chls, were different among the four samples. We also discuss relationships between these observed characteristics and the light conditions, to which Prochloron cells are exposed, influenced by distribution pattern in the host colonies, presence or absence of tunic spicules, and microenvironments within the ascidians' habitat. PMID:22728755

  11. Genome Erosion in a Nitrogen-Fixing Vertically Transmitted Endosymbiotic Multicellular Cyanobacterium

    PubMed Central

    Vigil-Stenman, Theoden; Nylander, Johan A. A.; Ininbergs, Karolina; Zheng, Wei-Wen; Lapidus, Alla; Lowry, Stephen; Haselkorn, Robert; Bergman, Birgitta

    2010-01-01

    Background An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. Methodology/Principal Findings To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (∼600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the ‘core’ gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. Conclusions/Significance This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the

  12. A new chlorophyll d-containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris.

    PubMed

    Mohr, Remus; Voss, Björn; Schliep, Martin; Kurz, Thorsten; Maldener, Iris; Adams, David G; Larkum, Anthony D W; Chen, Min; Hess, Wolfgang R

    2010-11-01

    Chlorophyll d is a photosynthetic pigment that, based on chemical analyses, has only recently been recognized to be widespread in oceanic and lacustrine environments. However, the diversity of organisms harbouring this pigment is not known. Until now, the unicellular cyanobacterium Acaryochloris marina is the only characterized organism that uses chlorophyll d as a major photopigment. In this study we describe a new cyanobacterium possessing a high amount of chlorophyll d, which was isolated from waters around Heron Island, Great Barrier Reef (23° 26' 31.2″ S, 151° 54' 50.4″ E). The 16S ribosomal RNA is 2% divergent from the two previously described isolates of A. marina, which were isolated from waters around the Palau islands (Pacific Ocean) and the Salton Sea lake (California), suggesting that it belongs to a different clade within the genus Acaryochloris. An overview sequence analysis of its genome based on Illumina technology yielded 871 contigs with an accumulated length of 8 371 965 nt. Their analysis revealed typical features associated with Acaryochloris, such as an extended gene family for chlorophyll-binding proteins. However, compared with A. marina MBIC11017, distinct genetic, morphological and physiological differences were observed. Light saturation is reached at lower light intensities, Chl d/a ratios are less variable with light intensity and the phycobiliprotein phycocyanin is lacking, suggesting that cyanobacteria of the genus Acaryochloris occur in distinct ecotypes. These data characterize Acaryochloris as a niche-adapted cyanobacterium and show that more rigorous attempts are worthwhile to isolate, cultivate and analyse chlorophyll d-containing cyanobacteria for understanding the ecophysiology of these organisms. PMID:20505751

  13. Genetic structure of the rattan Calamus thwaitesii in core, buffer and peripheral regions of three protected areas in central Western Ghats, India: do protected areas serve as refugia for genetic resources of economically important plants?

    PubMed

    Ramesha, B T; Ravikanth, G; Nageswara Rao, M; Ganeshaiah, K N; Uma Shaanker, R

    2007-04-01

    Given the increasing anthropogenic pressures on forests, the various protected areas--national parks, sanctuaries, and biosphere reserves--serve as the last footholds for conserving biological diversity. However, because protected areas are often targeted for the conservation of selected species, particularly charismatic animals, concerns have been raised about their effectiveness in conserving nontarget taxa and their genetic resources. In this paper, we evaluate whether protected areas can serve as refugia for genetic resources of economically important plants that are threatened due to extraction pressures. We examine the population structure and genetic diversity of an economically important rattan, Calamus thwaitesii, in the core, buffer and peripheral regions of three protected areas in the central Western Ghats, southern India. Our results indicate that in all the three protected areas, the core and buffer regions maintain a better population structure, as well as higher genetic diversity, than the peripheral regions of the protected area. Thus, despite the escalating pressures of extraction, the protected areas are effective in conserving the genetic resources of rattan. These results underscore the importance of protected areas in conservation of nontarget species and emphasize the need to further strengthen the protected-area network to offer refugia for economically important plant species. PMID:17656844

  14. Sequence and functional characterization of RNase P RNA from the chl alb containing cyanobacterium Prochlorothrix hollandica.

    PubMed

    Fingerhut, C; Schön, A

    1998-05-29

    Only a few complete sequences and very limited functional data are available for the catalytic RNA component of cyanobacterial RNase P. The RNase P RNA from the chl alb containing cyanobacterium Prochlorothrix hollandica belongs to a rarely found structural subtype with an extended P15/16 domain. We have established conditions for optimal in vitro ribozyme activity, and determined the kinetic parameters for cleavage of pre-tRNA(Tyr). Analysis of pre-tRNA mutants revealed that the T-stem sequence only plays a modulating role, whereas the CCA end is essential for efficient product formation. PMID:9654127

  15. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity.

    PubMed

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F David; Iii, Roger Smith; Watanabe, Coran M H

    2015-10-01

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue. PMID:26473885

  16. Purification and partial characterization of a calcium-stimulated protease from the cyanobacterium, Anabaena variabilis.

    PubMed

    Lockau, W; Massalsky, B; Dirmeier, A

    1988-03-01

    A calcium-stimulated protease was purified to apparent homogeneity from the heterocyst-forming cyanobacterium Anabaena variabilis ATCC 29413. As judged from experiments with inhibitors and chromogenic peptide substrates, the enzyme is a serine protease with a substrate specificity like trypsin. Its apparent relative molecular mass is 52,000. Calcium depletion inhibits the enzymic activity by 92%. Half-maximal activity requires about 0.5 microM free Ca2+. The enzyme binds to a hydrophobic column in a calcium-dependent manner, indicating calcium-induced exposure of a hydrophobic domain. The possible role of the protease in heterocyst differentiation is discussed. PMID:3127208

  17. The Effects of the Toxic Cyanobacterium Limnothrix (Strain AC0243) on Bufo marinus Larvae

    PubMed Central

    Daniels, Olivia; Fabbro, Larelle; Makiela, Sandrine

    2014-01-01

    Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL−1 of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to β-N-Methylamino-l-alanine are discussed. PMID:24662524

  18. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    PubMed Central

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F. David; Smith, Roger; Watanabe, Coran M. H.

    2015-01-01

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue. PMID:26473885

  19. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium

    PubMed Central

    Yang, Chen; Lin, Feibi; Li, Qi; Li, Tao; Zhao, Jindong

    2015-01-01

    Microcystis aeruginosa is one of the most common and dominant bloom-forming cyanobacteria in freshwater lakes around the world. Microcystis cells can produce toxic secondary metabolites, such as microcystins, which are harmful to human health. Two M. aeruginosa strains were isolated from two highly eutrophic lakes in China and their genomes were sequenced. Comparative genomic analysis was performed with the 12 other available M. aeruginosa genomes and closely related unicellular cyanobacterium. Each genome of M. aeruginosa containing at least one clustered regularly interspaced short palindromic repeat (CRISPR) locus and total 71 loci were identified, suggesting it is ubiquitous in M. aeruginosa genomes. In addition to the previously reported subtype I-D cas gene sets, three CAS subtypes I-A, III-A and III-B were identified and characterized in this study. Seven types of CRISPR direct repeat have close association with CAS subtype, confirming that different and specific secondary structures of CRISPR repeats are important for the recognition, binding and process of corresponding cas gene sets. Homology search of the CRISPR spacer sequences provides a history of not only resistance to bacteriophages and plasmids known to be associated with M. aeruginosa, but also the ability to target much more exogenous genetic material in the natural environment. These adaptive and heritable defense mechanisms play a vital role in keeping genomic stability and self-maintenance by restriction of horizontal gene transfer. Maintaining genomic stability and modulating genomic plasticity are both important evolutionary strategies for M. aeruginosa in adaptation and survival in various habitats. PMID:26029174

  20. Cell Envelope Components Influencing Filament Length in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Burnat, Mireia; Schleiff, Enrico

    2014-01-01

    Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ. PMID:25201945

  1. Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Burnat, Mireia; Schleiff, Enrico; Flores, Enrique

    2014-12-01

    Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ. PMID:25201945

  2. Bouillonamide: A Mixed Polyketide–Peptide Cytotoxin from the Marine Cyanobacterium Moorea bouillonii

    PubMed Central

    Tan, Lik Tong; Okino, Tatsufumi; Gerwick, William H.

    2013-01-01

    The tropical marine cyanobacterium, Moorea bouillonii, has gained recent attention as a rich source of bioactive natural products. Continued chemical investigation of this cyanobacterium, collected from New Britain, Papua New Guinea, yielded a novel cytotoxic cyclic depsipeptide, bouillonamide (1), along with previously reported molecules, ulongamide A and apratoxin A. Planar structure of bouillonamide was established by extensive 1D and 2D NMR experiments, including multi-edited HSQC, TOCSY, HBMC, and ROESY experiments. In addition to the presence of α-amino acid residues, compound 1 contained two unique polyketide-derived moieties, namely a 2-methyl-6-methylamino-hex-5-enoic acid (Mmaha) residue and a unit of 3-methyl-5-hydroxy-heptanoic acid (Mhha). Absolute stereochemistry of the α-amino acid units in bouillonamide was determined mainly by Marfey’s analysis. Compound 1 exhibited mild toxicity with IC50’s of 6.0 µM against the neuron 2a mouse neuroblastoma cells. PMID:23966034

  3. Coccidian/cyanobacterium-like body associated diarrhea in an Australian traveller returning from overseas.

    PubMed

    Butcher, A R; Lumb, R; Coulter, E; Nielsen, D J

    1994-01-01

    Coccidian/cyanobacterium-like body (CLB) associated diarrhea occurred in a 42 yr old Australian woman returning from Bali, Indonesia. The patient had a diarrheal illness of 10 days duration with symptoms of explosive diarrhea, nausea, anorexia and fever. Fecal examination revealed CLBs which were detected in modified Ziehl-Neelsen stained fecal smears. No other bacterial or parasite pathogens were found. CLBs were variably acid fast, showed an intense blue auto-fluorescence under UV microscopy and appeared as non-refractile hyaline spheres in direct wet mounts, being 8-9 microns in diameter. The taxonomic status of CLBs has been unclear but recent evidence supports that they are a coccidian parasite of the genus Cyclospora, rather than cyanobacterium. There is no specific therapy for CLB enteritis and spontaneous recovery occurs after what may be a prolonged diarrheal illness. CLBs may be a previously unrecognized enteric pathogen although their role in the pathology of diarrheal illness is still undetermined. There is consistency in the clinical and laboratory findings amongst the reported cases and CLBs should be considered in persons with unexplained gastroenteritis, especially travellers returning from tropical regions. PMID:8165029

  4. Collapsing Aged Culture of the Cyanobacterium Synechococcus elongatus Produces Compound(s) Toxic to Photosynthetic Organisms

    PubMed Central

    Cohen, Assaf; Sendersky, Eleonora; Carmeli, Shmuel; Schwarz, Rakefet

    2014-01-01

    Phytoplankton mortality allows effective nutrient cycling, and thus plays a pivotal role in driving biogeochemical cycles. A growing body of literature demonstrates the involvement of regulated death programs in the abrupt collapse of phytoplankton populations, and particularly implicates processes that exhibit characteristics of metazoan programmed cell death. Here, we report that the cell-free, extracellular fluid (conditioned medium) of a collapsing aged culture of the cyanobacterium Synechococcus elongatus is toxic to exponentially growing cells of this cyanobacterium, as well as to a large variety of photosynthetic organisms, but not to eubacteria. The toxic effect, which is light-dependent, involves oxidative stress, as suggested by damage alleviation by antioxidants, and the very high sensitivity of a catalase-mutant to the conditioned medium. At relatively high cell densities, S. elongatus cells survived the deleterious effect of conditioned medium in a process that required de novo protein synthesis. Application of conditioned medium from a collapsing culture caused severe pigment bleaching not only in S. elongatus cells, but also resulted in bleaching of pigments in a cell free extract. The latter observation indicates that the elicited damage is a direct effect that does not require an intact cell, and therefore, is mechanistically different from the metazoan-like programmed cell death described for phytoplankton. We suggest that S. elongatus in aged cultures are triggered to produce a toxic compound, and thus, this process may be envisaged as a novel regulated death program. PMID:24959874

  5. A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis.

    PubMed

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L; Meeks, John C; Flores, Enrique

    2013-04-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using (14)C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  6. Molecular Characterization of the Toxic Cyanobacterium Cylindrospermopsis raciborskii and Design of a Species-Specific PCR

    PubMed Central

    Wilson, Kim M.; Schembri, Mark A.; Baker, Peter D.; Saint, Christopher P.

    2000-01-01

    Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis revealed that all isolates belonged to the same species, including morphotypes with straight or coiled trichomes. Additional rpoC1 gene sequences obtained for a range of cyanobacteria highlighted clustering of C. raciborskii with other heterocyst-producing cyanobacteria (orders Nostocales and Stigonematales). In contrast, randomly amplified polymorphic DNA and short tandemly repeated repetitive sequence profiles revealed a greater level of genetic heterogeneity among C. raciborskii isolates than did rpoC1 gene analysis, and unique band profiles were also found among each of the cyanobacterial genera examined. A PCR test targeting a region of the rpoC1 gene unique to C. raciborskii was developed for the specific identification of C. raciborskii from both purified genomic DNA and environmental samples. The PCR was evaluated with a number of cyanobacterial isolates, but a PCR-positive result was only achieved with C. raciborskii. This method provides an accurate alternative to traditional morphological identification of C. raciborskii. PMID:10618244

  7. Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography

    SciTech Connect

    Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  8. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography

    SciTech Connect

    Liberton, Michelle; Austin II, Jotham R; Berg, R. Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  9. Role of calcium in acclimation of the cyanobacterium Synechococcus elongatus PCC 7942 to nitrogen starvation.

    PubMed

    Leganés, Francisco; Forchhammer, Karl; Fernández-Piñas, Francisca

    2009-01-01

    A Ca2+ signal is required for the process of heterocyst differentiation in the filamentous diazotrophic cyanobacterium Anabaena sp. PCC 7120. This paper presents evidence that a transient increase in intracellular free Ca2+ is also involved in acclimation to nitrogen starvation in the unicellular non-diazotrophic cyanobacterium Synechococcus elongatus PCC 7942. The Ca2+ transient was triggered in response to nitrogen step-down or the addition of 2-oxoglutarate (2-OG), or its analogues 2,2-difluoropentanedioic acid (DFPA) and 2-methylenepentanedioic acid (2-MPA), to cells growing with combined nitrogen, suggesting that an increase in intracellular 2-OG levels precedes the Ca2+ transient. The signalling protein P(II) and the transcriptional regulator NtcA appear to be needed to trigger the signal. Suppression of the Ca2+ transient by the intracellular Ca2+ chelator N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl

  10. Dynamics of the Toxin Cylindrospermopsin and the Cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean Eutrophic Reservoir

    PubMed Central

    Fadel, Ali; Atoui, Ali; Lemaire, Bruno J.; Vinçon-Leite, Brigitte; Slim, Kamal

    2014-01-01

    Chrysosporum ovalisporum is a cylindrospermopsin toxin producing cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic species that was observed in all seasons. Unlike the high temperatures, above 26 °C, which is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel), Lisimachia and Trichonis (Greece) and Arcos Reservoir (Spain), Chrysosporum ovalisporum in Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 °C during weak stratification. Cylindrospermopsin was detected in almost all water samples even when Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes and cylindrospermopsin concentrations were not correlated (n = 31, r2 = −0.05). Cylindrospermopsin reached a maximum concentration of 1.7 µg L−1. The vertical profiles of toxin concentrations suggested its possible degradation or sedimentation resulting in its disappearance from the water column. The field growth conditions of Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water temperature of 22 °C increasing the risk of its development and expansion in lakes located in temperate climate regions. PMID:25354130

  11. Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed Central

    Smart, L B; Anderson, S L; McIntosh, L

    1991-01-01

    We describe the first complete segregation of a targeted inactivation of psaA encoding one of the P700-chlorophyll a apoproteins of photosystem (PS) I. A kanamycin resistance gene was used to interrupt the psaA gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Selection of a fully segregated mutant, ADK9, was performed under light-activated heterotrophic growth (LAHG) conditions; complete darkness except for 5 min of light every 24 h and 5 mM glucose. Under these conditions, wild-type cells showed a 4-fold decrease in chlorophyll (chl) per cell, primarily due to a decrease of PS I reaction centers. Evidence for the absence of PS I in ADK9 includes: the lack of EPR (electron paramagnetic resonance) signal I, from P700+; undetectable P700-apoprotein; greatly reduced whole-chain photosynthesis rates; and greatly reduced chl per cell, resulting in a turquoise blue phenotype. The PS I peripheral proteins PSA-C and PSA-D were not detected in this mutant. ADK9 does assemble near wild-type levels of functional PS II per cell, evidenced by: EPR signal II from YD+; high rates of oxygen evolution with 2,6-dichloro-p-benzoquinone (DCBQ), an electron acceptor from PS II; and accumulation of D1, a PS II core polypeptide. The success of this transformation indicates that this cyanobacterium may be utilized for site-directed mutagenesis of the PS I core. Images PMID:1717264

  12. The Effect of Small Scale Turbulence on the Physiology of Microcystis aeruginosa cyanobacterium

    NASA Astrophysics Data System (ADS)

    Wilkinson, Anne; Hondzo, Miki; Guala, Michele

    2014-11-01

    Microcystis aeruginosa is a single-celled blue-green alga, or cyanobacterium, that is responsible for poor water quality and microcystin production, which in high concentrations can be harmful to humans and animals. These harmful effects arise during cyanobacterium blooms. Blooms occur mainly in the summer when the algae grow uncontrollably and bond together to form colonies which accumulate on the surface of freshwater ecosystems. The relationship between fluid motion generated by wind and internal waves in stratified aquatic ecosystems and Microcystis can help explain the mechanisms of such blooms. We investigated the effect of small scale fluid motion on the physiology of Microcystis in a reactor with two underwater speakers. Different turbulent intensities were achieved by systematically changing the input signal frequency (30-50 Hz) and magnitude (0.1-0.2V) to the speakers. The role of turbulence is quantified by relating energy dissipation rates with the cell number, chlorophyll amount, dissolved oxygen production/uptake, and pH. The results suggest that turbulence mediates the physiology of Microcystis. The findings could be instrumental in designing restoration strategies that can minimize Microcystis blooms. This work was supported by the NSF Graduate Research Fellowship and University of Minnesota start-up funding.

  13. Dynamics of the toxin cylindrospermopsin and the cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean eutrophic reservoir.

    PubMed

    Fadel, Ali; Atoui, Ali; Lemaire, Bruno J; Vinçon-Leite, Brigitte; Slim, Kamal

    2014-11-01

    Chrysosporum ovalisporum is a cylindrospermopsin toxin producing cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic species that was observed in all seasons. Unlike the high temperatures, above 26 °C, which is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel), Lisimachia and Trichonis (Greece) and Arcos Reservoir (Spain), Chrysosporum ovalisporum in Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 °C during weak stratification. Cylindrospermopsin was detected in almost all water samples even when Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes and cylindrospermopsin concentrations were not correlated (n = 31, r² = -0.05). Cylindrospermopsin reached a maximum concentration of 1.7 µg L⁻¹. The vertical profiles of toxin concentrations suggested its possible degradation or sedimentation resulting in its disappearance from the water column. The field growth conditions of Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water temperature of 22 °C increasing the risk of its development and expansion in lakes located in temperate climate regions. PMID:25354130

  14. Effects of pesticides on cyanobacterium Plectonema boryanum and cyanophage LPP-1.

    PubMed Central

    Mallison, S M; Cannon, R E

    1984-01-01

    Cyanobacterium Plectonema boryanum IU 594 and cyanophage LPP-1 were used as indicator organisms in a bioassay of 16 pesticides. Experiments such as spot tests, disk assays, growth curves, and one-step growth experiments were used to examine the effects of pesticides on the host and virus. Also, experiments were done in which host or virus was incubated in pesticide solutions and then assayed for PFU. P. boryanum was inhibited by four herbicides: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 1,1-dimethyl-3-(alpha, alpha,alpha-trifluoro-m-tolyl)urea ( Fluometeron ), 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (Atrazine), 2-(ethylamino)-4-(isopropylamino)-6-(methylthio)-s-triazine ( Ametryn ). One insecticide, 2-methyl-2-(methylthio)-propionaldehyde O-( methylcarbamoyl )oxime (Aldicarb), also inhibited the cyanobacterium. Two insecticides inactivated LPP-1, O,O-dimethyl phosphorodithioate of diethyl mercaptosuccinate (malathion) and Isotox . Isotox is a mixture of three pesticides: S-[2-( ethylsulfinyl )ethyl]O,O-dimethyl phosphorothioate ( Metasystox -R), 1-naphthyl methylcarbamate ( Sevin ) and 4,4'-dichloro-alpha- (trichloromethyl) benzhydrom ( Kelthane ). Two pesticide-resistant strains of P. boryanum were isolated against DCMU and Atrazine. These mutants showed resistance to all four herbicides, which indicates a relationship between these phototoxic chemicals. The results indicate that P. boryanum may be a useful indicator species for phototoxic agents in bioassay procedures. PMID:6430230

  15. Potential contribution of the diazotrophic cyanobacterium, Cyanothece sp. strain 51142, to a bioregenerative life support system.

    PubMed

    Arieli, B; Schneegurt, M A; Sherman, L A

    1996-01-01

    Long-duration manned space missions will likely require the development of bioregenerative means of life support. Such a Controlled Ecological Life Support System (CELSS) would use higher plants to provide food and a breathable atmosphere for the crew and employ a waste processing system to recover elements for recycling. The current study identifies ways in which a cyanobacterial component may enhance the sustainability of a space-deployed CELSS, including balancing CO2/O2 gas exchange, production of bioavailable N, dietary supplementation, and contingency against catastrophic failure of the higher plant crops. Relevant quantitative data have been collected about the cyanobacterium, Cyanothece sp. strain ATCC 51142, a large, aerobic, unicellular diazotroph. This organism grew rapidly (466 g dry wt. m-3 d-1) and under diverse environmental conditions, was amenable to large-scale culture, could be grown with relative energy efficiency (3.8% conversion), could actively fix atmospheric N2 (35.0 g m-3 d-1), could survive extreme environmental insults, and exhibited gas exchange properties (assimilatory quotient of 0.49) that may be useful for correcting the gas exchange ratio imbalances observed between humans and higher plants. It is suggested that a diazotrophic cyanobacterium, like Cyanothece sp. strain ATCC 51142, may be a safe, effective, and renewable complement or alternative to physicochemical backup systems in a CELSS. PMID:11538563

  16. New Structural Variants of Aeruginosin Produced by the Toxic Bloom Forming Cyanobacterium Nodularia spumigena

    PubMed Central

    Paukku, Eeva; Österholm, Julia; Wahlsten, Matti; Permi, Perttu; Aitio, Olli; Rouhiainen, Leo; Gomez-Saez, Gonzalo V.; Sivonen, Kaarina

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that forms blooms in brackish water bodies. This cyanobacterium produces linear and cyclic peptide protease inhibitors which are thought to be part of a chemical defense against grazers. Here we show that N. spumigena produces structurally novel members of the aeruginosin family of serine protease inhibitors. Extensive chemical analyses including NMR demonstrated that the aeruginosins are comprised of an N-terminal short fatty acid chain, L-Tyr, L-Choi and L-argininal and in some cases pentose sugar. The genome of N. spumigena CCY9414 contains a compact 18-kb aeruginosin gene cluster encoding a peptide synthetase with a reductive release mechanism which offloads the aeruginosins as reactive peptide aldehydes. Analysis of the aeruginosin and spumigin gene clusters revealed two different strategies for the incorporation of N-terminal protecting carboxylic acids. These results demonstrate that strains of N. spumigena produce aeruginosins and spumigins, two families of structurally similar linear peptide aldehydes using separate peptide synthetases. The aeruginosins were chemically diverse and we found 11 structural variants in 16 strains from the Baltic Sea and Australia. Our findings broaden the known structural diversity of the aeruginosin peptide family to include peptides with rare N-terminal short chain (C2–C10) fatty acid moieties. PMID:24040002

  17. A stable, reusable, and highly active photosynthetic bioreactor by bio-interfacing an individual cyanobacterium with a mesoporous bilayer nanoshell.

    PubMed

    Jiang, Nan; Yang, Xiao-Yu; Deng, Zhao; Wang, Li; Hu, Zhi-Yi; Tian, Ge; Ying, Guo-Liang; Shen, Ling; Zhang, Ming-Xi; Su, Bao-Lian

    2015-05-01

    An individual cyanobacterium cell is interfaced with a nanoporous biohybrid layer within a mesoporous silica layer. The bio-interface acts as an egg membrane for cell protection and growth of outer shell. The resulting bilayer shell provides efficient functions to create a single cell photosynthetic bioreactor with high stability, reusability, and activity. PMID:25641812

  18. Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3709, Which Harbors a Phycoerythrin-Rich Phycobilisome.

    PubMed

    Hirose, Yuu; Katayama, Mitsunori; Ohtsubo, Yoshiyuki; Misawa, Naomi; Iioka, Erica; Suda, Wataru; Oshima, Kenshiro; Hanaoka, Mitsumasa; Tanaka, Kan; Eki, Toshihiko; Ikeuchi, Masahiko; Kikuchi, Yo; Ishida, Makoto; Hattori, Masahira

    2015-01-01

    The cyanobacterium Geminocystis sp. strain NIES-3709 accumulates a larger amount of phycoerythrin than the related NIES-3708 strain does. Here, we determined the complete genome sequence of the NIES-3709 strain. Our genome data suggest that the different copy number of rod linker genes for phycoerythrin leads to the different phycoerythrin contents between the two strains. PMID:25931605

  19. Draft Genome Sequence of Calothrix Strain 336/3, a Novel H2-Producing Cyanobacterium Isolated from a Finnish Lake

    PubMed Central

    Isojärvi, Janne; Shunmugam, Sumathy; Sivonen, Kaarina; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2015-01-01

    We announce the draft genome sequence of Calothrix strain 336/3, an N2-fixing heterocystous filamentous cyanobacterium isolated from a natural habitat. Calothrix 336/3 produces higher levels of hydrogen than Nostoc punctiforme PCC 73102 and Anabaena strain PCC 7120 and, therefore, is of interest for potential technological applications. PMID:25614574

  20. Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide.

    PubMed

    Starkenburg, Shawn R; Reitenga, Krista G; Freitas, Tracey; Johnson, Shannon; Chain, Patrick S G; Garcia-Pichel, Ferran; Kuske, Cheryl R

    2011-09-01

    The filamentous cyanobacterium Microcoleus vaginatusis found in arid land soils worldwide. The genome of M. vaginatus strain FGP-2 allows exploration of genes involved in photosynthesis, desiccation tolerance, alkane production, and other features contributing to this organism's ability to function as a major component of biological soil crusts in arid lands. PMID:21705610

  1. Genome of the Cyanobacterium Microcoleus vaginatusFGP-2, a Photosynthetic Ecosystem Engineer of Arid Land Soil Biocrusts Worldwide▿

    PubMed Central

    Starkenburg, Shawn R.; Reitenga, Krista G.; Freitas, Tracey; Johnson, Shannon; Chain, Patrick S. G.; Garcia-Pichel, Ferran; Kuske, Cheryl R.

    2011-01-01

    The filamentous cyanobacterium Microcoleus vaginatusis found in arid land soils worldwide. The genome of M. vaginatusstrain FGP-2 allows exploration of genes involved in photosynthesis, desiccation tolerance, alkane production, and other features contributing to this organism's ability to function as a major component of biological soil crusts in arid lands. PMID:21705610

  2. Draft Genome Sequence of a Thermophilic Cyanobacterium from the Family Oscillatoriales (Strain MTP1) from the Chalk River, Colorado

    PubMed Central

    Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2016-01-01

    The draft genome (57.7% GC, 7,647,882 bp) of the novel thermophilic cyanobacterium MTP1 was determined by metagenomics of an enrichment culture. The genome shows that it is in the family Oscillatoriales and encodes multiple heavy metal resistances as well as the capacity to make exopolysaccharides. PMID:26893415

  3. Draft Genome Sequence of a Thermophilic Cyanobacterium from the Family Oscillatoriales (Strain MTP1) from the Chalk River, Colorado.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2016-01-01

    The draft genome (57.7% GC, 7,647,882 bp) of the novel thermophilic cyanobacterium MTP1 was determined by metagenomics of an enrichment culture. The genome shows that it is in the family Oscillatoriales and encodes multiple heavy metal resistances as well as the capacity to make exopolysaccharides. PMID:26893415

  4. The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity

    PubMed Central

    Zhang, Xiaohui; Sherman, Debra M.

    2014-01-01

    Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (ΔhupL), and we determined how this would affect the amount of H2 produced. The ΔhupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties; this indicated that the original insertion was only in hupL. The mutant had no uptake hydrogenase activity but had increased bidirectional hydrogenase (Hox) activity. Western blotting and immunocytochemistry under the electron microscope indicated that the mutant had neither HupL nor NifHDK, although the nif genes were transcribed. Interestingly, biochemical analysis demonstrated that both HupL and NifH could be membrane associated. The results indicated that the nif genes were transcribed but that NifHDK was either not translated or was translated but rapidly degraded. We hypothesized that the Nif proteins were made but were unusually susceptible to O2 damage. Thus, we grew the mutant cells under anaerobic conditions and found that they grew well under N2-fixing conditions. We conclude that in unicellular diazotrophs, like Cyanothece sp. strain PCC 7822, the HupLS complex helps remove oxygen from the nitrogenase, and that this is a more important function than merely oxidizing the H2 produced by the nitrogenase. PMID:24317398

  5. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Wang, Yunpeng; Sun, Tao; Gao, Xingyan; Shi, Mengliang; Wu, Lina; Chen, Lei; Zhang, Weiwen

    2016-03-01

    3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. So far large-scale production of 3-HP has been mainly through petroleum-based chemical processes, whose sustainability and environmental issues have attracted widespread attention. With the ability to fix CO2 directly, cyanobacteria have been engineered as an autotrophic microbial cell factory to produce fuels and chemicals. In this study, we constructed the biosynthetic pathway of 3-HP in cyanobacterium Synechocystis sp. PCC 6803, and then optimized the system through the following approaches: i) increasing expression of malonyl-CoA reductase (MCR) gene using different promoters and cultivation conditions; ii) enhancing supply of the precursor malonyl-CoA by overexpressing acetyl-CoA carboxylase and biotinilase; iii) improving NADPH supply by overexpressing the NAD(P) transhydrogenase gene; iv) directing more carbon flux into 3-HP by inactivating the competing pathways of PHA and acetate biosynthesis. Together, the efforts led to a production of 837.18 mg L(-1) (348.8 mg/g dry cell weight) 3-HP directly from CO2 in Synechocystis after 6 days cultivation, demonstrating the feasibility photosynthetic production of 3-HP directly from sunlight and CO2 in cyanobacteria. In addition, the results showed that overexpression of the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) gene from Anabaena sp. PCC 7120 and Synechococcus sp. PCC 7942 led to no increase of 3-HP production, suggesting CO2 fixation may not be a rate-limiting step for 3-HP biosynthesis in Synechocystis. PMID:26546088

  6. Salinity Tolerance of Picochlorum atomus and the Use of Salinity for Contamination Control by the Freshwater Cyanobacterium Pseudanabaena limnetica

    PubMed Central

    von Alvensleben, Nicolas; Stookey, Katherine; Magnusson, Marie; Heimann, Kirsten

    2013-01-01

    Microalgae are ideal candidates for waste-gas and –water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles – an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass. PMID:23667639

  7. The purine degradation pathway: possible role in paralytic shellfish toxin metabolism in the cyanobacterium Planktothrix sp. FP1.

    PubMed

    Pomati, F; Manarolla, G; Rossi, O; Vigetti, D; Rossetti, C

    2001-12-01

    The paralytic shellfish toxins (PSTs) are potent neurotoxic alkaloids and their major biological effect is due to the blockage of voltage-gated sodium channels in excitable cells. They have been recognised as an important health risk for humans, animals, and ecosystems worldwide. The metabolic pathways that lead to the production and the degradation of these toxic metabolites are still unknown. In this study, we investigated the possible link between PST accumulation and the activation of the metabolism that leads to purine degradation in the filamentous freshwater cyanobacterium Planktothrix sp. FP1. The purine catabolic pathway is related to the nitrogen microcycle in water environments, in which cyanobacteria use traces of purines and ureides as a nitrogen source for growth. Thus, the activity of allantoicase, a key inducible enzyme of this metabolism, was used as tool for assaying the activation of the purine degradation pathway. The enzyme and the pathway were induced by allantoic acid, the direct substrate of allantoicase, as well as by adenine and, to a lower degree, by urea, one of the main products of purine catabolism. Crude cell extract of Escherichia coli was also employed and showed the best induction of allantoicase activity. In culture, Planktothrix sp. FP1 showed a differential accumulation of PST in consequence of the induction with different substrates. The cyanobacterial culture induced with allantoic acid accumulated 61.7% more toxins in comparison with the control. On the other hand, the cultures induced with adenine, urea, and the E. coli extract showed low PST accumulation, respectively, 1%, 38%, and 5% of the total toxins content detected in the noninduced culture. A degradation pathway for the PSTs can be hypothesised: as suggested for purine alkaloids in higher plants, saxitoxin (STX) and derivatives may also be converted into xanthine, urea, and further to CO2 and NH4+ or recycled in the primary metabolism through the purine degradation

  8. The morphology and bioactivity of the rice field cyanobacterium Leptolyngbya.

    PubMed

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-09-01

    The genus Leptolyngbya comprises filamentous cyanobacteria that are important in rice fields. In the rhizosphere, cyanobacteria produce a variety of secondary metabolites such as auxins that are important in agriculture soil performance. To assess this, Leptolyngbya strain MMG-1, was isolated from the rhizosphere of rice plants and described. For this, the morphology of this strain was studied by light microscopy as well as by confocal laser scanning microscopy. Besides, the ability of this strain to synthesize an auxin-like bioactive com- pound was demonstrated under various culture conditions (different amounts of tryptophan; pH; different alter- nating light:dark periods; duration of the incubation). The auxin-like compound was extracted from the culture of Leptolyngbya strain MMG-1 and identified as indole-3-acetic acid (IAA) by thin layer chromatography (TLC) as well as by high performance liquid chromatography (HPLC). Our results showed that the strain required the precursor L-tryptophan for the synthesis of IAA. Leptolyngbya strain MMG-1 accumulated IAA intracellularly. The IAA secreted by Leptolyngbya strain MMG-1 was significantly correlated with the initial concentration of L-tryptophan in the medium, as well as with the duration of the incubation. The bioactivity of the secreted IAA was determined by its effect on the rooting pattern of Pisum sativum seedlings. The culture supernatant of Leptolyngbya strain MMG-1 stimulated the seedling lateral rooting, while it decreased root length. Hence, rhizospheric Leptolyngbya produced auxin under different conditions and affected the plants rooting pattern. PMID:25412549

  9. Do we Underestimate the Importance of Leaf Size in Plant Economics? Disproportional Scaling of Support Costs Within the Spectrum of Leaf Physiognomy

    PubMed Central

    Niinemets, Ülo; Portsmuth, Angelika; Tena, David; Tobias, Mari; Matesanz, Silvia; Valladares, Fernando

    2007-01-01

    characteristics differed among mid-ribs, petioles and laminas, implying that the mass-weighted average leaf N and C percentage, density, and dry to fresh mass ratio can have different functional values depending on the importance of within-leaf support investments. Conclusions These data demonstrate that variation in leaf size is associated with major changes in within-leaf support investments and in large modifications in integrated leaf chemical and structural characteristics. These size-dependent alterations can importantly affect general leaf structure vs. function scaling relationships. These data further demonstrate important life-form effects on and climatic differentiation in foliage support costs. PMID:17586597

  10. Transatlantic abundance of the N2-fixing colonial cyanobacterium Trichodesmium.

    PubMed

    Davis, Cabell S; McGillicuddy, Dennis J

    2006-06-01

    Colonial diazotrophic cyanobacteria of the genus Trichodesmium are thought to play a significant role in the input of new nitrogen to upper layers of the tropical and subtropical oceanic ecosystems that cover nearly half of Earth's surface. Here we describe results of a transatlantic survey in which a noninvasive underwater digital microscope (the video plankton recorder), was towed across the North Atlantic at 6 meters per second while undulating between the surface and 130 meters. Colony abundance had a basin-scale trend, a clear association with anticyclonic eddies, and was not affected by hurricane-forced mixing. Subsurface abundance was higher than previously reported, which has important implications for the global ocean nitrogen cycle. PMID:16763148

  11. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana).

    PubMed

    Cullingham, Catherine I; Cooke, Janice E K; Coltman, David W

    2013-10-01

    Forest trees exhibit a remarkable range of adaptations to their environment, but as a result of frequent and long-distance gene flow, populations are often only weakly differentiated. Lodgepole and jack pine hybridize in western Canada, which adds the opportunity for introgression through hybridization to contribute to population structure and (or) adaptive variation. Access to large sample size, high density SNP datasets for these species would improve our ability to resolve population structure, parameterize introgression, and separate the influence of demography from adaptation. To accomplish this, 454 transcriptome reads for lodgepole and jack pine were assembled using Newbler and MIRA, the assemblies mined for SNPs, and 1536 SNPs were selected for typing on lodgepole pine, jack pine, and their hybrids (N = 536). We identified population structure using both Bayesian clustering and discriminate analysis of principle components. Introgressed SNP loci were identified and their influence on observed population structure was assessed. We found that introgressed loci resulted in increased differentiation both within lodgepole and jack pine populations. These findings are timely given the recent mountain pine beetle population expansion in the hybrid zone, and will facilitate future studies of adaptive traits in these ecologically important species. PMID:24237338

  12. Acid-base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva.

    PubMed

    Collard, Marie; Eeckhaut, Igor; Dehairs, Frank; Dubois, Philippe

    2014-12-01

    Sea cucumbers are dominant invertebrates in several ecosystems such as coral reefs, seagrass meadows and mangroves. As bioturbators, they have an important ecological role in making available calcium carbonate and nutrients to the rest of the community. However, due to their commercial value, they face overexploitation in the natural environment. On top of that, occurring ocean acidification could impact these organisms, considered sensitive as echinoderms are osmoconformers, high-magnesium calcite producers and have a low metabolism. As a first investigation of the impact of ocean acidification on sea cucumbers, we tested the impact of short-term (6 to 12 days) exposure to ocean acidification (seawater pH 7.7 and 7.4) on two sea cucumbers collected in SW Madagascar, Holothuria scabra, a high commercial value species living in the seagrass meadows, and H. parva, inhabiting the mangroves. The former lives in a habitat with moderate fluctuations of seawater chemistry (driven by day-night differences) while the second lives in a highly variable intertidal environment. In both species, pH of the coelomic fluid was significantly negatively affected by reduced seawater pH, with a pronounced extracellular acidosis in individuals maintained at pH 7.7 and 7.4. This acidosis was due to an increased dissolved inorganic carbon content and pCO2 of the coelomic fluid, indicating a limited diffusion of the CO2 towards the external medium. However, respiration and ammonium excretion rates were not affected. No evidence of accumulation of bicarbonate was observed to buffer the coelomic fluid pH. If this acidosis stays uncompensated for when facing long-term exposure, other processes could be affected in both species, eventually leading to impacts on their ecological role. PMID:25028324

  13. Trap capture of three economically important fruit fly species (Diptera: Tephritidae): evaluation of a solid formulation containing multiple male lures in a Hawaiian coffee field.

    PubMed

    Shelly, Todd; Nishimoto, Jon; Kurashima, Rick

    2012-08-01

    Invasive fruit flies (Diptera: Tephritidae) pose a global threat to agriculture through direct damage to food crops and the accompanying trade restrictions that often result. Early detection is vital to controlling fruit flies, because it increases the probability of limiting the growth and spread of the invasive population and thus may greatly reduce the monetary costs required for eradication or suppression. Male-specific lures are an important component of fruit fly detection, and three such lures are used widely: trimedlure (TML), cue lure (CL), and methyl eugenol (ME), attractive to Mediterranean fruit fly, Ceratitis capitata (Wiedemann); melon fly, Bactrocera cucurbitae (Coquillett); and oriental fruit fly, Bactrocera dorsalis (Hendel), respectively. In California, Florida, and Texas, the two Bactrocera lures are applied to separate species-specific traps as liquids (with a small amount of the insecticide naled added), whereas TML is delivered as a solid plug in another set of traps. Thus, the detection protocol involves considerable handling time as well as potential contact with a pesticide. The purpose of this study was to compare trap capture between liquid male lures and "trilure" wafers that contain TML, ME, raspberry ketone (RK, the hydroxy equivalent of CL), and the toxicant DDVP embedded within a solid matrix. Field studies were conducted in a Hawaiian coffee (Coffea arabica L.) field where the three aforementioned species co-occur, showed that the wafer captured at least as many flies as the liquid baits for all three species. This same result was obtained in comparisons using both fresh and aged (6-wk) baits. Moreover, the wafers performed as well as the single-lure traps in an ancillary experiment in which TML plugs were substituted for liquid TML. Additional experiments demonstrated explicitly that the presence of ME and RK had no effect on captures of C. capitata males and similarly that the presence of TML had no effect on the capture of B

  14. A novel gene encoding amidinotransferase in the cylindrospermopsin producing cyanobacterium Aphanizomenon ovalisporum.

    PubMed

    Shalev-Alon, Gali; Sukenik, Assaf; Livnah, Oded; Schwarz, Rakefet; Kaplan, Aaron

    2002-03-19

    The hepatotoxin cylindrospermopsin is produced by several cyanobacteria species, which may flourish in tropical and sub-tropical lakes. Biosynthesis of cylindrospermopsin is poorly understood but its chemical nature, and feeding experiments with stable isotopes, suggested that guanidinoacetic acid is the starter unit and indicated involvement of a polyketide synthase. We have identified a gene encoding an amidinotransferase from the cylindrospermopsin producing cyanobacterium Aphanizomenon ovalisporum. This is the first report on an amidinotransferase gene in cyanobacteria. It is likely to be involved in the formation of guanidinoacetic acid. The aoaA is located in a genomic region bearing genes encoding a polyketide synthase and a peptide synthetase, further supporting its putative role in cylindrospermopsin biosynthesis. PMID:12007659

  15. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium.

    PubMed Central

    Garcia-Pichel, F; Prufert-Bebout, L; Muyzer, G

    1996-01-01

    We used micromanipulation to isolate from their environment representative samples of seven geographically distant field populations fitting the description of Microcoleus chthonoplastes (a cyanobacterium) and obtained seven corresponding cultured strains. Samples of both field populations and cultures were phenotypically characterized by microscale techniques, and their partial 16S rRNA gene sequences were compared by denaturing gradient gel electrophoresis and in some cases by sequencing. All field populations and strains were phenotypically extremely coherent, and their 16S rRNA sequences were indistinguishable by DGGE. The sequences determined were identical or virtually identical. Thus, M. chthonoplastes represents a single, well-delimited taxon with a truly cosmopolitan distribution. Comparison with three culture collection strains originally assigned to M. chthonoplastes revealed that strain PCC 7420 belongs to the same tightly delimited group, both phenotypically and in 16S rRNA gene sequence, but that strains SAG 3192 and 10mfx do not. PMID:8795218

  16. Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803.

    PubMed

    Drath, Miriam; Kloft, Nicole; Batschauer, Alfred; Marin, Kay; Novak, Jens; Forchhammer, Karl

    2008-05-01

    Ammonia has long been known to be toxic for many photosynthetic organisms; however, the target for its toxicity remains elusive. Here, we show that in the cyanobacterium Synechocystis sp. strain PCC 6803, ammonia triggers a rapid photodamage of photosystem II (PSII). Whereas wild-type cells can cope with this damage by turning on the FtsH2-dependent PSII repair cycle, the FtsH2-deficient mutant is highly sensitive and loses PSII activity at millimolar concentration of ammonia. Ammonia-triggered PSII destruction is light dependent and occurs already at low photon fluence rates. Experiments with monochromatic light showed that ammonia-promoted PSII photoinhibition is executed by wavebands known to directly destroy the manganese cluster in the PSII oxygen-evolving complex, suggesting that the oxygen-evolving complex may be a direct target for ammonia toxicity. PMID:18322144

  17. Ammonia Triggers Photodamage of Photosystem II in the Cyanobacterium Synechocystis sp. Strain PCC 68031[OA

    PubMed Central

    Drath, Miriam; Kloft, Nicole; Batschauer, Alfred; Marin, Kay; Novak, Jens; Forchhammer, Karl

    2008-01-01

    Ammonia has long been known to be toxic for many photosynthetic organisms; however, the target for its toxicity remains elusive. Here, we show that in the cyanobacterium Synechocystis sp. strain PCC 6803, ammonia triggers a rapid photodamage of photosystem II (PSII). Whereas wild-type cells can cope with this damage by turning on the FtsH2-dependent PSII repair cycle, the FtsH2-deficient mutant is highly sensitive and loses PSII activity at millimolar concentration of ammonia. Ammonia-triggered PSII destruction is light dependent and occurs already at low photon fluence rates. Experiments with monochromatic light showed that ammonia-promoted PSII photoinhibition is executed by wavebands known to directly destroy the manganese cluster in the PSII oxygen-evolving complex, suggesting that the oxygen-evolving complex may be a direct target for ammonia toxicity. PMID:18322144

  18. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    PubMed Central

    Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

    2013-01-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

  19. BMAA inhibits nitrogen fixation in the cyanobacterium Nostoc sp. PCC 7120.

    PubMed

    Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

    2013-08-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

  20. Physiological effects of nickel chloride on the freshwater cyanobacterium Synechococcus sp. IU 625

    PubMed Central

    Nohomovich, Brian; Nguyen, Bao T.; Quintanilla, Michael; Lee, Lee H.; Murray, Sean R.; Chu, Tin-Chun

    2013-01-01

    Harmful algal blooms (HABs) are a serious environmental problem globally. The ability of cyanobacteria, one of the major causative agents of HABs, to grow in heavy metal polluted areas is proving a challenge to environmental restoration initiatives. Some cyanobacteria secrete toxins, such as microcystin, that are potentially dangerous to animals and humans. In this study, the physiology of a cyanobacterium was assessed to nickel chloride exposure. Cell growths were monitored throughout the study with various nickel chloride concentrations (0, 10, 25 or 50 mg/L). Morphological abnormalities were observed with microscopic image analyses. Inductively coupled plasma mass spectrometry (ICP-MS) was carried out to trace the distribution of nickel during the growth period. This study provides insight on potential nickel response mechanisms in freshwater cyanobacteria, which may lead to effective HAB prevention strategy development. PMID:24073357

  1. Differences in energy transfer of a cyanobacterium, Synechococcus sp. PCC 7002, grown in different cultivation media.

    PubMed

    Niki, Kenta; Aikawa, Shimpei; Yokono, Makio; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Currently, cyanobacteria are regarded as potential biofuel sources. Large-scale cultivation of cyanobacteria in seawater is of particular interest because seawater is a low-cost medium. In the present study, we examined differences in light-harvesting and energy transfer processes in the cyanobacterium Synechococcus sp. PCC 7002 grown in different cultivation media, namely modified A medium (the optimal growth medium for Synechococcus sp. PCC 7002) and f/2 (a seawater medium). The concentrations of nitrate and phosphate ions were varied in both media. Higher nitrate ion and/or phosphate ion concentrations yielded high relative content of phycobilisome. The cultivation medium influenced the energy transfers within phycobilisome, from phycobilisome to photosystems, within photosystem II, and from photosystem II to photosystem I. We suggest that the medium also affects charge recombination at the photosystem II reaction center and formation of a chlorophyll-containing complex. PMID:25577255

  2. Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus

    PubMed Central

    Soo, Rochelle M.; Woodcroft, Ben J.; Parks, Donovan H.; Tyson, Gene W.

    2015-01-01

    An uncultured non-photosynthetic basal lineage of the Cyanobacteria, the Melainabacteria, was recently characterised by metagenomic analyses of aphotic environmental samples. However, a predatory bacterium, Vampirovibrio chlorellavorus, originally described in 1972 appears to be the first cultured representative of the Melainabacteria based on a 16S rRNA sequence recovered from a lyophilised co-culture of the organism. Here, we sequenced the genome of V. chlorellavorus directly from 36 year-old lyophilised material that could not be resuscitated confirming its identity as a member of the Melainabacteria. We identified attributes in the genome that likely allow V. chlorellavorus to function as an obligate predator of the microalga Chlorella vulgaris, and predict that it is the first described predator to use an Agrobacterium tumefaciens-like conjugative type IV secretion system to invade its host. V. chlorellavorus is the first cyanobacterium recognised to have a predatory lifestyle and further supports the assertion that Melainabacteria are non-photosynthetic. PMID:26038723

  3. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature

    PubMed Central

    Kumar, Manoj; Kulshreshtha, Jyoti; Singh, Gajendra Pal

    2011-01-01

    In order to find out optimum culture condition for algal growth, the effect of light irradiance and temperature on growth rate, biomass composition and pigment production of Spirulina platensis were studied in axenic batch cultures. Growth kinetics of cultures showed a wide range of temperature tolerance from 20 °C to 40 °C. Maximum growth rate, cell production with maximum accumulation of chlorophyll and phycobilliproteins were found at temperature 35 °C and 2,000 lux light intensity. But with further increase in temperature and light intensity, reduction in growth rate was observed. Carotenoid content was found maximum at 3,500 lux. Improvement in the carotenoid content with increase in light intensity is an adaptive mechanism of cyanobacterium S.platensis for photoprotection, could be a good basis for the exploitation of microalgae as a source of biopigments. PMID:24031731

  4. Genetic transformation of marine cyanobacterium Synechococcus sp. CC9311 (Cyanophyceae) by electroporation

    NASA Astrophysics Data System (ADS)

    Chen, Huaxin; Lin, Hanzhi; Jiang, Peng; Li, Fuchao; Qin, Song

    2013-03-01

    Synechococcus sp. CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation (CA). A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA. The results show that Synechococcus sp. CC9311 cells were sensitive to four commonly used antibiotics: ampicillin, kanamycin, spectinomycin, and chloramphenicol. An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV, using a kanamycin resistance gene as selectable marker, was constructed by recombinant polymerase chain reaction. The plasmid was then transformed into Synechococcus sp. CC9311 via electroporation. High transformation efficiency was achieved at a field strength of 2 kV/cm. DNA analysis showed that mpeV was fully disrupted following challenge of the transformants with a high concentration of kanamycin. In addition, the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.

  5. Strategy to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis.

    PubMed

    Vázquez-Martínez, Guadalupe; Rodriguez, Mario H; Hernández-Hernández, Fidel; Ibarra, Jorge E

    2004-04-01

    An efficient strategy, based on a combination of procedures, was developed to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis. Samples were initially cultured in solid ASN-10 medium, and a crude separation of major contaminants from P. animalis filaments was achieved by washing in a series of centrifugations and resuspensions in liquid medium. Then, manageable filament fragments were obtained by probe sonication. Fragmentation was followed by forceful washing, using vacuum-driven filtration through an 8-microm pore size membrane and an excess of water. Washed fragments were cultured and treated with a sequential exposure to four different antibiotics. Finally, axenic cultures were obtained from serial dilutions of treated fragments. Monitoring under microscope examination and by inoculation in Luria-Bertani (LB) agar plates indicated either axenicity or the degree of contamination throughout the strategy. PMID:15003694

  6. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme.

    PubMed

    Peramuna, Anantha; Summers, Michael L

    2014-12-01

    Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), α-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria. PMID:25135835

  7. Space-environmental tolerances in a cyanobacterium, Nostoc sp. HK-01

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Yokobori, Shin-ichi; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Ajioka, Reiko; Yamagishi, Akihiko; Inoue, Kotomi

    2016-07-01

    We have been investigating the tolerances to space-environments of a cyanobacterium, Nostoc sp. HK-01 (hereafter referred to as HK-01). Dry colonies of HK-01 had high tolerance to dry conditions, but more detailed information about tolerance to high-temperature, UV, gamma-ray and heavy particle beams were not deeply investigated. The obtained dry colonies of HK-01 after exposure to each of the conditions described above were investigated. In all of the tested colonies of HK-01 after exposure, all or some of the cells in the colonies were alive. One of the purposes of space agriculture is growing plants on Mars. In the early stages, of our research, cyanobacteria are introduced on Mars to promote the oxidation of the atmosphere and the formation of soil from Mars's regolith. HK-01 will contribute to each of these factors in the future.

  8. Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina.

    PubMed

    Chen, Min; Floetenmeyer, Matthias; Bibby, Thomas S

    2009-08-01

    Here we report the high-resolution detail of the organization of phycobiliprotein structures associated with photosynthetic membranes of the chlorophyll d-containing cyanobacterium Acaryochloris marina. Cryo-electron transmission-microscopy on native cell sections show extensive patches of near-crystalline phycobiliprotein rods that are associated with the stromal side of photosynthetic membranes. This supramolecular photosynthetic structure represents a novel mechanism of organizing the photosynthetic light-harvesting machinery. In addition, the specific location of phycobiliprotein patches suggests a physical separation of photosystem I and photosystem II reaction centres. Based on this finding and the known photosystem's structure in Acaryochloris, we discuss possible membrane arrangements of photosynthetic membrane complexes in this species. PMID:19596002

  9. Unique modification of adenine in genomic DNA of the marine cyanobacterium Trichodesmium sp. strain NIBB 1067.

    PubMed Central

    Zehr, J P; Ohki, K; Fujita, Y; Landry, D

    1991-01-01

    The genomic DNA of the marine nonheterocystous nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067 was found to be highly resistant to DNA restriction endonucleases. The DNA was digested extensively by the restriction enzyme DpnI, which requires adenine methylation for activity. The DNA composition, determined by high-performance liquid chromatography (HPLC), was found to be 69% AT. Surprisingly, it was found that a modified adenine which was not methylated at the usual N6 position was present and made up 4.7 mol% of the nucleosides in Trichodesmium DNA (15 mol% of deoxyadenosine). In order for adenine residues to be modified at this many positions, there must be many modifying enzymes or at least one of the modifying enzymes must have a degenerate recognition site. The reason(s) for this extensive methylation has not yet been determined but may have implications for the ecological success of this microorganism in nature. Images FIG. 1 FIG. 2 PMID:1657876

  10. Expression of Escherichia coli phosphoenolpyruvate carboxylase in a cyanobacterium. Functional complementation of Synechococcus PCC 7942 ppc.

    PubMed Central

    Luinenburg, I; Coleman, J R

    1993-01-01

    The gene (ppc) coding for phosphoenolpyruvate carboxylase (PEPCase) in the cyanobacterium Synechococcus PCC 7942 has been inactivated via insertional mutagenesis while being functionally complemented by Escherichia coli ppc. Cyanobacterial cells functionally complemented by E. coli ppc showed decreased PEPCase activity in crude cell lysates and detergent-permeabilized whole cell assays. Decreased rates of growth, reduced levels of chlorophyll a, and decreased photosynthetic O2 evolution capacity per cell when compared to wild-type cyanobacterial cells were also observed. Phycobiliprotein levels were not affected. The results are discussed in terms of the impact of reduced PEPCase activity on cyanobacterial cell metabolism and the regulatory properties of the E. coli gene product. PMID:8278492

  11. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme

    PubMed Central

    Peramuna, Anantha; Summers, Michael L.

    2014-01-01

    Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophyllic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen–fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), - tochopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location these structures represent a novel sub-organelle in cyanobacteria. PMID:25135835

  12. Calcium is required for swimming by the nonflagellated cyanobacterium Synechococcus strain WH8113.

    PubMed Central

    Pitta, T P; Sherwood, E E; Kobel, A M; Berg, H C

    1997-01-01

    The marine cyanobacterium Synechococcus strain WH8113 swims in the absence of any recognizable organelles of locomotion. We have found that calcium is required for this motility. Cells deprived of calcium stopped swimming, while addition of calcium completely restored motility. No other divalent ions tested could replace calcium. Terbium, a lanthanide ion, blocked motility even when calcium was present at 10(5)-fold-higher concentrations, presumably by occupying calcium binding sites. Calcium chelators, EGTA or EDTA, blocked motility, even when calcium was present at 25-fold-higher concentrations, presumably by acting as calcium ionophores. Finally, motility was blocked by verapamil and nitrendipine, molecules known to block voltage-gated calcium channels of eukaryotic cells by an allosteric mechanism. These results suggest that a calcium potential is involved in the mechanism of motility. PMID:9098048

  13. Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis

    SciTech Connect

    Owttrim, G.W.; Coleman, J.R.

    1987-05-01

    A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system.

  14. Effect of nitrogen starvation on the morphology and ultrastructure of the cyanobacterium Mastigocladus laminosus.

    PubMed Central

    Stevens, S E; Nierzwicki-Bauer, S A; Balkwill, D L

    1985-01-01

    The effects of nitrogen starvation on the morphology and ultrastructure of the branching, filamentous cyanobacterium Mastigocladus laminosus were examined with light and electron microscopy. The internal ultrastructural characteristics of vegetative cells changed markedly during nitrogen starvation. Carboxysomes were degraded, while polyphosphate bodies and lipid bodies accumulated. The ultrastructure of mature heterocysts was also affected by nitrogen starvation; their intracytoplasmic membranes vesiculated to form vacuolelike structures and, eventually, large empty regions in the cytoplasm. Nitrogen starvation stimulated extensive heterocyst differentiation in M. laminosus, producing heterocyst frequencies of 17.5% in narrow filaments and 28.3% in wide filaments within 44 h after transfer to N-free conditions. Cells in wide filaments differentiated so extensively that only 16.8% of them failed to initiate the differentiation process within 44 h. Images PMID:3918986

  15. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    PubMed

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  16. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays

    PubMed Central

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  17. Handbook of legumes of world economic importance

    SciTech Connect

    Duke, J.A.

    1981-01-01

    Treatments by 65 contributing authors are presented for some 150 species of Leguminosae (including major tree and shrub species) with information on: uses, folk medicine, chemistry, 'germplasm'; ecology; cultivation/harvesting/yields; and biotic factors affecting the species.

  18. [Economic crime].

    PubMed

    Dinitz, S

    1976-01-01

    Economic crime, often also referred to as white collar crime, is one of the most incidious and predatory of offenses. Unlike street crime, for which there may well be some protection, the average citizen is completely at the mercy of the perpetrators of economic crimes. The concept of white collar crime was first identified by Edwin H. Sutherland. He dealt with the problem as a violation of trust involving either or both misrepresentation and duplicity. He argued for the use of criminal sanctions rather than civil remedies as a means of dealing with white collar offenses. Sutherland's views were attacked by the legal profession, by sociologists and criminologists and by public opinion specialists. They contended that an act treated in civil court is not a crime; that criminals are those persons who are defined as such and white collar criminals are neither so defined nor do they define themselves as criminals and, finally, that economic crime is universal. Can anyone be criminal, then, ask the critics? A number of studies by Clinard, Quinney, Black, Ball, Cressey, Newman and others have translated the interest in white collar crime into empirical terms. The last thirty-five years have also witnessed the elaboration and alteration of the theory itself. Geis' work has been particularly important in this respect. His "street" versus "suite" crime is a useful dichotomy. Most important, however, have been the monograph and papers by Herbert Edelhertz who has conceptualized the issues on various levels - from consumer fraud to the illegal activities of the multinational corporation. This article is concerned with the exposition of the theory and research in the field. Most significant, the paper raises serious doubts whether the problem of economic crime can be researched and studied; it raises even more difficult issues concerning the legal and sociological implications of economic crime and of its prevention, management and control. PMID:1030807

  19. Economic impact

    SciTech Connect

    Technology Transfer Department

    2001-06-01

    In federal fiscal year 2000 (FY00), Berkeley Lab had 4,347 full- and part-time employees. In addition, at any given time of the year, there were more than 1,000 Laboratory guests. These guests, who also reside locally, have an important economic impact on the nine-county Bay Area. However, Berkeley Lab's total economic impact transcends the direct effects of payroll and purchasing. The direct dollars paid to the Lab's employees in the form of wages, salaries, and benefits, and payments made to contractors for goods and services, are respent by employees and contractors again and again in the local and greater economy. Further, while Berkeley Lab has a strong reputation for basic scientific research, many of the Lab's scientific discoveries and inventions have had direct application in industry, spawning new businesses and creating new opportunities for existing firms. This analysis updates the Economic Impact Analysis done in 1996, and its purpose is to describe the economic and geographic impact of Laboratory expenditures and to provide a qualitative understanding of how Berkeley Lab impacts and supports the local community. It is intended as a guide for state, local, and national policy makers as well as local community members. Unless otherwise noted, this analysis uses data from FY00, the most recent year for which full data are available.

  20. Draft Genome Sequence of the N2-Fixing Cyanobacterium Nostoc piscinale CENA21, Isolated from the Brazilian Amazon Floodplain

    PubMed Central

    Guimarães, Pedro Ivo; de Melo, Aline Grasielle Costa; Ramos, Rommel Thiago Jucá; Leão, Pedro Nuno; Silva, Artur; Fiore, Marli Fatima; Schneider, Maria Paula Cruz

    2016-01-01

    We announce here the draft genome sequence of Nostoc piscinale CENA21, a diazotrophic heterocyst-forming cyanobacterium isolated from the Solimões River, Amazon Basin, Brazil. It consists of one circular chromosome scaffold with 11 contigs and total size of 7,094,556 bp. Secondary metabolite annotations indicate a good source for the discovery of novel natural products. PMID:27034496

  1. Draft Genome Sequence of the N2-Fixing Cyanobacterium Nostoc piscinale CENA21, Isolated from the Brazilian Amazon Floodplain.

    PubMed

    Leão, Tiago; Guimarães, Pedro Ivo; de Melo, Aline Grasielle Costa; Ramos, Rommel Thiago Jucá; Leão, Pedro Nuno; Silva, Artur; Fiore, Marli Fatima; Schneider, Maria Paula Cruz

    2016-01-01

    We announce here the draft genome sequence ofNostoc piscinaleCENA21, a diazotrophic heterocyst-forming cyanobacterium isolated from the Solimões River, Amazon Basin, Brazil. It consists of one circular chromosome scaffold with 11 contigs and total size of 7,094,556 bp. Secondary metabolite annotations indicate a good source for the discovery of novel natural products. PMID:27034496

  2. Draft Genome Assembly of the Bloom-Forming Cyanobacterium Nodularia spumigena Strain CENA596 in Shrimp Production Ponds

    PubMed Central

    Popin, Rafael Vicentini; Rigonato, Janaina; Abreu, Vinicius Augusto Carvalho; Andreote, Ana Paula Dini; Silveira, Savênia Bonoto; Odebrecht, Clarisse

    2016-01-01

    We report here the draft genome assembly of the brackish cyanobacterium Nodularia spumigena strain CENA596 isolated from a shrimp production pond in Rio Grande do Sul, Brazil. The draft genome consists of 291 contigs with a total size of 5,189,679 bp. Secondary metabolite annotations resulted in several predicted gene clusters, including those responsible for encoding the hepatotoxin nodularin. PMID:27284148

  3. Effect of hydration and dehydration on initiation and dynamics of some physiological reactions in desiccation tolerant cyanobacterium Scytonema geitleri.

    PubMed

    Tiwari, B S; Tripathi, S N

    1998-06-01

    The effect of hydration and dehydration has been studied on extent and recovery of some metabolic reactions in desiccation tolerant terrestrial cyanobacterium Scytonema geitleri. The results show that the energy transducing reactions like photochemical reactions of photosynthesis recover first, followed by increase in ATP pool size. During later phase of hydration, appearance of energy consuming processes such as CO2 fixation and nitrogen fixation have been observed. Sensitivity of reactions during dehydration followed the pattern reverse to recovery processes. PMID:9803667

  4. Draft Genome Assembly of the Bloom-Forming Cyanobacterium Nodularia spumigena Strain CENA596 in Shrimp Production Ponds.

    PubMed

    Popin, Rafael Vicentini; Rigonato, Janaina; Abreu, Vinicius Augusto Carvalho; Andreote, Ana Paula Dini; Silveira, Savênia Bonoto; Odebrecht, Clarisse; Fiore, Marli Fatima

    2016-01-01

    We report here the draft genome assembly of the brackish cyanobacterium Nodularia spumigena strain CENA596 isolated from a shrimp production pond in Rio Grande do Sul, Brazil. The draft genome consists of 291 contigs with a total size of 5,189,679 bp. Secondary metabolite annotations resulted in several predicted gene clusters, including those responsible for encoding the hepatotoxin nodularin. PMID:27284148

  5. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

    2012-04-05

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

  6. Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    Vu, Trang; Stolyar, Sergey; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Brown, Roslyn N.; Lipton, Mary S.; Osterman, Andrei L.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.; Reed, Jennifer L.

    2012-04-05

    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When photosystem II flux is high, terminal oxidases of respiratory electron transport are predicted to be an important mechanism for removing excess electrons. When photosystem I flux is high cyclic electron transport becomes important. Model predictions of growth rates were in good quantitative agreement with measured growth rates, and predictions of reaction usage were ualitatively consistent with protein and mRNA expression data, when these latter datasets were used to constrain the model.

  7. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga—Competition or Allelopathy?

    PubMed Central

    B-Béres, Viktória; Vasas, Gábor; Dobronoki, Dalma; Gonda, Sándor; Nagy, Sándor Alex; Bácsi, István

    2015-01-01

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds. PMID:26528991

  8. Dispensability of a sulfolipid for photoautotrophic cell growth and photosynthesis in a marine cyanobacterium, Synechococcus sp. PCC 7002.

    PubMed

    Sato, Norihiro; Kamimura, Ryohei; Tsuzuki, Mikio

    2016-09-01

    Sulfoquinovosyl diacylglycerol, which mainly comprises thylakoid membranes in oxygenic photosynthetic organisms, plays species-dependent roles in freshwater microbes. In this study, a sulfoquinovosyl-diacylglycerol deficient mutant was generated in a cyanobacterium, Synechococcus sp. PCC 7002, for the first time among marine microbes to gain more insight into its physiological significance. The mutation had little deleterious impact on photoautotrophic cell growth, and functional and structural properties of the photosystem II complex. These findings were similar to previous observations for a freshwater cyanobacterium, Synechococcus elongatus PCC 7942, but were distinct from those for another freshwater cyanobacterium, Synechocystis sp. PCC 6803, and a green alga, Chlamydomonas reinhardtii, both of which require sulfoquinovosyl diacylglycerol for cell growth and/or photosystem II. Therefore, the functionality of PSII to dispense with sulfoquinovosyl diacylglycerol in Synechococcus sp. PCC 7002, similar to that in Synechococcus elongatus PCC 7942, seemed to have been excluded from the evolution of the PSII complex from cyanobacteria to green algal chloroplasts. Meanwhile, sulfoquinovosyl diacylglycerol was found to contribute to photoheterotrophic growth of Synechococcus sp. PCC 7002, which revealed a novel species-dependent strategy for utilizing SQDG in physiological processes. PMID:27372425

  9. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga-Competition or Allelopathy?

    PubMed

    B-Béres, Viktória; Vasas, Gábor; Dobronoki, Dalma; Gonda, Sándor; Nagy, Sándor Alex; Bácsi, István

    2015-11-01

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds. PMID:26528991

  10. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    NASA Technical Reports Server (NTRS)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  11. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    NASA Astrophysics Data System (ADS)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  12. Elucidation of Insertion Elements Carried on Plasmids and In Vitro Construction of Shuttle Vectors from the Toxic Cyanobacterium Planktothrix

    PubMed Central

    Christiansen, Guntram; Goesmann, Alexander

    2014-01-01

    Several gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacterium Planktothrix agardhii NIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively) in vitro by PCR amplification and the subsequent transposition of the Tn5 cat transposon containing the R6Kγ origin of replication of Escherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cat transposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing and in vitro production of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes. PMID:24907328

  13. Proteomic Analysis of the Marine Cyanobacterium Synechococcus WH8102 and Implications for Estimates of the Cellular Iron Content

    NASA Astrophysics Data System (ADS)

    Saito, M. A.; Bertrand, E. M.; Bulygin, V.; Moran, D.; Waterbury, J. B.

    2008-12-01

    The proteome of the marine cyanobacterium Synechococcus WH8102 was analyzed by nanospray liquid chromatography mass spectrometry (nLC-MS) with two major goals: to provide a first examination of the relative abundance of the most abundant proteins in this important microbe and to provide the necessary mass spectra for future quantification of biogeochemically significant proteins. Analyses of 37 nLC-MS runs of whole cell tryptic digestions and SDS-PAGE gel separated tryptic digestions resulted in a total of 636 proteins identified, 376 identified with two or more tryptic peptides. The identifications used the Sequest algorithm with stringent data filters on 54003 observed peptides, 3066 of which were unique, with a false positive rate of 2.2%. These measured proteins represent ~ 25.2% (14.8% with >= 2 peptides) of the open reading frames (ORFs) in the genome, similar to or higher than the percentage found in other cyanobacterial proteome studies thus far. The relative abundance of the more abundant proteins in the proteome was examined using the exponentially modified protein abundance index from a single nLC-MS run that identified 372 proteins (14.7% of the ORFs) from 7743 observed peptides (1224 unique peptides). Estimates of the relative abundance showed the photosynthesis and respiration category contributing approximately 32% of the total detected protein, hypothetical proteins contributing about 16%, and translation about 12%. Of biogeochemical interest, multiple types of nitrogen assimilation systems were observed to be simultaneously expressed as proteins, only 5 of the 21 B12 biosynthesis proteins were identified likely due to low abundance, and the metalloproteins metallothionein and nickel superoxide dismutase were relatively abundant. In contrast to previous predictions of a high photosystem I: photosystem II ratio of approximately 3 in the cyanobacteria and a resultant high cellular iron content, the ratio of the average relative abundances of all

  14. Photosynthetic acclimation of the filamentous cyanobacterium, Plectonema boryanum UTEX 485, to temperature and light.

    PubMed

    Miśkiewicz, E; Ivanov, A G; Williams, J P; Khan, M U; Falk, S; Huner, N P

    2000-06-01

    Photosynthetic acclimation to temperature and irradiance was studied in the filamentous, non-heterocystous cyanobacterium Plectonema boryanum UTEX 485. Growth rates of this cyanobacterium measured at ambient CO2 were primarily influenced by temperature with minimal effects of irradiance. Both growth temperature and irradiance affected linolenic (18:3) and linoleic acid (18:2) levels in the four major lipid classes in an independent but additive manner. In contrast, photosynthetic acclimation was not due to either growth temperature or irradiance per se, but rather, due to the interaction of these environmental factors. P. boryanum grown at low temperature and moderate irradiance mimicked cells grown at high light. Compared to cells grown at either 29 degrees C/150 micromol m(-2) s(-1) (29/150) or 15/10, P. boryanum grown at either 15/150 or 29/750 exhibited: (1) reduced cellular levels of Chl a and phycobilisomes (PBS), and concomitantly higher content of an orange-red carotenoid, myxoxanthophyll; (2) higher light saturated rates (Pmax) when expressed on a Chl a basis but lower apparent quantum yields of oxygen evolution and (3) enhanced resistance to high light stress. P. boryanum grown at 15/150 regained normal blue-green pigmentation within 16 h after a temperature shift to 29 degrees C at a constant irradiance of 150 micromol m(-2) s(-1). DBMIB and KCN but not DCMU and atrazine partially inhibited the change in myxoxanthophyll/Chl a ratio following the shift from 15 to 29 degrees C. We conclude that P. boryanum responds to either varying growth temperature or varying growth irradiance by adjusting the ability to absorb light through decreasing the cellular contents of Chl a and light-harvesting pigments and screening of excessive light by myxoxanthophyll predominantly localized in the cell wall/cell membrane to protect PSII from over-excitation. The possible role of redox sensing/signalling for photosynthetic acclimation of cyanobacteria to either temperature

  15. Identification and upregulation of biosynthetic genes required for accumulation of Mycosporine-2-glycine under salt stress conditions in the halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Sopun, Warangkana; Tanaka, Yoshito; Takabe, Teruhiro

    2014-03-01

    Mycosporine-like amino acids (MAAs) are valuable molecules that are the basis for important photoprotective constituents. Here we report molecular analysis of mycosporine-like amino acid biosynthetic genes from the halotolerant cyanobacterium Aphanothece halophytica, which can survive at high salinity and alkaline pH. This extremophile was found to have a unique MAA core (4-deoxygadusol)-synthesizing gene separated from three other genes. In vivo analysis showed accumulation of the mycosporine-2-glycine but not shinorine or mycosporine-glycine. Mycosporine-2-glycine accumulation was stimulated more under the stress condition of high salinity than UV-B radiation. The Aphanothece MAA biosynthetic genes also manifested a strong transcript level response to salt stress. Furthermore, the transformed Escherichia coli and Synechococcus strains expressing four putative Aphanothece MAA genes under the control of a native promoter were found to be capable of synthesizing mycosporine-2-glycine. The accumulation level of mycosporine-2-glycine was again higher under the high-salinity condition. In the transformed E. coli cells, its level was approximately 85.2 ± 0.7 μmol/g (dry weight). Successful production of a large amount of mycosporine in these cells provides a new opportunity in the search for an alternative natural sunscreen compound source. PMID:24375141

  16. Contribution of a Sodium Ion Gradient to Energy Conservation during Fermentation in the Cyanobacterium Arthrospira (Spirulina) maxima CS-328 ▿ †

    PubMed Central

    Carrieri, Damian; Ananyev, Gennady; Lenz, Oliver; Bryant, Donald A.; Dismukes, G. Charles

    2011-01-01

    Sodium gradients in cyanobacteria play an important role in energy storage under photoautotrophic conditions but have not been well studied during autofermentative metabolism under the dark, anoxic conditions widely used to produce precursors to fuels. Here we demonstrate significant stress-induced acceleration of autofermentation of photosynthetically generated carbohydrates (glycogen and sugars) to form excreted organic acids, alcohols, and hydrogen gas by the halophilic, alkalophilic cyanobacterium Arthrospira (Spirulina) maxima CS-328. When suspended in potassium versus sodium phosphate buffers at the start of autofermentation to remove the sodium ion gradient, photoautotrophically grown cells catabolized more intracellular carbohydrates while producing 67% higher yields of hydrogen, acetate, and ethanol (and significant amounts of lactate) as fermentative products. A comparable acceleration of fermentative carbohydrate catabolism occurred upon dissipating the sodium gradient via addition of the sodium-channel blocker quinidine or the sodium-ionophore monensin but not upon dissipating the proton gradient with the proton-ionophore dinitrophenol (DNP). The data demonstrate that intracellular energy is stored via a sodium gradient during autofermentative metabolism and that, when this gradient is blocked, the blockage is compensated by increased energy conversion via carbohydrate catabolism. PMID:21890670

  17. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803

    SciTech Connect

    Lee, Tai-Chi; Xiong, Wei; Paddock, Troy; Carrieri, Damian; Chang, Ing-Feng; Chiu, Hui-Fen; Ungerer, Justin; Hank Juo, Suh-Hang; Maness, Pin-Ching; Yu, Jianping

    2015-07-01

    Hydrolysis of plant biomass generates a mixture of simple sugars that is particularly rich in glucose and xylose. Fermentation of the released sugars emits CO2 as byproduct due to metabolic inefficiencies. Therefore, the ability of a microbe to simultaneously convert biomass sugars and photosynthetically fix CO2 into target products is very desirable. In this work, the cyanobacterium, Synechocystis 6803, was engineered to grow on xylose in addition to glucose. Both the xylA (xylose isomerase) and xylB (xylulokinase) genes from Escherichia coli were required to confer xylose utilization, but a xylose-specific transporter was not required. Introducing xylAB into an ethylene-producing strain increased the rate of ethylene production in the presence of xylose. Additionally, introduction of xylAB into a glycogen-synthesis mutant enhanced production of keto acids. Moreover, isotopic tracer studies found that nearly half of the carbon in the excreted keto acids was derived from the engineered xylose metabolism, while the remainder was derived from CO2 fixation.

  18. Dinitrogen Fixation Is Restricted to the Terminal Heterocysts in the Invasive Cyanobacterium Cylindrospermopsis raciborskii CS-505

    PubMed Central

    Plominsky, Álvaro M.; Larsson, John; Bergman, Birgitta; Delherbe, Nathalie; Osses, Igor; Vásquez, Mónica

    2013-01-01

    The toxin producing nitrogen-fixing heterocystous freshwater cyanobacterium Cylindrospermopsis raciborskii recently radiated from its endemic tropical environment into sub-tropical and temperate regions, a radiation likely to be favored by its ability to fix dinitrogen (diazotrophy). Although most heterocystous cyanobacteria differentiate regularly spaced intercalary heterocysts along their trichomes when combined nitrogen sources are depleted, C. raciborskii differentiates only two terminal heterocysts (one at each trichome end) that can reach >100 vegetative cells each. Here we investigated whether these terminal heterocysts are the exclusive sites for dinitrogen fixation in C. raciborskii. The highest nitrogenase activity and NifH biosynthesis (western-blot) were restricted to the light phase of a 12/12 light/dark cycle. Separation of heterocysts and vegetative cells (sonication and two-phase aqueous polymer partitioning) demonstrated that the terminal heterocysts are the sole sites for nifH expression (RT-PCR) and NifH biosynthesis. The latter finding was verified by the exclusive localization of nitrogenase in the terminal heterocysts of intact trichomes (immunogold-transmission electron microscopy and in situ immunofluorescence-light microscopy). These results suggest that the terminal heterocysts provide the combined nitrogen required by the often long trichomes (>100 vegetative cells). Our data also suggests that the terminal-heterocyst phenotype in C. raciborskii may be explained by the lack of a patL ortholog. These data help identify mechanisms by which C. raciborskii and other terminal heterocyst-forming cyanobacteria successfully inhabit environments depleted in combined nitrogen. PMID:23405062

  19. Purification and characterization of alanine dehydrogenase from a cyanobacterium, Phormidium lapideum.

    PubMed

    Sawa, Y; Tani, M; Murata, K; Shibata, H; Ochiai, H

    1994-11-01

    Alanine dehydrogenase (AlaDH) was purified to homogeneity from cell-free extracts of a non-N2-fixing filamentous cyanobacterium, Phormidium lapideum. The molecular mass of the native enzyme was 240 kDa, and SDS-PAGE revealed a minimum molecular mass of 41 kDa, suggesting a six-subunit structure. The NH2 terminal amino acid residues of the purified AlaDH revealed marked similarity with that of other AlaDHs. The enzyme was highly specific for L-alanine and NAD+, but showed relatively low amino-acceptor specificity. The pH optimum was 8.4 for reductive amination of pyruvate and 9.2 for oxidative deamination of L-alanine. The Km values were 5.0 mM for L-alanine and 0.04 mM for NAD+, 0.33 mM for pyruvate, 60.6 mM for NH4+ (pH 8.7), and 0.02 mM for NADH. Various L-amino acids including alanine, serine, threonine, and aromatic amino acids, inhibited the aminating reaction. The enzyme was inactivated upon incubation with pyridoxal 5'-phosphate (PLP) followed by reduction with sodium borohydride. The copresence of NADH and pyruvate largely protected the enzyme against the inactivation by PLP. PMID:7896761

  20. Sublethal detergent concentrations increase metabolization of recalcitrant polyphosphonates by the cyanobacterium Spirulina platensis.

    PubMed

    Forlani, Giuseppe; Bertazzini, Michele; Giberti, Samuele; Wieczorek, Dorota; Kafarski, Paweł; Lipok, Jacek

    2013-05-01

    As a consequence of increasing industrial applications, thousand tons of polyphosphonates are introduced every year into the environment. The inherent stability of the C-P bond results in a prolonged half-life. Moreover, low uptake rates limit further their microbial metabolization. To assess whether low detergent concentrations were able to increase polyphosphonate utilization by the cyanobacterium Spirulina platensis, tolerance limits to the exposure to various detergents were determined by measuring the growth rate in the presence of graded levels below the critical micellar concentration. Then, the amount of hexamethylenediamine-N,N,N',N'-tetrakis(methylphosphonic acid) that is metabolized in the absence or in the presence of sublethal detergent concentrations was quantified by (31)P NMR analysis on either P-starved or P-fed cyanobacterial cultures. The strain tolerated the presence of detergents in the order: nonionic > anionic > cationic. When added to the culture medium at the highest concentrations showing no detrimental effects upon cell viability, detergents either improved or decreased polyphosphonate utilization, the anionic sodium dodecyl sulfate being the most beneficial. Metabolization was not lower in P-fed cells--a result that strengthens the possibility of using, in the future, this strain for bioremediation purposes. PMID:23089958

  1. Cylindrofridins A-C, Linear Cylindrocyclophane-Related Alkylresorcinols from the Cyanobacterium Cylindrospermum stagnale.

    PubMed

    Preisitsch, Michael; Niedermeyer, Timo H J; Heiden, Stefan E; Neidhardt, Inga; Kumpfmüller, Jana; Wurster, Martina; Harmrolfs, Kirsten; Wiesner, Christoph; Enke, Heike; Müller, Rolf; Mundt, Sabine

    2016-01-22

    A rapid and exhaustive one-step biomass extraction as well as an enrichment and cleanup procedure has been developed for HPLC-UV detection and quantification of closely related [7.7]paracyclophanes and structural derivatives based on a two-phase solvent system. The procedure has been validated using the biomass of the carbamidocyclophane- and cylindrocyclophane-producing cyanobacterium Nostoc sp. CAVN2 and was utilized to perform a screening comprising 102 cyanobacterial strains. As a result, three new cylindrocyclophane-related alkylresorcinols, cylindrofridins A-C (1-3), and known cylindrocyclophanes (4-6) were detected and isolated from Cylindrospermum stagnale PCC 7417. Structures of 1-3 were elucidated by a combination of 1D and 2D NMR experiments, HRMS, and ECD spectroscopy. Cylindrofridin A (1) is the first naturally occurring [7.7]paracyclophane-related monomeric derivative. In contrast, cylindrofridins B (2) and C (3) represent dimers related to 1. Due to chlorination at the alkyl carbon atom in 1-3, the site of [7.7]paracyclophane macrocycle formation, the cylindrofridins represent linearized congeners of the cylindrocyclophanes. Compounds 1-3 were not toxic against nontumorigenic HaCaT cells (IC50 values >25 μM) compared to the respective cylindrocyclophanes, but 1 was the only cylindrofridin showing moderate activity against methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae with MIC values of 9 and 17 μM, respectively. PMID:26684177

  2. Apratoxin H and Apratoxin A Sulfoxide from the Red Sea Cyanobacterium Moorea producens

    PubMed Central

    Thornburg, Christopher C.; Cowley, Elise S.; Sikorska, Justyna; Shaala, Lamiaa A.; Ishmael, Jane E.; Youssef, Diaa T.A.; McPhail, Kerry L.

    2014-01-01

    Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues, apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC50 = 3.4 and 89.9 nM, respectively) provides further insight into the structure–activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche. PMID:24016099

  3. Main chain and side chain dynamics of oxidized flavodoxin from Cyanobacterium anabaena.

    PubMed

    Liu, W; Flynn, P F; Fuentes, E J; Kranz, J K; McCormick, M; Wand, A J

    2001-12-11

    Oxidized flavodoxin from Cyanobacterium anabaena PCC 7119 is used as a model system to investigate the fast internal dynamics of a flavin-bearing protein. Virtually complete backbone and side chain resonance NMR assignments of an oxidized flavodoxin point mutant (C55A) have been determined. Backbone and side chain dynamics in flavodoxin (C55A) were investigated using (15)N amide and deuterium methyl NMR relaxation methods. The squared generalized order parameters (S(NH)(2)) for backbone amide N-H bonds are found to be uniformly high ( approximately 0.923 over 109 residues in regular secondary structure), indicating considerable restriction of motion in the backbone of the protein. In contrast, methyl-bearing side chains are considerably heterogeneous in their amplitude of motion, as indicated by obtained symmetry axis squared generalized order parameters (S(axis)(2)). However, in comparison to nonprosthetic group-bearing proteins studied with these NMR relaxation methods, the side chains of oxidized flavodoxin are unusually rigid. PMID:11732893

  4. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120.

    PubMed

    Rudolf, Mareike; Kranzler, Chana; Lis, Hagar; Margulis, Ketty; Stevanovic, Mara; Keren, Nir; Schleiff, Enrico

    2015-08-01

    Iron is a member of a small group of nutrients that limits aquatic primary production. Mechanisms for utilizing iron have to be efficient and adapted according to the ecological niche. In respect to iron acquisition cyanobacteria, prokaryotic oxygen evolving photosynthetic organisms can be divided into siderophore- and non-siderophore-producing strains. The results presented in this paper suggest that the situation is far more complex. To understand the bioavailability of different iron substrates and the advantages of various uptake strategies, we examined iron uptake mechanisms in the siderophore-producing cyanobacterium Anabaena sp. PCC 7120. Comparison of the uptake of iron complexed with exogenous (desferrioxamine B, DFB) or to self-secreted (schizokinen) siderophores by Anabaena sp. revealed that uptake of the endogenous produced siderophore complexed to iron is more efficient. In addition, Anabaena sp. is able to take up dissolved, ferric iron hydroxide species (Fe') via a reductive mechanism. Thus, Anabaena sp. exhibits both, siderophore- and non-siderophore-mediated iron uptake. While assimilation of Fe' and FeDFB are not induced by iron starvation, FeSchizokinen uptake rates increase with increasing iron starvation. Consequently, we suggest that Fe' reduction and uptake is advantageous for low-density cultures, while at higher densities siderophore uptake is preferred. PMID:25943160

  5. Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp.

    PubMed

    Miao, Xiaoling; Wu, Qingyu; Wu, Guifang; Zhao, Nanming

    2003-03-01

    The agp gene encoding ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis. By in vitro DNA recombination technology, agp deletion mutant (agp-) of cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutation led to a complete absence of glycogen biosynthesis. As compared with WT (wild type), a 60% decrease in ratio of the c-phycocyanine/chlorophyll a and no significant change in the carotenoid/chlorophyll a were observed in agp- cells. The agp- mutant had 38% less photosynthetic capacity when grown in light over 600 micromol m(-2) s(-1). Under lower light intensity, the final biomass of the mutant strain was only 1.1 times of that of the WT strain under mixotrophic condition after 6 d culture. Under higher light intensity, however, the final biomass of the WT strain under mixotrophic conditions was 3 times that of the mutant strain after 6 d culture and 1.5 times under photoautotrophic conditions. The results indicate that there is a minimum requirement for glycogen synthesis for normal growth and development in cyanobacteria. PMID:12882559

  6. Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

    PubMed Central

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  7. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs.

    PubMed

    Klatt, Judith M; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-09-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210 μM temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms. PMID:25630511

  8. Oxygen evolution in the thylakoid-lacking cyanobacterium Gloeobacter violaceus PCC 7421.

    PubMed

    Koyama, Kohei; Suzuki, Hiroyuki; Noguchi, Takumi; Akimoto, Seiji; Tsuchiya, Tohru; Mimuro, Mamoru

    2008-04-01

    The oxygen-evolving reactions of the thylakoid-lacking cyanobacterium Gloeobacter violaceus PCC 7421 were compared with those of Synechocystis sp. PCC 6803. Four aspects were considered: sequence conservation in three extrinsic proteins for oxygen evolution, steady-state oxygen-evolving activity, charge recombination reactions, i.e., thermoluminescence and oscillation patterns of delayed luminescence on a second time scale and delayed fluorescence on the nanosecond time scale at -196 degrees C. Even though there were significant differences between the amino acid sequences of extrinsic proteins in G. violaceus and Synechocystis sp. PCC 6803, the oxygen-evolving activities were similar. The delayed luminescence oscillation patterns and glow curves of thermoluminescence were essentially identical between the two species, and the nanosecond delayed fluorescence spectral profiles and lifetimes were also very similar. These results indicate clearly that even though the oxygen-evolving reactions are carried out in the periplasm by components with altered amino acid sequences, the essential reaction processes for water oxidation are highly conserved. In contrast, we observed significant changes on the reduction side of photosystem II. Based on these data, we discuss the oxygen-evolving activity of G. violaceus. PMID:18298941

  9. Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum.

    PubMed

    Gupta, Deepak Kumar; Kaur, Parveen; Leong, See Ting; Tan, Lik Tong; Prinsep, Michèle R; Chu, Justin Jang Hann

    2014-01-01

    Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC50 values of 1.3 μM and 2.7 μM, respectively, and selectivity indices of 10.9 and 9.2, respectively. PMID:24394406

  10. Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity

    NASA Technical Reports Server (NTRS)

    Lefort-Tran, M.; Pouphile, M.; Spath, S.; Packer, L.

    1988-01-01

    In this investigation, changes were characterized in cell structure and cytoplasmic membrane organization that occur when the freshwater cyanobacterium Synechococcus 6311 is transferred from 'low salt' (0.03 molar NaCl) to 'high salt' (0.5 molar NaCl) media (i.e. sea water concentration). Cells were examined at several time points after the imposition of the salt stress and compared to control cells, in thin sections and freeze fracture electron microscopy, and by flow cytometry. One minute after exposure to high salt, i.e. 'salt shock', virtually all intracellular granules disappeared, the density of the cytoplasm decreased, and the appearance of DNA material was changed. Glycogen and other granules, however, reappeared by 4 hours after salt exposure. The organization of the cytoplasmic membrane undergoes major reorganization following salt shock. Freeze-fracture electron microscopy showed that small intramembrane particles (diameter 7.5 and 8.5 nanometers) are reduced in number by two- to fivefold, whereas large particles, (diameters 14.5 and 17.5 nanometers) increase two- to fourfold in frequency, compared to control cells grown in low salt medium. The changes in particle size distribution suggest synthesis of new membrane proteins, in agreement with the known increases in respiration, cytochrome oxidase, and sodium proton exchange activity of the cytoplasmic membrane.

  11. The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803

    PubMed Central

    Hernández-Prieto, Miguel A.; Semeniuk, Trudi Ann; Giner-Lamia, Joaquín; Futschik, Matthias E.

    2016-01-01

    Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis’ gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu). PMID:26923200

  12. Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Lee, B.; Sweeney, M. J.; Klein, H. P.

    1989-01-01

    The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C16:1) of aerobically grown O. limnetica was shown to contain both the delta 7 (79%) and delta 9 (21%) isomers, while the octadecenoic (C18:1) acid was entirely the delta 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the delta 7 and delta 9 C16:1 and the delta 9 C18:1. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both delta 7 and delta 9 C16:1 and delta 9 and delta 11 C18:1. The synthesis of these is characteristic of a bacterial-type, anaerobic pathway.

  13. A biliverdin-binding cyanobacteriochrome from the chlorophyll d–bearing cyanobacterium Acaryochloris marina

    PubMed Central

    Narikawa, Rei; Nakajima, Takahiro; Aono, Yuki; Fushimi, Keiji; Enomoto, Gen; Ni-Ni-Win; Itoh, Shigeru; Sato, Moritoshi; Ikeuchi, Masahiko

    2015-01-01

    Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll d–bearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red light–absorbing form (Pfr, λmax = 697 nm) and an orange light–absorbing form (Po, λmax = 622 nm). At room temperature, Pfr fluoresces with a maximum at 730 nm. These spectral features are red-shifted by 48~77 nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager. PMID:25609645

  14. Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongates CCMP 1631.

    PubMed

    Fiore, Cara L; Longnecker, Krista; Kido Soule, Melissa C; Kujawinski, Elizabeth B

    2015-10-01

    Photoautotrophic plankton in the surface ocean release organic compounds that fuel secondary production by heterotrophic bacteria. Here we show that an abundant marine cyanobacterium, Synechococcus elongatus, contributes a variety of nitrogen-rich and sulfur-containing compounds to dissolved organic matter. A combination of targeted and untargeted metabolomics and genomic tools was used to characterize the intracellular and extracellular metabolites of S. elongatus. Aromatic compounds, such as 4-hydroxybenzoic acid and phenylalanine, as well as nucleosides (e.g. thymidine, 5'-methylthioadenosine, xanthosine), the organosulfur compound 3-mercaptopropionate, and the plant auxin indole 3-acetic acid, were released by S. elongatus at multiple time points during its growth. Further, the amino acid kynurenine was found to accumulate in the media even though it was not present in the predicted metabolome of S. elongatus. This indicates that some metabolites, including those not predicted by an organism's genome, are likely excreted into the environment as waste; however, these molecules may have broader ecological relevance if they are labile to nearby microbes. The compounds described herein provide excellent targets for quantitative analysis in field settings to assess the source and lability of dissolved organic matter in situ. PMID:25970745

  15. An integrative approach to energy, carbon, and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803

    SciTech Connect

    Vermaas, Willem F.J.

    2006-03-14

    The broader goal of this project was to merge knowledge from genomic, metabolic, ultrastructural and other perspectives to understand how cyanobacteria live, adapt and are regulated. This understanding aids in metabolic engineering and synthetic biology efforts using this group of organisms that contribute greatly to global photosynthetic CO2 fixation and that are closely related to the ancestors of chloroplasts. This project focused on photosynthesis and respiration in the cyanobacterium Synechocystis sp. PCC 6803, which is spontaneously transformable and has a known genome sequence. Modification of these fundamental processes in this organism can lead to improved carbon sequestration and hydrogen production, as well as to generation of high-quality biomass. In our GTL-supported studies at Arizona State University we focus on cell structure and cell physiology in Synechocystis, with particular emphasis on thylakoid membrane formation and on metabolism related to photosynthesis and respiration. Results on (a) thylakoid membrane biogenesis, (b) fluxes through central carbon utilization pathways, and (c) distribution mechanisms between carbon storage compounds are presented. Together, these results help pave the way for metabolic engineering efforts that are likely to result in improved solar-powered carbon sequestration and bioenergy conversion. Fueled by the very encouraging results obtained in this project, we already have attracted interest from major companies in the use of cyanobacteria for biofuel production.

  16. Tasiamide F, a potent inhibitor of cathepsins D and E from a marine cyanobacterium.

    PubMed

    Al-Awadhi, Fatma H; Ratnayake, Ranjala; Paul, Valerie J; Luesch, Hendrik

    2016-08-01

    In search of novel protease inhibitors with therapeutic potential, our efforts exploring the marine cyanobacterium Lyngbya sp. have led to the discovery of tasiamide F (1), which is an analogue of tasiamide B (2). The structure was elucidated using a combination of NMR spectroscopy and mass spectrometry. The key structural feature in 1 is the presence of the Phe-derived statine core, which contributes to its aspartic protease inhibitory activity. The antiproteolytic activity of 1 and 2 was evaluated in vitro against cathepsins D and E, and BACE1. Tasiamide F (1) displayed IC50 values of 57nM, 23nM, and 0.69μM, respectively, indicating greater selectivity for cathepsins over BACE1 compared with tasiamide B (2). Molecular docking experiments were carried out for compounds 1 and 2 against cathepsins D and E to rationalize their activity towards these proteases. The dysregulated activities of cathepsins D and E have been implicated in cancer and modulation of immune responses, respectively, and these proteases represent potential therapeutic targets. PMID:27211244

  17. The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803.

    PubMed

    Hernández-Prieto, Miguel A; Semeniuk, Trudi Ann; Giner-Lamia, Joaquín; Futschik, Matthias E

    2016-01-01

    Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu). PMID:26923200

  18. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris.

    PubMed

    Li, Yaqiong; Lin, Yuankui; Garvey, Christopher J; Birch, Debra; Corkery, Robert W; Loughlin, Patrick C; Scheer, Hugo; Willows, Robert D; Chen, Min

    2016-01-01

    Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/β allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions. PMID:26514405

  19. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    PubMed Central

    Al-Najjar, Mohammad A. A.; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3− during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. PMID:25576611

  20. Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry.

    PubMed

    Dobretsov, Sergey; Teplitski, Max; Alagely, Ali; Gunasekera, Sarath P; Paul, Valerie J

    2010-12-01

    Extracts of several cyanobacterial species collected from different marine and estuarine locations predominately in Florida (USA), with one sample each from Belize and Oman, were screened for their ability to disrupt quorum sensing (QS) in the reporter strain Chromobacterium violaceum CV017. Inhibitory activities were detected in the ethyl acetate : methanol (1:1) extracts of several Lyngbya spp., and extracts of Lyngbya majuscula contained the strongest QS inhibitory activities. Extracts of L. majuscula from the Indian River Lagoon, FL, USA, were further purified by bioassay-guided fractionation. The antibiotic malyngolide (MAL) was identified as a QS inhibitor. Activity of MAL was investigated using N-acyl homoserine lactone (AHL) reporters based on the LasR receptor of Pseudomonas aeruginosa. MAL at concentrations ranging from 3.57 µM to 57 µM (EC50  = 12.2 ± 1.6 µM) inhibited responses of the LasR reporters without affecting bacterial growth. MAL inhibited (EC50  =  10.6 ± 1.8 µM) Las QS-dependent production of elastase by P. aeruginosa PAO1. We propose that this QS inhibitor plays a role in controlling interactions of heterotrophic bacteria associated with the cyanobacterium L. majuscula. PMID:23766278

  1. Sequential splicing of a group II twintron in the marine cyanobacterium Trichodesmium

    PubMed Central

    Pfreundt, Ulrike; Hess, Wolfgang R.

    2015-01-01

    The marine cyanobacterium Trichodesmium is unusual in its genomic architecture as 40% of the genome is occupied by non-coding DNA. Although the majority of it is transcribed into RNA, it is not well understood why such a large non-coding genome fraction is maintained. Mobile genetic elements can contribute to genome expansion. Many bacteria harbor introns whereas twintrons, introns-in-introns, are rare and not known to interrupt protein-coding genes in bacteria. Here we show the sequential in vivo splicing of a 5400 nt long group II twintron interrupting a highly conserved gene that is associated with RNase HI in some cyanobacteria, but free-standing in others, including Trichodesmium erythraeum. We show that twintron splicing results in a putatively functional mRNA. The full genetic arrangement was found conserved in two geospatially distinct metagenomic datasets supporting its functional relevance. We further show that splicing of the inner intron yields the free intron as a true circle. This reaction requires the spliced exon reopening (SER) reaction to provide a free 5′ exon. The fact that Trichodesmium harbors a functional twintron fits in well with the high intron load of these genomes, and suggests peculiarities in its genetic machinery permitting such arrangements. PMID:26577185

  2. Anilofos Tolerance and Its Mineralization by the Cyanobacterium Synechocystis sp. Strain PUPCCC 64

    PubMed Central

    Singh, D. P.; Khattar, J. I. S.; Kaur, Mandeep; Kaur, Gurdeep; Gupta, Meenu; Singh, Yadvinder

    2013-01-01

    This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L−1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L−1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L−1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L−1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L−1, pH 8.0 and 30°C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L−1) indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate. PMID:23382844

  3. A Novel Epiphytic Chlorophyll d-containing Cyanobacterium Isolated from a Mangrove-associated Red Alga.

    PubMed

    Larkum, Anthony W D; Chen, Min; Li, Yaqiong; Schliep, Martin; Trampe, Erik; West, John; Salih, Anya; Kühl, Michael

    2012-12-01

    A new habitat and a new chlorophyll (Chl) d-containing cyanobacterium belonging to the genus Acaryochloris are reported in this study. Hyperspectral microscopy showed the presence of Chl d-containing microorganisms in epiphytic biofilms on a red alga (Gelidium caulacantheum) colonizing the pneumato-phores of a temperate mangrove (Avicennia marina). The presence of Chl d was further proven by high performance liquid chromatography (HPLC)-based pigment analysis and by confocal imaging of cultured cells. Enrichment of mangrove biofilm samples under near-infrared radiation (NIR) yielded the new Acaryochloris sp. MPGRS1, which was closely related in terms of 16S rRNA gene sequence to an isolate from the hypertrophic Salton Sea, USA. The new isolate used Chl d as its major photopigment; Chl d and Chl a contents were ~98% and 1%-2% of total cellular chlorophyll, respectively. These findings expand the variety of ecological niches known to harbor Chl d-containing cyanobacteria and support our working hypothesis that such oxyphototrophs may be ubiquitous in habitats depleted of visible light, but with sufficient NIR exposure. PMID:27009985

  4. Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis

    SciTech Connect

    Watanabe, Yoshitomo; Hall, D.O.; Nouee, J. De La

    1995-07-20

    The photosynthetic performance of a helical tubular photobioreactor (``Biocoil``), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape with a 0.25-m{sup 2} basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter. The inner surface of the cylinder was illuminated with cool white fluorescent lamps; the energy input of photosynthetically active radiation into the photobioreactor was 2,920 kJ per day. An air-lift system incorporating 4% CO{sub 2} was used to circulate the growth medium in the tubing. The maximum productivity achieved in batch culture was 7.18 g dry biomass per day which corresponded to a photosynthetic (PAR) efficiency of 5.45%. The CO{sub 2} was efficiently removed from the gaseous stream; monitoring the CO{sub 2} in the outlet and inlet gas streams showed a 70% removal of CO{sub 2} from the inlet gas over an 8-h period with almost maximum growth rate.

  5. Intercellular transfer along the trichomes of the invasive terminal heterocyst forming cyanobacterium Cylindrospermopsis raciborskii CS-505.

    PubMed

    Plominsky, Álvaro M; Delherbe, Nathalie; Mandakovic, Dinka; Riquelme, Brenda; González, Karen; Bergman, Birgitta; Mariscal, Vicente; Vásquez, Mónica

    2015-03-01

    Cylindrospermopsis raciborskii CS-505 is an invasive freshwater filamentous cyanobacterium that when grown diazotrophically may develop trichomes of up to 100 vegetative cells while differentiating only two end heterocysts, the sole sites for their N2-fixation process. We examined the diazotrophic growth and intercellular transfer mechanisms in C. raciborskii CS-505. Subjecting cultures to a combined-nitrogen-free medium to elicit N2 fixation, the trichome length remained unaffected while growth rates decreased. The structures and proteins for intercellular communication showed that while a continuous periplasmic space was apparent along the trichomes, the putative septal junction sepJ gene is divided into two open reading frames and lacks several transmembrane domains unlike the situation in Anabaena, differentiating a 5-fold higher frequency of heterocysts. FRAP analyses also showed that the dyes calcein and 5-CFDA were taken up by heterocysts and vegetative cells, and that the transfer from heterocysts and 'terminal' vegetative cells showed considerably higher transfer rates than that from vegetative cells located in the middle of the trichomes. The data suggest that C. raciborskii CS-505 compensates its low-frequency heterocyst phenotype by a highly efficient transfer of the fixed nitrogen towards cells in distal parts of the trichomes (growing rapidly) while cells in central parts suffers (slow growth). PMID:25757729

  6. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme

    PubMed Central

    Liaimer, Anton; Helfrich, Eric J. N.; Hinrichs, Katrin; Guljamow, Arthur; Ishida, Keishi; Hertweck, Christian; Dittmann, Elke

    2015-01-01

    Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2− mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme. PMID:25624477

  7. Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9.

    PubMed

    Ahmed, Mehboob; Stal, Lucas; Hasnain, Shahida

    2010-09-01

    The filamentous cyanobacterium Arthrospira platensis strain MMG-9 was isolated from a rice field. The ability of this strain to synthesize the bioactive compound indole-3-acetic acid (IAA) was demonstrated. IAA was extracted from the culture A. platensis strain MMG-9 and its identity was confirmed by thin layer chromatography (TLC) as well as by high performance liquid chromatography (HPLC). The IAA precursor L-tryptophan was required for IAA biosynthesis. Released IAA increased with the increase of the initial concentration of L-tryptophan in the medium and with the incubation time. A. platensis strain MMG-9 accumulates more IAA than it released it into the medium. The bioactivity of the secreted IAA was shown by its effect on the formation of roots by Pisum sativum. There was a significant positive effect of the supernatant of cultures of A. platensis strain MMG-9 on the number of lateral roots of P. sativum while a negative effect on root length was observed. PMID:20890089

  8. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune.

    PubMed

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2015-04-15

    A carbonic anhydrase (CA, EC 4.2.1.1) belonging to the γ-class has been cloned, purified and characterized from the Antarctic cyanobacterium Nostoc commune. The enzyme showed a good catalytic activity for the physiologic reaction (hydration of carbon dioxide to bicarbonate and a proton) with the following kinetic parameters, kcat of 9.5×10(5)s(-1) and kcat/KM of 8.3×10(7)M(-1)s(-1), being the γ-CA with the highest catalytic activity described so far. A range of aromatic/heterocyclic sulfonamides and one sulfamate were investigated as inhibitors of the new enzyme, denominated here NcoCA. The best NcoCA inhibitors were some sulfonylated sulfanilamide derivatives possessing elongated molecules, aminobenzolamide, acetazolamide, benzolamide, dorzolamide, brinzolamide and topiramate, which showed inhibition constants in the range of 40.3-92.3nM. As 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and γ-CAs are closely associated in carboxysomes of cyanobacteria for enhancing the affinity of RubisCO for CO2 and the efficiency of photosynthesis, investigation of this new enzyme and its affinity for modulators of its activity may bring new insights in these crucial processes. PMID:25773015

  9. Glycosylated Porphyra-334 and Palythine-Threonine from the Terrestrial Cyanobacterium Nostoc commune

    PubMed Central

    Nazifi, Ehsan; Wada, Naoki; Yamaba, Minami; Asano, Tomoya; Nishiuchi, Takumi; Matsugo, Seiichi; Sakamoto, Toshio

    2013-01-01

    Mycosporine-like amino acids (MAAs) are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune (N. commune). An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments. PMID:24065157

  10. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    PubMed

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  11. Exposure of mallards (Anas platyrhynchos) to the hepatotoxic cyanobacterium Nodularia spumigena

    USGS Publications Warehouse

    Sipia, V.O.; Franson, J.C.; Sjovall, O.; Pflugmacher, S.; Shearn-Bochsler, V.; Rocke, T.E.; Meriluoto, J.A.O.

    2008-01-01

    Nodularin (NODLN) is a cyclic pentapeptide hepatotoxin produced by the cyanobacterium Nodularia spumigena, which forms extensive blooms during the summer in the Baltic Sea. Nodularin was detected in liver, muscle and/or feather samples of several common eiders (Somateria mollissima) from the Gulf of Finland (northern Baltic Sea) in 2002-2005. Published information on the adverse effects of NODLN in marine birds is scarce. The aim of this study was to evaluate the toxicity of NODLN, and determine the concentrations of NODLN in liver and muscle tissue in mallards (Anas platyrhynchos) exposed to N. spumigena. Mallards received a single or multiple exposure via oral gavage with an aqueous slurry containing toxic N. spumigena. Dosages ranged from 200 to 600 ??g NODLN per kg body weight (bw). There were minimal histopathological changes in liver tissue, and brain cholinesterase activity did not differ among treatment groups. Concentrations of NODLN measured by LC-MS in liver varied between approximately 3-120 ??g kg-1 dry weight (dw) and ducks receiving multiple exposures had significantly greater liver toxin levels than ducks receiving the two lowest single exposures. In muscle, NODLN concentrations were approximately 2-6 ??g kg-1 dw, but did not differ significantly among exposure groups. This is the first in vivo lab study examining the effects and bioaccumulation of NODLN from N. spumigena in birds. The mallards in this study were resistant to adverse effects and did not bioaccumulate substantial levels of NODLN at the doses given. ?? 2008 Taylor & Francis.

  12. Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii.

    PubMed

    Burford, Michele A; Davis, Timothy W; Orr, Philip T; Sinha, Rati; Willis, Anusuya; Neilan, Brett A

    2014-07-01

    Nutrients have the capacity to change cyanobacterial toxin loads via growth-related toxin production, or shifts in the dominance of toxic and nontoxic strains. This study examined the effect of nitrogen (N) and phosphorus on cell division and strain-related changes in production of the toxins, cylindrospermopsins (CYNs) by the cyanobacterium, Cylindrospermopsis raciborskii. Two short-term experiments were conducted with mixed phytoplankton populations dominated by C. raciborskii in a subtropical reservoir where treatments had nitrate (NO3 ), urea (U) and inorganic phosphorus (P) added alone or in combination. Cell division rates of C. raciborskii were only statistically higher than the control on day 5 when U and P were co-supplied. In contrast, cell quotas of CYNs (QCYNS ) increased significantly in treatments where P was supplied, irrespective of whether N was supplied, and this increase was not necessarily related to cell division rates. Increased QCYNS did correlate with an increase in the proportion of the cyrA toxin gene to 16S genes in the C. raciborskii-dominated cyanobacterial population. Therefore, changes in strain dominance are the most likely factor driving differences in toxin production between treatments. Our study has demonstrated differential effects of nutrients on cell division and strain dominance reflecting a C. raciborskii population with a range of strategies in response to environmental conditions. PMID:24735048

  13. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM

    PubMed Central

    Gupta, Gagan Deep; Madamwar, Datta

    2015-01-01

    Isolated phycobilisome (PBS) sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC) is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB) chromophores, covalently bound to conserved Cys residues of α- and β- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of α- and β- subunits (known as αβ monomers) assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM). The crystal structure has been refined against all the observed data to the resolution of 2.51 Å to Rwork (Rfree) of 0.158 (0.229) with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of αβ monomers in solution and in crystal lattice. The overall tertiary structures of α- and β- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to α-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein. PMID:25923120

  14. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM.

    PubMed

    Sonani, Ravi Raghav; Gupta, Gagan Deep; Madamwar, Datta; Kumar, Vinay

    2015-01-01

    Isolated phycobilisome (PBS) sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC) is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB) chromophores, covalently bound to conserved Cys residues of α- and β- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of α- and β- subunits (known as αβ monomers) assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM). The crystal structure has been refined against all the observed data to the resolution of 2.51 Å to Rwork (Rfree) of 0.158 (0.229) with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of αβ monomers in solution and in crystal lattice. The overall tertiary structures of α- and β- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to α-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein. PMID:25923120

  15. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina.

    PubMed

    Narikawa, Rei; Nakajima, Takahiro; Aono, Yuki; Fushimi, Keiji; Enomoto, Gen; Ni-Ni-Win; Itoh, Shigeru; Sato, Moritoshi; Ikeuchi, Masahiko

    2015-01-01

    Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red light-absorbing form (Pfr, λmax = 697 nm) and an orange light-absorbing form (Po, λmax = 622 nm). At room temperature, Pfr fluoresces with a maximum at 730 nm. These spectral features are red-shifted by 48~77 nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager. PMID:25609645

  16. Type II Toxin-Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Kopfmann, Stefan; Roesch, Stefanie K; Hess, Wolfgang R

    2016-01-01

    Bacterial toxin-antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013-Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056-Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements. PMID:27455323

  17. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake. PMID:25536900

  18. Palmyramide A, a Cyclic Depsipeptide from a Palmyra Atoll Collection of the Marine Cyanobacterium Lyngbya majuscula

    PubMed Central

    Taniguchi, Masatoshi; Nunnery, Joshawna K.; Engene, Niclas; Esquenazi, Eduardo; Byrum, Tara; Dorrestein, Pieter C.; Gerwick, William H.

    2010-01-01

    Bioassay-guided fractionation of the extract of a consortium of a marine cyanobacterium and a red alga (Rhodophyta) led to the discovery of a novel compound, palmyramide A, along with the known compounds curacin D and malyngamide C. The planar structure of palmyramide A was determined by one- and two-dimensional NMR studies and mass spectrometry. Palmyramide A is a cyclic depsipeptide which features an unusual arrangement of three amino acids and three hydroxy acids; one of the hydroxy acids is the rare 2,2-dimethyl-3-hydroxyhexanoic acid unit (Dmhha). The absolute configurations of the six residues were determined by Marfey’s analysis, chiral HPLC analysis and GC/MS analysis of the hydrolysate. Morphological and phylogenetic studies revealed the sample to be composed of a Lyngbya majuscula-Centroceras sp. association. MALDI-imaging analysis of the cultured L. majuscula indicated that it was the true producer of this new depsipeptide. Pure palmyramide A showed sodium channel blocking activity in neuro-2a cells and cytotoxic activity in H-460 human lung carcinoma cells. PMID:19839606

  19. Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803

    NASA Astrophysics Data System (ADS)

    Focsan, Monica; Ardelean, Ioan I.; Craciun, Constantin; Astilean, Simion

    2011-12-01

    Many microorganisms have long been known to be able to synthesize nanoparticles either in extracellular media or inside cells but the biochemical mechanisms involved in biomineralization are still poorly understood. In this paper we report the intracellular synthesis of gold nanoparticles (GNPs) by the cyanobacterium Synechocystis sp. PCC 6803 exposed to an aqueous solution of chloroauric acid. We assess the interplay between the biomineralization process and the metabolic activities (i.e. photosynthesis and respiration) of cyanobacteria cells by correlating the GNP synthesis yield with the amount of respiratory and photosynthetic oxygen exchange. The biogenic GNPs are compared in terms of their internalization and biological effects to GNPs synthesized by a standard citrate reduction procedure (cGNPs). The TEM analysis, in conjunction with spectroscopic measurements (i.e. surface plasmon resonance, fluorescence quenching and surface-enhanced Raman scattering, SERS), reveals the localization of biogenic GNPs at the level of intracytoplasmic membranes whereas the pre-formed cGNPs are located at the level of external cellular membrane. Our findings have implications for better understanding the process of biomineralization and assessing the potential risks associated with the accumulation of nanomaterials by various biological systems.

  20. [Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp].

    PubMed

    Mikhodiuk, O S; Zavarzin, G A; Ivanovskiĭ, R N

    2008-01-01

    The effect of carbonate concentration, pH of the medium, and illumination intensity on the major physiological characteristics (growth rate and the intensities of CO2 assimilation and oxygen photoproduction) of the natronophilic cyanobacterium Euhalothece sp. Z-M001 have been studied. It was established that the investigated microorganism has at least two transport systems (TS) for CO2, which differ in both the pH optimum and substrate affinity: TS I has a pH, 9.4-9.5 and a K(S) 0.5 of 13-17 mM, whereas TS II has a pH(opt) 9.9-10.2 and a K(S) 0.5 of 600-800 mM. The substrate affinity of these transport systems is several orders of magnitude lower than the substrate affinity of the transport systems of freshwater cyanobacteria. It is suggested that they are unique for extremely alkaliphilic cyanobacteria and reflect their adaptation to the seasonal cycles of the lake hydrochemistry. PMID:18825972

  1. Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821.

    PubMed

    Li, Meng; Semchonok, Dmitry A; Boekema, Egbert J; Bruce, Barry D

    2014-03-01

    Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae. PMID:24681621

  2. Modification of dinitrogenase reductase in the cyanobacterium Anabaena variabilis due to C starvation and ammonia.

    PubMed

    Ernst, A; Reich, S; Böger, P

    1990-02-01

    In the heterocystous cyanobacterium Anabaena variabilis, a change in nitrogenase activity and concomitant modification of dinitrogenase reductase (the Fe protein of nitrogenase) was induced either by NH4Cl at pH 10 (S. Reich and P. Böger, FEMS Microbiol. Lett. 58:81-86, 1989) or by cessation of C supply resulting from darkness, CO2 limitation, or inhibition of photosystem II activity. Modification induced by both C limitation and NH4Cl was efficiently prevented by anaerobic conditions. Under air, endogenously stored glycogen and added fructose protected against modification triggered by C limitation but not by NH4Cl. With stored glycogen present, dark modification took place after inhibition of respiration by KCN. Reactivation of inactivated nitrogenase and concomitant demodification of dinitrogenase reductase occurred after restoration of diazotrophic growth conditions. In previously C-limited cultures, reactivation was also observed in the dark after addition of fructose (heterotrophic growth) and under anaerobiosis upon reillumination in the presence of a photosynthesis inhibitor. The results indicate that modification of dinitrogenase reductase develops as a result of decreased carbohydrate-supported reductant supply of the heterocysts caused by C limitation or by increased diversion of carbohydrates towards ammonia assimilation. Apparently, a product of N assimilation such as glutamine is not necessary for modification. The increase of oxygen concentration in the heterocysts is a plausible consequence of all treatments causing Fe protein modification. PMID:2105302

  3. Transcriptional and Mutational Analysis of the Uptake Hydrogenase of the Filamentous Cyanobacterium Anabaena variabilis ATCC 29413

    PubMed Central

    Happe, Thomas; Schütz, Kathrin; Böhme, Herbert

    2000-01-01

    A 10-kb DNA region of the cyanobacterium Anabaena variabilis ATCC 29413 containing the structural genes of the uptake hydrogenase (hupSL) was cloned and sequenced. In contrast to the hupL gene of Anabaena sp. strain PCC 7120, which is interrupted by a 10.5-kb DNA fragment in vegetative cells, there is no programmed rearrangement within the hupL gene during the heterocyst differentiation of A. variabilis. The hupSL genes were transcribed as a 2.7-kb operon and were induced only under nitrogen-fixing conditions, as shown by Northern blot experiments and reverse transcriptase PCR. Primer extension experiments with a fluorescence-labeled oligonucleotide primer confirmed these results and identified the 5′ start of the mRNA transcript 103 bp upstream of the ATG initiation codon. A consensus sequence in the promoter that is recognized by the fumarate nitrate reductase regulator (Fnr) could be detected. The hupSL operon in A. variabilis was interrupted by an interposon deletion (mutant strain AVM13). Under N2-fixing conditions, the mutant strain exhibited significantly increased rates in H2 accumulation and produced three times more hydrogen than the wild type. These results indicate that the uptake hydrogenase is catalytically active in the wild type and that the enzyme reoxidizes the H2 developed by the nitrogenase. The Nif phenotype of the mutant strain showed a slight decrease of acetylene reduction compared to that of the wild type. PMID:10692368

  4. Response of multiple herbicide resistant strain of diazotrophic cyanobacterium, Anabaena variabilis, exposed to atrazine and DCMU.

    PubMed

    Singh, Surendra; Datta, Pallavi; Tirkey, Archna

    2011-04-01

    Effect of two photosynthetic inhibitor herbicides, atrazine (both purified and formulated) and [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] (DCMU), on the growth, macromolecular contents, heterocyst frequency, photosynthetic O2 evolution and dark O2 uptake of wild type and multiple herbicide resistant (MHR) strain of diazotrophic cyanobacterium A. variabilis was studied. Cyanobacterial strains showed gradual inhibition in growth with increasing dosage of herbicides. Both wild type and MHR strain tolerated < 6.0 mg L(-1) of atrazine (purified), < 2.0 mg L(-1) of atrazine (formulated) and < 0.4 mg L(-1) of DCMU indicating similar level of herbicide tolerance. Atrazine (pure) (8.0 mg L(-1)) and 4.0 mg L(-1) of atrazine (formulated) were growth inhibitory concentrations (lethal) for both wild type and MHR strain indicating formulated atrazine was more toxic than the purified form. Comparatively lower concentrations of DCMU were found to be lethal for wild type and MHR strain, respectively. Thus, between the two herbicides tested DCMU was more growth toxic than atrazine. At sublethal dosages of herbicides, photosynthetic O2 evolution showed highest inhibition followed by chlorophyll a, phycobhiliproteins and heterocyst differentiation as compared to carotenoid, protein and respiratory O2 uptake. PMID:21614895

  5. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus.

    PubMed

    Hood, Rachel D; Higgins, Sean A; Flamholz, Avi; Nichols, Robert J; Savage, David F

    2016-08-16

    The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle. PMID:27486247

  6. Molecular weight determination of an active photosystem I preparation from a thermophilic cyanobacterium, Synechococcus elongatus

    SciTech Connect

    Schafheutle, M.E.; Setlikova, E.; Timmins, P.A.; Johner, H.; Gutgesell, P.; Setlik, I.; Welte, W. )

    1990-02-06

    An active photosystem I (PSI) complex was isolated from the thermophilic cyanobacterium Synechococcus elongatus by a procedure consisting of three steps: First, extraction of photosystem II from the thylakoids by a sulfobetaine detergent yields PSI-enriched membranes. Second, the latter are treated with Triton X-100 to extract PSI particles, which are further purified by preparative isoelectric focusing. Third, anion-exchange chromatography is used to remove contaminating phycobilisome polypeptides. The purified particles show three major bands in sodium dodecyl sulfate gel electrophoresis of apparent molecular mass of 110, 15, and 10 kDa. Charge separation was monitored by the kinetics of flash-induced absorption changes at 820 nm. A chlorophyll/P700 ratio of 60 was found. When the particles are stored at 4 degrees C, charge separation was stable for weeks. The molecular mass of the PSI particles, determined by measurement of zero-angle neutron scattering intensity, was 217,000 Da. The PSI particles thus consist of one heterodimer of the 60-80-kDa polypeptides and presumably one copy of the 15- and 10-kDa polypeptides, respectively.

  7. Isolation and characterization of a new reported cyanobacterium Leptolyngbya bijugata coproducing odorous geosmin and 2-methylisoborneol.

    PubMed

    Wang, Zhongjie; Xiao, Peng; Song, Gaofei; Li, Yeguang; Li, Renhui

    2015-08-01

    The earthy-musty compounds geosmin and 2-methylisoborneol (MIB) produced by cyanobacteria are considered as the main biological causes of off-flavor events, especially in aquatic ecosystems. More than 50 filamentous cyanobacteria species have been documented as geosmin or MIB producers; however, little is known about the species coproducing these two metabolites. In this study, an epiphytic sample was collected from a river in Hubei, China. Three isolated strains (A2, B2, and B4) producing earthy odors were successfully isolated and identified as the cyanobacterium Leptolyngbya bijugata Anagnostidis et Komárek 1988 based on morphology and 16S rDNA sequences. Gas chromatography analysis confirmed that the isolated L. bijugata strains were geosmin and MIB coproducers, with accumulation ranging from 13.6 to 22.4 and 12.3 to 57.5 μg L(-1), respectively. The partial fragments of geosmin and MIB synthesis genes in the L. bijugata strains were cloned and sequenced. Further sequences and phylogenetic analysis indicated the high conservation and a common origin of these genes in cyanobacteria. This study is the first to report and characterize the coproduction of geosmin and MIB by L. bijugata, representing a new source for potential risk of off-flavor events. PMID:25893620

  8. Type II Toxin–Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Kopfmann, Stefan; Roesch, Stefanie K.; Hess, Wolfgang R.

    2016-01-01

    Bacterial toxin–antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013–Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056–Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements. PMID:27455323

  9. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  10. Introduction of a Synthetic CO2-fixing Photorespiratory Bypass into a Cyanobacterium

    PubMed Central

    Shih, Patrick M.; Zarzycki, Jan; Niyogi, Krishna K.; Kerfeld, Cheryl A.

    2014-01-01

    Global photosynthetic productivity is limited by the enzymatic assimilation of CO2 into organic carbon compounds. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the carboxylating enzyme of the Calvin-Benson cycle, poorly discriminates between CO2 and O2, leading to photorespiration and the loss of fixed carbon and nitrogen. With the advent of synthetic biology, it is now feasible to design, synthesize, and introduce biochemical pathways in vivo. We engineered a synthetic photorespiratory bypass based on the 3-hydroxypropionate bi-cycle into the model cyanobacterium, Synechococcus elongatus sp. PCC 7942. The heterologously expressed cycle is designed to function as both a photorespiratory bypass and an additional CO2-fixing pathway, supplementing the Calvin-Benson cycle. We demonstrate the function of all six introduced enzymes and identify bottlenecks to be targeted in subsequent bioengineering. These results have implications for efforts to improve photosynthesis and for the “green” production of high value products of biotechnological interest. PMID:24558040

  11. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120

    SciTech Connect

    Wolk, C. Peter Wolk; Fan, Qing; Zhou, Ruanbao; Huang, Guocun; Lechno-Yossef, Sigal; Kuritz, Tanya; Wojciuch, Elizabeth

    2007-01-01

    The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetF{sub A}) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.

  12. Circadian expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803.

    PubMed Central

    Aoki, S; Kondo, T; Ishiura, M

    1995-01-01

    The expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803 was continuously monitored as bioluminescence by an automated monitoring system, using the bacterial luciferase genes (luxAB) of Vibrio harveyi as a reporter of promoter activity. A dnaK-reporting bioluminescent Synechocystis strain was constructed by fusing a promoterless segment of the luxAB gene set downstream of the promoter region of the Synechocystis dnaK gene and introduction of this gene fusion into a BglII site downstream of the ndhB gene in the Synechocystis chromosome. Bioluminescence from this strain was continuously monitored and oscillated with a period of about 22 h for at least 5 days in continuous light. The phase of the rhythm was reset by the timing of the 12-h dark period administered prior to the continuous light. The period of the rhythm was temperature compensated between 25 and 35 degrees C. Thus, the bioluminescence rhythm satisfied the three criteria of circadian rhythms. Furthermore, the abundance of dnaK mRNA also oscillated with a period of about 1 day for at least 2 days in continuous light conditions, indicating circadian control of dnaK gene expression in Synechocystis sp. strain PCC 6803. PMID:7559349

  13. Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Downhill Energy Transfer in Photosystem I Trimers of the Cyanobacterium Thermosynechococcus elongatus.

    PubMed

    Anna, Jessica M; Ostroumov, Evgeny E; Maghlaoui, Karim; Barber, James; Scholes, Gregory D

    2012-12-20

    Two-dimensional electronic spectroscopy (2DES) was used to investigate the ultrafast energy-transfer dynamics of trimeric photosystem I of the cyanobacterium Thermosynechococcus elongatus. We demonstrate the ability of 2DES to resolve dynamics in a large pigment-protein complex containing ∼300 chromophores with both high frequency and time resolution. Monitoring the waiting-time-dependent changes of the line shape of the inhomogeneously broadened Qy(0-0) transition, we directly observe downhill energy equilibration on the 50 fs time scale. PMID:26291095

  14. Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM.

    PubMed Central

    Narro, M L; Cerniglia, C E; Van Baalen, C; Gibson, D T

    1992-01-01

    The marine cyanobacterium Oscillatoria sp. strain JCM oxidized naphthalene predominantly to 1-naphthol. Experiments with [1-2H]naphthalene and [2-2H]naphthalene indicated that 1-naphthol was formed with 68 and 74% retention of deuterium, respectively. No significant isotope effect was observed when the organism was incubated with a 1:1 mixture of naphthalene and [2H8]naphthalene. The results indicate that 1-naphthol is formed through a naphthalene 1,2-oxide intermediate, which rearranges spontaneously via an NIH shift mechanism. PMID:1599253

  15. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor.

    PubMed

    Lacey, Randy F; Binder, Brad M

    2016-08-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. PMID:27246094

  16. Efficient Gene Induction and Endogenous Gene Repression Systems for the Filamentous Cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Higo, Akiyoshi; Isu, Atsuko; Fukaya, Yuki; Hisabori, Toru

    2016-02-01

    In the last decade, many studies have been conducted to employ genetically engineered cyanobacteria in the production of various metabolites. However, the lack of a strict gene regulation system in cyanobacteria has hampered these attempts. The filamentous cyanobacterium Anabaena sp. PCC 7120 performs both nitrogen and carbon fixation and is, therefore, a good candidate organism for such production. To employ Anabaena cells for this purpose, we intended to develop artificial gene regulation systems to alter the cell metabolic pathways efficiently. We introduced into Anabaena a transcriptional repressor TetR, widely used in diverse organisms, and green fluorescent protein (GFP) as a reporter. We found that anhydrotetracycline (aTc) substantially induced GFP fluorescence in a concentration-dependent manner. By expressing tetR under the nitrate-specific promoter nirA, we successfully reduced the concentration of aTc required for the induction of gfp under nitrogen fixation conditions (to 10% of the concentration needed under nitrate-replete conditions). Further, we succeeded in the overexpression of GFP by depletion of nitrate without the inducer by means of promoter engineering of the nirA promoter. Moreover, we applied these gene regulation systems to a metabolic enzyme in Anabaena and successfully repressed glnA, the gene encoding glutamine synthetase that is essential for nitrogen assimilation in cyanobacteria, by expressing the small antisense RNA for glnA. Consequently, the ammonium production of an ammonium-excreting Anabaena mutant was significantly enhanced. We therefore conclude that the gene regulation systems developed in this study are useful tools for the regulation of metabolic enzymes and will help to increase the production of desired substances in Anabaena. PMID:26684202

  17. Optical properties of photosynthetic pigments and abundance of the cyanobacterium Trichodesmium in the eastern Caribbean Basin

    NASA Astrophysics Data System (ADS)

    Navarro Rodriguez, Ana Josefina

    1998-12-01

    This research documented the optical properties of the photosynthetic pigments, time series abundance, and remote sensing reflectance of Trichodesmium (marine cyanobacterium) populations in the upper water column at the Caribbean Time Series Station (CaTS), south of Puerto Rico, and the eastern Caribbean Sea. The Caribbean regions highly influenced by the Orinoco River discharge were devoid of Trichodesmium colonies. Correlations between Trichodesmium abundance and wind speed, chlorophyll a concentration, nitrate and silicate concentrations were statistically significant (p < 0.05). However, Trichodesmium abundance was not correlated with salinity, temperature and sigma-t variations in CaTS. Temporal and spatial relative proportions of the main photosynthetic pigments (chlorophyll a and phycoerythrin) in Trichodesmium colonies were highly variable. Colony pigment content generally increased as water column depth increased. Absorption and fluorescence excitation maxima of Trichodesmium phycoerythrin were similar. The in vitro fluorescence emission maximum was 10 nm greater than in vivo emission. Trichodesmium colony phycoerythrin content was 2.5 times greater than chlorophyll a content. The PUB/PEB (phycourobilin and phycoerythrobilin) chromophore ratio was always greater than 1 and varied between 1.4 and 4.6. Reflectance spectra and the derivative analyses of natural and artificial Trichodesmium bloom conditions were similar and showed five optical signals at: 436-439 nm and 676 nm (chlorophyll a), 492-498 nm (PUB chromophore), 542-547 nm (PEB chromophore), 567-570 nm (phycoerythrin natural fluorescence), and 623-630 nm (phycocyanin). Relative reflectance was inversely related to Trichodesmium abundance. The PUB chromophore signal was greater than the PEB chromophore and chlorophyll a signals. Spectroradiometric data and derivative analyses were useful techniques to study Trichodesmium abundance in CaTS. An algorithm to estimate Trichodesmium abundance using the

  18. Selective and Reversible Inhibition of Active CO2 Transport by Hydrogen Sulfide in a Cyanobacterium 1

    PubMed Central

    Espie, George S.; Miller, Anthony G.; Canvin, David T.

    1989-01-01

    The active transport of CO2 in the cyanobacterium Synechococcus UTEX 625 was inhibited by H2S. Treatment of the cells with up to 150 micromolar H2S + HS− at pH 8.0 had little effect on Na+-dependent HCO3− transport or photosynthetic O2 evolution, but CO2 transport was inhibited by more than 90%. CO2 transport was restored when H2S was removed by flushing with N2. At constant total H2S + HS− concentrations, inhibition of CO2 transport increased as the ratio of H2S to HS− increased, suggesting a direct role for H2S in the inhibitory process. Hydrogen sulfide does not appear to serve as a substrate for transport. In the presence of H2S and Na+ -dependent HCO3− transport, the extracellular CO2 concentration rose considerably above its equilibrium level, but was maintained far below its equilibrium level in the absence of H2S. The inhibition of CO2 transport, therefore, revealed an ongoing leakage from the cells of CO2 which was derived from the intracellular dehydration of HCO3− which itself had been recently transported into the cells. Normally, leaked CO2 is efficiently transported back into the cell by the CO2 transport system, thus maintaining the extracellular CO2 concentration near zero. It is suggested that CO2 transport not only serves as a primary means of inorganic carbon acquisition for photosynthesis but also serves as a means of recovering CO2 lost from the cell. A schematic model describing the relationship between the CO2 and HCO3− transport systems is presented. Images Figure 7 PMID:16667030

  19. Gene recognition in cyanobacterium genomic sequence data using the hidden Markov model.

    PubMed

    Yada, T; Hirosawa, M

    1996-01-01

    We have developed a hidden Markov model (HMM) to detect the protein coding regions within one megabase contiguous sequence data, registered in a database called GenBank in eight entries, of the genome of cyanobacterium, Synechocystis sp. strain PCC6803. Detection of the coding regions in the database entry was performed by using HMM whose parameters were determined by taking the statistics from the rests of the entries. This HMM has states modeling the di-codons and their frequencies within coding regions and those modeling its base contents in the intergenic regions. Results of the cross-validation showed that the HMM recognized 92.1% of coding regions assigned in sequence annotation. In addition, it suggested 94 potential new coding regions whose length are longer than 90 bases. The recognition accuracy calculated at the level of individual bases was 90.7% for the coding regions and 88.1% for the intergenic regions. This corresponds to a correlation coefficient for coding region recognition of 0.784. Comparison with its prediction accuracy with that by GeneMark showed that the HMM has the same level of prediction accuracy as GeneMark on average. Since we can extend the HMM to utilize information such as SD sequences, the prediction accuracy of the HMM will be enhanced. It was observed that correlation was positive between the prediction rate of the coding regions and the G + C content at the third position of the codon. This suggests the possibility that the prediction rate of coding regions in the cyanobacteria sequence can be enhanced by improving the present HMM into that reflects the classification of coding regions based on the G + C content. PMID:8877525

  20. Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii

    NASA Astrophysics Data System (ADS)

    Burford, Michele A.; Davis, Timothy W.

    2011-07-01

    The freshwater cyanobacterium, Cylindrospermopsis raciborskii (Wo'oszyńska) Seenayya and Subba Raju is a common species in lakes and reservoirs globally. In some areas of the world it can produce cyto- and hepatotoxins (cylindrospermopsins, saxitoxins), making blooms of this species a serious health concern for humans. In the last 10-15 years, there has been a considerable body of research conducted on the ecology, physiology and toxin production of this species and this paper reviews these studies with a focus on the cylindrospermopsin (CYN)-producing strains. C. raciborskii has low light requirements, close to neutral buoyancy, and a wide temperature tolerance, giving it the capacity to grow in many lentic waterbodies. It also has a flexible strategy with respect to nitrogen (N) utilisation; being able to switch between utilising fixed and atmospheric N as sources of N fluctuate. Additionally this species has a high phosphate (DIP) affinity and storage capacity. Like many cyanobacteria, it also has the capacity to use dissolved organic phosphorus (DOP). Changes in nutrient concentrations, light levels and temperature have also been found to affect production of the toxin CYN by this species. However, optimal toxin production does not necessarily occur when growth rates are optimal. Additionally, different strains of C. raciborskii vary in their cell quota of CYN, making it difficult to predict toxin concentrations, based on C. raciborskii cell densities. In summary, the ecological flexibility of this organism means that controlling blooms of C. raciborskii is a difficult undertaking. However, improved understanding of factors promoting the species and toxin production by genetically capable strains will lead to improved predictive models of blooms.

  1. Response of chlorophyll d-containing cyanobacterium Acaryochloris marina to UV and visible irradiations.

    PubMed

    Hou, Xuejing; Raposo, Aaron; Hou, Harvey J M

    2013-11-01

    We have previously investigated the response mechanisms of photosystem II complexes from spinach to strong UV and visible irradiations (Wei et al J Photochem Photobiol B 104:118-125, 2011). In this work, we extend our study to the effects of strong light on the unusual cyanobacterium Acaryochloris marina, which is able to use chlorophyll d (Chl d) to harvest solar energy at a longer wavelength (740 nm). We found that ultraviolet (UV) or high level of visible and near-far red light is harmful to A. marina. Treatment with strong white light (1,200 μmol quanta m(-2) s(-1)) caused a parallel decrease in PSII oxygen evolution of intact cells and in extracted pigments Chl d, zeaxanthin, and α-carotene analyzed by high-performance liquid chromatography, with severe loss after 6 h. When cells were irradiated with 700 nm of light (100 μmol quanta m(-2) s(-1)) there was also bleaching of Chl d and loss of photosynthetic activity. Interestingly, UVB radiation (138 μmol quanta m(-2) s(-1)) caused a loss of photosynthetic activity without reduction in Chl d. Excess absorption of light by Chl d (visible or 700 nm) causes a reduction in photosynthesis and loss of pigments in light harvesting and photoprotection, likely by photoinhibition and inactivation of photosystem II, while inhibition of photosynthesis by UVB radiation may occur by release of Mn ion(s) in Mn4CaO5 center in photosystem II. PMID:24158260

  2. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    PubMed Central

    Thiel, Teresa; Pratte, Brenda S.

    2014-01-01

    The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters. PMID:25513762

  3. Preliminary evidence of toxicity associated with the benthic cyanobacterium Phormidium in South Australia.

    PubMed

    Baker, P D; Steffensen, D A; Humpage, A R; Nicholson, B C; Falconer, I R; Lanthois, B; Fergusson, K M; Saint, C P

    2001-01-01

    In April 2000, the water supply for Yorke Peninsula in South Australia was deemed non-potable when extracts from a proliferation of the benthic cyanobacterium Phormidium aff. formosum in Upper Paskeville Reservoir were found to be lethally toxic by intraperitoneal injection into mice (400 mg kg-1). Routine water quality monitoring had failed to detect the development of the Phormidium until complaints of musty taste and odour, attributable to the production of 2-methyl-isoborneol (MIB), were received from the consumers. The 185 ML open-balancing storage, receiving filtered and chloraminated water from the River Murray, was isolated from the drinking water supply and a health alert was issued to approximately 15,000 consumers. The identity of the toxin(s) is thus far unknown, but clinical symptoms of toxicity in mice and chemical characteristics are distinct from the known major cyanotoxins. Preliminary characterisation of this toxin indicates that it has low solubility in water and organic solvents and is strongly associated with the particulate cellular material of the filaments. Toxicity of extracts was diminished by boiling and by treatment with chlorine, but not by chloramines. Further testing of floating cyanobacterial mats in the Torrens Lake in the city of Adelaide (Phormidium aff. formosum) and Myponga Reservoir (Phormidium aff. amoenum) in 2000/2001 was also found to be toxic by mouse bioassay. Toxicity is yet to be confirmed in monospecific cultured strains and further studies are required to identify the toxin and assess its health significance. Genetic characterisation of isolates has commenced in an attempt to classify their relatedness and to assist in the rapid identification of potentially toxic strains. PMID:11769248

  4. Lack of Phylogeographic Structure in the Freshwater Cyanobacterium Microcystis aeruginosa Suggests Global Dispersal

    PubMed Central

    van Gremberghe, Ineke; Vanormelingen, Pieter; Van der Gucht, Katleen; Debeer, Ann-Eline; Lacerot, Gissell; De Meester, Luc; Vyverman, Wim

    2011-01-01

    Background Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography. Methodology/Principal Findings The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected. Conclusions/Significance The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution. PMID:21573169

  5. Optimal conditions for genetic transformations of the cyanobacterium Anacystis nidulans R2

    SciTech Connect

    Golden, S.S.; Sherman, L.A.

    1984-04-01

    Under optimal conditions, the cyanobacterium Anacystis nidulans R2 was transformed to ampicillin resistance at frequencies of >10/sup 7/ transformants per ..mu..g of plasmid (pCH1) donor DNA. No stringent period of competency was detected, and high frequencies of transformation were achieved with cultures at various growth stages. Transformation increased with time after addition of donor DNA up to 15 to 18 h. The peak of transformation efficiency (transformants/donor molecule) occurred at plasmid concentrations of 125 to 325 ng/ml with an ampicillin resistance donor plasmid (pCH1) and 300 to 625 ng/ml for chloramphenicol resistance conferred by plasmid pSG111. The efficiency of transformation was enhanced by excluding light during the incubation or by blocking photosynthesis with the electron transport inhibitor 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU) or the uncoupler carbonyl cyanide-m-chlorophenyl hydrazone. Preincubation of cells in darkness for 15 to 18 h before addition of donor DNA significantly decreased transformation efficiency. Growth of cells in iron-deficient medium before transformation enhanced efficiency fourfold. These results were obtained with selection for ampicillin (pCH1 donor plasmid)- or chloramphenicol (pSG111 donor plasmid)-resistant transformants. Approximately 1000 transformants per ..mu..g were obtained when chromosomal DNA from a herbicide (DCMU)-resistant mutant was used as donor DNA. DCMU resistance was also transferred to recipient cells by using restriction fragments of chromosomal DNA from DCMU-resistant mutants. This procedure allowed size classes of fragments to be assayed for the presence of the DCMU resistance gene.

  6. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942.

    PubMed

    Cunningham, F X; Sun, Z; Chamovitz, D; Hirschberg, J; Gantt, E

    1994-08-01

    A gene encoding the enzyme lycopene cyclase in the cyanobacterium Synechococcus sp strain PCC7942 was mapped by genetic complementation, cloned, and sequenced. This gene, which we have named crtL, was expressed in strains of Escherichia coli that were genetically engineered to accumulate the carotenoid precursors lycopene, neurosporene, and zeta-carotene. The crtL gene product converts the acyclic hydrocarbon lycopene into the bicyclic beta-carotene, an essential component of the photosynthetic apparatus in oxygen-evolving organisms and a source of vitamin A in human and animal nutrition. The enzyme also converts neurosporene to the monocyclic beta-zeacarotene but does not cyclize zeta-carotene, indicating that desaturation of the 7-8 or 7'-8' carbon-carbon bond is required for cyclization. The bleaching herbicide 2-(4-methylphenoxy)triethylamine hydrochloride (MPTA) effectively inhibits both cyclization reactions. A mutation that confers resistance to MPTA in Synechococcus sp PCC7942 was identified as a point mutation in the promoter region of crtL. The deduced amino acid sequence of lycopene cyclase specifies a polypeptide of 411 amino acids with a molecular weight of 46,125 and a pI of 6.0. An amino acid sequence motif indicative of FAD utilization is located at the N terminus of the polypeptide. DNA gel blot hybridization analysis indicated a single copy of crtL in Synechococcus sp PCC7942. Other than the FAD binding motif, the predicted amino acid sequence of the cyanobacterial lycopene cyclase bears little resemblance to the two known lycopene cyclase enzymes from nonphotosynthetic bacteria. Preliminary results from DNA gel blot hybridization experiments suggest that, like two earlier genes in the pathway, the Synechococcus gene encoding lycopene cyclase is homologous to plant and algal genes encoding this enzyme. PMID:7919981

  7. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  8. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium

    PubMed Central

    Burnat, Mireia; Herrero, Antonia; Flores, Enrique

    2014-01-01

    Heterocyst-forming cyanobacteria are multicellular organisms in which growth requires the activity of two metabolically interdependent cell types, the vegetative cells that perform oxygenic photosynthesis and the dinitrogen-fixing heterocysts. Vegetative cells provide the heterocysts with reduced carbon, and heterocysts provide the vegetative cells with fixed nitrogen. Heterocysts conspicuously accumulate polar granules made of cyanophycin [multi-L-arginyl-poly (L-aspartic acid)], which is synthesized by cyanophycin synthetase and degraded by the concerted action of cyanophycinase (that releases β-aspartyl-arginine) and isoaspartyl dipeptidase (that produces aspartate and arginine). Cyanophycin synthetase and cyanophycinase are present at high levels in the heterocysts. Here we created a deletion mutant of gene all3922 encoding isoaspartyl dipeptidase in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. The mutant accumulated cyanophycin and β-aspartyl-arginine, and was impaired specifically in diazotrophic growth. Analysis of an Anabaena strain bearing an All3922-GFP (green fluorescent protein) fusion and determination of the enzyme activity in specific cell types showed that isoaspartyl dipeptidase is present at significantly lower levels in heterocysts than in vegetative cells. Consistently, isolated heterocysts released substantial amounts of β-aspartyl-arginine. These observations imply that β-aspartyl-arginine produced from cyanophycin in the heterocysts is transferred intercellularly to be hydrolyzed, producing aspartate and arginine in the vegetative cells. Our results showing compartmentalized metabolism of cyanophycin identify the nitrogen-rich molecule β-aspartyl-arginine as a nitrogen vehicle in the unique multicellular system represented by the heterocyst-forming cyanobacteria. PMID:24550502

  9. Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  10. DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F

    SciTech Connect

    Chen, C.H.; Van Baalen, C.; Tabita, F.R.

    1987-03-01

    An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-(/sup 14/C)glutamate from 2-keto-(1-/sup 14/C)glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with (/sup 14/C)bicarbonate and L-(1-/sup 14/C)ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution.

  11. Radiation characteristics and effective optical properties of dumbbell-shaped cyanobacterium Synechocystis sp.

    NASA Astrophysics Data System (ADS)

    Heng, Ri-Liang; Pilon, Laurent

    2016-05-01

    This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz-Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies.

  12. Rapid transient growth at low pH in the cyanobacterium Synechococcus sp.

    PubMed Central

    Kallas, T; Castenholz, R W

    1982-01-01

    The thermophilic cyanobacterium Synechococcus sp. strain Y-7c-s grows at its maximum rate at a high pH (pH 8 and above) the does not show sustained growth below pH 6.5. However, rapidly growing, exponential-phase cells from high-pH cultures continued to grow rapidly for several hours after transfer to pH 6.0 or 5.0. This transient growth represented increases in mass and protein, but cells failed to complete division. Viability loss commenced well before the cessation of growth, and cells at pH 5.0 showed no net DNA synthesis. When irradiated by visible light, cells at pH 6.0 and 5.0 maintained and internal pH of 6.9 to 7.1 (determined by 31P nuclear magnetic resonance spectroscopy) and an extremely high ATP/(ATP + ADP) ratio even after growth had ceased. Cells exposed to a low pH did not show an increase in the spontaneous mutation rate, as measured by mutation to streptomycin resistance. However, cells already resistant to streptomycin were more resistant to viability loss at a low pH than the parental type. Cultures that could grow transiently at a low pH had higher rates of viability loss than nongrowing cultures in light or darkness. The retention of a high internal pH by cells exposed to a low pH suggested that a low pH acted initially on the cell membrane, possibly on solute transport. PMID:6798020

  13. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  14. Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis.

    PubMed

    Tomita, Koji; Hasegawa, Masateru; Arii, Suzue; Tsuji, Kiyomi; Bober, Beata; Harada, Ken-Ichi

    2016-06-01

    The cyanobacterium Microcystis produces volatile organic compounds such as β-cyclocitral and 3-methyl-1-butanol. The lysis of cyanobacteria involving the blue color formation has been occasionally observed in a natural environment. In this study, we focused on the oxidation behavior of β-cyclocitral that contributed to the blue color formation in a natural environment and compared β-cyclocitral with a structurally related compound concerning its oxidation, acidification, and lytic behavior. The oxidation products of β-cyclocitral were identified by the addition of β-cyclocitral in water, in which 2,2,6-trimethylcyclohex-1-ene-1-yl formate and 2,2,6-trimethylcyclohexanone were structurally characterized. That is, β-cyclocitral was easily oxidized to produce the corresponding carboxylic acid and the enol ester in water without an oxidizing reagent, suggesting that this oxidation proceeded according to the Baeyer-Villiger oxidation. The oxidation behavior of β-cyclocitral in a laboratory was different from that in the natural environment, in which 2,2,6- trimethylcyclohexanone was detected at the highest amount in the natural environment, whereas the highest amount in the laboratory was β-cyclocitric acid. A comparison of β-cyclocitral with structurally similar aldehydes concerning the lytic behavior of a Microcystis strain and the acidification process indicated that only β-cyclocitral was easily oxidized. Furthermore, it was found that a blue color formation occurred between pH 5.5 and 6.5, suggesting that chlorophyll a and β-carotene are unstable and decomposed, whereas phycocyanin was stable to some extent in this range. The obtained results of the characteristic oxidation behavior of β-cyclocitral would contribute to a better understanding of the cyanobacterial life cycle. PMID:26961531

  15. Ionic Osmoregulation during Salt Adaptation of the Cyanobacterium Synechococcus 6311 1

    PubMed Central

    Blumwald, Eduardo; Mehlhorn, Rolf J.; Packer, Lester

    1983-01-01

    The mechanisms of salt adaptation were studied in the cyanobacterium Synechococcus 6311. Intracellular volumes and ion concentrations were measured before and after abrupt increases of external NaCl concentrations up to 0.6 molar NaCl. Equilibrium volumes, measured with a rapid and accurate electron spin resonance spin probe method, showed that at low NaCl concentrations the cells did not shrink as expected for an impermeable solute. However, when the NaCl concentration exceeded a critical value, volume losses occurred. These losses were not fully reversed by hypoosmotic treatment, suggesting membrane damage. The critical value of irreversible volume loss paralleled the increase in salinity during cell growth. Rapid mixing experiments showed that exposure of Synechococcus 6311 to non-damaging NaCl concentrations caused water extrusion from the cells; the volume decreases were time resolved to about 200 milliseconds. Subsequently, volumes increased rapidly as NaCl moved into the cells. Controls recovered their volumes within 15 seconds, while salt-adapted cells grown at 0.6 molar NaCl required 1 minute for volume equilibration. This decrease in the rate of cell volume recovery indicates that salt adaptation is accompanied by changes in cell membrane properties. Subsequent to these initial rapid volume changes, a more gradual sequence of ion movement and sugar accumulation was observed. Under conditions for photoautotrophic growth, significant Na+ extrusion was observed 30 min after salt shock. Sucrose accumulation reached a maximum value after 16 hours and K+ accumulation reached equilibrium after 40 hours. The final concentrations of K+ and Na+ and sucrose and glucose inside the 0.6 molar NaCl-grown cells indicate that the inorganic ions and organic `compatible' solutes are the major osmotic species which account for the adaptation of Synechococcus 6311 to salt. PMID:16663223

  16. Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Schuerger, Andrew C.; Billi, Daniela; Imre Friedmann, E.; Panitz, Corinna

    2005-06-01

    Dried monolayers of Chroococcidiopsis sp. 029, a desiccation-tolerant, endolithic cyanobacterium, were exposed to a simulated martian-surface UV and visible light flux, which may also approximate to the worst-case scenario for the Archean Earth. After 5 min, there was a 99% loss of cell viability, and there were no survivors after 30 min. However, this survival was approximately 10 times higher than that previously reported for Bacillus subtilis. We show that under 1 mm of rock, Chroococcidiopsis sp. could survive (and potentially grow) under the high martian UV flux if water and nutrient requirements for growth were met. In isolated cells, phycobilisomes and esterases remained intact hours after viability was lost. Esterase activity was reduced by 99% after a 1-h exposure, while 99% loss of autofluorescence required a 4-h exposure. However, cell morphology was not changed, and DNA was still detectable by 4',6-diamidino-2-phenylindole staining after an 8-h exposure (equivalent to approximately 1 day on Mars at the equator). Under 1 mm of simulant martian soil or gneiss, the effect of UV radiation could not be detected on esterase activity or autofluorescence after 4 h. These results show that under the intense martian UV flux the morphological signatures of life can persist even after viability, enzymatic activity, and pigmentation have been destroyed. Finally, the global dispersal of viable, isolated cells of even this desiccation-tolerant, ionizing-radiation-resistant microorganism on Mars is unlikely as they are killed quickly by unattenuated UV radiation when in a desiccated state. These findings have implications for the survival of diverse microbial contaminants dispersed during the course of human exploratory class missions on the surface of Mars.

  17. Isolation and Characterization of the Small Subunit of the Uptake Hydrogenase from the Cyanobacterium Nostoc punctiforme*

    PubMed Central

    Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2013-01-01

    In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS. PMID:23649626

  18. Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis.

    PubMed Central

    Thiel, T

    1993-01-01

    Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium that has been reported to fix nitrogen and reduce acetylene to ethane in the absence of molybdenum. DNA from this strain hybridized well at low stringency to the nitrogenase 2 (vnfDGK) genes of Azotobacter vinelandii. The hybridizing region was cloned from a lambda EMBL3 genomic library of A. variabilis, mapped, and sequenced. The deduced amino acid sequences of the vnfD and vnfK genes of A. variabilis showed only about 56% similarity to the nifDK genes of Anabaena sp. strain PCC 7120 but were 76 to 86% similar to the anfDK or vnfDK genes of A. vinelandii. The organization of the vnf gene cluster in A. variabilis was similar to that of A. vinelandii. However, in A. variabilis, the vnfG gene was fused to vnfD; hence, this gene is designated vnfDG. A vnfH gene was not contiguous with the vnfDG gene and has not yet been identified. A mutant strain, in which a neomycin resistance cassette was inserted into the vnf cluster, grew well in a medium lacking a source of fixed nitrogen in the presence of molybdenum but grew poorly when vanadium replaced molybdenum. In contrast, the parent strain grew equally well in media containing either molybdenum or vanadium. The vnf genes were transcribed in the absence of molybdenum, with or without vanadium. The vnf gene cluster did not hybridize to chromosomal DNA from Anabaena sp. strain PCC 7120 or from the heterotrophic strains, Nostoc sp. strain Mac and Nostoc sp. strain ATCC 29150. A hybridizing ClaI fragment very similar in size to the A. variabilis ClaI fragment was present in DNA isolated from several independent, cultured isolates of Anabaena sp. from the Azolla symbiosis. Images PMID:8407800

  19. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413.

    PubMed

    Thiel, Teresa; Pratte, Brenda S

    2014-01-01

    The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters. PMID:25513762

  20. Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Napolitano, Mauro; Rubio, Miguel Ángel; Santamaría-Gómez, Javier; Olmedo-Verd, Elvira; Robinson, Nigel J; Luque, Ignacio

    2012-05-01

    Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium. PMID:22389488

  1. Elementary Economics: A Bibliography.

    ERIC Educational Resources Information Center

    Federal Reserve Bank of Chicago, IL.

    Elementary educators have realized in recent years the life-long importance of developing students' economic decision-making skills. Many now include economic education in the curriculum. This annotated bibliography was developed to support and encourage these efforts and to bring to educators' attention some of the excellent materials available…

  2. Pathway-Level Acceleration of Glycogen Catabolism by a Response Regulator in the Cyanobacterium Synechocystis Species PCC 68031[W

    PubMed Central

    Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

    2014-01-01

    Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium. PMID:24521880

  3. Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803.

    PubMed Central

    Labarre, J; Chauvat, F; Thuriaux, P

    1989-01-01

    The facultative heterotrophic cyanobacterium Synechocystis sp. strain PCC 6803 was transformed by HaeII Cmr fragments ligated at random to HaeII DNA fragments of the host genome. A similar transformation was done with an AvaII Kmr marker ligated to AvaII host DNA fragments. Integration of the resistance markers into the host genome led to a high frequency of stable Kmr and Cmr transformants. Physical analysis of individual transformants indicated that this result was due to homologous recombination by conversionlike events leading to insertion of the Cmr (or Kmr) gene between two HaeII (or AvaII) sites of the host genome, with precise deletion of the host DNA between these sites. In contrast, integrative crossover of circular DNA molecules with homology to the host DNA is very rare in this cyanobacterium. Strain PCC 6803 was shown to have about 12 genomic copies per cell in standard growth conditions, which complicates the detection of recessive mutations induced by chemical or UV mutagenesis. Random disruption of the host DNA by insertional transformation provides a convenient alternative to transposon mutagenesis in cyanobacteria and may help to overcome the difficulties encountered in generating recessive mutants by classical mutagenesis. Images PMID:2498291

  4. Spectral properties of bacteriophytochrome AM1_5894 in the chlorophyll d-containing cyanobacterium Acaryochloris marina.

    PubMed

    Loughlin, Patrick C; Duxbury, Zane; Mugerwa, Tendo T Mukasa; Smith, Penelope M C; Willows, Robert D; Chen, Min

    2016-01-01

    Acaryochloris marina, a unicellular oxygenic photosynthetic cyanobacterium, has uniquely adapted to far-red light-enriched environments using red-shifted chlorophyll d. To understand red-light use in Acaryochloris, the genome of this cyanobacterium was searched for red/far-red light photoreceptors from the phytochrome family, resulting in identification of a putative bacteriophytochrome AM1_5894. AM1_5894 contains three standard domains of photosensory components as well as a putative C-terminal signal transduction component consisting of a histidine kinase and receiver domain. The photosensory domains of AM1_5894 autocatalytically assemble with biliverdin in a covalent fashion. This assembled AM1_5894 shows the typical photoreversible conversion of bacterial phytochromes with a ground-state red-light absorbing (Pr) form with λBV max[Pr] 705 nm, and a red-light inducible far-red light absorbing (Pfr) form with λBV max[Pfr] 758 nm. Surprisingly, AM1_5894 also autocatalytically assembles with phycocyanobilin, involving photoreversible conversion of λPCB max[Pr] 682 nm and λPCB max[Pfr] 734 nm, respectively. Our results suggest phycocyanobilin is also covalently bound to AM1_5894, while mutation of a cysteine residue (Cys11Ser) abolishes this covalent binding. The physiological function of AM1_5894 in cyanobacteria containing red-shifted chlorophylls is discussed. PMID:27282102

  5. Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803?

    PubMed

    Haimovich-Dayan, Maya; Lieman-Hurwitz, Judy; Orf, Isabel; Hagemann, Martin; Kaplan, Aaron

    2015-05-01

    Cyanobacteria possess CO2 -concentrating mechanisms (CCM) that functionally compensate for the poor affinity of their ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to CO2 . It was proposed that 2-phosphoglycolate (2PG), produced by the oxygenase activity of Rubisco and metabolized via photorespiratory routes, serves as a signal molecule for the induction of CCM-related genes under limiting CO2 level (LC) conditions. However, in vivo evidence is still missing. Since 2PG does not permeate the cells, we manipulated its internal concentration. Four putative phosphoglycolate phosphatases (PGPases) encoding genes (slr0458, sll1349, slr0586 and slr1762) were identified in the cyanobacterium Synechocystis PCC 6803. Expression of slr0458 in Escherichia coli led to a significant rise in PGPase activity. A Synechocystis mutant overexpressing (OE) slr0458 was constructed. Compared with the wild type (WT), the mutant grew slower under limiting CO2 concentration and the intracellular 2PG level was considerably smaller than in the wild type, the transcript abundance of LC-induced genes including cmpA, sbtA and ndhF3 was reduced, and the OE cells acclimated slower to LC - indicated by the delayed rise in the apparent photosynthetic affinity to inorganic carbon. Data obtained here implicated 2PG in the acclimation of this cyanobacterium to LC but also indicated that other, yet to be identified components, are involved. PMID:25297829

  6. Spectral properties of bacteriophytochrome AM1_5894 in the chlorophyll d-containing cyanobacterium Acaryochloris marina

    PubMed Central

    Loughlin, Patrick C.; Duxbury, Zane; Mugerwa, Tendo T. Mukasa; Smith, Penelope M. C.; Willows, Robert D.; Chen, Min

    2016-01-01

    Acaryochloris marina, a unicellular oxygenic photosynthetic cyanobacterium, has uniquely adapted to far-red light-enriched environments using red-shifted chlorophyll d. To understand red-light use in Acaryochloris, the genome of this cyanobacterium was searched for red/far-red light photoreceptors from the phytochrome family, resulting in identification of a putative bacteriophytochrome AM1_5894. AM1_5894 contains three standard domains of photosensory components as well as a putative C-terminal signal transduction component consisting of a histidine kinase and receiver domain. The photosensory domains of AM1_5894 autocatalytically assemble with biliverdin in a covalent fashion. This assembled AM1_5894 shows the typical photoreversible conversion of bacterial phytochromes with a ground-state red-light absorbing (Pr) form with λBV max[Pr] 705 nm, and a red-light inducible far-red light absorbing (Pfr) form with λBV max[Pfr] 758 nm. Surprisingly, AM1_5894 also autocatalytically assembles with phycocyanobilin, involving photoreversible conversion of λPCB max[Pr] 682 nm and λPCB max[Pfr] 734 nm, respectively. Our results suggest phycocyanobilin is also covalently bound to AM1_5894, while mutation of a cysteine residue (Cys11Ser) abolishes this covalent binding. The physiological function of AM1_5894 in cyanobacteria containing red-shifted chlorophylls is discussed. PMID:27282102

  7. A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W

    PubMed Central

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

    2013-01-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  8. Complete Genome Sequence of a Cylindrospermopsin-Producing Cyanobacterium, Cylindrospermopsis raciborskii CS505, Containing a Circular Chromosome and a Single Extrachromosomal Element.

    PubMed

    Fuentes-Valdés, Juan J; Plominsky, Alvaro M; Allen, Eric E; Tamames, Javier; Vásquez, Mónica

    2016-01-01

    Cylindrospermopsis raciborskii is a freshwater cyanobacterium producing bloom events and toxicity in drinking water source reservoirs. We present the first genome sequence for C. raciborskii CS505 (Australia), containing one 4.1-Mbp chromosome and one 110-Kbp plasmid having G+C contents of 40.3% (3933 genes) and 39.3% (111 genes), respectively. PMID:27563040

  9. Complete Genome Sequence of a Cylindrospermopsin-Producing Cyanobacterium, Cylindrospermopsis raciborskii CS505, Containing a Circular Chromosome and a Single Extrachromosomal Element

    PubMed Central

    Fuentes-Valdés, Juan J.; Plominsky, Alvaro M.; Allen, Eric E.; Tamames, Javier

    2016-01-01

    Cylindrospermopsis raciborskii is a freshwater cyanobacterium producing bloom events and toxicity in drinking water source reservoirs. We present the first genome sequence for C. raciborskii CS505 (Australia), containing one 4.1-Mbp chromosome and one 110-Kbp plasmid having G+C contents of 40.3% (3933 genes) and 39.3% (111 genes), respectively. PMID:27563040

  10. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance

    NASA Technical Reports Server (NTRS)

    Stramski, Dariusz; Shalapyonok, Alexi; Reynolds, Rick A.

    1995-01-01

    The optical properties of the ocenanic cyanobacterium Synechococcus (clone WH8103) were examined in a nutrient-replete laboratory culture grown under a day-night cycle in natural irradiance. Measurements of the spectral absorption and beam attenuation coefficients, the size distribution of cells in suspension, and microscopic analysis of samples were made at intervals of 2-4 hours for 2 days. These measurements were used to calculate the optical properties at the level of a single 'mean' cell representative of the acutal population, specifically, the optical cross sections for spectral absorption bar-(sigma(sub a)), scattering bar-sigma(sub b))(lambda), and attentuation bar-(sigma(sub c))(lambda). In addition, concurrent determinations of chlorophyll a and particulate organic carbon allowed calculation of the Chl a- and C-specific optical coefficients. The refractive index of cells was derived from the observed data using a theory of light absorption and scattering by homogeneous spheres. Low irradiance because of cloudy skies resulted in slow division rates of cells in the culture. The percentage of dividing cells was unusually high (greater than 30%) throughout the experiment. The optical cross sections varied greatly over a day-night cycle, with a minimum near dawn or midmorning and maximum near dusk. During daylight hours, bar-(sigma(sub b)) and bar-(sigma(sub c)) can increase more than twofold and bar-(sigma(sub a) by as much as 45%. The real part of the refractive index n increaed during the day; changes in n had equal or greater effect than the varying size distribution on changes in bar-(sigma(sub c)) and bar-(sigma(sub b)). The contribution of changes in n to the increase of bar-(sigma(sub c))(660) during daylight hours was 65.7% and 45.1% on day 1 and 2, respectively. During the dark period, when bar-(sigma(sub c))(660) decreased by a factor of 2.9, the effect of decreasing n was dominant (86.3%). With the exception of a few hours during the second light

  11. Institutional Economics.

    ERIC Educational Resources Information Center

    Samuels, Warren J.

    1984-01-01

    Institutional economics remains a viable alternative approach to economics. It stresses power, technology, and a holistic and evolutionary approach while critiquing the neoclassical approach. General features of institutional economics are examined, and the work of institutionalists in specific areas is discussed. (RM)

  12. Stimulating Economics

    ERIC Educational Resources Information Center

    Banaian, King

    2009-01-01

    With the current economic slump possibly the deepest since the Great Depression, interest in the subject of macroeconomics has reignited, and the number of students majoring in economics has increased during the last two years. While this would appear to be good news for educators in the economics field, the profession is nervous about more than…

  13. Role of RNA Secondary Structure and Processing in Stability of the nifH1 Transcript in the Cyanobacterium Anabaena variabilis

    PubMed Central

    Pratte, Brenda S.; Ungerer, Justin

    2015-01-01

    ABSTRACT In the cyanobacterium Anabaena variabilis ATCC 29413, aerobic nitrogen fixation occurs in micro-oxic cells called heterocysts. Synthesis of nitrogenase in heterocysts requires expression of the large nif1 gene cluster, which is primarily under the control of the promoter for the first gene, nifB1. Strong expression of nifH1 requires the nifB1 promoter but is also controlled by RNA processing, which leads to increased nifH1 transcript stability. The processing of the primary nifH1 transcript occurs at the base of a predicted stem-loop structure that is conserved in many heterocystous cyanobacteria. Mutations that changed the predicted secondary structure or changed the sequence of the stem-loop had detrimental effects on the amount of nifH1 transcript, with mutations that altered or destabilized the structure having the strongest effect. Just upstream from the transcriptional processing site for nifH1 was the promoter for a small antisense RNA, sava4870.1. This RNA was more strongly expressed in cells grown in the presence of fixed nitrogen and was downregulated in cells 24 h after nitrogen step down. A mutant strain lacking the promoter for sava4870.1 showed delayed nitrogen fixation; however, that phenotype might have resulted from an effect of the mutation on the processing of the nifH1 transcript. The nifH1 transcript was the most abundant and most stable nif1 transcript, while nifD1 and nifK1, just downstream of nifH1, were present in much smaller amounts and were less stable. The nifD1 and nifK1 transcripts were also processed at sites just upstream of nifD1 and nifK1. IMPORTANCE In the filamentous cyanobacterium Anabaena variabilis, the nif1 cluster, encoding the primary Mo nitrogenase, functions under aerobic growth conditions in specialized cells called heterocysts that develop in response to starvation for fixed nitrogen. The large cluster comprising more than a dozen nif1 genes is transcribed primarily from the promoter for the first gene, nifB1

  14. Manganese limitation induces changes in the activity and in the organization of photosynthetic complexes in the cyanobacterium Synechocystis sp. strain PCC 6803.

    PubMed

    Salomon, Eitan; Keren, Nir

    2011-01-01

    Manganese (Mn) ions are essential for oxygen evolution activity in photoautotrophs. In this paper, we demonstrate the dynamic response of the photosynthetic apparatus to changes in Mn bioavailability in cyanobacteria. Cultures of the cyanobacterium Synechocystis PCC 6803 could grow on Mn concentrations as low as 100 nm without any observable effect on their physiology. Below this threshold, a decline in the photochemical activity of photosystem II (PSII) occurred, as evident by lower oxygen evolution rates, lower maximal photosynthetic yield of PSII values, and faster Q(A) reoxidation rates. In 77 K chlorophyll fluorescence spectroscopy, a peak at 682 nm was observed. After ruling out the contribution of phycobilisome and iron stress-induced IsiA proteins, this band was attributed to the accumulation of partially assembled PSII. Surprisingly, the increase in the 682-nm peak was paralleled by a decrease in the 720-nm peak, dominated by PSI fluorescence. The effect on PSI was confirmed by measurements of the P(700) photochemical activity. The loss of activity was the result of two processes: loss of PSI core proteins and changes in the organization of PSI complexes. Blue native-polyacrylamide gel electrophoresis analysis revealed a Mn limitation-dependent dissociation of PSI trimers into monomers. The sensitive range for changes in the organization of the photosynthetic apparatus overlaps with the range of Mn concentrations measured in natural environments. We suggest that the ability to manipulate PSI content and organization allows cyanobacteria to balance electron transport rates between the photosystems. At naturally occurring Mn concentrations, such a mechanism will provide important protection against light-induced damage. PMID:21088228

  15. Strains of the Harmful Cyanobacterium Microcystis aeruginosa Differ in Gene Expression and Activity of Inorganic Carbon Uptake Systems at Elevated CO2 Levels.

    PubMed

    Sandrini, Giovanni; Jakupovic, Dennis; Matthijs, Hans C P; Huisman, Jef

    2015-11-01

    Cyanobacteria are generally assumed to be effective competitors at low CO2 levels because of their efficient CO2-concentrating mechanism (CCM), and yet how bloom-forming cyanobacteria respond to rising CO2 concentrations is less clear. Here, we investigate changes in CCM gene expression at ambient CO2 (400 ppm) and elevated CO2 (1,100 ppm) in six strains of the harmful cyanobacterium Microcystis. All strains downregulated cmpA encoding the high-affinity bicarbonate uptake system BCT1, whereas both the low- and high-affinity CO2 uptake genes were expressed constitutively. Four strains downregulated the bicarbonate uptake genes bicA and/or sbtA, whereas two strains showed constitutive expression of the bicA-sbtA operon. In one of the latter strains, a transposon insert in bicA caused low bicA and sbtA transcript levels, which made this strain solely dependent on BCT1 for bicarbonate uptake. Activity measurements of the inorganic carbon (Ci) uptake systems confirmed the CCM gene expression results. Interestingly, genes encoding the RuBisCO enzyme, structural carboxysome components, and carbonic anhydrases were not regulated. Hence, Microcystis mainly regulates the initial uptake of inorganic carbon, which might be an effective strategy for a species experiencing strongly fluctuating Ci concentrations. Our results show that CCM gene regulation of Microcystis varies among strains. The observed genetic and phenotypic variation in CCM responses may offer an important template for natural selection, leading to major changes in the genetic composition of harmful cyanobacterial blooms at elevated CO2. PMID:26319871

  16. Strains of the Harmful Cyanobacterium Microcystis aeruginosa Differ in Gene Expression and Activity of Inorganic Carbon Uptake Systems at Elevated CO2 Levels

    PubMed Central

    Sandrini, Giovanni; Jakupovic, Dennis; Matthijs, Hans C. P.

    2015-01-01

    Cyanobacteria are generally assumed to be effective competitors at low CO2 levels because of their efficient CO2-concentrating mechanism (CCM), and yet how bloom-forming cyanobacteria respond to rising CO2 concentrations is less clear. Here, we investigate changes in CCM gene expression at ambient CO2 (400 ppm) and elevated CO2 (1,100 ppm) in six strains of the harmful cyanobacterium Microcystis. All strains downregulated cmpA encoding the high-affinity bicarbonate uptake system BCT1, whereas both the low- and high-affinity CO2 uptake genes were expressed constitutively. Four strains downregulated the bicarbonate uptake genes bicA and/or sbtA, whereas two strains showed constitutive expression of the bicA-sbtA operon. In one of the latter strains, a transposon insert in bicA caused low bicA and sbtA transcript levels, which made this strain solely dependent on BCT1 for bicarbonate uptake. Activity measurements of the inorganic carbon (Ci) uptake systems confirmed the CCM gene expression results. Interestingly, genes encoding the RuBisCO enzyme, structural carboxysome components, and carbonic anhydrases were not regulated. Hence, Microcystis mainly regulates the initial uptake of inorganic carbon, which might be an effective strategy for a species experiencing strongly fluctuating Ci concentrations. Our results show that CCM gene regulation of Microcystis varies among strains. The observed genetic and phenotypic variation in CCM responses may offer an important template for natural selection, leading to major changes in the genetic composition of harmful cyanobacterial blooms at elevated CO2. PMID:26319871

  17. Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica for ATPase, protein folding, and copper binding under various salinity conditions.

    PubMed

    Hibino, T; Kaku, N; Yoshikawa, H; Takabe, T; Takabe, T

    1999-06-01

    Previously, it was found that the dnaK1 gene of the halotolerant cyanobacterium Aphanothece halophytica encodes a polypeptide of 721 amino acids which has a long C-terminal region rich in acidic amino acid residues. To understand whether the A. halophytica DnaK1 possesses chaperone activity at high salinity and to clarify the role of the extra C-terminal amino acids, a comparative study examined three kinds of DnaK molecules for ATPase activity as well as the refolding activity of other urea-denatured proteins under various salinity conditions. DnaK1s from A. halophytica and Synechococcus sp. PCC 7942 and the C-terminal deleted A. halophytica DnaK1 were expressed in Escherichia coli and purified. The ATPase activity of A. halophytica DnaK1 was very high even at high salinity ( 1.0 M NaCl or KCl), whereas this activity in Synechococcus PCC 7942 DnaK1 decreased with increasing concentrations of NaCl or KCl. The salt dependence on the refolding activity of urea-denatured lactate dehydrogenase by DnaK1s was similar to that of ATPase activity of the respective DnaK1s. The deletion of the C-terminal amino acids of A. halophytica DnaK had no effect on the ATPase activity, but caused a significant decrease in the refolding activity of other denatured proteins. These facts indicate that the extra C-terminal region of A. halophytica DnaK1 plays an important role in the refolding of other urea-denatured proteins at high salinity. Furthermore, it was shown that DnaK1 could assist the copper binding of precursor apo-plastocyanin as well as that of mature apo-plastocyanin during the folding of these copper proteins. PMID:10437825

  18. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In

  19. Ethoxyzolamide Inhibition of CO(2)-Dependent Photosynthesis in the Cyanobacterium Synechococcus PCC7942.

    PubMed

    Price, G D; Badger, M R

    1989-01-01

    Cells of the cyanobacterium, Synechococcus PCC7942, grown under high inorganic carbon (C(i)) conditions (1% CO(2); pH 8) were found to be photosynthetically dependent on exogenous CO(2). This was judged by the fact that they had a similar photosynthetic affinity for CO(2) (K(0.5)[CO(2)] of 3.4-5.4 micromolar) over the pH range 7 to 9 and that the low photosynthetic affinity for C(i) measured in dense cell suspensions was improved by the addition of exogenous carbonic anhydrase (CA). The CA inhibitor, ethoxyzolamide (EZ), was shown to reduce photosynthetic affinity for CO(2) in high C(i) cells. The addition of 200 micromolar EZ to high C(i) cells increased K(0.5)(CO(2)) from 4.6 micromolar to more than 155 micromolar at pH 8.0, whereas low C(i) cells (grown at 30 microliters CO(2) per liter of air) were less sensitive to EZ. EZ inhibition in high and low C(i) cells was largely relieved by increasing exogenous C(i) up to 100 millimolar. Lipid soluble CA inhibitors such as EZ and chlorazolamide were shown to be the most effective inhibitors of CO(2) usage, whereas water soluble CA inhibitors such as methazolamide and acetazolamide had little or no effect. EZ was found to cause a small drop in photosystem II activity, but this level of inhibition was not sufficient to explain the large effect that EZ had on CO(2) usage. High C(i) cells of Anabaena variabilis M3 and Synechocystis PCC6803 were also found to be sensitive to 200 micromolar EZ. We discuss the possibility that the inhibitory effect of EZ on CO(2) usage in high C(i) cells of Synechococcus PCC7942 may be due to inhibition of a ;CA-like' function associated with the CO(2) utilizing C(i) pump or due to inhibition of an internal CA activity, thus affecting CO(2) supply to ribulose bisphosphate carboxylase-oxygenase. PMID:16666544

  20. Temporal dynamics of ROS biogenesis under simulated solar radiation in the cyanobacterium Anabaena variabilis PCC 7937.

    PubMed

    Singh, Shailendra P; Rastogi, Rajesh P; Häder, Donat-P; Sinha, Rajeshwar P

    2014-09-01

    We studied the temporal generation of reactive oxygen species (ROS) in the cyanobacterium Anabaena variabilis PCC 7937 under simulated solar radiation using WG 280, WG 295, WG 305, WG 320, WG 335, WG 345, and GG 400 nm cut-off filters to find out the minimum exposure time and most effective region of the solar spectrum inducing highest level of ROS. There was no significant generation of ROS in all treatments in comparison to the samples kept in the dark during the first 8 h of exposure; however, after 12 h of exposure, ROS were significantly generated in samples covered with 305, 295, or 280 nm cut-off filters. In contrast with ROS, the fragmentation of filaments was predominantly seen in 280 nm cut-off filter covered samples after 12 h of exposure. After 24 h of exposure, ROS levels were significantly higher in all samples than in the dark; however, the ROS signals were more pronounced in 320, 305, 295, or 280 nm cut-off filter covered samples. In contrast, the length of filaments was reduced in 305, 295, or 280 nm cut-off filter covered samples after 24 h of exposure. Thus, fragmentation of the filament was induced by all wavelengths of the UV-B region contrary to the UV-A region where only shorter wavelengths were able to induce the fragmentation. In contrast, ROS were generated by all wavelengths of the solar spectrum after 24 h of exposure; however, shorter wavelengths of both the UV-A and the UV-B regions were more effective in generating ROS in comparison to their higher wavelengths and photosynthetic active radiation (PAR). Moreover, lower wavelengths of UV-B were more efficient than the lower wavelengths of the UV-A radiation. Findings from this study suggest that certain threshold levels of ROS are required to induce the fragmentation of filaments. PMID:24633292

  1. Isolation of a Putative Carboxysomal Carbonic Anhydrase Gene from the Cyanobacterium Synechococcus PCC7942 1

    PubMed Central

    Yu, Jian-Wei; Price, G. Dean; Song, Lirong; Badger, Murray R.

    1992-01-01

    The Type II mutants of the cyanobacterium Synechococcus PCC7942 (G.D. Price, M.R. Badger [1989] Plant Physiol 91: 514-525) are able to accumulate a large pool of inorganic carbon inside the cell, but are unable to utilize it for CO2 fixation, resulting in a high CO2-requiring phenotype. We have isolated a 3.5-kb BamHI clone (pT2) that complements the Type II mutants, and complementation analysis with DNA subclones indicated that the complementing region was located in the 0.75-kb XhoI-Bg/II fragment. This same region hybridized to the chloroplastic carbonic anhydrase (CA) gene from spinach on Southern blots and to a mRNA of approximate 1 kb on northern blots. Restriction mapping and sequence analysis revealed that pT2 is the same as a genomic clone (pBM3.8) that complements another high CO2-requiring (temperature sensitive) mutant, C3P-O (E. Suzuki, H. Fukuzawa, S. Miyachi [1991] Mol Gen Genet 226: 401-408). Recently, a 272-amino acid open reading frame showing 22% homology with pea and spinach chloroplast CA genes was identified in clone pBM3.8 (H. Fukuzawa, E. Suzuki, Y. Komukal, S. Miyachi [1992] Proc Natl Acad Sci USA 89: 4437-4441). CA activity was detected in Escherichia coli cells transformed with subclones of pT2 (pT2-A and pT2-A1) containing the HindIII-Bg/II fragment, and the expressed CA has properties similar to those of the CA activity associated with carboxysomes purified from Synechococcus PCC7942 (G.D. Price, J.R. Coleman, M.R. Badger [1992] Plant Physiol 100: 784-793). Therefore, it is reasonable to conclude that the HindIII-Bg/II fragment codes for the carboxysomal CA gene product. The result is discussed in the context of the role that carboxysomal CA plays in the operation of the CO2-concentrating mechanism in cyanobacteria. Images Figure 2 Figure 4 PMID:16653060

  2. Association of N2-fixing Cyanobacteria and Plants: Towards Novel Symbioses of Agricultural Importance. Final report, 1 April 1996 to 31 May 1997

    SciTech Connect

    Gantar, Miroslav

    1999-03-01

    The goal of this project is to characterize an association that takes place between the roots of wheat and the nitrogen-fixing cyanobacterium Nostoc 2S9. By understanding how the association takes place and the extent to which it permits the growth of the plant without exogenous nitrogenous fertilizer, it may prove possible to increase the benefits of the association and to extend them to other plants of agrinomic importance.

  3. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Pei, Guangsheng; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen

    2014-01-01

    Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap in the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis. PMID:25405149

  4. Behavioral Economics

    PubMed Central

    Reed, Derek D.; Niileksela, Christopher R.; Kaplan, Brent A.

    2013-01-01

    In recent years, behavioral economics has gained much attention in psychology and public policy. Despite increased interest and continued basic experimental studies, the application of behavioral economics to therapeutic settings remains relatively sparse. Using examples from both basic and applied studies, we provide an overview of the principles comprising behavioral economic perspectives and discuss implications for behavior analysts in practice. A call for further translational research is provided. PMID:25729506

  5. Auswirkungen von okonomischem Druck auf die psychosoziale Befindlichkeit von Jugendlichen: Zur Bedeutung von Familienbeziehungen und Schulniveau (The Effect of Economic Pressure on the Psycho-Social Well-Being of Adolescents: The Importance of Family Relations and School Track).

    ERIC Educational Resources Information Center

    Butz, Petra; Boehnke, Klaus

    1997-01-01

    Presents findings on the impact of economic pressure on the well-being of adolescents in Berlin. Shows that relative losses in purchasing power are related to decreased self-esteem in problematic family climates; school level, place of residence, and relative gain in purchasing power played a greater role in xenophobia and aggressive helplessness.…

  6. Economic Stabilization Policies. Economic Topic Series.

    ERIC Educational Resources Information Center

    Lewis, Wilfred

    This pamphlet was derived from a discussion paper prepared for a Joint Council conference. It was specifically revised for this series to bring an important subject to the attention of students and concerned citizens. Part One defines the problem of economic stabilization and explains the fiscal and monetary measures used to help control the…

  7. High Titer Heterologous Production of Lyngbyatoxin in E. coli, a Protein Kinase C Activator from an Uncultured Marine Cyanobacterium

    PubMed Central

    Ongley, Sarah E.; Bian, Xiaoying; Zhang, Youming; Chau, Rocky; Gerwick, William H.; Müller, Rolf; Neilan, Brett A.

    2013-01-01

    Many chemically-complex cyanobacterial polyketides and nonribosomal peptides are of great pharmaceutical interest, but the levels required for exploitation are difficult to achieve from native sources. Here we develop a framework for the expression of these multifunctional cyanobacterial assembly lines in Escherichia coli using the lyngbyatoxin biosynthetic pathway, derived from a marine microbial assemblage dominated by the cyanobacterium Moorea producens. Heterologous expression of this pathway afforded high titers of both lyngbyatoxin A (25.6 mg L-1) and its precursor indolactam-V (150 mg L-1). Production, isolation and identification of all expected chemical intermediates of lyngbyatoxin biosynthesis in E. coli also confirmed the previously proposed biosynthetic route setting a solid chemical foundation for future pathway engineering. The successful production of the nonribosomal peptide lyngbyatoxin A in E. coli also opens the possibility for future heterologous expression, characterization and exploitation of other cyanobacterial natural product pathways. PMID:23751865

  8. Salinity-regulated replication of the endogenous plasmid pSY10 from the marine cyanobacterium Synechococcus sp.

    PubMed

    Takeyama, H; Nakayama, H; Matsunaga, T

    2000-01-01

    The endogenous plasmid pSY10 in the marine cyanobacterium Synechococcus sp. NKBG042902 is maintained at a high copy number when cells are grown in seawater and at a low copy number when cultured in freshwater. The mechanism of salinity-regulated replication of this plasmid was investigated. Transcription of repA was depressed under freshwater, which was accompanied by a low copy number of pSY10 and the appearance of a new protein that was expressed only in cells cultured in freshwater. This protein was observed to bind to putative repA promoters (Prep1 and Prep2) on pSY10. Moreover, this protein was observed only in Synechococcus sp. NKBG042902. The data suggest that this protein(s) regulates repA transcription in pSY10, stress responsive and encoded by the host chromosome. PMID:10849811

  9. The leaves of green plants as well as a cyanobacterium, a red alga, and fungi contain insulin-like antigens.

    PubMed

    Silva, L B; Santos, S S S; Azevedo, C R; Cruz, M A L; Venâncio, T M; Cavalcante, C P; Uchôa, A F; Astolfi Filho, S; Oliveira, A E A; Fernandes, K V S; Xavier-Filho, J

    2002-03-01

    We report the detection of insulin-like antigens in a large range of species utilizing a modified ELISA plate assay and Western blotting. We tested the leaves or aerial parts of species of Rhodophyta (red alga), Bryophyta (mosses), Psilophyta (whisk ferns), Lycopodophyta (club mosses), Sphenopsida (horsetails), gymnosperms, and angiosperms, including monocots and dicots. We also studied species of fungi and a cyanobacterium, Spirulina maxima. The wide distribution of insulin-like antigens, which in some cases present the same electrophoretic mobility as bovine insulin, together with results recently published by us on the amino acid sequence of an insulin isolated from the seed coat of jack bean (Canavalia ensiformis) and from the developing fruits of cowpea (Vigna unguiculata), suggests that pathways depending on this hormone have been conserved through evolution. PMID:11887207

  10. Trimeric forms of the photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis.

    PubMed

    Shubin, V V; Tsuprun, V L; Bezsmertnaya, I N; Karapetyan, N V

    1993-11-01

    Oligomeric and monomeric forms of chlorophyll-protein complexes of photosystem I (PSI) have been isolated from the mesophilic cyanobacterium Spirulina [(1992) FEBS Lett. 309, 340-342]. Electron microscopic analysis of the complexes showed that the oligomeric form is a trimer of the shape and dimensions similar to those of the trimer from thermophilic cyanobacteria. The chlorophyl ratio in the isolated trimer and monomer was found to be 7:3. The trimeric form of PSI complex in contrast to the monomeric one contains the chlorophyll emitting at 760 nm (77K), which is also found in Spirulina membranes and therefore could be used as an intrinsic probe for the trimeric complex. The 77K circular dichroism spectrum of the trimeric form is much more similar to that of Spirulina membranes than the spectrum of the monomer. Thus, the trimeric PSI complexes exist and dominate in the Spirulina membranes. PMID:8224233

  11. 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption.

    PubMed

    McEwen, Jordan T; Kanno, Masahiro; Atsumi, Shota

    2016-07-01

    Cyanobacteria are under investigation as a means to utilize light energy to directly recycle CO2 into chemical compounds currently derived from petroleum. Any large-scale photosynthetic production scheme must rely on natural sunlight for energy, thereby limiting production time to only lighted hours during the day. Here, an obligate photoautotrophic cyanobacterium was engineered for enhanced production of 2,3-butanediol (23BD) in continuous light, 12h:12h light-dark diurnal, and continuous dark conditions via supplementation with glucose or xylose. This study achieved 23BD production under diurnal conditions comparable to production under continuous light conditions. The maximum 23BD titer was 3.0gL(-1) in 10d. Also achieving chemical production under dark conditions, this work enhances the feasibility of using cyanobacteria as industrial chemical-producing microbes. PMID:26979472

  12. Cloning of a copper resistance gene cluster from the cyanobacterium Synechocystis sp. PCC 6803 by recombineering recovery.

    PubMed

    Gittins, John R

    2015-07-01

    A copper resistance gene cluster (6 genes, ∼8.2 kb) was isolated from the cyanobacterium Synechocystis sp. PCC 6803 by recombineering recovery (RR). Following integration of a narrow-host-range plasmid vector adjacent to the target region in the Synechocystis genome (pSYSX), DNA was isolated from transformed cells and the plasmid plus flanking sequence circularized by recombineering to precisely clone the gene cluster. Complementation of a copper-sensitive Escherichia coli mutant demonstrated the functionality of the pcopM gene encoding a copper-binding protein. RR provides a novel alternative method for cloning large DNA fragments from species that can be transformed by homologous recombination. PMID:25980606

  13. Structure of Trichamide, a Cyclic Peptide from the Bloom-Forming Cyanobacterium Trichodesmium erythraeum, Predicted from the Genome Sequence†

    PubMed Central

    Sudek, Sebastian; Haygood, Margo G.; Youssef, Diaa T. A.; Schmidt, Eric W.

    2006-01-01

    A gene cluster for the biosynthesis of a new small cyclic peptide, dubbed trichamide, was discovered in the genome of the global, bloom-forming marine cyanobacterium Trichodesmium erythraeum ISM101 because of striking similarities to the previously characterized patellamide biosynthesis cluster. The tri cluster consists of a precursor peptide gene containing the amino acid sequence for mature trichamide, a putative heterocyclization gene, an oxidase, two proteases, and hypothetical genes. Based upon detailed sequence analysis, a structure was predicted for trichamide and confirmed by Fourier transform mass spectrometry. Trichamide consists of 11 amino acids, including two cysteine-derived thiazole groups, and is cyclized by an N—C terminal amide bond. As the first natural product reported from T. erythraeum, trichamide shows the power of genome mining in the prediction and discovery of new natural products. PMID:16751554

  14. High-titer heterologous production in E. coli of lyngbyatoxin, a protein kinase C activator from an uncultured marine cyanobacterium.

    PubMed

    Ongley, Sarah E; Bian, Xiaoying; Zhang, Youming; Chau, Rocky; Gerwick, William H; Müller, Rolf; Neilan, Brett A

    2013-09-20

    Many chemically complex cyanobacterial polyketides and nonribosomal peptides are of great pharmaceutical interest, but the levels required for exploitation are difficult to achieve from native sources. Here we develop a framework for the expression of these multifunctional cyanobacterial assembly lines in Escherichia coli using the lyngbyatoxin biosynthetic pathway, derived from a marine microbial assemblage dominated by the cyanobacterium Moorea producens. Heterologous expression of this pathway afforded high titers of both lyngbyatoxin A (25.6 mg L(-1)) and its precursor indolactam-V (150 mg L(-1)). Production, isolation, and identification of all expected chemical intermediates of lyngbyatoxin biosynthesis in E. coli also confirmed the previously proposed biosynthetic route, setting a solid chemical foundation for future pathway engineering. The successful production of the nonribosomal peptide lyngbyatoxin A in E. coli also opens the possibility for future heterologous expression, characterization, and exploitation of other cyanobacterial natural product pathways. PMID:23751865

  15. Mutations that affect structure and assembly of light-harvesting proteins in the cyanobacterium Synechocystis sp. strain 6701

    SciTech Connect

    Anderson, L.K.; Rayner, M.C.; Eiserling, F.A.

    1987-01-01

    The unicellular cyanobacterium Synechocystis sp. strain 6701 was mutagenized with UV irradiation and screened for pigment changes that indicated genetic lesions involving the light-harvesting proteins of the phycobilisome. A previous examination of the pigment mutant UV16 showed an assembly defect in the phycocyanin component of the phycobilisome. Mutagenesis of UV16 produced an additional double mutant, UV16-40, with decreased phycoerythrin content. Phycocyanin and phycoerythrin were isolated from UV16-40 and compared with normal biliproteins. The results suggested that the UV16 mutation affected the alpha subunit of phycocyanin, while the phycoerythrin beta subunit from UV16-40 had lost one of its three chromophores. Characterization of the unassembled phycobilisome components in these mutants suggests that these strains will be useful for probing in vivo the regulated expression and assembly of phycobilisomes.

  16. Direct measurement of excitation transfer dynamics between two trimers in C-phycocyanin hexamer from cyanobacterium Anabaena variabilis

    NASA Astrophysics Data System (ADS)

    Zhang, Jingmin; Zhao, Fuli; Zheng, Xiguang; Wang, Hezhou

    1999-05-01

    We provide the first experimental evidence for the excitation transfers between two trimers of an isolated C-phycocyanin hexamer (αβ) 6PCL RC27, at the end of the rod proximal to the core of PBS in cyanobacterium of Anabaena variabilis, with picosecond time-resolved fluorescence spectroscopy. Our results strongly suggest that the observed fluorescence decay constants around 20 and 10 ps time scales, shown in anisotropy decay, not in isotropic decay experiments arose from the excitation transfers between two trimers via two types of transfer pathways such as 1β 155↔6β 155 (2β 155↔5β 155 and 3β 155↔4β 155) and 2α 84↔5α 84 (3α 84↔6α 84 and 1α 84↔4α 84) channels and these could be described by Föster dipole-dipole resonance mechanism.

  17. Fabivirga thermotolerans gen. nov., sp. nov., a novel marine bacterium isolated from culture broth of a marine cyanobacterium.

    PubMed

    Tang, M; Chen, C; Li, J; Xiang, W; Wu, H; Wu, J; Dai, S; Wu, H; Li, T; Wang, G

    2016-02-01

    A Gram-stain-negative, red, non-spore-forming, strictly aerobic bacterium, designated strain A4T, was isolated from culture broth of a marine cyanobacterium. Cells were flexible rods with gliding motility. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain A4T formed a coherent cluster with members of the genera Roseivirga and Fabibacter, and represents a distinct lineage in the family Flammeovirgaceae. Thermotolerance and a distinctive cellular fatty acid profile could readily distinguish this isolate from any bacteria of the genera Roseivirga and Fabibacter with a validly published name. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain A4T is suggested to represent a novel species in a novel genus, for which the name Fabivirga thermotolerans gen. nov., sp. nov. is proposed. The type strain is A4T ( = KCTC 42507T = CGMCC 1.15111T). PMID:26652750

  18. Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii strain LEGE 99043.

    PubMed

    Antunes, Jorge T; Leão, Pedro N; Vasconcelos, Vítor M

    2012-10-01

    Allelopathy is considered to be one of the factors underlying the global expansion of the toxic cyanobacterium Cylindrospermopsis raciborskii. Although the production and release of allelopathic compounds by cyanobacteria is acknowledged to be influenced by environmental parameters, the response of C. raciborskii remains generally unrecognized. Here, the growth and allelopathic potential of C. raciborskii strain LEGE 99043 towards the ubiquitous microalga Ankistrodesmus falcatus were analyzed under different biotic and abiotic conditions. Filtrates from C. raciborskii cultures growing at different cell densities displayed broad inhibitory activity. Moreover, higher temperature, higher light intensity as well phosphate limitation further enhanced this activity. The distinct and comprehensive patterns of inhibition verified during the growth phase, and under the tested parameters, suggest the action of several, still unidentified allelopathic compounds. It is expectable that the observed increase in allelopathic activity can result in distinct ecological advantages to C. raciborskii. PMID:22562107

  19. Photosystem Trap Energies and Spectrally-Dependent Energy-Storage Efficiencies in the Chl d-Utilizing Cyanobacterium, Acaryochloris Marina

    NASA Technical Reports Server (NTRS)

    Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David

    2012-01-01

    Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.

  20. Localization of Membrane Proteins in the Cyanobacterium Synechococcus sp. PCC7942 (Radial Asymmetry in the Photosynthetic Complexes).

    PubMed Central

    Sherman, D. M.; Troyan, T. A.; Sherman, L. A.

    1994-01-01

    Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942 was determined by transmission electron microscopy utilizing immunocytochemistry with cells prepared by freeze-substitution. This preparation procedure maintained cellular morphology and permitted detection of cellular antigens with high sensitivity and low background. Synechococcus sp. PCC7942 is a unicellular cyanobacterium with thylakoids organized in concentric layers toward the periphery of the cell. Cytochrome oxidase was localized almost entirely in the cytoplasmic membrane, whereas a carotenoprotein (P35) was shown to be a cell wall component. The major photosystem II (PSII) proteins (D1, D2 CP43, and CP47) were localized throughout the thylakoids. Proteins of the Cyt b6/f complex were found to have a similar distribution. Thylakoid luminal proteins, such as the Mn-stabilizing protein, were located primarily in the thylakoid, but a small, reproducible fraction was found in the outer compartment. The photosystem I (PSI) reaction center proteins and the ATP synthase proteins were found associated mostly with the outermost thylakoid and with the cytoplasmic membrane. These results indicated that the photosynthetic apparatus is not evenly distributed throughout the thylakoids. Rather, there is a radial asymmetry such that much of the PSI and the ATPase synthase is located in the outermost thylakoid. The relationship of this structure to the photosynthetic mechanism is discussed. It is suggested that the photosystems are separated because of kinetic differences between PSII and PSI, as hypothesized by H.-W. Trissl and C. Wilhelm (Trends Biochem Sci [1993] 18:415-419). PMID:12232325

  1. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2

    PubMed Central

    Sandrini, Giovanni; Cunsolo, Serena; Schuurmans, J. Merijn; Matthijs, Hans C. P.; Huisman, Jef

    2015-01-01

    Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7-fold increase of the cyanobacterial biomass and ~2.5-fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes. PMID:25999931

  2. Proteomic Strategy for the Analysis of the Polychlorobiphenyl-Degrading Cyanobacterium Anabaena PD-1 Exposed to Aroclor 1254

    PubMed Central

    Zhang, Hangjun; Jiang, Xiaojun; Xiao, Wenfeng; Lu, Liping

    2014-01-01

    The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the

  3. Global Transcriptional Responses of the Toxic Cyanobacterium, Microcystis aeruginosa, to Nitrogen Stress, Phosphorus Stress, and Growth on Organic Matter

    PubMed Central

    Harke, Matthew J.; Gobler, Christopher J.

    2013-01-01

    Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis. PMID:23894552

  4. High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris

    PubMed Central

    Sunda, William G.; Huntsman, Susan A.

    2015-01-01

    Iron limits carbon fixation in much of the modern ocean due to the very low solubility of ferric iron in oxygenated ocean waters. We examined iron-limitation of growth rate under varying light intensities in the coastal cyanobacterium Synechococcus bacillaris, a descendent of the oxygenic phototrophs that evolved ca. 3 billion years ago when the ocean was reducing and iron was present at much higher concentrations as soluble Fe(II). Decreasing light intensity increased the cellular iron:carbon (Fe:C) ratio needed to support a given growth rate, indicating that iron and light may co-limit the growth of Synechococcus in the ocean, as shown previously for eukaryotic phytoplankton. The cellular Fe:C ratios needed to support a given growth rate were 5- to 8-fold higher than ratios for coastal eukaryotic algae growing under the same light conditions. The higher iron requirements for growth in the coastal cyanobacterium may be largely caused by the high demand for iron in photosynthesis, and to higher ratios of iron-rich photosystem I to iron-poor photosystem II in Synechococcus than in eukaryotic algae. This high iron requirement may also be vestigial and represent an adaptation to the much higher iron levels in the ancient reducing ocean. Due to the high cellular iron requirement for photosynthesis and growth, and for low light acclimation, Synechococcus may be excluded from many low-iron and low-light environments. Indeed, it decreases rapidly with depth within the ocean’s deep chlorophyll maximum (DCM) where iron and light levels are low, and lower-iron requiring picoeukaryotes typically dominate the biomass of phytoplankton community within the mid to lower DCM. PMID:26150804

  5. Microenvironmental Ecology of the Chlorophyll b-Containing Symbiotic Cyanobacterium Prochloron in the Didemnid Ascidian Lissoclinum patella

    PubMed Central

    Kühl, Michael; Behrendt, Lars; Trampe, Erik; Qvortrup, Klaus; Schreiber, Ulrich; Borisov, Sergey M.; Klimant, Ingo; Larkum, Anthony W. D.

    2012-01-01

    The discovery of the cyanobacterium Prochloron was the first finding of a bacterial oxyphototroph with chlorophyll (Chl) b, in addition to Chl a. It was first described as Prochloron didemni but a number of clades have since been described. Prochloron is a conspicuously large (7–25 μm) unicellular cyanobacterium living in a symbiotic relationship, primarily with (sub-) tropical didemnid ascidians; it has resisted numerous cultivation attempts and appears truly obligatory symbiotic. Recently, a Prochloron draft genome was published, revealing no lack of metabolic genes that could explain the apparent inability to reproduce and sustain photosynthesis in a free-living stage. Possibly, the unsuccessful cultivation is partly due to a lack of knowledge about the microenvironmental conditions and ecophysiology of Prochloron in its natural habitat. We used microsensors, variable chlorophyll fluorescence imaging and imaging of O2 and pH to obtain a detailed insight to the microenvironmental ecology and photobiology of Prochloron in hospite in the didemnid ascidian Lissoclinum patella. The microenvironment within ascidians is characterized by steep gradients of light and chemical parameters that change rapidly with varying irradiances. The interior zone of the ascidians harboring Prochloron thus became anoxic and acidic within a few minutes of darkness, while the same zone exhibited O2 super-saturation and strongly alkaline pH after a few minutes of illumination. Photosynthesis showed lack of photoinhibition even at high irradiances equivalent to full sunlight, and photosynthesis recovered rapidly after periods of anoxia. We discuss these new insights on the ecological niche of Prochloron and possible interactions with its host and other microbes in light of its recently published genome and a recent study of the overall microbial diversity and metagenome of L. patella. PMID:23226144

  6. Economic Realities.

    ERIC Educational Resources Information Center

    Van Alstyne, Carol

    Concerns relating to the economics of higher education, including inflation, are considered. It is suggested that future sources of rising costs are energy, equipment, books, and federal requirements, and that another major economic concern involves trends in enrollments and in tuition revenues. Projections of declining enrollments should be…

  7. Resource Economics

    NASA Astrophysics Data System (ADS)

    Conrad, Jon M.

    1999-10-01

    Resource Economics is a text for students with a background in calculus, intermediate microeconomics, and a familiarity with the spreadsheet software Excel. The book covers basic concepts, shows how to set up spreadsheets to solve dynamic allocation problems, and presents economic models for fisheries, forestry, nonrenewable resources, stock pollutants, option value, and sustainable development. Within the text, numerical examples are posed and solved using Excel's Solver. Through these examples and additional exercises at the end of each chapter, students can make dynamic models operational, develop their economic intuition, and learn how to set up spreadsheets for the simulation of optimization of resource and environmental systems.

  8. Swarm Economics

    NASA Astrophysics Data System (ADS)

    Kazadi, Sanza; Lee, John

    The Hamiltonian Method of Swarm Design is applied to the design of an agent based economic system. The method allows the design of a system from the global behaviors to the agent behaviors, with a guarantee that once certain derived agent-level conditions are satisfied, the system behavior becomes the desired behavior. Conditions which must be satisfied by consumer agents in order to bring forth the `invisible hand of the market' are derived and demonstrated in simulation. A discussion of how this method might be extended to other economic systems and non-economic systems is presented.

  9. Behavioral economics

    PubMed Central

    Hursh, Steven R.

    1984-01-01

    Economics, like behavioral psychology, is a science of behavior, albeit highly organized human behavior. The value of economic concepts for behavioral psychology rests on (1) their empirical validity when tested in the laboratory with individual subjects and (2) their uniqueness when compared to established behavioral concepts. Several fundamental concepts are introduced and illustrated by reference to experimental data: open and closed economies, elastic and inelastic demand, and substitution versus complementarity. Changes in absolute response rate are analyzed in relation to elasticity and intensity of demand. The economic concepts of substitution and complementarity are related to traditional behavioral studies of choice and to the matching relation. The economic approach has many implications for the future of behavioral research and theory. In general, economic concepts are grounded on a dynamic view of reinforcement. The closed-economy methodology extends the generality of behavioral principles to situations in which response rate and obtained rate of reinforcement are interdependent. Analysis of results in terms of elasticity and intensity of demand promises to provide a more direct method for characterizing the effects of “motivational” variables. Future studies of choice should arrange heterogeneous reinforcers with varying elasticities, use closed economies, and modulate scarcity or income. The economic analysis can be extended to the study of performances that involve subtle discriminations or skilled movements that vary in accuracy or quality as opposed to rate or quantity, and thus permit examination of time/accuracy trade-offs. PMID:16812401

  10. Ecological Economics

    NASA Astrophysics Data System (ADS)

    Common, Michael; Stagl, Sigrid

    2005-10-01

    Taking as its starting point the interdependence of the economy and the natural environment, this book provides a comprehensive introduction to the emerging field of ecological economics. The authors, who have written extensively on the economics of sustainability, build on insights from both mainstream economics and ecological sciences. Part I explores the interdependence of the modern economy and its environment, while Part II focuses mainly on the economy and on economics. Part III looks at how national governments set policy targets and the instruments used to pursue those targets. Part IV examines international trade and institutions, and two major global threats to sustainability - climate change and biodiversity loss. Assuming no prior knowledge of economics, this textbook is well suited for use on interdisciplinary environmental science and management courses. It has extensive student-friendly features including discussion questions and exercises, keyword highlighting, real-world illustrations, further reading and website addresses. A comprehensive introduction to a developing field which will interest students from science, economics and management backgrounds A global approach to the problems of sustainability and sustainable development, issues which are increasingly prominent in political debate and policy making Filled with student-friendly features including focus areas for each chapter, keyword highlighting, real-world illustrations, discussion questions and exercises, further reading and website addresses

  11. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942.

    PubMed

    Nakahira, Yoichi; Ogawa, Atsushi; Asano, Hiroyuki; Oyama, Tokitaka; Tozawa, Yuzuru

    2013-10-01

    The cyanobacterium Synechococcus elongatus PCC 7942 is a major model species for studies of photosynthesis. It is are also a potential cell factory for the production of renewable biofuels and valuable chemicals. We employed engineered riboswitches to control translational initiation of target genes in this cyanobacterium. A firefly luciferase reporter assay revealed that three theophylline riboswitches performed as expected in the cyanobacterium. Riboswitch-E* exhibited very low leaky expression of luciferase and superior and dose-dependent on/off regulation of protein expression by theophylline. The maximum magnitude of the induction vs. basal level was ∼190-fold. Furthermore, the induction level was responsive to a wide range of theophylline concentrations in the medium, from 0 to 2 mM, facilitating the fine-tuning of luciferase expression. We adapted this riboswitch to another gene regulation system, in which expression of the circadian clock kaiC gene product is controlled by the theophylline concentration in the culture medium. The results demonstrated that the adequately adjusted expression level of KaiC restored complete circadian rhythm in the kaiC-deficient arrhythmic mutant. This theophylline-dependent riboswitch system has potential for various applications as a useful genetic tool in cyanobacteria. PMID:23969558

  12. Economic components of grief.

    PubMed

    Corden, Anne; Hirst, Michael

    2013-09-01

    This article investigates the nature, context, and impact of economic stressors associated with loss, drawing on a mixed-methods study of changes in financial circumstances and economic roles following death of a life partner. Findings show how economic changes, and the practicalities of dealing with such transitions, shaped individual responses to the death. Perceived decline in financial wellbeing was associated with increased risk of poor psychological health following bereavement. The findings underline the theoretical importance of financial risk factors for anticipating the duration, pattern, and timing of bereavement outcomes. A challenge for service providers and professionals is how to bring understanding of economic components within emotional and practical support for people preparing for death and those who are bereaved. PMID:24521030

  13. HYDROGEN PRODUCTION BY THE CYANOBACTERIUM PLECTONEMA BORYANUM: EFFECTS OF INITIAL NITRATE CONCENTRATION, LIGHT INTENSITY, AND INHIBITION OF PHOTOSYSTEM II BY DCMU

    SciTech Connect

    Carter, B.; Huesemann, M.

    2008-01-01

    The alarming rate at which atmospheric carbon dioxide levels are increasing due to the burning of fossil fuels will have incalculable consequences if disregarded. Fuel cells, a source of energy that does not add to carbon dioxide emissions, have become an important topic of study. Although signifi cant advances have been made related to fuel cells, the problem of cheap and renewable hydrogen production still remains. The cyanobacterium Plectonema boryanum has demonstrated potential as a resolution to this problem by producing hydrogen under nitrogen defi cient growing conditions. Plectonema boryanum cultures were tested in a series of experiments to determine the effects of light intensity, initial nitrate concentration, and photosystem II inhibitor DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea) upon hydrogen production. Cultures were grown in sterile Chu. No. 10 medium within photobioreactors constantly illuminated by halogen lights. Because the enzyme responsible for hydrogen production is sensitive to oxygen, the medium was continuously sparged with argon/CO2 (99.7%/0.3% vol/vol) by gas dispersion tubes immersed in the culture. Hydrogen production was monitored by using a gas chromatograph equipped with a thermal conductivity detector. In the initial experiment, the effects of initial nitrate concentration were tested and results revealed cumulative hydrogen production was maximum at an initial nitrate concentration of 1 mM. A second experiment was then conducted at an initial nitrate concentration of 1 mM to determine the effects of light intensity at 50, 100, and 200 μmole m-2 s-1. Cumulative hydrogen production increased with increasing light intensity. A fi nal experiment, conducted at an initial nitrate concentration of 2 mM, tested the effects of high light intensity at 200 and 400 μmole m-2 s-1. Excessive light at 400 μmole m-2 s-1 decreased cumulative hydrogen production. Based upon all experiments, cumulative hydrogen production rates were optimal

  14. Extracellular polymeric substances buffer against the biocidal effect of H2O2 on the bloom-forming cyanobacterium Microcystis aeruginosa.

    PubMed

    Gao, Lei; Pan, Xiangliang; Zhang, Daoyong; Mu, Shuyong; Lee, Duu-Jong; Halik, Umut

    2015-02-01

    H2O2 is an emerging biocide for bloom-forming cyanobacteria. It is important to investigate the H2O2 scavenging ability of extracellular polymeric substances (EPS) of cyanobacteria because EPS with strong antioxidant activity may "waste" considerable amounts of H2O2 before it kills the cells. In this study, the buffering capacity against H2O2 of EPS from the bloom-forming cyanobacterium Microcystis aeruginosa was investigated. IC50 values for the ability of EPS and vitamin C (VC) to scavenge 50% of the initial H2O2 concentration were 0.097 and 0.28 mg mL(-1), respectively, indicating the higher H2O2 scavenging activity of EPS than VC. Both proteins and polysaccharides are significantly decomposed by H2O2 and the polysaccharides were more readily decomposed than proteins. H2O2 consumed by the EPS accounted for 50% of the total amount of H2O2 consumed by the cells. Cell growth and photosynthesis were reduced more for EPS-free cells than EPS coated cells when the cells were treated with 0.1 or 0.2 mg mL(-1) H2O2, and the maximum photochemical efficiency Fv/Fm of EPS coated cells recovered to higher values than EPS-free cells. Concentrations of H2O2 above 0.3 mg mL(-1) completely inhibited photosynthesis and no recovery was observed for both EPS-free and EPS coated cells. This shows that EPS has some buffering capacity against the killing effect of H2O2 on cyanobacterial cells. Such a strong H2O2 scavenging ability of EPS is not favorable for killing bloom-forming cyanobacteria. The high H2O2 scavenging capacity means considerable amounts of H2O2 have to be used to break through the EPS barrier before H2O2 exerts any killing effects on the cells. It is therefore necessary to determine the H2O2 scavenging capacity of the EPS of various bloom-forming cyanobacteria so that the cost-effective amount of H2O2 needed to be used for killing the cyanobacteria can be estimated. PMID:25463931

  15. Synthesis of Chlorophyll-Binding Proteins in a Fully Segregated Δycf54 Strain of the Cyanobacterium Synechocystis PCC 6803

    PubMed Central

    Hollingshead, Sarah; Kopečná, Jana; Armstrong, David R.; Bučinská, Lenka; Jackson, Philip J.; Chen, Guangyu E.; Dickman, Mark J.; Williamson, Michael P.; Sobotka, Roman; Hunter, C. Neil

    2016-01-01

    In the chlorophyll (Chl) biosynthesis pathway the formation of protochlorophyllide is catalyzed by Mg-protoporphyrin IX methyl ester (MgPME) cyclase. The Ycf54 protein was recently shown to form a complex with another component of the oxidative cyclase, Sll1214 (CycI), and partial inactivation of the ycf54 gene leads to Chl deficiency in cyanobacteria and plants. The exact function of the Ycf54 is not known, however, and further progress depends on construction and characterization of a mutant cyanobacterial strain with a fully inactivated ycf54 gene. Here, we report the complete deletion of the ycf54 gene in the cyanobacterium Synechocystis 6803; the resulting Δycf54 strain accumulates huge concentrations of the cyclase substrate MgPME together with another pigment, which we identified using nuclear magnetic resonance as 3-formyl MgPME. The detection of a small amount (~13%) of Chl in the Δycf54 mutant provides clear evidence that the Ycf54 protein is important, but not essential, for activity of the oxidative cyclase. The greatly reduced formation of protochlorophyllide in the Δycf54 strain provided an opportunity to use 35S protein labeling combined with 2D electrophoresis to examine the synthesis of all known Chl-binding protein complexes under drastically restricted de novo Chl biosynthesis. We show that although the Δycf54 strain synthesizes very limited amounts of photosystem I and the CP47 and CP43 subunits of photosystem II (PSII), the synthesis of PSII D1 and D2 subunits and their assembly into the reaction centre (RCII) assembly intermediate were not affected. Furthermore, the levels of other Chl complexes such as cytochrome b6f and the HliD– Chl synthase remained comparable to wild-type. These data demonstrate that the requirement for de novo Chl molecules differs completely for each Chl-binding protein. Chl traffic and recycling in the cyanobacterial cell as well as the function of Ycf54 are discussed. PMID:27014315

  16. Cell surface acid-base properties of the cyanobacterium Synechococcus: Influences of nitrogen source, growth phase and N:P ratios

    NASA Astrophysics Data System (ADS)

    Liu, Yuxia; Alessi, D. S.; Owttrim, G. W.; Kenney, J. P. L.; Zhou, Qixing; Lalonde, S. V.; Konhauser, K. O.

    2016-08-01

    The distribution of many trace metals in the oceans is controlled by biological uptake. Recently, Liu et al. (2015) demonstrated the propensity for a marine cyanobacterium to adsorb cadmium from seawater, suggesting that cell surface reactivity might also play an important role in the cycling of metals in the oceans. However, it remains unclear how variations in cyanobacterial growth rates and nutrient supply might affect the chemical properties of their cellular surfaces. In this study we used potentiometric titrations and Fourier Transform Infrared (FT-IR) spectrometry to profile the key metabolic changes and surface chemical responses of a Synechococcus strain, PCC 7002, during different growth regimes. This included testing various nitrogen (N) to phosphorous (P) ratios (both nitrogen and phosphorous dependent), nitrogen sources (nitrate, ammonium and urea) and growth stages (exponential, stationary, and death phase). FT-IR spectroscopy showed that varying the growth substrates on which Synechococcus cells were cultured resulted in differences in either the type or abundance of cellular exudates produced or a change in the cell wall components. Potentiometric titration data were modeled using three distinct proton binding sites, with resulting pKa values for cells of the various growth conditions in the ranges of 4.96-5.51 (pKa1), 6.67-7.42 (pKa2) and 8.13-9.95 (pKa3). According to previous spectroscopic studies, these pKa ranges are consistent with carboxyl, phosphoryl, and amine groups, respectively. Comparisons between the titration data (for the cell surface) and FT-IR spectra (for the average cellular changes) generally indicate (1) that the nitrogen source is a greater determinant of ligand concentration than growth phase, and (2) that phosphorus limitation has a greater impact on Synechococcus cellular and extracellular properties than does nitrogen limitation. Taken together, these techniques indicate that nutritional quality during cell growth can

  17. Applying Economics Using Interactive Learning Modules

    ERIC Educational Resources Information Center

    Goma, Ophelia D.

    2010-01-01

    This article describes the use of web-based, interactive learning modules in the principles of economics course. The learning modules introduce students to important, historical economic events while providing real-world application of the economic theory presented in class. Each module is designed to supplement and complement the economic theory…

  18. Airship economics

    NASA Technical Reports Server (NTRS)

    Neumann, R. D.; Hackney, L. R. M.

    1975-01-01

    Projected operating and manufacturing costs of a large airship design which are considered practical with today's technology and environment are discussed. Data and information developed during an 18-month study on the question of feasibility, engineering, economics and production problems related to a large metalclad type airship are considered. An overview of other classic airship designs are provided, and why metalclad was selected as the most prudent and most economic design to be considered in the 1970-80 era is explained. Crew operation, ATC and enroute requirements are covered along with the question of handling, maintenance and application of systems to the large airship.

  19. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol

    PubMed Central

    2013-01-01

    Background The modern society primarily relies on petroleum and natural gas for the production of fuels and chemicals. One of the major commodity chemicals 1,2-propanediol (1,2-PDO), which has an annual production of more than 0.5 million tons in the United States, is currently produced by chemical processes from petroleum derived propylene oxide, which is energy intensive and not sustainable. In this study, we sought to achieve photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Compared to the previously reported biological 1,2-PDO production processes which used sugar or glycerol as the substrates, direct chemical production from CO2 in photosynthetic organisms recycles the atmospheric CO2 and will not compete with food crops for arable land. Results In this study, we reported photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Introduction of the genes encoding methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde reductase (yqhD) resulted in the production of ~22mg/L 1,2-PDO from CO2. However, a comparable amount of the pathway intermediate acetol was also produced, especially during the stationary phase. The production of 1,2-PDO requires a robust input of reducing equivalents from cellular metabolism. To take advantage of cyanobacteria’s NADPH pool, the synthetic pathway of 1,2-PDO was engineered to be NADPH-dependent by exploiting the NADPH-specific secondary alcohol dehydrogenases which have not been reported for 1,2-PDO production previously. This optimization strategy resulted in the production of ~150mg/L 1,2-PDO and minimized the accumulation of the incomplete reduction product, acetol. Conclusion This work demonstrated that cyanobacteria can be engineered as a catalyst for the photosynthetic conversion of CO2 to 1,2-PDO. This work also characterized two NADPH-dependent sADHs for

  20. Applied Economics: Job Responsibility

    ERIC Educational Resources Information Center

    Trahern, Darlene

    1972-01-01

    The classroom became a working economics laboratory for third graders at Humboldt School in Canyon City, Oregon, beginning with their duties as classroom helpers. By giving the tasks the importance of real-life jobs, the youngsters soon discovered individual likes, dislikes, and capabilities which affected their attitudes toward work. (Author)

  1. Cable Economics.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    A guide to the economic factors that influence cable television systems is presented. Designed for local officials who must have some familiarity with cable operations in order to make optimum decisions, the guide analyzes the financial framework of a cable system, not only from the operators viewpoint, but also from the perspective of the…

  2. Resource Economics

    NASA Astrophysics Data System (ADS)

    Conrad, Jon M.

    2000-01-01

    Resource Economics is a text for students with a background in calculus, intermediate microeconomics, and a familiarity with the spreadsheet software Excel. The book covers basic concepts, shows how to set up spreadsheets to solve dynamic allocation problems, and presents economic models for fisheries, forestry, nonrenewable resources, stock pollutants, option value, and sustainable development. Within the text, numerical examples are posed and solved using Excel's Solver. These problems help make concepts operational, develop economic intuition, and serve as a bridge to the study of real-world problems of resource management. Through these examples and additional exercises at the end of Chapters 1 to 8, students can make dynamic models operational, develop their economic intuition, and learn how to set up spreadsheets for the simulation of optimization of resource and environmental systems. Book is unique in its use of spreadsheet software (Excel) to solve dynamic allocation problems Conrad is co-author of a previous book for the Press on the subject for graduate students Approach is extremely student-friendly; gives students the tools to apply research results to actual environmental issues

  3. Economic Imperative

    ERIC Educational Resources Information Center

    Sack, Joetta L.

    2005-01-01

    The signals had been there for years. Task force reports and researchers all predicted it. Then, in the late 1990s, the economic collapse in this blue-collar region of central Maine began. First, the Cascade Co. closed its textile mill. Then the C.F. Hathaway Co. shut down, and Dumont Industries followed suit soon after. Several stores and other…

  4. Economic Blues

    ERIC Educational Resources Information Center

    Stuart, Reginald

    2009-01-01

    Today, a national economy gone bust has derailed Black Americans' plans across the country. Gone are many of the economic gains, small as they were, achieved in the post-segregation era by millions of 1960s generation children and their children. Black America today is beset by job losses, business closures, pay cuts, furloughs, investment and…

  5. Home Economics.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    This presentation of suggested layouts and specifications for home economics facilities has been prepared to be of service to school boards, architects, teachers, and administrators who are planning new schools or making renovations to existing structures. Room layouts are shown for a foods and nutrition room, or the foods and nutrition area of a…

  6. Consortium of the 'bichlorophyllous' cyanobacterium Prochlorothrix hollandica and chemoheterotrophic partner bacteria: culture and metagenome-based description.

    PubMed

    Velichko, Natalia; Chernyaeva, Ekaterina; Averina, Svetlana; Gavrilova, Olga; Lapidus, Alla; Pinevich, Alexander

    2015-08-01

    'Bacterial consortium' sensu lato applies to mutualism or syntrophy-based systems consisting of unrelated bacteria. Consortia of cyanobacteria have been preferentially studied on Anabaena epibioses; non-photosynthetic satellites of other filamentous or unicellular cyanobacteria were also considered although structure-functional data are few. At the same time, information about consortia of cyanobacteria which have light-harvesting antennae distinct from standard phycobilisome was missing. In this study, we characterized first, via a polyphasic approach, the cultivable consortium of Prochlorothrix hollandica CCAP 1490/1 (filamentous cyanobacterium which contains chlorophylls a, b/carotenoid/protein complex in the absence of phycobilisome) and non-photosynthetic heterotrophic bacteria. The strains of most abundant satellites were isolated and identified. Consortium metagenome reconstructed via 454-pyro and Illumina sequencing was shown to include, except for P. hollandica, several phylotypes of Proteobacteria and Bacteroidetes. The ratio of consortium members was essentially stable irrespective of culture age, and restored after artificially imposed imbalance. The consortium had a complex spatial arrangement as demonstrated by FISH and SEM images of the association, epibiosis, and biofilm type. Preliminary data of metagenome annotation agreed with the hypothesis that satellite bacteria contribute to P. hollandica protection from reactive oxygen species (ROS). PMID:25990300

  7. The non-metabolizable sucrose analog sucralose is a potent inhibitor of hormogonium differentiation in the filamentous cyanobacterium Nostoc punctiforme.

    PubMed

    Splitt, Samantha D; Risser, Douglas D

    2016-03-01

    Nostoc punctiforme is a filamentous cyanobacterium which forms nitrogen-fixing symbioses with several different plants and fungi. Establishment of these symbioses requires the formation of motile hormogonium filaments. Once infected, the plant partner is thought to supply a hormogonium-repressing factor (HRF) to maintain the cyanobacteria in a vegetative, nitrogen-fixing state. Evidence implies that sucrose may serve as a HRF. Here, we tested the effects of sucralose, a non-metabolizable sucrose analog, on hormogonium differentiation. Sucralose inhibited hormogonium differentiation at a concentration approximately one-tenth that of sucrose. This result implies that: (1) sucrose, not a sucrose catabolite, is perceived by the cell and (2) inhibition is not due to a more general osmolarity-dependent effect. Additionally, both sucrose and sucralose induced the accrual of a polysaccharide sheath which bound specifically to the lectin ConA, indicating the presence of α-D-mannose and/or α-D-glucose. A ConA-specific polysaccharide was also found to be expressed in N. punctiforme colonies from tissue sections of the symbiotically grown hornwort Anthoceros punctatus. These findings imply that plant-derived sucrose or sucrose analogs may have multiple effects on N. punctiforme, including both repression of hormogonia and the induction of a polysaccharide sheath that may be essential to establish and maintain the symbiotic state. PMID:26576759

  8. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142.

    PubMed Central

    Schneegurt, M A; Sherman, D M; Nayar, S; Sherman, L A

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms. Images PMID:8132452

  9. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune.

    PubMed Central

    Ehling-Schulz, M; Bilger, W; Scherer, S

    1997-01-01

    Liquid cultures of the terrestrial cyanobacterium Nostoc commune derived from field material were treated with artificial UV-B and UV-A irradiation. We studied the induction of various pigments which are though to provide protection against damaging UV-B irradiation. First, UV-B irradiation induced an increase in carotenoids, especially echinenone and myxoxanthophyll, but did not influence production of chlorophyll a. Second, an increase of an extracellular, water-soluble UV-A/B-absorbing mycosporine occurred, which was associated with extracellular glycan synthesis. Finally, synthesis of scytonemin, a lipid-soluble, extracellular pigment known to function as a UV-A sunscreen, was observed. After long-time exposure, the UV-B effect on carotenoid and scytonemin synthesis ceased whereas the mycosporine content remained constantly high. The UV-B sunscreen mycosporine is exclusively induced by UV-B (< 315 nm). The UV-A sunscreen scytonemin is induced only slightly by UV-B (< 315 nm), very strongly by near UV-A (350 to 400 nm), and not at all by far UV-A (320 to 350 nm). These results may indicate that the syntheses of these UV sunscreens are triggered by different UV photoreceptors. PMID:9068639

  10. Ecological Physiology of Synechococcus sp. Strain SH-94-5, a Naturally Occurring Cyanobacterium Deficient in Nitrate Assimilation

    PubMed Central

    Miller, Scott R.; Castenholz, Richard W.

    2001-01-01

    Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world. PMID:11425713

  11. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    PubMed Central

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda5]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda5]microcystin-LR and [d-Asp3,ADMAdda5]microcystin-LR and a partial structure of three new [ADMAdda5]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis. PMID:15466511

  12. Docking of cytochrome c6 and plastocyanin to the aa3-type cytochrome c oxidase in the cyanobacterium Phormidium laminosum.

    PubMed

    Hart, Sarah E; Howe, Christopher J; Mizuguchi, Kenji; Fernandez-Recio, Juan

    2008-12-01

    The interactions between redox proteins are transient in nature. Therefore, very few crystal structures are available for the complexes formed between these proteins. Computational docking simulations thus provide a useful alternative method for studying the interactions between electron transfer proteins. In this paper, we have studied the interactions between the aa(3)-type cytochrome c oxidase of the cyanobacterium Phormidium laminosum and its redox partners plastocyanin and cytochrome c(6) using a combination of comparative modelling techniques and docking simulations. Rigid-body docking orientations were scored with a combined energy function that accounts for electrostatics and desolvation. These simulations have identified two plausible docking sites, one of which appears to be unique to the binding of plastocyanin to the oxidase. This unique binding site may be due to the presence of a long loop region in the subunit II of cyanobacterial oxidases. Control simulations were performed with the ba(3)-type cytochrome c oxidase and its redox partner cytochrome c(552) from Thermus thermophilus. The docking between cytochrome c oxidase and its redox partners plastocyanin and cytochrome c(6) is dominated by hydrophobic residues, a feature already observed from kinetic and structural studies in other complexes of P. laminosum (e.g. plastocyanin or cytochrome c(6) with cytochrome f and photosystem I). PMID:18824464

  13. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in the cyanobacterium, Microcystis aeruginosa.

    PubMed

    Lürling, Miquel; Meng, Debin; Faassen, Elisabeth J

    2014-01-01

    Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L-1, but not at 1 and 2 mg L-1. Peroxide dosed at 4 or 8 mg L-1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L-1) and 12-times (8 mg L-1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria. PMID:25513892

  14. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride.

    PubMed

    Mohamed, Zakaria A; Hashem, Mohamed; Alamri, Saad A

    2014-08-01

    Harmful cyanobacterial blooms are recognized as a rapidly expanding global problem that threatens human and ecosystem health. Many bacterial strains have been reported as possible agents for inhibiting and controlling these blooms. However, such algicidal activity is largely unexplored for fungi. In this study, a fungal strain kkuf-0955, isolated from decayed cyanobacterial bloom was tested for its capability to inhibit phytoplankton species in batch cultures. The strain was identified as Trichoderma citrinoviride Based on its morphological characteristics and DNA sequence. Microcystis aeruginosa co-cultivated with living fungal mycelia rapidly decreased after one day of incubation, and all cells completely died and lysed after 2 days. The fungal filtrate of 5-day culture also exhibited an inhibitory effect on M. aeruginosa, and this inhibition increased with the amount of filtrate and incubation time. Conversely, green algae and diatoms have not been influenced by either living fungal mycelia or culture filtrate. Interestingly, the fungus was not only able to inhibit Microcystis growth but also degraded microcystin produced by this cyanobacterium. The toxins were completely degraded within 5 days of incubation with living fungal mycelia, but not significantly changed with fungal filtrate. This fungus could be a potential bioagent to selectively control Microcystis blooms and degrade microcystin toxins. PMID:24874888

  15. RNA-seq Profiling Reveals Novel Target Genes of LexA in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Kizawa, Ayumi; Kawahara, Akihito; Takimura, Yasushi; Nishiyama, Yoshitaka; Hihara, Yukako

    2016-01-01

    LexA is a well-established transcriptional repressor of SOS genes induced by DNA damage in Escherichia coli and other bacterial species. However, LexA in the cyanobacterium Synechocystis sp. PCC 6803 has been suggested not to be involved in SOS response. In this study, we performed RNA-seq analysis of the wild-type strain and the lexA-disrupted mutant to obtain the comprehensive view of LexA-regulated genes in Synechocystis. Disruption of lexA positively or negatively affected expression of genes related to various cellular functions such as phototactic motility, accumulation of the major compatible solute glucosylglycerol and subunits of bidirectional hydrogenase, photosystem I, and phycobilisome complexes. We also observed increase in the expression level of genes related to iron and manganese uptake in the mutant at the later stage of cultivation. However, none of the genes related to DNA metabolism were affected by disruption of lexA. DNA gel mobility shift assay using the recombinant LexA protein suggested that LexA binds to the upstream region of pilA7, pilA9, ggpS, and slr1670 to directly regulate their expression, but changes in the expression level of photosystem I genes by disruption of lexA is likely a secondary effect. PMID:26925056

  16. Anti-inflammatory Effects of Novel Polysaccharide Sacran Extracted from Cyanobacterium Aphanothece sacrum in Various Inflammatory Animal Models.

    PubMed

    Motoyama, Keiichi; Tanida, Yuki; Hata, Kyona; Hayashi, Tomoya; Hashim, Irhan Ibrahim Abu; Higashi, Taishi; Ishitsuka, Yoichi; Kondo, Yuki; Irie, Tetsumi; Kaneko, Shinichiro; Arima, Hidetoshi

    2016-07-01

    The goal of this study was to investigate the topical anti-inflammatory effects of the megamolecular polysaccharide sacran extracted from cyanobacterium Aphanothece sacrum using various inflammatory animal models. Sacran showed potent anti-inflammatory effects with optimum effective concentrations at 0.01 and 0.05% (w/v). Sacran markedly inhibited paw swelling and neutrophil infiltration in carrageenan-induced rat paw edema. Additionally, 6,7-dimethoxy-1-methyl-2(1H)-quinoxalinone-3-propionyl-carboxylic acid (DMEQ)-labeled sacran had the ability to penetrate carrageenan-induced rat paw skin rather than normal skin. Also, sacran significantly suppressed kaolin-induced and dextran-induced rat paw edema throughout the duration of the study. Furthermore, sacran significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema and mRNA expression levels of cyclooxygenase (COX)-2 as well as pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. Safety of sacran solution was verified by negligible cytotoxicity in HaCaT cells. These results suggest that sacran may be useful as a therapeutic agent against inflammatory skin diseases with no life-threatening adverse effects. PMID:27170516

  17. The first evidence of paralytic shellfish toxins in the fresh water cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil.

    PubMed

    Lagos, N; Onodera, H; Zagatto, P A; Andrinolo, D; Azevedo, S M; Oshima, Y

    1999-10-01

    The blooms of toxic cyanobacteria (blue-green algae) are causing problems in many countries. During a screening of toxic freshwater cyanobacteria in Brazil, three strains isolated from the State of Sao Paulo were found toxic by the mouse bioassay. They all were identified as Cylindrospermopsis raciborskii by a close morphological examination. Extracts of cultured cells caused acute death to mice when injected intraperitoneally after developing neurotoxic symptoms which resembled to those caused by paralytic shellfish toxins. The analysis of the sample by HPLC-FLD postcolumn derivatization method for paralytic shellfish toxins resulted in the detection of several saxitoxin analogs. To avoid being misled by false peaks, the sample was reanalyzed after purification and also under the different postcolumn derivatizing conditions. Finally, the newly developed LC-MS method for paralytic shellfish toxins was applied to unambiguously identify the toxins. One isolate produced neosaxitoxin predominantly with saxitoxin as a minor component. The other two showed identical toxin profiles containing saxitoxin and gonyautoxins 2/3 isomers in the ratio of 1:9. This is the first evidence of paralytic shellfish toxins in this species and also the occurrence of the toxin producing cyanobacterium in South American countries. PMID:10414862

  18. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp

    SciTech Connect

    Garcia-Pichel, F.; Wingard, C.E.; Castenholz, R.W. )

    1993-01-01

    The mycosporine-like amino acids (MAAs) have been thought to serve a UV sunscreen role in organisms that produce or contain them because MAAs present strong absorbance in the UV region and because there is no other apparent biological function. The researchers used the cyanobacterium Gloeocapsa sp. to assess the possible sunscreen role of MAAs. Five conditions are evaluated: (1) absorption of radiation high enough to provide benefit to the organisms; (2) correlation of presence of the compound with enhansed fitness under UV; (3) concentration of the compound and resistance to UV still present under physiological inactivity; (4) effect maximal at wavelengths of maximal absorption; (5) loss of protection after artificial removal of compound. The results indicate that only a small sunscreen effect can be ascribed to the MAA in the Gloecapsa sp. under these experimental conditions. It is possible however, that in the typical undisturbed colonial growth form, MAAs and their screening action may become major factors in resistance to UV radiation. 25 refs., 7 figs., 1 tab.

  19. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    PubMed

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  20. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-01-01

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

  1. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Ermakova, Maria; Battchikova, Natalia; Richaud, Pierre; Leino, Hannu; Kosourov, Sergey; Isojärvi, Janne; Peltier, Gilles; Flores, Enrique; Cournac, Laurent; Allahverdiyeva, Yagut; Aro, Eva-Mari

    2014-07-29

    Flavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B. Here, we demonstrate that Flv3B is responsible for light-induced O2 uptake in heterocysts, and that the absence of the Flv3B protein severely compromises the growth of filaments in oxic, but not in microoxic, conditions. It is further demonstrated that Flv3B-mediated photosynthetic O2 uptake has a distinct role in heterocysts which cannot be substituted by respiratory O2 uptake in the protection of nitrogenase from oxidative damage and, thus, in an efficient provision of nitrogen to filaments. In line with this conclusion, the Δflv3B strain has reduced amounts of nitrogenase NifHDK subunits and shows multiple symptoms of nitrogen deficiency in the filaments. The apparent imbalance of cytosolic redox state in Δflv3B heterocysts also has a pronounced influence on the amounts of different transcripts and proteins. Therefore, an O2-related mechanism for control of gene expression is suggested to take place in heterocysts. PMID:25002499

  2. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R; Haselkorn, Robert

    2015-08-11

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein. PMID:26216997

  3. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  4. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  5. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R.; Haselkorn, Robert

    2015-01-01

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N− media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein. PMID:26216997

  6. Reduction of exogenous ketones depends upon NADPH generated photosynthetically in cells of the cyanobacterium Synechococcus PCC 7942

    PubMed Central

    2011-01-01

    Effective utilization of photosynthetic microorganisms as potential biocatalysts is favorable for the production of useful biomaterials and the reduction of atmospheric CO2. For example, biocatalytic transformations are used in the synthesis of optically active alcohols. We previously found that ketone reduction in cells of the cyanobacterium Synechococcus PCC 7942 is highly enantioselective and remarkably enhanced under light illumination. In this study, the mechanism of light-enhanced ketone reduction was investigated in detail using several inhibitors of photosynthetic electron transport and of enzymes of the Calvin cycle. It is demonstrated that light intensity and photosynthesis inhibitors significantly affect the ketone reduction activity in Synechococcus. This indicates that the reduction correlates well with photosynthetic activity. Moreover, ketone reduction in Synechococcus specifically depends upon NADPH and not NADH. These results also suggest that cyanobacteria have the potential to be utilized as biocatalytic systems for direct usage of light energy in various applications such as syntheses of useful compounds and remediation of environmental pollutants. PMID:21906270

  7. Acclimation of the Global Transcriptome of the Cyanobacterium Synechococcus sp. Strain PCC 7002 to Nutrient Limitations and Different Nitrogen Sources

    PubMed Central

    Ludwig, Marcus; Bryant, Donald A.

    2012-01-01

    The unicellular, euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 is a model organism for laboratory-based studies of cyanobacterial metabolism and is a potential platform for biotechnological applications. Two of its most notable properties are its exceptional tolerance of high-light intensity and very rapid growth under optimal conditions. In this study, transcription profiling by RNAseq has been used to perform an integrated study of global changes in transcript levels in cells subjected to limitation for the major nutrients CO2, nitrogen, sulfate, phosphate, and iron. Transcriptional patterns for cells grown on nitrate, ammonia, and urea were also studied. Nutrient limitation caused strong decreases of transcript levels of the genes encoding major metabolic pathways, especially for components of the photosynthetic apparatus, CO2 fixation, and protein biosynthesis. Uptake mechanisms for the respective nutrients were strongly up-regulated. The transcription data further suggest that major changes in the composition of the NADH dehydrogenase complex occur upon nutrient limitation. Transcripts for flavoproteins increased strongly when CO2 was limiting. Genes involved in protection from oxidative stress generally showed high, constitutive transcript levels, which possibly explains the high-light tolerance of this organism. The transcriptomes of cells grown with ammonia or urea as nitrogen source showed increased transcript levels for components of the CO2 fixation machinery compared to cells grown with nitrate, but in general transcription differences in cells grown on different N-sources exhibited surprisingly minor differences. PMID:22514553

  8. Constant phycobilisome size in chromatically adapted cells of the cyanobacterium Tolypothrix tenuis, and variation in Nostoc sp

    SciTech Connect

    Ohki, K.; Gantt, E.; Lipschultz, C.A.; Ernst, M.C.

    1985-12-01

    Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a physocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.

  9. Effect of tryptophan on 2,4-dichlorophenoxyacetic acid toxicity in the nitrogen-fixing-cyanobacterium Nostoc linckia.

    PubMed

    Mishra, A K; Tiwari, D N

    1986-01-01

    The combined effect of a hormone weed killer 2,4-dichlorophenoxyacetic acid (2,4-D) and an amino acid (tryptophan) has been studied on growth and heterocyst differentiation in the cyanobacterium Nostoc linckia. 2.4-D at 100 micrograms/ml stimulated growth and heterocyst frequency in combined nitrogen-free medium while its higher concentrations inhibited both. Tryptophan under similar conditions promoted much growth yield with 3-4 fold enhanced heterocyst frequency than the control. Such heterocysts were immature and showed germination under in situ condition. The concentrations of 2,4-D (100 micrograms/ml) and tryptophan (50 micrograms/ml), stimulatory to growth and heterocyst formation, caused additive effect while herbicide inhibition of nitrogen-fixing growth at higher doses was partially relieved by tryptophan but tryptophan-induced heterocyst frequency was completely suppressed under this condition. The possible role of interaction of these two chemicals on growth and heterocyst formation has been discussed. PMID:3083089

  10. Characterization and Evolution of Tetrameric Photosystem I from the Thermophilic Cyanobacterium Chroococcidiopsis sp TS-821[C][W][OPEN

    PubMed Central

    Li, Meng; Semchonok, Dmitry A.; Boekema, Egbert J.; Bruce, Barry D.

    2014-01-01

    Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae. PMID:24681621

  11. Soft x-ray imaging of intracellular granules of filamentous cyanobacterium generating musty smell in Lake Biwa

    NASA Astrophysics Data System (ADS)

    Takemoto, K.; Mizuta, G.; Yamamoto, A.; Yoshimura, M.; Ichise, S.; Namba, H.; Kihara, H.

    2013-10-01

    A planktonic blue-green algae, which are currently identified as Phormidium tenue, was observed by a soft x-ray microscopy (XM) for comparing a musty smell generating green strain (PTG) and a non-smell brown strain (PTB). By XM, cells were clearly imaged, and several intracellular granules which could not be observed under a light microscope were visualized. The diameter of granules was about 0.5-1 μm, and one or a few granules were seen in a cell. XM analyses showed that width of cells and sizes of intracellular granules were quite different between PTG and PTB strains. To study the granules observed by XM, transmission in more detail, transmission electron microscopy (TEM) and indirect fluorescent-antibody technique (IFA) were applied. By TEM, carboxysomes, thylakoids and polyphosphate granules were observed. IFA showed the presence of carboxysomes. Results lead to the conclusion that intracellular granules observed under XM are carboxysomes or polyphosphate granules. These results demonstrate that soft XM is effective for analyzing fine structures of small organisms such as cyanobacterium, and for discriminating the strains which generates musty smells from others.

  12. Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon.

    PubMed Central

    Federspiel, N A; Grossman, A R

    1990-01-01

    Many biological processes in photosynthetic organisms can be regulated by light quantity or light quality or both. A unique example of the effect of specific wavelengths of light on the composition of the photosynthetic apparatus occurs in cyanobacteria that undergo complementary chromatic adaptation. These organisms alter the composition of their light-harvesting organelle, the phycobilisome, and exhibit distinct morphological features as a function of the wavelength of incident light. Fremyella diplosiphon, a filamentous cyanobacterium, responds to green light by activating transcription of the cpeBA operon, which encodes the pigmented light-harvesting component phycoerythrin. We have isolated and determined the complete nucleotide sequence of another operon, cpeCD, that encodes the linker proteins associated with phycoerythrin hexamers in the phycobilisome. The cpeCD operon is activated in green light and expressed as two major transcripts with the same 5' start site but differing 3' ends. Analysis of the kinetics of transcript accumulation in cultures of F. diplosiphon shifted from red light to green light and vice versa shows that the cpeBA and cpeCD operons are regulated coordinately. A common 17-base-pair sequence is found upstream of the transcription start sites of both operons. A comparison of the predicted amino acid sequences of the phycoerythrin-associated linker proteins CpeC and CpeD with sequences of other previously characterized rod linker proteins shows 49 invariant residues, most of which are in the amino-terminal half of the proteins. Images PMID:1694529

  13. [NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark

    PubMed Central

    De Rosa, Edith; Checchetto, Vanessa; Franchin, Cinzia; Bergantino, Elisabetta; Berto, Paola; Szabò, Ildikò; Giacometti, Giorgio M.; Arrigoni, Giorgio; Costantini, Paola

    2015-01-01

    The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (ΔHoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (ΔHypA1 and ΔHypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases. PMID:26215212

  14. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters

    PubMed Central

    Kist, Luiza Wilges; Piato, Angelo Luis; da Rosa, João Gabriel Santos; Koakoski, Gessi; Barcellos, Leonardo José Gil; Yunes, João Sarkis; Bonan, Carla Denise; Bogo, Maurício Reis

    2011-01-01

    Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms. PMID:22253623

  15. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    PubMed

    Janssen, Jacob; Soule, Tanya

    2016-01-01

    Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress. PMID:26656542

  16. Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacterium Anabaena sp. strain ATCC33047

    SciTech Connect

    Ramos, J.L.; Guerrero, M.G.; Losada, M.

    1984-07-01

    Conditions have been developed that lengthen the time during which photosynthetic dinitrogen fixation by filaments of the cyanobacterium Anabaena sp. strain ATCC 33047 proceeds freely, whereas the subsequent conversion of ammonia into organic nitrogen remains blocked, with the resulting ammonia released to the outer medium. When L-methionine-DL-sulfoximine was added every 20 h, maximal rates of ammonia production (25 to 30 ..mu..mol/mg of chlorophyll per h) were maintained for about 50 h. After this time, ammonia production ceased due to a deficiency of glutamine and other nitrogenous compounds in the filaments, conditions which finally led to cell lysis. The effective ammonia production period could be further extended to about 7 days by adding a small amount of glutamine at the end of a 40-h production period or by allowing the cells to recover for 8 h in the absence of L-methionine-DL-sulfoximine after every 40-h period in the presence of the inhibitor. A more prolonged steady production of ammonia, lasting for longer than 2 weeks, was achieved by alternating treatments with the glutamine synthetase inhibitors L-methionine-DL-sulfoximine and phosphinothricin, provided that 8-h recovery periods in the absence of either compound were also alternated throughout. The biochemically manipulated cyanobacterial filaments thus represent a system that is relatively stable with time for the conversion of light energy into chemical energy, with the net generation of a valuable fuel and fertilizer through the photoreduction of dinitrogen to ammonia.

  17. In-Situ Optical and Acoustical Measurements of the Buoyant Cyanobacterium P. Rubescens: Spatial and Temporal Distribution Patterns

    PubMed Central

    Hofmann, Hilmar; Peeters, Frank

    2013-01-01

    Optical (fluorescence) and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP) and a Seapoint Chlorophyll Fluorometer (SCF). In-situ measurements of the acoustic backscatter strength (ABS) were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV). The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes) and spatial (decimeters) resolution or covering large temporal (seasonal) and spatial (basin scale) scales. PMID:24303028

  18. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  19. Nitrate Transport and Not Photoinhibition Limits Growth of the Freshwater Cyanobacterium Synechococcus Species PCC 6301 at Low Temperature1

    PubMed Central

    Sakamoto, Toshio; Bryant, Donald A.

    1999-01-01

    The effect of low temperature on cell growth, photosynthesis, photoinhibition, and nitrate assimilation was examined in the cyanobacterium Synechococcus sp. PCC 6301 to determine the factor that limits growth. Synechococcus sp. PCC 6301 grew exponentially between 20°C and 38°C, the growth rate decreased with decreasing temperature, and growth ceased at 15°C. The rate of photosynthetic oxygen evolution decreased more slowly with temperature than the growth rate, and more than 20% of the activity at 38°C remained at 15°C. Oxygen evolution was rapidly inactivated at high light intensity (3 mE m−2 s−1) at 15°C. Little or no loss of oxygen evolution was observed under the normal light intensity (250 μE m−2 s−1) for growth at 15°C. The decrease in the rate of nitrate consumption by cells as a function of temperature was similar to the decrease in the growth rate. Cells could not actively take up nitrate or nitrite at 15°C, although nitrate reductase and nitrite reductase were still active. These data demonstrate that growth at low temperature is not limited by a decrease in the rate of photosynthetic electron transport or by photoinhibition, but that inactivation of the nitrate/nitrite transporter limits growth at low temperature. PMID:9952475

  20. Ecological physiology of Synechococcus sp. strain SH-94-5, a naturally occurring cyanobacterium deficient in nitrate assimilation

    NASA Technical Reports Server (NTRS)

    Miller, S. R.; Castenholz, R. W.

    2001-01-01

    Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world.

  1. Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa

    PubMed Central

    Lürling, Miquel; Meng, Debin; Faassen, Elisabeth J.

    2014-01-01

    Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L−1, but not at 1 and 2 mg L−1. Peroxide dosed at 4 or 8 mg L−1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L−1) and 12-times (8 mg L−1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria. PMID:25513892

  2. Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina.

    PubMed

    Theiss, Christoph; Schmitt, Franz-Josef; Pieper, Jörg; Nganou, Collins; Grehn, Moritz; Vitali, Marco; Olliges, Rachel; Eichler, Hans Joachim; Eckert, Hann-Jörg

    2011-08-15

    The cyanobacterium Acaryochloris marina is unique because it mainly contains Chlorophyll d (Chl d) in the core complexes of PS I and PS II instead of the usually dominant Chl a. Furthermore, its light harvesting system has a structure also different from other cyanobacteria. It has both, a membrane-internal chlorophyll containing antenna and a membrane-external phycobiliprotein (PBP) complex. The first one binds Chl d and is structurally analogous to CP43. The latter one has a rod-like structure consisting of three phycocyanin (PC) homohexamers and one heterohexamer containing PC and allophycocyanin (APC). In this paper, we give an overview on the investigations of excitation energy transfer (EET) in this PBP-light-harvesting system and of charge separation in the photosystem II (PS II) reaction center of A. marina performed at the Technische Universität Berlin. Due to the unique structure of the PBP antenna in A. marina, this EET occurs on a much shorter overall time scale than in other cyanobacteria. We also briefly discuss the question of the pigment composition in the reaction center (RC) of PS II and the nature of the primary donor of the PS II RC. PMID:21396735

  3. Deconvolution of C-phycocyanin beta-84 and beta-155 chromophore absorption and fluorescence spectra of cyanobacterium Mastigocladus laminosus.

    PubMed Central

    Demidov, A A; Mimuro, M

    1995-01-01

    Absorption and fluorescence spectra of the C-phycocyanin beta-subunit were quantitatively deconvoluted into component spectra of the beta-84 and beta-155 chromophores. The deconvolution procedure was based on a theoretical treatment of polarization properties. Four kinds of spectra (absorption, emission, emission polarization, and excitation polarization) measured on C-phycocyanin isolated from the cyanobacterium Mastigocladus laminosus were used as the experimental data set. Without any assumption of spectral shape, the absorption and fluorescence spectra of both chromophores were unambiguously resolved and their fluorescence quantum yields were evaluated. By combining the spectra of the alpha-subunit, independently measured, with the resolved spectra of the beta-subunit, the fluorescence and fluorescence polarization spectra and the fluorescence quantum yield of the monomer were estimated; they agree with experimental values to within an acceptable error. Further, the matrix of energy transfer rates in the monomer was estimated; it gave a significantly different result (by up to 40%) from previously estimated ones. PMID:7787035

  4. Economic analysis

    SciTech Connect

    1980-06-01

    The Energy Policy and Conservation Act (EPCA) mandated that minimum energy efficiency standards be established for classes of refrigerators and refrigerator-freezers, freezers, clothes dryers, water heaters, room air conditioners, home heating equipment, kitchen ranges and ovens, central air conditioners, and furnaces. EPCA requires that standards be designed to achieve the maximum improvement in energy efficiency that is technologically feasible and economically justified. Following the introductory chapter, Chapter Two describes the methodology used in the economic analysis and its relationship to legislative criteria for consumer product efficiency assessment; details how the CPES Value Model systematically compared and evaluated the economic impacts of regulation on the consumer, manufacturer and Nation. Chapter Three briefly displays the results of the analysis and lists the proposed performance standards by product class. Chapter Four describes the reasons for developing a baseline forecast, characterizes the baseline scenario from which regulatory impacts were calculated and summarizes the primary models, data sources and assumptions used in the baseline formulations. Chapter Five summarizes the methodology used to calculate regulatory impacts; describes the impacts of energy performance standards relative to the baseline discussed in Chapter Four. Also discussed are regional standards and other program alternatives to performance standards. Chapter Six describes the procedure for balancing consumer, manufacturer, and national impacts to select standard levels. Details of models and data bases used in the analysis are included in Appendices A through K.

  5. Group Formation in Economics

    NASA Astrophysics Data System (ADS)

    Demange, Gabrielle; Wooders, Myrna

    2005-01-01

    Broad and diverse ranges of activities are conducted within and by organized groups of individuals, including political, economic and social activities. These activities have recently become a subject of intense interest in economics and game theory. Some of the topics investigated in this collection are models of networks of power and privilege, trade networks, co-authorship networks, buyer-seller networks with differentiated products, and networks of medical innovation and the adaptation of new information. Other topics are social norms on punctuality, clubs and the provision of club goods and public goods, research and development and collusive alliances among corporations, and international alliances and trading agreements. While relatively recent, the literature on game theoretic studies of group formation in economics is already vast. This volume provides an introduction to this important literature on game-theoretic treatments of situations with networks, clubs, and coalitions, including some applications.

  6. Global Proteomics Reveal An Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations

    SciTech Connect

    Wegener, Kimberly M.; Singh, Abhay K.; Jacobs, Jon M.; Elvitigala, Thanura R.; Welsh, Eric A.; Keren, Nir S.; Gritsenko, Marina A.; Ghosh, Bijoy K.; Camp, David G.; Smith, Richard D.; Pakrasi, Himadri B.

    2010-12-01

    Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a largescale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1,955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1,198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen. Oxygenic phototrophic prokaryotes, the progenitors of the chloroplast, are crucial to global oxygen production and worldwide carbon and nitrogen cycles. These microalgae are robust organisms capable carbon neutral biofuel production. Synechocystis sp. PCC 6803 has historically been a model cyanobacterium for photosynthetic research and is emerging as a promising biofuel platform. Cellular responses are severely modified by environmental

  7. Novel Derivatives of 9,10-Anthraquinone Are Selective Algicides against the Musty-Odor Cyanobacterium Oscillatoria perornata

    PubMed Central

    Schrader, Kevin K.; Dhammika Nanayakkara, N. P.; Tucker, Craig S.; Rimando, Agnes M.; Ganzera, Markus; Schaneberg, Brian T.

    2003-01-01

    Musty “off-flavor” in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least $30 million annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 μM (125 μg/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1′-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 μM concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture. PMID:12957919

  8. Influence of Various Levels of Iron and Other Abiotic Factors on Siderophorogenesis in Paddy Field Cyanobacterium Anabaena oryzae.

    PubMed

    Singh, Anumeha; Mishra, Arun Kumar

    2015-05-01

    Siderophore production in Anabaena oryzae was investigated under the influence of various levels of iron and other abiotic factors such as pH, temperature, light and different nitrogen sources. Optimization of culture conditions under controlled mechanisms of these abiotic factors lead to the siderophore production in significant amount. Under iron-starved condition, A. oryzae extracellularly releases 89.17% hydroxymate-type siderophore. Slightly alkaline pH and 30 °C temperature was found stimulatory for the cyanobacterial growth and siderophorogenesis (88.52% SU and 83.87% SU, respectively). Excess iron loading had a negative impact on siderophore production along with the alterations in the morphology and growth. Further, scanning electron microphotographs signified that higher concentrations of iron lead to complete damage of the cells and alterations in membrane proteins possibly transporters responsible for exchange of siderophore complex from environment to the cell. SDS-PAGE analysis of whole cell proteins showed overexpression of low molecular weight proteins ranges between 20.1 to 29.0 kDa up to 100-μM iron concentrations. These polypeptides/proteins might be involved in maintaining iron homeostasis by regulating siderophore production. Results suggest that lower concentrations of iron ≤ 50 μM along with other abiotic factors are stimulatory, whereas higher concentrations (>50 μM) are toxic. Data further suggested that cyanobacterium A. oryzae can serve as a potential biofertilizer especially in iron-rich soil through sequestration by the power of natural Fe(III)-siderophore complex formation. PMID:25805017

  9. The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    PubMed

    Naurin, Sejuti; Bennett, Janine; Videau, Patrick; Philmus, Benjamin; Soule, Tanya

    2016-08-01

    Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through comparative genomics and is likely involved in scytonemin regulation. In this study, the response regulator (RR), Npun_F1278, was evaluated for its ability to regulate scytonemin biosynthesis using a mutant strain of N. punctiforme deficient in this gene, hereafter strain Δ1278. Following UVA radiation, the typical stimulus to initiate scytonemin biosynthesis, Δ1278 was incapable of producing scytonemin. A phenotypic characterization of Δ1278 suggests that aside from the ability to produce scytonemin, the deletion of the Npun_F1278 gene does not affect the cellular morphology, cellular differentiation capability, or lipid-soluble pigment complement of Δ1278 compared to the wildtype. The mutant, however, had a slower specific growth rate under white light and produced ~2.5-fold more phycocyanin per cell under UVA than the wildtype. Since Δ1278 does not produce scytonemin, this study demonstrates that the RR gene, Npun_F1278, is essential for scytonemin biosynthesis in N. punctiforme. While most of the evaluated effects of this gene appear to be specific for scytonemin, this regulator may also influence the overall health of the cell and phycobiliprotein synthesis, directly or indirectly. This is the first study to identify a regulatory gene involved in the biosynthesis of the sunscreen scytonemin and posits a link between cell growth, pigment synthesis, and sunscreen production. PMID:27020740

  10. Elevated growth temperature can enhance photosystem I trimer formation and affects xanthophyll biosynthesis in Cyanobacterium Synechocystis sp. PCC6803 cells.

    PubMed

    Kłodawska, Kinga; Kovács, László; Várkonyi, Zsuzsanna; Kis, Mihály; Sozer, Özge; Laczkó-Dobos, Hajnalka; Kóbori, Ottilia; Domonkos, Ildikó; Strzałka, Kazimierz; Gombos, Zoltán; Malec, Przemysław

    2015-03-01

    In the thylakoid membranes of the mesophilic cyanobacterium Synechocystis PCC6803, PSI reaction centers (RCs) are organized as monomers and trimers. PsaL, a 16 kDa hydrophobic protein, a subunit of the PSI RC, was previously identified as crucial for the formation of PSI trimers. In this work, the physiological effects accompanied by PSI oligomerization were studied using a PsaL-deficient mutant (ΔpsaL), not able to form PSI trimers, grown at various temperatures. We demonstrate that in wild-type Synechocystis, the monomer to trimer ratio depends on the growth temperature. The inactivation of the psaL gene in Synechocystis grown phototropically at 30°C induces profound morphological changes, including the accumulation of glycogen granules localized in the cytoplasm, resulting in the separation of particular thylakoid layers. The carotenoid composition in ΔpsaL shows that PSI monomerization leads to an increased accumulation of myxoxantophyll, zeaxanthin and echinenone irrespective of the temperature conditions. These xanthophylls are formed at the expense of β-carotene. The measured H2O→CO2 oxygen evolution rates in the ΔpsaL mutant are higher than those observed in the wild type, irrespective of the growth temperature. Moreover, circular dichroism spectroscopy in the visible range reveals that a peak attributable to long-wavelength-absorbing carotenoids is apparently enhanced in the trimer-accumulating wild-type cells. These results suggest that specific carotenoids are accompanied by the accumulation of PSI oligomers and play a role in the formation of PSI oligomer structure. PMID:25520404

  11. Roles of Group 2 Sigma Factors in Acclimation of the Cyanobacterium Synechocystis sp. PCC 6803 to Nitrogen Deficiency.

    PubMed

    Antal, Taras; Kurkela, Juha; Parikainen, Marjaana; Kårlund, Anna; Hakkila, Kaisa; Tyystjärvi, Esa; Tyystjärvi, Taina

    2016-06-01

    Acclimation of cyanobacteria to environmental conditions is mainly controlled at the transcriptional level, and σ factors of the RNA polymerase have a central role in this process. The model cyanobacterium Synechocystis sp. PCC 6803 has four non-essential group 2 σ factors (SigB, SigC, SigD and SigE) that regulate global metabolic responses to various adverse environmental conditions. Here we show that although none of the group 2 σ factors is essential for the major metabolic realignments induced by a short period of nitrogen starvation, the quadruple mutant without any group 2 σ factors and triple mutants missing both SigB and SigD grow slowly in BG-11 medium containing only 5% of the nitrate present in standard BG-11. These ΔsigBCDE, ΔsigBCD and ΔsigBDE strains lost PSII activity rapidly in low nitrogen and accumulated less glycogen than the control strain. An abnormally high glycogen content was detected in ΔsigBCE (SigD is active), while the carotenoid content became high in ΔsigCDE (SigB is active), indicating that SigB and SigD regulate the partitioning of carbon skeletons in low nitrogen. Long-term survival and recovery of the cells after nitrogen deficiency was strongly dependent on group 2 σ factors. The quadruple mutant and the ΔsigBDE strain (only SigC is active) recovered more slowly from nitrogen deficiency than the control strain, and ΔsigBCDE in particular lost viability during nitrogen starvation. Nitrogen deficiency-induced changes in the pigment content of the control strain recovered essentially in 1 d in nitrogen-replete medium, but little recovery occurred in ΔsigBCDE and ΔsigBDE. PMID:27095737

  12. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120.

    PubMed

    Tang, Kun; Knipp, Markus; Liu, Bing-Bing; Cox, Nicholas; Stabel, Robert; He, Qi; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Gärtner, Wolfgang

    2015-07-31

    The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The "as isolated" form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin Fe(III) heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of -445 and -453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (Fe(II) state) binds both NO and CO. Cysteine coordination of the as isolated Fe(III) protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein. PMID:26063806

  13. Cluster of Genes That Encode Positive and Negative Elements Influencing Filament Length in a Heterocyst-Forming Cyanobacterium

    PubMed Central

    Merino-Puerto, Victoria; Herrero, Antonia

    2013-01-01

    The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria. PMID:23813733

  14. Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth; Wu, Wenfang; Hao, Likai; Wuestner, Marina; Obst, Martin; Moran, Dawn; McIlvin, Matthew; Saito, Mak; Kappler, Andreas

    2015-10-01

    Evidence for Fe(II) oxidation and deposition of Fe(III)-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF). While the exact mechanisms of Fe(II) oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III) minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II)-rich) waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II) concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II) is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) are consistent with extracellular precipitation of Fe(III) (oxyhydr)oxide minerals, but that >10% of Fe(III) sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS) in Fe(II) toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II). These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  15. Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune.

    PubMed

    Nazifi, Ehsan; Wada, Naoki; Asano, Tomoya; Nishiuchi, Takumi; Iwamuro, Yoshiaki; Chinaka, Satoshi; Matsugo, Seiichi; Sakamoto, Toshio

    2015-01-01

    Mycosporine-like amino acids (MAAs) are UV-absorbing pigments, and structurally unique glycosylated MAAs are found in the terrestrial cyanobacterium Nostoc commune. In this study, we examined two genotypes of N.commune colonies with different water extract UV-absorption spectra. We found structurally distinct MAAs in each genotype. The water extract from genotype A showed a UV-absorbing spectrum with an absorption maximum at 335nm. The extract contained the following compounds: 7-O-(β-arabinopyranosyl)-porphyra-334 (478Da), pentose-bound shinorine (464Da), hexose-bound porphyra-334 (508Da) and porphyra-334 (346Da). The water extract from genotype B showed a characteristic UV-absorbing spectrum with double absorption maxima at 312 and 340nm. The extract contained hybrid MAAs (1050Da and 880Da) with two distinct chromophores of 3-aminocyclohexen-1-one and 1,3-diaminocyclohexen linked to 2-O-(β-xylopyranosyl)-β-galactopyranoside. A novel 273-Da MAA with an absorption maximum at 310nm was also identified in genotype B. The MAA consisted of a 3-aminocyclohexen-1-one linked to a γ-aminobutyric acid chain. These MAAs had potent radical scavenging activities in vitro and the results confirmed that the MAAs have multiple roles as a UV protectant and an antioxidant relevant to anhydrobiosis in N. commune. The two genotypes of N. commune exclusively produced their own characteristic glycosylated MAAs, which supports that MAA composition could be a chemotaxonomic marker for the classification of N. commune. PMID:25543549

  16. Cloning, expression, purification, and preliminary characterization of a putative hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Scott, N L; Lecomte, J T

    2000-03-01

    The genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803 contains a gene (slr2097, glbN) encoding a 123 amino-acid product with sequence similarity to globins. Related proteins from cyanobacteria, ciliates, and green algae bind oxygen and have a pronounced tendency to coordinate the heme iron with two protein ligands. To study the structural and functional properties of Synechocystis sp. PCC 6803 hemoglobin, slr2097 was cloned and overexpressed in Escherichia coli. Purification of the hemoglobin was performed after addition of hemin to the clarified cell lysate. Recombinant, heme-reconstituted ferric Synechocystis sp. PCC 6803 hemoglobin was found to be a stable helical protein, soluble to concentrations higher than 500 microM. At neutral pH, it yielded an electronic absorption spectrum typical of a low-spin ferric species, with maxima at 410 and 546 nm. The proton NMR spectrum revealed sharp lines spread over a chemical shift window narrower than 40 ppm, in support of low-spin hexacoordination of the heme iron. Nuclear Overhauser effects demonstrated that the heme is inserted in the protein matrix to produce one major equilibrium form. Addition of dithionite resulted in an absorption spectrum with maxima at 426, 528, and 560 nm. This reduced form appeared capable of carbon monoxide binding. Optical data also suggested that cyanide ions could bind to the heme in the ferric state. The spectral properties of the putative Synechocystis sp. PCC 6803 hemoglobin confirmed that it can be used for further studies of an ancient hemoprotein structure. PMID:10752621

  17. Effects of Phosphorylation of β Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Chen, Zhuo; Zhan, Jiao; Chen, Ying; Yang, Mingkun; He, Chenliu; Ge, Feng; Wang, Qiang

    2015-10-01

    Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a model cyanobacterium and has been used extensively for studies concerned with photosynthesis and environmental adaptation. Although dozens of protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted, only a few substrate proteins are known in Synechocystis. In this study, we report 194 in vivo phosphorylation sites from 149 proteins in Synechocystis, which were identified using a combination of peptide pre-fractionation, TiO(2) enrichment and liquid chromatograpy-tandem mass spectrometry (LC-MS/MS) analysis. These phosphorylated proteins are implicated in diverse biological processes, such as photosynthesis. Among all identified phosphoproteins involved in photosynthesis, the β subunits of phycocyanins (CpcBs) were found to be phosphorylated on Ser22, Ser49, Thr94 and Ser154. Four non-phosphorylated mutants were constructed by using site-directed mutagenesis. The in vivo characterization of the cpcB mutants showed a slower growth under high light irradiance and displayed fluorescence quenching to a lower level and less efficient energy transfer inside the phycobilisome (PBS). Notably, the non-phosphorylated mutants exhibited a slower state transition than the wild type. The current results demonstrated that the phosphorylation status of CpcBs affects the energy transfer and state transition of photosynthesis in Synechocystis. This study provides novel insights into the molecular mechanisms of protein phosphorylation in the regulation of photosynthesis in cyanobacteria and may facilitate the elucidation of the entire regulatory network by linking kinases to their physiological substrates. PMID:26315596

  18. Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles

    SciTech Connect

    Toepel, Jorg; McDermott, Jason E.; Summerfield, Tina; Sherman, Louis A.

    2009-06-01

    Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration and nitrogen fixation when grown under N2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light/dark cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with this data and those from two-day light/dark and light-dark plus continuous light experiments to better differentiate between diurnal and circadian regulated genes. Cyanothece sp. adapted in several ways to growth under short light/dark conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short light/dark cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes which displayed a diurnal, dark-dependent gene expression.

  19. Differential Transcriptional Analysis of the Cyanobacterium Cyanothece sp. Strain ATCC 51142 during Light-Dark and Continuous-Light Growth

    SciTech Connect

    Toepel, Jorg; Welsh, Eric A.; Summerfield, Tina; Pakrasi, Himadri B.; Sherman, Louis A.

    2008-06-01

    We analyzed the metabolic rhythms and differential gene transcription in the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC51142 under N₂-fixing conditions with 12h light-12h dark cycles followed by 36 h continuous light. Cultures were grown in a 6-L bioreactor that was specially designed for photosynthetic microorganisms and that permitted continuous monitoring of parameters such as pH and dissolved oxygen. Our main objective was to determine the strategies used by these cells to perform N₂ fixation under normal day-night conditions, as well as under greater stress caused by continuous light. Our results strongly suggested that the level of N₂ fixation is dependent upon respiration for energy production and for removal of intracellular O₂. We determined that N₂ fixation cycled in continuous light, but that the N₂ fixation peak was lower and that glycogen degradation and respiration were also lower under these conditions. We also demonstrated that nifH (the gene encoding the Fe protein) and nifB and nifX were strongly induced in the continuous light; this is consistent with the mode of operation of these proteins relative to the MoFe protein and suggested that any regulation of N₂ fixation was at a posttranscriptional level. Also, many soluble electron carriers (e.g., ferredoxins), as well as redox carriers (e.g., thioredoxin and glutathione) were strongly induced during N₂ fixation in continuous light. We suggest that these carriers were required to generate enhanced cyclic electron transport and phosphorylation for energy production and to maintain appropriate redox levels in the presence of enhanced O₂, respectively.

  20. Hydrogen production from organic substrates in an aerobic nitrogen-fixing marine unicellular cyanobacterium Synechococcus sp. strain Miami BG 043511

    SciTech Connect

    Luo, Y.H.; Mitsui, A. )

    1994-11-20

    Synechococcus sp. strain Miami BG 043511 exhibits very high H[sub 2] photoproduction from water, but the H[sub 2] photo-production capability is lost rapidly with the age of the batch culture. The decrease of the capability coincides with the decrease of cellular glucose content. However, H[sub 2] photoproduction capability can be restored by the addition of organic substrates. Among 40 organic compounds tested, carbohydrates such as glucose, fructose, maltose, and sucrose were effective electron donors. Among organic acids tested, only pyruvate was an effective electron donor. Among alcohols tested, glycerol was a good electron donor, whereas ethanol was a poor but positive electron donor. These results demonstrate that this unicellular cyanobacterium exhibits a wide substrate specificity for H[sub 2] photoproduction but has a different substrate specificity compared to photosynthetic bacteria. The maximum rates of H[sub 2] photoproduction from a 6-day-old batch culture with 25 mmol of pyruvate, glucose, maltose, sucrose, fructose, and glycerol were 1.11, 0.62, 0.05, 0.47, 0.30, and 0.39 [mu]moles per mg cell dry weight per hour respectively. Therefore, this cyanobacterial strain may have a potential significance in removing organic materials from the wastewater and simultaneously transforming them to H[sub 2] gas, a pollution-free energy. The activity of nitrogenase, which catalyzes hydrogen production, completely disappeared when intracellular glucose was used up, but it could be restored by the addition of organic substrates such as glucose and pyruvate.

  1. Ammonium Excretion by an l-Methionine-dl-Sulfoximine-Resistant Mutant of the Rice Field Cyanobacterium Anabaena siamensis

    PubMed Central

    Thomas, Selwin P.; Zaritsky, Arieh; Boussiba, Sammy

    1990-01-01

    An ammonium-excreting mutant (SS1) of the rice field nitrogen-fixing cyanobacterium Anabaena siamensis was isolated after ethyl methanesulfonate mutagenesis by selection on 500 μM l-methionine-dl-sulfoximine. SS1 grew in the presence and absence of l-methionine-dl-sulfoximine at a rate comparable to that of the wild-type strain, with a doubling time of 5.6 h. The rate of ammonium release by SS1 depended on cell density; it peaked at the 12th hour of growth with 8.7 μmol mg of chlorophyll−1 h−1 (at a chlorophyll concentration of 5 μg ml−1) and slowed down to almost nil at the fourth day of growth. A similar pattern of release by immobilized SS1 was observed between 12 to 20 h after loading alginate beads in packed-bed reactors at the rate of 11.6 μmol mg of chlorophyll−1 h−1. The rate was later reduced significantly due to the fast growth of SS1 on the substrate. Prolonged release of ammonium at the peak level was achieved only by maintaining SS1 under continuous cultivation at low chlorophyll levels (5 to 7 μg ml−1). Under these conditions, nitrogen fixation in the mutant was 30% higher than that in its parent and glutamine synthetase activity was less by 50%. Immunoblot analysis revealed that SS1 and its parent have similar quantities of glutamine synthetase protein under ammonium excretion conditions. In addition, a protein with a molecular weight of about 30,000 seems to have been lost, as seen by electrophoretic separation of total proteins from SS1. Images PMID:16348353

  2. Expression of Human Carbonic Anhydrase in the Cyanobacterium Synechococcus PCC7942 Creates a High CO2-Requiring Phenotype 1

    PubMed Central

    Price, G. D.; Badger, M. R.

    1989-01-01

    Active human carbonic anhydrase II (HCAII) protein was expressed in the cyanobacterium Synechococcus PCC7942 by means of transformation with the bidirectional expression vector, pCA. This expression was driven by the bacterial Tac promoter and was regulated by the IacIQ repressor protein, which was expressed from the same plasmid. Expression levels reached values of around 0.3% of total cell protein and this protein appeared to be entirely soluble in nature and located within the cytosol of the cell. The expression of this protein has dramatic effects on the photosynthetic physiology of the cell. Induction of expression of carbonic anhydrase (CA) activity in both high dissolved inorganic carbon (Ci) and low Ci grown cells leads the creation of a high Ci requiring phenotype causing: (a) a dramatic increase in the K0.5 (Ci) for photosynthesis, (b) a loss of the ability to accumulate internal Ci, and (c) a decrease in the lag between the initial Ci accumulation following illumination and the efflux of CO2 from the cells. In addition, the effects of the expressed CA can largely be reversed by the carbonic anhydrase inhibitor ethoxyzolamide. As a result of the above findings, it is concluded that the CO2 concentrating mechanism in Synechococcus PCC7942 is largely dependent on (a) the absence of CA activity from the cytosol, and (b) the specific localization of CA activity in the carboxysome. A theoretical model of photosynthesis and Ci accumulation is developed in which the carboxysome plays a central role as both the site of CO2 generation from HCO3− and a resistance barrier to CO2 efflux from the cell. There is good qualitative agreement between this model and the measured physiological effects of expressed cytosolic CA in Synechococcus cells. Images Figure 7 PMID:16667062

  3. Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii.

    PubMed

    Sato, Yuichiro; Okuyama, Satomi; Hori, Kanji

    2007-04-13

    The primary structure of a lectin, designated Oscillatoria agardhii agglutinin (OAA), isolated from the freshwater cyanobacterium O. agardhii NIES-204 was determined by the combination of Edman degradation and electron spray ionization-mass spectrometry. OAA is a polypeptide (Mr 13,925) consisting of two tandem repeats. Interestingly, each repeat sequence of OAA showed a high degree of similarity to those of a myxobacterium, Myxococcus xanthus hemagglutinin, and a marine red alga Eucheuma serra lectin. A systematic binding assay with pyridylaminated oligosaccharides revealed that OAA exclusively binds to high mannose (HM)-type N-glycans but not to other N-glycans, including complex types, hybrid types, and the pentasaccharide core or oligosaccharides from glycolipids. OAA did not interact with any of free mono- and oligomannoses that are constituents of the branched oligomannosides. These results suggest that the core disaccharide, GlcNAc-GlcNAc, is also essential for binding to OAA. The binding activity of OAA to HM type N-glycans was dramatically decreased when alpha1-2 Man was attached to alpha1-3 Man branched from the alpha1-6 Man of the pentasaccharide core. This specificity of OAA for HM-type oligosaccharides is distinct from other HM-binding lectins. Kinetic analysis with an HM heptasaccharide revealed that OAA possesses two carbohydrate binding sites per molecule, with an association constant of 2.41x10(8) m-1. Furthermore, OAA potently inhibits human immunodeficiency virus replication in MT-4 cells (EC50=44.5 nm). Thus, we have found a novel lectin family sharing similar structure and carbohydrate binding specificity among bacteria, cyanobacteria, and marine algae. PMID:17314091

  4. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2.

    PubMed

    Van de Waal, Dedmer B; Verspagen, Jolanda M H; Finke, Jan F; Vournazou, Vasiliki; Immers, Anne K; Kardinaal, W Edwin A; Tonk, Linda; Becker, Sven; Van Donk, Ellen; Visser, Petra M; Huisman, Jef

    2011-09-01

    Climate change scenarios predict a doubling of the atmospheric CO(2) concentration by the end of this century. Yet, how rising CO(2) will affect the species composition of aquatic microbial communities is still largely an open question. In this study, we develop a resource competition model to investigate competition for dissolved inorganic carbon in dense algal blooms. The model predicts how dynamic changes in carbon chemistry, pH and light conditions during bloom development feed back on competing phytoplankton species. We test the model predictions in chemostat experiments with monocultures and mixtures of a toxic and non-toxic strain of the freshwater cyanobacterium Microcystis aeruginosa. The toxic strain was able to reduce dissolved CO(2) to lower concentrations than the non-toxic strain, and became dominant in competition at low CO(2) levels. Conversely, the non-toxic strain could grow at lower light levels, and became dominant in competition at high CO(2) levels but low light availability. The model captured the observed reversal in competitive dominance, and was quantitatively in good agreement with the results of the competition experiments. To assess whether microcystins might have a role in this reversal of competitive dominance, we performed further competition experiments with the wild-type strain M. aeruginosa PCC 7806 and its mcyB mutant impaired in microcystin production. The microcystin-producing wild type had a strong selective advantage at low CO(2) levels but not at high CO(2) levels. Our results thus demonstrate both in theory and experiment that rising CO(2) levels can alter the community composition and toxicity of harmful algal blooms. PMID:21390081

  5. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor1[OPEN

    PubMed Central

    2016-01-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. PMID:27246094

  6. Wastewater Utilization for Poly-β-Hydroxybutyrate Production by the Cyanobacterium Aulosira fertilissima in a Recirculatory Aquaculture System▿

    PubMed Central

    Samantaray, Shilalipi; Nayak, Jitendra Kumar; Mallick, Nirupama

    2011-01-01

    Intensive aquaculture releases large quantities of nutrients into aquatic bodies, which can lead to eutrophication. The objective of this study was the development of a biological recirculatory wastewater treatment system with a diazotrophic cyanobacterium, Aulosira fertilissima, and simultaneous production of valuable product in the form of poly-β-hydroxybutyrate (PHB). To investigate this possible synergy, batch scale tests were conducted under a recirculatory aquaculture system in fiber-reinforced plastic tanks enhanced by several manageable parameters (e.g., sedimentation, inoculum size, depth, turbulence, and light intensity), an adequate combination of which showed better productivity. The dissolved-oxygen level increased in the range of 3.2 to 6.9 mg liter−1 during the culture period. Nutrients such as ammonia, nitrite, and phosphate decreased to as low as zero within 15 days of incubation, indicating the system's bioremediation capability while yielding valuable cyanobacterial biomass for PHB production. Maximum PHB accumulation in A. fertilissima was found in sedimented fish pond discharge at 20-cm culture depth with stirring and an initial inoculum size of 80 mg dry cell weight (dcw) liter−1. Under optimized conditions, the PHB yield was boosted to 92, 89, and 80 g m−2, respectively for the summer, rainy, and winter seasons. Extrapolation of the result showed that a hectare of A. fertilissima cultivation in fish pond discharge would give an annual harvest of ∼17 tons dry biomass, consisting of 14 tons of PHB with material properties comparable to those of the bacterial polymer, with simultaneous treatment of 32,640 m3 water discharge. PMID:21984242

  7. Photosystem II Assembly Steps Take Place in the Thylakoid Membrane of the Cyanobacterium Synechocystis sp. PCC6803.

    PubMed

    Selão, Tiago T; Zhang, Lifang; Knoppová, Jana; Komenda, Josef; Norling, Birgitta

    2016-01-01

    Thylakoid biogenesis is an intricate process requiring accurate and timely assembly of proteins, pigments and other cofactors into functional, photosynthetically competent membranes. PSII assembly is studied in particular as its core protein, D1, is very susceptible to photodamage and has a high turnover rate, particularly in high light. PSII assembly is a modular process, with assembly steps proceeding in a specific order. Using aqueous two-phase partitioning to separate plasma membranes (PM) and thylakoid membranes (TM), we studied the subcellular localization of the early assembly steps for PSII biogenesis in a Synechocystis sp. PCC6803 cyanobacterium strain lacking the CP47 antenna. This strain accumulates the early D1-D2 assembly complex which was localized in TM along with associated PSII assembly factors. We also followed insertion and processing of the D1 precursor (pD1) by radioactive pulse-chase labeling. D1 is inserted into the membrane with a C-terminal extension which requires cleavage by a specific protease, the C-terminal processing protease (CtpA), to allow subsequent assembly of the oxygen-evolving complex. pD1 insertion as well as its conversion to mature D1 under various light conditions was seen only in the TM. Epitope-tagged CtpA was also localized in the same membrane, providing further support for the thylakoid location of pD1 processing. However, Vipp1 and PratA, two proteins suggested to be part of the so-called 'thylakoid centers', were found to associate with the PM. Together, these results suggest that early PSII assembly steps occur in TM or specific areas derived from them, with interaction with PM needed for efficient PSII and thylakoid biogenesis. PMID:26578692

  8. Consequences of ccmR deletion on respiration, fermentation and H2 metabolism in cyanobacterium Synechococcus sp. PCC 7002.

    PubMed

    Krishnan, Anagha; Zhang, Shuyi; Liu, Yang; Tadmori, Kinan A; Bryant, Donald A; Dismukes, Charles G

    2016-07-01

    CcmR, a LysR-type transcriptional regulator, represses the genes encoding components of the high-affinity carbon concentration mechanism in cyanobacteria. Unexpectedly, deletion of the ccmR gene was found to alter the expression of the terminal oxidase and fermentative genes, especially the hydrogenase operon in the cyanobacterium Synechococcus sp. PCC 7002. Consistent with the transcriptomic data, the deletion strain exhibits flux increases (30-50%) in both aerobic O2 respiration and anaerobic H2 evolution. To understand how CcmR influences anaerobic metabolism, the kinetics of autofermentation were investigated following photoautotrophic growth. The autofermentative H2 yield increased by 50% in the CcmR deletion strain compared to the wild-type strain, and increased to 160% (within 20 h) upon continuous removal of H2 from the medium ("milking") to suppress H2 uptake. Consistent with this greater reductant flux to H2 , the mutant excreted less lactate during autofermentation (NAD(P)H consuming pathway). To enhance the rate of NADH production during anaerobic metabolism, the ccmR mutant was engineered to introduce GAPDH overexpression (more NADH production) and LDH deletion (less NADH consumption). The triple mutant (ccmR deletion + GAPDH overexpression + LDH deletion) showed 6-8-fold greater H2 yield than the WT strain, achieving conversion rates of 17 nmol 10(8)  cells(-1)  h(-1) and yield of 0.87 H2 per glucose equivalent (8.9% theoretical maximum). Simultaneous monitoring of the intracellular NAD(P)H concentration and H2 production rate by these mutants reveals an inverse correspondence between these variables indicating hydrogenase-dependent H2 production as a major sink for consuming NAD(P)H in preference to excretion of reduced carbon as lactate during fermentation. Biotechnol. Bioeng. 2016;113: 1448-1459. © 2015 Wiley Periodicals, Inc. PMID:26704377

  9. Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin

    PubMed Central

    Stewart, Ian; Seawright, Alan A; Schluter, Philip J; Shaw, Glen R

    2006-01-01

    Background Freshwater cyanobacteria are common inhabitants of recreational waterbodies throughout the world; some cyanobacteria can dominate the phytoplankton and form blooms, many of which are toxic. Numerous reports in the literature describe pruritic skin rashes after recreational or occupational exposure to cyanobacteria, but there has been little research conducted on the cutaneous effects of cyanobacteria. Using the mouse ear swelling test (MEST), we sought to determine whether three toxin-producing cyanobacteria isolates and the purified cyanotoxin cylindrospermopsin produced delayed-contact hypersensitivity reactions. Methods Between 8 and 10 female Balb/c mice in each experiment had test material applied to depilated abdominal skin during the induction phase and 10 or 11 control mice had vehicle only applied to abdominal skin. For challenge (day 10) and rechallenge (day 17), test material was applied to a randomly-allocated test ear; vehicle was applied to the other ear as a control. Ear thickness in anaesthetised mice was measured with a micrometer gauge at 24 and 48 hours after challenge and rechallenge. Ear swelling greater than 20% in one or more test mice is considered a positive response. Histopathology examination of ear tissues was conducted by independent examiners. Results Purified cylindrospermopsin (2 of 9 test mice vs. 0 of 5 control mice; p = 0.51) and the cylindrospermopsin-producing cyanobacterium C. raciborskii (8 of 10 test mice vs. 0 of 10 control mice; p = 0.001) were both shown to produce hypersensitivity reactions. Irritant reactions were seen on abdominal skin at induction. Two other toxic cyanobacteria (Microcystis aeruginosa and Anabaena circinalis) did not generate any responses using this model. Histopathology examinations to determine positive and negative reactions in ear tissues showed excellent agreement beyond chance between both examiners (κ = 0.83). Conclusion The irritant properties and cutaneous sensitising potential of

  10. Biofilm Growth and Near-Infrared Radiation-Driven Photosynthesis of the Chlorophyll d-Containing Cyanobacterium Acaryochloris marina

    PubMed Central

    Behrendt, Lars; Schrameyer, Verena; Qvortrup, Klaus; Lundin, Luisa; Sørensen, Søren J.; Larkum, Anthony W. D.

    2012-01-01

    The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O2 concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ∼700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of Ek (saturating irradiance) >250 μmol photons m−2 s−1 for blue light but no clear saturation at 365 μmol photons m−2 s−1 for NIR. The maximal gross photosynthesis rates in the aggregates were ∼1,272 μmol O2 mg Chl d−1 h−1 (NIR) and ∼1,128 μmol O2 mg Chl d−1 h−1 (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10−6 m2 mg Chl d−1 (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10−6 m2 mg Chl d−1]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O2 conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions. PMID:22467501

  11. Harvesting Far-Red Light by Chlorophyll f in Photosystems I and II of Unicellular Cyanobacterium strain KC1.

    PubMed

    Itoh, Shigeru; Ohno, Tomoki; Noji, Tomoyasu; Yamakawa, Hisanori; Komatsu, Hirohisa; Wada, Katsuhiro; Kobayashi, Masami; Miyashita, Hideaki

    2015-10-01

    Cells of a unicellular cyanobacterium strain KC1, which were collected from Japanese fresh water Lake Biwa, formed chlorophyll (Chl) f at 6.7%, Chl a' at 2.0% and pheophytin a at 0.96% with respect to Chl a after growth under 740 nm light. The far-red-acclimated cells (Fr cells) formed extra absorption bands of Chl f at 715 nm in addition to the major Chl a band. Fluorescence lifetimes were measured. The 405-nm laser flash, which excites mainly Chl a in photosystem I (PSI), induced a fast energy transfer to multiple fluorescence bands at 720-760 and 805 nm of Chl f at 77 K in Fr cells with almost no PSI-red-Chl a band. The 630-nm laser flash, which mainly excited photosystem II (PSII) through phycocyanin, revealed fast energy transfer to another set of Chl f bands at 720-770 and 810 nm as well as to the 694-nm Chl a fluorescence band. The 694-nm band did not transfer excitation energy to Chl f. Therefore, Chl a in PSI, and phycocyanin in PSII of Fr cells transferred excitation energy to different sets of Chl f molecules. Multiple Chl f forms, thus, seem to work as the far-red antenna both in PSI and PSII. A variety of cyanobacterial species, phylogenically distant from each other, seems to use a Chl f antenna in far-red environments, such as under dense biomats, in colonies, or under far-red LED light. PMID:26320210

  12. Bentazon triggers the promotion of oxidative damage in the Portuguese ricefield cyanobacterium Anabaena cylindrica: response of the antioxidant system.

    PubMed

    Galhano, Victor; Peixoto, Francisco; Gomes-Laranjo, José

    2010-10-01

    Rice fields are frequently exposed to environmental contamination by herbicides and cyanobacteria, as primary producers of these aquatic ecosystems, are adversely affected. Anabaena cylindrica is a cyanobacterium with a significantly widespread occurrence in Portuguese rice fields. This strain was studied throughout 72 h in laboratory conditions for its stress responses to sublethal concentrations (0.75-2 mM) of bentazon, a selective postemergence herbicide recommended for integrated weed management in rice, with special reference to oxidative stress, role of proline and intracellular antioxidant enzymes in herbicide-induced free radicals detoxification. Activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione S-transferase (GST) increased in a time- and herbicide dose-response manner and were higher than those in the control samples after 72 h. A time- and concentration-dependent increase of malondialdehyde (MDA) levels and the enhanced cell membrane leakage following bentazon exposure are indicative of lipid peroxidation, free radicals formation, and oxidative damage, while increased amounts of SOD, CAT, APX, GST, and proline indicated their involvement in free radical scavenging mechanisms. The appreciable decline in the reduced glutathione (GSH) pool after 72 h at higher bentazon concentrations could be explained by the reduction of the NADPH-dependent glutathione reductase (GR) activity. The obtained results suggested that the alterations of antioxidant systems in A. cylindrica might be useful biomarkers of bentazon exposure. As the toxic mechanism of bentazon is a complex phenomenon, this study also adds relevant findings to explain the oxidative stress pathways of bentazon promoting oxidative stress in cyanobacteria. PMID:20549627

  13. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120*

    PubMed Central

    Tang, Kun; Knipp, Markus; Liu, Bing-Bing; Cox, Nicholas; Stabel, Robert; He, Qi; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Gärtner, Wolfgang

    2015-01-01

    The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The “as isolated” form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin FeIII heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of −445 and −453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (FeII state) binds both NO and CO. Cysteine coordination of the as isolated FeIII protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein. PMID:26063806

  14. Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme.

    PubMed

    Feng, Yan-Na; Zhang, Zhong-Chun; Feng, Jun-Li; Qiu, Bao-Sheng

    2012-10-01

    The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m(-2)) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG11(0)) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future. PMID:22865081

  15. Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata.

    PubMed

    Schrader, Kevin K; Nanayakkara, N P Dhammika; Tucker, Craig S; Rimando, Agnes M; Ganzera, Markus; Schaneberg, Brian T

    2003-09-01

    Musty "off-flavor" in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least 30 million US dollars annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 micro M (125 micro g/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1'-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 micro M concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture. PMID:12957919

  16. Strategies of Asian oil-importing countries

    SciTech Connect

    Yang, M.

    1997-04-01

    Various strategies are used by oil-importing countries to reduce their economic dependence on imported oil: national oil production, energy conservation, and the change of economic structures from high energy intensity sectors to low ones. In this article, the roles of these different strategies have been identified for 10 selected oil-importing countries in Asia: Bangladesh, India, Nepal, Pakistan, Sri Lanka, the Philippines, Thailand, Hong Kong, R.O Korea, and Taiwan. The results show that most of the selected countries (although Hong Kong and Taiwan are independent economic entities, for simplicity, the author refers to them as countries) have succeeded in reducing their national economy dependence on imported oil since 1973. Hong Kong, Sri Lanka, Thailand, and India are among the most successful countries, with more than 40% reduction in their economic dependence on imported oil.

  17. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro

    PubMed Central

    Nayak, Nabakishore; Rath, Shakti

    2014-01-01

    Effects of chemical fertilizers (urea, super phosphate and potash) on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations) of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm) along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm) reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp. PMID:26038669

  18. Oligonucleotide-directed mutagenesis of psbB, the gene encoding CP47, employing a deletion mutant strain of the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Eaton-Rye, J J; Vermaas, W F

    1991-12-01

    A mutant strain of the cyanobacterium Synechocystis sp. PCC (Pasteur Culture Collection) 6803 has been developed in which psbB, the gene coding for the chlorophyl alpha-binding protein CP47 in Photosystem II (PSII), has been deleted. This deletion mutant can be used for the reintroduction of modified psbB into the cyanobacterium. To study the role of a large hydrophilic region in CP47, presumably located on the lumenal side of the thylakoid membrane between the fifth and sixth membrane-spanning regions, specific deletions have been introduced in psbB coding for regions within this domain. One psbB mutation leads to deletion of Gly-351 to Thr-365 in CP47, another psbB mutation was targeted towards deletion of Arg-384 to Val-392 in this protein. The deletion from Gly-351 to Thr-365 results in a loss of PSII activity and of photoautotrophic growth of the mutant, but the deletion between Arg-384 and Val-392 retains PSII activity and the ability to grow photoautotrophically. The mutant strain with the deletion from Gly-351 to Thr-365 does not assemble a stable PSII reaction center complex in its thylakoid membranes, and exhibits diminished levels of CP47 and of the reaction center proteins D1 and D2. In contrast to the Arg-384 to Val-392 portion of this domain, the region between Gly-351 and Thr-365 appears essential for the normal structure and function of photosystem II. PMID:1932693

  19. Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis

    PubMed Central

    Voß, Björn; Bolhuis, Henk; Fewer, David P.; Kopf, Matthias; Möke, Fred; Haas, Fabian; El-Shehawy, Rehab; Hayes, Paul; Bergman, Birgitta; Sivonen, Kaarina; Dittmann, Elke; Scanlan, Dave J.; Hagemann, Martin; Stal, Lucas J.; Hess, Wolfgang R.

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems. PMID:23555932

  20. Identification of a cis-acting element in nitrogen fixation genes recognized by CnfR in the nonheterocystous nitrogen-fixing cyanobacterium Leptolyngbya boryana.

    PubMed

    Tsujimoto, Ryoma; Kamiya, Narumi; Fujita, Yuichi

    2016-08-01

    The filamentous cyanobacterium Leptolyngbya boryana has the ability to fix nitrogen without any heterocysts under microoxic conditions. Previously, we identified the cnfR gene for a master transcriptional activator for nitrogen fixation (nif) genes in a 50-kb gene cluster containing nif and nif-related genes in L. boryana. We showed that CnfR activates the transcription of nif genes in response to low oxygen conditions, which allows the oxygen-vulnerable enzyme nitrogenase to function. However, the regulatory mechanism that underlies regulation by CnfR remains unknown. In this study, we identified a conserved cis-acting element that is recognized by CnfR. We established a reporter system in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803 using luciferase genes (luxAB). Reporter analysis was performed with a series of truncated and modified upstream regulatory regions of nifB and nifP. The cis-element can be divided into nine motifs I-IX, and it is located 76 bp upstream of the transcriptional start sites of nifB and nifP. Six motifs of them are essential for transcriptional activation by CnfR. This cis-acting element is conserved in the upstream regions of nif genes in all diazotrophic cyanobacteria, including Anabaena and Cyanothece, thereby suggesting that the transcriptional regulation by CnfR is widespread in nitrogen-fixing cyanobacteria. PMID:27119437