Sample records for eddy current couplings

  1. Casimir Interaction from Magnetically Coupled Eddy Currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, Francesco; Henkel, Carsten

    2009-09-25

    We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.

  2. 3D analysis of eddy current loss in the permanent magnet coupling.

    PubMed

    Zhu, Zina; Meng, Zhuo

    2016-07-01

    This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.

  3. Coupled circuit numerical analysis of eddy currents in an open MRI system.

    PubMed

    Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi

    2014-08-01

    We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of eddy currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation

  4. Eddy-current effect on resonant magnetoelectric coupling in magnetostrictive-piezoelectric laminated composites

    NASA Astrophysics Data System (ADS)

    Liu, Guoxi; Zhang, Chunli; Chen, Weiqiu; Dong, Shuxiang

    2013-07-01

    An analytical model of resonant magnetoelectric (ME) coupling in magnetostrictive (MS)-piezoelectric (PE) laminated composites in consideration of eddy-current effect in MS layer using equivalent circuit method is presented. Numerical calculations show that: (1) the eddy-current has a strong effect on ME coupling in MS-PE laminated composites at resonant frequency; and (2) the resonant ME coupling is then significantly dependent on the sizes of ME laminated composites, which were neglected in most previous theoretical analyses. The achieved results provide a theoretical guidance for the practice engineering design, manufacture, and application of ME laminated composites and devices.

  5. Silent Flange Coupling Design Used for the Schenck Eddy Current Dynamometer

    NASA Astrophysics Data System (ADS)

    Schinteie, D.; Croitorescu, V.

    2016-11-01

    The silent flange used for coupling different machines/systems to an eddy current dynamometer represents one of the modular components each test-bench should use. By introducing a silent flange into a dynamometer, the coupling steps are easier and faster. For an appropriate design, the silent flange was analyzed using dedicated software during different operation procedures and scenarios, for materials that allow easy manufacturing. This study shows that the design for this silent flange model has no danger of failure due to the small deformation and the values for the equivalent stresses. The silent flange coupling is suitable for the dynamometer for his high positioning accuracy, the zero backlash and the fact that there is no motion between the shafts.

  6. Automated eddy current analysis of materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    The use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using eddy current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The eddy current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining eddy current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful eddy current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component.

  7. electromagnetics, eddy current, computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, David

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  8. Eddy-Current Probes For Inspecting Graphite-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Wang, Morgan

    1992-01-01

    Eddy-current probes with E-shaped and U-shaped magnetic cores developed to detect flaws in graphite-fiber/epoxy and other composites. Magnetic fields more concentrated, yielding better coupling with specimens.

  9. Eddy Current Probe for Surface and Sub-Surface Inspection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)

    2014-01-01

    An eddy current probe includes an excitation coil for coupling to a low-frequency alternating current (AC) source. A magneto-resistive sensor is centrally disposed within and at one end of the excitation coil to thereby define a sensing end of the probe. A tubular flux-focusing lens is disposed between the excitation coil and the magneto-resistive sensor. An excitation wire is spaced apart from the magneto-resistive sensor in a plane that is perpendicular to the sensor's axis of sensitivity and such that, when the sensing end of the eddy current probe is positioned adjacent to the surface of a structure, the excitation wire is disposed between the magneto-resistive sensor and the surface of the structure. The excitation wire is coupled to a high-frequency AC source. The excitation coil and flux-focusing lens can be omitted when only surface inspection is required.

  10. Eddy Current Rail Inspection Using AC Bridge Techniques.

    PubMed

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method.

  11. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  12. Eddy current damper

    NASA Technical Reports Server (NTRS)

    Ellis, R. C.; Fink, R. A.; Rich, R. W.

    1989-01-01

    A high torque capacity eddy current damper used as a rate limiting device for a large solar array deployment mechanism is discussed. The eddy current damper eliminates the problems associated with the outgassing or leaking of damping fluids. It also provides performance advantages such as damping torque rates, which are truly linear with respect to input speed, continuous 360 degree operation in both directions of rotation, wide operating temperature range, and the capability of convenient adjustment of damping rates by the user without disassembly or special tools.

  13. Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment

    DOE PAGES

    Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...

    2017-04-18

    Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less

  14. Improved Imaging With Laser-Induced Eddy Currents

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.

    1993-01-01

    System tests specimen of material nondestructively by laser-induced eddy-current imaging improved by changing method of processing of eddy-current signal. Changes in impedance of eddy-current coil measured in absolute instead of relative units.

  15. Study of eddy current probes

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Wang, Morgan

    1992-01-01

    The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.

  16. Eddy Current Testing, RQA/M1-5330.17.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on eddy current testing. The subject is presented under the following headings: Introduction, Eddy Current Principles, Eddy Current Equipment, Eddy Current Methods,…

  17. Determination of eddy current response with magnetic measurements.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B

    2017-09-01

    Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.

  18. Eddy-Current Inspection Of Graphite-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1993-01-01

    NASA technical memorandum describes initial research on, and proposed development of, automated system for nondestructive eddy-current inspection of parts made of graphite-fiber/epoxy-matrix composite materials. Sensors in system E-shaped or U-shaped eddy-current probes like those described in "Eddy-Current Probes For Inspecting Graphite-Fiber Composites" (MFS-26129).

  19. Expert system for analyzing eddy current measurements

    DOEpatents

    Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.

    1994-01-01

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.

  20. Birth of a Loop Current Eddy

    NASA Image and Video Library

    2010-05-24

    The northern portion of the Gulf of Mexico Loop Current, shown in red, appears about to detach a large ring of current, creating a separate eddy. An eddy is a large, warm, clockwise-spinning vortex of water -- the ocean version of a cyclone.

  1. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  2. Eddy current correction in volume-localized MR spectroscopy

    NASA Technical Reports Server (NTRS)

    Lin, C.; Wendt, R. E. 3rd; Evans, H. J.; Rowe, R. M.; Hedrick, T. D.; LeBlanc, A. D.

    1994-01-01

    The quality of volume-localized magnetic resonance spectroscopy is affected by eddy currents caused by gradient switching. Eddy currents can be reduced with improved gradient systems; however, it has been suggested that the distortion due to eddy currents can be compensated for during postprocessing with a single-frequency reference signal. The authors propose modifying current techniques for acquiring the single-frequency reference signal by using relaxation weighting to reduce interference from components that cannot be eliminated by digital filtering alone. Additional sequences with T1 or T2 weighting for reference signal acquisition are shown to have the same eddy current characteristics as the original signal without relaxation weighting. The authors also studied a new eddy current correction method that does not require a single-frequency reference signal. This method uses two free induction decays (FIDs) collected from the same volume with two sequences with opposite gradients. Phase errors caused by eddy currents are opposite in these two FIDs and can be canceled completely by combining the FIDs. These methods were tested in a phantom. Eddy current distortions were corrected, allowing quantitative measurement of structures such as the -CH = CH- component, which is otherwise undetectable.

  3. A novel eddy current damper: theory and experiment

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Babak; Khamesee, Mir Behrad; Golnaraghi, Farid

    2009-04-01

    A novel eddy current damper is developed and its damping characteristics are studied analytically and experimentally. The proposed eddy current damper consists of a conductor as an outer tube, and an array of axially magnetized ring-shaped permanent magnets separated by iron pole pieces as a mover. The relative movement of the magnets and the conductor causes the conductor to undergo motional eddy currents. Since the eddy currents produce a repulsive force that is proportional to the velocity of the conductor, the moving magnet and the conductor behave as a viscous damper. The eddy current generation causes the vibration to dissipate through the Joule heating generated in the conductor part. An accurate, analytical model of the system is obtained by applying electromagnetic theory to estimate the damping properties of the proposed eddy current damper. A prototype eddy current damper is fabricated, and experiments are carried out to verify the accuracy of the theoretical model. The experimental test bed consists of a one-degree-of-freedom vibration isolation system and is used for the frequency and transient time response analysis of the system. The eddy current damper model has a 0.1 m s-2 (4.8%) RMS error in the estimation of the mass acceleration. A damping coefficient as high as 53 Ns m-1 is achievable with the fabricated prototype. This novel eddy current damper is an oil-free, inexpensive damper that is applicable in various vibration isolation systems such as precision machinery, micro-mechanical suspension systems and structure vibration isolation.

  4. Thin film eddy current impulse deicer

    NASA Technical Reports Server (NTRS)

    Smith, Samuel O.; Zieve, Peter B.

    1990-01-01

    Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.

  5. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  6. Eddy-Current Inspection of Ball Bearings

    NASA Technical Reports Server (NTRS)

    Bankston, B.

    1985-01-01

    Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.

  7. Eddy Current Assessment of Engineered Components Containing Nanofibers

    NASA Astrophysics Data System (ADS)

    Ko, Ray T.; Hoppe, Wally; Pierce, Jenny

    2009-03-01

    The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.

  8. Automated eddy current analysis of materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    This research effort focused on the use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures. A major emphasis was on incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) has been a goal in the overall concept and is essential for the final implementation for expert system interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of the flaw can be performed. In eddy current or any other expert systems used to analyze signals in real time in a production environment, it is important to simplify computational procedures as much as possible. For that reason, we have chosen to use the measured resistance and reactance values for the preliminary aspects of this work. A simple computation, such as phase angle of the signal, is certainly within the real time processing capability of the computer system. In the work described here, there is a balance between physical measurements and finite element calculations of those measurements. The goal is to evolve into the most cost effective procedures for maintaining the correctness of the knowledge base.

  9. Eddy current testing of composite pressure vessels

    NASA Astrophysics Data System (ADS)

    Casperson, R.; Pohl, R.; Munzke, D.; Becker, B.; Pelkner, M.

    2018-04-01

    The use of composite pressure vessels instead of conventional vessels made of steel or aluminum grew strongly over the last decade. The reason for this trend is the tremendous weight saving in the case of composite vessels. However, the long-time behavior is not fully understood for filling and discharging cycles and creep strength and their influence on the CFRP coating (carbon fiber reinforced plastics) and the internal liner (steel, aluminum, or plastics). The CFRP ensures the pressure resistance while the inner liner is used as a container for liquid or gas. To overcome the missing knowledge of aging, BAM started an internal project to investigate degradation of these material systems. Therefore, applicable testing methods like eddy current testing are needed. Normally, high-frequency eddy current testing (HF-ET, f > 10 MHz) is deployed for CFRP due to its low conductivity of the fiber, which is in the order of 0.01 MS/s, and the capacitive coupling between the fibers. Nevertheless, in some cases conventional ET can be applied. We show a concise summary of studies on the application of conventional ET of composite pressure vessels.

  10. The eddy current probe array for Keda Torus eXperiment.

    PubMed

    Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2016-11-01

    In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.

  11. A western boundary current eddy characterisation study

    NASA Astrophysics Data System (ADS)

    Ribbe, Joachim; Brieva, Daniel

    2016-12-01

    The analysis of an eddy census for the East Australian Current (EAC) region yielded a total of 497 individual short-lived (7-28 days) cyclonic and anticyclonic eddies for the period 1993 to 2015. This was an average of about 23 eddies per year. 41% of the tracked individual cyclonic and anticyclonic eddies were detected off southeast Queensland between about 25 °S and 29 °S. This is the region where the flow of the EAC intensifies forming a swift western boundary current that impinges near Fraser Island on the continental shelf. This zone was also identified as having a maximum in detected short-lived cyclonic eddies. A total of 94 (43%) individual cyclonic eddies or about 4-5 per year were tracked in this region. The census found that these potentially displaced entrained water by about 115 km with an average displacement speed of about 4 km per day. Cyclonic eddies were likely to contribute to establishing an on-shelf longshore northerly flow forming the western branch of the Fraser Island Gyre and possibly presented an important cross-shelf transport process in the life cycle of temperate fish species of the EAC domain. In-situ observations near western boundary currents previously documented the entrainment, off-shelf transport and export of near shore water, nutrients, sediments, fish larvae and the renewal of inner shelf water due to short-lived eddies. This study found that these cyclonic eddies potentially play an important off-shelf transport process off the central east Australian coast.

  12. Eddy current inspection of graphite fiber components

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1990-01-01

    The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.

  13. Eddy currents in a conducting sphere

    NASA Technical Reports Server (NTRS)

    Bergman, John; Hestenes, David

    1986-01-01

    This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.

  14. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents.

    PubMed

    Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John

    2014-03-14

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.

  15. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents

    PubMed Central

    Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John

    2014-01-01

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. PMID:24753629

  16. Effect of mesoscale eddies on the Taiwan Strait Current

    NASA Astrophysics Data System (ADS)

    Chang, Y. L.; Miyazawa, Y.; Guo, X.

    2016-02-01

    This study shows that mesoscale eddies can alter the Taiwan Strait current. The 20-year data-assimilated Japan Coastal Ocean Predictability Experiment 2 (JCOPE2) reanalysis data are analyzed, and the results are confirmed with idealized experiments. The leading wind-forced seasonal cycle is excluded to focus on the effect of the eddy. The warm eddy southwest of Taiwan is shown to generate a northward flow, whereas the cold eddy produces a southward current. The effect of the eddy penetrates onto the shelf through the Joint Effect of Baroclinicity and Relief (JEBAR). The cross-isobath fluxes lead to shelfward convergence and divergence, setting up the modulation of the sea level slope. The resulting along-strait current anomaly eventually affects a wide area of the Taiwan Strait. The stronger eddy leads to larger modification of the cross-shelf flows and sea level slope, producing a greater transport anomaly. The composite Sea-Viewing Wide Field-of-view Sensor chlorophyll-a (Chl-a) serves as an indicator to show the change in Chl-a concentration in the strait in response to the eddy-induced current. During the warm eddy period, the current carries the southern water of lower concentration northward, reducing Chl-a concentration in the strait. In contrast, Chl-a is enhanced because the cold eddy-induced southward current carries the northern water of higher concentration southward into the strait.

  17. Eddy-Current Reference Standard

    NASA Technical Reports Server (NTRS)

    Ambrose, H. H., Jr.

    1985-01-01

    Magnetic properties of metallic reference standards duplicated and stabilized for eddy-current coil measurements over long times. Concept uses precisely machined notched samples of known annealed materials as reference standards.

  18. Design optimization of an axial-field eddy-current magnetic coupling based on magneto-thermal analytical model

    NASA Astrophysics Data System (ADS)

    Fontchastagner, Julien; Lubin, Thierry; Mezani, Smaïl; Takorabet, Noureddine

    2018-03-01

    This paper presents a design optimization of an axial-flux eddy-current magnetic coupling. The design procedure is based on a torque formula derived from a 3D analytical model and a population algorithm method. The main objective of this paper is to determine the best design in terms of magnets volume in order to transmit a torque between two movers, while ensuring a low slip speed and a good efficiency. The torque formula is very accurate and computationally efficient, and is valid for any slip speed values. Nevertheless, in order to solve more realistic problems, and then, take into account the thermal effects on the torque value, a thermal model based on convection heat transfer coefficients is also established and used in the design optimization procedure. Results show the effectiveness of the proposed methodology.

  19. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  20. Eddy Current Sensing of Torque in Rotating Shafts

    NASA Astrophysics Data System (ADS)

    Varonis, Orestes J.; Ida, Nathan

    2013-12-01

    The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.

  1. Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, H.; Lin, P.

    2017-12-01

    The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.

  2. Eddy Currents: Levitation, Metal Detectors, and Induction Heating

    ERIC Educational Resources Information Center

    Wouch, G.; Lord, A. E., Jr.

    1978-01-01

    A simple and accessible calculation is given of the effects of eddy currents for a sphere in the field of a single circular loop of alternating current. These calculations should help toward the inclusion of eddy current effects in upper undergraduate physics courses. (BB)

  3. Eddy Current System for Material Inspection and Flaw Visualization

    NASA Technical Reports Server (NTRS)

    Bachnak, R.; King, S.; Maeger, W.; Nguyen, T.

    2007-01-01

    Eddy current methods have been successfully used in a variety of non-destructive evaluation applications including detection of cracks, measurements of material thickness, determining metal thinning due to corrosion, measurements of coating thickness, determining electrical conductivity, identification of materials, and detection of corrosion in heat exchanger tubes. This paper describes the development of an eddy current prototype that combines positional and eddy-current data to produce a C-scan of tested material. The preliminary system consists of an eddy current probe, a position tracking mechanism, and basic data visualization capability. Initial test results of the prototype are presented in this paper.

  4. The influence of eddy currents on magnetic actuator performance

    NASA Technical Reports Server (NTRS)

    Zmood, R. B.; Anand, D. K.; Kirk, J. A.

    1987-01-01

    The present investigation of the effects of eddy currents on EM actuators' transient performance notes that a transfer function representation encompassing a first-order model of the eddy current influence can be useful in control system analysis. The method can be extended to represent the higher-order effects of eddy currents for actuators that cannot be represented by semiinfinite planes.

  5. Eddy properties in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent

    2018-05-01

    The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of 67% California Current waters and 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy's core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.

  6. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Claycomb, James Ronald

    1998-10-01

    FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.

  7. Detecting defects in marine structures by using eddy current infrared thermography.

    PubMed

    Swiderski, W

    2016-12-01

    Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.

  8. Eddy-Current Measurement Of Turning Or Curvature

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.

    1993-01-01

    Rotatable conductive plate covers sensing coil to varying degree. Curvature of pipe at remote or otherwise inaccessible location inside pipe measured using relatively simple angular-displacement eddy-current probe. Crawler and sensor assemblies move along inside of pipe on wheels. Conductive plate pivots to follow curvature of pipe, partly covering one of eddy-current coils to degree depending on local curvature on pipe.

  9. Multiple sensor multifrequency eddy current monitor for solidification and growth

    NASA Technical Reports Server (NTRS)

    Wallace, John

    1990-01-01

    A compact cylindrical multisensor eddy current measuring system with integral furnace was develop to monitor II-VI crystal growth to provide interfacial information, solutal segregation, and conductivities of the growth materials. The use of an array of sensors surrounding the furnace element allows one to monitor the volume of interest. Coupling these data with inverse multifrequency analysis allows radial conductivity profiles to be generated at each sensor position. These outputs were incorporated to control the processes within the melt volume. The standard eddy current system functions with materials whose electric conductivities are as low as 2E2 Mhos/m. A need was seen to extend the measurement range to poorly conducting media so the unit was modified to allow measurement of materials conductivities 4 order of magnitude lower and bulk dielectric properties. Typically these included submicron thick films and semiinsulating GaAs. This system was used to monitor complex heat transfer in grey bodies as well as semiconductor and metallic solidification.

  10. High resolution eddy current microscopy

    NASA Astrophysics Data System (ADS)

    Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.

    2001-01-01

    We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.

  11. Eddy current standards - Cracks versus notches

    NASA Astrophysics Data System (ADS)

    Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.

    1992-10-01

    Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.

  12. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.

    PubMed

    Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack

    2016-11-01

    Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.

  13. Eddy Current System and Method for Crack Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)

    2012-01-01

    An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.

  14. Revolving Eddy-Current Probe Detects Cracks Near Rivets

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Wincheski, Buzz; Fulton, James P.; Nath, Shridhar; Simpson, John

    1995-01-01

    Scanning eddy-current probe in circular pattern increases sensitivity with which probe indicates fatigue cracks and other defects in metal surfaces in vicinity of rivets. Technique devised to facilitate inspection of riveted joints in aircraft. Eddy-current probe in question described in "Electro-magnetic Flaw Detector Is Easier To Use" (LAR-15046).

  15. Magnetic Field of Conductive Objects as Superposition of Elementary Eddy Currents and Eddy Current Tomography

    NASA Astrophysics Data System (ADS)

    Sukhanov, D. Ya.; Zav'yalova, K. V.

    2018-03-01

    The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.

  16. Development of and Improved Magneto-Optic/Eddy-Current Imager

    DOT National Transportation Integrated Search

    1997-04-01

    Magneto-optic/eddy-current imaging technology has been developed and approved for inspection of cracks in aging aircraft. This relatively new nondestructive test method gives the inspector the ability to quickly generate real-time eddy-current images...

  17. Eddy current testing probe with dual half-cylindrical coils

    NASA Astrophysics Data System (ADS)

    Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong

    2000-02-01

    We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.

  18. Development of eddy current probe for fiber orientation assessment in carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Wincheski, Russell A.; Zhao, Selina

    2018-04-01

    Measurement of the fiber orientation in a carbon fiber composite material is crucial in understanding the load carrying capability of the structure. As manufacturing conditions including resin flow and molding pressures can alter fiber orientation, verification of the as-designed fiber layup is necessary to ensure optimal performance of the structure. In this work, the development of an eddy current probe and data processing technique for analysis of fiber orientation in carbon fiber composites is presented. A proposed directional eddy current probe is modeled and its response to an anisotropic multi-layer conductor simulated. The modeling results are then used to finalize specifications of the eddy current probe. Experimental testing of the fabricated probe is presented for several samples including a truncated pyramid part with complex fiber orientation draped to the geometry for resin transfer molding. The inductively coupled single sided measurement enables fiber orientation characterization through the thickness of the part. The fast and cost-effective technique can be applied as a spot check or as a surface map of the fiber orientations across the structure. This paper will detail the results of the probe design, computer simulations, and experimental results.

  19. Eddy current simulation in thick cylinders of finite length induced by coils of arbitrary geometry.

    PubMed

    Sanchez Lopez, Hector; Poole, Michael; Crozier, Stuart

    2010-12-01

    Eddy currents are inevitably induced when time-varying magnetic field gradients interact with the metallic structures of a magnetic resonance imaging (MRI) scanner. The secondary magnetic field produced by this induced current degrades the spatial and temporal performance of the primary field generated by the gradient coils. Although this undesired effect can be minimized by using actively and/or passively shielded gradient coils and current pre-emphasis techniques, a residual eddy current still remains in the MRI scanner structure. Accurate simulation of these eddy currents is important in the successful design of gradient coils and magnet cryostat vessels. Efficient methods for simulating eddy currents are currently restricted to cylindrical-symmetry. The approach presented in this paper divides thick conducting cylinders into thin layers (thinner than the skin depth) and expresses the current density on each as a Fourier series. The coupling between each mode of the Fourier series with every other is modeled with an inductive network method. In this way, the eddy currents induced in realistic cryostat surfaces by coils of arbitrary geometry can be simulated. The new method was validated by simulating a canonical problem and comparing the results against a commercially available software package. An accurate skin depth of 2.76 mm was calculated in 6 min with the new method. The currents induced by an actively shielded x-gradient coil were simulated assuming a finite length cylindrical cryostat consisting of three different conducting materials. Details of the temporal-spatial induced current diffusion process were simulated through all cryostat layers, which could not be efficiently simulated with any other method. With this data, all quantities that depend on the current density, such as the secondary magnetic field, are simply evaluated. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Eddy current inspection tool. [Patent application

    DOEpatents

    Petrini, R.R.; Van Lue, D.F.

    1980-10-29

    A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises eddy current sensing equipment with a probe coil, and associated coaxial coil cable, oil energizing means, and circuit means responsive to impedance changes in the coil as effected by induced eddy currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube of a fiberoptic scope. The scope is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The eddy current sensing equipment includes a tone generator for generating audible signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signalling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level.

  1. Method and apparatus for correcting eddy current signal voltage for temperature effects

    DOEpatents

    Kustra, Thomas A.; Caffarel, Alfred J.

    1990-01-01

    An apparatus and method for measuring physical characteristics of an electrically conductive material by the use of eddy-current techniques and compensating measurement errors caused by changes in temperature includes a switching arrangement connected between primary and reference coils of an eddy-current probe which allows the probe to be selectively connected between an eddy current output oscilloscope and a digital ohm-meter for measuring the resistances of the primary and reference coils substantially at the time of eddy current measurement. In this way, changes in resistance due to temperature effects can be completely taken into account in determining the true error in the eddy current measurement. The true error can consequently be converted into an equivalent eddy current measurement correction.

  2. Inexpensive Eddy-Current Standard

    NASA Technical Reports Server (NTRS)

    Berry, Robert F., Jr.

    1985-01-01

    Radial crack replicas serve as evaluation standards. Technique entails intimately joining two pieces of appropriate aluminum alloy stock and centering drilled hole through and along interface. Bore surface of hole presents two vertical stock interface lines 180 degrees apart. These lines serve as radial crack defect replicas during eddy-current technique setup and verification.

  3. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  4. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  5. Eddy-Current Inspection Of Tab Seals On Beverage Cans

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1994-01-01

    Eddy-current inspection system monitors tab seals on beverage cans. Device inspects all cans at usual production rate of 1,500 to 2,000 cans per minute. Automated inspection of all units replaces visual inspection by microscope aided by mass spectrometry. System detects defects in real time. Sealed cans on conveyor pass near one of two coils in differential eddy-current probe. Other coil in differential eddy-current probe positioned near stationary reference can on which tab seal is known to be of acceptable quality. Signal of certain magnitude at output of probe indicates defective can, automatically ejected from conveyor.

  6. Non-Contact EDDY Current Hole Eccentricity and Diameter Measurement

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1998-01-01

    Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact eddy current hole diameter and eccentricity measuring system. The operating principle is based on the eddy current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute eddy current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An eddy current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact eddy current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.

  7. Technique for temperature compensation of eddy-current proximity probes

    NASA Technical Reports Server (NTRS)

    Masters, Robert M.

    1989-01-01

    Eddy-current proximity probes are used in turbomachinery evaluation testing and operation to measure distances, primarily vibration, deflection, or displacment of shafts, bearings and seals. Measurements of steady-state conditions made with standard eddy-current proximity probes are susceptible to error caused by temperature variations during normal operation of the component under investigation. Errors resulting from temperature effects for the specific probes used in this study were approximately 1.016 x 10 to the -3 mm/deg C over the temperature range of -252 to 100 C. This report examines temperature caused changes on the eddy-current proximity probe measurement system, establishes their origin, and discusses what may be done to minimize their effect on the output signal. In addition, recommendations are made for the installation and operation of the electronic components associated with an eddy-current proximity probe. Several techniques are described that provide active on-line error compensation for over 95 percent of the temperature effects.

  8. Quantification and Compensation of Eddy-Current-Induced Magnetic Field Gradients

    PubMed Central

    Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.

    2011-01-01

    Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614

  9. Quantification and compensation of eddy-current-induced magnetic-field gradients.

    PubMed

    Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R

    2011-09-01

    Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Eddy current heating in magnetic refrigerators

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1990-01-01

    Eddy current heating can be a significant source of parasitic heating in low temperature magnetic refrigerators. To study this problem a technique to approximate the heating due to eddy currents has been developed. A formula is presented for estimating the heating within a variety of shapes commonly found in magnetic refrigerators. These shapes include circular, square, and rectangular rods; cylindrical and split cylindrical shells; wire loops; and 'coil foil. One set of components evaluated are different types of thermal radiation shields. This comparison shows that a simple split shield is almost as effective (only 23 percent more heating) as using a shield, with the same axial thermal conductivity, made of 'coil foil'.

  11. Enhanced Eddy-Current Detection Of Weld Flaws

    NASA Technical Reports Server (NTRS)

    Van Wyk, Lisa M.; Willenberg, James D.

    1992-01-01

    Mixing of impedances measured at different frequencies reduces noise and helps reveal flaws. In new method, one excites eddy-current probe simultaneously at two different frequencies; usually, one of which integral multiple of other. Resistive and reactive components of impedance of eddy-current probe measured at two frequencies, mixed in computer, and displayed in real time on video terminal of computer. Mixing of measurements obtained at two different frequencies often "cleans up" displayed signal in situations in which band-pass filtering alone cannot: mixing removes most noise, and displayed signal resolves flaws well.

  12. The numeric calculation of eddy current distributions in transcranial magnetic stimulation.

    PubMed

    Tsuyama, Seichi; Hyodo, Akira; Sekino, Masaki; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji

    2008-01-01

    Transcranial magnetic stimulation (TMS) is a method to stimulate neurons in the brain. It is necessary to obtain eddy current distributions and determine parameters such as position, radius and bend-angle of the coil to stimulate target area exactly. In this study, we performed FEM-based numerical simulations of eddy current induced by TMS using three-dimentional human head model with inhomogeneous conductivity. We used double-cone coil and changed the coil radius and bend-angle of coil. The result of computer simulation showed that as coil radius increases, the eddy current became stronger everywhere. And coil with bend-angle of 22.5 degrees induced stronger eddy current than the coil with bendangle of 0 degrees. Meanwhile, when the bend-angle was 45 degrees, eddy current became weaker than these two cases. This simulation allowed us to determine appropriate parameter easier.

  13. Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Low, T. S.

    1996-04-01

    The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.

  14. The Leeuwin Current and its eddies: An introductory overview

    NASA Astrophysics Data System (ADS)

    Waite, A. M.; Thompson, P. A.; Pesant, S.; Feng, M.; Beckley, L. E.; Domingues, C. M.; Gaughan, D.; Hanson, C. E.; Holl, C. M.; Koslow, T.; Meuleners, M.; Montoya, J. P.; Moore, T.; Muhling, B. A.; Paterson, H.; Rennie, S.; Strzelecki, J.; Twomey, L.

    2007-04-01

    The Leeuwin Current (LC) is an anomalous poleward-flowing eastern boundary current that carries warm, low-salinity water southward along the coast of Western Australia. We present an introduction to a new body of work on the physical and biological dynamics of the LC and its eddies, collected in this Special Issue of Deep-Sea Research II, including (1) several modelling efforts aimed at understanding LC dynamics and eddy generation, (2) papers from regional surveys of primary productivity and nitrogen uptake patterns in the LC, and (3) the first detailed field investigations of the biological oceanography of LC mesoscale eddies. Key results in papers collected here include insight into the source regions of the LC and the Leeuwin Undercurrent (LUC), the energetic interactions of the LC and LUC, and their roles in the generation of warm-core (WC) and cold-core (CC) eddies, respectively. In near-shore waters, the dynamics of upwelling were found to control the spatio-temporal variability of primary production, and important latitudinal differences were found in the fraction of production driven by nitrate (the f-ratio). The ubiquitous deep chlorophyll maximum within LC was found to be a significant contributor to total water column production within the region. WC eddies including a single large eddy studied in 2000 contained relatively elevated chlorophyll a concentrations thought to originate at least in part from the continental shelf/shelf break region and to have been incorporated during eddy formation. During the Eddies 2003 voyage, a more detailed study comparing the WC and CC eddies illuminated more mechanistic details of the unusual dynamics and ecology of the eddies. Food web analysis suggested that the WC eddy had an enhanced "classic" food web, with more concentrated mesozooplankton and larger diatom populations than in the CC eddy. Finally, implications for fisheries management are addressed.

  15. Calculation of Eddy Currents In the CTH Vacuum Vessel and Coil Frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell

    2012-09-25

    Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less

  16. Eddy current compensated double diffusion encoded (DDE) MRI.

    PubMed

    Mueller, Lars; Wetscherek, Andreas; Kuder, Tristan Anselm; Laun, Frederik Bernd

    2017-01-01

    Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Analysis and numerical modelling of eddy current damper for vibration problems

    NASA Astrophysics Data System (ADS)

    Irazu, L.; Elejabarrieta, M. J.

    2018-07-01

    This work discusses a contactless eddy current damper, which is used to attenuate structural vibration. Eddy currents can remove energy from dynamic systems without any contact and, thus, without adding mass or modifying the rigidity of the structure. An experimental modal analysis of a cantilever beam in the absence of and under a partial magnetic field is conducted in the bandwidth of 01 kHz. The results show that the eddy current phenomenon can attenuate the vibration of the entire structure without modifying the natural frequencies or the mode shapes of the structure itself. In this study, a new inverse method to numerically determine the dynamic properties of the contactless eddy current damper is proposed. The proposed inverse method and the eddy current model based on a lineal viscous force are validated by a practical application. The numerically obtained transfer function correlates with the experimental one, thus showing good agreement in the entire bandwidth of 01 kHz. The proposed method provides an easy and quick tool to model and predict the dynamic behaviour of the contactless eddy current damper, thereby avoiding the use of complex analytical models.

  18. Influence of magnet eddy current on magnetization characteristics of variable flux memory machine

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang

    2018-05-01

    In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.

  19. Formation of Maximum Eddy Current Force by Non Ferrous Materials

    NASA Astrophysics Data System (ADS)

    Kader, M. M. A.; Razali, Z. B.; Yasin, N. S. M.; Daud, M. H.

    2018-03-01

    This project is concerned with the study of eddy current effects on various materials such as aluminum, copper and magnesium. Two types of magnets used in this study; magnetic ferrite (ZnFe+2O4) and magnetic neodymium (NdFeBN42). Eddy current force will be exerted to these materials due to current flows along the magnet. This force depends on the type of magnet, type of material and the gap between the magnet and the material or between the two magnets. The results show that at constant magnet to material gap, the eddy current force decreases as the magnet to magnet gap increases. Similarly, at constant magnet to magnet gap, the eddy current force decreases as the magnet to material gap increases. The minimum force was achieved when the gap of magnet to material is maximum, similarly to the gap of magnet to magnet. The weakest force was between Copper and Neodymium at a magnet to material gap of 20 mm and magnet to magnet gap of 40 mm; the eddy current force was 0.00048 N. The strongest force (maximum) was between Magnesium and Ferrite and 0.42273 N at a magnet to material gap of 3 mm and magnet to magnet gap of 5 mm.

  20. System for evaluating weld quality using eddy currents

    DOEpatents

    Todorov, Evgueni I.; Hay, Jacob

    2017-12-12

    Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.

  1. Longitudinal gradient coil optimization in the presence of transient eddy currents.

    PubMed

    Trakic, A; Liu, F; Lopez, H Sanchez; Wang, H; Crozier, S

    2007-06-01

    The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient eddy currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the eddy currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the eddy currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient eddy currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the eddy currents.

  2. Process Specification for Eddy Current Inspection

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2011-01-01

    This process specification establishes the minimum requirements for eddy current inspection of flat surfaces, fastener holes, threaded fasteners and seamless and welded tubular products made from nonmagnetic alloys such as aluminum and stainless steel.

  3. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  4. Eddy current NDE performance demonstrations using simulation tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurice, L.; Costan, V.; Guillot, E.

    2013-01-25

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code{sub C}armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  5. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  6. PSF mapping-based correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging.

    PubMed

    In, Myung-Ho; Posnansky, Oleg; Speck, Oliver

    2016-05-01

    To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.

  7. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment

    PubMed Central

    Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian

    2016-01-01

    In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing. PMID:28773761

  8. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.

    PubMed

    Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian

    2016-07-29

    In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing.

  9. Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches

    NASA Astrophysics Data System (ADS)

    Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol

    2017-07-01

    The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.

  10. Eddy current thickness measurement apparatus

    DOEpatents

    Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.

    2015-06-16

    A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.

  11. 3-D residual eddy current field characterisation: applied to diffusion weighted magnetic resonance imaging.

    PubMed

    O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar

    2013-08-01

    Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

  12. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    NASA Astrophysics Data System (ADS)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  13. Nondestructive Testing Eddy Current Basic Principles RQA/M1-5330.12 (V-I).

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of programmed instruction handbooks, prepared by the U.S. space program, home study material is presented in this volume concerning familiarization and orientation on basic eddy current principles. The subject is presented under the following headings: Basic Eddy Current Concepts, Eddy Current Generation and Distribution,…

  14. Software compensation of eddy current fields in multislice high order dynamic shimming.

    PubMed

    Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E

    2011-06-01

    Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Differential-Coil Eddy-Current Material Sorter

    NASA Technical Reports Server (NTRS)

    Nummelin, J.; Buckley, D.

    1985-01-01

    Small metal or other electrically conductive parts of same shape but different composition quickly sorted with differential-coil eddy-current sorter. Developed to distinguish between turbine blades of different alloys, hardnesses, and residual stress, sorter generally applicable to parts of simple and complex shape.

  16. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  17. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  18. Use of eddy current mixes to solve a weld examination application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.C.; LaBoissonniere, A.

    1995-12-31

    The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis.

  19. Test and Evaluation of an Eddy Current Clutch/Brake Propulsion System

    DOT National Transportation Integrated Search

    1975-01-01

    This report covers the Phase II effort of a program to develop and test a 15 hp eddy-current clutch propulsion system. Included in the Phase 2 effort are the test and evaluation of the eddy-current clutch propulsion system on board a test vehicle. Th...

  20. Double-spin-echo diffusion weighting with a modified eddy current adjustment.

    PubMed

    Finsterbusch, Jürgen

    2010-04-01

    Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Magnetic diagnostics for equilibrium reconstructions in the presence of nonaxisymmetric eddy current distributions in tokamaks (invited).

    PubMed

    Berzak, L; Jones, A D; Kaita, R; Kozub, T; Logan, N; Majeski, R; Menard, J; Zakharov, L

    2010-10-01

    The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R(0)=0.4 m and a=0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 °C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.

  2. Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. J.; Yu, K. X.; Zhang, M., E-mail: zhangming@hust.edu.cn

    2016-01-15

    In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distributionmore » of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.« less

  3. Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT.

    PubMed

    Liu, L J; Yu, K X; Zhang, M; Zhuang, G; Li, X; Yuan, T; Rao, B; Zhao, Q

    2016-01-01

    In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distribution of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.

  4. A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Rykova, Tatiana; Oke, Peter R.; Griffin, David A.

    2017-06-01

    Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.

  5. Motion-induced eddy current thermography for high-speed inspection

    NASA Astrophysics Data System (ADS)

    Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian

    2017-08-01

    This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  6. Advances in transient (pulsed) eddy current for inspection of multi-layer aluminum structures in the presence of ferrous fasteners

    NASA Astrophysics Data System (ADS)

    Desjardins, D. R.; Vallières, G.; Whalen, P. P.; Krause, T. W.

    2012-05-01

    An experimental investigation of the electromagnetic processes underlying transient (pulsed) eddy current inspection of aircraft wing structures in the vicinity of ferrous fasteners is performed. The separate effects of transient excitation of ferrous fastener and eddy currents induced in the surrounding aluminum structure are explored using a transmit-receive configuration with transient excitation of a steel rod, an aluminum plate with a bore hole and a steel rod through the bore hole. Observations are used to interpret results from a coupled driving and differential coil sensing unit applied to detect fatigue cracks emanating from bolt holes in aluminum structures with ferrous fasteners present. In particular, it is noted that abrupt magnetization of the fastener, by the probe's central driving unit, can transfer flux and consequently, induce strong eddy current responses deep within the aluminum structure in the vicinity of the bore hole. Rotation of the probe, centered over the fastener, permits detection of subsurface discontinuities, such as cracks, by the pair of differentially connected pickup coils.

  7. Foam-machining tool with eddy-current transducer

    NASA Technical Reports Server (NTRS)

    Copper, W. P.

    1975-01-01

    Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.

  8. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Energy loss due to eddy current in linear transformer driver cores

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.

    2010-07-01

    In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.

  10. Research of Steel-dielectric Transition Using Subminiature Eddy-current Transducer

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. F.; Malikov, V. N.; Sagalakov, A. M.; Ishkov, A. V.

    2018-05-01

    The research aims to develop a subminiature transducer for electrical steel investigation. The authors determined the capability to study steel characteristics at different depths based on variations of eddy-current transducer amplitude at the steel-dielectric boundary. A subminiature transformer-type transducer was designed, which enables to perform local investigations of ferromagnetic materials using an eddy-current method based on local studies of the steel electrical conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of steel at the interface boundary. Test results are reported for a specimen with continuous and discrete measurements taken at different frequencies. The article provides the key technical information about the eddy current transformer used and describes the methodology of measurements that makes it possible to control steel to dielectric transition.

  11. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    PubMed

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  12. Effects of Angular Variation on Split D Differential Eddy Current Probe Response (Postprint)

    DTIC Science & Technology

    2016-02-10

    AFRL-RX-WP-JA-2016-0327 EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT) Ryan D...March 2014 – 22 September 2015 4. TITLE AND SUBTITLE EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT...last few years have seen increased levels of complexity added to push the state-of-the-art modeling software used in eddy current NDE today. The added

  13. Using eddy currents for noninvasive in vivo pH monitoring for bone tissue engineering.

    PubMed

    Beck-Broichsitter, Benedicta E; Daschner, Frank; Christofzik, David W; Knöchel, Reinhard; Wiltfang, Jörg; Becker, Stephan T

    2015-03-01

    The metabolic processes that regulate bone healing and bone induction in tissue engineering models are not fully understood. Eddy current excitation is widely used in technical approaches and in the food industry. The aim of this study was to establish eddy current excitation for monitoring metabolic processes during heterotopic osteoinduction in vivo. Hydroxyapatite scaffolds were implanted into the musculus latissimus dorsi of six rats. Bone morphogenetic protein 2 (BMP-2) was applied 1 and 2 weeks after implantation. Weekly eddy current excitation measurements were performed. Additionally, invasive pH measurements were obtained from the scaffolds using fiber optic detection devices. Correlations between the eddy current measurements and the metabolic values were calculated. The eddy current measurements and pH values decreased significantly in the first 2 weeks of the study, followed by a steady increase and stabilization at higher levels towards the end of the study. The measurement curves and statistical evaluations indicated a significant correlation between the resonance frequency values of the eddy current excitation measurements and the observed pH levels (p = 0.0041). This innovative technique was capable of noninvasively monitoring metabolic processes in living tissues according to pH values, showing a direct correlation between eddy current excitation and pH in an in vivo tissue engineering model.

  14. Eddy current compensation for delta relaxation enhanced MR by dynamic reference phase modulation.

    PubMed

    Hoelscher, Uvo Christoph; Jakob, Peter M

    2013-04-01

    Eddy current compensation by dynamic reference phase modulation (eDREAM) is a compensation method for eddy current fields induced by B 0 field-cycling which occur in delta relaxation enhanced MR (dreMR) imaging. The presented method is based on a dynamic frequency adjustment and prevents eddy current related artifacts. It is easy to implement and can be completely realized in software for any imaging sequence. In this paper, the theory of eDREAM is derived and two applications are demonstrated. The theory describes how to model the behavior of the eddy currents and how to implement the compensation. Phantom and in vivo measurements are carried out and demonstrate the benefits of eDREAM. A comparison of images acquired with and without eDREAM shows a significant improvement in dreMR image quality. Images without eDREAM suffer from severe artifacts and do not allow proper interpretation while images with eDREAM are artifact free. In vivo experiments demonstrate that dreMR imaging without eDREAM is not feasible as artifacts completely change the image contrast. eDREAM is a flexible eddy current compensation for dreMR. It is capable of completely removing the influence of eddy currents such that the dreMR images do not suffer from artifacts.

  15. Determining confounding sensitivities in eddy current thin film measurements

    NASA Astrophysics Data System (ADS)

    Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn

    2017-02-01

    Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done by using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It was the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy-current testing was performed using a commercially available, hand-held eddy-current probe (ETA3.3H spring-loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe was sent to a hand-held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring-loaded eddy probe was at measuring film thickness under varying experimental conditions. This research studied the effects of a number of factors such as i) conductivity, ii) edge effect, iii) surface finish of base material and iv) cable condition.

  16. View of cold water eddies in Falkland Current off southern Argentina

    NASA Image and Video Library

    1973-12-14

    SL4-137-3608 (14 Dec. 1973) --- A view of cold water eddies in the Falkland Current off the South Atlantic coast of southern Argentina as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen using a hand-held 70mm Hasselblad camera. This land area (left corner) extends south along the coast from Puerto Deseado (center left border) for about 50 miles. Within the ocean, several light blue areas are visible and represent the occurrence of plankton with the Falkland Current. Over the ocean, the cold water eddies are identified by the circular cloud-free areas within the cloud street pattern and bordered by cumulus cloud buildup (white). The cloud streets indicate the wind is from the southwest and do not form over eddies because energy form the atmosphere is absorbed by the cold ocean water. On the downwind side of the eddies, cumulus clouds tend to form as the cold moist air flows over the warmer water. Similar cloud and eddy features have been observed by the Skylab 4 crewmen in the Yucatan Current off Yucatan Peninsula and in some parts of the South Pacific. Studies are underway by Dr. George Maul, NOAA, and Dr. Robert Stevenson, ONR, to determine the significance of the cold water eddies to ocean dynamics. Photo credit: NASA

  17. Non-destructive testing of composite materials used in military applications by eddy current thermography method

    NASA Astrophysics Data System (ADS)

    Swiderski, Waldemar

    2016-10-01

    Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.

  18. Key factors of eddy current separation for recovering aluminum from crushed e-waste.

    PubMed

    Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming

    2017-02-01

    Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and S p . There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. S p /S m of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of S p /S m . This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater S p of aluminum particles brought positive impact on separation efficiency. Greater S p could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    NASA Astrophysics Data System (ADS)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  20. Analysis of eddy current induced in track on medium-low speed maglev train

    NASA Astrophysics Data System (ADS)

    Li, Guanchun; Jia, Zhen; He, Guang; Li, Jie

    2017-06-01

    Electromagnetic levitation (EMS) maglev train relies on the attraction between the electromagnets and rails which are mounted on the train to achieve suspension. During the movement, the magnetic field generated by the electromagnet will induce the eddy current in the orbit and the eddy current will weaken the suspended magnetic field. Which leads to the attenuation of the levitation force, the increases of suspension current and the degradation the suspension performance. In this paper, the influence of eddy current on the air gap magnetic field is solved by theoretical analysis, and the correction coefficient of air gap magnetic field is fitted according to the finite element data. The levitation force and current are calculated by the modified formula, and the velocity curves of the levitation force and current are obtained. The results show that the eddy current effect increases the load power by 61.9% in the case of heavy loads.

  1. An integrated eddy current detection and imaging system on a silicon chip

    NASA Technical Reports Server (NTRS)

    Henderson, H. Thurman; Kartalia, K. P.; Dury, Joseph D.

    1991-01-01

    Eddy current probes have been used for many years for numerous sensing applications including crack detection in metals. However, these applications have traditionally used the eddy current effect in the form of a physically wound single or different probe pairs which of necessity must be made quite large compared to microelectronics dimensions. Also, the traditional wound probe can only take a point reading, although that point might include tens of individual cracks or crack arrays; thus, conventional eddy current probes are beset by two major problems: (1) no detailed information can be obtained about the crack or crack array; and (2) for applications such as quality assurance, a vast amount of time must be taken to scan a complete surface. Laboratory efforts have been made to fabricate linear arrays of single turn probes in a thick film format on a ceramic substrate as well as in a flexible cable format; however, such efforts inherently suffer from relatively large size requirements as well as sensitivity issues. Preliminary efforts to fully extend eddy current probing from a point or single dimensional level to a two dimensional micro-eddy current format on a silicon chip, which might overcome all of the above problems, are presented.

  2. Fast solver for large scale eddy current non-destructive evaluation problems

    NASA Astrophysics Data System (ADS)

    Lei, Naiguang

    Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two

  3. Eddy Current Testing for Detecting Small Defects in Thin Films

    NASA Astrophysics Data System (ADS)

    Obeid, Simon; Tranjan, Farid M.; Dogaru, Teodor

    2007-03-01

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  4. Characterizing frontal eddies along the East Australian Current from HF radar observations

    NASA Astrophysics Data System (ADS)

    Schaeffer, Amandine; Gramoulle, A.; Roughan, M.; Mantovanelli, A.

    2017-05-01

    The East Australian Current (EAC) dominates the ocean circulation along south-eastern Australia, however, little is known about the submesoscale frontal instabilities associated with this western boundary current. One year of surface current measurements from HF radars, in conjunction with mooring and satellite observations, highlight the occurrence and propagation of meanders and frontal eddies along the inshore edge of the EAC. Eddies were systematically identified using the geometry of the high spatial resolution (˜1.5 km) surface currents, and tracked every hour. Cyclonic eddies were observed irregularly, on average every 7 days, with inshore radius ˜10 km. Among various forms of structures, frontal eddies associated with EAC meanders were characterized by poleward advection speeds of ˜0.3-0.4 m/s, migrating as far as 500 km south, based on satellite imagery. Flow field kinematics show that cyclonic eddies have high Rossby numbers (0.6-1.9) and enhance particle dispersion. Patches of intensified surface divergence at the leading edge of the structures are expected to generate vertical uplift. This is confirmed by subsurface measurements showing temperature uplift of up to 55 m over 24 h and rough estimates of vertical velocities of 10s of meters per day. While frontal eddies propagate through the radar domain independently of local wind stress, upfront wind can influence their stalling and growth, and can also generate large cold core eddies through intense shear. Such coherent structures are a major mechanism for the transport and entrainment of nutrient rich coastal or deep waters, influencing physical and biological dynamics, and connectivity over large distances.

  5. Characterizing the performance of eddy current probes using photoinductive field-mapping

    NASA Astrophysics Data System (ADS)

    Moulder, John C.; Nakagawa, Norio

    1992-12-01

    We present a new method for characterizing the performance of eddy current probes by mapping their electromagnetic fields. The technique is based on the photoinductive effect, the change in the impedance of an eddy current probe induced by laser heating of the material under the probe. The instrument we developed maps a probe's electric field distribution by scanning an infrared laser beam over a thin film of gold lying underneath the probe. Measurements of both photoinductive signals and flaw signals for a series of similar probes demonstrates that the impedance change caused by an electrical-discharge-machined notch or a fatigue crack is proportional to the strength of the photoinductive signal. Thus, photoinductive measurements can supplant the use of artifact standards to calibrate eddy current probes.

  6. Eddy current signal comparison for tube identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, S. W., E-mail: Bill.Glass@areva.com, E-mail: Ratko.Vojvodic@areva.com; Vojvodic, R., E-mail: Bill.Glass@areva.com, E-mail: Ratko.Vojvodic@areva.com

    2015-03-31

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been somemore » instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.« less

  7. Determining Confounding Sensitivities In Eddy Current Thin Film Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gros, Ethan; Udpa, Lalita; Smith, James A.

    Determining Confounding Sensitivities In Eddy Current Thin Film Measurements Ethan Gros, Lalita Udpa, Electrical Engineering, Michigan State University, East Lansing MI 48824 James A. Smith, Experiment Analysis, Idaho National Laboratory, Idaho Falls ID 83415 Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs inmore » the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It is the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy current testing is performed using a commercially available, hand held eddy current probe (ETA3.3H spring loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe is sent to a hand held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H

  8. Eddy current characterization of magnetic treatment of materials

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1992-01-01

    Eddy current impedance measuring methods have been applied to study the effect that magnetically treated materials have on service life extension. Eddy current impedance measurements have been performed on Nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in a material's electromagnetic properties and does exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic-field processing effect on machine tool service life.

  9. Automated Eddy Current Inspection on Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Hartmann, John; Felker, Jeremy

    2007-01-01

    Over the life time of the Space Shuttle program, metal parts used for the Reusable Solid Rocket Motors (RSRMs) have been nondestructively inspected for cracks and surface breaking discontinuities using magnetic particle (steel) and penetrant methods. Although these inspections adequately screened for critical sized cracks in most regions of the hardware, it became apparent after detection of several sub-critical flaws that the processes were very dependent on operator attentiveness and training. Throughout the 1990's, eddy current inspections were added to areas that had either limited visual access or were more fracture critical. In the late 1990's. a project was initiated to upgrade NDE inspections with the overall objective of improving inspection reliability and control. An automated eddy current inspection system was installed in 2001. A figure shows one of the inspection bays with the robotic axis of the system highlighted. The system was programmed to inspect the various case, nozzle, and igniter metal components that make up an RSRM. both steel and aluminum. For the past few years, the automated inspection system has been a part of the baseline inspection process for steel components. Although the majority of the RSRM metal part inventory ts free of detectable surface flaws, a few small, sub-critical manufacturing defects have been detected with the automated system. This paper will summarize the benefits that have been realized with the current automated eddy current system, as well as the flaws that have been detected.

  10. Eddy-Current Monitoring Of Composite Layups

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1993-01-01

    Eddy-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of core, where material intercepts alternating magnetic field excited in core by current in coil.

  11. Method for removal of random noise in eddy-current testing system

    DOEpatents

    Levy, Arthur J.

    1995-01-01

    Eddy-current response voltages, generated during inspection of metallic structures for anomalies, are often replete with noise. Therefore, analysis of the inspection data and results is difficult or near impossible, resulting in inconsistent or unreliable evaluation of the structure. This invention processes the eddy-current response voltage, removing the effect of random noise, to allow proper identification of anomalies within and associated with the structure.

  12. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.

    PubMed

    Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P

    2008-07-01

    We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.

  13. Eddy current probe with foil sensor mounted on flexible probe tip and method of use

    DOEpatents

    Viertl, John R. M.; Lee, Martin K.

    2001-01-01

    A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.

  14. A numerical study of the acoustic radiation due to eddy current-cryostat interactions.

    PubMed

    Wang, Yaohui; Liu, Feng; Zhou, Xiaorong; Li, Yu; Crozier, Stuart

    2017-06-01

    To investigate the acoustic radiation due to eddy current-cryostat interactions and perform a qualitative analysis on noise reduction methods. In order to evaluate the sound pressure level (SPL) of the eddy current induced warm bore wall vibration, a Finite Element (FE) model was created to simulate the noises from both the warm bore wall vibration and the gradient coil assembly. For the SPL reduction of the warm bore wall vibration, we first improved the active shielding of the gradient coil, thus reducing the eddy current on the warm bore wall. A damping treatment was then applied to the warm bore wall to control the acoustic radiation. Initial simulations show that the SPL of the warm bore wall is higher than that of the gradient assembly with typical design shielding ratios at many frequencies. Subsequent simulation results of eddy current control and damping treatment application show that the average SPL reduction of the warm bore wall can be as high as 9.6 dB, and even higher in some frequency bands. Combining eddy current control and suggested damping scheme, the noise level in a MRI system can be effectively reduced. © 2017 American Association of Physicists in Medicine.

  15. Eddy current imaging for electrical characterization of silicon solar cells and TCO layers

    NASA Astrophysics Data System (ADS)

    Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning

    2015-03-01

    Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.

  16. Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak.

    PubMed

    Li, G; Tan, Y; Liu, Y Q

    2015-08-01

    Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.

  17. Eddy-current non-inertial displacement sensing for underwater infrasound measurements.

    PubMed

    Donskoy, Dimitri M; Cray, Benjamin A

    2011-06-01

    A non-inertial sensing approach for an Acoustic Vector Sensor (AVS), which utilizes eddy-current displacement sensors and operates well at Ultra-Low Frequencies (ULF), is described here. In the past, most ULF measurements (from mHertz to approximately 10 Hertz) have been conducted using heavy geophones or seismometers that must be installed on the seafloor; these sensors are not suitable for water column measurements. Currently, there are no readily available compact and affordable underwater AVS that operate within this frequency region. Test results have confirmed the validity of the proposed eddy-current AVS design and have demonstrated high acoustic sensitivity. © 2011 Acoustical Society of America

  18. The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current.

    PubMed

    Thompson, Andrew F

    2008-12-28

    Although the Antarctic Circumpolar Current (ACC) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange, it remains one of the most poorly represented components of global climate models. Accurately describing the circulation of the ACC is made difficult owing to the prominent role that mesoscale eddies and jets, oceanic equivalents of atmospheric storms and storm tracks, have in setting the density structure and transport properties of the current. The successes and limitations of different representations of eddy processes in models of the ACC are considered, with particular attention given to how the circulation responds to changes in wind forcing. The dynamics of energetic eddies and topographically steered jets may both temper and enhance the sensitivity of different aspects of the ACC's circulation to changes in climate.

  19. Detection and sizing of cracks in structural steel using the eddy current method

    DOT National Transportation Integrated Search

    2000-11-01

    This report summarizes research pertaining to the application of the Eddy Current method as a means of crack detection in structural steel members of highway bridges. Eddy currents are induced when an energized coil is placed near the surface of a co...

  20. [Quantitative experiment and analysis of gradient-induced eddy currents on magnetic resonance imaging].

    PubMed

    He, Wenjing; Zhu, Yuanzhong; Wang, Wenzhou; Zou, Kai; Zhang, Kai; He, Chao

    2017-04-01

    Pulsed magnetic field gradients generated by gradient coils are widely used in signal location in magnetic resonance imaging (MRI). However, gradient coils can also induce eddy currents in final magnetic field in the nearby conducting structures which lead to distortion and artifact in images, misguiding clinical diagnosis. We tried in our laboratory to measure the magnetic field of gradient-induced eddy current in 1.5 T superconducting magnetic resonance imaging device; and extracted key parameters including amplitude and time constant of exponential terms according to inductance-resistance series mathematical module. These parameters of both self-induced component and crossing component are useful to design digital filters to implement pulse pre-emphasize to reshape the waveform. A measure device that is a basement equipped with phantoms and receiving coils was designed and placed in the isocenter of the magnetic field. By applying testing sequence, contrast experiments were carried out in a superconducting magnet before and after eddy current compensation. Sets of one dimension signal were obtained as raw data to calculate gradient-induced eddy currents. Curve fitting by least squares method was also done to match inductance-resistance series module. The results also illustrated that pulse pre-emphasize measurement with digital filter was correct and effective in reducing eddy current effect. Pre-emphasize waveform was developed based on system function. The usefulness of pre-emphasize measurement in reducing eddy current was confirmed and the improvement was also presented. All these are valuable for reducing artifact in magnetic resonance imaging device.

  1. Model development and validation of geometrically complex eddy current coils using finite element methods

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Eviston, Connor

    2017-02-01

    Multiple FEM models of complex eddy current coil geometries were created and validated to calculate the change of impedance due to the presence of a notch. Capable realistic simulations of eddy current inspections are required for model assisted probability of detection (MAPOD) studies, inversion algorithms, experimental verification, and tailored probe design for NDE applications. An FEM solver was chosen to model complex real world situations including varying probe dimensions and orientations along with complex probe geometries. This will also enable creation of a probe model library database with variable parameters. Verification and validation was performed using other commercially available eddy current modeling software as well as experimentally collected benchmark data. Data analysis and comparison showed that the created models were able to correctly model the probe and conductor interactions and accurately calculate the change in impedance of several experimental scenarios with acceptable error. The promising results of the models enabled the start of an eddy current probe model library to give experimenters easy access to powerful parameter based eddy current models for alternate project applications.

  2. Eddy current analysis of cracks grown from surface defects and non-metallic particles

    NASA Astrophysics Data System (ADS)

    Cherry, Matthew R.; Hutson, Alisha; Aldrin, John C.; Shank, Jared

    2018-04-01

    Eddy current methods are sensitive to any discrete change in conductivity. Traditionally this has been used to determine the presence of a crack. However, other features that are not cracks such as non-metallic inclusions, carbide stringers and surface voids can cause an eddy current indication that could potentially lead to a reject of an in-service component. These features may not actually be lifelimiting, meaning NDE methods could reject components with remaining useful life. In-depth analysis of signals from eddy current sensors could provide a means of sorting between rejectable indications and false-calls from geometric and non-conductive features. In this project, cracks were grown from voids and non-metallic inclusions in a nickel-based super-alloy and eddy current analysis was performed on multiple intermediate steps of fatigue. Data were collected with multiple different ECT probes and at multiple frequencies, and the results were analyzed. The results show how cracks growing from non-metallic features can skew eddy current signals and make characterization a challenge. Modeling and simulation was performed with multiple analysis codes, and the models were found to be in good agreement with the data for cracks growing away from voids and non-metallic inclusions.

  3. New type of eddy current sensor for large-displacement test

    NASA Astrophysics Data System (ADS)

    Pan, Haifeng; Zhu, Huizhong; Fu, Zhibin; Xu, Yuzheng; Feng, Guanping

    2001-09-01

    In this paper a new type of large displacement eddy current sensor is developed to overcome the three main disadvantages of the traditional eddy current senor. For a traditional sensor, the measurement range is limited and less than one half of the diameter of the measuring coil. The output is high sensitivity to the changes of the target material and the cable length connected between the probe and the preamplifier. When the material or the cable length changed, it is necessary to readjust the preamplifier. The probe of the new eddy current sensor has three coaxial measuring coils, one is an exciting coil and the other two are receiving coils. The diameter of measuring coils is (Phi) 11 mm. The measurement range of this sensor is 40mm and almost four times of the diameter of the coil. The form of differential input and feedback amplification is used in signal amplifier. Thus the effect of the common modules, such as the changes of the target material and the cable length, can be counteracted well.

  4. Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network.

    PubMed

    Li, Jianwei; Zhang, Weimin; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi

    2017-01-01

    Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.

  5. Radially Focused Eddy Current Sensor for Detection of Longitudinal Flaws in Metallic Tubes

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor)

    1999-01-01

    A radially focused eddy current sensor detects longitudinal flaws in a metal tube. A drive coil induces eddy currents within the wall of the metal tube. A pick-up cod is spaced apart from the drive coil along the length of the metal tube. The pick@up coil is positioned with one end thereof lying adjacent the wall of the metal tube such that the pick-up coil's longitudinal axis is perpendicular to the wall of the metal tube. To isolate the pick-up coil from the magnetic flux of the drive coil and the flux from the induced eddy currents. except the eddy currents diverted by a longitudinal flaw. an electrically conducting material high in magnetic permeability surrounds all of the pick-up coil except its one end that is adjacent the walls of the metal tube. The electrically conducting material can extend into and through the drive coil in a coaxial relationship therewith.

  6. Procedure for Automated Eddy Current Crack Detection in Thin Titanium Plates

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.

    2012-01-01

    This procedure provides the detailed instructions for conducting Eddy Current (EC) inspections of thin (5-30 mils) titanium membranes with thickness and material properties typical of the development of Ultra-Lightweight diaphragm Tanks Technology (ULTT). The inspection focuses on the detection of part-through, surface breaking fatigue cracks with depths between approximately 0.002" and 0.007" and aspect ratios (a/c) of 0.2-1.0 using an automated eddy current scanning and image processing technique.

  7. Unwrapping eddy current compensation: improved compensation of eddy current induced baseline shifts in high-resolution phase-contrast MRI at 9.4 Tesla.

    PubMed

    Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar

    2014-10-01

    Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.

  8. Monotonicity based imaging method for time-domain eddy current problems

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ventre, S.; Udpa, L.; Tamburrino, A.

    2017-12-01

    Eddy current imaging is an example of inverse problem in nondestructive evaluation for detecting anomalies in conducting materials. This paper introduces the concept of time constants and associated natural modes in eddy current imaging. The monotonicity of time constants is then described and applied to develop a non-iterative imaging method. The proposed imaging method has a low computational cost which makes it suitable for real-time operations. Full 3D numerical examples prove the effectiveness of the method in realistic scenarios. This paper is dedicated to Professor Guglielmo Rubinacci on the occasion of his 65th Birthday.

  9. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  10. Apparatus For Eddy-Current Inspection Of Bolts

    NASA Technical Reports Server (NTRS)

    Amos, Jay M.

    1994-01-01

    Eddy-current apparatus for inspection of bolts, studs, and other threaded fasteners detects flaws in threads, shanks, and head fillets. With help of apparatus, technician quickly inspects fasteners of various dimensions. Accommodates fasteners with diameters from 0.190 in. to 1 in. and with lengths up to 5 in. Basic design modified to accommodate fasteners of other sizes.

  11. Correction of eddy current distortions in high angular resolution diffusion imaging.

    PubMed

    Zhuang, Jiancheng; Lu, Zhong-Lin; Vidal, Christine Bouteiller; Damasio, Hanna

    2013-06-01

    To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans. Image distortion parameters were obtained by image coregistration, performed only between diffusion-weighted images with close diffusion gradient orientations. A linear model that describes distortion parameters (translation, scale, and shear) as a function of diffusion gradient directions was numerically computed to allow individualized distortion correction for every diffusion-weighted image. The assumptions of the algorithm were successfully verified in a series of experiments on phantom and human scans. Application of the proposed algorithm in high angular resolution diffusion images markedly reduced eddy current distortions when compared to results obtained with previously published methods. The method can correct eddy current artifacts in the high angular resolution diffusion images, and it avoids the problematic procedure of cross-correlating images with significantly different contrasts resulting from very different gradient orientations or strengths. Copyright © 2012 Wiley Periodicals, Inc.

  12. Magnetic diagnostics for equilibrium reconstructions with eddy currents on the lithium tokamak experimenta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, J. C.; Bialek, J.; Lazerson, S.

    2014-11-01

    The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnositc signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and themore » equilibrium reconstruction are presented.« less

  13. Magnetic diagnostics for equilibrium reconstructions with eddy currents on the lithium tokamak experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, J. C., E-mail: jschmitt@pppl.gov; Lazerson, S.; Majeski, R.

    2014-11-15

    The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnostic signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and themore » equilibrium reconstruction are presented.« less

  14. Variability of the Somali Current and eddies during the southwest monsoon regimes

    NASA Astrophysics Data System (ADS)

    Trott, Corinne B.; Subrahmanyam, Bulusu; Murty, V. S. N.

    2017-09-01

    The meso-scale eddies and currents in the Arabian Sea are analyzed using different satellite observations, Simple Oceanic Data Assimilation (SODA) reanalysis, and Ocean Reanalysis System 4 (ORAS4) from 1993 to 2016 to investigate the impacts of Southwest (SW) Monsoon strength on Somali Current (SC) mesoscale circulations such as the Great Whirl (GW), the Socotra Eddy (SE), the Southern Gyre (SG), and smaller eddies. Increased Ekman pumping during stronger SW monsoons strengthens coastal upwelling along the Somali coast. The Arabian Sea basin-wide anticyclonic circulation and presence of the GW form mesoscale circulation patterns favourable to advection of upwelled waters eastward into the central Arabian Sea. In September, after the SW monsoon winds reach peak strength in July and August, a higher number of discrete anticyclonic eddies with higher (> 20 cm) sea surface height anomalies develop in strong and normal intensity SW monsoon seasons than weaker SW monsoon seasons.

  15. Determination of linear defect depths from eddy currents disturbances

    NASA Astrophysics Data System (ADS)

    Ramos, Helena Geirinhas; Rocha, Tiago; Pasadas, Dário; Ribeiro, Artur Lopes

    2014-02-01

    One of the still open problems in the inspection research concerns the determination of the maximum depth to which a surface defect goes. Eddy current testing being one of the most sensitive well established inspection methods, able to detect and characterize different type of defects in conductive materials, is an adequate technique to solve this problem. This paper reports a study concerning the disturbances in the magnetic field and in the lines of current due to a machined linear defect having different depths in order to extract relevant information that allows the determination of the defect characteristics. The image of the eddy currents (EC) is paramount to understand the physical phenomena involved. The EC images for this study are generated using a commercial finite element model (FLUX). The excitation used produces a uniform magnetic field on the plate under test in the absence of defects and the disturbances due to the defects are compared with those obtained from experimental measurements. In order to increase the limited penetration depth of the method giant magnetoresistors (GMR) are used to lower the working frequency. The geometry of the excitation planar coil produces a uniform magnetic field on an area of around the GMR sensor, inducing a uniform eddy current distribution on the plate. In the presence of defects in the material surface, the lines of currents inside the material are deviated from their uniform direction and the magnetic field produced by these currents is sensed by the GMR sensor. Besides the theoretical study of the electromagnetic system, the paper describes the experiments that have been carried out to support the theory and conclusions are drawn for cracks having different depths.

  16. Modeling and strain gauging of eddy current repulsion deicing systems

    NASA Technical Reports Server (NTRS)

    Smith, Samuel O.

    1993-01-01

    Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.

  17. Eddy-current system for the vibration-testing of blades

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention is an improved system for the vibration-testing of cantilevered non-ferrous articles by inducing eddy currents therein. The principal advantage of the system is that relatively little heat is generated in the article being vibrated. Thus, a more accurate measurement of the fatigue characteristics of the article is obtained. Furthermore, the generation of relatively little heat in the blade permits tests to be conducted in low-pressure atmospheres simulating certain actual processes environments. Heat-generation in the vibrated article is minimized by utilizing eddy currents which are generated by an electromagnet whose magnetic field varies but does not change polarity. The typical winding for the electromagnet is excited with pulsating d.c. That is, the winding is alternately charged by connecting it across a d.c. power supply and then discharged by connecting it across a circuit for receiving current generated in the winding by self-induction. Preferably, the discharge circuit is designed so that the waveform of the discharging current approximates that of the charging current.

  18. Variable-Force Eddy-Current Damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1986-01-01

    Variable damping achieved without problems of containing viscous fluids. Eddy-current damping obtained by moving copper or aluminum conductors through magnetic fields. Position of magnet carrier determines amount of field engagement and, therefore, amount of damping. Three advantages of concept: Magnitudes of stiffness and damping continously varied from maximum to zero without bringing rotor or shaft to stop; used in rotating machines not having viscous fluids available such as lubricating oils; produces sizable damping forces in machines that pump liquid hydrogen at - 246 degrees C and liquid oxygen at - 183 degrees C and are compact in size.

  19. Parallel transmission RF pulse design for eddy current correction at ultra high field.

    PubMed

    Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando

    2012-08-01

    Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.

  20. Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network

    PubMed Central

    Li, Jianwei; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi

    2017-01-01

    Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing. PMID:29145500

  1. Eddy current sensing of intermetallic composite consolidation

    NASA Technical Reports Server (NTRS)

    Dharmasena, Kumar P.; Wadley, Haydn N. G.

    1991-01-01

    A finite element method is used to explore the feasibility and optimization of a probe-type eddy current sensor for determining the thickness of plate specimens during a hot isostatic pressing cycle. The dependence of the sensor's impedance upon sample-sensor separation in the high frequency limit is calculated, and factors that maximize sensitivity to the final stages of densification are identified.

  2. Eddies on the boundary between the Kuroshio current and coastal waters observed by HF ocean surface radar

    NASA Astrophysics Data System (ADS)

    Nadai, A.

    2016-02-01

    The HF ocean surface radar (HFOSR) is one of the powerful tools to measure the ocean current parameters like surface currents. Three observations of the Kuroshio current in the Tokara straight using HFOSR had done by the National Institute of Information and Comunications Technology (NICT: the former name is the Communications Research Laboratory). The first-order echoes on Doppler spectra of HFOSR shows broaden and splitting shape in the region of the border between the Kuroshio currents and coastal waters. The surface velocity maps show the existence of eddy on the border. The investigation of the mechanism of broadening first order-echoes by Nadai (2006) revealed that the modulation of wave fields from surface currents like eddy is the cause of broadening and the measured current fields also influenced the modulated wave fields. Moreover, Nadai (2006) also suggested that the influence is able to reduce using the average of two radial velocities extracted by the first-order echoes. In this paper, the results of current field observation around the border between the Kuroshio current and coastal waters are presented. Many small scale eddies are observed at the border of the Kuroshio current and coastal waters. The typical radius of the eddies is about 10km. Usury the observation of such a small scale eddy is difficult, but the eddies with same scale are observed by airborne synthetic aperture radar in the same area at different time. The eddies shows strong rotation as the typical tangential speed is about 1m/s. While the typical speed of the Kuroshio current is about 1.5m/s, the typical speed of the eddy movements is about 0.7m/s. No eddies generated in the radar coverage, but one or two eddies entered in the radar coverage a day. Therefore the origin of these eddies will exist in the upstream area of the radar coverage. Using the compensation method for the influence of the modulated wave field suggested by Nadai (2006), the eddies shows weak divergence. It is

  3. Determination of crack depth in aluminum using eddy currents and GMR sensors

    NASA Astrophysics Data System (ADS)

    Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.

    2015-03-01

    In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.

  4. Field analysis & eddy current losses calculation in five-phase tubular actuator

    NASA Astrophysics Data System (ADS)

    Waindok, Andrzej; Tomczuk, Bronislaw

    2017-12-01

    Field analysis including eddy currents in the magnetic core of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The eddy currents induced in the magnetic core cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally

  5. Modelling of eddy currents related to large angle magnetic suspension test fixture

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Foster, Lucas E.

    1994-01-01

    This report presents a preliminary analysis of the mathematical modelling of eddy current effects in a large-gap magnetic suspension system. It is shown that eddy currents can significantly affect the dynamic behavior and control of these systems, but are amenable to measurement and modelling. A theoretical framework is presented, together with a comparison of computed and experimental data related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center.

  6. Magnetoresistive flux focusing eddy current flaw detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  7. Magnetoresistive Flux Focusing Eddy Current Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)

    2005-01-01

    A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.

  8. Inspection of cup-shaped steel parts from the I.D. side using eddy current

    NASA Astrophysics Data System (ADS)

    Griffiths, Erick W.; Pearson, Lee H.

    2018-04-01

    An eddy current method was developed to inspect cup-shaped steel parts from the I.D. side. During the manufacturing process of these parts, a thin Al tape foil is applied to the I.D. side of the part. One of the critical process parameters is that only one foil layer can be applied. An eddy current inspection system was developed to reject parts with more than one foil layer. The Al tape foil is cut to length to fit the inner diameter, however, after application of the foil there is a gap created between the beginning and end of the foil. It was found that this gap interfered with the eddy current inspection causing a false positive indication. To solve this problem a sensor design and data analysis process were developed to overcome the effects of these gaps. The developed system incorporates simultaneous measurements from multiple eddy current sensors and signal processing to achieve a reliable inspection.

  9. Corrosion Detection in Airframes Using a New Flux-Focusing Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Fulton, James P.; Wincheski, Buzz; Nath, Shridhar; Namkung, Min

    1994-01-01

    A new flux-focusing eddy current probe was recently developed at NASA Langley Research Center. The new probe is similar in design to a reflection type eddy current probe, but is unique in that it does not require the use of an impedance bridge for balancing. The device monitors the RMS output voltage of a pickup coil and, as a result, is easier to operate and interpret than traditional eddy current instruments. The unique design feature of the probe is a ferromagnetic cylinder, typically 1020 steel, which separates a concentrically positioned drive and pickup coil. The increased permeability of the steel causes the magnetic flux produced by the drive coil to be focused in a ring around the pickup coil. At high frequencies the eddy currents induced in both the sample and the cylinder allow little or no flux to link with the pickup coil. This results in a self-nulling condition which has been shown to be useful for the unambiguous detection of cracks in conducting materials. As the frequency is lowered the flux produced by the drive coil begins to link with the pickup coil causing an output which, among other things, is proportional to the thickness of the test specimen. This enables highly accurate measurements of the thickness of conducting materials and helps to facilitate the monitoring of thickness variations in a conducting structure such as an aircraft fuselage. Under ideal laboratory conditions the probe can sense thickness changes on the order of 1% as illustrated. However, this is highly dependent upon the thickness, and the geometric complexity of the sample being tested and for practical problems the sensitivity is usually much less. In this presentation we highlight some of the advantages and limitations in using the probe to inspect aircraft panels for corrosion and other types of material nonuniformities. In particular, we present preliminary results which illustrate the probes capabilities for detecting first and second layer corrosion in aircraft

  10. Eddy Current Influences on the Dynamic Behaviour of Magnetic Suspension Systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Bloodgood, Dale V.

    1998-01-01

    This report will summarize some results from a multi-year research effort at NASA Langley Research Center aimed at the development of an improved capability for practical modelling of eddy current effects in magnetic suspension systems. Particular attention is paid to large-gap systems, although generic results applicable to both large-gap and small-gap systems are presented. It is shown that eddy currents can significantly affect the dynamic behavior of magnetic suspension systems, but that these effects can be amenable to modelling and measurement. Theoretical frameworks are presented, together with comparisons of computed and experimental data particularly related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center, and the Annular Suspension and Pointing System at Old Dominion University. In both cases, practical computations are capable of providing reasonable estimates of important performance-related parameters. The most difficult case is seen to be that of eddy currents in highly permeable material, due to the low skin depths. Problems associated with specification of material properties and areas for future research are discussed.

  11. Open-loop correction for an eddy current dominated beam-switching magnet.

    PubMed

    Koseki, K; Nakayama, H; Tawada, M

    2014-04-01

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10(-4) to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10(-3). By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10(-4), which is an acceptable value, was achieved.

  12. Eddy-Current Detection of Weak Bolt Heads

    NASA Technical Reports Server (NTRS)

    Messina, C. P.

    1987-01-01

    Electronic test identifies flawed units passing hardness tests. Eddy-current test detects weakness in head-to-shank junctions of 1/4-28 cup-washer lock bolts. Developed for alloy A286 steel bolts in Space Shuttle main engine fuel turbo-pump. Test examines full volume of head, including head-to-shank transition and nondestructively screens out potentially defective units. Test adapts to any other alloys.

  13. Determination of plasma displacement based on eddy current diagnostics for the Keda Torus eXperiment

    NASA Astrophysics Data System (ADS)

    Tu, Cui; Li, Hong; Liu, Adi; Li, Zichao; Zhang, Yuan; You, Wei; Tan, Mingsheng; Luo, Bing; Adil, Yolbarsop; Hu, Jintong; Wu, Yanqi; Yan, Wentan; Xie, Jinlin; Lan, Tao; Mao, Wenzhe; Ding, Weixing; Xiao, Chijin; Zhuang, Ge; Liu, Wandong

    2017-10-01

    The measurement of plasma displacement is one of the most basic diagnostic tools in the study of plasma equilibrium and control in a toroidal magnetic confinement configuration. During pulse discharge, the eddy current induced in the vacuum vessel and shell will produce an additional magnetic field at the plasma boundary, which will have a significant impact on the measurement of plasma displacement using magnetic probes. In the newly built Keda Torus eXperiment (KTX) reversed field pinch device, the eddy current in the composite shell can be obtained at a high spatial resolution. This device offers a new way to determine the plasma displacement for KTX through the multipole moment expansion of the eddy current, which can be obtained by unique probe arrays installed on the inner and outer surfaces of the composite shell. In an ideal conductor shell approximation, the method of multipole moment expansion of the poloidal eddy current for measuring the plasma displacement in toroidal coordinates, is more accurate than the previous method based on symmetrical magnetic probes, which yielded results in cylindrical coordinates. Through an analytical analysis of many current filaments and numerical simulations of the current distribution in toroidal coordinates, the scaling relation between the first moment of the eddy current and the center of gravity of the plasma current is obtained. In addition, the origin of the multipole moment expansion of the eddy current in KTX is retrieved simultaneously. Preliminary data on the plasma displacement have been collected using these two methods during short pulse discharges in the KTX device, and the results of the two methods are in reasonable agreement.

  14. Effect of eddy current damping on phononic band gaps generated by locally resonant periodic structures

    NASA Astrophysics Data System (ADS)

    Ozkaya, Efe; Yilmaz, Cetin

    2017-02-01

    The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.

  15. Low eddy current RF shielding enclosure designs for 3T MR applications.

    PubMed

    Lee, Brian J; Watkins, Ronald D; Chang, Chen-Ming; Levin, Craig S

    2018-03-01

    Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med 79:1745-1752, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Development of Interior Permanent Magnet Motors with Concentrated Windings for Reducing Magnet Eddy Current Loss

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi; Kanou, Yuji; Fukushima, Yu; Ohki, Shunji; Nezu, Akira; Ikemi, Takeshi; Mizokami, Ryoichi

    In this paper, we present the development of interior magnet motors with concentrated windings, which reduce the eddy current loss of the magnets. First, the mechanism of the magnet eddy current loss generation is investigated by a simple linear magnetic circuit. Due to the consideration, an automatic optimization method using an adaptive finite element method is carried out to determine the stator and rotor shapes, which decrease the eddy current loss of the magnet. The determined stator and rotor are manufactured in order to proof the effectiveness by the measurement.

  17. Eddy-Current Detection of Cracks in Tubes

    NASA Technical Reports Server (NTRS)

    Parent, R.; Kettering, D.

    1987-01-01

    Nondestructive device tests narrow, sharply-bent metal tubes. Eddycurrent probe detects incipient cracks inside small metal tubes. Tube-centering device consisting of pair of opposed bars ensures tube centered on eddy-current coil. Probe moves along length of bent tube to inspect repeatably for cracks. Compatible with tubes of different cross sections, oval, flattened, square, rectangular,or irregular. Adapts for inspecting formed tubes in petrochemical, automotive, nuclear, and medical equipment.

  18. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    NASA Astrophysics Data System (ADS)

    Abu-Nabah, Bassam A.

    Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on

  19. Investigation of welded joints of aluminium alloys using subminiature eddy-current transducers

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. F.; Ishkov, A. V.; Katasonov, A. O.; Malikov, V. N.; Sagalakov, A. M.

    2018-03-01

    The authors developed a measuring system based on subminiaturized eddy-current transducers aimed at examining locally the defects of welded joints in aluminium-magnesium alloy plates connected by means of friction stir welding. The authors made a modification of the Delyann filter, which allowed them to increase considerably the signal-noise relations. The dependency of the eddy-current transducer response on defects was provided, i.e. concealed cuts and openings inside the welded joint, at the frequencies of 100-10000 Hz of the exciting winding.

  20. A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.

    PubMed

    Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A

    2007-04-01

    Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.

  1. Immersed transient eddy current flow metering: a calibration-free velocity measurement technique for liquid metals

    NASA Astrophysics Data System (ADS)

    Krauter, N.; Stefani, F.

    2017-10-01

    Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.

  2. Open-loop correction for an eddy current dominated beam-switching magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koseki, K., E-mail: kunio.koseki@kek.jp; Nakayama, H.; Tawada, M.

    2014-04-15

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10{sup −4} to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the requiredmore » flat-top period. The measured field flatness was 5 × 10{sup −3}. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10{sup −4}, which is an acceptable value, was achieved.« less

  3. Rotating concave eddy current probe

    DOEpatents

    Roach, Dennis P [Albuquerque, NM; Walkington, Phil [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Hohman, Ed [Albuquerque, NM

    2008-04-01

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  4. Evaluation and Improvement of Eddy Current Position Sensors in Magnetically Suspended Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)

    2001-01-01

    Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.

  5. Reynolds Stress Distributions and the Measurement and Calculation of Eddy Viscosity in Gravity Currents

    NASA Astrophysics Data System (ADS)

    Kelly, R. W.; Chalk, C.; Dorrell, R. M.; Peakall, J.; Burns, A. D.; Keevil, G. M.; Thomas, R. E.; Williams, G.

    2016-12-01

    In the natural environment, gravity currents transport large volumes of sediment great distances and are often considered one of the most important mechanisms for sediment transport in ocean basins. Deposits from many individual submarine gravity currents, turbidites, ultimately form submarine fan systems. These are the largest sedimentary systems on the planet and contain valuable hydrocarbon reserves. Moreover, the impact of these currents on submarine technologies and seafloor infrastructure can be devastating and therefore they are of significant interest to a wide range of industries. Here we present experimental, numerical and theoretical models of time-averaged turbulent shear stresses, i.e. Reynolds stresses. Reynolds stresses can be conceptually parameterised by an eddy viscosity parameter that relates chaotic fluid motion to diffusive type processes. As such, it is a useful parameter for indicating the extent of internal mixing and is used extensively in both numerical and analytical modelling of both open-channel and gravity driven flows. However, a lack of knowledge of the turbulent structure of gravity currents limits many hydro- and morphodynamic models. High resolution 3-dimensional experimental velocity data, gathered using acoustic Doppler profiling velocimetry, enabled direct calculation of stresses and eddy viscosity. Comparison of experimental data to CFD and analytical models allowed the testing of eddy viscosity-based turbulent mixing models. The calculated eddy viscosity profile is parabolic in nature in both the upper and lower shear layers. However, an apparent breakdown in the Boussinesq hypothesis (used to calculate the eddy viscosity and upon which many numerical models are based) is observed in the region of the current around the velocity maximum. With the use of accompanying density data it is suggested that the effect of stratification on eddy viscosity is significant and alternative formulations may be required.

  6. Feasibility of conductivity imaging using subject eddy currents induced by switching of MRI gradients.

    PubMed

    Oran, Omer Faruk; Ider, Yusuf Ziya

    2017-05-01

    To investigate the feasibility of low-frequency conductivity imaging based on measuring the magnetic field due to subject eddy currents induced by switching of MRI z-gradients. We developed a simulation model for calculating subject eddy currents and the magnetic fields they generate (subject eddy fields). The inverse problem of obtaining conductivity distribution from subject eddy fields was formulated as a convection-reaction partial differential equation. For measuring subject eddy fields, a modified spin-echo pulse sequence was used to determine the contribution of subject eddy fields to MR phase images. In the simulations, successful conductivity reconstructions were obtained by solving the derived convection-reaction equation, suggesting that the proposed reconstruction algorithm performs well under ideal conditions. However, the level of the calculated phase due to the subject eddy field in a representative object indicates that this phase is below the noise level and cannot be measured with an uncertainty sufficiently low for accurate conductivity reconstruction. Furthermore, some artifacts other than random noise were observed in the measured phases, which are discussed in relation to the effects of system imperfections during readout. Low-frequency conductivity imaging does not seem feasible using basic pulse sequences such as spin-echo on a clinical MRI scanner. Magn Reson Med 77:1926-1937, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan

    2014-02-18

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath andmore » slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.« less

  8. An efficient 3-D eddy-current solver using an independent impedance method for transcranial magnetic stimulation.

    PubMed

    De Geeter, Nele; Crevecoeur, Guillaume; Dupre, Luc

    2011-02-01

    In many important bioelectromagnetic problem settings, eddy-current simulations are required. Examples are the reduction of eddy-current artifacts in magnetic resonance imaging and techniques, whereby the eddy currents interact with the biological system, like the alteration of the neurophysiology due to transcranial magnetic stimulation (TMS). TMS has become an important tool for the diagnosis and treatment of neurological diseases and psychiatric disorders. A widely applied method for simulating the eddy currents is the impedance method (IM). However, this method has to contend with an ill conditioned problem and consequently a long convergence time. When dealing with optimal design problems and sensitivity control, the convergence rate becomes even more crucial since the eddy-current solver needs to be evaluated in an iterative loop. Therefore, we introduce an independent IM (IIM), which improves the conditionality and speeds up the numerical convergence. This paper shows how IIM is based on IM and what are the advantages. Moreover, the method is applied to the efficient simulation of TMS. The proposed IIM achieves superior convergence properties with high time efficiency, compared to the traditional IM and is therefore a useful tool for accurate and fast TMS simulations.

  9. COCMP Surface Current Mapping Reveals Eddy and Upwelling Jet off Cape Mendocino

    NASA Astrophysics Data System (ADS)

    Crawford, G. B.; Halle, C.; Largier, J.; Stone, S.

    2008-12-01

    Ocean surface currents are now being measured continuously over a roughly 2000 km stretch of the western US continental shelf from south of Tijuana, Mexico to the Columbia River. A long-standing gap in this coverage was finally filled on August 12, 2008, with the installation of a long-range Seasonde radar system at Shelter Cove, California (as a part of California's COCMP project). During its first three weeks of operation, this radar has revealed a large (~170 km diameter), stable, anticyclonic eddy southwest of Cape Mendocino in this poorly studied region. Upwelling-favorable winds appear to create an upwelling jet along the eastern edge of the eddy, leading to maximum daily-averaged current speeds up to 80 cm/s, and MODIS-derived chlorophyll concentrations up to 30 mg/m3 in the jet (compared to ~1 mg/m3 in the eddy center). AVHRR data reveal SST differences between the jet and the eddy center of 1.5 to 2.5 °C during these 3 weeks. These complex circulation structures modify water pathways and may interrupt nutrient delivery to locations farther south. We discuss the spatial and temporal evolution of these features.

  10. Subminiature eddy current transducers for studying boride coatings

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. F.; Ishkov, A. V.; Malikov, V. N.; Sagalakov, A. M.

    2016-07-01

    Strengthening of parts and units of machines, increased reliability and longer service life is an important task of modern mechanical engineering. The main objects of study in the work were selected steel 65G and 50HGA, wear-resistant boride coatings ternary system Fe-B-Fe n B which were investigated by scanning electron microscopy and eddy-current nondestructive methods.

  11. A Laboratory Activity on the Eddy Current Brake

    ERIC Educational Resources Information Center

    Molina-Bolivar, J. A.; Abella-Palacios, A. J.

    2012-01-01

    The aim of this paper is to introduce a simple and low-cost experimental setup that can be used to study the eddy current brake, which considers the motion of a sliding magnet on an inclined conducting plane in terms of basic physical principles. We present a set of quantitative experiments performed to study the influence of the geometrical and…

  12. Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John

    2010-01-01

    The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.

  13. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  14. The formation of a cold-core eddy in the East Australian Current

    NASA Astrophysics Data System (ADS)

    Macdonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2016-02-01

    Cold-core eddies (CCEs) frequently form in western boundary currents and can affect continental shelf processes. It is not always clear, however, if baroclinic or barotropic instabilities contribute more to their formation. The Regional Ocean Modelling System (ROMS) is used to investigate the ocean state during the formation of a CCE in the East Australian Current (EAC) during October 2009. The observed eddy initially appeared as a small billow (approx. 50 km in length) that perturbed the landward edge of the EAC. The billow grew into a mesoscale CCE (approx. 100 km in diameter), diverting the EAC around it. A ROMS simulation with a realistic wind field reproduced a similar eddy. This eddy formed from negative vorticity waters found on the continental shelf south of the EAC separation point. A sensitivity analysis is performed whereby the impact of 3 different wind forcing scenarios, upwelling, downwelling, and no winds, are investigated. A CCE formed in all wind scenarios despite the wind induced changes in hydrographic conditions in the continental shelf and slope waters. As such, the source of energy for eddy formation did not come from the interactions of wind with the continental shelf waters. Analysis of strain and energy transformation confirms this by showing that the prevailing source of CCE energy was kinetic energy of the offshore EAC. These results clearly link the formation of the CCE to the swift flowing EAC and barotropic instabilities.

  15. Detection of Real Flaw using Uniform Eddy Current Multi-probe

    NASA Astrophysics Data System (ADS)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo

    The establishment of the nondestructive inspection technology with plant structures has been stimulated by the recent occurrence of cracks in the nuclear power plant structures. In this research, a uniform eddy current multi-probe to apply to the complex structure and inspect the cracks at high-speed data acquisition was developed. Pick-up coils of the developed probe were arranged on a flexible printed circuit board. This probe was able to obtain clear signal for an EDM (electro-discharge machining) slit with 0.5 mm depth and distinguish EDM slits arranged at 2 mm intervals. It was confirmed that the SCC (stress corrosion cracking) of real flaw was able to be detected with developed uniform eddy current multi-probe by using the ferrite core for the exciting coil and considering the impedance matching of the exciting coil and the flaw detection device.

  16. A magnetic bearing based on eddy-current repulsion

    NASA Technical Reports Server (NTRS)

    Nikolajsen, J. L.

    1987-01-01

    This paper describes a new type of electromagnetic bearing, called the Eddy-Current Bearing, which works by repulsion between fixed AC-electromagnets and a conducting rotor. The following advantages are expected: inherent stability, higher load carrying capacity than DC-electromagnetic bearings, simultaneous radial, angular and thrust support, motoring and generating capability, and backup mode of operation in case of primary power failure. A prototype is under construction.

  17. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    PubMed

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  18. Effect of asymmetrical eddy currents on magnetic diagnosis signals for equilibrium reconstruction in the Sino-UNIted Spherical Tokamak.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Wang, L

    2014-11-01

    The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms.

  19. An application of eddy current damping effect on single point diamond turning of titanium alloys

    NASA Astrophysics Data System (ADS)

    Yip, W. S.; To, S.

    2017-11-01

    Titanium alloys Ti6Al4V (TC4) have been popularly applied in many industries. They have superior material properties including an excellent strength-to-weight ratio and corrosion resistance. However, they are regarded as difficult to cut materials; serious tool wear, a high level of cutting vibration and low surface integrity are always involved in machining processes especially in ultra-precision machining (UPM). In this paper, a novel hybrid machining technology using an eddy current damping effect is firstly introduced in UPM to suppress machining vibration and improve the machining performance of titanium alloys. A magnetic field was superimposed on samples during single point diamond turning (SPDT) by exposing the samples in between two permanent magnets. When the titanium alloys were rotated within a magnetic field in the SPDT, an eddy current was generated through a stationary magnetic field inside the titanium alloys. An eddy current generated its own magnetic field with the opposite direction of the external magnetic field leading a repulsive force, compensating for the machining vibration induced by the turning process. The experimental results showed a remarkable improvement in cutting force variation, a significant reduction in adhesive tool wear and an extreme long chip formation in comparison to normal SPDT of titanium alloys, suggesting the enhancement of the machinability of titanium alloys using an eddy current damping effect. An eddy current damping effect was firstly introduced in the area of UPM to deliver the results of outstanding machining performance.

  20. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.

    PubMed

    Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei

    2015-01-01

    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  1. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging

    PubMed Central

    Truong, Trong-Kha; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T 2 ∗-weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed. PMID:26413505

  2. Post-tensioning tendon force loss detection using low power pulsed eddy current measurement

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Min; Lee, Jun; Sohn, Hoon

    2018-04-01

    In the field of bridge engineering, pre-fabrication of a bridge member and its construction in site have been issued and studied, which achieves improved quality and rapid construction. For integration of those pre-fabricated segments into a structural member (i.e., a concrete slab, girder and pier), post-tensioning (PT) technique is adopted utilizing a high-strength steel tendon, and an effective investigation of the remaining PT tendon force is essential to assure an overall structural integrity. This study proposes a pulsed eddy current based tendon force loss detection system. A compact eddy current sensor is designed to be installed on the surface of an anchor holding a steel PT tendon. The intensity of the induced eddy current varies with PT tendon force alteration due to the magnetostriction effect of a ferromagnetic material. The advantages of the proposed system are as follows: (1) low power consumption, (2) rapid inspection, and (3) simple installation. Its performance was validated experimentally in a full-scale lab test of a 3.3-m long, 15.2-mm diameter mono-tendon that was tensioned using a universal testing machine. Tendon force was controlled from 20 to 180 kN with 20 kN interval, and eddy current responses were measured and analyzed at each force condition. The proposed damage index and the amount of force loss of PT tendon were monotonically related, and an excessive loss as much as 30 % of an initially-introduced tendon force was successfully predicted.

  3. Development and Test of an Eddy-Current Clutch-Propulsion System

    DOT National Transportation Integrated Search

    1973-10-01

    This report covers the Phase 1 effort which is to develop and to test an/AC-propulsion system for personal rapid- transit vehicles. This propulsion system incorporates an AC-induction motor in conjunction with an eddy-current clutch and brake. Also i...

  4. Subminiature eddy-current transducers designed to study welded joints of titanium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, V. N.; Dmitriev, S. F.; Katasonov, A. O.; Sagalakov, A. M.; Ishkov, A. V.

    2017-12-01

    Eddy current transducers (ECT) are used to construct a sensor for investigating titanium sheets connected by a welded joint. The paper provides key technical information about the eddy current transducer used and describes the procedure of measurements that makes it possible to control defects in welded joints of titanium alloys. It is capable of automatically changing the filtering cutoff frequency and operating frequency of the device. Experiments were conducted on welded VT1-0 titanium plates. The paper contains the results of these measurements. The dependence data facilitates the assessment of the quality of the welded joints and helps make an educated conclusion about welding quality.

  5. Note: Void effects on eddy current distortion in two-phase liquid metal.

    PubMed

    Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M

    2015-10-01

    A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf.

  6. Eddy current techniques for super duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  7. A constitutive model for the forces of a magnetic bearing including eddy currents

    NASA Technical Reports Server (NTRS)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  8. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pries, Jason L.; Tang, Lixin; Burress, Timothy A.

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequencymore » and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.« less

  9. Mesoscale Air-Sea Interactions along the Gulf Stream: An Eddy-Resolving and Convection-Permitting Coupled Regional Climate Model Study

    NASA Astrophysics Data System (ADS)

    Hsieh, J. S.; Chang, P.; Saravanan, R.

    2017-12-01

    Frontal and mesoscale air-sea interactions along the Gulf Stream (GS) during boreal winter are investigated using an eddy-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale eddies across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale eddies in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST warming bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.

  10. Eddy current measurement of tube element spacing

    DOEpatents

    Latham, Wayne Meredith; Hancock, Jimmy Wade; Grut, Jayne Marie

    1998-01-01

    A method of electromagnetically measuring the distance between adjacent tube elements in a heat exchanger. A cylindrical, high magnetic permeability ferrite slug is placed in the tube adjacent the spacing to be measured. A bobbin or annular coil type probe operated in the absolute mode is inserted into a second tube adjacent the spacing to be measured. From prior calibrations on the response of the eddy current coil, the signals from the coil, when sensing the presence of the ferrite slug, are used to determine the spacing between the tubes.

  11. A numerical modeling study of the East Australian Current encircling and overwashing a warm-core eddy

    NASA Astrophysics Data System (ADS)

    MacDonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2013-01-01

    AbstractWarm-core <span class="hlt">eddies</span> (WCEs) often form in the meanders of Western Boundary <span class="hlt">Currents</span> (WBCs). WCEs are frequently overwashed with less dense waters sourced from the WBC. We use the Regional Ocean Modelling System to investigate the ocean state during the overwashing of one such WCE in October 2008 in the East Australian <span class="hlt">Current</span> (EAC). Comparisons of model outputs with satellite sea surface temperature and vertical profiles show that the model provides a realistic simulation of the <span class="hlt">eddy</span> during the period when the EAC encircled and then overwashed the <span class="hlt">eddy</span>. During the encircling stage, an <span class="hlt">eddy</span> with closed circulation persisted at depth. In the surface EAC water entered from the north, encircled the <span class="hlt">eddy</span> and exited to the east. The overwashing stage was initiated by the expulsion of cyclonic vorticity. For the following 8 days after the expulsion, waters from the EAC washed over the top of the <span class="hlt">eddy</span>, transferring heat and anticyclonic vorticity radially-inward. After approximately one rotation period of overwashing, the <span class="hlt">eddy</span> separated. The overwashing creates a two-layer system that forms a subsurface maximum velocity at the interface of the two layers. Analysis of water mass properties, Eulerian tracer dynamics, and Lagrangian particle tracks show that the original <span class="hlt">eddy</span> sinks 10-50 m during the overwashing period. Overwashing has been observed in many WBCs and occurs in most WCEs in the western Tasman Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28734060','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28734060"><span>Effects of <span class="hlt">eddy</span> <span class="hlt">currents</span> on selective spectral editing experiments at 3T.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oeltzschner, Georg; Snoussi, Karim; Puts, Nicolaas A; Mikkelsen, Mark; Harris, Ashley D; Pradhan, Subechhya; Tsapkini, Kyrana; Schär, Michael; Barker, Peter B; Edden, Richard A E</p> <p>2018-03-01</p> <p>To investigate frequency-offset effects in edited magnetic resonance spectroscopy (MRS) experiments arising from B 0 <span class="hlt">eddy</span> <span class="hlt">currents</span>. Macromolecule-suppressed (MM-suppressed) γ-aminobutyric acid (GABA)-edited experiments were performed at 3T. Saturation-offset series of MEGA-PRESS experiments were performed in phantoms, in order to investigate different aspects of the relationship between the effective editing frequencies and <span class="hlt">eddy</span> <span class="hlt">currents</span> associated with gradient pulses in the sequence. Difference integrals were quantified for each series, and the offset dependence of the integrals was analyzed to quantify the difference in frequency (Δf) between the actual vs. nominal expected saturation frequency. Saturation-offset N-acetyl-aspartate-phantom experiments show that Δf varied with voxel orientation, ranging from 10.4 Hz (unrotated) to 6.4 Hz (45° rotation about the caudal-cranial axis) and 0.4 Hz (45° rotation about left-right axis), indicating that gradient-related B 0 <span class="hlt">eddy</span> <span class="hlt">currents</span> vary with crusher-gradient orientation. Fixing the crusher-gradient coordinate-frame substantially reduced the orientation dependence of Δf (to ∼2 Hz). Water-suppression crusher gradients also introduced a frequency offset, with Δf = 0.6 Hz ("excitation" water suppression), compared to 10.2 Hz (no water suppression). In vivo spectra showed a negative edited "GABA" signal, suggesting Δf on the order of 10 Hz; with fixed crusher-gradient coordinate-frame, the expected positive edited "GABA" signal was observed. <span class="hlt">Eddy</span> <span class="hlt">currents</span> associated with pulsed field gradients may have a considerable impact on highly frequency-selective spectral-editing experiments, such as MM-suppressed GABA editing at 3T. Careful selection of crusher gradient orientation may ameliorate these effects. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:673-681. © 2017 International Society for Magnetic Resonance in Medicine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/918904','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/918904"><span><span class="hlt">Eddy-current</span>-damped microelectromechanical switch</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Christenson, Todd R.; Polosky, Marc A.</p> <p>2007-10-30</p> <p>A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an <span class="hlt">eddy-current</span> damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/970602','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/970602"><span><span class="hlt">Eddy-current</span>-damped microelectromechanical switch</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Christenson, Todd R [Albuquerque, NM; Polosky, Marc A [Tijeras, NM</p> <p>2009-12-15</p> <p>A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an <span class="hlt">eddy-current</span> damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/4018579','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4018579"><span>NONDESTRUCTIVE <span class="hlt">EDDY</span> <span class="hlt">CURRENT</span> TESTING</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Renken, C.J. Jr.</p> <p>1961-05-23</p> <p>An <span class="hlt">eddy</span> <span class="hlt">current</span> testing device is described for measuring metal continuity independent of probe-to-sample spacing. An inductance would test probe is made a leg of a variable impedance bridge and the bridge is balanced with the probe away from the sample. An a-c signal is applied across the input terminals of the bridge circuit. As the probe is brought into proximity with the metal sample, the resulting impedance change in the probe gives an output signal from the bridge whose phase angle is proportional to the sample continuity and amplitude is proportional to the probe-tosample spacing. The output signal from the bridge is applied to a compensating network where, responsive to amplitude changes from the bridge output signal, a constant phased voltage output is maintained when the sample is continuous regardless of probe-to-sample spacing. A phase meter calibrated to read changes in resistivity of the metal sample measures the phase shift between the output of the compensating network and the original a-c signal applied to the bridge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28444802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28444802"><span><span class="hlt">Eddy</span> <span class="hlt">current</span>-nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aliotta, Eric; Moulin, Kévin; Ennis, Daniel B</p> <p>2018-02-01</p> <p>To design and evaluate <span class="hlt">eddy</span> <span class="hlt">current</span>-nulled convex optimized diffusion encoding (EN-CODE) gradient waveforms for efficient diffusion tensor imaging (DTI) that is free of <span class="hlt">eddy</span> <span class="hlt">current</span>-induced image distortions. The EN-CODE framework was used to generate diffusion-encoding waveforms that are <span class="hlt">eddy</span> <span class="hlt">current</span>-compensated. The EN-CODE DTI waveform was compared with the existing <span class="hlt">eddy</span> <span class="hlt">current</span>-nulled twice refocused spin echo (TRSE) sequence as well as monopolar (MONO) and non-<span class="hlt">eddy</span> <span class="hlt">current</span>-compensated CODE in terms of echo time (TE) and image distortions. Comparisons were made in simulations, phantom experiments, and neuro imaging in 10 healthy volunteers. The EN-CODE sequence achieved <span class="hlt">eddy</span> <span class="hlt">current</span> compensation with a significantly shorter TE than TRSE (78 versus 96 ms) and a slightly shorter TE than MONO (78 versus 80 ms). Intravoxel signal variance was lower in phantoms with EN-CODE than with MONO (13.6 ± 11.6 versus 37.4 ± 25.8) and not different from TRSE (15.1 ± 11.6), indicating good robustness to <span class="hlt">eddy</span> <span class="hlt">current</span>-induced image distortions. Mean fractional anisotropy values in brain edges were also significantly lower with EN-CODE than with MONO (0.16 ± 0.01 versus 0.24 ± 0.02, P < 1 x 10 -5 ) and not different from TRSE (0.16 ± 0.01 versus 0.16 ± 0.01, P = nonsignificant). The EN-CODE sequence eliminated <span class="hlt">eddy</span> <span class="hlt">current</span>-induced image distortions in DTI with a TE comparable to MONO and substantially shorter than TRSE. Magn Reson Med 79:663-672, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25367703','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25367703"><span>Dual optimization method of radiofrequency and quasistatic field simulations for reduction of <span class="hlt">eddy</span> <span class="hlt">currents</span> generated on 7T radiofrequency coil shielding.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S</p> <p>2015-11-01</p> <p>To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce <span class="hlt">eddy</span> <span class="hlt">currents</span> generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study <span class="hlt">eddy</span> <span class="hlt">currents</span> on the RF coil shielding. The generated <span class="hlt">eddy</span> <span class="hlt">currents</span> were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The <span class="hlt">eddy</span> <span class="hlt">current</span> simulation method was verified by the measurement results. <span class="hlt">Eddy</span> <span class="hlt">currents</span> induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the <span class="hlt">eddy</span> <span class="hlt">currents</span> while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced <span class="hlt">eddy</span> <span class="hlt">currents</span> while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JNuM..501....1L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JNuM..501....1L"><span>Mechanical properties and <span class="hlt">eddy</span> <span class="hlt">current</span> testing of thermally aged Z3CN20.09M cast duplex stainless steel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang</p> <p>2018-04-01</p> <p>To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and <span class="hlt">eddy</span> <span class="hlt">current</span> tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of <span class="hlt">eddy</span> <span class="hlt">current</span> decreased with the increase in aging time. Two quantitative correlations of the <span class="hlt">eddy</span> <span class="hlt">current</span> signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that <span class="hlt">eddy</span> <span class="hlt">current</span> testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850018579','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850018579"><span>Preliminary results on passive <span class="hlt">eddy</span> <span class="hlt">current</span> damper technology for SSME turbomachinery</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cunningham, R. E.</p> <p>1985-01-01</p> <p>Some preliminary results have been obtained for the dynamic response of a rotor operating over a speed range of 800 to 10,000 rpm. Amplitude frequency plots show the lateral vibratory response of an unbalanced rotor with and without external damping. The mode of damping is by means of <span class="hlt">eddy</span> <span class="hlt">currents</span> generated with 4 c shaped permanent magnets installed at the lower bearing of a vertically oriented rotor. The lower ball bearing and its damper assembly are totally immersed in liquid nitrogen at a temperature of -197 deg C (-320 deg F). These preliminary results for a referenced or base line passive <span class="hlt">eddy</span> <span class="hlt">current</span> damper assembly show that the amplitude of synchronous vibration is reduced at the resonant frequency. Measured damping coefficients were calculated to phi = .086; this compares with a theoretically calculated value of phi = .079.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990049275&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990049275&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DEddy%2Bcurrent"><span>Evaluation of the Self-Nulling Rotating <span class="hlt">Eddy</span> <span class="hlt">Current</span> Probe System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hagemaier, Don; Rengel, Kent; Wincheski, Buzz; Namkung, Min</p> <p>1999-01-01</p> <p>In order to detect multi-site fatigue cracks located under flush-head rivets, automated <span class="hlt">eddy</span> <span class="hlt">current</span> equipment is required. To assure a reliable system, the <span class="hlt">eddy</span> <span class="hlt">current</span> probe must be centered easily over the installed rivets. To meet these requirements, the NDE Group at NASA LaRC developed the Self-Nulling Rotating <span class="hlt">Eddy</span> <span class="hlt">Current</span> Probe System (SNRECPS) which will be referred to as RPS in this document. The system was evaluated at the FAA, NDI Validation Center, in Albuquerque, New Mexico. The system was capable of detecting a 0.032 inch long crack with a 90/95% PoD. Further evaluations were conducted at Boeing in Long Beach, California. These evaluations included fatigue cracks and notches in a range from 0.025 to 0.100 inch long under flush-head aluminum rivets, and titanium or steel flush-head fasteners. The results of these tests are reported herein. Subsequently, the system was loaned to the USAF Structures Laboratory for the purpose of detecting and measuring short cracks under flush-head rivets in a variety of fatigue test specimens. The inspection task was to detect and plot crack growth from numbered fasteners in lettered rows. In January, 1998, the system was taken to Northwest Airlines Maintenance Base, in Atlanta, to inspect a DC-9, for multi-site cracks in three circumferential splices. The aircraft had 83,000 cycles. The inspection was conducted at 30 kHz from longeron 5 left to longeron 5 right. The system was calibrated using a 0,030 EDM first layer notch. The instrument gain was set to 19 mV from the notch. The reject level was set at 10 mV and the unflawed fasteners yielded a signal amplitude of 2 to 3 mV. Only one fastener location, out of about 2,500 tested, yielded a signal of 58 mV. The rivet was removed and visually evaluated. It appeared to be a slight gouge in the counter-sink zone. No fatigue cracks were detected. The same fastener locations were also inspected using the Boeing MAUS system at 60 kHz. No cracks were detected. Thus far, the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO52D..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO52D..08B"><span>Interactions between the Somali <span class="hlt">Current</span> <span class="hlt">eddies</span> during the summer monsoon: insights from a numerical study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnier, B.; Akuetevi, C. Q.; Verron, J. A.; Molines, J. M.; Lecointre, A.</p> <p>2016-02-01</p> <p>During the summer monsoon, the ocean circulation of the northwestern Indian Ocean is characterized by large anticyclonic circulation features that are part of the Somali <span class="hlt">Current</span> system. In the vicinity of the equator is the Southern Gyre (SG), a large retroflection loop of the East African Coastal <span class="hlt">Current</span>, generated after this <span class="hlt">current</span> (pushed by the southwesterly winds) has crossed the equator. North of it is the Great Whirl (GW), a large anticyclone which exhibits intense swirling <span class="hlt">currents</span>. <span class="hlt">Eddy</span>-resolving hindcast simulations of the global ocean circulation are used to study the fast interactions between these large anticyclonic <span class="hlt">eddies</span>. The present investigation identifies the origin and the subsequent development of the cyclones flanked upon the Great Whirl (GW) previously identified by in satellite observations and establishes that similar cyclones are also flanked upon the Southern Gyre (SG). These cyclones are identified as major actors in mixing water masses within the large <span class="hlt">eddies</span> and offshore the coast of Somali. All simulations bring to light that during the period when the Southwest Monsoon is well established, the SG moves northward along the Somali coast and encounters the GW. The interaction between the SG and the GW is a collision without merging, collision during which the GW is pushed to the east of Socotra Island, sheds several smaller patches of anticyclonic vorticity, and often reforms into the Socotra <span class="hlt">Eddy</span>, thus proposing a formation mechanism for the Socotra <span class="hlt">Eddy</span>. During this process, the GW gives up its place to the SG which in turn becomes a new Great Whirl. This process is robust throughout the three simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890013542','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890013542"><span>Experimental verification of an <span class="hlt">eddy-current</span> bearing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nikolajsen, Jorgen L.</p> <p>1989-01-01</p> <p>A new type of electromagnetic bearing was built and tested. It consists of fixed AC-electromagnets in a star formation surrounding a conducting rotor. The bearing works by repulsion due to <span class="hlt">eddy-currents</span> induced in the rotor. A single bearing is able to fully support a short rotor. The rotor support is inherently stable in all five degrees of freedom. No feedback control is needed. The bearing is also able to accelerate the rotor up to speed and decelerate the rotor back to standstill. The bearing design and the experimentation to verify its capabilities are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NTE....33..165S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NTE....33..165S"><span>Nondestructive examination of recovery stage during annealing of a cold-rolled low-carbon steel using <span class="hlt">eddy</span> <span class="hlt">current</span> testing technique</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.</p> <p>2018-04-01</p> <p>The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on <span class="hlt">eddy</span> <span class="hlt">current</span> testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of <span class="hlt">eddy</span> <span class="hlt">current</span> results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between <span class="hlt">eddy</span> <span class="hlt">current</span> outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive <span class="hlt">eddy</span> <span class="hlt">current</span> test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050217465','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050217465"><span>Application of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Techniques for Orbiter Reinforced Carbon-Carbon Structural Health Monitoring</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Buzz; Simpson, John</p> <p>2005-01-01</p> <p>The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, <span class="hlt">eddy</span> <span class="hlt">current</span> techniques have been developed for application to RCC components. <span class="hlt">Eddy</span> <span class="hlt">current</span> technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate <span class="hlt">eddy</span> <span class="hlt">current</span> systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-part180-appC.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol2/pdf/CFR-2010-title49-vol2-part180-appC.pdf"><span>49 CFR Appendix C to Part 180 - <span class="hlt">Eddy</span> <span class="hlt">Current</span> Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... 49 Transportation 2 2010-10-01 2010-10-01 false <span class="hlt">Eddy</span> <span class="hlt">Current</span> Examination With Visual Inspection... PACKAGINGS Pt. 180, App. C Appendix C to Part 180—<span class="hlt">Eddy</span> <span class="hlt">Current</span> Examination With Visual Inspection for DOT 3AL... procedure applicable to the test equipment it uses to perform <span class="hlt">eddy</span> <span class="hlt">current</span> examinations. 2. Visual...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867048','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867048"><span>Automated measurement system employing <span class="hlt">eddy</span> <span class="hlt">currents</span> to adjust probe position and determine metal hardness</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.</p> <p>1989-01-01</p> <p>A system for measuring the hardness of cartridge cases employs an <span class="hlt">eddy</span> <span class="hlt">current</span> probe for inducing and sensing <span class="hlt">eddy</span> <span class="hlt">currents</span> in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41F2362P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41F2362P"><span><span class="hlt">Coupling</span> of Large <span class="hlt">Eddy</span> Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prasad, K.</p> <p>2017-12-01</p> <p>Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large <span class="hlt">eddy</span> simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to <span class="hlt">couple</span> the FDS model with WRF mesoscale transport models. The <span class="hlt">coupling</span> is based on nudging the FDS flow field towards that computed by WRF, and is <span class="hlt">currently</span> limited to one way <span class="hlt">coupling</span> performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the <span class="hlt">coupled</span> FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large <span class="hlt">eddy</span> simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the <span class="hlt">coupled</span> FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...10120629B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...10120629B"><span>Cleavage of a Gulf of Mexico Loop <span class="hlt">Current</span> <span class="hlt">eddy</span> by a deep water cyclone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biggs, D. C.; Fargion, G. S.; Hamilton, P.; Leben, R. R.</p> <p>1996-09-01</p> <p><span class="hlt">Eddy</span> Triton, an anticyclonic <span class="hlt">eddy</span> shed by the Loop <span class="hlt">Current</span> in late June 1991, drifted SW across the central Gulf of Mexico in the first 6 months of 1992, along the ``southern'' of the three characteristic drift paths described by Vukovich and Crissman [1986] from their analyses of 13 years of advanced very high resolution radiometer sea surface temperature data. An expendable bathythermograph (XBT) and conductivity-temperature-depth (CTD) transect of opportunity through Triton at <span class="hlt">eddy</span> age 7 months in January 1992 found that <span class="hlt">eddy</span> interior stood 23 dyn. cm higher than periphery; this gradient drove an anticyclonic swirl transport of 9-10 Sv relative to 800 dbar. At <span class="hlt">eddy</span> age 9-10 months and while this <span class="hlt">eddy</span> was in deep water near 94°W, it interacted with a mesoscale cyclonic circulation and was cleaved into two parts. The major (greater dynamic centimeters) piece drifted NW to end up in the ``<span class="hlt">eddy</span> graveyard'' in the NW corner of the gulf, while the minor piece drifted SW and reached the continental margin of the western gulf off Tuxpan. This southern piece of <span class="hlt">Eddy</span> Triton then turned north to follow the 2000-m isobath to about 24°N and later coalesced with what remained of the major fragment. Because <span class="hlt">Eddy</span> Triton's cleavage took place just before the start of marine mammals (GulfCet) and Louisiana-Texas physical oceanography (LATEX) field programs, the closely spaced CTD, XBT, and air dropped XBT (AXBT) data that were gathered on the continental margin north of 26°N in support of these programs allow a detailed look at the northern margin of the larger fragment of this <span class="hlt">eddy</span>. Supporting data from the space-borne altimeters on ERS 1 and TOPEX/POSEIDON allow us to track both pieces of <span class="hlt">Eddy</span> Triton in the western Gulf and follow their spin down in dynamic height, coalescence, and ultimate entrainment in January 1993 into another anticyclonic <span class="hlt">eddy</span> (<span class="hlt">Eddy</span> U).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1511..456C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1511..456C"><span>Role of varying interface conditions on the <span class="hlt">eddy</span> <span class="hlt">current</span> response from cracks in multilayer structures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cherry, Aaron; Knopp, Jeremy; Aldrin, John C.; Sabbagh, Harold A.; Boehnlein, Thomas; Mooers, Ryan</p> <p>2013-01-01</p> <p>There is a need to improve the understanding of the role of interface conditions on <span class="hlt">eddy</span> <span class="hlt">current</span> inspections for cracks in multilayer aircraft structures. This paper presents initial experimental and simulated results studying the influence of gaps and contact conditions between two plates with a notch in the second layer. Simulations show an amplification of the <span class="hlt">eddy</span> <span class="hlt">current</span> signal for a subsurface notch adjacent to an air gap as opposed to a submerged notch in a solid plate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22556043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22556043"><span>An optimized velocity selective arterial spin labeling module with reduced <span class="hlt">eddy</span> <span class="hlt">current</span> sensitivity for improved perfusion quantification.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meakin, James A; Jezzard, Peter</p> <p>2013-03-01</p> <p>Velocity-selective (VS) arterial spin labeling is a promising method for measuring perfusion in areas of slow or collateral flow by eliminating the bolus arrival delay associated with other spin labeling techniques. However, B(0) and B(1) inhomogeneities and <span class="hlt">eddy</span> <span class="hlt">currents</span> during the VS preparation hinder accurate quantification of perfusion with VS arterial spin labeling. In this study, it is demonstrated through simulations and experiments in healthy volunteers that <span class="hlt">eddy</span> <span class="hlt">currents</span> cause erroneous tagging of static tissue. Consequently, mean gray matter perfusion is overestimated by up to a factor of 2, depending on the VS preparation used. A novel eight-segment B(1) insensitive rotation VS preparation is proposed to reduce <span class="hlt">eddy</span> <span class="hlt">current</span> effects while maintaining the B(0) and B(1) insensitivity of previous preparations. Compared to two previous VS preparations, the eight-segment B(1) insensitive rotation is the most robust to <span class="hlt">eddy</span> <span class="hlt">currents</span> and should improve the quality and reliability of VS arterial spin labeling measurements in future studies. Copyright © 2012 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DyAtO..76..240H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DyAtO..76..240H"><span>Observational evidence of seasonality in the timing of loop <span class="hlt">current</span> <span class="hlt">eddy</span> separation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, Cody A.; Leben, Robert R.</p> <p>2016-12-01</p> <p>Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop <span class="hlt">Current</span> (LC) <span class="hlt">eddy</span> separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC <span class="hlt">eddy</span> separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC <span class="hlt">eddy</span> separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC <span class="hlt">eddy</span> separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC <span class="hlt">eddy</span> separation events were identified in the 20-year record. Variations in the number and dates of <span class="hlt">eddy</span> separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC <span class="hlt">eddy</span> separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of <span class="hlt">eddy</span> separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1178878-eddy-current-sizing-cracks-canisters-dry-storage-used-nuclear-fuel','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1178878-eddy-current-sizing-cracks-canisters-dry-storage-used-nuclear-fuel"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span> for Sizing Cracks in Canisters for Dry Storage of Used Nuclear Fuel</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.</p> <p>2014-01-01</p> <p>The storage of used nuclear fuel (UNF) in dry canister storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSI) sites is a temporary measure to accommodate UNF inventory until it can be reprocessed or transferred to a repository for permanent disposal. Policy uncertainty surrounding the long-term management of UNF indicates that DCSSs will need to store UNF for much longer periods than originally envisioned. Meanwhile, the structural and leak-tight integrity of DCSSs must not be compromised. The <span class="hlt">eddy</span> <span class="hlt">current</span> technique is presented as a potential tool for inspecting the outer surfaces of DCSS canisters for degradation, particularly atmospheric stressmore » corrosion cracking (SCC). Results are presented that demonstrate that <span class="hlt">eddy</span> <span class="hlt">current</span> can detect flaws that cannot be detected reliably using standard visual techniques. In addition, simulations are performed to explore the best parameters of a pancake coil probe for sizing of SCC flaws in DCSS canisters and to identify features in frequency sweep curves that may potentially be useful for facilitating accurate depth sizing of atmospheric SCC flaws from <span class="hlt">eddy</span> <span class="hlt">current</span> measurements.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031117&hterms=recruitment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drecruitment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031117&hterms=recruitment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drecruitment"><span>Wave-<span class="hlt">current</span> interaction study in the Gulf of Alaska for detection of <span class="hlt">eddies</span> by synthetic aperture radar</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Peng, Chich Y.; Schumacher, James D.</p> <p>1994-01-01</p> <p>High resolution Esa Remote Sensing Satellite-1 (ERS-1) Synthetic Aperture Radar (SAR) images are used to detect a mesoscale <span class="hlt">eddy</span>. Such features limit dispersal of pollock larvae and therefore likely influence recruitment of fish in the Gulf of Alaska. During high sea states and high winds, the direct surface signature of the <span class="hlt">eddy</span> was not clearly visible, but the wave refraction in the <span class="hlt">eddy</span> area was observed. The rays of the wave field are traced out directly from the SAR image. The ray pattern gives information on the refraction pattern and on the relative variation of the wave energy along a ray through wave <span class="hlt">current</span> interaction. These observations are simulated by a ray-tracing model which incorporates a surface <span class="hlt">current</span> field associated with the <span class="hlt">eddy</span>. The numerical results of the model show that the waves are refracted and diverge in the <span class="hlt">eddy</span> field with energy density decreasing. The model-data comparison for each ray shows the model predictions are in good agreement with the SAR data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAP...115p3902W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAP...115p3902W"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> effect on the microwave permeability of Fe-based nanocrystalline flakes with different sizes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Yanhui; Han, Mangui; Tang, Zhongkai; Deng, Longjiang</p> <p>2014-04-01</p> <p>The effective permeability values of composites containing Fe-Cu-Nb-Si-B nanocrystalline flakes have been studied within 0.5-10 GHz. Obvious differences in microwave permeability have been observed between large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). The initial real part of microwave permeability of large flakes is larger but it is decreasing faster. The larger flakes also show a larger magnetic loss. Taking into account the <span class="hlt">eddy</span> <span class="hlt">current</span> effect, the intrinsic microwave permeability values have been extracted based on the modified Maxwell-Garnet law, which have also been verified by the Acher's law. The dependences of skin depth on frequency have been calculated for both kinds of flakes. It is shown that the <span class="hlt">eddy</span> <span class="hlt">current</span> effect in the large flakes is significant. However, the <span class="hlt">eddy</span> <span class="hlt">current</span> effect can be ignored in the small flakes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7266869','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7266869"><span>Automated measurement system employing <span class="hlt">eddy</span> <span class="hlt">currents</span> to adjust probe position and determine metal hardness</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Prince, J.M.; Dodson, M.G.; Lechelt, W.M.</p> <p>1989-07-18</p> <p>A system for measuring the hardness of cartridge cases employs an <span class="hlt">eddy</span> <span class="hlt">current</span> probe for inducing and sensing <span class="hlt">eddy</span> <span class="hlt">currents</span> in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150007196','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150007196"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span> Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)</p> <p>2015-01-01</p> <p>An <span class="hlt">eddy-current</span>-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region <span class="hlt">coupled</span> to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1783b0056F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1783b0056F"><span>Diagnostics of flexible workpiece using acoustic emission, acceleration and <span class="hlt">eddy</span> <span class="hlt">current</span> sensors in milling operation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filippov, A. V.; Tarasov, S. Yu.; Filippova, E. O.; Chazov, P. A.; Shamarin, N. N.; Podgornykh, O. A.</p> <p>2016-11-01</p> <p>Monitoring of the edge clamped workpiece deflection during milling has been carried our using acoustic emission, accelerometer and <span class="hlt">eddy</span> <span class="hlt">current</span> sensors. Such a monitoring is necessary in precision machining of vital parts used in air-space engineering where a majority of them made by milling. The applicability of the AE, accelerometers and <span class="hlt">eddy</span> <span class="hlt">current</span> sensors has been discussed together with the analysis of measurement errors. The appropriate sensor installation diagram has been proposed for measuring the workpiece elastic deflection exerted by the cutting force.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1706i0001H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1706i0001H"><span>Investigating electrical resonance in <span class="hlt">eddy-current</span> array probes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, R.; Fan, Y.; Dixon, S.</p> <p>2016-02-01</p> <p>The sensitivity enhancing effects of <span class="hlt">eddy-current</span> testing at frequencies close to electrical resonance are explored. Var-ied techniques exploiting the phenomenon, dubbed near electrical resonance signal enhancement (NERSE), were experimentally investigated to evaluate its potential exploitation for other interesting applications in aerospace materials, in particular its potential for boosting the sensitivity of standard ECT measurements. Methods for setting and controlling the typically unstable resonant frequencies of such systems are discussed. This research is funded by the EPSRC, via the Research Centre for Non-Destructive Evaluation RCNDE, and Rolls-Royce plc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900059999&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900059999&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DEddy%2Bcurrent"><span>Solving time-dependent two-dimensional <span class="hlt">eddy</span> <span class="hlt">current</span> problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Min Eig; Hariharan, S. I.; Ida, Nathan</p> <p>1990-01-01</p> <p>Transient <span class="hlt">eddy</span> <span class="hlt">current</span> calculations are presented for an EM wave-scattering and field-penetrating case in which a two-dimensional transverse magnetic field is incident on a good (i.e., not perfect) and infinitely long conductor. The problem thus posed is of initial boundary-value interface type, where the boundary of the conductor constitutes the interface. A potential function is used for time-domain modeling of the situation, and finite difference-time domain techniques are used to march the potential function explicitly in time. Attention is given to the case of LF radiation conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-eddies-in-the-southern-ocean_17078909501_o.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-eddies-in-the-southern-ocean_17078909501_o.html"><span><span class="hlt">Eddies</span> in the Southern Ocean</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-08</p> <p>The cloud cover over the Southern Ocean occasionally parts as it did on January 1, 2015 just west of the Drake Passage where the VIIRS instrument on the Suomi NPP satellite glimpsed the above collection of ocean-color delineated <span class="hlt">eddies</span> which have diameters ranging from a <span class="hlt">couple</span> of kilometers to a <span class="hlt">couple</span> of hundred kilometers. Recent studies indicate that <span class="hlt">eddy</span> activity has been increasing in the Southern Ocean with possible implications for climate change. Credit: NASA's OceanColor/Suomi NPP/VIIRS</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24880880','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24880880"><span>Characterization and correction of <span class="hlt">eddy-current</span> artifacts in unipolar and bipolar diffusion sequences using magnetic field monitoring.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Rachel W; von Deuster, Constantin; Giese, Daniel; Stoeck, Christian T; Harmer, Jack; Aitken, Andrew P; Atkinson, David; Kozerke, Sebastian</p> <p>2014-07-01</p> <p>Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, <span class="hlt">eddy</span> <span class="hlt">currents</span> in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring approach in combination with higher-order image reconstruction. From the field-camera measurements, increased levels of second-order <span class="hlt">eddy</span> <span class="hlt">currents</span> were quantified in the unipolar sequence relative to the bipolar diffusion sequence while zeroth and linear orders were found to be similar between both sequences. Second-order image reconstruction based on field-monitoring data resulted in reduced spatial misalignment artifacts and residual displacements of less than 0.43 mm and 0.29 mm (in the unipolar and bipolar sequences, respectively) after second-order <span class="hlt">eddy-current</span> correction. Results demonstrate the need for second-order correction in unipolar encoding schemes but also show that bipolar sequences benefit from second-order reconstruction to correct for incomplete intrinsic cancellation of <span class="hlt">eddy-currents</span>. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhPro..65..291A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhPro..65..291A"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span> Analysis and Optimization for Superconducting Magnetic Bearing of Flywheel Energy Storage System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arai, Yuuki; Yamashita, Tomohisa; Hasegawa, Hitoshi; Matsuoka, Taro; Kaimori, Hiroyuki; Ishihara, Terumasa</p> <p></p> <p>Levitation and guidance force is electromagnetic generated between a superconducting coil and zero field cooled bulk superconductors used in our flywheel energy storage system (FESS). Because the magnetic field depends on the configuration of the coil and the bulks, the eccentricity and the vibration of a rotor cause fluctuation in the magnetic field which induces <span class="hlt">eddy</span> <span class="hlt">current</span> and consequent Joule heat on electric conductors such as cooling plates. Heat generation in the cryogenic region critically reduces the efficiency of the FESS. In this paper, we will report the result of the electromagnetic analysis of the SMB and propose an optimal divided cooling plate for reducing the <span class="hlt">eddy</span> <span class="hlt">current</span> and Joule heat.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.881a2035S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.881a2035S"><span>Three-axis orthogonal transceiver coil for <span class="hlt">eddy</span> <span class="hlt">current</span> sounding</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sukhanov, D.; Zavyalova, K.; Goncharik, M.</p> <p>2017-08-01</p> <p>We propose the new structure of three-axis transceiver magnetic-induction coil for <span class="hlt">eddy</span> <span class="hlt">current</span> probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..156a2006D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..156a2006D"><span>Subminiature <span class="hlt">eddy</span> <span class="hlt">current</span> transducers for studying metal- dielectric junctions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dmitriev, S.; Katasonov, A.; Malikov, V.; Sagalakov, A.; Davydchenko, M.; Shevtsova, L.; Ishkov, A.</p> <p>2016-11-01</p> <p>Based on an <span class="hlt">eddy</span> <span class="hlt">current</span> transducer (ECT), a probe has been designed to research metal-dielectric structures. The measurement procedure allowing one to detect defects in laminate composites with a high accuracy is described. The transducer was tested on the layered structure consisting of paper and aluminum layers with a thickness of 100 μm each in which the model defect was placed. The dependences of the ECT signal on the defect in this structure are given.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IJTIA.132..185S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IJTIA.132..185S"><span>Development of Ground Coils with Low <span class="hlt">Eddy</span> <span class="hlt">Current</span> Loss by Applying the Compression Molding Method after the Coil Winding</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori</p> <p></p> <p>In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an <span class="hlt">eddy</span> <span class="hlt">current</span> will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the <span class="hlt">eddy</span> <span class="hlt">current</span> loss is extremely important. This study examined ground coils in which both the <span class="hlt">eddy</span> <span class="hlt">current</span> loss and temperature increase were small. Furthermore, quantitative comparison for the <span class="hlt">eddy</span> <span class="hlt">current</span> loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low <span class="hlt">eddy</span> <span class="hlt">current</span> loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAP...115qE709Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAP...115qE709Z"><span>Modeling and analysis of a novel planar <span class="hlt">eddy</span> <span class="hlt">current</span> damper</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, He; Kou, Baoquan; Jin, Yinxi; Zhang, Lu; Zhang, Hailin; Li, Liyi</p> <p>2014-05-01</p> <p>In this paper, a novel 2-DOF permanent magnet planar <span class="hlt">eddy</span> <span class="hlt">current</span> damper is proposed, of which the stator is made of a copper plate and the mover is composed of two orthogonal 1-D permanent magnet arrays with a double sided structure. The main objective of the planar <span class="hlt">eddy</span> <span class="hlt">current</span> damper is to provide two orthogonal damping forces for dynamic systems like the 2-DOF high precision positioning system. Firstly, the basic structure and the operating principle of the planar damper are introduced. Secondly, the analytical model of the planar damper is established where the magnetic flux density distribution of the permanent magnet arrays is obtained by using the equivalent magnetic charge method and the image method. Then, the analytical expressions of the damping force and damping coefficient are derived. Lastly, to verify the analytical model, the finite element method (FEM) is adopted for calculating the flux density and a planar damper prototype is manufactured and thoroughly tested. The results from FEM and experiments are in good agreement with the ones from the analytical expressions indicating that the analytical model is reasonable and correct.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601143','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601143"><span><span class="hlt">Eddy</span> Effects in the General Circulation, Spanning Mean <span class="hlt">Currents</span>, Mesoscale <span class="hlt">Eddies</span>, and Topographic Generation, Including Submesoscale Nests</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>bottom form stress (pressure force) and bottom boundary layers – all the aspects associated with turbulent flows over steep topography in the presence of...filaments, and <span class="hlt">eddies</span>; topographic <span class="hlt">current</span> separation, form stress , and submesoscale vortex generation; Our work on isoneutral diffusion for tracers...Bump region, are due to the contribution of the bottom stress curl. Fig. 4 shows how the Gulf Stream path is directly linked to the Bottom Pressure</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873230','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873230"><span>Automated detection and location of indications in <span class="hlt">eddy</span> <span class="hlt">current</span> signals</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Brudnoy, David M.; Oppenlander, Jane E.; Levy, Arthur J.</p> <p>2000-01-01</p> <p>A computer implemented information extraction process that locates and identifies <span class="hlt">eddy</span> <span class="hlt">current</span> signal features in digital point-ordered signals, signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS53A1009H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS53A1009H"><span>Stochastic Ocean <span class="hlt">Eddy</span> Perturbations in a <span class="hlt">Coupled</span> General Circulation Model.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howe, N.; Williams, P. D.; Gregory, J. M.; Smith, R. S.</p> <p>2014-12-01</p> <p>High-resolution ocean models, which are <span class="hlt">eddy</span> permitting and resolving, require large computing resources to produce centuries worth of data. Also, some previous studies have suggested that increasing resolution does not necessarily solve the problem of unresolved scales, because it simply introduces a new set of unresolved scales. Applying stochastic parameterisations to ocean models is one solution that is expected to improve the representation of small-scale (<span class="hlt">eddy</span>) effects without increasing run-time. Stochastic parameterisation has been shown to have an impact in atmosphere-only models and idealised ocean models, but has not previously been studied in ocean general circulation models. Here we apply simple stochastic perturbations to the ocean temperature and salinity tendencies in the low-resolution <span class="hlt">coupled</span> climate model, FAMOUS. The stochastic perturbations are implemented according to T(t) = T(t-1) + (ΔT(t) + ξ(t)), where T is temperature or salinity, ΔT is the corresponding deterministic increment in one time step, and ξ(t) is Gaussian noise. We use high-resolution HiGEM data coarse-grained to the FAMOUS grid to provide information about the magnitude and spatio-temporal correlation structure of the noise to be added to the lower resolution model. Here we present results of adding white and red noise, showing the impacts of an additive stochastic perturbation on mean climate state and variability in an AOGCM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoRL..3916608E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoRL..3916608E"><span>An avenue of <span class="hlt">eddies</span>: Quantifying the biophysical properties of mesoscale <span class="hlt">eddies</span> in the Tasman Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.</p> <p>2012-08-01</p> <p>The Tasman Sea is unique - characterised by a strong seasonal western boundary <span class="hlt">current</span> that breaks down into a complicated field of mesoscale <span class="hlt">eddies</span> almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea <span class="hlt">eddies</span>, we identify a region along the southeast Australian coast which we name ‘<span class="hlt">Eddy</span> Avenue’ where <span class="hlt">eddies</span> have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic <span class="hlt">eddies</span> within <span class="hlt">Eddy</span> Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that <span class="hlt">Eddy</span> Avenue cyclonic and anticyclonic <span class="hlt">eddies</span> have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic <span class="hlt">eddies</span> formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic <span class="hlt">eddies</span> due to the entrainment of nutrient-rich shelf waters. Cyclonic <span class="hlt">eddies</span> within <span class="hlt">Eddy</span> Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic <span class="hlt">eddies</span> (0.18 mg m-3). The average chlorophyll a concentration for cyclonic <span class="hlt">eddies</span> is 16% higher in <span class="hlt">Eddy</span> Avenue and 28% lower for anticyclonic <span class="hlt">eddies</span> when compared to the Tasman Sea. With a strengthening East Australian <span class="hlt">Current</span>, the propagation of these <span class="hlt">eddies</span> will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP42A..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP42A..04G"><span>Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm <span class="hlt">Coupled</span> with High-Resolution Large <span class="hlt">Eddy</span> Simulations: a Critical Analysis of Model Limits and Sensitivity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia, M. H.</p> <p>2016-12-01</p> <p>Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm <span class="hlt">Coupled</span> with High-Resolution Large <span class="hlt">Eddy</span> Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way <span class="hlt">coupled</span> Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been <span class="hlt">coupled</span> with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached <span class="hlt">Eddy</span> Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was <span class="hlt">coupled</span> with high-resolution Large <span class="hlt">Eddy</span> Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The <span class="hlt">current</span> study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large <span class="hlt">Eddy</span> Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22531257-quantitative-void-fraction-detection-eddy-current-flowmeter-generation-iv-sodium-cooled-fast-reactor','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22531257-quantitative-void-fraction-detection-eddy-current-flowmeter-generation-iv-sodium-cooled-fast-reactor"><span>Quantitative void fraction detection with an <span class="hlt">eddy</span> <span class="hlt">current</span> flowmeter for generation IV Sodium cooled Fast Reactor</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kumar, M.; French Atomic Energy and Alternative Energies Commission; Tordjeman, Ph.</p> <p>2015-07-01</p> <p>This study was carried out to understand the response of an <span class="hlt">eddy</span> <span class="hlt">current</span> type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an <span class="hlt">eddy</span> <span class="hlt">current</span> flowmeter as a gas detector for large void fractions. (authors)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22531497-quantitative-void-fraction-measurement-eddy-current-flowmeter-generation-iv-sodium-cooled-fast-reactor','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22531497-quantitative-void-fraction-measurement-eddy-current-flowmeter-generation-iv-sodium-cooled-fast-reactor"><span>Quantitative void fraction measurement with an <span class="hlt">eddy</span> <span class="hlt">current</span> flowmeter for generation IV Sodium cooled Fast Reactor</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kumar, M.; CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance; Tordjeman, Ph.</p> <p>2015-07-01</p> <p>This study was carried out to understand the response of an <span class="hlt">eddy</span> <span class="hlt">current</span> type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an <span class="hlt">eddy</span> <span class="hlt">current</span> flowmeter as a gas detector for large void fractions. (authors)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24831111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24831111"><span>A combined experimental and finite element analysis method for the estimation of <span class="hlt">eddy-current</span> loss in NdFeB magnets.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude</p> <p>2014-05-14</p> <p>NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to <span class="hlt">eddy</span> <span class="hlt">current</span> losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the <span class="hlt">eddy</span> <span class="hlt">current</span> loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the <span class="hlt">eddy</span> <span class="hlt">current</span> losses that are then compared with those of a 3D FE model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AIPC..615.1968G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AIPC..615.1968G"><span>Detection of cracks beneath rivet heads via pulsed <span class="hlt">eddy</span> <span class="hlt">current</span> technique</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giguère, J. S. R.; Lepine, B. A.; Dubois, J. M. S.</p> <p>2002-05-01</p> <p>Improving the detectability of fatigue cracks under installed fasteners is one of the many goals of the aging aircraft nondestructive evaluation (NDE) community. The pulsed <span class="hlt">eddy</span> <span class="hlt">current</span> offers new capabilities to address this requirement. The aim of the paper is to evaluate the potential of this technique for detecting and quantifying notches under installed fasteners.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7j5303L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7j5303L"><span>Analytical modeling and analysis of magnetic field and torque for novel axial flux <span class="hlt">eddy</span> <span class="hlt">current</span> couplers with PM excitation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin</p> <p>2017-10-01</p> <p>Rotational permanent magnet <span class="hlt">eddy</span> <span class="hlt">current</span> couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet <span class="hlt">eddy</span> <span class="hlt">current</span> couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, <span class="hlt">eddy</span> <span class="hlt">current</span>, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10458E..06Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10458E..06Z"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> testing for blade edge micro cracks of aircraft engine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng</p> <p>2017-10-01</p> <p>Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation <span class="hlt">eddy</span> <span class="hlt">current</span> testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the <span class="hlt">eddy</span> <span class="hlt">current</span> testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.344..623B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.344..623B"><span>Efficient solution of 3D electromagnetic <span class="hlt">eddy-current</span> problems within the finite volume framework of OpenFOAM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beckstein, Pascal; Galindo, Vladimir; Vukčević, Vuko</p> <p>2017-09-01</p> <p><span class="hlt">Eddy-current</span> problems occur in a wide range of industrial and metallurgical applications where conducting material is processed inductively. Motivated by realising <span class="hlt">coupled</span> multi-physics simulations, we present a new method for the solution of such problems in the finite volume framework of foam-extend, an extended version of the very popular OpenFOAM software. The numerical procedure involves a semi-<span class="hlt">coupled</span> multi-mesh approach to solve Maxwell's equations for non-magnetic materials by means of the Coulomb gauged magnetic vector potential A and the electric scalar potential ϕ. The concept is further extended on the basis of the impressed and reduced magnetic vector potential and its usage in accordance with Biot-Savart's law to achieve a very efficient overall modelling even for complex three-dimensional geometries. Moreover, we present a special discretisation scheme to account for possible discontinuities in the electrical conductivity. To complement our numerical method, an extensive validation is completing the paper, which provides insight into the behaviour and the potential of our approach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1369499-quantifying-residual-eddy-mean-flow-effects-mixing-idealized-circumpolar-current','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1369499-quantifying-residual-eddy-mean-flow-effects-mixing-idealized-circumpolar-current"><span>Quantifying residual, <span class="hlt">eddy</span>, and mean flow effects on mixing in an idealized circumpolar <span class="hlt">current</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wolfram, Phillip J.; Ringler, Todd D.</p> <p>2017-07-13</p> <p>Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar <span class="hlt">Current</span> (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front <span class="hlt">currents</span>. Diffusivity attenuates less rapidly with depth in the jet than both <span class="hlt">eddy</span> velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the <span class="hlt">eddy</span> velocity to <span class="hlt">eddy</span> phase speed) into the linear wave regime by increasing the <span class="hlt">eddy</span> phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and <span class="hlt">eddy</span>-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA546375','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA546375"><span><span class="hlt">Eddy-Current</span> Non-Inertial Displacement Sensing for Underwater Infrasound Measurements</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-05-01</p> <p><span class="hlt">Eddy-current</span> non-inertial displacement sensing for underwater infrasound measurements Dimitri M. Donskoy Stevens Institute of Technology, 711 Hudson...geophysicists have an ongoing interest in exploring underwater acous- tic processes at infrasound frequencies, for example, for monitoring natural events...underwater infrasound measurements 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSV...396...51A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSV...396...51A"><span>Reduction of magneto rheological dampers stiffness by incorporating of an <span class="hlt">eddy</span> <span class="hlt">current</span> damper</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asghar Maddah, Ali; Hojjat, Yousef; Reza Karafi, Mohammad; Reza Ashory, Mohammad</p> <p>2017-05-01</p> <p>In this paper, a hybrid damper is developed to achieve lower stiffness compared to magneto rheological dampers. The hybrid damper consists of an <span class="hlt">eddy</span> <span class="hlt">current</span> damper (ECD) and a Magneto Rheological Damper (MRD). The aim of this research is to reduce the stiffness of MRDs with equal damping forces. This work is done by adding an <span class="hlt">eddy</span> <span class="hlt">current</span> passive damper to a semi-active MRD. The ECDs are contactless dampers which show an almost viscous damping behavior without increasing the stiffness of a system. However, MRDs increase damping and stiffness of a system simultaneously, when a magnetic field is applied. Damping of each part is studied theoretically and experimentally. A semi-empirical model is developed to explain the viscoelastic behavior of the damper. The experimental results showed that the hybrid damper is able to dissipate energy as much as those of MRDs while its stiffness is 12% lower at a zero excitation <span class="hlt">current</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960050129','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960050129"><span>A Model for Axial Magnetic Bearings Including <span class="hlt">Eddy</span> <span class="hlt">Currents</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kucera, Ladislav; Ahrens, Markus</p> <p>1996-01-01</p> <p>This paper presents an analytical method of modelling <span class="hlt">eddy</span> <span class="hlt">currents</span> inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950070376&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950070376&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEddy%2Bcurrent"><span><span class="hlt">Eddy-Current</span> Detection Of Cracks In Reinforced Carbon/Carbon</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christensen, Scott V.; Koshti, Ajay M.</p> <p>1995-01-01</p> <p>Investigations of failures of components made of reinforced carbon/carbon show <span class="hlt">eddy-current</span> flaw-detection techniques applicable to these components. Investigation focused on space shuttle parts, but applicable to other parts made of carbon/carbon materials. Techniques reveal cracks, too small to be detected visually, in carbon/carbon matrix substrates and in silicon carbide coates on substrates. Also reveals delaminations in carbon/carbon matrices. Used to characterize extents and locations of discontinuities in substrates in situations in which ultrasonic techniques and destructive techniques not practical.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950020358','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950020358"><span>Combined investigation of <span class="hlt">Eddy</span> <span class="hlt">current</span> and ultrasonic techniques for composite materials NDE</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.</p> <p>1993-01-01</p> <p>Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (<span class="hlt">eddy</span> <span class="hlt">current</span> (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. <span class="hlt">Eddy</span> <span class="hlt">current</span> and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS43H..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS43H..01N"><span>From mesoscale <span class="hlt">eddies</span> to small-scale turbulence in the Antarctic Circumpolar <span class="hlt">Current</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naveira Garabato, A.; Brearley, J. A.; Sheen, K. L.; Waterman, S. N.</p> <p>2012-12-01</p> <p>A foremost question in physical oceanography is that of how the oceanic mesoscale dissipates. The Antarctic Circumpolar <span class="hlt">Current</span> (ACC), in the Southern Ocean, is forced strongly by the wind and hosts a vigorous mesoscale <span class="hlt">eddy</span> field. It has been recently suggested that substantial dampening of mesoscale flows in the region may occur through interactions with topography, on the basis of a number of indirect approaches. Here, we present the first direct evidence of a transfer of energy between mesoscale <span class="hlt">eddies</span> and small-scale turbulence in the ACC, via the radiation, instability and breaking of internal waves generated as mesoscale flows impinge on rough topography. The evidence is provided by analysis of two data sets gathered by the DIMES (Diapycnal and Isopycnal Experiment in the Southern Ocean) experiment: (1) the observations of a mooring cluster, specifically designed to measure dynamical exchanges between the mesoscale <span class="hlt">eddy</span> and internal wave fields in Drake Passage over a 2-year deployment; and (2) an extensive fine- and microstructure survey of the region. The physical mechanisms implicated in the cascade of energy across scales will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984RScI...55.1533M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984RScI...55.1533M"><span>Foucault pendulum with <span class="hlt">eddy-current</span> damping of the elliptical motion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.</p> <p>1984-10-01</p> <p>A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic <span class="hlt">eddy-current</span> brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the <span class="hlt">eddy-current</span> damping ring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040129660','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040129660"><span>New <span class="hlt">Eddy</span> <span class="hlt">Current</span> Probe for Thickness Gauging of Conductive Materials</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min</p> <p>1993-01-01</p> <p>The accurate measure of material thickness is important for many non-destructive evaluation applications. Factors such as corrosion damage can jeopardize structural integrity through material thinning and process control considerations often mandate strict limits on material dimensions. Access to the material under test can be limited to a single side and large areas may need to be examined in a small time period. In an effort to enhance the effectiveness of material thickness measurements a flux focusing <span class="hlt">eddy</span> <span class="hlt">current</span> probe has been developed at NASA Langley Research Center. The probe provides an accurate measure of the thickness of conducting materials from a single sided measurement. It is straight forward to use and can be easily automated for production line testing. The probe also requires only minimal instrumentation and power so that extremely portable units can be manufactured at a low cost. This new <span class="hlt">eddy</span> <span class="hlt">current</span> probe has been used to accurately measure the thickness of aluminum alloy plates with a resolution of greater than 0.001 in. (25 microns). Simulated corrosion damage has also been detected on both single layer and multi-layer samples. The present work will explain the output voltage dependence of the device as a function of material thickness and present experimental results for thickness gauging and corrosion detection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/862902','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/862902"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> gauge for monitoring displacement using printed circuit coil</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Visioli, Jr., Armando J.</p> <p>1977-01-01</p> <p>A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant <span class="hlt">current</span>, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the <span class="hlt">eddy</span> <span class="hlt">current</span> losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4222531','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4222531"><span>Rapid Measurement and Correction of Phase Errors from B0 <span class="hlt">Eddy</span> <span class="hlt">Currents</span>: Impact on Image Quality for Non-Cartesian Imaging</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.</p> <p>2014-01-01</p> <p>Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from <span class="hlt">eddy</span> <span class="hlt">currents</span> induced in the cryostat by time-varying gradients, a phenomemon known as B0 <span class="hlt">eddy</span> <span class="hlt">currents</span>. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 <span class="hlt">eddy</span> <span class="hlt">currents</span> and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 <span class="hlt">eddy</span> <span class="hlt">currents</span> in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhyD..134..287H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhyD..134..287H"><span>Effects due to induced azimuthal <span class="hlt">eddy</span> <span class="hlt">currents</span> in a self-exciting Faraday disk homopolar dynamo with a nonlinear series motor. I.. Two special cases</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hide, Raymond; Moroz, Irene M.</p> <p>1999-10-01</p> <p>The elucidation of the behaviour of physically realistic self-exciting Faraday-disk dynamos bears inter alia on attempts by theoretical geophysicists to interpret observations of geomagnetic polarity reversals. Hide [The nonlinear differential equations governing a hierarchy of self-exciting <span class="hlt">coupled</span> Faraday-disk homopolar dynamos, Phys. Earth Planet. Interiors 103 (1997) 281-291; Nonlinear quenching of <span class="hlt">current</span> fluctuations in a self-exciting homopolar dynamo, Nonlinear Processes in Geophysics 4 (1998) 201-205] has introduced a novel 4-mode set of nonlinear ordinary differential equations to describe such a dynamo in which a nonlinear electric motor is connected in series with the coil. The applied <span class="hlt">couple</span>, α, driving the disk is steady and the Lorentz <span class="hlt">couple</span> driving the motor is a quadratic function, x(1-ɛ)+ɛσx 2, of the dynamo-generated <span class="hlt">current</span> x, with 0≤ɛ≤1. When there are no additional biasing effects due to background magnetic fields etc., the behaviour of the dynamo is determined by eight independent non-negative control parameters. These include ρ, proportional to the resistance of the disk to azimuthal <span class="hlt">eddy</span> <span class="hlt">currents</span>, and β, an inverse measure of the moment of inertia of the armature of the motor. When β=0 (the case when the motor is absent and ɛ and σ are redundant) and ρ -1≠0 , the 4-mode dynamo equations reduce to the 3-mode Lorenz equations, which can behave chaotically [E. Knobloch, Chaos in the segmented disc dynamo, Phys. Lett. A 82 (1981) 439-440]. When β≠0 but ρ -1=0 , the 4-mode set of equations reduces to a 3-mode dynamo [R. Hide (1997), see above], which can also behave chaotically when ɛ=0 [R. Hide, A.C. Skeldon, D.J. Acheson, A study of two novel self-exciting single-disk homopolar dynamos: theory, Proc. R. Soc. Lond. A 452 (1996) 1369-1395] but not when ɛ=1 [R. Hide (1998), see above]. In the latter case, however, all persistent fluctuations are completely quenched [R. Hide (1998), see above]. In this paper we investigate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860015251','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860015251"><span>Passive <span class="hlt">eddy-current</span> damping as a means of vibration control in cryogenic turbomachinery</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cunningham, R. E.</p> <p>1986-01-01</p> <p>Lateral shaft vibrations produced by a rotating unbalance weight were damped by means of <span class="hlt">eddy</span> <span class="hlt">currents</span> generated in copper conductors that were precessing cyclicly in the gap formed by the pole faces of C-shaped, permanent magnets. The damper assembly, which was located at the lower bearing support of a vertically oriented rotor was completely immersed in liquid nitrogen during the test run. The test rotor was operated over a speed range from 800 to 10,000 rpm. Three magnet/conductor designs were evaluated. Experimental damping coefficients varied from 180 to 530 N sec/m. Reasonable agreement was noted for theoretical values of damping for these same assemblies. Values of damping coefficients varied from 150 to 780 N sec/m. The results demonstrate that passive <span class="hlt">eddy-current</span> damping is a viable candidate for vibration control in cryogenic turbomachinery.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880015855','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880015855"><span>Solving time-dependent two-dimensional <span class="hlt">eddy</span> <span class="hlt">current</span> problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Min Eig; Hariharan, S. I.; Ida, Nathan</p> <p>1988-01-01</p> <p>Results of transient <span class="hlt">eddy</span> <span class="hlt">current</span> calculations are reported. For simplicity, a two-dimensional transverse magnetic field which is incident on an infinitely long conductor is considered. The conductor is assumed to be a good but not perfect conductor. The resulting problem is an interface initial boundary value problem with the boundary of the conductor being the interface. A finite difference method is used to march the solution explicitly in time. The method is shown. Treatment of appropriate radiation conditions is given special consideration. Results are validated with approximate analytic solutions. Two stringent test cases of high and low frequency incident waves are considered to validate the results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JAP...111gA738Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JAP...111gA738Z"><span>Design of permanent magnet <span class="hlt">eddy</span> <span class="hlt">current</span> brake for a small scaled electromagnetic launch model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei</p> <p>2012-04-01</p> <p>A variable pole-pitch double-sided permanent magnet (PM) linear <span class="hlt">eddy</span> <span class="hlt">current</span> brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and <span class="hlt">eddy</span> <span class="hlt">current</span> skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA230194','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA230194"><span>Selective Screening of High Temperature Superconductors by Resonant <span class="hlt">Eddy</span> <span class="hlt">Current</span> Analysis</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-11-01</p> <p>observable electronic parameters are both stable and well defined. Further, if the circuit possesses a resonance , then it has well characterized parameters and...Engineers Construction Engineering Research Laboratory - AD-A230 194 Selective Screening of High Temperature Superconductors by Resonant <span class="hlt">Eddy</span> <span class="hlt">Current</span>...electrical systems or electronic components from the effects of unwanted electromagnetic energy. With the discovery of High Transition Critical Temperature</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910008882','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910008882"><span><span class="hlt">Eddy-current</span> inspection of shuttle heat exchanger tube welds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dodd, Casius V.; Scott, G. W.; Chitwood, L. D.</p> <p>1990-01-01</p> <p>The goal of this project was to develop the system necessary to demonstrate in the laboratory that an <span class="hlt">eddy</span> <span class="hlt">current</span> system can inspect the tubes and welds described, screening for the existence of flaws equal in size to, or larger than, the target flaw. The laboratory system was to include the probe necessary to traverse the tubing, the electronics to drive (i.e., electrically excite) the probe and receive and process signals from it, a data display, data recording, and playback devices, and microprocessor software or firmware necessary to operate the system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22263749-eddy-current-system-inspection-train-hollow-axles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22263749-eddy-current-system-inspection-train-hollow-axles"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> system for inspection of train hollow axles</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard</p> <p>2014-02-18</p> <p>The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an <span class="hlt">eddy</span> <span class="hlt">current</span> transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23818162','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23818162"><span>Multilayer integral method for simulation of <span class="hlt">eddy</span> <span class="hlt">currents</span> in thin volumes of arbitrary geometry produced by MRI gradient coils.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sanchez Lopez, Hector; Freschi, Fabio; Trakic, Adnan; Smith, Elliot; Herbert, Jeremy; Fuentes, Miguel; Wilson, Stephen; Liu, Limei; Repetto, Maurizio; Crozier, Stuart</p> <p>2014-05-01</p> <p>This article aims to present a fast, efficient and accurate multi-layer integral method (MIM) for the evaluation of complex spatiotemporal <span class="hlt">eddy</span> <span class="hlt">currents</span> in nonmagnetic and thin volumes of irregular geometries induced by arbitrary arrangements of gradient coils. The volume of interest is divided into a number of layers, wherein the thickness of each layer is assumed to be smaller than the skin depth and where one of the linear dimensions is much smaller than the remaining two dimensions. The diffusion equation of the <span class="hlt">current</span> density is solved both in time-harmonic and transient domain. The experimentally measured magnetic fields produced by the coil and the induced <span class="hlt">eddy</span> <span class="hlt">currents</span> as well as the corresponding time-decay constants were in close agreement with the results produced by the MIM. Relevant parameters such as power loss and force induced by the <span class="hlt">eddy</span> <span class="hlt">currents</span> in a split cryostat were simulated using the MIM. The proposed method is capable of accurately simulating the <span class="hlt">current</span> diffusion process inside thin volumes, such as the magnet cryostat. The method permits the priori-calculation of optimal pre-emphasis parameters. The MIM enables unified designs of gradient coil-magnet structures for an optimal mitigation of deleterious <span class="hlt">eddy</span> <span class="hlt">current</span> effects. Copyright © 2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/7072003','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/7072003"><span>Computer programs for <span class="hlt">eddy-current</span> defect studies</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pate, J. R.; Dodd, C. V.</p> <p></p> <p>Several computer programs to aid in the design of <span class="hlt">eddy-current</span> tests and probes have been written. The programs, written in Fortran, deal in various ways with the response to defects exhibited by four types of probes: the pancake probe, the reflection probe, the circumferential boreside probe, and the circumferential encircling probe. Programs are included which calculate the impedance or voltage change in a coil due to a defect, which calculate and plot the defect sensitivity factor of a coil, and which invert calculated or experimental readings to obtain the size of a defect. The theory upon which the programs aremore » based is the Burrows point defect theory, and thus the calculations of the programs will be more accurate for small defects. 6 refs., 21 figs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28671560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28671560"><span>A Steel Ball Surface Quality Inspection Method Based on a Circumferential <span class="hlt">Eddy</span> <span class="hlt">Current</span> Array Sensor.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming</p> <p>2017-07-01</p> <p>To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential <span class="hlt">eddy</span> <span class="hlt">current</span> array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced <span class="hlt">eddy</span> <span class="hlt">current</span> density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation <span class="hlt">current</span> suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OPhy...16...26M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OPhy...16...26M"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> modeling in linear and nonlinear multifilamentary composite materials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean</p> <p>2018-04-01</p> <p>In this work, a numerical model is developed for a rapid computation of <span class="hlt">eddy</span> <span class="hlt">currents</span> in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10599E..1MK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10599E..1MK"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> crack detection capability assessment approach using crack specimens with differing electrical conductivity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koshti, Ajay M.</p> <p>2018-03-01</p> <p>Like other NDE methods, <span class="hlt">eddy</span> <span class="hlt">current</span> surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves <span class="hlt">eddy</span> <span class="hlt">current</span> testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in <span class="hlt">eddy</span> <span class="hlt">current</span> testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in <span class="hlt">eddy</span> <span class="hlt">current</span> testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015FrME...10....1Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015FrME...10....1Q"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> measurement of the thickness of top Cu film of the multilayer interconnects in the integrated circuit (IC) manufacturing process</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qu, Zilian; Meng, Yonggang; Zhao, Qian</p> <p>2015-03-01</p> <p>This paper proposes a new <span class="hlt">eddy</span> <span class="hlt">current</span> method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the <span class="hlt">eddy</span> <span class="hlt">current</span> is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an <span class="hlt">eddy</span> <span class="hlt">current</span> sensor is improved and the absolute error is 3 nm for sampler measurement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996DSRI...43.1475P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996DSRI...43.1475P"><span>The <span class="hlt">eddy</span> cannon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pichevin, Thierry; Nof, Doron</p> <p>1996-09-01</p> <p>A new nonlinear mechanism for the generation of "Meddies" by a cape is proposed. The essence of the new process is that the flow-force associated with any steady <span class="hlt">current</span> that curves back on itself around a cape cannot be balanced without generating and shedding <span class="hlt">eddies</span>. The process is modeled as follows. A westward flowing density <span class="hlt">current</span> advances along a zonal wall and turns eastward after reaching the edge of the wall (i.e. the Cape of St Vincent). Integration of the steady (and inviscid) momentum equation along the wall gives the long-shore flow-force and shows that, no matter what the details of the turning process are, such a scenario is impossible. It corresponds to an unbalanced flow-force and, therefore, cannot exist. Namely, in an analogy to a rocket, the zonal longshore <span class="hlt">current</span> forces the entire system to the west. A flow field that can compensate for such a force is westward drifting <span class="hlt">eddies</span> that push the system to the east. In a similar fashion to the backward push associated with a firing cannon, the westward moving <span class="hlt">eddies</span> (bullets) balance the integrated momentum of the flow around the cape. Nonlinear solutions are constructed analytically using an approach that enables one to compute the <span class="hlt">eddies</span>' size and generation frequency without solving for the incredibly complicated details of the generation process itself. The method takes advantage of the fact that, after each <span class="hlt">eddy</span> is generated, the system returns to its original structure. It is based on the integration of the momentum equation (for periodic flows) over a control volume and a perturbation expansion in ɛ, the ratio between the <span class="hlt">eddies</span>' westward drift and the parent <span class="hlt">current</span> speed. It is found that, because of the relatively small size of the Mediterranean <span class="hlt">eddies</span>, β is not a sufficiently strong mechanism to remove the <span class="hlt">eddies</span> (from the Cape of St Vincent) at the observed frequency. It is, therefore, concluded that westward advection must also take place. Specifically, it is found that an advection</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..274..138J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..274..138J"><span><span class="hlt">Eddy</span> <span class="hlt">currents</span> in the measurement of magnetic susceptibility of rocks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ježek, Josef; Hrouda, František</p> <p>2018-01-01</p> <p>The in-phase and out-of-phase susceptibility of rocks is determined by the magnetic permeability of minerals, their viscous relaxation, and by <span class="hlt">eddy</span> <span class="hlt">currents</span> in electrically conductive minerals induced by the applied field. The last effect has been modelled by analytical solution of Maxwell equations for a conductive sphere immersed in a homogeneous, non-conductive medium with given permeability, in presence of an alternating field. The solution is a complex function of parameters describing the sphere (its size, conductivity and permeability), surrounding medium (permeability) and applied field (frequency). Without numerical evaluations, it is difficult to distinguish in-phase and out-of-phase (OPS) susceptibility. In this paper, approximate equations are derived for both susceptibility components, which depend only on the permeability contrast between the sphere and the surrounding medium, and the skin ratio, defined as the ratio between sphere radius and skin depth of the induced <span class="hlt">currents</span>. These equations are used to obtain a systematic assessment of the role of electrical conductivity in determining the susceptibility of rock samples. The contribution of <span class="hlt">eddy</span> <span class="hlt">currents</span> to the susceptibility of diluted (<5%) magnetite particle dispersions is negligible at 1 kHz, but not at higher frequencies. Common rock-forming paramagnetic and diamagnetic minerals with weak electrical conductivity and magnetic permeability are characterized by negligible OPS at 1 kHz. Theoretically, measurable OPS and high phase angles can be produced by paramagnetic conductive minerals in certain combinations with a diamagnetic matrix. This can be excluded from practical point of view for paramagnetic minerals with susceptibilities >0.003 and conductivities not exceeding 5000 S/m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930035611&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930035611&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DEddy%2Bcurrent"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> inspection of weld defects in tubing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Katragadda, G.; Lord, W.</p> <p>1992-01-01</p> <p>An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential <span class="hlt">eddy</span> <span class="hlt">current</span> techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3302054D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3302054D"><span>Scanning the welded joints of aluminium alloys using subminiature <span class="hlt">eddy-current</span> transducers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dmitriev, Sergey; Ishkov, Alexey; Malikov, Vladimir; Sagalakov, Anatoly</p> <p>2018-03-01</p> <p>Aluminium has a reputation for ease of use, strength and durability. In addition to its exceptional aesthetic properties, solid aluminium does not burn. As architects, contractors, consultants and real estate owners look to meet stringent safety requirements in the construction and refurbishment of high-rise constructions for both residential and commercial uses, aluminium cladding provides an alternative that is not only safe but that is also durable and attractive. One of the ways to connect elements into a aluminium construction is welding. friction stir welding is one of the most efficient. The authors developed a measuring system based on subminiaturized <span class="hlt">eddy-current</span> transducers aimed at examining locally the defects of welded joints in aluminium-magnesium alloy plates connected by means of friction stir welding. The authors made a modification of the Delyann filter, which allowed them to increase considerably the signal-noise relations. The dependency of the <span class="hlt">eddy-current</span> transducer response on defects was provided, i.e. concealed cuts and openings inside the welded joint, at the frequencies of 100-10000 Hz of the exciting winding.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25638145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25638145"><span>Note: <span class="hlt">Eddy</span> <span class="hlt">current</span> displacement sensors independent of target conductivity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Hongbo; Li, Wei; Feng, Zhihua</p> <p>2015-01-01</p> <p><span class="hlt">Eddy</span> <span class="hlt">current</span> sensors (ECSs) are widely used for non-contact displacement measurement. In this note, the quantitative error of an ECS caused by target conductivity was analyzed using a complex image method. The response curves (L-x) of the ECS with different targets were similar and could be overlapped by shifting the curves on x direction with √2δ/2. Both finite element analysis and experiments match well with the theoretical analysis, which indicates that the measured error of high precision ECSs caused by target conductivity can be completely eliminated, and the ECSs can measure different materials precisely without calibration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED093611.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED093611.pdf"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span>, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dade County Public Schools, Miami, FL.</p> <p></p> <p>This unit of instruction includes the principles of <span class="hlt">eddy</span> <span class="hlt">current</span>, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL31001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL31001C"><span>Energy Cascade Analysis: from Subscale <span class="hlt">Eddies</span> to Mean Flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James</p> <p>2017-11-01</p> <p>Understanding the energy transfer between <span class="hlt">eddies</span> and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest <span class="hlt">eddies</span> using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale <span class="hlt">eddies</span>. The <span class="hlt">current</span> study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale <span class="hlt">eddies</span>, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical <span class="hlt">coupling</span> of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale <span class="hlt">eddies</span>, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1915d0049S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1915d0049S"><span><span class="hlt">Eddy-current</span> testing of fatigue degradation upon contact fatigue loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savrai, R. A.; Makarov, A. V.; Gorkunov, E. S.; Soboleva, N. N.; Kogan, L. Kh.; Malygina, I. Yu.; Osintseva, A. L.; Davydova, N. A.</p> <p>2017-12-01</p> <p>The possibilities of the <span class="hlt">eddy-current</span> method for testing the fatigue degradation under contact loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating with 15 wt.% of Cr3C2 additive have been investigated. It is shown that the <span class="hlt">eddy-current</span> testing of the fatigue degradation under contact loading of the NiCrBSi-15%Cr3C2 composite coating can be performed at high excitation frequencies 72-120 kHz of the <span class="hlt">eddy-current</span> transducer. At that, the dependences of the <span class="hlt">eddy-current</span> instrument readings on the number of loading cycles have both downward and upward branches, with the boundary between the branches being 3×105 cycles in the given loading conditions. This is caused, on the one hand, by cracking, and, on the other hand, by cohesive spalling and compaction of the composite coating, which affect oppositely the material resistivity and, correspondingly, the <span class="hlt">eddy-current</span> instrument readings. The downward branch can be used to monitor the processes of crack formation and growth, the upward branch - to monitor the degree of cohesive spalling, while taking into account in the testing methodology an ambiguous character of the dependences of the <span class="hlt">eddy-current</span> instrument readings on the number of loading cycles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27338389','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27338389"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span> Pulsed Thermography with Different Excitation Configurations for Metallic Material and Defect Characterization.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze</p> <p>2016-06-08</p> <p>This paper reviews recent developments of <span class="hlt">eddy</span> <span class="hlt">current</span> pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and <span class="hlt">eddy</span> <span class="hlt">current</span> heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJAP..7320902R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJAP..7320902R"><span>A 2D finite element study on the role of material properties on <span class="hlt">eddy</span> <span class="hlt">current</span> losses in soft magnetic composites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Xiaotao; Corcolle, Romain; Daniel, Laurent</p> <p>2016-02-01</p> <p>The use of soft magnetic composites (SMCs) in electrical engineering applications is growing. SMCs provide an effective alternative to laminated steels because they exhibit a high permeability with low <span class="hlt">eddy</span> <span class="hlt">current</span> losses. Losses are a critical feature in the design of electrical machines, and it is necessary to evaluate the role of microstructure and constitutive properties of SMCs during the predesign stage. In this paper we propose a simplified finite element approach to compute <span class="hlt">eddy</span> <span class="hlt">current</span> losses in these materials. The computations allow to quantify the role of exciting source and material properties on <span class="hlt">eddy</span> <span class="hlt">current</span> losses. This analysis can later be used in the development of homogenization models for SMC. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...421..153L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...421..153L"><span>Experimental and analytical study on vibration control effects of <span class="hlt">eddy-current</span> tuned mass dampers under seismic excitations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Zheng; Huang, Biao; Zhang, Qi; Lu, Xilin</p> <p>2018-05-01</p> <p><span class="hlt">Eddy-current</span> tuned mass dampers (EC-TMDs) are non-contacting passive control devices and are developed on the basis of conventional tuned mass dampers. They comprise a solid mass, a stiffness element, and a damping element, wherein the damping mechanism originates from <span class="hlt">eddy</span> <span class="hlt">currents</span>. By relative motion between a non-magnetic conductive metal and a permanent magnet in a dynamic system, a time-varying magnetic field is induced in the conductor, thereby generating <span class="hlt">eddy</span> <span class="hlt">currents</span>. The <span class="hlt">eddy</span> <span class="hlt">currents</span> induce a magnetic field with opposite polarity, causing repulsive forces, i.e., damping forces. This technology can overcome the drawbacks of conventional tuned mass dampers, such as limited service life, deterioration of mechanical properties, and undesired additional stiffness. The experimental and analytical study of this system installed on a multi-degree-of-freedom structure is presented in this paper. A series of shaking table tests were conducted on a five-story steel-frame model with/without an EC-TMD to evaluate the effectiveness and performance of the EC-TMD in suppressing the vibration of the model under seismic excitations. The experimental results show that the EC-TMD can effectively reduce the displacement response, acceleration response, interstory drift ratio, and maximum strain of the columns under different earthquake excitations. Moreover, an analytical method was proposed on the basis of electromagnetic and structural dynamic theories. A comparison between the test and simulation results shows that the simulation method can be used to estimate the response of structures with an EC-TMD under earthquake excitations with acceptable accuracy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24B2941S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24B2941S"><span>A Baroclinic <span class="hlt">Eddy</span> Mixer: Supercritical Transformation of Compensated <span class="hlt">Eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutyrin, G.</p> <p>2016-02-01</p> <p>In contrast to many real-ocean rings and <span class="hlt">eddies</span>, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean <span class="hlt">eddies</span> revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical <span class="hlt">coupling</span> between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic <span class="hlt">eddies</span> become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic <span class="hlt">eddies</span> tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960000294','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960000294"><span>Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and <span class="hlt">eddy</span> <span class="hlt">current</span> method</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.</p> <p>1995-01-01</p> <p>A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and <span class="hlt">eddy</span> <span class="hlt">current</span> method will be much more sensitive than those <span class="hlt">currently</span> used <span class="hlt">eddy</span> <span class="hlt">current</span> systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19272885','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19272885"><span>A new method for electric impedance imaging using an <span class="hlt">eddy</span> <span class="hlt">current</span> with a tetrapolar circuit.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru</p> <p>2009-02-01</p> <p>A new contactless technique for electrical impedance imaging, using an <span class="hlt">eddy</span> <span class="hlt">current</span> managed along with the tetrapolar circuit method, is proposed. The <span class="hlt">eddy</span> <span class="hlt">current</span> produced by a magnetic field is superimposed on a constant <span class="hlt">current</span> that is normally used in the tetrapolar circuit method, and thus is used to control the <span class="hlt">current</span> distribution in the body. By changing the <span class="hlt">current</span> distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AIPC..894.1274O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AIPC..894.1274O"><span>Multifrequency <span class="hlt">Eddy</span> <span class="hlt">Current</span> Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Okafor, A. C.; Natarajan, S.</p> <p>2007-03-01</p> <p>Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency <span class="hlt">eddy</span> <span class="hlt">current</span> (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of <span class="hlt">eddy</span> <span class="hlt">current</span> inspection, corrosion product removal and fatigue testing are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110000802','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110000802"><span>Material condition assessment with <span class="hlt">eddy</span> <span class="hlt">current</span> sensors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Sheiretov, Yanko K. (Inventor); Schlicker, Darrell E. (Inventor); Lyons, Robert J. (Inventor); Windoloski, Mark D. (Inventor); Craven, Christopher A. (Inventor); Tsukernik, Vladimir B. (Inventor); Grundy, David C. (Inventor)</p> <p>2010-01-01</p> <p><span class="hlt">Eddy</span> <span class="hlt">current</span> sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MeScT..27k5016W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MeScT..27k5016W"><span>Precise on-machine extraction of the surface normal vector using an <span class="hlt">eddy</span> <span class="hlt">current</span> sensor array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun</p> <p>2016-11-01</p> <p>To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an <span class="hlt">Eddy</span> <span class="hlt">current</span> (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and <span class="hlt">coupling</span> interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcSci..12..185A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcSci..12..185A"><span>Interactions between the Somali <span class="hlt">Current</span> <span class="hlt">eddies</span> during the summer monsoon: insights from a numerical study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akuetevi, C. Q. C.; Barnier, B.; Verron, J.; Molines, J.-M.; Lecointre, A.</p> <p>2016-02-01</p> <p>Three hindcast simulations of the global ocean circulation differing by resolution (1/4 or 1/12°) or parametrization or atmospheric forcing are used to describe the interactions between the large anticyclonic <span class="hlt">eddies</span> generated by the Somali <span class="hlt">Current</span> system during the Southwest Monsoon. The present investigation of the Somalian coherent <span class="hlt">eddy</span> structures allows us to identify the origin and the subsequent development of the cyclones flanked upon the Great Whirl (GW) previously identified by Beal and Donohue (2013) in satellite observations and to establish that similar cyclones are also flanked upon the Southern Gyre (SG). These cyclones are identified as potential actors in mixing water masses within the large <span class="hlt">eddies</span> and offshore the coast of Somalia. All three simulations bring to light that during the period when the Southwest Monsoon is well established, the SG moves northward along the Somali coast and encounters the GW. The interaction between the SG and the GW is a collision without merging, in a way that has not been described in observations up to now. During the collision the GW is pushed to the east of Socotra Island, sheds several smaller patches of anticyclonic vorticity, and often reforms into the Socotra <span class="hlt">Eddy</span>, thus proposing a formation mechanism for that <span class="hlt">eddy</span>. During this process the GW gives up its place to the SG. This process is robust throughout the three simulations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNG24A..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNG24A..01B"><span>Dynamically Consistent Parameterization of Mesoscale <span class="hlt">Eddies</span> This work aims at parameterization of <span class="hlt">eddy</span> effects for use in non-<span class="hlt">eddy</span>-resolving ocean models and focuses on the effect of the stochastic part of the <span class="hlt">eddy</span> forcing that backscatters and induces eastward jet extension of the western boundary <span class="hlt">currents</span> and its adjacent recirculation zones.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berloff, P. S.</p> <p>2016-12-01</p> <p>This work aims at developing a framework for dynamically consistent parameterization of mesoscale <span class="hlt">eddy</span> effects for use in non-<span class="hlt">eddy</span>-resolving ocean circulation models. The proposed <span class="hlt">eddy</span> parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous <span class="hlt">eddy</span> field and in the non-<span class="hlt">eddy</span>-resolving configuration with the <span class="hlt">eddy</span> parameterization replacing the <span class="hlt">eddy</span> effects. The parameterization focuses on the effect of the stochastic part of the <span class="hlt">eddy</span> forcing that backscatters and induces eastward jet extension of the western boundary <span class="hlt">currents</span> and its adjacent recirculation zones. The parameterization locally approximates transient <span class="hlt">eddy</span> flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced <span class="hlt">eddy</span> forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the <span class="hlt">eddy</span> parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting <span class="hlt">eddy</span> forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic <span class="hlt">eddy</span> forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866580','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866580"><span>Methods of and apparatus for levitating an <span class="hlt">eddy</span> <span class="hlt">current</span> probe</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Stone, William J.</p> <p>1988-05-03</p> <p>An <span class="hlt">eddy</span> <span class="hlt">current</span> probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol3/pdf/CFR-2013-title49-vol3-part180-appC.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title49-vol3/pdf/CFR-2013-title49-vol3-part180-appC.pdf"><span>49 CFR Appendix C to Part 180 - <span class="hlt">Eddy</span> <span class="hlt">Current</span> Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Pt. 180, App. C Appendix C to Part 180—<span class="hlt">Eddy</span> <span class="hlt">Current</span> Examination With Visual Inspection for DOT 3AL... with CGA pamphlet C-6.1 (IBR; see § 171.7 of this subchapter). 3. <span class="hlt">Eddy</span> <span class="hlt">Current</span> Equipment. A reference...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NTE....33..154F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NTE....33..154F"><span>Nondestructive examination of decarburised layer of steels using <span class="hlt">eddy</span> <span class="hlt">current</span> and magnetic Barkhausen noise testing techniques</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falahat, S.; Ghanei, S.; Kashefi, M.</p> <p>2018-04-01</p> <p><span class="hlt">Eddy</span> <span class="hlt">current</span> and Barkhausen noise nondestructive testing techniques were considered to evaluate the magnetic properties of the decarburised steels as a function of microstructure. To make changes in decarburising depth, carbon steel samples were austenitised at 890 °C for 120-270 min. Considering different decarburised depths, height, position and width of the noise profiles were extracted in order to analyse the magnetic Barkhausen noise measurements. Next, the <span class="hlt">eddy</span> <span class="hlt">current</span> test was performed to detect the changes in the microstructure through decarburising of the steel taking into account the impedance variations. According to the results, both techniques allow us to detect changes in the magnetic properties of the decarburised steels and link them with their microstructural changes, nondestructively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ChPhB..27c0301C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ChPhB..27c0301C"><span>Analytical model of tilted driver–pickup coils for <span class="hlt">eddy</span> <span class="hlt">current</span> nondestructive evaluation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Bing-Hua; Li, Chao; Fan, Meng-Bao; Ye, Bo; Tian, Gui-Yun</p> <p>2018-03-01</p> <p>A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil. It is frequently observed in an <span class="hlt">eddy</span> <span class="hlt">current</span> (EC) array probe. In this work, a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for <span class="hlt">eddy</span> <span class="hlt">current</span> nondestructive evaluation. Basically, the core of the formulation is to obtain the projection of magnetic vector potential (MVP) from the driver coil onto the vector along the tilted pickup coil, which is divided into two key steps. The first step is to make a projection of MVP along the pickup coil onto a horizontal plane, and the second one is to build the relationship between the projected MVP and the MVP along the driver coil. Afterwards, an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields. The calculated values from the resulting model indicate good agreement with those from the finite element model (FEM) and experiments, which validates the developed analytical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61701500, 51677187, and 51465024).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcDyn..65.1335G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcDyn..65.1335G"><span>Impacts of mesoscale <span class="hlt">eddies</span> in the South China Sea on biogeochemical cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh</p> <p>2015-09-01</p> <p>Biogeochemical cycles associated with mesoscale <span class="hlt">eddies</span> in the South China Sea (SCS) were investigated. The study was based on a <span class="hlt">coupled</span> physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale <span class="hlt">eddies</span> with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic <span class="hlt">eddies</span> were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic <span class="hlt">eddies</span> depressed biogeochemical cycles, which are generally controlled by the <span class="hlt">eddy</span> pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic <span class="hlt">eddies</span> and net downward motion in anticyclonic <span class="hlt">eddies</span> were revealed. During the lifetime of an <span class="hlt">eddy</span>, the evolutions of physical, biological, and chemical structures were not linearly <span class="hlt">coupled</span> at the <span class="hlt">eddy</span> core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23464336','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23464336"><span>Half radiofrequency pulse excitation with a dedicated prescan to correct <span class="hlt">eddy</span> <span class="hlt">current</span> effect and gradient delay.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abe, Takayuki</p> <p>2013-03-01</p> <p>To improve the slice profile of the half radiofrequency (RF) pulse excitation and image quality of ultrashort echo time (UTE) imaging by compensating for an <span class="hlt">eddy</span> <span class="hlt">current</span> effect. The dedicated prescan has been developed to measure the phase accumulation due to <span class="hlt">eddy</span> <span class="hlt">currents</span> induced by the slice-selective gradient. The prescan measures two one-dimensional excitation k-space profiles, which can be acquired with a readout gradient in the slice-selection direction by changing the polarity of the slice-selective gradient. The time shifts due to the phase accumulation in the excitation k-space were calculated. The time shift compensated for the start time of the slice-selective gradient. The total prescan time was 6-15 s. The slice profile and the UTE image with the half RF pulse excitation were acquired to evaluate the slice selectivity and the image quality. Improved slice selectivity was obtained. The simple method proposed in this paper can eliminate <span class="hlt">eddy</span> <span class="hlt">current</span> effect. Good UTE images were obtained. The slice profile of the half RF pulse excitation and the image quality of UTE images have been improved by using a dedicated prescan. This method has a possibility that can improve the image quality of a clinical UTE imaging.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ITNS...62.2017S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ITNS...62.2017S"><span>Simulated Design Strategies for SPECT Collimators to Reduce the <span class="hlt">Eddy</span> <span class="hlt">Currents</span> Induced by MRI Gradient Fields</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout</p> <p>2015-10-01</p> <p>Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced <span class="hlt">eddy</span> <span class="hlt">current</span> disturbing the combined system. We reduced the <span class="hlt">eddy</span> <span class="hlt">currents</span> due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced <span class="hlt">eddy</span> <span class="hlt">currents</span>. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001554&hterms=articles+nutrition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Darticles%2Bnutrition','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001554&hterms=articles+nutrition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Darticles%2Bnutrition"><span><span class="hlt">Eddies</span> off Tasmania</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>This true-color satellite image shows a large phytoplankton bloom, several hundred square kilometers in size, in the Indian Ocean off the west coast of Tasmania. In this scene, the rich concentration of microscopic marine plants gives the water a lighter, more turquoise appearance which helps to highlight the <span class="hlt">current</span> patterns there. Notice the <span class="hlt">eddies</span>, or vortices in the water, that can be seen in several places. It is possible that these <span class="hlt">eddies</span> were formed by converging ocean <span class="hlt">currents</span> flowing around Tasmania, or by fresh river runoff from the island, or both. Often, <span class="hlt">eddies</span> in the sea serve as a means for stirring the water, thus providing nutrients that help support phytoplankton blooms, which in turn provide nutrition for other organisms. Effectively, these <span class="hlt">eddies</span> help feed the sea (click to read an article on this topic). This image was acquired November 7, 2000, by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the Orbview-2 satellite. Tasmania is located off Australia's southeastern coast. Image courtesy SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1949w0016S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1949w0016S"><span>The use of fractional order derivatives for <span class="hlt">eddy</span> <span class="hlt">current</span> non-destructive testing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz</p> <p>2018-04-01</p> <p>The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on <span class="hlt">eddy</span> <span class="hlt">current</span> is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/121649','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/121649"><span>Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and <span class="hlt">eddy</span> <span class="hlt">current</span> method</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lu, D.F.; Fan, C.; Ruan, J.Z.</p> <p>1994-12-31</p> <p>A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and <span class="hlt">eddy</span> <span class="hlt">current</span> method will be much more sensitive than those <span class="hlt">currently</span> used <span class="hlt">eddy</span> <span class="hlt">current</span> systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDTmore » device will have a significant impact on metal corrosion or crack detection technology.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070022419','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070022419"><span>Development of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Techniques for the Detection of Cracking in Space Shuttle Primary Reaction Control Thrusters</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay</p> <p>2007-01-01</p> <p>A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed <span class="hlt">eddy</span> <span class="hlt">current</span> probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal <span class="hlt">eddy</span> <span class="hlt">current</span> probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed <span class="hlt">eddy</span> <span class="hlt">current</span> inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDKP1110T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDKP1110T"><span>Unsteady adjoint for large <span class="hlt">eddy</span> simulation of a <span class="hlt">coupled</span> turbine stator-rotor system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory</p> <p>2016-11-01</p> <p>Unsteady fluid flow simulations like large <span class="hlt">eddy</span> simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the <span class="hlt">coupled</span> system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a <span class="hlt">coupled</span> turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This <span class="hlt">coupled</span> system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/426223-coupling-electromagnetics-structural-fluid-dynamics-application-dual-coolant-blanket-subjected-plasma-disruptions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/426223-coupling-electromagnetics-structural-fluid-dynamics-application-dual-coolant-blanket-subjected-plasma-disruptions"><span><span class="hlt">Coupling</span> of electromagnetics and structural/fluid dynamics - application to the dual coolant blanket subjected to plasma disruptions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jordan, T.</p> <p></p> <p>Some aspects concerning the <span class="hlt">coupling</span> of quasi-stationary electromagnetics and the dynamics of structure and fluid are investigated. The necessary equations are given in a dimensionless form. The dimensionless parameters in these equations are used to evaluate the importance of the different <span class="hlt">coupling</span> effects. A finite element formulation of the <span class="hlt">eddy-current</span> damping in solid structures is developed. With this formulation, an existing finite element method (FEM) structural dynamics code is extended and <span class="hlt">coupled</span> to an FEM <span class="hlt">eddy-current</span> code. With this program system, the influence of the <span class="hlt">eddy-current</span> damping on the dynamic loading of the dual coolant blanket during a centered plasmamore » disruption is determined. The analysis proves that only in loosely fixed or soft structures will <span class="hlt">eddy-current</span> damping considerably reduce the resulting stresses. Additionally, the dynamic behavior of the liquid metal in the blankets` poloidal channels is described with a simple two-dimensional magnetohydrodynamic approach. The analysis of the dimensionless parameters shows that for small-scale experiments, which are designed to model the <span class="hlt">coupled</span> electromagnetic and structural/fluid dynamic effects in such a blanket, the same magnetic fields must be applied as in the real fusion device. This will be the easiest way to design experiments that produce transferable results. 10 refs., 7 figs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1030928','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1030928"><span>Model based Inverse Methods for Sizing Cracks of Varying Shape and Location in Bolt hole <span class="hlt">Eddy</span> <span class="hlt">Current</span> (BHEC) Inspections (Postprint)</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-02-10</p> <p>using bolt hole <span class="hlt">eddy</span> <span class="hlt">current</span> (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole <span class="hlt">eddy</span> <span class="hlt">current</span> (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25571425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25571425"><span>BRAIN initiative: fast and parallel solver for real-time monitoring of the <span class="hlt">eddy</span> <span class="hlt">current</span> in the brain for TMS applications.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sabouni, Abas; Pouliot, Philippe; Shmuel, Amir; Lesage, Frederic</p> <p>2014-01-01</p> <p>This paper introduce a fast and efficient solver for simulating the induced (<span class="hlt">eddy</span>) <span class="hlt">current</span> distribution in the brain during transcranial magnetic stimulation procedure. This solver has been integrated with MRI and neuronavigation software to accurately model the electromagnetic field and show <span class="hlt">eddy</span> <span class="hlt">current</span> in the head almost in real-time. To examine the performance of the proposed technique, we used a 3D anatomically accurate MRI model of the 25 year old female subject.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12210952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12210952"><span>Characterization and reduction of gradient-induced <span class="hlt">eddy</span> <span class="hlt">currents</span> in the RF shield of a TEM resonator.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alecci, Marcello; Jezzard, Peter</p> <p>2002-08-01</p> <p>Radiofrequency (RF) shields that surround MRI transmit/receive coils should provide effective RF screening, without introducing unwanted <span class="hlt">eddy</span> <span class="hlt">currents</span> induced by gradient switching. Results are presented from a detailed examination of an effective RF shield design for a prototype transverse electromagnetic (TEM) resonator suitable for use at 3 Tesla. It was found that effective RF shielding and low <span class="hlt">eddy</span> <span class="hlt">current</span> sensitivity could be achieved by axial segmentation (gap width = 2.4 mm) of a relatively thick (35 microm) copper shield, etched on a kapton polyimide substrate. This design has two main advantages: first, it makes the TEM less sensitive to the external environment and RF interference; and second, it makes the RF shield mechanically robust and easy to handle and assemble. Copyright 2002 Wiley-Liss, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG21A0131P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG21A0131P"><span>The Stability of Outcropping Ocean <span class="hlt">Eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paldor, N.; Cohen, Y.; Dvorkin, Y.</p> <p>2017-12-01</p> <p>In the end of the last century numerous ship-borne observations and linear instability studies have addressed the long life span of meso-scale ocean <span class="hlt">eddies</span>. These <span class="hlt">eddies</span> are observed to persist in the ocean for periods of 2-3 years with little deformation. As <span class="hlt">eddy</span> instabilities occur because Rossby waves in the surrounding (assumed motionless) ocean interact with various waves in the <span class="hlt">eddy</span> itself, the stability was attributed to some <span class="hlt">eddy</span> structure that hinders such wave-wave interactions. However, instabilities with growthrates of the order of the inertial period were found in various multilayer models including hypothesized structures and several observed <span class="hlt">eddy</span> structures. A solution to the difference between instability theory and observed stability was ultimately suggested by relaxing the assumption of a motionless ocean that surrounds the <span class="hlt">eddy</span> and prescribing the mean flow in the ocean such that it counterbalances the depth changes imposed by the <span class="hlt">eddy</span> while maintaining a constant PV-ocean. This hypothesis was successfully applied to Gaussian <span class="hlt">eddies</span> for mathematical simplicity. Yet, the Gaussian <span class="hlt">eddy</span> has no surface front - thus avoiding instabilities that involve frontal waves - and it disagrees with observation that clearly show that most <span class="hlt">eddies</span> have surface fronts. Here the constant PV ocean hypothesis is applied to two frontal <span class="hlt">eddies</span>: constant PV-<span class="hlt">eddies</span> and solidly rotating <span class="hlt">eddy</span>. A complete account of the mean flow of the <span class="hlt">coupled</span> <span class="hlt">eddy</span>-ocean system is analyzed using a canonical formulation of the gradient balance. The phase speeds of waves in the <span class="hlt">eddy</span>-ocean system are computed by a shooting method. Both <span class="hlt">eddies</span> are found to be unstable in motionless ocean, yet in a constant PV-ocean no instabilities are found using the exact same numerical search. While many <span class="hlt">eddy</span> structures can be hypothesized there are only a handful of physical mechanisms for instability and in these <span class="hlt">eddies</span> the assumed constant PV-ocean negates many of these physical mechanisms for instability</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080045524&hterms=tunneling+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtunneling%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080045524&hterms=tunneling+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtunneling%2Bcurrent"><span>Development of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Techniques for Detection of Deep Fatigue Cracks in Multi-Layer Airframe Components</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Russell A.</p> <p>2008-01-01</p> <p>Thick, multi-layer aluminum structure has been widely used in aircraft design in critical wing splice areas. The multi-layer structure generally consists of three or four aluminum layers with different geometry and varying thickness, which are held together with fasteners. The detection of cracks under fasteners with ultrasonic techniques in subsurface layers away from the skin is impeded primarily by interlayer bonds and faying sealant condition. Further, assessment of such sealant condition is extremely challenging in terms of complexity of structure, limited access, and inspection cost. Although <span class="hlt">Eddy</span> <span class="hlt">current</span> techniques can be applied on in-service aircraft from the exterior of the skin without knowing sealant condition, the <span class="hlt">current</span> <span class="hlt">eddy</span> <span class="hlt">current</span> techniques are not able to detect defects with wanted sensitivity. In this work a series of low frequency <span class="hlt">eddy</span> <span class="hlt">current</span> probes have been designed, fabricated and tested for this application. A probe design incorporating a shielded magnetic field sensor concentrically located in the interior of a drive coil has been employed to enable a localized deep diffusion of the electromagnetic field into the part under test. Due to the required low frequency inspections, probes have been testing using a variety of magnetic field sensors (pickup coil, giant magneto-resistive, anisotropic magneto-resistive, and spin-dependent tunneling). The probe designs as well as capabilities based upon a target inspection for sub-layer cracking in an airframe wing spar joint is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930043910&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930043910&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEddy%2Bcurrent"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> characterization of magnetic treatment of nickel 200</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chern, E. J.</p> <p>1993-01-01</p> <p><span class="hlt">Eddy</span> <span class="hlt">current</span> methods have been applied to characterize the effect of magnetic treatments on component service-life extension. Coil impedance measurements were acquired and analyzed on nickel 200 specimens that have been subjected to many mechanical and magnetic engineering processes: annealing, applied strain, magnetic field, shot peening, and magnetic field after peening. Experimental results have demonstrated a functional relationship between coil impedance, resistance and reactance, and specimens subjected to various engineering processes. It has shown that magnetic treatment does induce changes in electromagnetic properties of nickel 200 that then exhibit evidence of stress relief. However, further fundamental studies are necessary for a thorough understanding of the exact mechanism of the magnetic field processing effect on machine-tool service life.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1433514-induced-eddy-currents-simple-conductive-geometries-mathematical-formalism-describes-excitation-electrical-eddy-currents-time-varying-magnetic-field','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1433514-induced-eddy-currents-simple-conductive-geometries-mathematical-formalism-describes-excitation-electrical-eddy-currents-time-varying-magnetic-field"><span>Induced <span class="hlt">Eddy</span> <span class="hlt">Currents</span> in Simple Conductive Geometries: Mathematical Formalism Describes the Excitation of Electrical <span class="hlt">Eddy</span> <span class="hlt">Currents</span> in a Time-Varying Magnetic Field</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Nagel, James R.</p> <p>2017-12-22</p> <p>In this paper, a complete mathematical formalism is introduced to describe the excitation of electrical <span class="hlt">eddy</span> <span class="hlt">currents</span> due to a time-varying magnetic field. The process works by applying a quasistatic approximation to Ampere's law and then segregating the magnetic field into impressed and induced terms. The result is a nonhomogeneous vector Helmholtz equation that can be analytically solved for many practical geometries. Four demonstration cases are then solved under a constant excitation field over all space—an infinite slab in one dimension, a longitudinal cylinder in two dimensions, a transverse cylinder in two dimensions, and a sphere in three dimensions. Numericalmore » simulations are also performed in parallel with analytic computations, all of which verify the accuracy of the derived expressions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1433514-induced-eddy-currents-simple-conductive-geometries-mathematical-formalism-describes-excitation-electrical-eddy-currents-time-varying-magnetic-field','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1433514-induced-eddy-currents-simple-conductive-geometries-mathematical-formalism-describes-excitation-electrical-eddy-currents-time-varying-magnetic-field"><span>Induced <span class="hlt">Eddy</span> <span class="hlt">Currents</span> in Simple Conductive Geometries: Mathematical Formalism Describes the Excitation of Electrical <span class="hlt">Eddy</span> <span class="hlt">Currents</span> in a Time-Varying Magnetic Field</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nagel, James R.</p> <p></p> <p>In this paper, a complete mathematical formalism is introduced to describe the excitation of electrical <span class="hlt">eddy</span> <span class="hlt">currents</span> due to a time-varying magnetic field. The process works by applying a quasistatic approximation to Ampere's law and then segregating the magnetic field into impressed and induced terms. The result is a nonhomogeneous vector Helmholtz equation that can be analytically solved for many practical geometries. Four demonstration cases are then solved under a constant excitation field over all space—an infinite slab in one dimension, a longitudinal cylinder in two dimensions, a transverse cylinder in two dimensions, and a sphere in three dimensions. Numericalmore » simulations are also performed in parallel with analytic computations, all of which verify the accuracy of the derived expressions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917050Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917050Z"><span>Mesoscale <span class="hlt">eddies</span> control meridional heat flux variability in the subpolar North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun</p> <p>2017-04-01</p> <p>The meridional heat flux in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide heat flux across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic <span class="hlt">Current</span> (NAC) carries relatively warm and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding heat flux in this <span class="hlt">eddy</span>-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale <span class="hlt">eddy</span> like circulation pattern and northward NAC circulation pattern. When a mesoscale <span class="hlt">eddy</span> is generated, the rotational <span class="hlt">currents</span> associated with the <span class="hlt">eddy</span> lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no <span class="hlt">eddy</span>. The transition between the two regimes <span class="hlt">coupled</span> with the strong temperature front in the Iceland basin can modify the meridional heat flux on the order of 0.3PW, which is the dominant source for the heat flux change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional heat flux variability along the section between Greenland and Scotland. Therefore, mesoscale <span class="hlt">eddies</span> in the Iceland Basin provide important dynamics to control the meridional heat flux variability in the subpolar North Atlantic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1949p0002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1949p0002B"><span>Temperature sensitivity study of <span class="hlt">eddy</span> <span class="hlt">current</span> and digital gauge probes for nuclear fuel rod oxide measurement</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beck, Faith R.; Lind, R. Paul; Smith, James A.</p> <p>2018-04-01</p> <p>Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: <span class="hlt">eddy</span> <span class="hlt">current</span> and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the <span class="hlt">eddy</span> <span class="hlt">current</span> and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the <span class="hlt">eddy</span> <span class="hlt">current</span> and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NTE....26...57M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NTE....26...57M"><span>Numerical modelling as a cost-reduction tool for probability of detection of bolt hole <span class="hlt">eddy</span> <span class="hlt">current</span> testing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.</p> <p>2011-03-01</p> <p>Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of <span class="hlt">eddy</span> <span class="hlt">current</span> testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the <span class="hlt">eddy</span> <span class="hlt">current</span> signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for <span class="hlt">eddy</span> <span class="hlt">current</span> signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled <span class="hlt">eddy</span> <span class="hlt">current</span> signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.4503R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.4503R"><span>Quantifying mesoscale <span class="hlt">eddies</span> in the Lofoten Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raj, R. P.; Johannessen, J. A.; Eldevik, T.; Nilsen, J. E. Ø.; Halo, I.</p> <p>2016-07-01</p> <p>The Lofoten Basin is the most <span class="hlt">eddy</span> rich region in the Norwegian Sea. In this paper, the characteristics of these <span class="hlt">eddies</span> are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic <span class="hlt">eddies</span> in the Lofoten Basin from more than 10,000 altimeter-based <span class="hlt">eddy</span> observations. The <span class="hlt">eddies</span> are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the <span class="hlt">eddies</span> are studied in detail. The anticyclonic <span class="hlt">eddies</span> in the Lofoten Basin are the most long-lived <span class="hlt">eddies</span> (>60 days), especially in the western part of the basin. We reveal two hotspots of <span class="hlt">eddy</span> occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of <span class="hlt">eddies</span> in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope <span class="hlt">current</span> to the <span class="hlt">eddies</span> during winter. An automated colocation of surface drifters trapped inside the altimeter-based <span class="hlt">eddies</span> are used to corroborate the orbital speed of the anticyclonic and cyclonic <span class="hlt">eddies</span>. Moreover, the vertical structure of the altimeter-based <span class="hlt">eddies</span> is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of <span class="hlt">eddies</span> in transport of heat and biomass from the slope <span class="hlt">current</span> to the Lofoten Basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26703608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26703608"><span>Fatigue Crack Length Sizing Using a Novel Flexible <span class="hlt">Eddy</span> <span class="hlt">Current</span> Sensor Array.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying</p> <p>2015-12-21</p> <p>The <span class="hlt">eddy</span> <span class="hlt">current</span> probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar <span class="hlt">eddy</span> <span class="hlt">current</span> sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29662240','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29662240"><span>Microcrack healing in non-ferrous metal tubes through <span class="hlt">eddy</span> <span class="hlt">current</span> pulse treatment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Wenchen; Yang, Chuan; Yu, Haiping; Jin, Xueze; Guo, Bin; Shan, Debin</p> <p>2018-04-16</p> <p>This study proposed a novel method to heal microcrack within Mg alloy tubes using high density <span class="hlt">eddy</span> <span class="hlt">current</span> pulse treatment (ECPT). Through electromagnetic induction inside a copper coil connected with a high density pulse power source supply, the high density (greater than 5 × 10 9  A/m 2 ) and short duration <span class="hlt">eddy</span> <span class="hlt">current</span> was generated in tube specimens of Mg alloy. The results show that the microcracks in tube specimens was healed evidently and the mechanical properties of the tubes subjected to ECPT were improved simultaneously. The crack healing during ECPT was ascribed to not only the thermal stress around the microcrack tips and the softening or melting of metals in the vicinity of microcrack tips, but also the squeezing action acted by the Lorentz force. In the inward-discharging scheme, both the compressive radial stress and tangential stress induced by the Lorentz force contributed to more sufficient crack healing and thus better mechanical properties of tube specimens after the ECPT experiment, compared to the outward-discharging scheme. The ECPT can heal microcracks automatically without directly contacting tubular specimens and is not limited by the length of tubular workpieces, exhibiting great potential for crack healing in non-ferrous alloy tubes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4721828','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4721828"><span>Fatigue Crack Length Sizing Using a Novel Flexible <span class="hlt">Eddy</span> <span class="hlt">Current</span> Sensor Array</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying</p> <p>2015-01-01</p> <p>The <span class="hlt">eddy</span> <span class="hlt">current</span> probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar <span class="hlt">eddy</span> <span class="hlt">current</span> sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm. PMID:26703608</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..289a2021D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..289a2021D"><span>Research of aluminum alloys with using <span class="hlt">eddy-current</span> transducers on the basis of cores of various form</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dmitriev, S. F.; Ishkov, A. V.; Katasonov, A. O.; Malikov, V. N.; Sagalakov, A. M.</p> <p>2018-01-01</p> <p>The research aims to develop a microminiature <span class="hlt">eddy</span> <span class="hlt">current</span> transducer for aluminum alloys. The research topic is considered relevant due to the need for evaluation and forecasting of safe operating life of aluminum. A microminiature transformer-type transducer was designed, which enables to perform local investigations of unferromagnetic materials using <span class="hlt">eddy-current</span> method based on local studies conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of aluminium. Cores with different shapes were used in this work. Test results are reported for a flaws in the form of hidden slits and apertures inside the slabs is derived for excitation coil frequencies of 300-700 Hz.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27376306','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27376306"><span>Design of Diaphragm and Coil for Stable Performance of an <span class="hlt">Eddy</span> <span class="hlt">Current</span> Type Pressure Sensor.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Hyo Ryeol; Lee, Gil Seung; Kim, Hwa Young; Ahn, Jung Hwan</p> <p>2016-07-01</p> <p>The aim of this work was to develop an <span class="hlt">eddy</span> <span class="hlt">current</span> type pressure sensor and investigate its fundamental characteristics affected by the mechanical and electrical design parameters of sensor. The sensor has two key components, i.e., diaphragm and coil. On the condition that the outer diameter of sensor is 10 mm, two key parts should be designed so as to keep a good linearity and sensitivity. Experiments showed that aluminum is the best target material for <span class="hlt">eddy</span> <span class="hlt">current</span> detection. A round-grooved diaphragm is suggested in order to measure more precisely its deflection caused by applied pressures. The design parameters of a round-grooved diaphragm can be selected depending on the measuring requirements. A developed pressure sensor with diaphragm of t = 0.2 mm and w = 1.05 mm was verified to measure pressure up to 10 MPa with very good linearity and errors of less than 0.16%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10599E..0UM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10599E..0UM"><span>Characterization and optimization of spiral <span class="hlt">eddy</span> <span class="hlt">current</span> coils for in-situ crack detection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandache, Catalin</p> <p>2018-03-01</p> <p>In-situ condition-based maintenance is making strides in the aerospace industry and it is seen as an alternative to scheduled, time-based maintenance. With fatigue cracks originating from fastener holes as the main reason for structural failures, embedded <span class="hlt">eddy</span> <span class="hlt">current</span> coils are a viable non-invasive solution for their timely detection. The development and potential broad use of these coils are motivated by a few consistent arguments: (i) inspection of structures of complicated geometries and hard to access areas, that often require disassembly, (ii) alternative to regular inspection actions that could introduce inadvertent damage, (iii) for structures that have short inspection intervals, and (iv) for repaired structures where fastener holes contain bushings and prevent further bolt-hole inspections. Since the spiral coils are aiming at detecting radial cracks emanating from the fastener holes, their design parameters should allow for high inductance, low ohmic losses and power requirements, as well as optimal size and high sensitivity to discontinuities. In this study, flexible, surface conformable, spiral <span class="hlt">eddy</span> <span class="hlt">current</span> coils are empirically investigated on mock-up specimens, while numerical analysis is performed for their optimization and design improvement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5046U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5046U"><span><span class="hlt">Eddy</span>-driven nutrient transport and associated upper-ocean primary production along the Kuroshio</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu</p> <p>2017-06-01</p> <p>The Kuroshio is one of the most energetic western boundary <span class="hlt">currents</span> accompanied by vigorous <span class="hlt">eddy</span> activity both on mesoscale and submesoscale, which affects biogeochemical processes in the upper ocean. We examine the primary production around the Kuroshio off Japan using a climatological ocean modeling based on the Regional Oceanic Modeling System (ROMS) <span class="hlt">coupled</span> with a nitrogen-based nutrient, phytoplankton and zooplankton, and detritus (NPZD) biogeochemical model in a submesoscale <span class="hlt">eddy</span>-permitting configuration. The model indicates significant differences of the biogeochemical responses to <span class="hlt">eddy</span> activities in the Kuroshio Region (KR) and Kuroshio Extension Region (KE). In the KR, persisting cyclonic <span class="hlt">eddies</span> developed between the Kuroshio and coastline are responsible for upwelling-induced eutrophication. However, the <span class="hlt">eddy</span>-induced vertical nutrient flux counteracts and promotes pronounced southward and downward diapycnal nutrient transport from the mixed-layer down beneath the main body of the Kuroshio, which suppresses the near-surface productivity. In contrast, the KE has a 23.5% higher productivity than the KR, even at comparable <span class="hlt">eddy</span> intensity. Upward nutrient transport prevails near the surface due to predominant cyclonic <span class="hlt">eddies</span>, particularly to the north of the KE, where the downward transport barely occurs, except at depths deeper than 400 m and to a much smaller degree than in the KR. The <span class="hlt">eddy</span> energy conversion analysis reveals that the combination of shear instability around the mainstream of the Kuroshio with prominent baroclinic instability near the Kuroshio front is essential for the generation of <span class="hlt">eddies</span> in the KR, leading to the increase of the <span class="hlt">eddy</span>-induced vertical nitrate transport around the Kuroshio.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B44B0379X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B44B0379X"><span>Impacts of mesoscale <span class="hlt">eddies</span> on biogeochemical cycles in the South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiu, P.; Chai, F.; Guo, M.</p> <p>2016-02-01</p> <p>Biogeochemical cycles associated with mesoscale <span class="hlt">eddies</span> in the South China Sea (SCS) are investigated by using satellite surface chlorophyll concentration, altimeter data, satellite sea surface temperature, and a <span class="hlt">coupled</span> physical-biogeochemical Pacific Ocean model (ROMS-CoSiNE) simulation for the period from 1991 to 2007. Considering the annual mean, composite analysis reveals that cyclonic <span class="hlt">eddies</span> are associated with higher concentrations of nutrients, phytoplankton and zooplankton while the anticyclonic <span class="hlt">eddies</span> are with lower concentrations compared with surrounding waters, which is generally controlled by the <span class="hlt">eddy</span> pumping mechanism. Dipole structures of vertical fluxes with net upward motion in cyclonic <span class="hlt">eddies</span> and net downward motion in anticyclonic <span class="hlt">eddies</span> are also revealed. During the lifetime of an <span class="hlt">eddy</span>, the evolutions of physical, biological, and chemical structures are not linearly <span class="hlt">coupled</span> at the <span class="hlt">eddy</span> core where plankton grow and composition of the community depend not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship. Considering the seasonal variability, we find <span class="hlt">eddy</span> pumping mechanisms are generally dominant in winter and <span class="hlt">eddy</span> advection effects are dominant in summer. Over the space, variability of chlorophyll to the west of Luzon Strait and off northwest of Luzon Island are mainly controlled by <span class="hlt">eddy</span> pumping mechanism. In regions off the Vietnam coast, chlorophyll distributions are generally associated with horizontal <span class="hlt">eddy</span> advection. This research highlights different mesoscale mechanisms affecting biological structures that can potentially disturb ocean biogeochemical cycling processes in the South China Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10123845','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10123845"><span>Flowpath evaluation and reconnaissance by remote field <span class="hlt">Eddy</span> <span class="hlt">current</span> testing (FERRET)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smoak, A.E.; Zollinger, W.T.</p> <p>1993-12-31</p> <p>This document describes the design and development of FERRET (Flowpath Evaluation and Reconnaisance by Remote-field <span class="hlt">Eddy</span> <span class="hlt">current</span> Testing). FERRET is a system for inspecting the steel pipes which carry cooling water to underground nuclear waste storage tanks. The FERRET system has been tested in a small scale cooling pipe mock-up, an improved full scale mock-up, and in flaw detection experiments. Early prototype designs of FERRET and the FERRET launcher (a device which inserts, moves, and retrieves probes from a piping system) as well as the field-ready design are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......235H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......235H"><span>Parallel distributed, reciprocal Monte Carlo radiation in <span class="hlt">coupled</span>, large <span class="hlt">eddy</span> combustion simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hunsaker, Isaac L.</p> <p></p> <p>Radiation is the dominant mode of heat transfer in high temperature combustion environments. Radiative heat transfer affects the gas and particle phases, including all the associated combustion chemistry. The radiative properties are in turn affected by the turbulent flow field. This bi-directional <span class="hlt">coupling</span> of radiation turbulence interactions poses a major challenge in creating parallel-capable, high-fidelity combustion simulations. In this work, a new model was developed in which reciprocal monte carlo radiation was <span class="hlt">coupled</span> with a turbulent, large-<span class="hlt">eddy</span> simulation combustion model. A technique wherein domain patches are stitched together was implemented to allow for scalable parallelism. The combustion model runs in parallel on a decomposed domain. The radiation model runs in parallel on a recomposed domain. The recomposed domain is stored on each processor after information sharing of the decomposed domain is handled via the message passing interface. Verification and validation testing of the new radiation model were favorable. Strong scaling analyses were performed on the Ember cluster and the Titan cluster for the CPU-radiation model and GPU-radiation model, respectively. The model demonstrated strong scaling to over 1,700 and 16,000 processing cores on Ember and Titan, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1096..327C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1096..327C"><span>Pulsed <span class="hlt">Eddy</span> <span class="hlt">Current</span> Probe Design Based on Transient Circuit Analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cadeau, Trevor J.; Krause, Thomas W.</p> <p>2009-03-01</p> <p>Probe design parameters affecting depth of penetration of pulsed <span class="hlt">eddy</span> <span class="hlt">currents</span> in multi-layer aluminum 2024-T3 were examined. Several probe designs were evaluated for their ability to detect a discontinuity at the bottom of a stack of aluminum plates. The reflection type probes, consisting of pick-up coil and encircling drive coil, were characterized based on their transient response to a square pulse excitation. Probes with longer fundamental time constants, equivalent to a lower driving frequency, generated greater depth of penetration. However, additional factors such as inductive and resistive load, and excessive coil heating were also factors that limited signal-to-noise response with increasing layer thickness.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1949w0009B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1949w0009B"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> proximity measurement of perpendicular tubes from within pressure tubes in CANDU nuclear reactors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, P. F. D.; Underhill, P. R.; Morelli, J.; Krause, T. W.</p> <p>2018-04-01</p> <p>Fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of two non-concentric tubes; an inner pressure tube (PT) and a larger diameter calandria tube (CT). Up to 400 horizontally mounted fuel channels are contained within a calandria vessel, which also holds the heavy water moderator. Certain fuel channels pass perpendicularly over horizontally oriented tubes (nozzles) that are part of the reactor's liquid injection shutdown system (LISS). Due to sag, these fuel channels are at risk of coming into contact with the LISS nozzles. In the event of contact between the LISS nozzle and CT, flow-induced vibrations from within the moderator could lead to fretting and deformation of the CT. LISS nozzle proximity to CTs is <span class="hlt">currently</span> measured optically from within the calandria vessel, but from outside the fuel channels. Measurement by an independent means would provide confidence in optical results and supplement cases where optical observations are not possible. Separation of PT and CT, known as gap, is monitored from within the PT using a transmit-receive <span class="hlt">eddy</span> <span class="hlt">current</span> probe. Investigation of the <span class="hlt">eddy</span> <span class="hlt">current</span> based gap probe as a tool to also measure proximity of LISS nozzles was carried out experimentally in this work. <span class="hlt">Eddy</span> <span class="hlt">current</span> response as a function of LISS-PT proximity was recorded. When PT-CT gap, PT wall thickness, PT resistivity and probe lift-off variations were not present this dependence could be used to determine the LISS-PT proximity. This method has the potential to provide LISS-CT proximity using existing gap measurement data. Obtaining LISS nozzle proximity at multiple inspection intervals could be used to provide an estimate of the time to LISS-CT contact, and thereby provide a means of optimizing maintenance schedules.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000750.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000750.html"><span><span class="hlt">Eddies</span> in the Southern Ocean</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-08</p> <p>The cloud cover over the Southern Ocean occasionally parts as it did on January 1, 2015 just west of the Drake Passage where the VIIRS instrument on the Suomi NPP satellite glimpsed the above collection of ocean-color delineated <span class="hlt">eddies</span> which have diameters ranging from a <span class="hlt">couple</span> of kilometers to a <span class="hlt">couple</span> of hundred kilometers. Recent studies indicate that <span class="hlt">eddy</span> activity has been increasing in the Southern Ocean with possible implications for climate change. Credit: NASA's OceanColor/Suomi NPP/VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15616560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15616560"><span>Break-up of the Atlantic deep western boundary <span class="hlt">current</span> into <span class="hlt">eddies</span> at 8 degrees S.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dengler, M; Schott, F A; Eden, C; Brandt, P; Fischer, J; Zantopp, R J</p> <p>2004-12-23</p> <p>The existence in the ocean of deep western boundary <span class="hlt">currents</span>, which connect the high-latitude regions where deep water is formed with upwelling regions as part of the global ocean circulation, was postulated more than 40 years ago. These ocean <span class="hlt">currents</span> have been found adjacent to the continental slopes of all ocean basins, and have core depths between 1,500 and 4,000 m. In the Atlantic Ocean, the deep western boundary <span class="hlt">current</span> is estimated to carry (10-40) x 10(6) m3 s(-1) of water, transporting North Atlantic Deep Water--from the overflow regions between Greenland and Scotland and from the Labrador Sea--into the South Atlantic and the Antarctic circumpolar <span class="hlt">current</span>. Here we present direct velocity and water mass observations obtained in the period 2000 to 2003, as well as results from a numerical ocean circulation model, showing that the Atlantic deep western boundary <span class="hlt">current</span> breaks up at 8 degrees S. Southward of this latitude, the transport of North Atlantic Deep Water into the South Atlantic Ocean is accomplished by migrating <span class="hlt">eddies</span>, rather than by a continuous flow. Our model simulation indicates that the deep western boundary <span class="hlt">current</span> breaks up into <span class="hlt">eddies</span> at the present intensity of meridional overturning circulation. For weaker overturning, continuation as a stable, laminar boundary flow seems possible.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/7222766','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/7222766"><span>Harmonics suppression of vacuum chamber <span class="hlt">eddy</span> <span class="hlt">current</span> induced fields with application to the Superconducting Super Collider (SSC) Low Energy Booster (LEB) Magnets</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schlueter, R.D.; Halbach, K.</p> <p>1991-12-04</p> <p>This memo presents the formulation of an expression for <span class="hlt">eddy</span> <span class="hlt">currents</span> induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber <span class="hlt">eddy</span> <span class="hlt">current</span> induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1027456','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1027456"><span>Mountable <span class="hlt">eddy</span> <span class="hlt">current</span> sensor for in-situ remote detection of surface and sub-surface fatigue cracks</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Yepez, III, Esteban; Roach, Dennis P [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; DeLong, Waylon A [Albuquerque, NM</p> <p>2011-09-06</p> <p>A wireless, integrated, mountable, portable, battery-operated, non-contact <span class="hlt">eddy</span> <span class="hlt">current</span> sensor that provides similar accuracy to 1970's laboratory scale equipment (e.g., a Hewlett-Packard GP4194A Impedance Analyzer) at a fraction of the size and cost.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyE..101..224Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyE..101..224Y"><span><span class="hlt">Current</span> in nanojunctions: Effects of reservoir <span class="hlt">coupling</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yadalam, Hari Kumar; Harbola, Upendra</p> <p>2018-07-01</p> <p>We study the effect of system reservoir <span class="hlt">coupling</span> on <span class="hlt">currents</span> flowing through quantum junctions. We consider two simple double-quantum dot configurations <span class="hlt">coupled</span> to two external fermionic reservoirs and study the net <span class="hlt">current</span> flowing between the two reservoirs. The net <span class="hlt">current</span> is partitioned into <span class="hlt">currents</span> carried by the eigenstates of the system and by the coherences between the eigenstates induced due to <span class="hlt">coupling</span> with the reservoirs. We find that <span class="hlt">current</span> carried by populations is always positive whereas <span class="hlt">current</span> carried by coherences are negative for large <span class="hlt">couplings</span>. This results in a non-monotonic dependence of the net <span class="hlt">current</span> on the <span class="hlt">coupling</span> strength. We find that in certain cases, the net <span class="hlt">current</span> can vanish at large <span class="hlt">couplings</span> due to cancellation between <span class="hlt">currents</span> carried by the eigenstates and by the coherences. These results provide new insights into the non-trivial role of system-reservoir <span class="hlt">couplings</span> on electron transport through quantum dot junctions. In the presence of weak coulomb interactions, net <span class="hlt">current</span> as a function of system reservoir <span class="hlt">coupling</span> strength shows similar trends as for the non-interacting case.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864755','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864755"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> inspection tool which is selectively operable in a discontinuity detection mode and a discontinuity magnitude mode</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Petrini, Richard R.; Van Lue, Dorin F.</p> <p>1983-01-01</p> <p>A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises <span class="hlt">eddy</span> <span class="hlt">current</span> sensing equipment (12) with a probe coil (11), and associated coaxial coil cable (13), coil energizing means (21), and circuit means (21, 12) responsive to impedance changes in the coil as effected by induced <span class="hlt">eddy</span> <span class="hlt">currents</span> in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube 17 of fiberoptic scope 10. The scope 10 is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means (19, 20) for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The <span class="hlt">eddy</span> <span class="hlt">current</span> sensing equipment includes a tone generator 30 for generating audibly signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signalling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7003172','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7003172"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> inspection tool which is selectively operable in a discontinuity detection mode and a discontinuity magnitude mode</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Petrini, R.R.; Van Lue, D.F.</p> <p>1983-10-25</p> <p>A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises <span class="hlt">eddy</span> <span class="hlt">current</span> sensing equipment with a probe coil, and associated coaxial coil cable, coil energizing means, and circuit means responsive to impedance changes in the coil as effected by induced <span class="hlt">eddy</span> <span class="hlt">currents</span> in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube of fiberoptic scope. The scope is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The <span class="hlt">eddy</span> <span class="hlt">current</span> sensing equipment includes a tone generator 30 for generating audibly signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signaling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level. 5 figs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED086443.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED086443.pdf"><span>Nondestructive Testing <span class="hlt">Eddy</span> <span class="hlt">Current</span> Equipment, Methods and Applications RQA/M1-5330.12 (V-II).</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.</p> <p></p> <p>As one in the series of programmed instruction handbooks, prepared by the U. S. space program, home study material is presented in this volume concerning familiarization and orientation on <span class="hlt">eddy</span> <span class="hlt">current</span> testing. The subject is presented under the following headings: Test Coils, Methods and Indications, and Applications. High product quality and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25459883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25459883"><span>Mapping B(1)-induced <span class="hlt">eddy</span> <span class="hlt">current</span> effects near metallic structures in MR images: a comparison of simulation and experiment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vashaee, S; Goora, F; Britton, M M; Newling, B; Balcom, B J</p> <p>2015-01-01</p> <p>Magnetic resonance imaging (MRI) in the presence of metallic structures is very common in medical and non-medical fields. Metallic structures cause MRI image distortions by three mechanisms: (1) static field distortion through magnetic susceptibility mismatch, (2) <span class="hlt">eddy</span> <span class="hlt">currents</span> induced by switched magnetic field gradients and (3) radio frequency (RF) induced <span class="hlt">eddy</span> <span class="hlt">currents</span>. Single point ramped imaging with T1 enhancement (SPRITE) MRI measurements are largely immune to susceptibility and gradient induced <span class="hlt">eddy</span> <span class="hlt">current</span> artifacts. As a result, one can isolate the effects of metal objects on the RF field. The RF field affects both the excitation and detection of the magnetic resonance (MR) signal. This is challenging with conventional MRI methods, which cannot readily separate the three effects. RF induced MRI artifacts were investigated experimentally at 2.4 T by analyzing image distortions surrounding two geometrically identical metallic strips of aluminum and lead. The strips were immersed in agar gel doped with contrast agent and imaged employing the conical SPRITE sequence. B1 mapping with pure phase encode SPRITE was employed to measure the B1 field around the strips of metal. The strip geometry was chosen to mimic metal electrodes employed in electrochemistry studies. Simulations are employed to investigate the RF field induced <span class="hlt">eddy</span> <span class="hlt">currents</span> in the two metallic strips. The RF simulation results are in good agreement with experimental results. Experimental and simulation results show that the metal has a pronounced effect on the B1 distribution and B1 amplitude in the surrounding space. The electrical conductivity of the metal has a minimal effect. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JAP....75.6048P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JAP....75.6048P"><span>Three-dimensional <span class="hlt">eddy</span> <span class="hlt">current</span> solution of a polyphase machine test model (abstract)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado</p> <p>1994-05-01</p> <p>This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the <span class="hlt">current</span> redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes <span class="hlt">eddy</span> <span class="hlt">currents</span> to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced <span class="hlt">currents</span> are calculated and compared with the values found from the analytical solution. The distribution of the <span class="hlt">eddy</span> <span class="hlt">currents</span> is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060052518','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060052518"><span>Development of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Technique for the Detection of Stress Corrosion Cracking in Space Shuttle Primary Reaction Control Thrusters</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Buzz; Simpson, John; Koshti, Ajay</p> <p>2006-01-01</p> <p>A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed <span class="hlt">eddy</span> <span class="hlt">current</span> probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal <span class="hlt">eddy</span> <span class="hlt">current</span> probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed <span class="hlt">eddy</span> <span class="hlt">current</span> inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20655364-simplified-numerical-analysis-ect-probe-eddy-current-benchmark-problem','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20655364-simplified-numerical-analysis-ect-probe-eddy-current-benchmark-problem"><span>Simplified Numerical Analysis of ECT Probe - <span class="hlt">Eddy</span> <span class="hlt">Current</span> Benchmark Problem 3</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sikora, R.; Chady, T.; Gratkowski, S.</p> <p>2005-04-09</p> <p>In this paper a third <span class="hlt">eddy</span> <span class="hlt">current</span> benchmark problem is considered. The objective of the benchmark is to determine optimal operating frequency and size of the pancake coil designated for testing tubes made of Inconel. It can be achieved by maximization of the change in impedance of the coil due to a flaw. Approximation functions of the probe (coil) characteristic were developed and used in order to reduce number of required calculations. It results in significant speed up of the optimization process. An optimal testing frequency and size of the probe were achieved as a final result of the calculation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1949k0006K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1949k0006K"><span>Model based optimization of driver-pickup separation for <span class="hlt">eddy</span> <span class="hlt">current</span> measurement of gap</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, G.; Morelli, J.; Krause, T. W.</p> <p>2018-04-01</p> <p>The fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of a pressure tube (PT) contained within a larger diameter calandria tube (CT). The separation between the tubes, known as the PT-CT gap, ensures PT hydride blisters, which could lead to potential cracking of the PT, do not develop. Therefore, accurate measurements are required to confirm that contact between PT and CT is not imminent. Gap measurement uses an <span class="hlt">eddy</span> <span class="hlt">current</span> probe. However this probe is sensitive to lift-off variations, which can adversely affect estimated gap. A validated analytical flat plate model of <span class="hlt">eddy</span> <span class="hlt">current</span> response to gap was used to examine the effect of driver-pickup spacing on lift-off and response to gap at a frequency of 4 kHz, which is used for in-reactor measurements. This model was compared against, and shown to have good agreement with, a COMSOL® finite element method (FEM) model. The optimum coil separation, which included the constraint of coil size, was found to be 11 mm, resulting in a phase response between lift-off and response to change in gap of 66°. This work demonstrates the advantages of using analytical models for optimizing coil designs for measurement of parameters that may negatively influence the outcome of an inspection measurement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4963313','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4963313"><span>A Novel Application of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Braking for Functional Strength Training during Gait</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Washabaugh, Edward P.; Claflin, Edward S.; Gillespie, R. Brent; Krishnan, Chandramouli</p> <p>2016-01-01</p> <p>Functional strength training is becoming increasingly popular when rehabilitating individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during walking is provided using cable robots or weights that are secured to the distal shank of the subject. However, there exists no device that is wearable and capable of providing resistance across the joint, allowing over ground gait training. In this study, we created a lightweight and wearable device using <span class="hlt">eddy</span> <span class="hlt">current</span> braking to provide resistance to the knee. We then validated the device by having subjects wear it during a walking task through varying resistance levels. Electromyography and kinematics were collected to assess the biomechanical effects of the device on the wearer. We found that <span class="hlt">eddy</span> <span class="hlt">current</span> braking provided resistance levels suitable for functional strength training of leg muscles in a package that is both lightweight and wearable. Applying resistive forces at the knee joint during gait resulted in significant increases in muscle activation of many of the muscles tested. A brief period of training also resulted in significant aftereffects once the resistance was removed. These results support the feasibility of the device for functional strength training during gait. Future research is warranted to test the clinical potential of the device in an injured population. PMID:26817456</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26817456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26817456"><span>A Novel Application of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Braking for Functional Strength Training During Gait.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Washabaugh, Edward P; Claflin, Edward S; Gillespie, R Brent; Krishnan, Chandramouli</p> <p>2016-09-01</p> <p>Functional strength training is becoming increasingly popular when rehabilitating individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during walking is provided using cable robots or weights that are secured to the distal shank of the subject. However, there exists no device that is wearable and capable of providing resistance across the joint, allowing over ground gait training. In this study, we created a lightweight and wearable device using <span class="hlt">eddy</span> <span class="hlt">current</span> braking to provide resistance to the knee. We then validated the device by having subjects wear it during a walking task through varying resistance levels. Electromyography and kinematics were collected to assess the biomechanical effects of the device on the wearer. We found that <span class="hlt">eddy</span> <span class="hlt">current</span> braking provided resistance levels suitable for functional strength training of leg muscles in a package that is both lightweight and wearable. Applying resistive forces at the knee joint during gait resulted in significant increases in muscle activation of many of the muscles tested. A brief period of training also resulted in significant aftereffects once the resistance was removed. These results support the feasibility of the device for functional strength training during gait. Future research is warranted to test the clinical potential of the device in an injured population.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820037360&hterms=current+situation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcurrent%2Bsituation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820037360&hterms=current+situation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcurrent%2Bsituation"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> probe response to open and closed surface flaws</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Auld, B. A.; Muennemann, F.; Winslow, D. K.</p> <p>1981-01-01</p> <p>A general analysis of <span class="hlt">eddy</span> <span class="hlt">current</span> response to certain types of open and closed surface flaws is presented for both standard low-frequency and ferromagnetic-resonance (FMR) probes. It is shown analytically that for two-dimensional and three-dimensional surface flaws interrogated by a uniform probe field, the crack opening sensitivity increases with the operating frequency of the probe, this behavior being due to the Faraday induction effect. Experiments with low-frequency probes operating at or below 1 MHz and with the FMR probe operating at approximately 1000 MHz confirm this increase of the crack mouth opening displacement for practical situations where the probe field is not uniform in the vicinity of the flaw.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1430..689Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1430..689Y"><span>Nonlinear, non-stationary image processing technique for <span class="hlt">eddy</span> <span class="hlt">current</span> NDE</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Guang; Dib, Gerges; Kim, Jaejoon; Zhang, Lu; Xin, Junjun; Udpa, Lalita</p> <p>2012-05-01</p> <p>Automatic analysis of <span class="hlt">eddy</span> <span class="hlt">current</span> (EC) data has facilitated the analysis of large volumes of data generated in the inspection of steam generator tubes in nuclear power plants. The traditional procedure for analysis of EC data includes data calibration, pre-processing, region of interest (ROI) detection, feature extraction and classification. Accurate ROI detection has been enhanced by pre-processing, which involves reducing noise and other undesirable components as well as enhancing defect indications in the raw measurement. This paper presents the Hilbert-Huang Transform (HHT) for feature extraction and support vector machine (SVM) for classification. The performance is shown to significantly better than the existing rule based classification approach used in industry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10930777','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10930777"><span>On the use of water phantom images to calibrate and correct <span class="hlt">eddy</span> <span class="hlt">current</span> induced artefacts in MR diffusion tensor imaging.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bastin, M E; Armitage, P A</p> <p>2000-07-01</p> <p>The accurate determination of absolute measures of diffusion anisotropy in vivo using single-shot, echo-planar imaging techniques requires the acquisition of a set of high signal-to-noise ratio, diffusion-weighted images that are free from <span class="hlt">eddy</span> <span class="hlt">current</span> induced image distortions. Such geometric distortions can be characterized and corrected in brain imaging data using magnification (M), translation (T), and shear (S) distortion parameters derived from separate water phantom calibration experiments. Here we examine the practicalities of using separate phantom calibration data to correct high b-value diffusion tensor imaging data by investigating the stability of these distortion parameters, and hence the <span class="hlt">eddy</span> <span class="hlt">currents</span>, with time. It is found that M, T, and S vary only slowly with time (i.e., on the order of weeks), so that calibration scans need not be performed after every patient examination. This not only minimises the scan time required to collect the calibration data, but also the computational time needed to characterize these <span class="hlt">eddy</span> <span class="hlt">current</span> induced distortions. Examples of how measurements of diffusion anisotropy are improved using this post-processing scheme are also presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MSSP...44..211R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MSSP...44..211R"><span>Angular approach combined to mechanical model for tool breakage detection by <span class="hlt">eddy</span> <span class="hlt">current</span> sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.</p> <p>2014-02-01</p> <p>The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using <span class="hlt">eddy</span> <span class="hlt">current</span> sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the <span class="hlt">eddy</span> <span class="hlt">current</span> sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6933K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6933K"><span>Large <span class="hlt">Eddy</span> Simulations of Compositional Density <span class="hlt">Currents</span> Flowing Over a Mobile Bed</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.</p> <p>2017-04-01</p> <p>Density <span class="hlt">currents</span> are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a <span class="hlt">current</span>. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density <span class="hlt">currents</span> scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density <span class="hlt">currents</span>. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large <span class="hlt">Eddy</span> Simulations (LES) of density <span class="hlt">currents</span> generated by lock-exchange. The <span class="hlt">currents</span> travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the <span class="hlt">current</span> (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090027875','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090027875"><span>Large-<span class="hlt">Eddy</span> Simulation: <span class="hlt">Current</span> Capabilities, Recommended Practices, and Future Research</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Georgiadis, Nicholas J.; Rizzetta, Donald P.; Fureby, Christer</p> <p>2009-01-01</p> <p>This paper presents the results of an activity by the Large <span class="hlt">Eddy</span> Simulation (LES) Working Group of the AIAA Fluid Dynamics Technical Committee to (1) address the <span class="hlt">current</span> capabilities of LES, (2) outline recommended practices and key considerations for using LES, and (3) identify future research needs to advance the capabilities and reliability of LES for analysis of turbulent flows. To address the <span class="hlt">current</span> capabilities and future needs, a survey comprised of eleven questions was posed to LES Working Group members to assemble a broad range of perspectives on important topics related to LES. The responses to these survey questions are summarized with the intent not to be a comprehensive dictate on LES, but rather the perspective of one group on some important issues. A list of recommended practices is also provided, which does not treat all aspects of a LES, but provides guidance on some of the key areas that should be considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS43C1283J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS43C1283J"><span>On Verifying <span class="hlt">Currents</span> and Other Features in the Hawaiian Islands Region Using Fully <span class="hlt">Coupled</span> Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jessen, P. G.; Chen, S.</p> <p>2014-12-01</p> <p>This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully <span class="hlt">Coupled</span> Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) <span class="hlt">coupled</span> to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean <span class="hlt">currents</span> in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream <span class="hlt">currents</span> off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM <span class="hlt">current</span> fields show some displacement of small features such as <span class="hlt">eddies</span>. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25938201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25938201"><span>Unsupervised classification of surface defects in wire rod production obtained by <span class="hlt">eddy</span> <span class="hlt">current</span> sensors.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saludes-Rodil, Sergio; Baeyens, Enrique; Rodríguez-Juan, Carlos P</p> <p>2015-04-29</p> <p>An unsupervised approach to classify surface defects in wire rod manufacturing is developed in this paper. The defects are extracted from an <span class="hlt">eddy</span> <span class="hlt">current</span> signal and classified using a clustering technique that uses the dynamic time warping distance as the dissimilarity measure. The new approach has been successfully tested using industrial data. It is shown that it outperforms other classification alternatives, such as the modified Fourier descriptors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816601S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816601S"><span>Methane fluxes above the Hainich forest by True <span class="hlt">Eddy</span> Accumulation and <span class="hlt">Eddy</span> Covariance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander</p> <p>2016-04-01</p> <p>Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True <span class="hlt">Eddy</span> Accumulation (TEA, closed-path laser spectroscopy), and <span class="hlt">eddy</span> covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The <span class="hlt">current</span> study is likely the first application of True <span class="hlt">Eddy</span> Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path <span class="hlt">eddy</span> covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True <span class="hlt">Eddy</span> Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True <span class="hlt">Eddy</span> Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path <span class="hlt">eddy</span> covariance. The open-path <span class="hlt">eddy</span> covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path <span class="hlt">eddy</span> covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26026520','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26026520"><span>Fast valve based on double-layer <span class="hlt">eddy-current</span> repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhuang, H D; Zhang, X D</p> <p>2015-05-01</p> <p>A fast valve based on the double-layer <span class="hlt">eddy-current</span> repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer <span class="hlt">eddy-current</span> coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720008638','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720008638"><span>Evaluation of <span class="hlt">eddy-current</span> proximity devices for measuring thin potassium film thicknesses</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Asadourian, A. S.</p> <p>1972-01-01</p> <p>Two <span class="hlt">eddy</span> <span class="hlt">current</span> proximity probe systems were tested over a range of 0 to 508 micrometers (0 to 20 mils) of simulated potassium film thicknesses for simulated temperatures of 66 C (150 F), 232 C (450 F), and 666 C (1230 F). The results of short time calibration tests are presented. Instrument drift was a problem throughout the testing and, without correction, may limit the use of such systems to short periods of time. Additional development will be required prior to their being usable as practical instrumentation systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29603048','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29603048"><span>Optimization of diffusion-weighted single-refocused spin-echo EPI by reducing <span class="hlt">eddy-current</span> artifacts and shortening the echo time.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shrestha, Manoj; Hok, Pavel; Nöth, Ulrike; Lienerth, Bianca; Deichmann, Ralf</p> <p>2018-03-30</p> <p>The purpose of this work was to optimize the acquisition of diffusion-weighted (DW) single-refocused spin-echo (srSE) data without intrinsic <span class="hlt">eddy-current</span> compensation (ECC) for an improved performance of ECC postprocessing. The rationale is that srSE sequences without ECC may yield shorter echo times (TE) and thus higher signal-to-noise ratios (SNR) than srSE or twice-refocused spin-echo (trSE) schemes with intrinsic ECC. The proposed method employs dummy scans with DW gradients to drive <span class="hlt">eddy</span> <span class="hlt">currents</span> into a steady state before data acquisition. Parameters of the ECC postprocessing algorithm were also optimized. Simulations were performed to obtain minimum TE values for the proposed sequence and sequences with intrinsic ECC. Experimentally, the proposed method was compared with standard DW-trSE imaging, both in vitro and in vivo. Simulations showed substantially shorter TE for the proposed method than for methods with intrinsic ECC when using shortened echo readouts. Data of the proposed method showed a marked increase in SNR. A dummy scan duration of at least 1.5 s improved performance of the ECC postprocessing algorithm. Changes proposed for the DW-srSE sequence and for the parameter setting of the postprocessing ECC algorithm considerably reduced <span class="hlt">eddy-current</span> artifacts and provided a higher SNR.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.120..120H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.120..120H"><span>Will high-resolution global ocean models benefit <span class="hlt">coupled</span> predictions on short-range to climate timescales?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.</p> <p>2017-12-01</p> <p>As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards <span class="hlt">coupled</span> prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global <span class="hlt">coupled</span> models, where the ocean component explicitly represents transient mesoscale <span class="hlt">eddies</span> and narrow boundary <span class="hlt">currents</span>. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from <span class="hlt">coupled</span> predictions. Impacts of the mesoscale ocean in western boundary <span class="hlt">current</span> regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary <span class="hlt">currents</span> is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale <span class="hlt">eddies</span> is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in <span class="hlt">coupled</span> models with coarse resolution non-<span class="hlt">eddying</span> ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the <span class="hlt">current</span> literature that leave important questions unanswered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......410M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......410M"><span>Pulsed <span class="hlt">eddy</span> <span class="hlt">current</span> inspection of broach support plates in steam generators</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mokros, Sarah Gwendolyn</p> <p></p> <p>Steam Generators (SGs) are a critical component of nuclear reactors, employing thousands of SG tubes to convert heat generated in the reactor core into useable energy. SG tubes are supported at numerous locations by Broach Support Plates (BSPs) that have trefoil shaped holes, which prevent excessive tube vibrations, while allowing water to easily flow through the support structures. A number of degradation modes occur in SGs, such as SG tube fretting, cracking or denting, requiring periodic inspection. <span class="hlt">Currently</span>, conventional <span class="hlt">Eddy</span> <span class="hlt">Current</span> Testing (ECT) is used to non-destructively assess the condition of SG tubes and components. However, as reactors age, new modes of degradation will likely appear that may be difficult to detect and characterize using conventional ECT, such as wall loss in BSPs and build-up of corrosion products, which typically form as a hard sludge called magnetite. Pulsed <span class="hlt">Eddy</span> <span class="hlt">Current</span> (PEC) technologies are an emerging technique that is presented in this work as a method to further advance inspection techniques used in CANDURTM nuclear reactors. A PEC probe was designed to inspect the unique shape of the trefoil shaped hole to detect and characterize wall loss and the presence of magnetite in A516 carbon steel BSPs with trefoil shaped holes from within 15.9 mm (5/8") Alloy-800 SG tubes. PEC was also used to observe how measurements of wall loss were affected by the presence of magnetite. This work presents Finite Element Method (FEM) simulations and experimental results collected to observe these degradation modes. The probe was demonstrated to be capable of detecting far side wall loss as low as 20%, locating and characterizing the relative permeability of magnetite, and of detecting wall loss when magnetite was present. FEM simulations and experimental results were found to be in good agreement, suggesting that additional investigations of the effects of BSP degradation on PEC signal response may also be performed using FEM models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6725B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6725B"><span>Testing Munk's hypothesis for submesoscale <span class="hlt">eddy</span> generation using observations in the North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buckingham, Christian E.; Khaleel, Zammath; Lazar, Ayah; Martin, Adrian P.; Allen, John T.; Naveira Garabato, Alberto C.; Thompson, Andrew F.; Vic, Clément</p> <p>2017-08-01</p> <p>A high-resolution satellite image that reveals a train of coherent, submesoscale (6 km) vortices along the edge of an ocean front is examined in concert with hydrographic measurements in an effort to understand formation mechanisms of the submesoscale <span class="hlt">eddies</span>. The infrared satellite image consists of ocean surface temperatures at ˜390 m resolution over the midlatitude North Atlantic (48.69°N, 16.19°W). Concomitant altimetric observations <span class="hlt">coupled</span> with regular spacing of the <span class="hlt">eddies</span> suggest the <span class="hlt">eddies</span> result from mesoscale stirring, filamentation, and subsequent frontal instability. While horizontal shear or barotropic instability (BTI) is one mechanism for generating such <span class="hlt">eddies</span> (Munk's hypothesis), we conclude from linear theory <span class="hlt">coupled</span> with the in situ data that mixed layer or submesoscale baroclinic instability (BCI) is a more plausible explanation for the observed submesoscale vortices. Here we assume that the frontal disturbance remains in its linear growth stage and is accurately described by linear dynamics. This result likely has greater applicability to the open ocean, i.e., regions where the gradient Rossby number is reduced relative to its value along coasts and within strong <span class="hlt">current</span> systems. Given that such waters comprise an appreciable percentage of the ocean surface and that energy and buoyancy fluxes differ under BTI and BCI, this result has wider implications for open-ocean energy/buoyancy budgets and parameterizations within ocean general circulation models. In summary, this work provides rare observational evidence of submesoscale <span class="hlt">eddy</span> generation by BCI in the open ocean.<abstract type="synopsis"><title type="main">Plain Language SummaryHere, we test Munk's theory for small-scale <span class="hlt">eddy</span> generation using a unique set of satellite- and ship-based observations. We find that for one particular set of observations in the North Atlantic, the mechanism for <span class="hlt">eddy</span> generation is not pure horizontal shear, as proposed by Munk et al. (<link href="#jgrc22402-bib</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1806k0022R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1806k0022R"><span>Gas turbine coatings <span class="hlt">eddy</span> <span class="hlt">current</span> quantitative and qualitative evaluation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ribichini, Remo; Giolli, Carlo; Scrinzi, Erica</p> <p>2017-02-01</p> <p>Gas turbine blades (buckets) are among the most critical and expensive components of the engine. Buckets rely on protective coatings in order to withstand the harsh environment in which they operate. The thickness and the microstructure of coatings during the lifespan of a unit are fundamental to evaluate their fitness for service. A frequency scanning <span class="hlt">Eddy</span> <span class="hlt">Current</span> instrument can allow the measurement of the thickness and of physical properties of coatings in a Non-Destructive manner. The method employed relies on the acquisition of impedance spectra and on the inversion of the experimental data to derive the coating properties and structure using some assumptions. This article describes the experimental validation performed on several samples and real components in order to assess the performance of the instrument as a coating thickness gage. The application of the technique to support residual life assessment of serviced buckets is also presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6129M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6129M"><span>Energetics of <span class="hlt">eddy</span>-mean flow interactions in the Brazil <span class="hlt">current</span> between 20°S and 36°S</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magalhães, F. C.; Azevedo, J. L. L.; Oliveira, L. R.</p> <p>2017-08-01</p> <p>The energetics of <span class="hlt">eddy</span>-mean flow interactions in the Brazil <span class="hlt">Current</span> (BC) between 20°S and 36°S are investigated in 19 transects perpendicular to the 200 m isobath. Ten years (2000-2009) of output data from the Hybrid Coordinate Ocean Model (HYCOM) NCODA reanalysis, with a spatial resolution of 1/12.5° and 5 day averages, are used. The mean kinetic energy (MKE) and <span class="hlt">eddy</span> kinetic energy (EKE) fields presented the same subsurface spatial pattern but with reduced values. The EKE increases southward, with high values along the BC path and the offshore portion of the jet. The values of the barotropic conversion term (BTC) are highest in the surface layers and decreased with depth, whereas the values of the baroclinic conversion term (BCC) and the vertical <span class="hlt">eddy</span> heat flux (VEHF) are highest in the subsurface. Despite the vertical thickening of the BC, the highest energy conversion rates are confined to the upper 700 m of the water column. The energetic analysis showed that the <span class="hlt">current</span> features mixed instability processes. The vertical weighted mean of the BTC and BCC presented an oscillatory pattern related to the bathymetry. The <span class="hlt">eddy</span> field accelerates the time-mean flow upstream and downstream of bathymetric features and drains energy from the time-mean flow over the features. The BC is baroclinically unstable south of 28°S, and the highest energy conversion rates occur in Cabo de São Tomé, Cabo Frio, and the Cone do Rio Grande.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5087430','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5087430"><span><span class="hlt">Eddy-Current</span> Sensors with Asymmetrical Point Spread Function</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gajda, Janusz; Stencel, Marek</p> <p>2016-01-01</p> <p>This paper concerns a special type of <span class="hlt">eddy-current</span> sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm. PMID:27782033</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27782033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27782033"><span><span class="hlt">Eddy-Current</span> Sensors with Asymmetrical Point Spread Function.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gajda, Janusz; Stencel, Marek</p> <p>2016-10-04</p> <p>This paper concerns a special type of <span class="hlt">eddy-current</span> sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PrOce.122..153W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PrOce.122..153W"><span>Fatty acid profiles of phyllosoma larvae of western rock lobster (Panulirus cygnus) in cyclonic and anticyclonic <span class="hlt">eddies</span> of the Leeuwin <span class="hlt">Current</span> off Western Australia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, M.; O'Rorke, R.; Waite, A. M.; Beckley, L. E.; Thompson, P.; Jeffs, A. G.</p> <p>2014-03-01</p> <p>The recent dramatic decline in settlement in the population of the spiny lobster, Panulirus cygnus, may be due to changes in the oceanographic processes that operate offshore of Western Australia. It has been suggested that this decline could be related to poor nutritional condition of the post-larvae, especially lipid which is accumulated in large quantities during the preceding extensive pelagic larval stage. The <span class="hlt">current</span> study focused on investigations into the lipid content and fatty acid (FA) profiles of lobster phyllosoma larvae from three mid to late stages of larval development (stages VI, VII, VIII) sampled from two cyclonic and two anticyclonic <span class="hlt">eddies</span> of the Leeuwin <span class="hlt">Current</span> off Western Australia. The results showed significant accumulation of lipid and energy storage FAs with larval development regardless of location of capture, however, larvae from cyclonic <span class="hlt">eddies</span> had more lipid and FAs associated with energy storage than larvae from anticyclonic <span class="hlt">eddies</span>. FA food chain markers from the larvae indicated significant differences in the food webs operating in the two types of <span class="hlt">eddy</span>, with a higher level of FA markers for production from flagellates and a lower level from copepod grazing in cyclonic versus anticyclonic <span class="hlt">eddies</span>. The results indicate that the microbial food web operating in cyclonic <span class="hlt">eddies</span> provides better feeding conditions for lobster larvae despite anticyclonic <span class="hlt">eddies</span> being generally more productive and containing greater abundances of zooplankton as potential prey for lobster larvae. Gelatinous zooplankton, such as siphonophores, may play an important role in cyclonic <span class="hlt">eddies</span> by accumulating dispersed microbial nutrients and making them available as larger prey for phyllosoma. The markedly superior nutritional condition of lobster larvae feeding in the microbial food web found in cyclonic <span class="hlt">eddies</span>, could greatly influence their subsequent settlement and recruitment to the coastal fishery.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7677R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7677R"><span>Lateral <span class="hlt">eddy</span> diffusivity estimates from simulated and observed drifter trajectories: a case study for the Agulhas <span class="hlt">Current</span> system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rühs, Siren; Zhurbas, Victor; Durgadoo, Jonathan V.; Biastoch, Arne</p> <p>2017-04-01</p> <p>The Lagrangian description of fluid motion by sets of individual particle trajectories is extensively used to characterize connectivity between distinct oceanic locations. One important factor influencing the connectivity is the average rate of particle dispersal, generally quantified as Lagrangian diffusivity. In addition to Lagrangian observing programs, Lagrangian analyses are performed by advecting particles with the simulated flow field of ocean general circulation models (OGCMs). However, depending on the spatio-temporal model resolution, not all scale-dependent processes are explicitly resolved in the simulated velocity fields. Consequently, the dispersal of advective Lagrangian trajectories has been assumed not to be sufficiently diffusive compared to observed particle spreading. In this study we present a detailed analysis of the spatially variable lateral <span class="hlt">eddy</span> diffusivity characteristics of advective drifter trajectories simulated with realistically forced OGCMs and compare them with estimates based on observed drifter trajectories. The extended Agulhas <span class="hlt">Current</span> system around South Africa, known for its intricate mesoscale dynamics, serves as a test case. We show that a state-of-the-art <span class="hlt">eddy</span>-resolving OGCM indeed features theoretically derived dispersion characteristics for diffusive regimes and realistically represents Lagrangian <span class="hlt">eddy</span> diffusivity characteristics obtained from observed surface drifter trajectories. The estimates for the maximum and asymptotic lateral single-particle <span class="hlt">eddy</span> diffusivities obtained from the observed and simulated drifter trajectories show a good agreement in their spatial pattern and magnitude. We further assess the sensitivity of the simulated lateral <span class="hlt">eddy</span> diffusivity estimates to the temporal and lateral OGCM output resolution and examine the impact of the different <span class="hlt">eddy</span> diffusivity characteristics on the Lagrangian connectivity between the Indian Ocean and the South Atlantic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870050640&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870050640&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bmotion"><span>Effects of <span class="hlt">eddy</span> initial conditions on nonlinear forcing of planetary scale waves by amplifying baroclinic <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Young, Richard E.</p> <p>1986-01-01</p> <p>The previous study of Young and Villere concerning growth of planetary scale waves forced by wave-wave interactions of amplifying intermediate scale baroclinic <span class="hlt">eddies</span> is extended to investigate effects of different <span class="hlt">eddy</span> initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of <span class="hlt">eddy</span> initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed zonally independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of <span class="hlt">eddy</span> initial conditions used. Nonlinear forcing of planetary modes via wave-wave <span class="hlt">coupling</span> becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by wave-wave transfer from intermediate scale <span class="hlt">eddies</span>, rather than from the zonally averaged state. The zonal wavenumber 2 planetary mode was prominent in all solutions, even in those for which <span class="hlt">eddy</span> initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary wave components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in <span class="hlt">eddy</span> initial conditions, even though quantitative details varied from case to case.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DSRII..58..538S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DSRII..58..538S"><span>The strengthening East Australian <span class="hlt">Current</span>, its <span class="hlt">eddies</span> and biological effects — an introduction and overview</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suthers, Iain M.; Young, Jock W.; Baird, Mark E.; Roughan, Moninya; Everett, Jason D.; Brassington, Gary B.; Byrne, Maria; Condie, Scott A.; Hartog, Jason R.; Hassler, Christel S.; Hobday, Alistair J.; Holbrook, Neil J.; Malcolm, Hamish A.; Oke, Peter R.; Thompson, Peter A.; Ridgway, Ken</p> <p>2011-03-01</p> <p>The poleward flowing East Australian <span class="hlt">Current</span> (EAC) is characterised by its separation from the coast, 100-200 nautical miles north of Sydney, to form the eastward flowing Tasman Front and a southward flowing <span class="hlt">eddy</span> field. The separation zone greatly influences coastal ecosystems for the relatively narrow continental shelf (only 15-50 km wide), particularly between 32-34°S. In this region the continental shelf has a marked shift in the seasonal temperature-salinity relationship and elevated surface nitrate concentrations. This <span class="hlt">current</span> parallels the portion of the coast where Australia's population is concentrated and has a long history of scientific research. However, understanding of physical and biological processes driven by the EAC, particularly in linking circulation to ecosystems, is limited. In this special issue of 16 papers on the EAC, we examine the effects of climatic wind-stress forced ocean dynamics on EAC transport variability and coastal sea level, from ENSO to multi-decadal time scales; <span class="hlt">eddy</span> formation and structure; fine scale connectivity and larval retention. Comparisons with the poleward-flowing Leeuwin <span class="hlt">Current</span> on Australia's west coast show differences in ecosystem productivity that can be attributed to the underlying physics in each region. On average there is double the chlorophyll a concentration on the east coast than the west. In comparison to the Leeuwin, the EAC may have less local retention of larvae and act as a partial barrier to onshore transport, which may also be related to the local spawning and early life history of small pelagic fish on each coast. Inter-annual variations in the EAC transport produce a detectable sea-level signal in Sydney Harbour, which could provide a useful fisheries index as does the Fremantle sea level and Leeuwin <span class="hlt">Current</span> relationship. The EAC's <span class="hlt">eddy</span> structure and formation by the EAC are examined. A particular cold-core <span class="hlt">eddy</span> is shown to have a "tilt" towards the coast, and that during a rotation the flow of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20798264-natural-crack-sizing-based-eddy-current-image-electromagnetic-field-analyses','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20798264-natural-crack-sizing-based-eddy-current-image-electromagnetic-field-analyses"><span>Natural Crack Sizing Based on <span class="hlt">Eddy</span> <span class="hlt">Current</span> Image and Electromagnetic Field Analyses</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Endo, H.; Uchimoto, T.; Takagi, T.</p> <p>2006-03-06</p> <p>An <span class="hlt">eddy</span> <span class="hlt">current</span> testing (ECT) system with multi-coil type probes is applied to size up cracks fabricated on austenite stainless plates. We have developed muti-channel ECT system to produce data as digital images. The probes consist of transmit-receive type sensors as elements to classify crack directions, working as two scan direction modes simultaneously. Template matching applied to the ECT images determines regions of interest in sizing up cracks. Finite element based inversion sizes up the crack depth from the measured ECT signal. The present paper demonstrates this approach for fatigue crack and stress corrosion cracking.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865228','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865228"><span>Improved multi-directional <span class="hlt">eddy</span> <span class="hlt">current</span> inspection test apparatus for detecting flaws in metal articles</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Nance, Roy A.; Hartley, William H.; Caffarel, Alfred J.</p> <p>1984-01-01</p> <p>Apparatus is described for detecting flaws in a tubular workpiece in a single scan. The coils of a dual coil bobbin <span class="hlt">eddy</span> <span class="hlt">current</span> inspection probe are wound at a 45.degree. angle to the transverse axis of the probe, one coil having an angular position about the axis about 90.degree. relative to the angular position of the other coil, and the angle of intersection of the planes containing the coils being about 60.degree..</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3329M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3329M"><span>Subregional characterization of mesoscale <span class="hlt">eddies</span> across the Brazil-Malvinas Confluence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine</p> <p>2017-04-01</p> <p>Horizontal and vertical motions associated with coherent mesoscale structures, including <span class="hlt">eddies</span> and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary <span class="hlt">current</span> region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil <span class="hlt">Currents</span> over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous <span class="hlt">eddy</span> field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale <span class="hlt">eddies</span> with high spatial and temporal resolutions using an automated <span class="hlt">eddy</span> tracker. We characterize the <span class="hlt">eddies</span> across fourteen 5° × 5° subregions. <span class="hlt">Eddy</span>-centric composites of tracers and geostrophic <span class="hlt">currents</span> diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous <span class="hlt">eddy</span> instance. The QG-ω <span class="hlt">eddy</span> composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum <span class="hlt">eddy</span> values are found near fronts and sharp topographic gradients. In comparison with regional <span class="hlt">eddy</span> composites, subregional composites provide refined information about mesoscale <span class="hlt">eddy</span> heterogeneity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNG43B1574A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNG43B1574A"><span>Nonlinear <span class="hlt">Eddy-Eddy</span> Interactions in Dry Atmospheres Macroturbulence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ait Chaalal, F.; Schneider, T.</p> <p>2012-12-01</p> <p>The statistical moment equations derived from the atmospheric equation of motions are not closed. However neglecting the large-scale <span class="hlt">eddy-eddy</span> nonlinear interactions in an idealized dry general circulation model (GCM), which is equivalent to truncating the moment equations at the second order, can reproduce some of the features of the general circulation ([1]), highlighting the significance of <span class="hlt">eddy</span>-mean flow interactions and the weakness of <span class="hlt">eddy-eddy</span> interactions in atmospheric macroturbulence ([2]). The goal of the present study is to provide new insight into the rôle of these <span class="hlt">eddy-eddy</span> interactions and discuss the relevance of a simple stochastic parametrization to represent them. We investigate in detail the general circulation in an idealized dry GCM, comparing full simulations with simulations where the <span class="hlt">eddy-eddy</span> interactions are removed. The radiative processes are parametrized through Newtonian relaxation toward a radiative-equilibrium state with a prescribed equator to pole temperature contrast. A convection scheme relaxing toward a prescribed convective vertical lapse rate mimics some aspects of moist convection. The study is performed over a wide range of parameters covering the planetary rotation rate, the equator to pole temperature contrast and the vertical lapse rate. Particular attention is given to the wave-mean flow interactions and to the spectral budget. It is found that the no <span class="hlt">eddy-eddy</span> simulations perform well when the baroclinic activity is weaker, for example for lower equator to pole temperature contrasts or higher rotation rates: the mean meridional circulation is well reproduced, with realistic <span class="hlt">eddy</span>-driven jets and energy-containing <span class="hlt">eddy</span> length scales of the order of the Rossby deformation radius. For a stronger baroclinic activity the no <span class="hlt">eddy-eddy</span> model does not achieve a realistic isotropization of the <span class="hlt">eddies</span>, the meridional circulation is compressed in the meridional direction and secondary <span class="hlt">eddy</span>-driven jets emerge. In addition, the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1111428B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1111428B"><span>Internal and forced <span class="hlt">eddy</span> variability in the Labrador Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.</p> <p>2009-04-01</p> <p>Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary <span class="hlt">current</span>. Large interannual variations in both <span class="hlt">eddy</span> shedding and buoyancy transport from the boundary <span class="hlt">current</span> have been observed but not explained, and are apparently sensitive to the state of the inflowing <span class="hlt">current</span>. Heat and salinity fluxes associated with the <span class="hlt">eddies</span> drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme <span class="hlt">eddy</span> activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable <span class="hlt">eddy</span>-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the <span class="hlt">eddy</span> generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of <span class="hlt">eddy</span> generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the <span class="hlt">eddy</span> kinetic energy in the convective region of the Labrador Basin and along the West Greenland <span class="hlt">Current</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3f4702P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3f4702P"><span>Influence of a thin compressible insoluble liquid film on the <span class="hlt">eddy</span> <span class="hlt">currents</span> generated by interacting surface waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parfenyev, Vladimir M.; Vergeles, Sergey S.</p> <p>2018-06-01</p> <p>Recently the generation of <span class="hlt">eddy</span> <span class="hlt">currents</span> by interacting surface waves was observed experimentally. The phenomenon provides the possibility for manipulation of particles which are immersed in the fluid. The analysis shows that the amplitude of the established <span class="hlt">eddy</span> <span class="hlt">currents</span> produced by stationary surface waves does not depend on the fluid viscosity in the free surface case. The <span class="hlt">currents</span> become parametrically larger, being inversely proportional to the square root of the fluid viscosity in the case when the fluid surface is covered by an almost incompressible thin liquid (i.e., shear elasticity is zero) film formed by an insoluble agent with negligible internal viscous losses as compared to the dissipation in the fluid bulk. Here we extend the theory for a thin insoluble film with zero shear elasticity and small shear and dilational viscosities on the case of an arbitrary elastic compression modulus. We find both contributions into the Lagrangian motion of passive tracers, which are the advection by the Eulerian vertical vorticity and the Stokes drift. Whereas the Stokes drift contribution preserves its value for the free surface case outside a thin viscous sublayer, the Eulerian vertical vorticity strongly depends on the fluid viscosity at high values of the film compression modulus. The Stokes drift acquires a strong dependence on the fluid viscosity inside the viscous sublayer; however, the change is compensated by an opposite change in the Eulerian vertical vorticity. As a result, the vertical dependence of the intensity of <span class="hlt">eddy</span> <span class="hlt">currents</span> is given by a sum of two decaying exponents with both decrements being of the order of the wave number. The decrements are numerically different, so the Eulerian contribution becomes dominant at some depth for the surface film with any compression modulus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1096..371W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1096..371W"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span> System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wincheski, Buzz; Simpson, John; Hall, George</p> <p>2009-03-01</p> <p>In this paper an <span class="hlt">eddy</span> <span class="hlt">current</span> system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090009966','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090009966"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span> System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Buzz; Simpson, John; Hall, George</p> <p>2008-01-01</p> <p>In this paper an <span class="hlt">eddy</span> <span class="hlt">current</span> system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080001613','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080001613"><span>Validation Test Results for Orthogonal Probe <span class="hlt">Eddy</span> <span class="hlt">Current</span> Thruster Inspection System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Russell A.</p> <p>2007-01-01</p> <p>Recent nondestructive evaluation efforts within NASA have focused on an inspection system for the detection of intergranular cracking originating in the relief radius of Primary Reaction Control System (PCRS) Thrusters. Of particular concern is deep cracking in this area which could lead to combustion leakage in the event of through wall cracking from the relief radius into an acoustic cavity of the combustion chamber. In order to reliably detect such defects while ensuring minimal false positives during inspection, the Orthogonal Probe <span class="hlt">Eddy</span> <span class="hlt">Current</span> (OPEC) system has been developed and an extensive validation study performed. This report describes the validation procedure, sample set, and inspection results as well as comparing validation flaws with the response from naturally occuring damage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040111997','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040111997"><span>Self-Nulling <span class="hlt">Eddy</span> <span class="hlt">Current</span> Probe for Surface and Subsurface Flaw Detection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, B.; Fulton, J. P.; Nath, S.; Namkung, M.; Simpson, J. W.</p> <p>1994-01-01</p> <p>An <span class="hlt">eddy</span> <span class="hlt">current</span> probe which provides a null-signal in the presence of unflawed material without the need for any balancing circuitry has been developed at NASA Langley Research Center. Such a unique capability of the probe reduces set-up time, eliminates tester configuration errors, and decreases instrumentation requirements. The probe is highly sensitive to surface breaking fatigue cracks, and shows excellent resolution for the measurement of material thickness, including material loss due to corrosion damage. The presence of flaws in the material under test causes an increase in the extremely stable and reproducible output voltage of the probe. The design of the probe and some examples illustrating its flaw detection capabilities are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070031760','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070031760"><span>Analysis of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Buzz; Williams, Phillip; Simpson, John</p> <p>2007-01-01</p> <p>The use of <span class="hlt">eddy</span> <span class="hlt">current</span> techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal <span class="hlt">eddy</span> <span class="hlt">current</span> probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter <span class="hlt">eddy</span> <span class="hlt">current</span> probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080009563','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080009563"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span> COPV Overwrap and Liner Thickness Measurement System and Data Analysis for 40-Inch Kevlar COPVs SN002 and SN027</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wincheski, Russell A.</p> <p>2008-01-01</p> <p>As part of the health assessment of flight spare 40in diameter Kevlar composite overwrapped pressure vessels (COPVs) SN002 and SN027 an <span class="hlt">eddy</span> <span class="hlt">current</span> characterization of the composite and liner thickness change during pressurization was requested under WSTF-TP-1085-07.A, "Space Shuttle Orbiter Main Propulsion System P/N MC282-0082-0101 S/N 002 and Orbital Maneuvering System P/N MC282-0082-001 S/N 027 COPV Health Assessment." The through the thickness strains have been determined to be an important parameter in the analysis of the reliability and likelihood of stress rupture failure. <span class="hlt">Eddy</span> <span class="hlt">current</span> techniques provide a means to measure these thicknesses changes based upon the change in impedance of an <span class="hlt">eddy</span> <span class="hlt">current</span> sensor mounted on the exterior of the vessel. Careful probe and technique design have resulted in the capability to independently measure the liner and overwrap thickness changes to better than +/- 0.0005 in. at each sensor location. Descriptions of the inspection system and test results are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712767C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712767C"><span>On the <span class="hlt">coupled</span> use of sapflow and <span class="hlt">eddy</span> covariance measurements: environmental impacts on the evapotranspiration of an heterogeneous - wild olives based - Sardinian ecosystem.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Oren, Ram</p> <p>2015-04-01</p> <p>Sapflow and <span class="hlt">eddy</span> covariance techniques are attractive methods for evapotranspiration (ET) estimates. We demonstrated that in Mediterranean ecosystems, characterized by an heterogeneous spatial distribution of different plant functional types (PFT) such as grass and trees, the combined use of these techniques becomes essential for the actual ET estimates. Indeed, during the dry summers these water-limited heterogeneous ecosystems are typically characterized by a simple dual PFT system with strong-resistant woody vegetation and bare soil, since grass died. An <span class="hlt">eddy</span> covariance - micrometeorological tower has been installed over an heterogeneous ecosystem at the Orroli site in Sardinia (Italy) from 2003. The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. Where patchy land cover leads and the surface fluxes from different cover are largely different, ET evaluation may be not robust enough and <span class="hlt">eddy</span> covariance method hypothesis are not anymore preserved. In these conditions the sapflow measurements, performed by thermodissipation probes, provide robust estimates of the transpiration from woody vegetation. Through the <span class="hlt">coupled</span> use of the sapflow sensor observations, a 2D footprint model of the <span class="hlt">eddy</span> covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the <span class="hlt">eddy</span> covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. Based on the Granier technique, 33 thermo-dissipation probes have been built and 6 power regulators have been assembled to provide a constant <span class="hlt">current</span> of 3V to the sensors. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. The sap flow sensors outputs are analyzed to estimate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..96g5036D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..96g5036D"><span>Dark forces <span class="hlt">coupled</span> to nonconserved <span class="hlt">currents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dror, Jeff A.; Lasenby, Robert; Pospelov, Maxim</p> <p>2017-10-01</p> <p>New light vectors with dimension-4 <span class="hlt">couplings</span> to Standard Model states have (energy/vectormass)2-enhanced production rates unless the <span class="hlt">current</span> they <span class="hlt">couple</span> to is conserved. These processes allow us to derive new constraints on the <span class="hlt">couplings</span> of such vectors, that are significantly stronger than the previous literature for a wide variety of models. Examples include vectors with axial <span class="hlt">couplings</span> to quarks and vectors <span class="hlt">coupled</span> to <span class="hlt">currents</span> (such as baryon number) that are only broken by the chiral anomaly. Our new limits arise from a range of processes, including rare Z decays and flavor-changing meson decays, and rule out a number of phenomenologically motivated proposals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Eddy+AND+current&pg=2&id=ED182612','ERIC'); return false;" href="https://eric.ed.gov/?q=Eddy+AND+current&pg=2&id=ED182612"><span>Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-5, Fundamentals of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Testing.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Espy, John</p> <p></p> <p>This fifth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the fundamental concepts applicable to <span class="hlt">eddy</span> <span class="hlt">current</span> testing in general. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.8182M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.8182M"><span>Observations of the interaction between near-inertial waves and mesoscale <span class="hlt">eddies</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martínez-Marrero, Antonio; Sangrá, Pablo; Caldeira, Rui; Aguiar-González, Borja; Rodríguez-Santana, Ángel</p> <p>2014-05-01</p> <p>Trajectories of eight drifters dragged below the surface mixed layer and <span class="hlt">current</span> meter data from a mooring are used to analyse the interaction between near-inertial waves and mesoscale <span class="hlt">eddies</span>. Drifters were deployed within <span class="hlt">eddies</span> generated downstream of Canary and Madeira islands between 1998 and 2007. The mooring was installed in the passage of cyclonic <span class="hlt">eddies</span> induced by Gran Canaria island during 2006. Rotatory wavelet analysis of Lagrangian velocities shows a clear relationship between the near-inertial waves' intrinsic frequencies and the <span class="hlt">eddy</span> angular velocities. The results reveal that near-inertial waves reach a minimum frequency of half the planetary vorticity (f/2) in the inner core of young anticyclonic <span class="hlt">eddies</span> rotating with its maximum absolute angular speed of f/2. The highest amplitudes of the observed inertial motions are also found within anticyclonic <span class="hlt">eddies</span> evidencing the trapping of inertial waves. Finally, the analysis of the <span class="hlt">current</span> meter series show frequency fluctuations of the near-inertial <span class="hlt">currents</span> in the upper 500 meters that are related to the passage of cyclonic <span class="hlt">eddies</span>. These fluctuations appear to be consistent with the variation of the background vorticity produced by the <span class="hlt">eddies</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EJPh...38f5203B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EJPh...38f5203B"><span>An innovative experimental sequence on electromagnetic induction and <span class="hlt">eddy</span> <span class="hlt">currents</span> based on video analysis and cheap data acquisition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonanno, A.; Bozzo, G.; Sapia, P.</p> <p>2017-11-01</p> <p>In this work, we present a coherent sequence of experiments on electromagnetic (EM) induction and <span class="hlt">eddy</span> <span class="hlt">currents</span>, appropriate for university undergraduate students, based on a magnet falling through a drilled aluminum disk. The sequence, leveraging on the didactical interplay between the EM and mechanical aspects of the experiments, allows us to exploit the students’ awareness of mechanics to elicit their comprehension of EM phenomena. The proposed experiments feature two kinds of measurements: (i) kinematic measurements (performed by means of high-speed video analysis) give information on the system’s kinematics and, via appropriate numerical data processing, allow us to get dynamic information, in particular on energy dissipation; (ii) induced electromagnetic field (EMF) measurements (by using a homemade multi-coil sensor connected to a cheap data acquisition system) allow us to quantitatively determine the inductive effects of the moving magnet on its neighborhood. The comparison between experimental results and the predictions from an appropriate theoretical model (of the dissipative <span class="hlt">coupling</span> between the moving magnet and the conducting disk) offers many educational hints on relevant topics related to EM induction, such as Maxwell’s displacement <span class="hlt">current</span>, magnetic field flux variation, and the conceptual link between induced EMF and induced <span class="hlt">currents</span>. Moreover, the didactical activity gives students the opportunity to be trained in video analysis, data acquisition and numerical data processing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21054963-recent-advances-simulation-eddy-current-testing-tubes-experimental-validations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21054963-recent-advances-simulation-eddy-current-testing-tubes-experimental-validations"><span>Recent Advances in Simulation of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Testing of Tubes and Experimental Validations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reboud, C.; Premel, D.; Lesselier, D.</p> <p>2007-03-21</p> <p><span class="hlt">Eddy</span> <span class="hlt">current</span> testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AIPC..894..241R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AIPC..894..241R"><span>Recent Advances in Simulation of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Testing of Tubes and Experimental Validations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reboud, C.; Prémel, D.; Lesselier, D.; Bisiaux, B.</p> <p>2007-03-01</p> <p><span class="hlt">Eddy</span> <span class="hlt">current</span> testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...413..225A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...413..225A"><span>Modeling, design, and testing of a proof-of-concept prototype damper with friction and <span class="hlt">eddy</span> <span class="hlt">current</span> damping effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amjadian, Mohsen; Agrawal, Anil K.</p> <p>2018-01-01</p> <p>Friction is considered as one of the most reliable mechanisms of energy dissipation that has been utilized extensively in passive damping devices to mitigate vibration of civil engineering structures subjected to extreme natural hazards such as earthquakes and windstorms. However, passive friction dampers are well-known for having a highly nonlinear hysteretic behavior caused by stick-slip motion at low velocities, a phenomenon that is inherent in friction and increases the acceleration response of the structure under control unfavorably. The authors have recently proposed the theoretical concept of a new type of damping device termed as "Passive Electromagnetic <span class="hlt">Eddy</span> <span class="hlt">Current</span> Friction Damper" (PEMECFD) in which an <span class="hlt">eddy</span> <span class="hlt">current</span> damping mechanism was utilized not only to decrease the undesirable effects of stick-slip motion, but also to increase the energy dissipation capacity of the damping device as a whole. That study was focused on demonstration of the theoretical performance of the proposed damping device through numerical simulations. This paper further investigates the influence of <span class="hlt">eddy</span> <span class="hlt">current</span> damping on energy dissipation due to friction through modeling, design, and testing of a proof-of-concept prototype damper. The design of this damper has been improved over the design in the previous study. The normal force in this damper is produced by the repulsive magnetic force between two cuboidal permanent magnets (PMs) magnetized in the direction normal to the direction of the motion. The <span class="hlt">eddy</span> <span class="hlt">current</span> damping force is generated because of the motion of the two PMs and two additional PMs relative to a copper plate in their vicinity. The dynamic models for the force-displacement relationship of the prototype damper are based on LuGre friction model, electromagnetic theory, and inertial effects of the prototype damper. The parameters of the dynamic models have been identified through a series of characterization tests on the prototype damper under harmonic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..201C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..201C"><span>Mesoscale <span class="hlt">Eddy</span> Activity and Transport in the Atlantic Water Inflow Region North of Svalbard</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crews, L.; Sundfjord, A.; Albretsen, J.; Hattermann, T.</p> <p>2018-01-01</p> <p>Mesoscale <span class="hlt">eddies</span> are known to transport heat and biogeochemical properties from Arctic Ocean boundary <span class="hlt">currents</span> to basin interiors. Previous hydrographic surveys and model results suggest that <span class="hlt">eddy</span> formation may be common in the Atlantic Water (AW) inflow area north of Svalbard, but no quantitative <span class="hlt">eddy</span> survey has yet been done for the region. Here vorticity and water property signatures are used to identify and track AW <span class="hlt">eddies</span> in an <span class="hlt">eddy</span>-resolving sea ice-ocean model. The boundary <span class="hlt">current</span> sheds AW <span class="hlt">eddies</span> along most of the length of the continental slope considered, from the western Yermak Plateau to 40°E, though <span class="hlt">eddies</span> forming east of 20°E are likely more important for slope-to-basin transport. <span class="hlt">Eddy</span> formation seasonality reflects seasonal stability properties of the boundary <span class="hlt">current</span> in the eastern portion of the study domain, but on and immediately east of the Yermak Plateau enhanced <span class="hlt">eddy</span> formation during summer merits further investigation. AW <span class="hlt">eddies</span> tend to be anticyclonic, have radii close to the local deformation radius, and be centered in the halocline. They transport roughly 0.16 Sv of AW and, due to their warm cores, 1.0 TW away from the boundary <span class="hlt">current</span>. These findings suggest <span class="hlt">eddies</span> may be important for halocline ventilation in the Eurasian Basin, as has been shown for Pacific Water <span class="hlt">eddies</span> in the Canadian Basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA511959','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA511959"><span><span class="hlt">Eddies</span> and Filaments of the Western Adriatic <span class="hlt">Current</span> near Cape Gargano: Analysis and Prediction</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-10-21</p> <p>circulation in the lee of the cape. By 4 Sep. (Fig. 7b), the winds have relaxed, and the meanders are larger in amplitude. The anti-cyclone in the lee of...branch, which forms an anti- cyclonic ‘ lee ’ <span class="hlt">eddy</span> near the cape, and an eastward branch, which forms a matching cyclonic <span class="hlt">eddy</span> further downstream. In some...separation of the resulting combined flow and its subsequent point of impingement on the coast vary from frame to frame. The lee <span class="hlt">eddy</span> resembles one described</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn.tmp...50S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn.tmp...50S"><span><span class="hlt">Eddy</span> energy sources and mesoscale <span class="hlt">eddies</span> in the Sea of Okhotsk</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stepanov, Dmitry V.; Diansky, Nikolay A.; Fomin, Vladimir V.</p> <p>2018-05-01</p> <p>Based on <span class="hlt">eddy</span>-permitting ocean circulation model outputs, the mesoscale variability is studied in the Sea of Okhotsk. We confirmed that the simulated circulation reproduces the main features of the general circulation in the Sea of Okhotsk. In particular, it reproduced a complex structure of the East-Sakhalin <span class="hlt">current</span> and the pronounced seasonal variability of this <span class="hlt">current</span>. We established that the maximum of mean kinetic energy was associated with the East-Sakhalin <span class="hlt">Current</span>. In order to uncover causes and mechanisms of the mesoscale variability, we studied the budget of <span class="hlt">eddy</span> kinetic energy (EKE) in the Sea of Okhotsk. Spatial distribution of the EKE showed that intensive mesoscale variability occurs along the western boundary of the Sea of Okhotsk, where the East-Sakhalin <span class="hlt">Current</span> extends. We revealed a pronounced seasonal variability of EKE with its maximum intensity in winter and its minimum intensity in summer. Analysis of EKE sources and rates of energy conversion revealed a leading role of time-varying (turbulent) wind stress in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk in winter and spring. We established that a contribution of baroclinic instability predominates over that of barotropic instability in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk. To demonstrate the mechanism of baroclinic instability, the simulated circulation was considered along the western boundary of the Sea of Okhotsk from January to April 2005. In April, the mesoscale anticyclonic <span class="hlt">eddies</span> are observed along the western boundary of the Sea of Okhotsk. The role of the sea ice cover in the intensification of the mesoscale variability in the Sea of Okhotsk was discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993nasa.reptU....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993nasa.reptU....C"><span>Method and apparatus for deflection measurements using <span class="hlt">eddy</span> <span class="hlt">current</span> effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chern, Engmin J.</p> <p>1993-05-01</p> <p>A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an <span class="hlt">eddy</span> <span class="hlt">current</span> impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930016914','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930016914"><span>Method and apparatus for deflection measurements using <span class="hlt">eddy</span> <span class="hlt">current</span> effects</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chern, Engmin J. (Inventor)</p> <p>1993-01-01</p> <p>A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an <span class="hlt">eddy</span> <span class="hlt">current</span> impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840008494','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840008494"><span>Design study of magnetic <span class="hlt">eddy-current</span> vibration suppression dampers for application to cryogenic turbomachinery</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gunter, E. J.; Humphris, R. R.; Severson, S. J.</p> <p>1983-01-01</p> <p>Cryogenic turbomachinery used to pump high pressure fuel (liquid H2) and oxidizer (liquid O2) to the main engines of the Space Shuttle have experienced rotor instabilities. Subsynchronous whirl, an extremely destructive instability, has caused bearing failures and severe rubs in the seals. These failures have resulted in premature engine shutdowns or, in many instances, have limited the power level to which the turbopumps could be operated. The feasibility of using an <span class="hlt">eddy</span> <span class="hlt">current</span> type of damping mechanism for the Space Shuttle Main Engine is outlined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC..975.1058T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC..975.1058T"><span>Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced <span class="hlt">Eddy</span> <span class="hlt">Current</span> Techniques</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Todorov, E. I.; Mohr, W. C.; Lozev, M. G.</p> <p>2008-02-01</p> <p>Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced <span class="hlt">eddy</span> <span class="hlt">current</span> (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006MeScT..17..393Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006MeScT..17..393Y"><span>A multi-frequency impedance analysing instrument for <span class="hlt">eddy</span> <span class="hlt">current</span> testing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, W.; Dickinson, S. J.; Peyton, A. J.</p> <p>2006-02-01</p> <p>This paper presents the design of a high-performance multi-frequency impedance analysing instrument (MFIA) for <span class="hlt">eddy</span> <span class="hlt">current</span> testing which has been developed primarily for monitoring a steel production process using an inductive sensor. The system consists of a flexible multi-frequency waveform generator and a voltage/<span class="hlt">current</span> measurement unit. The impedance of the sensor is obtained by cross-spectral analysis of the <span class="hlt">current</span> and voltage signals. The system contains high-speed digital-to-analogue, analogue-to-digital converters and dual DSPs with one for control and interface and one dedicated to frequency-spectra analysis using fast Fourier transformation (FFT). The frequency span of the signal that can be analysed ranges from 1 kHz to 8 MHz. The system also employs a high-speed serial port interface (USB) to communicate with a personal computer (PC) and to allow for fast transmission of data and control commands. Overall, the system is capable of delivering over 250 impedance spectra per second. Although the instrument has been developed mainly for use with an inductive sensor, the system is not restricted to inductive measurement. The flexibility of the design architecture is demonstrated with capacitive and resistive measurements by using appropriate input circuitry. Issues relating to optimizing the phase of the spectra components in the excitation waveform are also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AIPC..615..409Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AIPC..615..409Y"><span>The interaction of pulsed <span class="hlt">eddy</span> <span class="hlt">current</span> with metal surface crack for various coils</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Hung-Chi; Tai, Cheng-Chi</p> <p>2002-05-01</p> <p>We study the interaction of pulsed <span class="hlt">eddy</span> <span class="hlt">current</span> (PEC) with metal surface cracks using various coils that have different geometric sizes. In the previous work, we have showed that the PEC technique can be used to inspect electrical-discharge-machined (EDM) notches with depth from 0.5 mm to 9 mm. The results showed that the relationship between PEC signals and crack depth is obvious. In this work, we further try a series of coils with different radii, heights, turns and shapes. We will discuss the effects of these coil parameters on the PEC signal. Some other critical problems of PEC measurements such as signal drift that caused by heating effect of coil <span class="hlt">currents</span> will be studied. We also show more experiments on fatigue cracks to demonstrate the capability of PEC technique for cracks inspection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000AIPC..509..549Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000AIPC..509..549Y"><span>Inverse problems in <span class="hlt">eddy</span> <span class="hlt">current</span> testing using neural network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yusa, N.; Cheng, W.; Miya, K.</p> <p>2000-05-01</p> <p>Reconstruction of crack in conductive material is one of the most important issues in the field of <span class="hlt">eddy</span> <span class="hlt">current</span> testing. Although many attempts to reconstruct cracks have been made, most of them deal with only artificial cracks machined with electro-discharge. However, in the case of natural cracks like stress corrosion cracking or inter-granular attack, there must be contact region and therefore their conductivity is not necessarily zero. In this study, an attempt to reconstruct natural cracks using neural network is presented. The neural network was trained through numerical simulated data obtained by the fast forward solver that calculated unflawed potential data a priori to save computational time. The solver is based on A-φ method discretized by using FEM-BEM A natural crack was modeled as an area whose conductivity was less than that of a specimen. The distribution of conductivity in that area was reconstructed as well. It took much time to train the network, but the speed of reconstruction was extremely fast after once it was trained. Well-trained network gave good reconstruction result.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMOS53A..15Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMOS53A..15Z"><span>The Death of Two <span class="hlt">Eddies</span>, Against the Shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zavala-Trujillo, B.; Badan, A.; Rivas, D.; Ochoa, J.; Sheinbaum, J.; Candela, J.</p> <p>2007-05-01</p> <p>A set of five moorings deployed in front of the coast of Tamaulipas, western Gulf of Mexico, provided fourteen months (from August 2004 to November 2005) of surface to bottom observations of <span class="hlt">currents</span> and temperature that document the processes associated with the collision and dissipation of two warm mesoscale <span class="hlt">eddies</span> with the continental slope. Two Loop <span class="hlt">Current</span> <span class="hlt">eddies</span> (Titanic and Ulysses) were identified reaching the study area during the observation period. On September 2004, the two southernmost 2000-m moorings show that temperature and salinity increases throughout the entire water column, related to <span class="hlt">eddy</span> Titanic; similarily; on April 2005, <span class="hlt">eddy</span> Ulysses caused a strong increase of temperature in the 3500-m mooring. The velocity field suggests three different régimes: a coastal region, the continental slope <span class="hlt">currents</span>, and the abyssal circulation. Over the slope, three different layers can be identified: a surface layer (above 500 m depth), influenced by <span class="hlt">eddies</span> and transients, a deep layer (under de 1900 m) with a persistent southerly <span class="hlt">current</span> and a transition layer (from 500 to 1900 m) that separates them. The variance ellipses at ~ 700 m at the 3500-m mooring have no a predominant orientation of the mayor axis. At the northernmost 2000-m mooring, the axis of maximum variation is oriented with the bathymetry, but at the southernmost 2000-m mooring it is perpendicular to the coast. The spectral characteristics of the measurements are also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20632927-eddy-current-testing-sizing-deep-cracks-thick-structure','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20632927-eddy-current-testing-sizing-deep-cracks-thick-structure"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span> Testing and Sizing of Deep Cracks in a Thick Structure</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huang, H.; Endo, H.; Uchimoto, T.</p> <p>2004-02-26</p> <p>Due to the skin effect of <span class="hlt">eddy</span> <span class="hlt">current</span> testing, target of ECT restricts to thin structure such as steam generator tubes with 1.27mm thickness. Detecting and sizing of a deep crack in a thick structure remains a problem. In this paper, an ECT probe is presented to solve this problem with the help of numerical analysis. The parameters such as frequency, coil size etc. are discussed. The inverse problem of crack sizing is solved by applying a fast simulator of ECT based on an edge based finite element method and steepest descent method, and reconstructed results of 5, 10 andmore » 15mm depth cracks from experimental signals are shown.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........59F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........59F"><span>Southern Ocean <span class="hlt">Eddy</span> Heat Flux and <span class="hlt">Eddy</span>-Mean Flow Interactions in Drake Passage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foppert, Annie</p> <p></p> <p>The Antarctic Circumpolar <span class="hlt">Current</span> (ACC) is a complex <span class="hlt">current</span> system composed of multiple jets that is both unique to the world's oceans and relatively under observed compared with other <span class="hlt">current</span> systems. Observations taken by <span class="hlt">current</span>- and pressure-recording inverted echo sounders (CPIES) over four years, from November 2007 to November 2011, quantify the mean structure of one of the main jets of the ACC - the Polar Front - in a composite-mean sense. While the array of CPIES deployed in Drake Passage included a 3 x 7 local dynamics array, analysis of the Polar Front makes use of the line of CPIES that spanned the width of Drake Passage (C-Line). The Polar Front tends to prefer one of two locations, separated along the C-Line by 1° of latitude, with the core of the jet centered on corresponding geopotential height contours (with a 17 cm dierence between the northern and southern jets). Potential vorticity fields suggest that the Polar Front is susceptible to baroclinic instability, regardless of whether it is found upstream (farther south along the C-Line) or downstream (farther north along the C-Line) of the Shackleton Fracture Zone (SFZ), yet the core of the jet remains a barrier to smaller-scale mixing, as inferred from estimated mixing lengths. Within the local dynamics array of CPIES, the observed offset between <span class="hlt">eddy</span> heat flux (EHF) and <span class="hlt">eddy</span> kinetic energy (EKE) and the alignment of EHF with sea surface height (SSH) standard deviation motivates a proxy for depth-integrated EHF that can be estimated from available satellite SSH data. An <span class="hlt">eddy</span>-resolving numerical model develops the statistics of a logarithmic fit between SSH standard deviation and cross-frontal EHF that is applied to the ACC in a circumglobal sense. We find 1.06 PW enters the ACC from the north and 0.02 PW exits towards Antarctica. The magnitude of the estimated EHF, along with contemporaneous estimates of the mean heat flux, suggests that the air-sea heat flux south of the PF is an overestimate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28086905','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28086905"><span>Reduction of <span class="hlt">eddy</span> <span class="hlt">current</span> losses in inductive transmission systems with ferrite sheets.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maaß, Matthias; Griessner, Andreas; Steixner, Viktor; Zierhofer, Clemens</p> <p>2017-01-05</p> <p>Improvements in <span class="hlt">eddy</span> <span class="hlt">current</span> suppression are necessary to meet the demand for increasing miniaturization of inductively driven transmission systems in industrial and biomedical applications. The high magnetic permeability and the simultaneously low electrical conductivity of ferrite materials make them ideal candidates for shielding metallic surfaces. For systems like cochlear implants the transmission of data as well as energy over an inductive link is conducted within a well-defined parameter set. For these systems, the shielding can be of particular importance if the properties of the link can be preserved. In this work, we investigate the effect of single and double-layered substrates consisting of ferrite and/or copper on the inductance and <span class="hlt">coupling</span> of planar spiral coils. The examined link systems represent realistic configurations for active implantable systems such as cochlear implants. Experimental measurements are complemented with analytical calculations and finite element simulations, which are in good agreement for all measured parameters. The results are then used to study the transfer efficiency of an inductive link in a series-parallel resonant topology as a function of substrate size, the number of coil turns and coil separation. We find that ferrite sheets can be used to shield the system from unwanted metallic surfaces and to retain the inductive link parameters of the unperturbed system, particularly its transfer efficiency. The required size of the ferrite plates is comparable to the size of the coils, which makes the setup suitable for practical implementations. Since the sizes and geometries chosen for the studied inductive links are comparable to those of cochlear implants, our conclusions apply in particular to these systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AdSpR..56..494G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AdSpR..56..494G"><span>Earth's gravity gradient and <span class="hlt">eddy</span> <span class="hlt">currents</span> effects on the rotational dynamics of space debris objects: Envisat case study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gómez, Natalia Ortiz; Walker, Scott J. I.</p> <p>2015-08-01</p> <p>The space debris population has grown rapidly over the last few decades with the consequent growth of impact risk between <span class="hlt">current</span> objects in orbit. Active Debris Removal (ADR) has been recommended to be put into practice by several National Agencies in order to remove objects that pose the biggest risk for the space community. The most immediate target that is being considered for ADR by the European Space Agency is the Earth-observing satellite Envisat. In order to safely remove such a massive object from its orbit, a capturing process followed by a controlled reentry is necessary. However, <span class="hlt">current</span> ADR methods that require physical contact with the target have limitations on the maximum angular momentum that can be absorbed and a de-tumbling phase prior to the capturing process may be required. Therefore, it is of utmost importance for the ADR mission design to be able to predict accurately how the target will be rotating at the time of capture. This article analyses two perturbations that affect an object in Low Earth Orbit (LEO), the Earth's gravity gradient and the <span class="hlt">eddy</span> <span class="hlt">currents</span> induced by the Earth's magnetic field. The gravity gradient is analysed using the equation of conservation of total energy and a graphical method is presented to understand the expected behaviour of any object under the effect of this perturbation. The <span class="hlt">eddy</span> <span class="hlt">currents</span> are also analysed by studying the total energy of the system. The induced torque and the characteristic time of decay are presented as a function of the object's magnetic tensor. In addition, simulations were carried out for the Envisat spacecraft including the gravity gradient perturbation as well as the <span class="hlt">eddy</span> <span class="hlt">currents</span> effect using the International Geomagnetic Reference Field IGRF-11 to model the Earth's magnetic field. These simulations show that the combined effect of these two perturbations is a plausible explanation for the rotational speed decay observed between April 2013 and September 2013.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29614841','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29614841"><span>Quantitative Detection of Cracks in Steel Using <span class="hlt">Eddy</span> <span class="hlt">Current</span> Pulsed Thermography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao</p> <p>2018-04-02</p> <p>Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most <span class="hlt">current</span> methods focus on qualitative crack identification and image processing. In this study, <span class="hlt">eddy</span> <span class="hlt">current</span> pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS31C2028F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS31C2028F"><span>On the cyclonic <span class="hlt">eddy</span> generation in Panay Strait, Philippines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flament, P. J.; Repollo, C. L. A.; Flores-vidal, X.; Villanoy, C.</p> <p>2016-12-01</p> <p>High Frequency Doppler Radar (HFDR), shallow pressure gauges and Acoustic Doppler <span class="hlt">Current</span> Profiler (ADCP) time-series observations during the Philippine Straits Dynamics Experiment (PhilEx) were analyzed to describe the mesoscale <span class="hlt">currents</span> in Panay Strait, Philippines. Low frequency surface <span class="hlt">currents</span> inferred from three HFDR (July 2008 { July 2009), revealed a clear seasonal signal in concurrent with the reversal of the Asian monsoon. The mesoscale cyclonic <span class="hlt">eddy</span> west of Panay Island is generated during the winter northeast (NE) monsoon. This causes changes in the strength, depth and width of the intra-seasonal Panay coastal jet as its eastern limb. Winds from QuikSCAT satellite and from a nearby airport indicate that these flow structures correlate with the strength and direction of the prevailing local wind. An intensive survey of the cyclonic <span class="hlt">eddy</span> in February 8-9, 2009, obtaining a 24-hour successive cross-shore Conductivity-Temperature- Depth (CTD) sections in conjunction with shipboard ADCP measurements showed a well- developed cyclonic <span class="hlt">eddy</span> characterized by near-surface velocities reaching 50 cm/s. This observation coincides with the intensification of the wind in between Mindoro and Panay islands generating a positive wind stress curl in the lee of Panay, which in turn induces divergent surface <span class="hlt">currents</span>. Water column response from the mean transects showed a pronounced signal of upwelling, indicated by the doming of isotherms and isopycnals. A pressure gradient then was sets up, resulting in the spin-up of a cyclonic <span class="hlt">eddy</span> in geostrophic balance. Evaluation of the surface vorticity balance equation suggests that the wind stress curl via Ekman pumping mechanism provides the necessary input in the formation and evolution of the cyclonic <span class="hlt">eddy</span>. In particular, the cumulative effect of the wind stress curl plays a key role on the generation of the <span class="hlt">eddy</span>. The Beta-effect on the other hand may led to propagation of the <span class="hlt">eddy</span> westward.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Eddy+AND+current&pg=2&id=ED182613','ERIC'); return false;" href="https://eric.ed.gov/?q=Eddy+AND+current&pg=2&id=ED182613"><span>Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-6, Operation of <span class="hlt">Eddy</span> <span class="hlt">Current</span> Test Equipment.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Espy, John; Selleck, Ben</p> <p></p> <p>This sixth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II details <span class="hlt">eddy</span> <span class="hlt">current</span> examination of steam generator tubing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17510362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17510362"><span>Mesoscale <span class="hlt">eddies</span> drive increased silica export in the subtropical Pacific Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benitez-Nelson, Claudia R; Bidigare, Robert R; Dickey, Tommy D; Landry, Michael R; Leonard, Carrie L; Brown, Susan L; Nencioli, Francesco; Rii, Yoshimi M; Maiti, Kanchan; Becker, Jamie W; Bibby, Thomas S; Black, Wil; Cai, Wei-Jun; Carlson, Craig A; Chen, Feizhou; Kuwahara, Victor S; Mahaffey, Claire; McAndrew, Patricia M; Quay, Paul D; Rappé, Michael S; Selph, Karen E; Simmons, Melinda P; Yang, Eun Jin</p> <p>2007-05-18</p> <p>Mesoscale <span class="hlt">eddies</span> may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-core cyclonic <span class="hlt">eddy</span> off Hawaii. <span class="hlt">Eddy</span> primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic <span class="hlt">coupling</span> and inefficient organic export may be general characteristics of community perturbation responses in the warm waters of the Pacific Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920000767&hterms=guns&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dguns','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920000767&hterms=guns&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dguns"><span>Toroid Joining Gun For Fittings And <span class="hlt">Couplings</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.</p> <p>1992-01-01</p> <p>Hand-held gun used to join metal heat-to-shrink <span class="hlt">couplings</span>. Uses magnetic induction (<span class="hlt">eddy</span> <span class="hlt">currents</span>) to produce heat in metal <span class="hlt">coupling</span>, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and <span class="hlt">coupling</span> applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink <span class="hlt">couplings</span> and fittings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhFl...20b6602V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhFl...20b6602V"><span>Dipolar <span class="hlt">eddies</span> in a decaying stratified turbulent flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voropayev, S. I.; Fernando, H. J. S.; Morrison, R.</p> <p>2008-02-01</p> <p>Laboratory experiments on the evolution of dipolar (momentum) <span class="hlt">eddies</span> in a stratified fluid in the presence of random background motions are described. A turbulent jet puff was used to generate the momentum <span class="hlt">eddies</span>, and a decaying field of ambient random vortical motions was generated by a towed grid. Data on vorticity/velocity fields of momentum <span class="hlt">eddies</span>, those of background motions, and their interactions were collected in the presence and absence of the other, and the main characteristics thereof were parametrized. Similarity arguments predict that dipolar <span class="hlt">eddies</span> in stratified fluids may preserve their identity in decaying grid-generated stratified turbulence, which was verified experimentally. Possible applications of the results include mushroomlike <span class="hlt">currents</span> and other naturally/artificially generated large dipolar <span class="hlt">eddies</span> in strongly stratified layers of the ocean, the longevity of which is expected to be determined by the characteristics of the <span class="hlt">eddies</span> and random background motions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23822409','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23822409"><span>Magnetic tracking for TomoTherapy systems: gradiometer based methods to filter <span class="hlt">eddy-current</span> magnetic fields.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McGary, John E; Xiong, Zubiao; Chen, Ji</p> <p>2013-07-01</p> <p>TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, <span class="hlt">eddy-current</span> magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the <span class="hlt">eddy</span> fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of <span class="hlt">eddy</span> <span class="hlt">currents</span> within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863053','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863053"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> nondestructive testing device for measuring variable characteristics of a sample utilizing Walsh functions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Libby, Hugo L.; Hildebrand, Bernard P.</p> <p>1978-01-01</p> <p>An <span class="hlt">eddy</span> <span class="hlt">current</span> testing device for measuring variable characteristics of a sample generates a signal which varies with variations in such characteristics. A signal expander samples at least a portion of this generated signal and expands the sampled signal on a selected basis of square waves or Walsh functions to produce a plurality of signal components representative of the sampled signal. A network combines these components to provide a display of at least one of the characteristics of the sample.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150012191','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150012191"><span><span class="hlt">Eddy</span> <span class="hlt">Current</span> Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)</p> <p>2015-01-01</p> <p>An <span class="hlt">eddy-current</span>-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26473871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26473871"><span>Research on defects inspection of solder balls based on <span class="hlt">eddy</span> <span class="hlt">current</span> pulsed thermography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe</p> <p>2015-10-13</p> <p>In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on <span class="hlt">eddy</span> <span class="hlt">current</span> pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001703&hterms=Red+Sea+outflow+water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRed%2BSea%2Boutflow%2Bwater','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001703&hterms=Red+Sea+outflow+water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRed%2BSea%2Boutflow%2Bwater"><span><span class="hlt">Eddies</span> off the Queen Charlotte Islands</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>The bright red, green, and turquoise patches to the west of British Columbia's Queen Charlotte Islands and Alaska's Alexander Archipelago highlight the presence of biological activity in the ocean. These colors indicate high concentrations of chlorophyll, the primary pigment found in phytoplankton. Notice that there are a number of <span class="hlt">eddies</span> visible in the Pacific Ocean in this pseudo-color scene. The <span class="hlt">eddies</span> are formed by strong outflow <span class="hlt">currents</span> from rivers along North America's west coast that are rich in nutrients from the springtime snowmelt running off the mountains. This nutrient-rich water helps stimulate the phytoplankton blooms within the <span class="hlt">eddies</span>. (For more details, read Tracking <span class="hlt">Eddies</span> that Feed the Sea.) To the west of the <span class="hlt">eddies</span> in the water, another type of <span class="hlt">eddy</span>-this one in the atmosphere-forms the clouds into the counterclockwise spiral characteristic of a low pressure system in the Northern Hemisphere. (Click on the image above to see it at full resolution; or click to see the scene in true-color.) The snow-covered mountains of British Columbia are visible in the upper righthand corner of the image. This scene was constructed using SeaWiFS data collected on June 13, 2002. SeaWiFS image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NTE....32...36J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NTE....32...36J"><span>Frequency optimization in the <span class="hlt">eddy</span> <span class="hlt">current</span> test for high purity niobium</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joung, Mijoung; Jung, Yoochul; Kim, Hyungjin</p> <p>2017-01-01</p> <p>The <span class="hlt">eddy</span> <span class="hlt">current</span> test (ECT) is frequently used as a non-destructive method to check for the defects of high purity niobium (RRR300, Residual Resistivity Ratio) in a superconducting radio frequency (SRF) cavity. Determining an optimal frequency corresponding to specific material properties and probe specification is a very important step. The ECT experiments for high purity Nb were performed to determine the optimal frequency using the standard sample of high purity Nb having artificial defects. The target depth was considered with the treatment step that the niobium receives as the SRF cavity material. The results were analysed via the selectivity that led to a specific result, depending on the size of the defects. According to the results, the optimal frequency was determined to be 200 kHz, and a few features of the ECT for the high purity Nb were observed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JAP....76.3072B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JAP....76.3072B"><span><span class="hlt">Eddy-current</span> inversion in the thin-skin limit: Determination of depth and opening for a long crack</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burke, S. K.</p> <p>1994-09-01</p> <p>A method for crack size determination using <span class="hlt">eddy-current</span> nondestructive evaluation is presented for the case of a plate containing an infinitely long crack of uniform depth and uniform crack opening. The approach is based on the approximate solution to Maxwell's equations for nonmagnetic conductors in the limit of small skin depth and relies on least-squares polynomial fits to a normalized coil impedance function as a function of skin depth. The method is straightforward to implement and is relatively insensitive to both systematic and random errors. The procedure requires the computation of two functions: a normalizing function, which depends both on the coil parameters and the skin depth, and a crack-depth function which depends only on the coil parameters in addition to the crack depth. The practical perfomance of the method was tested using a set of simulated cracks in the form of electro-discharge machined slots in aluminum alloy plates. The crack depths and crack opening deduced from the <span class="hlt">eddy-current</span> measurements agree with the actual crack dimensions to within 10% or better. Recommendations concerning the optimum conditions for crack sizing are also made.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1806k0023M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1806k0023M"><span>Differential geometry based model for <span class="hlt">eddy</span> <span class="hlt">current</span> inspection of U-bend sections in steam generator tubes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mukherjee, Saptarshi; Rosell, Anders; Udpa, Lalita; Udpa, Satish; Tamburrino, Antonello</p> <p>2017-02-01</p> <p>The modeling of U-Bend segment in steam generator tubes for predicting <span class="hlt">eddy</span> <span class="hlt">current</span> probe signals from cracks, wear and pitting in this region poses challenges and is non-trivial. Meshing the geometry in the cartesian coordinate system might require a large number of elements to model the U-bend region. Also, since the lift-off distance between the probe and tube wall is usually very small, a very fine mesh is required near the probe region to accurately describe the <span class="hlt">eddy</span> <span class="hlt">current</span> field. This paper presents a U-bend model using differential geometry principles that exploit the result that Maxwell's equations are covariant with respect to changes of coordinates and independent of metrics. The equations remain unaltered in their form, regardless of the choice of the coordinates system, provided the field quantities are represented in the proper covariant and contravariant form. The complex shapes are mapped into simple straight sections, while small lift-off is mapped to larger values, thus reducing the intrinsic dimension of the mesh and stiffness matrix. In this contribution, the numerical implementation of the above approach will be discussed with regard to field and <span class="hlt">current</span> distributions within the U-bend tube wall. For the sake of simplicity, a two dimensional test case will be considered. The approach is evaluated in terms of efficiency and accuracy by comparing the results with that obtained using a conventional FE model in cartesian coordinates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14C..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14C..03J"><span>Air-Sea Interaction in the Somali <span class="hlt">Current</span> Region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, T. G.; Rydbeck, A.</p> <p>2017-12-01</p> <p>The western Indian Ocean is an area of high <span class="hlt">eddy</span>-kinetic energy generated by local wind-stress curl, instability of boundary <span class="hlt">currents</span> as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale <span class="hlt">eddies</span> and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's <span class="hlt">Coupled</span> Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere <span class="hlt">coupling</span> in that area. The COAMPS atmosphere model component with 9 km resolution is fully <span class="hlt">coupled</span> to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali <span class="hlt">Current</span> found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali <span class="hlt">Current</span> <span class="hlt">eddies</span>, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9744J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9744J"><span><span class="hlt">Eddy</span>-Kuroshio Interactions: Local and Remote Effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jan, Sen; Mensah, Vigan; Andres, Magdalena; Chang, Ming-Huei; Yang, Yiing Jang</p> <p>2017-12-01</p> <p>Quasi-geostrophic mesoscale <span class="hlt">eddies</span> regularly impinge on the Kuroshio in the western North Pacific, but the processes underlying the evolution of these <span class="hlt">eddy</span>-Kuroshio interactions have not yet been thoroughly investigated in the literature. Here this interaction is examined with results from a semi-idealized three-dimensional numerical model and observations from four pressure-sensor equipped inverted echo sounders (PIESs) in a zonal section east of Taiwan and satellite altimeters. Both the observations and numerical simulations suggest that, during the interaction of a cyclonic <span class="hlt">eddy</span> with the Kuroshio, the circular <span class="hlt">eddy</span> is deformed into an elliptic shape with the major axis in the northwest-southeast direction, before being dissipated; the poleward velocity and associated Kuroshio transport decrease and the sea level and pycnocline slopes across the Kuroshio weaken. In contrast, for an anticyclonic <span class="hlt">eddy</span> during the <span class="hlt">eddy</span>-Kuroshio interaction, variations in the velocity, sea level, and isopycnal depth are reversed; the circular <span class="hlt">eddy</span> is also deformed to an ellipse but with the major axis parallel to the Kuroshio. The model results also demonstrate that the velocity field is modified first and consequently the SSH and isopycnal depth evolve during the interaction. Furthermore, due to the combined effect of impingement latitude and realistic topography, some <span class="hlt">eddy</span>-Kuroshio interactions east of Taiwan are found to have remote effects, both in the Luzon Strait and on the East China Sea shelf northeast of Taiwan.<abstract type="synopsis"><title type="main">Plain Language SummaryMesoscale <span class="hlt">eddies</span> are everywhere in the ocean. These ocean swirls of either clockwise or counterclockwise spinning with diameter of about 100-300 km and rounding <span class="hlt">current</span> speed of about 0.5 m/s, carrying energy and certain type of water mass, move westward and eventually reach the western boundary of each ocean. The evolution of these <span class="hlt">eddies</span> and the interaction which occurs when they encounter the western</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMMM..440..175B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMMM..440..175B"><span>Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic <span class="hlt">eddy</span> <span class="hlt">current</span> defectoscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.</p> <p>2017-10-01</p> <p>Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution <span class="hlt">eddy</span> <span class="hlt">current</span> magnetic field near defects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1706i0011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1706i0011S"><span>Analytical solution for the effect of the permittivity of coating layer on <span class="hlt">eddy</span> <span class="hlt">current</span> generated in an aluminum sample by EMAT</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Feiran; Sun, Zhenguo; Chen, Qiang</p> <p>2016-02-01</p> <p>In order to improve the ultrasonic wave amplitude excited by electromagnetic acoustic transducers (EMATs), many researchers have proposed models. But they always ignored displacement <span class="hlt">current</span> or the effect of the permittivity of the air or the metal sample during modeling, due to its low permittivity. However, more durable dielectric materials are replacing or coating with metals in many applications which have a much higher permittivity than air or metal sample so that the effect of permittivity cannot be ignored. Based on an analytical model, the effect of the permittivity of coating layer on the <span class="hlt">eddy</span> <span class="hlt">current</span> generated in an aluminum sample by EMAT has been studied. The analytical analysis indicates that the <span class="hlt">eddy</span> <span class="hlt">current</span> density excited by the spiral coil of EMAT slowly increases in the beginning and then decreases rapidly while the permittivity increases, and it has much relation to the thickness of the coating layer and the exciting frequency, which is verified by the simulation result.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5677363','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5677363"><span>Pulsed <span class="hlt">Eddy</span> <span class="hlt">Current</span> Sensing for Critical Pipe Condition Assessment</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Pulsed <span class="hlt">Eddy</span> <span class="hlt">Current</span> (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor’s behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application. PMID:28954392</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28954392','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28954392"><span>Pulsed <span class="hlt">Eddy</span> <span class="hlt">Current</span> Sensing for Critical Pipe Condition Assessment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ulapane, Nalika; Alempijevic, Alen; Vidal Calleja, Teresa; Valls Miro, Jaime</p> <p>2017-09-26</p> <p>Pulsed <span class="hlt">Eddy</span> <span class="hlt">Current</span> (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor's behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1511..785S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1511..785S"><span>Amplitude-independent flaw length determination using differential <span class="hlt">eddy</span> <span class="hlt">current</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shell, E.</p> <p>2013-01-01</p> <p>Military engine component manufacturers typically specify the <span class="hlt">eddy</span> <span class="hlt">current</span> (EC) inspection requirements as a crack length or depth with the assumption that the cracks in both the test specimens and inspected component are of a similar fixed aspect ratio. However, differential EC response amplitude is dependent on the area of the crack face, not the length or depth. Additionally, due to complex stresses, in-service cracks do not always grow in the assumed manner. It would be advantageous to use more of the information contained in the EC data to better determine the full profile of cracks independent of the fixed aspect ratio amplitude response curve. A specimen with narrow width notches is used to mimic cracks of varying aspect ratios in a controllable manner. The specimen notches have aspect ratios that vary from 1:1 to 10:1. Analysis routines have been developed using the shape of the EC response signals that can determine the length of a surface flaw of common orientations without use of the amplitude of the signal or any supporting traditional probability of detection basis. Combined with the relationship between signal amplitude and area, the depth of the flaw can also be calculated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H34D..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H34D..03H"><span>The <span class="hlt">current</span> California drought through <span class="hlt">EDDI</span>'s eyes: early warning and monitoring of agricultural and hydrologic drought with the new Evaporative Demand Drought Index.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.</p> <p>2015-12-01</p> <p>We have developed a physically based, multi-scalar drought index—the Evaporative Demand Drought Index (<span class="hlt">EDDI</span>)—to improve treatment of evaporative dynamics in drought monitoring. Existing popular drought indices—such as the Palmer Drought Severity Index that informs much of the US Drought Monitor (USDM)—have primarily relyied on precipitation and temperature (T) to represent hydroclimatic anomalies, leaving evaporative demand (E0) most often derived from poorly performing T-based parameterizations then used to derive actual evapotranspiration (ET) from LSMs. Instead, <span class="hlt">EDDI</span> leverages the inter-relations of E0 and ET, measuring E0's physical response to surface drying anomalies due to two distinct land surface/atmosphere interactions: (i) in sustained drought, limited moisture availability forces E0 and ET into a complementary relation, whereby ET declines as E0 increases; and (ii) in "flash" droughts, E0 increases due to increasing advection or radiation. E0's rise in response to both drought types suggests <span class="hlt">EDDI</span>'s robustness as a monitor and leading indicator of drought. To drive <span class="hlt">EDDI</span>, we use for E0 daily reference ET from the ASCE Standardized Reference ET equation forced by North American Land Data Assimilation System drivers. <span class="hlt">EDDI</span> is derived by aggregating E0 anomalies from its long-term mean across a period of interest and normalizing them to a Z-score. Positive <span class="hlt">EDDI</span> indicates drier than normal conditions (and so drought). We use the <span class="hlt">current</span> historic California drought as a test-case in which to examine <span class="hlt">EDDI</span>'s performance in monitoring agricultural and hydrologic drought. We observe drought development and decompose the behavior of drought's evaporative drivers during in-drought intensification periods and wetting events. <span class="hlt">EDDI</span>'s performance as a drought leading indicator with respect to the USDM is tested in important agricultural regions. Comparing streamflow from several USGS gauges in the Sierra Nevada to <span class="hlt">EDDI</span>, we find that <span class="hlt">EDDI</span> tracks most major</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816124S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816124S"><span>A True <span class="hlt">Eddy</span> Accumulation - <span class="hlt">Eddy</span> Covariance hybrid for measurements of turbulent trace gas fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebicke, Lukas</p> <p>2016-04-01</p> <p><span class="hlt">Eddy</span> covariance (EC) is state-of-the-art in directly and continuously measuring turbulent fluxes of carbon dioxide and water vapor. However, low signal-to-noise ratios, high flow rates and missing or complex gas analyzers limit it's application to few scalars. True <span class="hlt">eddy</span> accumulation, based on conditional sampling ideas by Desjardins in 1972, requires no fast response analyzers and is therefore potentially applicable to a wider range of scalars. Recently we showed possibly the first successful implementation of True <span class="hlt">Eddy</span> Accumulation (TEA) measuring net ecosystem exchange of carbon dioxide of a grassland. However, most accumulation systems share the complexity of having to store discrete air samples in physical containers representing entire flux averaging intervals. The <span class="hlt">current</span> study investigates merging principles of <span class="hlt">eddy</span> accumulation and <span class="hlt">eddy</span> covariance, which we here refer to as "true <span class="hlt">eddy</span> accumulation in transient mode" (TEA-TM). This direct flux method TEA-TM combines true <span class="hlt">eddy</span> accumulation with continuous sampling. The TEA-TM setup is simpler than discrete accumulation methods while avoiding the need for fast response gas analyzers and high flow rates required for EC. We implemented the proposed TEA-TM method and measured fluxes of carbon dioxide (CO2), methane (CH4) and water vapor (H2O) above a mixed beech forest at the Hainich Fluxnet and ICOS site, Germany, using a G2301 laser spectrometer (Picarro Inc., USA). We further simulated a TEA-TM sampling system using measured high frequency CO2 time series from an open-path gas analyzer. We operated TEA-TM side-by-side with open-, enclosed- and closed-path EC flux systems for CO2, H2O and CH4 (LI-7500, LI-7200, LI-6262, LI-7700, Licor, USA, and FGGA LGR, USA). First results show that TEA-TM CO2 fluxes were similar to EC fluxes. Remaining differences were similar to those between the three <span class="hlt">eddy</span> covariance setups (open-, enclosed- and closed-path gas analyzers). Measured TEA-TM CO2 fluxes from our physical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860038376&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860038376&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal"><span><span class="hlt">Coupled</span> ice-ocean dynamics in the marginal ice zones Upwelling/downwelling and <span class="hlt">eddy</span> generation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hakkinen, S.</p> <p>1986-01-01</p> <p>This study is aimed at modeling mesoscale processes such as upwelling/downwelling and ice edge <span class="hlt">eddies</span> in the marginal ice zones. A two-dimensional <span class="hlt">coupled</span> ice-ocean model is used for the study. The ice model is <span class="hlt">coupled</span> to the reduced gravity ocean model through interfacial stresses. The parameters of the ocean model were chosen so that the dynamics would be nonlinear. The model was tested by studying the dynamics of upwelling. Wings parallel to the ice edge with the ice on the right produce upwelling because the air-ice momentum flux is much greater than air-ocean momentum flux; thus the Ekman transport is greater than the ice than in the open water. The stability of the upwelling and downwelling jets is discussed. The downwelling jet is found to be far more unstable than the upwelling jet because the upwelling jet is stabilized by the divergence. The constant wind field exerted on a varying ice cover will generate vorticity leading to enhanced upwelling/downwelling regions, i.e., wind-forced vortices. Steepening and strengthening of vortices are provided by the nonlinear terms. When forcing is time-varying, the advection terms will also redistribute the vorticity. The wind reversals will separate the vortices from the ice edge, so that the upwelling enhancements are pushed to the open ocean and the downwelling enhancements are pushed underneath the ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPJAP..7210701P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPJAP..7210701P"><span>Original non-stationary <span class="hlt">eddy</span> <span class="hlt">current</span> imaging process for the evaluation of defects in metallic structures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Placko, Dominique; Bore, Thierry; Rivollet, Alain; Joubert, Pierre-Yves</p> <p>2015-10-01</p> <p>This paper deals with the problem of imaging defects in metallic structures through <span class="hlt">eddy</span> <span class="hlt">current</span> (EC) inspections, and proposes an original process for a possible tomographical crack evaluation. This process is based on a semi analytical modeling, called "distributed point source method" (DPSM) which is used to describe and equate the interactions between the implemented EC probes and the structure under test. Several steps will be successively described, illustrating the feasibility of this new imaging process dedicated to the quantitative evaluation of defects. The basic principles of this imaging process firstly consist in creating a 3D grid by meshing the volume potentially inspected by the sensor. As a result, a given number of elemental volumes (called voxels) are obtained. Secondly, the DPSM modeling is used to compute an image for all occurrences in which only one of the voxels has a different conductivity among all the other ones. The assumption consists to consider that a real defect may be truly represented by a superimposition of elemental voxels: the resulting accuracy will naturally depend on the density of space sampling. On other hand, the excitation device of the EC imager has the capability to be oriented in several directions, and driven by an excitation <span class="hlt">current</span> at variable frequency. So, the simulation will be performed for several frequencies and directions of the <span class="hlt">eddy</span> <span class="hlt">currents</span> induced in the structure, which increases the signal entropy. All these results are merged in a so-called "observation matrix" containing all the probe/structure interaction configurations. This matrix is then used in an inversion scheme in order to perform the evaluation of the defect location and geometry. The modeled EC data provided by the DPSM are compared to the experimental images provided by an <span class="hlt">eddy</span> <span class="hlt">current</span> imager (ECI), implemented on aluminum plates containing some buried defects. In order to validate the proposed inversion process, we feed it with computed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25405472','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25405472"><span>Efficacy of distortion correction on diffusion imaging: comparison of FSL <span class="hlt">eddy</span> and <span class="hlt">eddy</span>_correct using 30 and 60 directions diffusion encoding.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki</p> <p>2014-01-01</p> <p>Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and <span class="hlt">eddy</span> <span class="hlt">currents</span>. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or <span class="hlt">eddy-current</span> induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "<span class="hlt">eddy</span>_correct" and the combination of "<span class="hlt">eddy</span>" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with <span class="hlt">eddy</span> and topup possessed higher FA values than images uncorrected and corrected with <span class="hlt">eddy</span>_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of <span class="hlt">eddy</span> and topup as a superior correction tool in diffusion imaging rather than the <span class="hlt">eddy</span>_correct tool, especially with trilinear interpolation, using 60 directions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51A2015H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51A2015H"><span>Large <span class="hlt">eddy</span> simulation of dust-uplift by haboob density <span class="hlt">currents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Q.</p> <p>2017-12-01</p> <p>Cold pool outflows have been shown from both observations and convection-permitting models to be a dominant source of dust uplift ("haboobs") in the summertime Sahel and Sahara, and to cause dust uplift over deserts across the world. In this paper large <span class="hlt">eddy</span> model (LEM) simulations, which resolve the turbulence within the cold-pools much better than previous studies of haboobs which have used convection-permitting models, are used to investigate the winds that cause dust uplift in cold pools, and the resultant dust uplift and transport. Dust uplift largely occurs in the head of the density <span class="hlt">current</span>, consistent with the few existing observations. In the modeled density <span class="hlt">current</span> dust is largely restricted to the lowest coldest and well mixed layer of the cold pool outflow (below around 400 m), except above the head of the cold pool where some dust reaches 2.5 km. This rapid transport to high altitude will contribute to long atmospheric lifetimes of large dust particles from haboobs. Decreasing the model horizontal grid-spacing from 1.0 km to 100 m resolves more turbulence, locally increasing winds, increasing mixing and reducing the propagation speed of the density <span class="hlt">current</span>. Total accumulated dust uplift is approximately twice as large in 1.0 km runs compared with 100 m runs, suggesting that for studying haboobs in convection-permitting runs the representation of turbulence and mixing is significant. Simulations with surface sensible heat fluxes representative of those from a desert region in daytime show that increasing surface fluxes slow the density <span class="hlt">current</span> due to increased mixing, but increase dust uplift rates, due to increased downward transport of momentum to the surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375865','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375865"><span>An <span class="hlt">Eddy</span> <span class="hlt">Current</span> Testing Platform System for Pipe Defect Inspection Based on an Optimized <span class="hlt">Eddy</span> <span class="hlt">Current</span> Technique Probe Design</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.</p> <p>2017-01-01</p> <p>The use of the <span class="hlt">eddy</span> <span class="hlt">current</span> technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28335399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28335399"><span>An <span class="hlt">Eddy</span> <span class="hlt">Current</span> Testing Platform System for Pipe Defect Inspection Based on an Optimized <span class="hlt">Eddy</span> <span class="hlt">Current</span> Technique Probe Design.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rifai, Damhuji; Abdalla, Ahmed N; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A</p> <p>2017-03-13</p> <p>The use of the <span class="hlt">eddy</span> <span class="hlt">current</span> technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDA13001K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDA13001K"><span><span class="hlt">Coupled</span> large-<span class="hlt">eddy</span> simulation and morphodynamics of a large-scale river under extreme flood conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team</p> <p>2016-11-01</p> <p>We present a <span class="hlt">coupled</span> flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-<span class="hlt">eddy</span> simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The <span class="hlt">coupling</span> of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1096.1808L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1096.1808L"><span>Variables Affecting Probability of Detection in Bolt Hole <span class="hlt">Eddy</span> <span class="hlt">Current</span> Inspection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemire, H.; Krause, T. W.; Bunn, M.; Butcher, D. J.</p> <p>2009-03-01</p> <p>Physical variables affecting probability of detection (POD) in a bolt-hole <span class="hlt">eddy</span> <span class="hlt">current</span> inspection were examined. The POD study involved simulated bolt holes in 7075-T6 aluminum coupons representative of wing areas on CC-130 and CP-140 aircraft. The data were obtained from 24 inspectors who inspected 468 coupons, containing a subset of coupons with 45 electric discharge machined notches and 72 laboratory grown fatigue cracks located at the inner surface corner of the bi-layer structures. A comparison of physical features of cracks and notches in light of skin depth effects and probe geometry was used to identify length rather than depth as the significant variable producing signal variation. Probability of detection based on length produced similar results for the two discontinuity types, except at lengths less than 0.4 mm, where POD for cracks was found to be higher than that of notches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29g5105C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29g5105C"><span>Effect of artificial length scales in large <span class="hlt">eddy</span> simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatterjee, Tanmoy; Peet, Yulia T.</p> <p>2017-07-01</p> <p>A large <span class="hlt">eddy</span> simulation (LES) methodology <span class="hlt">coupled</span> with near-wall modeling has been implemented in the <span class="hlt">current</span> study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer <span class="hlt">eddies</span> is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the <span class="hlt">eddies</span> affected by the LES model and also the fundamental physics behind the inner and outer layer <span class="hlt">eddies</span> which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent <span class="hlt">eddies</span> has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS43B1278F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS43B1278F"><span>Deep <span class="hlt">Eddies</span> in the Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furey, H. H.; Bower, A. S.; Perez-Brunius, P.; Hamilton, P.</p> <p>2014-12-01</p> <p>A major Lagrangian program is <span class="hlt">currently</span> underway to map the deep (1500-2500 m) circulation of the entire Gulf of Mexico. Beginning in 2011, more than 120 acoustically tracked RAFOS floats have been released in the eastern, central and western Gulf, many in pairs and triplets. Most floats are programmed to drift for two years, obtaining position fixes and temperature/pressure measurements three times daily. More than 80 floats have completed their missions, and results from the trajectories will be described with a focus on mesoscale <span class="hlt">eddying</span> behavior. In particular, the first-ever observations of deep energetic anticyclonic <span class="hlt">eddies</span> (possibly lenses) forming at and separating from a northeastward-flowing boundary <span class="hlt">current</span> west of Campeche Bank will be discussed. The existence of these <span class="hlt">eddies</span> has major implications for exchange between the continental slope and interior Gulf. The project is being supported by the U.S. Bureau of Ocean Energy Management (BOEM).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26891305','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26891305"><span>Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and <span class="hlt">Eddy</span> <span class="hlt">Current</span> Sensors.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah</p> <p>2016-02-16</p> <p>The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the <span class="hlt">eddy</span> <span class="hlt">current</span> technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The <span class="hlt">eddy</span> <span class="hlt">current</span> technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28858230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28858230"><span>A Smart <span class="hlt">Eddy</span> <span class="hlt">Current</span> Sensor Dedicated to the Nondestructive Evaluation of Carbon Fibers Reinforced Polymers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Naidjate, Mohammed; Helifa, Bachir; Feliachi, Mouloud; Lefkaier, Iben-Khaldoun; Heuer, Henning; Schulze, Martin</p> <p>2017-08-31</p> <p>This paper propose a new concept of an <span class="hlt">eddy</span> <span class="hlt">current</span> (EC) multi-element sensor for the characterization of carbon fiber-reinforced polymers (CFRP) to evaluate the orientations of plies in CFRP and the order of their stacking. The main advantage of the new sensors is the flexible parametrization by electronical switching that reduces the effort for mechanical manipulation. The sensor response was calculated and proved by 3D finite element (FE) modeling. This sensor is dedicated to nondestructive testing (NDT) and can be an alternative for conventional mechanical rotating and rectangular sensors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27088991','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27088991"><span>Physical-Biological <span class="hlt">Coupling</span> in the Western South China Sea: The Response of Phytoplankton Community to a Mesoscale Cyclonic <span class="hlt">Eddy</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Lei; Huang, Bangqin; Chiang, Kuo-Ping; Liu, Xin; Chen, Bingzhang; Xie, Yuyuan; Xu, Yanping; Hu, Jianyu; Dai, Minhan</p> <p>2016-01-01</p> <p>It is widely recognized that the mesoscale <span class="hlt">eddies</span> play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic <span class="hlt">eddy</span> in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the <span class="hlt">eddy</span> center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the <span class="hlt">eddy</span> center to the surrounding water outside the <span class="hlt">eddy</span>. However the TChl a biomass in the surface layer (at 5 m) in the <span class="hlt">eddy</span> center was promoted 2.6-fold compared to the biomass outside the <span class="hlt">eddy</span> (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the <span class="hlt">eddy</span> was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the <span class="hlt">eddy</span>, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the <span class="hlt">eddy</span> center under the effect of nutrient pumping. The doming isopycnal within the <span class="hlt">eddy</span> supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in <span class="hlt">eddy</span> center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4835056','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4835056"><span>Physical-Biological <span class="hlt">Coupling</span> in the Western South China Sea: The Response of Phytoplankton Community to a Mesoscale Cyclonic <span class="hlt">Eddy</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Lei; Huang, Bangqin; Chiang, Kuo-Ping; Liu, Xin; Chen, Bingzhang; Xie, Yuyuan; Xu, Yanping; Hu, Jianyu; Dai, Minhan</p> <p>2016-01-01</p> <p>It is widely recognized that the mesoscale <span class="hlt">eddies</span> play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic <span class="hlt">eddy</span> in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the <span class="hlt">eddy</span> center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the <span class="hlt">eddy</span> center to the surrounding water outside the <span class="hlt">eddy</span>. However the TChl a biomass in the surface layer (at 5 m) in the <span class="hlt">eddy</span> center was promoted 2.6-fold compared to the biomass outside the <span class="hlt">eddy</span> (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the <span class="hlt">eddy</span> was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the <span class="hlt">eddy</span>, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the <span class="hlt">eddy</span> center under the effect of nutrient pumping. The doming isopycnal within the <span class="hlt">eddy</span> supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in <span class="hlt">eddy</span> center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL36012C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL36012C"><span>Stochastic four-way <span class="hlt">coupling</span> of gas-solid flows for Large <span class="hlt">Eddy</span> Simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curran, Thomas; Denner, Fabian; van Wachem, Berend</p> <p>2017-11-01</p> <p>The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large <span class="hlt">Eddy</span> Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way <span class="hlt">coupling</span> of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7e6714C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7e6714C"><span>Mechanical-magnetic-electric <span class="hlt">coupled</span> behaviors for stress-driven Terfenol-D energy harvester</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Shuying; Zheng, Jiaju; Wang, Bowen; Pan, Ruzheng; Zhao, Ran; Weng, Ling; Sun, Ying; Liu, Chengcheng</p> <p>2017-05-01</p> <p>The stress-driven Terfernol-D energy harvester exhibits the nonlinear mechanical-magnetic-electric <span class="hlt">coupled</span> (MMEC) behaviors and the <span class="hlt">eddy</span> <span class="hlt">current</span> effects. To analyze and design the device, it is necessary to establish an accurate model of the device. Based on the effective magnetic field expression, the constitutive equations with <span class="hlt">eddy</span> <span class="hlt">currents</span> and variable coefficients, and the dynamic equations, a nonlinear dynamic MMEC model for the device is founded. Comparisons between the measured and calculated results show that the model can describe the nonlinear <span class="hlt">coupled</span> curves of magnetization versus stress and strain versus stress under different bias fields, and can provide the reasonable data trends of piezomagnetic coefficients, Young's modulus and relative permeability for Terfenol-D. Moreover, the calculated power results show that the model can determine the optimal bias conditions, optimal resistance, suitable proof mass, suitable slices for the maximum energy extraction of the device under broad stress amplitude and broad frequency.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21371028-pulsed-eddy-current-thickness-measurement-selective-phase-corrosion-nickel-aluminum-bronze-valves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21371028-pulsed-eddy-current-thickness-measurement-selective-phase-corrosion-nickel-aluminum-bronze-valves"><span>PULSED <span class="hlt">EDDY</span> <span class="hlt">CURRENT</span> THICKNESS MEASUREMENT OF SELECTIVE PHASE CORROSION ON NICKEL ALUMINUM BRONZE VALVES</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Krause, T. W.; Harlley, D.; Babbar, V. K.</p> <p></p> <p>Nickel Aluminum Bronze (NAB) is a material with marine environment applications that under certain conditions can undergo selective phase corrosion (SPC). SPC involves the removal of minority elements while leaving behind a copper matrix. Pulsed <span class="hlt">eddy</span> <span class="hlt">current</span> (PEC) was evaluated for determination of SPC thickness on a NAB valve section with access from the surface corroded side. A primarily linear response of PEC amplitude, up to the maximum available SPC thickness of 4 mm was observed. The combination of reduced conductivity and permeability in the SPC phase relative to the base NAB was used to explain the observed sensitivity ofmore » PEC to SPC thickness variations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24829517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24829517"><span>Finite element solution of nonlinear <span class="hlt">eddy</span> <span class="hlt">current</span> problems with periodic excitation and its industrial applications.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bíró, Oszkár; Koczka, Gergely; Preis, Kurt</p> <p>2014-05-01</p> <p>An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional <span class="hlt">eddy</span> <span class="hlt">current</span> problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are <span class="hlt">coupled</span> to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct <span class="hlt">current</span> (DC) bias in the coils of a single-phase transformer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1511..651B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1511..651B"><span>Storage strategies of <span class="hlt">eddy-current</span> FE-BI model for GPU implementation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bardel, Charles; Lei, Naiguang; Udpa, Lalita</p> <p>2013-01-01</p> <p>In the past few years graphical processing units (GPUs) have shown tremendous improvements in computational throughput over standard CPU architecture. However, this comes at the cost of restructuring the algorithms to meet the strengths and drawbacks of this GPU architecture. A major drawback is the state of limited memory, and hence storage of FE stiffness matrices on the GPU is important. In contrast to storage on CPU the GPU storage format has significant influence on the overall performance. This paper presents an investigation of a storage strategy in the implementation of a two-dimensional finite element-boundary integral (FE-BI) model for <span class="hlt">Eddy</span> <span class="hlt">current</span> NDE applications, on GPU architecture. Specifically, the high dimensional matrices are manipulated by examining the matrix structure and optimally splitting into structurally independent component matrices for efficient storage and retrieval of each component. Results obtained using the proposed approach are compared to those of conventional CPU implementation for validating the method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801610','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801610"><span>Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and <span class="hlt">Eddy</span> <span class="hlt">Current</span> Sensors</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah</p> <p>2016-01-01</p> <p>The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the <span class="hlt">eddy</span> <span class="hlt">current</span> technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The <span class="hlt">eddy</span> <span class="hlt">current</span> technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4236106','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4236106"><span>Efficacy of Distortion Correction on Diffusion Imaging: Comparison of FSL <span class="hlt">Eddy</span> and <span class="hlt">Eddy</span>_Correct Using 30 and 60 Directions Diffusion Encoding</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki</p> <p>2014-01-01</p> <p>Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and <span class="hlt">eddy</span> <span class="hlt">currents</span>. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or <span class="hlt">eddy-current</span> induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, “<span class="hlt">eddy</span>_correct” and the combination of “eddy” and “topup” in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non–diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non–diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with <span class="hlt">eddy</span> and topup possessed higher FA values than images uncorrected and corrected with <span class="hlt">eddy</span>_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of <span class="hlt">eddy</span> and topup as a superior correction tool in diffusion imaging rather than the <span class="hlt">eddy</span>_correct tool, especially with trilinear interpolation, using 60</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018InPhT..90..133X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018InPhT..90..133X"><span>Spatial-time-state fusion algorithm for defect detection through <span class="hlt">eddy</span> <span class="hlt">current</span> pulsed thermography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting</p> <p>2018-05-01</p> <p><span class="hlt">Eddy</span> <span class="hlt">Current</span> Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015904','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015904"><span>Research and Development of Automated <span class="hlt">Eddy</span> <span class="hlt">Current</span> Testing for Composite Overwrapped Pressure Vessels</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carver, Kyle L.; Saulsberry, Regor L.; Nichols, Charles T.; Spencer, Paul R.; Lucero, Ralph E.</p> <p>2012-01-01</p> <p><span class="hlt">Eddy</span> <span class="hlt">current</span> testing (ET) was used to scan bare metallic liners used in the fabrication of composite overwrapped pressure vessels (COPVs) for flaws which could result in premature failure of the vessel. The main goal of the project was to make improvements in the areas of scan signal to noise ratio, sensitivity of flaw detection, and estimation of flaw dimensions. Scan settings were optimized resulting in an increased signal to noise ratio. Previously undiscovered flaw indications were observed and investigated. Threshold criteria were determined for the system software's flaw report and estimation of flaw dimensions were brought to an acceptable level of accuracy. Computer algorithms were written to import data for filtering and a numerical derivative filtering algorithm was evaluated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5676648','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5676648"><span>Defect Detection and Segmentation Framework for Remote Field <span class="hlt">Eddy</span> <span class="hlt">Current</span> Sensor Data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Remote-Field <span class="hlt">Eddy-Current</span> (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects. PMID:28984823</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28984823','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28984823"><span>Defect Detection and Segmentation Framework for Remote Field <span class="hlt">Eddy</span> <span class="hlt">Current</span> Sensor Data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Falque, Raphael; Vidal-Calleja, Teresa; Miro, Jaime Valls</p> <p>2017-10-06</p> <p>Remote-Field <span class="hlt">Eddy-Current</span> (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23526761','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23526761"><span>A low-cost, mechanically simple apparatus for measuring <span class="hlt">eddy</span> <span class="hlt">current</span>-induced magnetic fields in MRI.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gilbert, Kyle M; Martyn Klassen, L; Menon, Ravi S</p> <p>2013-10-01</p> <p>The fidelity of gradient waveforms in MRI pulse sequences is essential to the acquisition of images and spectra with minimal distortion artefacts. Gradient waveforms can become nonideal when <span class="hlt">eddy</span> <span class="hlt">currents</span> are created in nearby conducting structures; however, the resultant magnetic fields can be characterised and compensated for by measuring the spatial and temporal field response following a gradient impulse. This can be accomplished using a grid of radiofrequency (RF) coils. The RF coils must adhere to strict performance requirements: they must achieve a high sensitivity and signal-to-noise ratio (SNR), have minimal susceptibility field gradients between the sample and surrounding material interfaces and be highly decoupled from each other. In this study, an apparatus is presented that accomplishes these tasks with a low-cost, mechanically simple solution. The coil system consists of six transmit/receive RF coils immersed in a high-molarity saline solution. The sensitivity and SNR following an excitation pulse are sufficiently high to allow accurate phase measurements during free-induction decays; the intrinsic susceptibility matching of the materials, because of the unique design of the coil system, results in sufficiently narrow spectral line widths (mean of 19 Hz), and adjacent RF coils are highly decoupled (mean S12 of -47 dB). The temporal and spatial distributions of <span class="hlt">eddy</span> <span class="hlt">currents</span> following a gradient pulse are measured to validate the efficacy of the design, and the resultant amplitudes and time constants required for zeroth- and first-order compensation are provided. Copyright © 2013 John Wiley & Sons, Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040191710&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040191710&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmit"><span>Subduction in an <span class="hlt">Eddy</span>-Resolving State Estimate of the Northeast Atlantic Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gebbie, Geoffrey</p> <p>2004-01-01</p> <p>Are <span class="hlt">eddies</span> an important contributor to subduction in the eastern subtropical gyre? Here, an adjoint model is used to combine a regional, <span class="hlt">eddy</span>-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in- situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MTI General Circulation Model. The adjoint method is successful because the Northeast Atlantic Ocean is only weakly nonlinear. The state estimate provides a physically-interpretable, <span class="hlt">eddy</span>-resolving information source to diagnose subduction. Estimates of <span class="hlt">eddy</span> subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Furthermore, <span class="hlt">eddy</span> subduction rates have typical magnitudes of 15% of the total subduction rate. <span class="hlt">Eddies</span> contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial <span class="hlt">Current</span> and the Azores <span class="hlt">Current</span>. The findings of this thesis imply that the inability to resolve or accurately parameterize <span class="hlt">eddy</span> subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the relatively-quiescent eastern subtropical gyre.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA624858','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA624858"><span><span class="hlt">Eddy</span> Effects in the General Circulation, Spanning Mean <span class="hlt">Currents</span>, Mesoscale <span class="hlt">Eddies</span>, and Topographic Generation, Including Submesoscale Nests</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>against real-world data in cooperation with William S. Kessler and Hristina Hristova from PMEL (Solomon Sea), and Satoshi Mitarai and Taichi Sakagami from...refined grids, starting with basin-wide <span class="hlt">eddy</span> permitting resolutions (although substantially finer than that used in climate modeling), and downscaling it...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS11B1188V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS11B1188V"><span>Statistical mechanics explanation for the structure of ocean <span class="hlt">eddies</span> and <span class="hlt">currents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venaille, A.; Bouchet, F.</p> <p>2010-12-01</p> <p>The equilibrium statistical mechanics of two dimensional and geostrophic flows predicts the outcome for the large scales of the flow, resulting from the turbulent mixing. This theory has been successfully applied to describe detailed properties of Jupiter's Great Red Spot. We discuss the range of applicability of this theory to ocean dynamics. It is able to reproduce mesoscale structures like ocean rings. It explains, from statistical mechanics, the westward drift of rings at the speed of non dispersive baroclinic waves, and the recently observed (Chelton and col.) slower northward drift of cyclonic <span class="hlt">eddies</span> and southward drift of anticyclonic <span class="hlt">eddies</span>. We also uncover relations between strong eastward mid-basin inertial jets, like the Kuroshio extension and the Gulf Stream, and statistical equilibria. We explain under which conditions such strong mid-basin jets can be understood as statistical equilibria. We claim that these results are complementary to the classical Sverdrup-Munk theory: they explain the inertial part basin dynamics, the jets structure and location, using very simple theoretical arguments. References: A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, arxiv ...., submitted to Physics Reports P. BERLOFF, A. M. HOGG, W. DEWAR, The Turbulent Oscillator: A Mechanism of Low- Frequency Variability of the Wind-Driven Ocean Gyres, Journal of Physical Oceanography 37 (2007) 2363-+. D. B. CHELTON, M. G. SCHLAX, R. M. SAMELSON, R. A. de SZOEKE, Global observations of large oceanic <span class="hlt">eddies</span>, Geo. Res. Lett.34 (2007) 15606-+ b) and c) are snapshots of streamfunction and potential vorticity (red: positive values; blue: negative values) in the upper layer of a three layer quasi-geostrophic model of a mid-latitude ocean basin (from Berloff and co.). a) Streamfunction predicted by statistical mechanics. Even in an out</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNG13A..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNG13A..05W"><span>Ingredients of the <span class="hlt">Eddy</span> Soup: A Geometric Decomposition of <span class="hlt">Eddy</span>-Mean Flow Interactions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waterman, S.; Lilly, J. M.</p> <p>2014-12-01</p> <p>Understanding <span class="hlt">eddy</span>-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing <span class="hlt">eddy</span> effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/<span class="hlt">eddy</span> stress tensor that describes <span class="hlt">eddy</span> fluxes, also encodes information about <span class="hlt">eddy</span> size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes <span class="hlt">eddy</span>-mean flow interactions in terms of a geometric description of the <span class="hlt">eddy</span> motion, and illustrate it with an application to an unstable jet. Specifically we show that the <span class="hlt">eddy</span> vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the <span class="hlt">eddy</span> kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into <span class="hlt">eddy</span>-mean flow interactions in a number of ways. It identifies the ingredients of the <span class="hlt">eddy</span> motion that have a mean flow forcing effect, it links <span class="hlt">eddy</span> effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving <span class="hlt">eddy</span> shape and orientation, and not just <span class="hlt">eddy</span> size/energy, to accurately represent <span class="hlt">eddy</span> feedback effects. These concepts will be both discussed and illustrated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27168982','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27168982"><span>Nutrient uplift in a cyclonic <span class="hlt">eddy</span> increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary <span class="hlt">current</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Doblin, Martina A; Petrou, Katherina; Sinutok, Sutinee; Seymour, Justin R; Messer, Lauren F; Brown, Mark V; Norman, Louiza; Everett, Jason D; McInnes, Allison S; Ralph, Peter J; Thompson, Peter A; Hassler, Christel S</p> <p>2016-01-01</p> <p>The intensification of western boundary <span class="hlt">currents</span> in the global ocean will potentially influence meso-scale <span class="hlt">eddy</span> generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand <span class="hlt">eddy</span>-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian <span class="hlt">Current</span> (EAC) region to sample microbes in a cyclonic (cold-core) <span class="hlt">eddy</span> (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2-10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton [Formula: see text], as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by <span class="hlt">eddies</span> causes a 'greening' effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms increased in abundance with macronutrient (N, P, Si) and iron amendment, whereas haptophytes and phototrophic dinoflagellates declined. Our results indicate that cyclonic <span class="hlt">eddies</span> increase delivery of nitrogen to the upper ocean to potentially mitigate the negative consequences of increased</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhRvD..87d4052E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhRvD..87d4052E"><span><span class="hlt">Couplings</span> of gravitational <span class="hlt">currents</span> with Chern-Simons gravities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ertem, Ümit; Açık, Özgür</p> <p>2013-02-01</p> <p>The <span class="hlt">coupling</span> of conserved p-brane <span class="hlt">currents</span> with non-Abelian gauge theories is done consistently by using Chern-Simons forms. Conserved <span class="hlt">currents</span> localized on p-branes that have a gravitational origin can be constructed from Killing-Yano forms of the underlying spacetime. We propose a generalization of the <span class="hlt">coupling</span> procedure with Chern-Simons gravities to the case of gravitational conserved <span class="hlt">currents</span>. In odd dimensions, the field equations of <span class="hlt">coupled</span> Chern-Simons gravities that describe the local curvature on p-branes are obtained. In special cases of three and five dimensions, the field equations are investigated in detail.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..178K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..178K"><span>Satellite observations of <span class="hlt">eddies</span> in the Baltic, Black and Caspian seas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karimova, S.</p> <p>2012-04-01</p> <p>In the present paper mesoscale and sub-mesoscale <span class="hlt">eddies</span> in the Baltic, Black and Caspian seas are studied by means of satellite radiometer and radar images. Using these data makes it possible to investigate the vortical structures of a wide spatial range, from the basin scale through mesoscale to a small scale with a few kilometers in size. Over 2000 Envisat ASAR and ERS-2 SAR images with two-year time coverage (2009-2010) and spatial resolution of 75 m obtained in different parts of the Baltic, Black and Caspian Seas were applied to study submesoscale (with a diameter less than ca. 20 km) <span class="hlt">eddies</span> in the basins mentioned. As a result of the analysis performed the role of different mechanisms (ones due to surfactant films, wave/<span class="hlt">current</span> interactions and thermal fronts) in <span class="hlt">eddy</span> visualization in SAR imagery was revealed. In every basin studied the main <span class="hlt">eddy</span> characteristics such as number of <span class="hlt">eddies</span>, frequency of their occurrence in SAR imagery, sign of vorticity, typical length scale and lifetime as well as spatial distribution patterns were investigated. Spatio-temporal parameters of the vortices were subjected to statistical analysis. Interannual and seasonal variabilities of the <span class="hlt">eddy</span> parameters were traced. Hypotheses about the most important mechanisms of generation of the <span class="hlt">eddies</span> observed were proposed. Among them there are barotropic, baroclinic and topographic instabilities, convection in the surface layer and heterogeneous wind forcing. Satellite infrared and visible images were used for retrieving statistical information on the Black Sea mesoscale vortical structures. The dataset used included ~5000 AVHRR NOAA Sea Surface Temperature (SST) images covering the entire Black Sea with time coverage since September, 2004 to December, 2010 and ~1500 MODIS Aqua (SST, normalized water-leaving radiance at 551 nm, chlorophyll-a concentration) images obtained in 2006-2010. Spatial resolution of the images was 1 km. Analysis performed revealed that numerous vortical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/467901','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/467901"><span>Transmit-receive <span class="hlt">eddy</span> <span class="hlt">current</span> probes for defect detection and sizing in steam generator tubes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P.</p> <p>1997-02-01</p> <p>Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with <span class="hlt">eddy</span> <span class="hlt">current</span> bobbin probes, is ineffectual inmore » detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive <span class="hlt">eddy</span> <span class="hlt">current</span> coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1244185-fast-acting-eddy-current-driven-valve-massive-gas-injection-iter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1244185-fast-acting-eddy-current-driven-valve-massive-gas-injection-iter"><span>Fast Acting <span class="hlt">Eddy</span> <span class="hlt">Current</span> Driven Valve for Massive Gas Injection on ITER</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lyttle, Mark S; Baylor, Larry R; Carmichael, Justin R</p> <p>2015-01-01</p> <p>Tokamak plasma disruptions present a significant challenge to ITER as they can result in intense heat flux, large forces from halo and <span class="hlt">eddy</span> <span class="hlt">currents</span>, and potential first-wall damage from the generation of multi-MeV runaway electrons. Massive gas injection (MGI) of high Z material using fast acting valves is being explored on existing tokamaks and is planned for ITER as a method to evenly distribute the thermal load of the plasma to prevent melting, control the rate of the <span class="hlt">current</span> decay to minimize mechanical loads, and to suppress the generation of runaway electrons. A fast acting valve and accompanying power supplymore » have been designed and first test articles produced to meet the requirements for a disruption mitigation system on ITER. The test valve incorporates a flyer plate actuator similar to designs deployed on TEXTOR, ASDEX upgrade, and JET [1 3] of a size useful for ITER with special considerations to mitigate the high mechanical forces developed during actuation due to high background magnetic fields. The valve includes a tip design and all-metal valve stem sealing for compatibility with tritium and high neutron and gamma fluxes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AIPC..615..445P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AIPC..615..445P"><span>Conductivity tomography based on pulsed <span class="hlt">eddy</span> <span class="hlt">current</span> with SQUID magnetometer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panaitov, G. I.; Krause, H.-J.; Zhang, Y.</p> <p>2002-05-01</p> <p>Pulsed <span class="hlt">eddy</span> <span class="hlt">current</span> (EC) techniques have the advantage of potentially covering a broader depth range than standard single frequency EC testing. We developed a novel pulsed EC technique using a liquid-nitrogen cooled SQUID magnetometer. For two reasons, SQUID magnetometers are particularly well suited as sensors: first they constitute an extremely sensitive magnetic field sensor, second they measure the field directly which decays more slowly than its time derivative picked up by induction coils. A square waveform transmitter signal was used, with alternating slopes in order to eliminate drift effect, and stacking synchronous to the power line frequency in order to improve signal-to-noise. The early time (high frequency) data of the recorded transient correspond to the upper layers of the conducting medium, while late time data or low frequencies deliver information on deep layers. Measurements of cracks at different depths in a stacked aluminum sample are presented. From the measured data, the apparent conductivity of the sample was calculated for each position and depth by applying a technique known from geophysical data interpretation. Thus, the position and depth of the crack was determined from the tomographic conductivity image of the sample.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0775990','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0775990"><span><span class="hlt">Eddy</span> Viscosity for Variable Density Coflowing Streams,</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p><span class="hlt">EDDY</span> <span class="hlt">CURRENTS</span>, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CSR....63S..90B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CSR....63S..90B"><span>Transient tidal <span class="hlt">eddy</span> motion in the western Gulf of Maine, part 1: Primary structure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, W. S.; Marques, G. M.</p> <p>2013-07-01</p> <p>High frequency radar-derived surface <span class="hlt">current</span> maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) <span class="hlt">eddy</span> motion associated with the strong regional tidal <span class="hlt">currents</span>. To better elucidate the kinematics and dynamics of these transient tidal <span class="hlt">eddy</span> motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP <span class="hlt">current</span> measurements in 13m depth were augmented by historical <span class="hlt">current</span> measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal <span class="hlt">currents</span> in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW <span class="hlt">eddy</span> motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model <span class="hlt">current</span> comparison required that the model bottom <span class="hlt">current</span> drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW <span class="hlt">eddy</span> motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal <span class="hlt">current</span> maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the <span class="hlt">eddy</span> motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of <span class="hlt">eddy</span> motion vorticity; while in the somewhat deeper</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012328','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012328"><span>Ocean <span class="hlt">eddy</span> structure by satellite radar altimetry required for iceberg towing</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, W.J.; Cheney, R.E.; Marsh, J.G.; Mognard, N.M.</p> <p>1980-01-01</p> <p>Models for the towing of large tabular icebergs give towing speeds of 0.5 knots to 1.0 knots relative to the ambient near surface <span class="hlt">current</span>. Recent oceanographic research indicates that the world oceans are not principally composed of large steady-state <span class="hlt">current</span> systems, like the Gulf Stream, but that most of the ocean momentum is probably involved in intense rings, formed by meanders of the large streams, and in mid-ocean <span class="hlt">eddies</span>. These rings and <span class="hlt">eddies</span> have typical dimensions on the order of 200 km with dynamic height anomalies across them of tens-of-centimeters to a meter. They migrate at speeds on the order of a few cm/sec. <span class="hlt">Current</span> velocities as great as 3 knots have been observed in rings, and <span class="hlt">currents</span> of 1 knot are common. Thus, the successful towing of icebergs is dependent on the ability to locate, measure, and track ocean rings and <span class="hlt">eddies</span>. To accomplish this systematically on synoptic scales appears to be possible only by using satelliteborne radar altimeters. Ocean <span class="hlt">current</span> and <span class="hlt">eddy</span> structures as observed by the radar altimeters on the GEOS-3 and Seasat-1 satellites are presented and compared. Several satellite programs presently being planned call for flying radar altimeters in polar or near-polar orbits in the mid-1980 time frame. Thus, by the time tows of large icebergs will probably be attempted, it is possible synoptic observations of ocean rings and <span class="hlt">eddies</span> which can be used to ascertain their location, size, intensity, and translation velocity will be a reality. ?? 1980.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..114..102K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..114..102K"><span>Large <span class="hlt">Eddy</span> Simulations of sediment entrainment induced by a lock-exchange gravity <span class="hlt">current</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kyrousi, Foteini; Leonardi, A.; Roman, F.; Armenio, V.; Zanello, F.; Zordan, J.; Juez, C.; Falcomer, L.</p> <p>2018-04-01</p> <p>Large <span class="hlt">Eddy</span> simulations of lock-exchange gravity <span class="hlt">currents</span> propagating over a mobile reach are presented. The numerical setting allows to investigate the sediment pick up induced by the <span class="hlt">currents</span> and to study the underlying mechanisms leading to sediment entrainment for different Grashof numbers and grain sizes. First, the velocity field and the bed shear-stress distribution are investigated, along with turbulent structures formed in the flow, before the <span class="hlt">current</span> reaches the mobile bed. Then, during the propagation of the <span class="hlt">current</span> above the erodible section of the bed the contour plots of the entrained material are presented as well as the time evolution of the areas covered by the <span class="hlt">current</span> and by the sediment at this section. The numerical outcomes are compared with experimental data showing a very good agreement. Overall, the study confirms that sediment pick up is prevalent at the head of the <span class="hlt">current</span> where the strongest turbulence occurs. Further, above the mobile reach of the bed, settling process seems to be of minor importance, with the entrained material being advected downstream by the <span class="hlt">current</span>. Additionally, the study shows that, although shear stress is the main mechanism that sets particles in motion, turbulent bursts as well as vertical velocity fluctuations are also necessary to counteract the falling velocity of the particles and maintain them into suspension. Finally, the analysis of the stability conditions of the <span class="hlt">current</span> shows that, from one side, sediment concentration gives a negligible contribution to the stability of the front of the <span class="hlt">current</span> and from the other side, the stability conditions provided by the <span class="hlt">current</span> do not allow sediments to move into the ambient fluid.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...106.2605O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...106.2605O"><span><span class="hlt">Eddy</span> energy and shelf interactions in the Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohlmann, J. Carter; Niiler, P. Peter; Fox, Chad A.; Leben, Robert R.</p> <p>2001-02-01</p> <p>Sea surface height anomaly data from satellite are continuously available for the entire Gulf of Mexico. Surface <span class="hlt">current</span> velocities derived from these remotely sensed data are compared with surface velocities from drifting buoys. The comparison shows that satellite altimetry does an excellent job resolving gulf <span class="hlt">eddies</span> over the shelf rise (depths between ˜200 and 2000 m) if the proper length scale is used. Correlations between altimeter- and drifter-derived velocities are statistically significant (r>0.5) when the surface slope is computed over 125 km, indicating that remotely sensed sea surface height anomaly data can be used to aid the understanding of circulation over the shelf rise. Velocity variance over the shelf rise from the altimetry data shows regions of pronounced <span class="hlt">eddy</span> energy south of the Mississippi outflow, south of the Texas-Louisiana shelf, and in the northwest and northeast corners of the gulf. These are the same locations where surface drifters are most likely to cross the shelf rise, suggesting gulf <span class="hlt">eddies</span> promote cross-shore flows. This is clearly exemplified with both warm and cold <span class="hlt">eddies</span>. Finally, the contribution of gulf <span class="hlt">eddies</span> and wind stress to changes in the mean circulation are compared. Results indicate that the <span class="hlt">eddy</span>-generated vorticity flux to the mean flow is greater than the contribution from the surface wind stress curl, especially in the region of the Loop <span class="hlt">current</span> and along the shelf rise base in the western gulf. Future modeling efforts must not neglect the role of <span class="hlt">eddies</span> in driving gulf circulation over the shelf rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2120A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2120A"><span>Development of an <span class="hlt">eddy</span>-resolving reanalysis using the 1/12° global HYbrid Coordinate Ocean Model and the Navy <span class="hlt">Coupled</span> Ocean Data Assimilation Scheme</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allard, Richard; Metzger, E. Joseph; Broome, Robert; Franklin, Deborah; Smedstad, Ole Martin; Wallcraft, Alan</p> <p>2013-04-01</p> <p>Multiple international agencies have performed atmospheric reanalyses using static dynamical models and assimilation schemes while ingesting all available quality controlled observational data. Some are clearly aimed at climate time scales while others focus on the more recent time period in which assimilated satellite data are used to constrain the system. Typically these are performed at horizontal and vertical resolutions that are coarser than the existing operational atmospheric prediction system. Multiple agencies have also performed ocean reanalyses using some of the atmospheric forcing products described above. However, only a few are <span class="hlt">eddy</span>-permitting and none are capable of resolving oceanic mesoscale features (<span class="hlt">eddies</span> and <span class="hlt">current</span> meanders) across the entire globe. To fill this void, the Naval Research Laboratory is performing an <span class="hlt">eddy</span>-resolving 1993-2010 ocean reanalysis using the 1/12° global HYbrid Coordinate Ocean Model (HYCOM) that employs the Navy <span class="hlt">Coupled</span> Ocean Data Assimilation (NCODA) scheme. A 1/12° global HYCOM/NCODA prediction system has been running in real-time at the Naval Oceanographic Office (NAVOCEANO) since 22 December 2006. It has undergone operational testing and will become an operational product by early 2013. It is capable of nowcasting and forecasting the oceanic "weather" which includes the 3D ocean temperature, salinity and <span class="hlt">current</span> structure, the surface mixed layer, and the location of mesoscale features such as <span class="hlt">eddies</span>, meandering <span class="hlt">currents</span> and fronts. The system has a mid-latitude resolution of ~7 km and employs 32 hybrid vertical coordinate surfaces. Compared to traditional isopycnal coordinate models, the hybrid vertical coordinate extends the geographic range of applicability toward shallow coastal seas and the unstratified parts of the world ocean. HYCOM contains a built-in thermodynamic ice model, where ice grows and melts due to heat flux and sea surface temperature (SST) changes, but it does not contain advanced rheological</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NTE....32..133G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NTE....32..133G"><span>GMR-based <span class="hlt">eddy</span> <span class="hlt">current</span> probe for weld seam inspection and its non-scanning detection study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Peng; Wang, Chao; Li, Yang; Wang, Libin; Cong, Zheng; Zhi, Ya</p> <p>2017-04-01</p> <p><span class="hlt">Eddy</span> <span class="hlt">current</span> testing is one of the most important non-destructive testing methods for welding defects detection. This paper presents the use of a probe consisting of 4 giant magneto-resistive (GMR) sensors to detect weld defects. Information from four measuring points above and on both sides of the weld seam is collected at the same time. By setting the GMR sensors' sensing axes perpendicular to the direction of the excitation magnetic field, the information collected mainly reflects the change in the <span class="hlt">eddy</span> <span class="hlt">current</span> which is caused by defects. Digital demodulation technology is applied to extract the real part and imaginary part of the GMR sensors' output signals. The variables containing directional information of the magnetic field are introduced. Based on the data from the four GMR (4-GMR) sensors' output signals, four values, Ran, Mean, Var and k are selected as the feature quantities for defect recognition. Experiments are carried out on weld seams with and without defects, and the detection outputs are given in this paper. The 4-GMR probe is also employed to investigate non-scanning weld defect detection and the four feature quantities (Ran, Mean, Var and k) are studied to evaluate weld quality. The non-scanning weld defect detection is presented. A support vector machine is used to classify and discriminate welds with and without defects. Experiments carried out show that through the method in this paper, the recognition rate is 92% for welds without defects and 90% for welds with defects, with an overall recognition rate of 90.9%, indicating that this method could effectively detect weld defects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5193B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5193B"><span>Southern Ocean <span class="hlt">eddy</span> compensation in a forced <span class="hlt">eddy</span>-resolving GCM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruun Poulsen, Mads; Jochum, Markus; Eden, Carsten; Nuterman, Roman</p> <p>2017-04-01</p> <p>Contemporary <span class="hlt">eddy</span>-resolving model studies have demonstrated that the common parameterisation of isopycnal mixing in the ocean is subject to limitations in the Southern Ocean where the mesoscale <span class="hlt">eddies</span> are of leading order importance to the dynamics. We here present forced simulations from the Community Earth System Model on a global {1/10}° and 1° horizontal grid, the latter employing an <span class="hlt">eddy</span> parameterisation, where the strength of the zonal wind stress south of 25°S has been varied. With a 50% zonally symmetric increase of the wind stress, we show that the two models arrive at two radically different solutions in terms of the large-scale circulation, with an increase of the deep inflow of water to the Southern Ocean at 40°S by 50% in the high resolution model against 20% at coarse resolution. Together with a weaker vertical displacement of the pycnocline in the 1° model, these results suggest that the parameterised <span class="hlt">eddies</span> have an overly strong compensating effect on the water mass transformation compared to the explicit <span class="hlt">eddies</span>. Implications for <span class="hlt">eddy</span> mixing parameterisations will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AIPC..894..265P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AIPC..894..265P"><span>A 3D Model for <span class="hlt">Eddy</span> <span class="hlt">Current</span> Inspection in Aeronautics: Application to Riveted Structures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paillard, S.; Pichenot, G.; Lambert, M.; Voillaume, H.; Dominguez, N.</p> <p>2007-03-01</p> <p><span class="hlt">Eddy</span> <span class="hlt">current</span> technique is <span class="hlt">currently</span> an operational tool used for fastener inspection which is an important issue for the maintenance of aircraft structures. The industry calls for faster, more sensitive and reliable NDT techniques for the detection and characterization of potential flaws nearby rivet. In order to reduce the development time and to optimize the design and the performances assessment of an inspection procedure, the CEA and EADS have started a collaborative work aiming at extending the modeling features of the CIVA non destructive simulation plat-form in order to handle the configuration of a layered planar structure with a rivet and an embedded flaw nearby. Therefore, an approach based on the Volume Integral Method using the Green dyadic formalism which greatly increases computation efficiency has been developed. The first step, modeling the rivet without flaw as a hole in a multi-stratified structure, has been reached and validated in several configurations with experimental data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1096.1870S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1096.1870S"><span>Progress in Developing Transfer Functions for Surface Scanning <span class="hlt">Eddy</span> <span class="hlt">Current</span> Inspections</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shearer, J.; Heebl, J.; Brausch, J.; Lindgren, E.</p> <p>2009-03-01</p> <p>As US Air Force (USAF) aircraft continue to age, additional inspections are required for structural components. The validation of new inspections typically requires a capability demonstration of the method using representative structure with representative damage. To minimize the time and cost required to prepare such samples, Electric Discharge machined (EDM) notches are commonly used to represent fatigue cracks in validation studies. However, the sensitivity to damage typically changes as a function of damage type. This requires a mathematical relationship to be developed between the responses from the two different flaw types to enable the use of EDM notched samples to validate new inspections. This paper reviews progress to develop transfer functions for surface scanning <span class="hlt">eddy</span> <span class="hlt">current</span> inspections of aluminum and titanium alloys found in structural aircraft components. Multiple samples with well characterized grown fatigue cracks and master gages with EDM notches, both with a range of flaw sizes, were used to collect flaw signals with USAF field inspection equipment. Analysis of this empirical data was used to develop a transfer function between the response from the EDM notches and grown fatigue cracks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920046038&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DEddy%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920046038&hterms=Eddy+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DEddy%2Bcurrent"><span>Automated <span class="hlt">eddy</span> <span class="hlt">current</span> inspection of Space Shuttle APU turbine wheel blades</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fisher, Jay L.; Rowland, Stephen N.; Stolte, Jeffrey S.; Salkowski, Charles</p> <p>1991-01-01</p> <p>An automated inspection system based on <span class="hlt">eddy</span> <span class="hlt">current</span> testing (ET) techniques has been developed to inspect turbine wheel blades on the APU used in NASA's Space Transportation system. The APU is a hydrazine-powered gas turbine with a 15-cm diameter Rene 41 turbine wheel, which has 123 first-stage blades and 123 second-stage blades. The flaw detection capability of the ET system is verified through comparison with fluorescent penetrant test results. Results of the comparison indicate that ET is capable of inspecting surfaces with very restrictive geometries. The ET capability requires development of probes with extremely small coils to allow inspection within 0.4 mm of the blade root and the leading and trailing edges of the blade and within a height restriction of less than 1 mm. The color 2D presentation of the ET data provided crack-growth pattern and length information similar to those found with visual techniques. It also provided visual clues to minimize geometry effects such as generated from blade edges, a neighoring blade, and changes in the blade thickness.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.127....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.127....1B"><span>Dynamically consistent parameterization of mesoscale <span class="hlt">eddies</span>. Part III: Deterministic approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berloff, Pavel</p> <p>2018-07-01</p> <p>This work continues development of dynamically consistent parameterizations for representing mesoscale <span class="hlt">eddy</span> effects in non-<span class="hlt">eddy</span>-resolving and <span class="hlt">eddy</span>-permitting ocean circulation models and focuses on the classical double-gyre problem, in which the main dynamic <span class="hlt">eddy</span> effects maintain eastward jet extension of the western boundary <span class="hlt">currents</span> and its adjacent recirculation zones via <span class="hlt">eddy</span> backscatter mechanism. Despite its fundamental importance, this mechanism remains poorly understood, and in this paper we, first, study it and, then, propose and test its novel parameterization. We start by decomposing the reference <span class="hlt">eddy</span>-resolving flow solution into the large-scale and <span class="hlt">eddy</span> components defined by spatial filtering, rather than by the Reynolds decomposition. Next, we find that the eastward jet and its recirculations are robustly present not only in the large-scale flow itself, but also in the rectified time-mean <span class="hlt">eddies</span>, and in the transient rectified <span class="hlt">eddy</span> component, which consists of highly anisotropic ribbons of the opposite-sign potential vorticity anomalies straddling the instantaneous eastward jet core and being responsible for its continuous amplification. The transient rectified component is separated from the flow by a novel remapping method. We hypothesize that the above three components of the eastward jet are ultimately driven by the small-scale transient <span class="hlt">eddy</span> forcing via the <span class="hlt">eddy</span> backscatter mechanism, rather than by the mean <span class="hlt">eddy</span> forcing and large-scale nonlinearities. We verify this hypothesis by progressively turning down the backscatter and observing the induced flow anomalies. The backscatter analysis leads us to formulating the key <span class="hlt">eddy</span> parameterization hypothesis: in an <span class="hlt">eddy</span>-permitting model at least partially resolved <span class="hlt">eddy</span> backscatter can be significantly amplified to improve the flow solution. Such amplification is a simple and novel <span class="hlt">eddy</span> parameterization framework implemented here in terms of local, deterministic flow roughening controlled by single</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/653477-analytical-modeling-eddy-current-losses-caused-pulse-width-modulation-switching-permanent-magnet-brushless-direct-current-motors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/653477-analytical-modeling-eddy-current-losses-caused-pulse-width-modulation-switching-permanent-magnet-brushless-direct-current-motors"><span>Analytical modeling of <span class="hlt">eddy-current</span> losses caused by pulse-width-modulation switching in permanent-magnet brushless direct-<span class="hlt">current</span> motors</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deng, F.; Nehl, T.W.</p> <p>1998-09-01</p> <p>Because of their high efficiency and power density the PM brushless dc motor is a strong candidate for electric and hybrid vehicle propulsion systems. An analytical approach is developed to predict the inverter high frequency pulse width modulation (PWM) switching caused <span class="hlt">eddy-current</span> losses in a permanent magnet brushless dc motor. The model uses polar coordinates to take curvature effects into account, and is also capable of including the space harmonic effect of the stator magnetic field and the stator lamination effect on the losses. The model was applied to an existing motor design and was verified with the finite elementmore » method. Good agreement was achieved between the two approaches. Hence, the model is expected to be very helpful in predicting PWM switching losses in permanent magnet machine design.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1079867.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1079867.pdf"><span>Interview with <span class="hlt">Eddie</span> Reisch</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Owen, Hazel</p> <p>2013-01-01</p> <p><span class="hlt">Eddie</span> Reisch is <span class="hlt">currently</span> working as a policy advisor for Te Reo Maori Operational Policy within the Student Achievement group with the Ministry of Education in New Zealand, where he has implemented and led a range of e-learning initiatives and developments, particularly the Virtual Learning Network (VLN). He is regarded as one of the leading…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26848391','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26848391"><span>Minimizing <span class="hlt">eddy</span> <span class="hlt">currents</span> induced in the ground plane of a large phased-array ultrasound applicator for echo-planar imaging-based MR thermometry.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lechner-Greite, Silke M; Hehn, Nicolas; Werner, Beat; Zadicario, Eyal; Tarasek, Matthew; Yeo, Desmond</p> <p>2016-01-01</p> <p>The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced <span class="hlt">eddy</span> <span class="hlt">currents</span> and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). Six different ground plane segmentations were considered and the efficacy of each in suppressing <span class="hlt">eddy</span> <span class="hlt">currents</span> was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the <span class="hlt">currently</span> available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. We demonstrated that segmenting the transducer ground plane into a star pattern reduces <span class="hlt">eddy</span> <span class="hlt">currents</span> to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.3517L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.3517L"><span>Dynamical analysis of a satellite-observed anticyclonic <span class="hlt">eddy</span> in the northern Bering Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yineng; Li, Xiaofeng; Wang, Jia; Peng, Shiqiu</p> <p>2016-05-01</p> <p>The characteristics and evolution of a satellite-observed anticyclonic <span class="hlt">eddy</span> in the northern Bering Sea during March and April 1999 are investigated using a three-dimensional Princeton Ocean Model (POM). The anticyclonic-like <span class="hlt">current</span> pattern and asymmetric feature of the <span class="hlt">eddy</span> were clearly seen in the synthetic aperture radar (SAR), sea surface temperature, and ocean color images in April 1999. The results from model simulation reveal the three-dimensional structure of the anticyclonic <span class="hlt">eddy</span>, its movement, and dissipation. Energy analysis indicates that the barotropic instability (BTI) is the main energy source for the growth of the anticyclonic <span class="hlt">eddy</span>. The momentum analysis further reveals that the larger magnitude of the barotropic pressure gradient in the meridional direction causes the asymmetry of the anticyclonic <span class="hlt">eddy</span> in the zonal and meridional directions, while the different magnitudes of the meridional baroclinic pressure gradient are responsible for the different intensity of <span class="hlt">currents</span> between the northern and southern parts of the anticyclonic <span class="hlt">eddy</span>. This article was corrected on 23 JUL 2016. See the end of the full text for details.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14C..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14C..02S"><span>Development and validation of a regional <span class="hlt">coupled</span> forecasting system for S2S forecasts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.</p> <p>2017-12-01</p> <p>Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land <span class="hlt">coupled</span> system. A regional <span class="hlt">coupled</span> ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model <span class="hlt">coupled</span> using the ESMF (Earth System Modeling Framework) <span class="hlt">coupling</span> framework is developed to resolve mesoscale air-sea feedbacks. The regional <span class="hlt">coupled</span> model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global <span class="hlt">coupled</span> forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale <span class="hlt">eddy</span> rich Red Sea and Western Indian Ocean region as well as mesoscale <span class="hlt">eddies</span> and fronts of the California <span class="hlt">Current</span> System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional <span class="hlt">coupled</span> ocean-atmosphere model for forecasts over the Red Sea region as well as the California <span class="hlt">Current</span> region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9047W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9047W"><span>The Effect of the Leeuwin <span class="hlt">Current</span> on Offshore Surface Gravity Waves in Southwest Western Australia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha</p> <p>2017-11-01</p> <p>The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore <span class="hlt">current</span> regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by <span class="hlt">coupling</span> the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the <span class="hlt">Coupled</span> Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin <span class="hlt">Current</span> (LC), a strong pole-ward flowing boundary <span class="hlt">current</span> with a persistent <span class="hlt">eddy</span> field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The <span class="hlt">coupled</span> wave-<span class="hlt">current</span> simulations were compared to wave only simulations, which represented scenarios in the absence of a background <span class="hlt">current</span> field. Results showed that the LC and the <span class="hlt">eddy</span> field significantly impact SWWA waves. Significant wave heights increased (decreased) when <span class="hlt">currents</span> were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-<span class="hlt">current</span> interaction is not properly accounted for.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1105025','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1105025"><span>Towards a Fine-Resolution Global <span class="hlt">Coupled</span> Climate System for Prediction on Decadal/Centennial Scales</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McClean, Julie L.</p> <p></p> <p>The over-arching goal of this project was to contribute to the realization of a fully <span class="hlt">coupled</span> fine resolution Earth System Model simulation in which a weather-scale atmosphere is <span class="hlt">coupled</span> to an ocean in which mesoscale <span class="hlt">eddies</span> are largely resolved. Both a prototype fine-resolution fully <span class="hlt">coupled</span> ESM simulation and a first-ever multi-decadal forced fine-resolution global <span class="hlt">coupled</span> ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution <span class="hlt">coupled</span> ocean/sea icemore » and fully-<span class="hlt">coupled</span> simulations and precedent stand-alone <span class="hlt">eddy</span>-resolving ocean and <span class="hlt">eddy</span>-permitting <span class="hlt">coupled</span> ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale <span class="hlt">eddies</span> significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992AmJPh..60..693S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992AmJPh..60..693S"><span>Maxwell's theory of <span class="hlt">eddy</span> <span class="hlt">currents</span> in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saslow, W. M.</p> <p>1992-08-01</p> <p>Using the example of a monopole that is spontaneously generated above a thin conducting sheet, the simplicity and power of Maxwell's 1872 theory of <span class="hlt">eddy</span> <span class="hlt">currents</span> in thin conducting sheets is illustrated. This theory employs a receding image construction, with a characteristic recession velocity v0=2/(μ0σd), where the sheet has conductivity σ and thickness d. A modern derivation of the theory, employing the magnetic scalar potential, is also presented, with explicit use of the uniqueness theorem. Also discussed are limitations on the theory of which Maxwell, living in a time before the discovery of the electron, could not have been aware. Previous derivations either have not appealed explicitly to the uniqueness theorem, or have employed the now unfamiliar <span class="hlt">current</span> function, and are therefore either incomplete or inaccessible to the modern reader. After the derivation, two important examples considered by Maxwell are presented-a monopole moving above a thin conducting sheet, and a monopole above a rotating thin conducting sheet (Arago's disk)-and it is argued that the lift force thus obtained makes Maxwell the grandfather, if not the father, of <span class="hlt">eddy</span> <span class="hlt">current</span> MAGLEV transportation systems. An energy conservation argument is given to derive Davis's result that, for a magnet of arbitrary size and shape moving parallel to a thin conducting sheet at a characteristic height h, with velocity v, the ratio of drag force to lift force is equal to v0/v, provided that d≪δc, where δc =√2h/(μ0σv). If d≫δc, the <span class="hlt">eddy</span> <span class="hlt">currents</span> are confined to a thickness δc, leading to an increase in the dissipation and the drag by a factor of d/δc, so that the ratio of drag to lift force becomes proportional to √v'0/v, where v'0 = 2/(μ0σh). The case of a monopole fixed in position, but oscillating in strength (such as can be simulated by one end of a long, narrow, ac solenoid), is also treated. This is employed to obtain the results for an oscillating magnetic dipole whose moment</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4860325','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4860325"><span>Nutrient uplift in a cyclonic <span class="hlt">eddy</span> increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary <span class="hlt">current</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Petrou, Katherina; Sinutok, Sutinee; Seymour, Justin R.; Messer, Lauren F.; Brown, Mark V.; Norman, Louiza; Everett, Jason D.; McInnes, Allison S.; Ralph, Peter J.; Thompson, Peter A.; Hassler, Christel S.</p> <p>2016-01-01</p> <p>The intensification of western boundary <span class="hlt">currents</span> in the global ocean will potentially influence meso-scale <span class="hlt">eddy</span> generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand <span class="hlt">eddy</span>-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian <span class="hlt">Current</span> (EAC) region to sample microbes in a cyclonic (cold-core) <span class="hlt">eddy</span> (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2–10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$(\\geq 20\\lrm{\\mu }\\mathrm{m})$\\end{document}≥20μm, as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by <span class="hlt">eddies</span> causes a ‘greening’ effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24055229','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24055229"><span>A finite parallel zone model to interpret and extend Giddings' <span class="hlt">coupling</span> theory for the <span class="hlt">eddy</span>-dispersion in porous chromatographic media.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Desmet, Gert</p> <p>2013-11-01</p> <p>The finite length parallel zone (FPZ)-model is proposed as an alternative model for the axial- or <span class="hlt">eddy</span>-dispersion caused by the occurrence of local velocity biases or flow heterogeneities in porous media such as those used in liquid chromatography columns. The mathematical plate height expression evolving from the model shows that the A- and C-term band broadening effects that can originate from a given velocity bias should be <span class="hlt">coupled</span> in an exponentially decaying way instead of harmonically as proposed in Giddings' <span class="hlt">coupling</span> theory. In the low and high velocity limit both models converge, while a 12% difference can be observed in the (practically most relevant) intermediate range of reduced velocities. Explicit expressions for the A- and C-constants appearing in the exponential decay-based plate height expression have been derived for each of the different possible velocity bias levels (single through-pore and particle level, multi-particle level and trans-column level). These expressions allow to directly relate the band broadening originating from these different levels to the local fundamental transport parameters, hence offering the possibility to include a velocity-dependent and, if, needed retention factor-dependent transversal dispersion coefficient. Having developed the mathematics for the general case wherein a difference in retention equilibrium establishes between the two parallel zones, the effect of any possible local variations in packing density and/or retention capacity on the <span class="hlt">eddy</span>-dispersion can be explicitly accounted for as well. It is furthermore also shown that, whereas the lumped transport parameter model used in the basic variant of the FPZ-model only provides a first approximation of the true decay constant, the model can be extended by introducing a constant correction factor to correctly account for the continuous transversal dispersion transport in the velocity bias zones. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.179...31H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.179...31H"><span>Large-<span class="hlt">eddy</span> simulation of dust-uplift by a haboob density <span class="hlt">current</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Qian; Marsham, John H.; Tian, Wenshou; Parker, Douglas J.; Garcia-Carreras, Luis</p> <p>2018-04-01</p> <p>Cold pool outflows have been shown from both observations and convection-permitting models to be a dominant source of dust emissions ("haboobs") in the summertime Sahel and Sahara, and to cause dust uplift over deserts across the world. In this paper Met Office Large <span class="hlt">Eddy</span> Model (LEM) simulations, which resolve the turbulence within the cold-pools much better than previous studies of haboobs with convection-permitting models, are used to investigate the winds that uplift dust in cold pools, and the resultant dust transport. In order to simulate the cold pool outflow, an idealized cooling is added in the model during the first 2 h of 5.7 h run time. Given the short duration of the runs, dust is treated as a passive tracer. Dust uplift largely occurs in the "head" of the density <span class="hlt">current</span>, consistent with the few existing observations. In the modeled density <span class="hlt">current</span> dust is largely restricted to the lowest, coldest and well mixed layers of the cold pool outflow (below around 400 m), except above the "head" of the cold pool where some dust reaches 2.5 km. This rapid transport to above 2 km will contribute to long atmospheric lifetimes of large dust particles from haboobs. Decreasing the model horizontal grid-spacing from 1.0 km to 100 m resolves more turbulence, locally increasing winds, increasing mixing and reducing the propagation speed of the density <span class="hlt">current</span>. Total accumulated dust uplift is approximately twice as large in 1.0 km runs compared with 100 m runs, suggesting that for studying haboobs in convection-permitting runs the representation of turbulence and mixing is significant. Simulations with surface sensible heat fluxes representative of those from a desert region during daytime show that increasing surface fluxes slows the density <span class="hlt">current</span> due to increased mixing, but increase dust uplift rates, due to increased downward transport of momentum to the surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26635077','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26635077"><span>Distant Influence of Kuroshio <span class="hlt">Eddies</span> on North Pacific Weather Patterns?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao</p> <p>2015-12-04</p> <p>High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong <span class="hlt">coupling</span> between meso-scale ocean <span class="hlt">eddies</span> and near-surface atmospheric flow over <span class="hlt">eddy</span>-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient <span class="hlt">eddy</span> energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean <span class="hlt">eddy</span>-atmosphere interaction in forecast and climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcSci..12.1249L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcSci..12.1249L"><span>GEM: a dynamic tracking model for mesoscale <span class="hlt">eddies</span> in the ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu</p> <p>2016-12-01</p> <p>The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale <span class="hlt">eddies</span> in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two <span class="hlt">eddies</span> to the area of each <span class="hlt">eddy</span>) rather than a scalar to measure the similarity between <span class="hlt">eddies</span>, which effectively solves the "missing <span class="hlt">eddy</span>" problem (temporarily lost <span class="hlt">eddy</span> in tracking). Second, for tracking when an <span class="hlt">eddy</span> splits, the GEM uses both "parent" (the original <span class="hlt">eddy</span>) and "child" (<span class="hlt">eddy</span> split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of <span class="hlt">eddies</span> M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each <span class="hlt">eddy</span> is very smooth because we require that the snapshots of each <span class="hlt">eddy</span> on adjacent days overlap one another. Although <span class="hlt">eddy</span> splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the <span class="hlt">eddies</span> are high, especially at the western boundary, in <span class="hlt">currents</span> and in "<span class="hlt">eddy</span> deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JCrGr.172..303D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JCrGr.172..303D"><span><span class="hlt">Eddy</span> <span class="hlt">current</span> sensor concepts for the Bridgman growth of semiconductors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dharmasena, Kumar P.; Wadley, Haydn N. G.</p> <p>1997-03-01</p> <p>Electromagnetic finite element methods have been used to identify <span class="hlt">eddy</span> <span class="hlt">current</span> sensor designs for monitoring CdTe vertical Bridgman crystal growth. A model system consisting of pairs of silicon cylinders with electrical conductivities similar to those of solid and liquid CdTe has been used to evaluate the multifrequency response of several sensors designed for locating and characterizing the curvature of liquid-solid interfaces during vertical Bridgman growth. At intermediate frequencies (100-800 kHz), the sensor's imaginary impedance monotonically increases as interfacial curvature changes from concave to convex or the interface location moves upwards through the sensor. The experimental data are in excellent agreement with theoretical predictions. At higher test frequencies (˜ 5 MHz), the test circuit's parasitics contribute to the sensor's response. Even so, the predicted trends with interface location/curvature were found to be still preserved, and the experiments confirm that the sensor's high frequency response depends more on interface location and has only a small sensitivity to curvature. Multifrequency data obtained from these types of sensors have the potential to separately discriminate the location and the shape of liquid-solid interfaces during the vertical Bridgman growth of CdTe and other semiconductor materials of higher electrical conductivity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JMMM..356..103G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JMMM..356..103G"><span>Comparative study of <span class="hlt">eddy</span> <span class="hlt">current</span> and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghanei, S.; Kashefi, M.; Mazinani, M.</p> <p>2014-04-01</p> <p>The magnetic properties of ferrite-martensite dual-phase steels were evaluated using <span class="hlt">eddy</span> <span class="hlt">current</span> and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, <span class="hlt">eddy</span> <span class="hlt">current</span> testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23112623','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23112623"><span>A wide linear range <span class="hlt">Eddy</span> <span class="hlt">Current</span> Displacement Sensor equipped with dual-coil probe applied in the Magnetic Suspension Flywheel.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fang, Jiancheng; Wen, Tong</p> <p>2012-01-01</p> <p>The <span class="hlt">Eddy</span> <span class="hlt">Current</span> Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced <span class="hlt">eddy</span> <span class="hlt">current</span> and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4015696','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4015696"><span>Finite element solution of nonlinear <span class="hlt">eddy</span> <span class="hlt">current</span> problems with periodic excitation and its industrial applications☆</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bíró, Oszkár; Koczka, Gergely; Preis, Kurt</p> <p>2014-01-01</p> <p>An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional <span class="hlt">eddy</span> <span class="hlt">current</span> problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are <span class="hlt">coupled</span> to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct <span class="hlt">current</span> (DC) bias in the coils of a single-phase transformer. PMID</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9795D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9795D"><span>Mesoscale <span class="hlt">Eddies</span> in the Northwestern Pacific Ocean: Three-Dimensional <span class="hlt">Eddy</span> Structures and Heat/Salt Transports</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng</p> <p>2017-12-01</p> <p>The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most <span class="hlt">eddy</span>-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale <span class="hlt">eddies</span> in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected <span class="hlt">eddies</span>, the spatial variations of structures of <span class="hlt">eddy</span> temperature and salinity anomalies are analyzed. The results show that <span class="hlt">eddies</span> predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on <span class="hlt">eddy</span> trajectories and the inferred three-dimensional <span class="hlt">eddy</span> structures is proposed to estimate heat and salt transports by <span class="hlt">eddy</span> movements in a Lagrangian framework. Spatial distributions of <span class="hlt">eddy</span> transports are presented over the vicinity of the KE for the first time. The magnitude of <span class="hlt">eddy</span>-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The <span class="hlt">eddy</span> heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to <span class="hlt">eddy</span> propagation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>