Science.gov

Sample records for edge state dynamics

  1. Edge detection by nonlinear dynamics

    SciTech Connect

    Wong, Yiu-fai

    1994-07-01

    We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  2. Final-state screening dynamics in resonant Auger decay at the 2p edge of vanadium

    NASA Astrophysics Data System (ADS)

    Ilakovac, V.; Kralj, M.; Pervan, P.; Richter, M. C.; Goldoni, A.; Larciprete, R.; Petaccia, L.; Hricovini, K.

    2005-02-01

    We investigated the resonant Auger process near the V 2p3/2 edge in vanadium metal. Attention is centered on the onset of Auger decays and their behavior below the 2p3/2 resonance. The 2p3/23d3d decay has a crossover from the Raman-Auger to the normal Auger regime at the 2p ionization threshold. Meanwhile, Auger decays with core holes in the final state have normal Auger behavior even below the ionization threshold, the 2p3/23p3p process being visible at 2.2 eV lower photon energy. The different resonant behavior of these Auger decays can be understood within the one-step model as final-state screening effects affecting the photoexcitation.

  3. Topological number of edge states

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Kimura, Taro

    2016-05-01

    We show that the edge states of the four-dimensional class A system can have topological charges, which are characterized by Abelian/non-Abelian monopoles. The edge topological charges are a new feature of relations among theories with different dimensions. From this novel viewpoint, we provide a non-Abelian analog of the TKNN number as an edge topological charge, which is defined by an SU(2) 't Hooft-Polyakov BPS monopole through an equivalence to Nahm construction. Furthermore, putting a constant magnetic field yields an edge monopole in a noncommutative momentum space, where D-brane methods in string theory facilitate study of edge fermions.

  4. Topological edge states in pnictides

    NASA Astrophysics Data System (ADS)

    Youmans, Cody; Ghaemi, Pouyan; Kargarian, Mehdi

    In some members of the ferro-pnictides, non-trivial topology in the bulk band-structure is related to potentially observable gapless edge states. We study these states numerically and analytically for a range of parameters, with and without superconductivity and antiferromagnetic SDW ordering, and their relation to the symmetries and topologically non-trivial aspects of our model Hamiltonian. Support was provided by the Doctoral Student Research Grant program at the Graduate Center, CUNY.

  5. Edge mode dynamics of quenched topological wires

    NASA Astrophysics Data System (ADS)

    Sacramento, P. D.

    2016-06-01

    The fermionic and Majorana edge mode dynamics of various topological systems are compared, after a sudden global quench of the Hamiltonian parameters takes place. Attention is focused on the regimes where the survival probability of an edge state has oscillations either due to critical or off-critical quenches. The nature of the wave functions and the overlaps between the eigenstates of different points in parameter space determine the various types of behaviors, and the distinction due to the Majorana nature of the excitations plays a lesser role. Performing a sequence of quenches, it is shown that the edge states, including Majorana modes, may be switched off and on. Also, the generation of Majoranas due to quenching from a trivial phase is discussed.

  6. Giant edge state splitting at atomically precise graphene zigzag edges

    NASA Astrophysics Data System (ADS)

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-05-01

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states.

  7. Giant edge state splitting at atomically precise graphene zigzag edges

    PubMed Central

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-01-01

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron–electron interactions in these localized states. PMID:27181701

  8. Giant edge state splitting at atomically precise graphene zigzag edges.

    PubMed

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-01-01

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states. PMID:27181701

  9. Bosonic edge states in gapped honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Guo, Huaiming; Niu, Yuekun; Chen, Shu; Feng, Shiping

    2016-03-01

    By quantum Monte Carlo simulations of bosons in gapped honeycomb lattices, we show the existence of bosonic edge states. For a single layer honeycomb lattice, bosonic edge states can be controlled to appear, cross the gap, and merge into bulk states by an on-site potential applied on the outermost sites of the boundary. On a bilayer honeycomb lattice, A bosonic edge state traversing the gap at half filling is demonstrated. The topological origin of the bosonic edge states is discussed with pseudo Berry curvature. The results will simulate experimental studies of these exotic bosonic edge states with ultracold bosons trapped in honeycomb optical lattices.

  10. Saddle-node dynamics for edge detection

    SciTech Connect

    Wong, Y.F.

    1994-09-01

    The author demonstrates how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, this scheme is general enough to be able to handle different edges, such as lines, step edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  11. Decay patterns of edge states at reconstructed armchair graphene edges

    NASA Astrophysics Data System (ADS)

    Park, Changwon; Ihm, Jisoon; Kim, Gunn

    Density functional theory calculations are used to investigate the electronic structures of localized states at reconstructed armchair graphene edges. We consider graphene nanoribbons with two different edge types and obtain the energy band structures and charge densities of the edge states. By examining the imaginary part of the wave vector in the forbidden energy region, we reveal the decay behavior of the wave functions in graphene. The complex band structures of graphene in the armchair and zigzag directions are presented in the first-principles framework. G.K. acknowledges the support of the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (Grant No. 2013R1A1A2009131) and the Priority Research Center Program (Grant No. 2010-0020207).

  12. Edge States in Transitional Pipe Flow

    NASA Astrophysics Data System (ADS)

    Schneider, Tobias M.; Eckhardt, Bruno

    2006-11-01

    We study the boundary of the laminar region near the onset of turbulence. Approaching the boundary from the laminar side, the lifetime of perturbations increases, diverges when the boundary is reached, and varies chaotically for larger amplitudes. In the chaotic region, lifetimes vary sensitively with amplitude, consistent with the strange saddle picture of the turbulence proposed earlier. The trajectory on the edge between the laminar and chaotic regions is asymptotic to a single well defined state, essentially independent of the type of perturbation. The edge then becomes the stable manifold of this structure. In the case of a model shear flow, the edge states are simple or period doubled or chaotic trajectories. In the case of pipe flow the edge state seems to remain close to a state with simple vortical structure. Edge of Chaos in a Parallel Shear Flow, Joseph D. Skufca, James A. Yorke, and Bruno Eckhardt, Phys. Rev. Lett. 96, 174101 (2006)

  13. Diagnosing Topological Edge States via Entanglement Monogamy

    NASA Astrophysics Data System (ADS)

    Meichanetzidis, K.; Eisert, J.; Cirio, M.; Lahtinen, V.; Pachos, J. K.

    2016-04-01

    Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.

  14. Diagnosing Topological Edge States via Entanglement Monogamy.

    PubMed

    Meichanetzidis, K; Eisert, J; Cirio, M; Lahtinen, V; Pachos, J K

    2016-04-01

    Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems. PMID:27081962

  15. Edge states in polariton honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Milićević, M.; Ozawa, T.; Andreakou, P.; Carusotto, I.; Jacqmin, T.; Galopin, E.; Lemaître, A.; Le Gratiet, L.; Sagnes, I.; Bloch, J.; Amo, A.

    2015-09-01

    The experimental study of edge states in atomically thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds, and the need to measure local properties. In the case of graphene, localized edge modes have been predicted in zigzag and bearded edges, characterized by flat dispersions connecting the Dirac points. Polaritons in semiconductor microcavities have recently emerged as an extraordinary photonic platform to emulate 1D and 2D Hamiltonians, allowing the direct visualization of the wavefunctions in both real- and momentum-space as well as of the energy dispersion of eigenstates via photoluminescence experiments. Here we report on the observation of edge states in a honeycomb lattice of coupled micropillars. The lowest two bands of this structure arise from the coupling of the lowest energy modes of the micropillars, and emulate the π and π* bands of graphene. We show the momentum-space dispersion of the edge states associated with the zigzag and bearded edges, holding unidimensional quasi-flat bands. Additionally, we evaluate polarization effects characteristic of polaritons on the properties of these states.

  16. Floquet edge states in germanene nanoribbons.

    PubMed

    Tahir, M; Zhang, Q Y; Schwingenschlögl, U

    2016-01-01

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light. PMID:27550632

  17. Floquet edge states in germanene nanoribbons

    PubMed Central

    Tahir, M.; Zhang, Q. Y.; Schwingenschlögl, U.

    2016-01-01

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light. PMID:27550632

  18. Universal nonequilibrium states at the fractional quantum Hall edge

    NASA Astrophysics Data System (ADS)

    Levkivskyi, Ivan P.

    2016-04-01

    Integrability of electron dynamics in one dimension is manifested by the nonequilibrium stationary states. They emerge near a point contact coupling two quantum Hall edges with different chemical potentials. I use the nonequilibrium bosonization technique to show that the effective temperature of such states at the fractional quantum Hall edges has a universal linear dependence on the current through the contact. In contrast, the temperature at eventual equilibrium scales as the square root of the power dissipating at the point contact. I propose to use this distinction to detect these intriguing nonequilibrium states.

  19. Edge states of zigzag bilayer graphite nanoribbons

    NASA Astrophysics Data System (ADS)

    Rhim, Jun-Won; Moon, Kyungsun

    2008-09-01

    The electronic structures of zigzag bilayer graphite nanoribbons (Z-BGNRs) with various ribbon widths N are studied within the tight binding approximation. Neglecting the inter-layer hopping amplitude γ4, which is an order of magnitude smaller than the other inter-layer hopping parameters, there exist two fixed Fermi points ± k* independent of the ribbon width with a peculiar energy dispersion near k* as ɛ(k)~ ± (k-k*)N. By investigating the edge states of Z-BGNRs, we notice that the trigonal warping of the bilayer graphene sheets is reflected in the edge state structure. With the inclusion of γ4, the above two Fermi points are not fixed but drift toward the vicinity of the Dirac point with increasing width N, as shown by the finite scaling method, and the peculiar dispersions change to parabolic ones. The edge magnetism of Z-BGNRs is also examined by solving the half-filled Hubbard Hamiltonian for the ribbon using the Hartree-Fock approximation. We have shown that within the same side of the edges, the edge spins are aligned ferromagnetically for the experimentally relevant set of parameters.

  20. Nonlocal edge state transport in topological insulators

    NASA Astrophysics Data System (ADS)

    Protogenov, Alexander P.; Verbus, Valery A.; Chulkov, Evgueni V.

    2013-11-01

    We use the N-terminal scheme for studying the edge-state transport in two-dimensional topological insulators. We find the universal nonlocal response in the ballistic transport approach. This macroscopic exhibition of the topological order offers different areas for applications.

  1. Edge Sheared Flows and Blob Dynamics

    NASA Astrophysics Data System (ADS)

    Myra, J. R.

    2012-10-01

    The dynamics of blob-filaments [S. I. Krasheninnikov, et al. J. Plasma Phys. 74, 679 (2008); D. A. D'Ippolito, et al., Phys. Plasmas 18, 060501 (2011)] in the strongly radially inhomogeneous edge and scrape-off-layer (SOL) region of a tokamak plasma is considered, with emphasis on sheared flow generation and interaction. The work is motivated by the potential importance of edge sheared flows for turbulence regulation, (e.g. the L-H transition), and the influence of flows on the character of emitted blob-filament structures which ultimately contact plasma-facing components. To study the dynamics of blobs and sheared flows, we employ both numerical simulations and experimental data analysis. The simulations use the fluid-based 2D curvature-interchange model embedded in the SOLT (SOL turbulence) code [D. A. Russell, et al, Phys. Plasmas 16, 122304 (2009)]. A blob-tracking algorithm has also been developed and applied to NSTX and Alcator C-Mod data. The algorithm is based on 2D time-resolved images from the gas puff imaging (GPI) diagnostic [S. J. Zweben, et al. Phys. Plasmas 9, 1981 (2002)]. The algorithm is able to track the blob motion and changes in blob structure, such as elliptical deformations, that can be affected by sheared flows. Results of seeded blob simulations are compared with the experimental data to determine the role of plasma parameters on the blob tracks and to evaluate the exchange of momentum between the blobs and flows. Seeded blob simulations are shown to reproduce many qualitative and quantitative features of the data including size, scale and direction of perpendicular (approximately poloidal) flows and the inferred Reynolds forces, poloidal reversal of blob tracks, and blob trapping and/or ejection. Simulation and experimental data comparisons permit the inference of dynamical mechanisms associated with blob motion and sheared flow generation in these shots, and their relation to previous theoretical work.

  2. Chiral Thermoelectrics with Quantum Hall Edge States

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2015-04-01

    The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.

  3. Edge State and Intrinsic Hole Doping in Bilayer Phosphorene

    NASA Astrophysics Data System (ADS)

    Osada, Toshihito

    2015-01-01

    Using a simple LCAO model by Harrison, we have qualitatively studied the edge state of bilayer phosphorene, which is a unit structure of the layered crystal of black phosphorus. This model successfully reproduces the isolated edge state in the bulk gap in monolayer phosphorene. In bilayer phosphorene, however, it shows that edge states are almost buried in the valence band and there is no isolated midgap edge state at the zigzag edge. Since the buried edge state works as acceptor, holes are doped from the edge state into the bulk. This gives a possible explanation for p-type conduction in undoped black phosphorus. Under the vertical electric field, the intrinsic hole doping is reduced because a part of edge states move into the gap. These features of bilayer phosphorene might be better suited for device application.

  4. Observation of unconventional edge states in 'photonic graphene'.

    PubMed

    Plotnik, Yonatan; Rechtsman, Mikael C; Song, Daohong; Heinrich, Matthias; Zeuner, Julia M; Nolte, Stefan; Lumer, Yaakov; Malkova, Natalia; Xu, Jingjun; Szameit, Alexander; Chen, Zhigang; Segev, Mordechai

    2014-01-01

    Graphene, a two-dimensional honeycomb lattice of carbon atoms, has been attracting much interest in recent years. Electrons therein behave as massless relativistic particles, giving rise to strikingly unconventional phenomena. Graphene edge states are essential for understanding the electronic properties of this material. However, the coarse or impure nature of the graphene edges hampers the ability to directly probe the edge states. Perhaps the best example is given by the edge states on the bearded edge that have never been observed-because such an edge is unstable in graphene. Here, we use the optical equivalent of graphene-a photonic honeycomb lattice-to study the edge states and their properties. We directly image the edge states on both the zigzag and bearded edges of this photonic graphene, measure their dispersion properties, and most importantly, find a new type of edge state: one residing on the bearded edge that has never been predicted or observed. This edge state lies near the Van Hove singularity in the edge band structure and can be classified as a Tamm-like state lacking any surface defect. The mechanism underlying its formation may counterintuitively appear in other crystalline systems. PMID:24193661

  5. Anomalous Edge State in a Non-Hermitian Lattice

    NASA Astrophysics Data System (ADS)

    Lee, Tony E.

    2016-04-01

    We show that the bulk-boundary correspondence for topological insulators can be modified in the presence of non-Hermiticity. We consider a one-dimensional tight-binding model with gain and loss as well as long-range hopping. The system is described by a non-Hermitian Hamiltonian that encircles an exceptional point in momentum space. The winding number has a fractional value of 1 /2 . There is only one dynamically stable zero-energy edge state due to the defectiveness of the Hamiltonian. This edge state is robust to disorder due to protection by a chiral symmetry. We also discuss experimental realization with arrays of coupled resonator optical waveguides.

  6. Anomalous Edge State in a Non-Hermitian Lattice.

    PubMed

    Lee, Tony E

    2016-04-01

    We show that the bulk-boundary correspondence for topological insulators can be modified in the presence of non-Hermiticity. We consider a one-dimensional tight-binding model with gain and loss as well as long-range hopping. The system is described by a non-Hermitian Hamiltonian that encircles an exceptional point in momentum space. The winding number has a fractional value of 1/2. There is only one dynamically stable zero-energy edge state due to the defectiveness of the Hamiltonian. This edge state is robust to disorder due to protection by a chiral symmetry. We also discuss experimental realization with arrays of coupled resonator optical waveguides. PMID:27081980

  7. Edge states in confined active fluids

    NASA Astrophysics Data System (ADS)

    Souslov, Anton; Vitelli, Vincenzo

    Recently, topologically protected edge modes have been proposed and realized in both mechanical and acoustic metamaterials. In one class of such metamaterials, Time-Reversal Symmetry is broken, and, to achieve this TRS breaking in mechanical and acoustic systems, an external energy input must be used. For example, motors provide a driving force that uses energy and, thus, explicitly break TRS. As a result, motors have been used as an essential component in the design of topological metamaterials. By contrast, we explore the design of topological metamaterials that use a class of far-from-equilibrium liquids, called polar active liquids, that spontaneously break TRS. We thus envision the confinement of a polar active liquid to a prescribed geometry in order to realize topological order with broken time-reversal symmetry. We address the design of the requisite geometries, for example a regular honeycomb lattice composed of annular channels, in which the active liquid may be confined. We also consider the physical character of the active liquid that, when introduced into the prescribed geometry, will spontaneously form the flow pattern of a metamaterial with topologically protected edge states. Finally, we comment on potential experimental realizations of such metamaterials.

  8. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons

    NASA Astrophysics Data System (ADS)

    Mancini, M.; Pagano, G.; Cappellini, G.; Livi, L.; Rider, M.; Catani, J.; Sias, C.; Zoller, P.; Inguscio, M.; Dalmonte, M.; Fallani, L.

    2015-09-01

    Chiral edge states are a hallmark of quantum Hall physics. In electronic systems, they appear as a macroscopic consequence of the cyclotron orbits induced by a magnetic field, which are naturally truncated at the physical boundary of the sample. Here we report on the experimental realization of chiral edge states in a ribbon geometry with an ultracold gas of neutral fermions subjected to an artificial gauge field. By imaging individual sites along a synthetic dimension, encoded in the nuclear spin of the atoms, we detect the existence of the edge states and observe the edge-cyclotron orbits induced during quench dynamics. The realization of fermionic chiral edge states opens the door for edge state interferometry and the study of non-Abelian anyons in atomic systems.

  9. Edge states in a honeycomb lattice: effects of anisotropic hopping and mixed edges

    SciTech Connect

    Dahal, Hari P; Balatsky, Alexander V; Sinistsyn, N A; Hu, Zi - Xiang; Yang, Kun

    2008-01-01

    We study the edge states in graphene in the presence of a magnetic field perpendicular to the plane of the lattice. Most of the work done so far discusses the edge states in either zigzag or armchair edge graphene considering an isotropic electron hopping. In practice, graphene can have a mixture of armchair and zigzag edges and the electron hopping can be anisotropic, which is the subject of this article. We predict that the mixed edges smear the enhanced local density of states (LDOS) at E=0 of the zigzag edge and, on the other hand, the anisotropic hopping gives rise to the enhanced LDOS at E=0 in the armchair edge. The behavior of the LDOS can be studied using scanning tunneling microscopy (STM) experiments. We suggest that care must be taken while interpreting the STM data, because the clear distinction between the zigzag edge (enhanced LDOS at E=0) and armchair edge (suppressed LDOS at E=0) can be lost if the hopping is not isotropic and if the edges are mixed.

  10. Green's function approach to edge states in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Farmanbar, Mojtaba; Amlaki, Taher; Brocks, Geert

    2016-05-01

    The semiconducting two-dimensional transition metal dichalcogenides MX 2 show an abundance of one-dimensional metallic edges and grain boundaries. Standard techniques for calculating edge states typically model nanoribbons, and require the use of supercells. In this paper, we formulate a Green's function technique for calculating edge states of (semi-)infinite two-dimensional systems with a single well-defined edge or grain boundary. We express Green's functions in terms of Bloch matrices, constructed from the solutions of a quadratic eigenvalue equation. The technique can be applied to any localized basis representation of the Hamiltonian. Here, we use it to calculate edge states of MX 2 monolayers by means of tight-binding models. Aside from the basic zigzag and armchair edges, we study edges with a more general orientation, structurally modifed edges, and grain boundaries. A simple three-band model captures an important part of the edge electronic structures. An 11-band model comprising all valence orbitals of the M and X atoms is required to obtain all edge states with energies in the MX 2 band gap. Here, states of odd symmetry with respect to a mirror plane through the layer of M atoms have a dangling-bond character, and tend to pin the Fermi level.

  11. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  12. Low temperature edge dynamics of AB-stacked bilayer graphene: naturally favored closed zigzag edges.

    PubMed

    Zhan, Da; Liu, Lei; Xu, Ya Nan; Ni, Zhen Hua; Yan, Jia Xu; Zhao, Chun; Shen, Ze Xiang

    2011-01-01

    Closed edges bilayer graphene (CEBG) is a recent discovered novel form of graphene structures, whose regulated edge states may critically change the overall electronic behaviors. If stacked properly with the AB style, the bilayer graphene with closed zigzag edges may even present amazing electronic properties of bandgap opening and charge separation. Experimentally, the CEBG has been confirmed recently with HRTEM observations after extremely high temperature annealing (2000 °C). From the application point of view, the low temperature closing of the graphene edges would be much more feasible for large-scale graphene-based electronic devices fabrication. Here, we demonstrate that the zigzag edges of AB-stacked bilayer graphene will form curved close structure naturally at low annealing temperature (< 500 °C) based on Raman observation and first principles analysis. Such findings may illuminate a simple and easy way to engineer graphene electronics. PMID:22355531

  13. Edge states and phase diagram for graphene under polarized light

    DOE PAGESBeta

    Wang, Yi -Xiang; Li, Fuxiang

    2016-03-22

    In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less

  14. Edge states and phase diagram for graphene under polarized light

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Xiang; Li, Fuxiang

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  15. Thermoelectric transport of edge/surface states of topological insulators

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi; Takahashi, Ryuji

    2011-03-01

    In my talk we theoretically study thermoelectric properties of topological insulators (TI), where novel properties of edge/surface states are expected to appear. As compared to the number of bulk states, the edge/surface states are very few; we therefore consider a narrow ribbon for 2D and a thin slab for 3D TI to make the edge/surface-state transport larger. By considering edge/surface and bulk transport together, we calculate the charge and heat conductivity, and Seebeck coefficient. We find that in 2D TI the bulk and edge transport compete each other in the thermoelectric transport. By lowering temperature, the thermoelectric figure of merit ZT has a minimum, corresponding to the bulk-to-edge crossover, and then increases again at low temperature where the edge state dominates. The crossover is estimated to be at around 5K-10K for 10nm-width ribbon. We also discuss surface state transport for 3D TI as well.

  16. Dynamic insight into protein structure utilizing red edge excitation shift.

    PubMed

    Chattopadhyay, Amitabha; Haldar, Sourav

    2014-01-21

    Proteins are considered the workhorses in the cellular machinery. They are often organized in a highly ordered conformation in the crowded cellular environment. These conformations display characteristic dynamics over a range of time scales. An emerging consensus is that protein function is critically dependent on its dynamics. The subtle interplay between structure and dynamics is a hallmark of protein organization and is essential for its function. Depending on the environmental context, proteins can adopt a range of conformations such as native, molten globule, unfolded (denatured), and misfolded states. Although protein crystallography is a well established technique, it is not always possible to characterize various protein conformations by X-ray crystallography due to transient nature of these states. Even in cases where structural characterization is possible, the information obtained lacks dynamic component, which is needed to understand protein function. In this overall scenario, approaches that reveal information on protein dynamics are much appreciated. Dynamics of confined water has interesting implications in protein folding. Interfacial hydration combines the motion of water molecules with the slow moving protein molecules. The red edge excitation shift (REES) approach becomes relevant in this context. REES is defined as the shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption spectrum. REES arises due to slow rates (relative to fluorescence lifetime) of solvent relaxation (reorientation) around an excited state fluorophore in organized assemblies such as proteins. Consequently, REES depends on the environment-induced motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. In the case of a protein, the confined water in the protein creates a dipolar field that acts as the solvent for a fluorophore

  17. Tunneling into and between helical edge states: Fermionic approach

    NASA Astrophysics Data System (ADS)

    Aristov, D. N.; Niyazov, R. A.

    2016-07-01

    We study the four-terminal junction of spinless Luttinger liquid wires, which describes either a corner junction of two helical edge states of topological insulators or the tunneling from the spinful wire into the helical edge state. We use the fermionic representation and the scattering state formalism, in order to compute the renormalization group (RG) equations for the linear response conductances. We establish our approach by considering a junction between two possibly nonequivalent helical edge states and find an agreement with the earlier analysis of this situation. Tunneling from the tip of the spinful wire to the edge state is further analyzed which requires some modification of our formalism. In the latter case we demonstrate (i) the existence of both fixed lines and conventional fixed points of RG equations, and (ii) certain proportionality relations holding for conductances during renormalization. The scaling exponents and phase portraits are obtained in all cases.

  18. Roles of edge weights on epidemic spreading dynamics

    NASA Astrophysics Data System (ADS)

    Zhan, Xiu-Xiu; Liu, Chuang; Zhang, Zi-Ke; Sun, Gui-Quan

    2016-08-01

    Epidemic spreading on complex networks has attracted much attention in recent years. A large number of studies have focused on investigating the impacts of network topology on spreading dynamics. However, the weighted network is very common in real systems, and we attempt to study the role of edge weights on epidemic spreading. In this work, the spreading process was presented as the SIS model and three edge-breaking strategies according to the weight of the SI links were performed simultaneously, which was used to illustrate the influence of the edge weights. Simulation results on three real networks showed the different spreading patterns of different edge-breaking strategies, which in turn indicated the influence of edge weights on the spreading process. Therefore we can take different measures at different periods according to the edge weights to impede the epidemic. In addition, the detailed analyses of relationship between the edge weight and the network structure was given to interpret the role of edge weights in the epidemic spreading process.

  19. Edge mixing dynamics in graphene p-n junctions in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Matsuo, Sadashige; Takeshita, Shunpei; Tanaka, Takahiro; Nakaharai, Shu; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-09-01

    Massless Dirac electron systems such as graphene exhibit a distinct half-integer quantum Hall effect, and in the bipolar transport regime co-propagating edge states along the p-n junction are realized. Additionally, these edge states are uniformly mixed at the junction, which makes it a unique structure to partition electrons in these edge states. Although many experimental works have addressed this issue, the microscopic dynamics of electron partition in this peculiar structure remains unclear. Here we performed shot-noise measurements on the junction in the quantum Hall regime as well as at zero magnetic field. We found that, in sharp contrast with the zero-field case, the shot noise in the quantum Hall regime is finite in the bipolar regime, but is strongly suppressed in the unipolar regime. Our observation is consistent with the theoretical prediction and gives microscopic evidence that the edge states are uniquely mixed along the p-n junction.

  20. Edge mixing dynamics in graphene p–n junctions in the quantum Hall regime

    PubMed Central

    Matsuo, Sadashige; Takeshita, Shunpei; Tanaka, Takahiro; Nakaharai, Shu; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-01-01

    Massless Dirac electron systems such as graphene exhibit a distinct half-integer quantum Hall effect, and in the bipolar transport regime co-propagating edge states along the p–n junction are realized. Additionally, these edge states are uniformly mixed at the junction, which makes it a unique structure to partition electrons in these edge states. Although many experimental works have addressed this issue, the microscopic dynamics of electron partition in this peculiar structure remains unclear. Here we performed shot-noise measurements on the junction in the quantum Hall regime as well as at zero magnetic field. We found that, in sharp contrast with the zero-field case, the shot noise in the quantum Hall regime is finite in the bipolar regime, but is strongly suppressed in the unipolar regime. Our observation is consistent with the theoretical prediction and gives microscopic evidence that the edge states are uniquely mixed along the p–n junction. PMID:26337445

  1. Dynamic fracture mechanics analysis for an edge delamination crack

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Doyle, James F.

    1994-01-01

    A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.

  2. Magnetic edge states and magnetotransport in graphene antidot barriers

    NASA Astrophysics Data System (ADS)

    Thomsen, M. R.; Power, S. R.; Jauho, A.-P.; Pedersen, T. G.

    2016-07-01

    Magnetic fields are often used for characterizing transport in nanoscale materials. Recent magnetotransport experiments have demonstrated that ballistic transport is possible in graphene antidot lattices (GALs). These experiments have inspired the present theoretical study of GALs in a perpendicular magnetic field. We calculate magnetotransport through graphene antidot barriers (GABs), which are finite rows of antidots arranged periodically in a pristine graphene sheet, using a tight-binding model and the Landauer-Büttiker formula. We show that GABs behave as ideal Dirac mass barriers for antidots smaller than the magnetic length and demonstrate the presence of magnetic edge states, which are localized states on the periphery of the antidots due to successive reflections on the antidot edge in the presence of a magnetic field. We show that these states are robust against variations in lattice configuration and antidot edge chirality. Moreover, we calculate the transmittance of disordered GABs and find that magnetic edge states survive a moderate degree of disorder. Due to the long phase-coherence length in graphene and the robustness of these states, we expect magnetic edge states to be observable in experiments as well.

  3. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  4. Computational fluid dynamics: A two-edged sword

    SciTech Connect

    Baker, A.J.; Kelso, R.M.; Gordon, E.B.; Roy, S.; Schaub, E.G.

    1997-08-01

    This article examines computational fluid dynamics (CFD) limitations as a design tool. Two decades have passed since the first paper was published in the ASHRAE Transactions suggesting the use of CFD for quantitative prediction of room air motion. CFD is an emerging methodology, with roots in the defense/aerospace industry, wherein a mathematical model of fluid flow is converted into a digital computational procedure, yielding numbers that approximate the solution of this modeled system, hence the genuine flow state. CFD methodology has indeed brought bright glimmers of an ability to establish firm quantitative data regarding how room air moves. In fact, CFD can predict fluid levels and pressure differences to very low levels, that are essentially impossible to experimentally measure. However, a CFD model constitutes the culmination of a large number of assumptions and approximations, such that the answers produced are essentially never correct. Further, it is the very approximation process in CFD theory that leads to intrinsic error mechanisms that can range from benign to pathological. The ASHRAE professional who seeks to use CFD to assist in system design needs to be fully aware of these two edges of the CFD sword.

  5. Quantum pump in quantum spin Hall edge states

    NASA Astrophysics Data System (ADS)

    Cheng, Fang

    2016-09-01

    We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts (QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs. The phase difference between the gate voltages introduces an effective gauge field, which breaks the time-reversal symmetry and generates pump currents. The pump currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties are induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.

  6. Slope Edge Deformation and Permafrost Dynamics Along the Arctic Shelf Edge, Beaufort Sea, Canada

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Riedel, M.; Melling, H.

    2015-12-01

    The shelf of the Canadian Beaufort Sea is underlain by relict offshore permafrost that formed in the long intervals of terrestrial exposure during glacial periods. At the shelf edge the permafrost thins rapidly and also warms. This area has a very distinct morphology that we attribute to both the formation and degradation of ice bearing permafrost. Positive relief features include circular to oval shaped topographic mounds, up to 10 m high and ~50 m in diameter which occur at a density of ~6 per km2. Intermixed are circular topographic depressions up to 20 m deep. This topography was investigated using an autonomous underwater vehicle that provides 1 m horizontal resolution bathymetry and chirp profiles, a remotely operated vehicle to document seafloor textures, and sediment cores to sample pore waters. A consistent down-core freshening at rates of 14 to 96 mM Cl- per meter was found in these pore waters near the shelf edge. Downward extrapolation of these trends indicates water with ≤335 mM Cl- should occur at 2.3 to 22.4 m sub-seafloor depths within this shelf edge deformation band. Pore water with 335 mM Cl- or less freezes at -1.4°C. As bottom water temperatures in this area are persistently (<-1.4°C) cold and ground ice was observed in some core samples, we interpret the volume changes associated with mound formation are in part due to pore water freezing. Thermal models (Taylor et al., 2014) predict brackish water along the shelf edge may be sourced in relict permafrost melting under the adjacent continental shelf. Buoyant brackish water is hypothesized to migrate along the base of the relict permafrost, to emerge at the shelf edge and then refreeze when it encounters the colder seafloor. Expansion generated by the formation of ice-bearing permafrost generates the positive relief mounds and ridges. The associated negative relief features may be related to permafrost dynamics also. Permafrost dynamics may have geohazard implications that are unique to the

  7. The effect of leading edge tubercles on dynamic stall

    NASA Astrophysics Data System (ADS)

    Hrynuk, John

    The effect of the leading edge tubercles of humpback whales has been heavily studied for their static benefits. These studies have shown that tubercles inhibit flow separation, limit spanwise flow, and extend the operating angle of a wing beyond the static stall point while maintaining lift, all while having a comparatively low negative impact on drag. The current study extends the prior work to investigating the effect of tubercles on dynamic stall, a fundamental flow phenomenon that occurs when wings undergo dynamic pitching motions. Flow fields around the wing models tested were studied using Laser Induced Fluorescence (LIF) and Molecular Tagging Velocimetry (MTV).Resulting velocity fields show that the dynamics of the formation and separation of the leading edge vortex were fundamentally different between the straight wing and the tubercled wing. Tracking of the Dynamic Stall Vortex (DSV) and Shear Layer Vortices (SLVs), which may have a significant impact on the overall flow behavior, was done along with calculations of vortex circulation. Proximity to the wing surface and total circulation were used to evaluate potential dynamic lift increases provided by the tubercles. The effects of pitch rate on the formation process and benefits of the tubercles were also studied and were generally consistent with prior dynamic stall studies. However, tubercles were shown to affect the SLV formation and the circulation differently at higher pitch rates.

  8. Leading edge vortex dynamics on a pitching delta wing

    NASA Technical Reports Server (NTRS)

    Lemay, S. P.; Batill, S. M.; Nelson, R. C.

    1988-01-01

    A study of the dynamic behavior of the leading edge vortices on a delta wing undergoing oscillatory pitching motion is presented. A sharp edge, flat plate, delta wing having a sweep angle of 70 deg was used in this investigation. The wing was sinusoidally pitched about its 1/2 chord position at reduced frequencies ranging from k = 2(pi)fc/u = 0.05 to 0.30 at chord Reynolds numbers between 90,000 and 350,000, for angle of attack ranges of 29 to 39 deg and 0 to 45 deg. During these dynamic motions, visualization of the leading edge vortices was obtained by marking the vortices with TiCl4 introduced through ports located near the model apex. The location of vortex breakdown was recorded using high speed motion picture photography. The motion picture records were analyzed to determine vortex trajectory and breakdown position as a function of angle of attack. When the wing was sinusoidally pitched, a hysteresis was observed in the location of breakdown position. This hysteresis increased with reduced frequency. The velocity of breakdown propagation along the wing, and the phase lag between model motion and breakdown location were also determined. Detailed information was also obtained on the oscillation of breakdown position in both static and dynamic cases.

  9. Stabilization and dynamics of edge flames in narrow channels

    NASA Astrophysics Data System (ADS)

    Bieri, Joanna A.

    The dynamics of edge flames in narrow channels is studied, first within the context of a reactive diffusive (or constant density) model and then in a variable density model which allows for the consideration of thermal expansion effects. Fuel and oxidizer, separated upstream by a thin plate of finite length, flow into a channel with a prescribed upstream velocity. At the end of the plate, the fuel and oxidizer mix and, when ignited, an edge flame is sustained at some distance from the tip of the plate. Typically, the flame, which is stabilized by heat conduction back to the cold plate, has a tribrachial structure. It consists of a leading edge, made up of lean and rich premixed segments, and an attached diffusion flame trailing behind. The flame can also have a hook-like shape, when one of the premixed branches is missing. This often happens for conditions away from stoichiometry and when the mass diffusivities of the fuel and oxidizer are unequal. Earlier work has determined the behavior of an edge flame in a mixing layer that develops downstream of a splitter plate with no boundaries in the lateral direction. This is relevant to the stabilization and liftoff of jet diffusion flames. The confined case has other possible applications, such as flames in mini-combustor systems, that have been recently tested experimentally. The objective in this work is to determine the effect that confinement has on the edge standoff distance, on the flame shape and on the flame stability. In particular, we examine the influence of channel width, wall temperature, and the effects of differential diffusion. We determine conditions under which the edge flame is stabilized near the tip of the splitter plate, is held near the tip but oscillates back and forth, or is blown-off. We consider a wide range of channel widths and boundary conditions at the walls.

  10. Majorana fermions and Dirac edge states in topological phases

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Vasudha Bhimsen

    In part 1, we study a realization of a chain of Majorana bound states at the interfaces between alternating ferromagnetic and superconducting regions at a quantum spin Hall insulator edge. In the limit of well separated Majoranas, the system can be mapped to the transverse field Ising model. The disordered critical point can be reached by tuning the relative magnitude or phases of the ferromagnetic and superconducting order parameters. We compute the voltage dependence of the tunneling current from a metallic tip into the Majorana chain as a direct probe of the random critical state. In part 2, we present an analytic prescription for computing the edge dispersion E( k) of a tight-binding Dirac Hamiltonian terminated at an abrupt crystalline edge. Specifically, we consider translationally invariant Dirac Hamiltonians with nearest-layer interaction. We present and prove a geometric formula that relates the existence of surface states as well as their energy dispersion to properties of the bulk Hamiltonian. We further prove the bulk-boundary correspondence between the Chern number and the chiral edge modes for quantum Hall systems within the class of Hamiltonians studied in the paper. Our results can be extended to the case of continuum theories which are quadratic in the momentum, as well as other symmetry classes.

  11. Measles on the edge: coastal heterogeneities and infection dynamics.

    PubMed

    Bharti, Nita; Xia, Yingcun; Bjornstad, Ottar N; Grenfell, Bryan T

    2008-01-01

    Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted 'edge effect' by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of 'edge effects' on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models. PMID:18398467

  12. Two-dimensional topological insulator edge state backscattering by dephasing

    NASA Astrophysics Data System (ADS)

    Essert, Sven; Krueckl, Viktor; Richter, Klaus

    2015-11-01

    To understand the seemingly absent temperature dependence in the conductance of two-dimensional topological insulator edge states, we perform a numerical study which identifies the quantitative influence of the combined effect of dephasing and elastic scattering in charge puddles close to the edges. We show that this mechanism may be responsible for the experimental signatures in HgTe/CdTe quantum wells if the puddles in the samples are large and weakly coupled to the sample edges. We propose experiments on artificial puddles which allow one to verify this hypothesis and to extract the real dephasing time scale using our predictions. In addition, we present a method to include the effect of dephasing in wave-packet-time-evolution algorithms.

  13. Coexisting Edge States and Gapless Bulk in Topological States of Matter

    NASA Astrophysics Data System (ADS)

    Baum, Yuval; Posske, Thore; Fulga, Ion Cosma; Trauzettel, Björn; Stern, Ady

    2015-04-01

    We consider two-dimensional systems in which edge states coexist with a gapless bulk. Such systems may be constructed, for example, by coupling a gapped two-dimensional state of matter that carries edge states to a gapless two-dimensional system in which the spectrum is composed of a number of Dirac cones. We find that, in the absence of disorder, the edge states could be protected even when the two systems are coupled, due to momentum and energy conservation. We distinguish between weak and strong edge states by the level of their mixing with the bulk. In the presence of disorder, the edge states may be stabilized when the bulk is localized or destabilized when the bulk is metallic. We analyze the conditions under which these two cases occur. Finally, we propose a concrete physical realization for one of our models based on bilayer Hg(Cd)Te quantum wells.

  14. Edge states for the Kalmeyer-Laughlin wave function

    NASA Astrophysics Data System (ADS)

    Herwerth, Benedikt; Sierra, Germán; Tu, Hong-Hao; Cirac, J. Ignacio; Nielsen, Anne E. B.

    2015-12-01

    We study lattice wave functions obtained from the SU(2)1 Wess-Zumino-Witten conformal field theory. Following Moore and Read's construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields. By an additional insertion of Kac-Moody currents, we associate a wave function with each state of the conformal field theory. These wave functions span the complete Hilbert space of the lattice system. On the cylinder, we study global properties of the lattice states analytically and correlation functions numerically using a Metropolis Monte Carlo method. By comparing short-range bulk correlations, numerical evidence is provided that the states with one current operator represent edge states in the thermodynamic limit. We show that the edge states with one Kac-Moody current of lowest order have a good overlap with low-energy excited states of a local Hamiltonian, for which the Kalmeyer-Laughlin state approximates the ground state. For some states, exact parent Hamiltonians are derived on the cylinder. These Hamiltonians are SU(2) invariant and nonlocal with up to four-body interactions.

  15. Experimental Observation of Topological Edge States at the Surface Step Edge of the Topological Insulator ZrTe5

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Bing; Huang, Wen-Kai; Lv, Yang-Yang; Zhang, Kai-Wen; Yang, Chao-Long; Zhang, Bin-Bin; Chen, Y. B.; Yao, Shu-Hua; Zhou, Jian; Lu, Ming-Hui; Sheng, Li; Li, Shao-Chun; Jia, Jin-Feng; Xue, Qi-Kun; Chen, Yan-Feng; Xing, Ding-Yu

    2016-04-01

    We report an atomic-scale characterization of ZrTe5 by using scanning tunneling microscopy. We observe a bulk band gap of ˜80 meV with topological edge states at the step edge and, thus, demonstrate that ZrTe5 is a two-dimensional topological insulator. We also find that an applied magnetic field induces an energetic splitting of the topological edge states, which can be attributed to a strong link between the topological edge states and bulk topology. The relatively large band gap makes ZrTe5 a potential candidate for future fundamental studies and device applications.

  16. Statistical theory of relaxation of high-energy electrons in quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Lunde, Anders Mathias; Nigg, Simon E.

    2016-07-01

    We investigate theoretically the energy exchange between the electrons of two copropagating, out-of-equilibrium edge states with opposite spin polarization in the integer quantum Hall regime. A quantum dot tunnel coupled to one of the edge states locally injects electrons at high energy. Thereby a narrow peak in the energy distribution is created at high energy above the Fermi level. A second downstream quantum dot performs an energy-resolved measurement of the electronic distribution function. By varying the distance between the two dots, we are able to follow every step of the energy exchange and relaxation between the edge states, even analytically under certain conditions. In the absence of translational invariance along the edge, e.g., due to the presence of disorder, energy can be exchanged by non-momentum-conserving two-particle collisions. For weakly broken translational invariance, we show that the relaxation is described by coupled Fokker-Planck equations. From these we find that relaxation of the injected electrons can be understood statistically as a generalized drift-diffusion process in energy space for which we determine the drift velocity and the dynamical diffusion parameter. Finally, we provide a physically appealing picture in terms of individual edge-state heating as a result of the relaxation of the injected electrons.

  17. A General Theorem Relating the Bulk Topological Number to Edge States in Two-dimensional Insulators

    SciTech Connect

    Qi, Xiao-Liang; Wu, Yong-Shi; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Tsinghua U., Beijing

    2010-01-15

    We prove a general theorem on the relation between the bulk topological quantum number and the edge states in two dimensional insulators. It is shown that whenever there is a topological order in bulk, characterized by a non-vanishing Chern number, even if it is defined for a non-conserved quantity such as spin in the case of the spin Hall effect, one can always infer the existence of gapless edge states under certain twisted boundary conditions that allow tunneling between edges. This relation is robust against disorder and interactions, and it provides a unified topological classification of both the quantum (charge) Hall effect and the quantum spin Hall effect. In addition, it reconciles the apparent conflict between the stability of bulk topological order and the instability of gapless edge states in systems with open boundaries (as known happening in the spin Hall case). The consequences of time reversal invariance for bulk topological order and edge state dynamics are further studied in the present framework.

  18. Magnon edge states in the hardcore- Bose-Hubbard model.

    PubMed

    Owerre, S A

    2016-11-01

    Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose-Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose-Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices. PMID:27603092

  19. Edge-state blockade of transport in quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Benito, Mónica; Niklas, Michael; Platero, Gloria; Kohler, Sigmund

    2016-03-01

    We propose a transport blockade mechanism in quantum dot arrays and conducting molecules based on an interplay of Coulomb repulsion and the formation of edge states. As a model we employ a dimer chain that exhibits a topological phase transition. The connection to a strongly biased electron source and drain enables transport. We show that the related emergence of edge states is manifest in the shot noise properties as it is accompanied by a crossover from bunched electron transport to a Poissonian process. For both regions we develop a scenario that can be captured by a rate equation. The resulting analytical expressions for the Fano factor agree well with the numerical solution of a full quantum master equation.

  20. Optical isolation in topological-edge-state photonic arrays.

    PubMed

    El-Ganainy, Ramy; Levy, Miguel

    2015-11-15

    We introduce a new type of optical isolator based on breaking time reversal symmetry in dissipative finite Su-Schrieffer-Heeger (SSH) waveguide arrays that support topological edge states at one end of the structure. In the forward propagation direction, light is launched into the edge waveguide to excite the localized topological midgap state. As a result, most of the input optical power is transmitted to the output port. On the other hand, backward reflected light encounters a propagation constant mismatch in that same channel which shifts the otherwise midgap state into one of the bands and hence becomes delocalized over the whole array. We show that under these conditions, a judicious spatial distribution of the optical dissipation across the structure can produce an isolation ratio of -50 dB. The required nonreciprocal phase shift is introduced by depositing a magnetic garnet film only on the edge waveguide and, thus, the required magnetic field can be generated by an integrated micromagnet. Similar concepts can also be applied to SSH arrays made from optical resonators. PMID:26565853

  1. Majorana edge states in superconductor-noncollinear magnet interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Schnyder, Andreas P.

    2015-12-01

    Through s -d coupling, a superconducting thin film interfaced to a noncollinear magnetic insulator inherits its magnetic order, which may induce unconventional superconductivity that hosts Majorana edge states. We present a unified formalism that covers the cycloidal, helical, and tilted conical order discovered in multiferroics, as well as Bloch and Neel domain walls of ferromagnetic insulators, and show that they induce (px+py )-wave pairing that supports Majorana edge modes. The advantages over one-dimensional proposals are that the Majorana states can exist without fine tuning of the chemical potential, can be stabilized in a much larger parameter space, and can be separated over the distance of long-range noncollinear order that is known to reach a macroscopic scale. A skyrmion spin texture, on the other hand, induces a nonuniform (pr+i pφ )-wave-like pairing under the influence of an emergent electromagnetic field, yielding a vortex state that displays both a bulk persistent current and a topological edge current.

  2. Andreev conversion of quantum Hall edge state in graphene

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Ho; Hart, Sean; Wei, Di; Huang, Katie; Efetov, Dmitri; Taniguchi, Takashi; Watanabe, Kenji; Yacoby, Amir; Kim, Philip

    Understanding the interplay between superconductivity (SC) and quantum Hall effect (QHE) has been a long-sought theoretical and experimental problem. SC contacts to QHE systems enable us to study interesting physics, such as Cooper pair injection into ballistic 2D channels, Andreev edge states, and emergent excitations of non-Abelian anyons. We developed an in-situ etching technique for highly transparent superconducting contact (NbN) to hBN encapsulated graphene channels. The high critical field of NbN electrodes (Hc 2 > 30 T) and the high quality of our graphene devices allows us to experimentally access a wide range of magnetic field where SC and QHE coexist. In order to probe the Andreev conversion of QH edge states, we measure the chemical potential of normal electrodes located on the upstream and the downstream QH edge states relative to a narrow grounded superconducting electrode. We observed that the chemical potential in downstream has sign opposite to the one measured in upstream suggesting Andreev conversion of incident electrons to outgoing holes across the narrow superconducting contact. We systematically investigated this phenomena as a function of temperature, magnetic field, bias voltage and the width and length of the superconducting electrode.

  3. Superposition State Molecular Dynamics.

    PubMed

    Venkatnathan, Arun; Voth, Gregory A

    2005-01-01

    The ergodic sampling of rough energy landscapes is crucial for understanding phenomena like protein folding, peptide aggregation, polymer dynamics, and the glass transition. These rough energy landscapes are characterized by the presence of many local minima separated by high energy barriers, where Molecular Dynamics (MD) fails to satisfy ergodicity. To enhance ergodic behavior, we have developed the Superposition State Molecular Dynamics (SSMD) method, which uses a superposition of energy states to obtain an effective potential for the MD simulation. In turn, the dynamics on this effective potential can be used to sample the configurational free energy of the real potential. The effectiveness of the SSMD method for a one-dimensional rough potential energy landscape is presented as a test case. PMID:26641113

  4. Thermodynamic signatures of edge states in Topological Insulators

    NASA Astrophysics Data System (ADS)

    Quelle, Anton; Cobanera, Emilio; Morais Smith, Cristinae

    Topological insulators are states of matter distinguished by the presence of symmetry protected metallic boundary modes. These edge modes have been characterised in terms of transport and spectroscopic measurements, but a thermodynamic description has been lacking. The challenge arises because in conventional thermodynamics the potentials are required to scale linearly with extensive variables like volume, which does not allow for a general treatment of boundary effects. In this paper, we overcome this challenge with Hill thermodynamics. In this extension of the thermodynamic formalism, the grand potential is split into an extensive, conventional contribution, and the subdivision potential, which is the central construct of Hill's theory. For topologically non-trivial electronic matter, the subdivision potential captures measurable contributions to the density of states and the heat capacity: it is the thermodynamic manifestation of the topological edge structure. Furthermore, the subdivision potential reveals phase transitions of the edge even when they are not manifested in the bulk, thus opening a variety of new possibilities for investigating, manipulating, and characterizing topological quantum matter solely in terms of equilibrium boundary physics.

  5. Visualizing edge states with an atomic Bose gas in the quantum Hall regime.

    PubMed

    Stuhl, B K; Lu, H-I; Aycock, L M; Genkina, D; Spielman, I B

    2015-09-25

    Bringing ultracold atomic gases into the quantum Hall regime is challenging. We engineered an effective magnetic field in a two-dimensional lattice with an elongated-strip geometry, consisting of the sites of an optical lattice in the long direction and of three internal atomic spin states in the short direction. We imaged the localized states of atomic Bose-Einstein condensates in this strip; via excitation dynamics, we further observed both the skipping orbits of excited atoms traveling down the system's edges, analogous to edge magnetoplasmons in two-dimensional electron systems, and a dynamical Hall effect for bulk excitations. Our technique involves minimal heating, which will be important for spectroscopic measurements of the Hofstadter butterfly and realizations of Laughlin's charge pump. PMID:26404830

  6. Graphene quantum dots: localized states, edges and bilayer systems

    NASA Astrophysics Data System (ADS)

    Ensslin, Klaus

    2014-03-01

    Graphene quantum dots show Coulomb blockade, excited states and their orbital and spin properties have been investigated in high magnetic fields. Most quantum dots fabricated to date are fabricated with electron beam lithography and dry etching which generally leads to uncontrolled and probably rough edges. We demonstrate that devices with reduced bulk disorder fabricated on BN substrates display similar localized states as those fabricated on the more standard SiO2 substrates. For a highly symmetric quantum dot with short tunnel barriers the experimentally detected transport features can be explained by three localized states, 1 in the dot and 2 in the constrictions. A way to overcome edge roughness and the localized states related to this are bilayer devices where a band gap can be induced by suitable top and back gate voltages. By placing bilayer graphene between two BN layers high electronic quality can be achieved as documented by the observation of broken symmetry states in the quantum Hall regime. We discuss how this method can be exploited to achieve smoother and better tunable graphene quantum devices. This work was done in collaboration with D. Bischoff, P. Simonet, A. Varlet, Y. Tian, and T. Ihn.

  7. Artificial gauge fields and chiral edge states for ultracold fermions in synthetic dimensions

    NASA Astrophysics Data System (ADS)

    Fallani, Leonardo

    2015-05-01

    I will report on very recent experiments performed at LENS with ultracold 173Yb Fermi gases in artificial gauge fields. We have engineered Raman transitions between different 173Yb nuclear spin states to synthesize an effective lattice dynamics in a finite-sized ``extra dimension,'' which is encoded in the internal degree of freedom of the atoms. By using this innovative approach, we have realized synthetic magnetic fields for effectively-charged fermions in ladder geometries with a variable number of legs. Direct imaging of the individual legs allowed us to demonstrate the emergence of chiral edge currents and to observe edge-cyclotron orbits propagating along the edges of the system, thus providing a direct evidence of a fundamental feature of quantum Hall physics in condensed-matter systems.

  8. Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals.

    PubMed

    Zeng, Tao; Zhang, Wanwei; Yu, Xiangtian; Liu, Xiaoping; Li, Meiyi; Chen, Luonan

    2016-07-01

    Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression

  9. Entanglement and Majorana edge states in the Kitaev model

    NASA Astrophysics Data System (ADS)

    Mandal, Saptarshi; Maiti, Moitri; Varma, Vipin Kerala

    2016-07-01

    We investigate the von Neumann entanglement entropy and Schmidt gap in the vortex-free ground state of the Kitaev model on the honeycomb lattice for square/rectangular and cylindrical subsystems. We find that, for both the subsystems, the free-fermionic contribution to the entanglement entropy SE exhibits signatures of the phase transitions between the gapless and gapped phases. However, within the gapless phase, we find that SE does not show an expected monotonic behavior as a function of the coupling Jz between the suitably defined one-dimensional chains for either geometry; moreover, the system generically reaches a point of minimum entanglement within the gapless phase before the entanglement saturates or increases again until the gapped phase is reached. This may be attributed to the onset of gapless modes in the bulk spectrum and the competition between the correlation functions along various bonds. In the gapped phase, on the other hand, SE always monotonically varies with Jz independent of the subregion size or shape. Finally, further confirming the Li-Haldane conjecture, we find that the Schmidt gap Δ defined from the entanglement spectrum also signals the topological transitions but only if there are corresponding zero-energy Majorana edge states that simultaneously appear or disappear across the transitions. We analytically corroborate some of our results on entanglement entropy, the Schmidt gap, and the bulk-edge correspondence using perturbation theory.

  10. Dual Transition Edge Sensor Bolometer for Enhanced Dynamic Range

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Benford, D. J.; Moseley, S. H.; Irwin, K. D.

    2004-01-01

    Broadband surveys at the millimeter and submillimeter wavelengths will require bolometers that can reach new limits of sensitivity and also operate under high background conditions. To address this need, we present results on a dual transition edge sensor (TES) device with two operating modes: one for low background, ultrasensitive detection and one for high background, enhanced dynamic range detection. The device consists of a detector element with two transition temperatures (T(sub c)) of 0.25 and 0.51 K located on the same micromachined, thermally isolated membrane structure. It can be biased on either transition, and features phonon-limited noise performance at the lower T(sub c). We measure noise performance on the lower transition 7 x 10(exp -18) W/rt(Hz) and the bias power on the upper transition of 12.5 pW, giving a factor of 10 enhancement of the dynamic range for the device. We discuss the biasable range of this type of device and present a design concept to optimize utility of the device.

  11. The Seasonal Dynamics of Artificial Nest Predation Rates along Edges in a Mosaic Managed Reedbed.

    PubMed

    Malzer, Iain; Helm, Barbara

    2015-01-01

    Boundaries between different habitats can be responsible for changes in species interactions, including modified rates of encounter between predators and prey. Such 'edge effects' have been reported in nesting birds, where nest predation rates can be increased at habitat edges. The literature concerning edge effects on nest predation rates reveals a wide variation in results, even within single habitats, suggesting edge effects are not fixed, but dynamic throughout space and time. This study demonstrates the importance of considering dynamic mechanisms underlying edge effects and their relevance when undertaking habitat management. In reedbed habitats, management in the form of mosaic winter reed cutting can create extensive edges which change rapidly with reed regrowth during spring. We investigate the seasonal dynamics of reedbed edges using an artificial nest experiment based on the breeding biology of a reedbed specialist. We first demonstrate that nest predation decreases with increasing distance from the edge of cut reed blocks, suggesting edge effects have a pivotal role in this system. Using repeats throughout the breeding season we then confirm that nest predation rates are temporally dynamic and decline with the regrowth of reed. However, effects of edges on nest predation were consistent throughout the season. These results are of practical importance when considering appropriate habitat management, suggesting that reed cutting may heighten nest predation, especially before new growth matures. They also contribute directly to an overall understanding of the dynamic processes underlying edge effects and their potential role as drivers of time-dependent habitat use. PMID:26448338

  12. The Seasonal Dynamics of Artificial Nest Predation Rates along Edges in a Mosaic Managed Reedbed

    PubMed Central

    Malzer, Iain; Helm, Barbara

    2015-01-01

    Boundaries between different habitats can be responsible for changes in species interactions, including modified rates of encounter between predators and prey. Such ‘edge effects’ have been reported in nesting birds, where nest predation rates can be increased at habitat edges. The literature concerning edge effects on nest predation rates reveals a wide variation in results, even within single habitats, suggesting edge effects are not fixed, but dynamic throughout space and time. This study demonstrates the importance of considering dynamic mechanisms underlying edge effects and their relevance when undertaking habitat management. In reedbed habitats, management in the form of mosaic winter reed cutting can create extensive edges which change rapidly with reed regrowth during spring. We investigate the seasonal dynamics of reedbed edges using an artificial nest experiment based on the breeding biology of a reedbed specialist. We first demonstrate that nest predation decreases with increasing distance from the edge of cut reed blocks, suggesting edge effects have a pivotal role in this system. Using repeats throughout the breeding season we then confirm that nest predation rates are temporally dynamic and decline with the regrowth of reed. However, effects of edges on nest predation were consistent throughout the season. These results are of practical importance when considering appropriate habitat management, suggesting that reed cutting may heighten nest predation, especially before new growth matures. They also contribute directly to an overall understanding of the dynamic processes underlying edge effects and their potential role as drivers of time-dependent habitat use. PMID:26448338

  13. Measurement of peeling mode edge current profile dynamics.

    PubMed

    Bongard, M W; Fonck, R J; Hegna, C C; Redd, A J; Schlossberg, D J

    2011-07-15

    Peeling modes, an instability mechanism underlying deleterious edge localized mode (ELM) activity in fusion-grade plasmas, are observed at the edge of limited plasmas in a low aspect ratio tokamak under conditions of high edge current density (J(edge) ∼ 0.1  MA/m2) and low magnetic field (B ∼ 0.1  T). They generate edge-localized, electromagnetic activity with low toroidal mode numbers n≤3 and amplitudes that scale strongly with measured J(edge)/B instability drive, consistent with theory. ELM-like field-aligned, current-carrying filaments form from an initial current-hole J(edge) perturbation that detach and propagate outward. PMID:21838369

  14. Assessing the state of the art in edge detection: 1992

    NASA Astrophysics Data System (ADS)

    Boyer, Kim L.; Sarkar, S.

    1992-03-01

    Hoping the reader will not find the title overly pompous, we offer a brief and decidedly informal view of the state of the edge detection art, as we see it, in early 1992. We make no claim to clairvoyance, nor even to being especially insightful. But we have looked over the recent literature and made some attempt to evaluate where we are as a community with respect to this most ubiquitous problem and where we should be headed. We also briefly summarize the work of this session and our own recent contributions to compare the spectrum of philosophies represented to the community at large. This paper should be taken in the spirit in which it was written, which is to say not too seriously. Our aim is by no means frivolous, but we did try to have a little fun while dabbling as futurists. The ultimate goal of this paper is to stimulate some interesting interchange not so much on the `how to' of edge detection as on the `what next.'

  15. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    NASA Astrophysics Data System (ADS)

    Farghadan, R.; Saffarzadeh, A.; Heidari Semiromi, E.

    2013-12-01

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zero and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.

  16. Spatio-Temporal Analysis of Forest Edge Dynamics in South Western Amazonia

    NASA Astrophysics Data System (ADS)

    Numata, I.; Cochrane, M. A.; Roberts, D. A.; Soares, J. V.

    2008-12-01

    Beyond removing forest, deforestation in the Amazon creates a lot of forest edges. These edges change the microclimate and ecosystem dynamics of the remaining tropical rain forests, contributing directly to forest degradation in the Amazon. Edge-induced changes such as tree mortality and fire vulnerability occur as a function of distance from edges and time since forest fragmentation. New edges are created and older edges are eliminated constantly as deforestation advances. However, Amazon forest edge dynamics over time and space are not well understood. We need to improve our knowledge about forest edge dynamics in order to estimate the actual amount of forest degradation caused by forest fragmentation. In this study, we performed deep spatio-temporal analyses of forest fragmentation for Rondônia, in the southwestern Amazon, using a multitemporal Landsat dataset (1984-2005). Our goals were to: 1) calculate erosion/persistence of forest edges; 2) detect edge age-composition of all forest edges and; 3) estimate total degraded forest area due to forest edge effects. Two counties of different stages of deforestation were selected. Campo Novo de Rondônia (early stage) and Ouro Preto (final stage). Overall, more than 50% of forest edges were eliminated in the first four years, while only 20% of edges survived more than 10 years after edge creation. The composition of edge-ages differs according to the stage of deforestation. Between 2001 and 2005, nearly 60% of forest edges in recently developed Campo Novo de Rondônia were 0-4 years old, with only 20% > 10 years old. Conversely, in the old frontier Ouro Preto region, only 23% of forest edges were 0-4 years old and 50% were > 10 years old. These results suggest that high edge erosion rates in the years following edge creation may cause many edges disappear before they experience the complete process of edge-induced changes such as biomass collapse, potentially reducing the estimated impact of existing forest edges on

  17. Boundary-induced dynamics in one-dimensional topological systems and memory effects of edge modes

    NASA Astrophysics Data System (ADS)

    He, Yan; Chien, Chih-Chun

    2016-07-01

    Dynamics induced by a change of boundary conditions reveals rate-dependent signatures associated with topological properties in one-dimensional Kitaev chain and SSH model. While the perturbation from a change of the boundary propagates into the bulk, the density of topological edge modes in the case of transforming to open boundary condition reaches steady states. The steady-state density depends on the transformation rate of the boundary and serves as an illustration of quantum memory effects in topological systems. Moreover, while a link is physically broken as the boundary condition changes, some correlation functions can remain finite across the broken link and keep a record of the initial condition. By testing those phenomena in the nontopological regimes of the two models, none of the interesting signatures of memory effects can be observed. Our results thus contrast the importance of topological properties in boundary-induced dynamics.

  18. Qubit transient dynamics at tunneling Fermi-edge singularity

    NASA Astrophysics Data System (ADS)

    Ponomarenko, V. V.; Larkin, I. A.

    2016-03-01

    We consider tunneling of spinless electrons from a single-channel emitter into an empty collector through an interacting resonant level of the quantum dot. When all Coulomb screening of sudden charge variations of the dot during the tunneling is realized by the emitter channel, the system is described with an exactly solvable model of a dissipative qubit. We derive the corresponding Bloch equation for its quantum evolution. We further use it to specify the qubit transient dynamics towards its stationary quantum state after a sudden change of the level position. We demonstrate that the time-dependent tunneling current characterizing this dynamics exhibits an oscillating behavior for a wide range of the model parameters.

  19. Dynamics of edge dislocations in a sheared lamellar mesophase

    NASA Astrophysics Data System (ADS)

    Kumaran, V.

    2013-10-01

    The dynamics and interactions of edge dislocations in a nearly aligned sheared lamellar mesophase is analysed to provide insights into the relationship between disorder and rheology. First, the mesoscale permeation and momentum equations for the displacement field in the presence of external forces are derived from the model H equations for the concentration and momentum field. The secondary flow generated due to the mean shear around an isolated defect is calculated, and the excess viscosity due to the presence of the defect is determined from the excess energy dissipation due to the secondary flow. The excess viscosity for an isolated defect is found to increase with system size in the cross-stream direction as L3/2 for an isolated defect, though this divergence is cut-off due to interactions in a defect suspension. As the defects are sheared past each other due to the mean flow, the Peach-Koehler force due to elastic interaction between pairs of defects is found to cause no net displacement relative to each other as they approach from large separation to the distance of closest approach. The equivalent force due to viscous interactions is found to increase the separation for defects of opposite sign, and decrease the separation for defects of same sign. During defect interactions, we find that there is no buckling instability due to dilation of layers for systems of realistic size. However, there is another mechanism, which is the velocity difference generated across a slightly deformed bilayer due to the mean shear, which could result in the creation of new defects.

  20. Effect of Trailing Edge Shape on the Unsteady Aerodynamics of Reverse Flow Dynamic Stall

    NASA Astrophysics Data System (ADS)

    Lind, Andrew; Jones, Anya

    2015-11-01

    This work considers dynamic stall in reverse flow, where flow travels over an oscillating airfoil from the geometric trailing edge towards the leading edge. An airfoil with a sharp geometric trailing edge causes early formation of a primary dynamic stall vortex since the sharp edge acts as the aerodynamic leading edge in reverse flow. The present work experimentally examines the potential merits of using an airfoil with a blunt geometric trailing edge to delay flow separation and dynamic stall vortex formation while undergoing oscillations in reverse flow. Time-resolved and phase-averaged flow fields and pressure distributions are compared for airfoils with different trailing edge shapes. Specifically, the evolution of unsteady flow features such as primary, secondary, and trailing edge vortices is examined. The influence of these flow features on the unsteady pressure distributions and integrated unsteady airloads provide insight on the torsional loading of rotor blades as they oscillate in reverse flow. The airfoil with a blunt trailing edge delays reverse flow dynamic stall, but this leads to greater downward-acting lift and pitching moment. These results are fundamental to alleviating vibrations of high-speed helicopters, where much of the rotor operates in reverse flow.

  1. Exogenous antioxidants—Double-edged swords in cellular redox state

    PubMed Central

    Bohn, Torsten

    2010-01-01

    The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects. PMID:20972369

  2. High dynamic range infrared images detail enhancement based on local edge preserving filter

    NASA Astrophysics Data System (ADS)

    Song, Qiong; Wang, Yuehuan; Bai, Kun

    2016-07-01

    In the field of infrared (IR) image processing, displaying a high dynamic range (HDR) image on a low dynamic range display equipment with a natural visual effect, clear details on local areas and less artifacts is an important issue. In this paper, we present a new approach to display HDR IR images with contrast enhancement. First, the local edge-preserving filter (LEPF) is utilized to separate the image into a base layer and detail layer(s). After the filtering procedure, we use an adaptive Gamma transformation to adjust the gray distribution of the base layer, and stretch the detail layer based on a human visual effect principle. Then, we recombine the detail layer and base layer to obtain the enhance output. Finally, we adjust the luminance of output by applying multiple exposure fusion method. The experimental results demonstrate that our proposed method can provide a significant performance in terms of enhancing details and less artifacts than the state of the arts.

  3. Geometric phase in p -n junctions of helical edge states

    NASA Astrophysics Data System (ADS)

    Wadhawan, Disha; Mehta, Poonam; Das, Sourin

    2016-02-01

    The quantum spin Hall effect is endowed with topologically protected edge modes with a gapless Dirac spectrum. Applying a magnetic field locally along the edge leads to a gapped edge spectrum with the opposite parity for winding of spin texture for conduction and valence bands. Using Pancharatnam's prescription for the geometric phase it is shown that mismatch of this parity across a p -n junction, which could be engineered into the edge by electrical gate induced doping, leads to a phase dependence in the two-terminal conductance which is quantized to either zero or π . It is further shown that application of a nonuniform magnetic field across the junction could lead to a nonquantized value of this geometric phase which is tunable between zero and π . A current asymmetry measurement which is shown to be robust against electron-electron interactions is proposed to infer the appearance of this Pancharatnam's geometric phase in transport across such junctions.

  4. Edge State Structure of the ν = 0 quantum Hall State in monolayer Graphene

    NASA Astrophysics Data System (ADS)

    Knothe, Angelika; Jolicoeur, Thierry

    Single-layer graphene at neutrality under a magnetic field is a many-body insulator whose phase structure is under intense scrutiny. When tilting the applied magnetic field, there is a phase transition towards a conducting state. A plausible description is to start from a SU(4) spin-valley symmetric quantum Hall ferromagnet and add some lattice-scale anisotropies in valley space. In the manifold of ground states captured by this approach, it has been proposed that graphene undergoes a transition between a canted antiferromagnetic state and a ferromagnetic state. While this picture is clear in the bulk of the system, it remains to understand the effect of this phase change on the current-carrying edge states that are formed a the physical boundaries of a real sample. We use an extended Hartree-Fock approach to describe a finite-size system with a simple model for the edge and extract the one-body spectrum. We then describe the current-carrying edge textures.

  5. Leading edge vortex dynamics on a pitching delta wing. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lemay, Scott P.

    1988-01-01

    The leading edge flow structure was investigated on a 70 deg flat plate delta wing which was pitched about its 1/2 chord position, to increase understanding of the high angle of attack aerodynamics on an unsteady delta wing. The wing was sinusoidally pitched at reduced frequencies ranging from k being identical with 2pi fc/u = 0.05 to 0.30 at chord Reynolds numbers between 90,000 and 350,000, for angle of attack ranges of alpha = 29 to 39 deg and alpha = 0 to 45 deg. The wing was also impulsively pitched at an approximate rate of 0.7 rad/s. During these dynamic motions, visualization of the leading edge vorticies was obtained by entraining titanium tetrachloride into the flow at the model apex. The location of vortex breakdown was recorded using 16mm high speed motion picture photography. When the wing was sinusoidally pitched, a hysteresis was observed in the location of breakdown position. This hysteresis increased with reduced frequency. The velocity of breakdown propagation along the wing, and the phase lag between model motion and breakdown location were also determined. When the wing was impulsively pitched, several convective times were required for the vortex flow to reach a steady state. Detailed information was also obtained on the oscillation of breakdown position in both static and dynamic cases.

  6. Self-induced topological transitions and edge states supported by nonlinear staggered potentials

    NASA Astrophysics Data System (ADS)

    Hadad, Yakir; Khanikaev, Alexander B.; Alò, Andrea

    2016-04-01

    The canonical Su-Schrieffer-Heeger (SSH) array is one of the basic geometries that have spurred significant interest in topological band-gap modes. Here, we show that the judicious inclusion of third-order Kerr nonlinearities in SSH arrays opens rich physics in topological insulators, including the possibility of supporting self-induced topological transitions, as a function of the applied intensity. We highlight the emergence of a class of topological solutions in nonlinear SSH arrays localized at the array edges and with unusual properties. As opposed to their linear counterparts, these nonlinear states decay to a plateau of nonzero amplitude inside the array, highlighting the local nature of topologically nontrivial band gaps in nonlinear systems. We study the conditions under which these states can be excited and their temporal dynamics as a function of the applied excitation, paving the way to interesting directions in the physics of topological edge states with robust propagation properties based on nonlinear interactions in suitably designed periodic arrays.

  7. Edge effect on a vacancy state in semi-infinite graphene

    NASA Astrophysics Data System (ADS)

    Deng, Hai-Yao; Wakabayashi, Katsunori

    2014-09-01

    The edge effect on a single vacancy state of semi-infinite graphene (SIG) has been studied using Green's function method within the tight-binding model. In the case of infinite graphene, it is known that a vacancy induces a zero-energy resonance state, whose wave function decays inversely with distance (R) from the vacancy and is not normalizable. However, for SIG with an armchair edge, we find that the corresponding wave function decays as R-2 and hence becomes normalizable owing to the intervalley interference caused by the armchair edge. For SIG with a zigzag edge, the vacancy state depends on the sublattice of the vacancy. When the vacancy and the edge belong to different sublattices, the vacancy has no effect on the zero-energy vacancy state. In contrast, when the vacancy is located on the same sublattice as the edge, the resonance state disappears but the wave function at zero energy is strongly distorted near the vacancy. Our results reveal that the presence of edges crucially changes the vacancy state in graphene, and thus such a state can be used to probe the edge structure.

  8. Construction of edge states in fractional quantum Hall systems by Jack polynomials

    NASA Astrophysics Data System (ADS)

    Lee, Ki Hoon; Hu, Zi-Xiang; Wan, Xin

    2014-04-01

    We study the edge-mode excitations of a fractional quantum Hall droplet by expressing the edge-state wave functions as linear combinations of Jack polynomials with a negative parameter. We show that the exact diagonalization within a subspace of Jack polynomials can be used to generate the chiral edge-mode excitation spectrum in the Laughlin phase and the Moore-Read phase with realistic Coulomb interaction. The truncation technique for the edge excitations simplifies the procedure to reliably extract the edge-mode velocities, which avoids the otherwise complicated analysis of the full spectrum that contains both edge and bulk excitations. Generalization to the Read-Rezayi state is also discussed.

  9. Instability of bosonic topological edge states in the presence of interactions

    NASA Astrophysics Data System (ADS)

    Lumer, Yaakov; Rechtsman, Mikael C.; Plotnik, Yonatan; Segev, Mordechai

    2016-08-01

    We analyze the stability of extended edge modes in a nonlinear (i.e., interacting) bosonic topological insulator. We see that these nonlinear modes are always unstable, despite the topological protection of edge modes in the linear system. For concreteness we use a photonic platform, but the results generalize to other bosonic systems. We give a detailed description of the system in two extreme cases, low nonlinearity and high nonlinearity, and discuss the breakup of the nonlinear edge states into solitons.

  10. Edge-states ferromagnetism of WS{sub 2} nanosheets

    SciTech Connect

    Huo, Nengjie; Li, Yan; Kang, Jun; Li, Renxiong; Xia, Qinglin; Li, Jingbo

    2014-05-19

    The multilayer WS{sub 2} nanosheets prepared from WO{sub 3} nanowires exhibit strong ferromagnetic behavior with saturation magnetization (M{sub S}) of 0.0058 emu/g and coercive field (H{sub C}) of 92 Oe at room temperature. By decreasing the temperature down to 3 K the H{sub c} is increased up to 1115 Oe, revealing the existence of long-range magnetic ordering. Density functional theory spin-polarized calculations predict that strong ferromagnetic moments in WS{sub 2} nanosheets are attributed to the zigzag edge sulphur S and tungsten W atoms. Our findings also suggest that the WS{sub 2} nanosheets with a high density of edge spins could be used to fabricate spintronics devices, which are circuits utilizing the spin of the electron to process and store information.

  11. One-dimensional edge state of Bi thin film grown on Si(111)

    SciTech Connect

    Kawakami, Naoya; Lin, Chun-Liang; Kawai, Maki; Takagi, Noriaki; Arafune, Ryuichi

    2015-07-20

    The geometric and electronic structures of the Bi thin film grown on Si(111) were investigated by using scanning tunneling microscopy and spectroscopy. We have found two types of edges, one of which hosts an electronic state localized one-dimensionally. We also revealed the energy dispersion of the localized edge state from the evolution of quasiparticle interference patterns as a function of energy. These spectroscopic findings well reproduce those acquired for the cleaved surface of the bulk Bi crystal [I. K. Drozdov et al., Nat. Phys. 10, 664 (2014)]. The present results indicate that the deposited Bi film provides a tractable stage for further scrutiny of the one-dimensional edge state.

  12. Edge localized mode rotation and the nonlinear dynamics of filaments

    NASA Astrophysics Data System (ADS)

    Morales, J. A.; Bécoulet, M.; Garbet, X.; Orain, F.; Dif-Pradalier, G.; Hoelzl, M.; Pamela, S.; Huijsmans, G. T. A.; Cahyna, P.; Fil, A.; Nardon, E.; Passeron, C.; Latu, G.

    2016-04-01

    Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal, grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.

  13. Direct imaging of topological edge states at a bilayer graphene domain wall.

    PubMed

    Yin, Long-Jing; Jiang, Hua; Qiao, Jia-Bin; He, Lin

    2016-01-01

    The AB-BA domain wall in gapped graphene bilayers is a rare naked structure hosting topological electronic states. Although it has been extensively studied in theory, a direct imaging of its topological edge states is still missing. Here we image the topological edge states at the graphene bilayer domain wall by using scanning tunnelling microscope. The simultaneously obtained atomic-resolution images of the domain wall provide us unprecedented opportunities to measure the spatially varying edge states within it. The one-dimensional conducting channels are observed to be mainly located around the two edges of the domain wall, which is reproduced quite well by our theoretical calculations. Our experiment further demonstrates that the one-dimensional topological states are quite robust even in the presence of high magnetic fields. The result reported here may raise hopes of graphene-based electronics with ultra-low dissipation. PMID:27312315

  14. Direct imaging of topological edge states at a bilayer graphene domain wall

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Jiang, Hua; Qiao, Jia-Bin; He, Lin

    2016-06-01

    The AB-BA domain wall in gapped graphene bilayers is a rare naked structure hosting topological electronic states. Although it has been extensively studied in theory, a direct imaging of its topological edge states is still missing. Here we image the topological edge states at the graphene bilayer domain wall by using scanning tunnelling microscope. The simultaneously obtained atomic-resolution images of the domain wall provide us unprecedented opportunities to measure the spatially varying edge states within it. The one-dimensional conducting channels are observed to be mainly located around the two edges of the domain wall, which is reproduced quite well by our theoretical calculations. Our experiment further demonstrates that the one-dimensional topological states are quite robust even in the presence of high magnetic fields. The result reported here may raise hopes of graphene-based electronics with ultra-low dissipation.

  15. Direct imaging of topological edge states at a bilayer graphene domain wall

    PubMed Central

    Yin, Long-Jing; Jiang, Hua; Qiao, Jia-Bin; He, Lin

    2016-01-01

    The AB–BA domain wall in gapped graphene bilayers is a rare naked structure hosting topological electronic states. Although it has been extensively studied in theory, a direct imaging of its topological edge states is still missing. Here we image the topological edge states at the graphene bilayer domain wall by using scanning tunnelling microscope. The simultaneously obtained atomic-resolution images of the domain wall provide us unprecedented opportunities to measure the spatially varying edge states within it. The one-dimensional conducting channels are observed to be mainly located around the two edges of the domain wall, which is reproduced quite well by our theoretical calculations. Our experiment further demonstrates that the one-dimensional topological states are quite robust even in the presence of high magnetic fields. The result reported here may raise hopes of graphene-based electronics with ultra-low dissipation. PMID:27312315

  16. Identifying topological edge states in 2D optical lattices using light scattering

    NASA Astrophysics Data System (ADS)

    Goldman, Nathan; Beugnon, Jérôme; Gerbier, Fabrice

    2013-02-01

    We recently proposed in a Letter [Phys. Rev. Lett. 108, 255303] a novel scheme to detect topological edge states in an optical lattice, based on a generalization of Bragg spectroscopy. The scope of the present article is to provide a more detailed and pedagogical description of the system - the Hofstadter optical lattice - and probing method. We first show the existence of topological edge states, in an ultra-cold gas trapped in a 2D optical lattice and subjected to a synthetic magnetic field. The remarkable robustness of the edge states is verified for a variety of external confining potentials. Then, we describe a specific laser probe, made from two lasers in Laguerre-Gaussian modes, which captures unambiguous signatures of these edge states. In particular, the resulting Bragg spectra provide the dispersion relation of the edge states, establishing their chiral nature. In order to make the Bragg signal experimentally detectable, we introduce a "shelving method", which simultaneously transfers angular momentum and changes the internal atomic state. This scheme allows to directly visualize the selected edge states on a dark background, offering an instructive view on topological insulating phases, not accessible in solid-state experiments.

  17. Electronic states of zigzag graphene nanoribbons with edges reconstructed with topological defects

    NASA Astrophysics Data System (ADS)

    Pincak, R.; Smotlacha, J.; Osipov, V. A.

    2015-10-01

    The energy spectrum and electronic density of states (DOS) of zigzag graphene nanoribbons with edges reconstructed with topological defects are investigated within the tight-binding method. In case of the Stone-Wales zz(57) edge the low-energy spectrum is markedly changed in comparison to the pristine zz edge. We found that the electronic DOS at the Fermi level is different from zero at any width of graphene nanoribbons. In contrast, for ribbons with heptagons only at one side and pentagons at another one the energy gap at the Fermi level is open and the DOS is equal to zero. The reason is the influence of uncompensated topological charges on the localized edge states, which are topological in nature. This behavior is similar to that found for the structured external electric potentials along the edges.

  18. Edge states in the transition to turbulence in pipe and other shear flows

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno; Skufca, Joseph D.; Yorke, James A.

    2005-11-01

    We study the boundary of the laminar region in pipe and other shear flows near the onset of turbulence. Approaching the boundary from the laminar side, the lifetime of perturbations increases, and it diverges when the boundary is reached. Once this critical amplitude is exceeded the trajectory swings up to the turbulent regime, but its lifetime varies sensitively with amplitude, consistent with the strange saddle picture of the turbulence proposed earlier. The edge trajectory is asymptotic to a single well defined state, independent of the type of perturbation. The edge then becomes the stable manifold of this structure. In the case of a model shear flow, the edge states are simple or period doubled or chaotic trajectories. The case of pipe flow shows less variability and the edge state seems to remain close to a state with simple vortex structure.

  19. Bounds on probability of state transfer with respect to readout time and edge weight

    NASA Astrophysics Data System (ADS)

    Gordon, Whitney; Kirkland, Steve; Li, Chi-Kwong; Plosker, Sarah; Zhang, Xiaohong

    2016-02-01

    We analyze the sensitivity of a spin chain modeled by an undirected weighted connected graph exhibiting perfect state transfer to small perturbations in readout time and edge weight in order to obtain physically relevant bounds on the probability of state transfer. At the heart of our analysis is the concept of the numerical range of a matrix; our analysis of edge weight errors additionally makes use of the spectral and Frobenius norms.

  20. Finite size effects on the helical edge states on the Lieb lattice

    NASA Astrophysics Data System (ADS)

    Rui, Chen; Bin, Zhou

    2016-06-01

    For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of the Higher Education of China (Grant No. 20134208110001).

  1. Quantum interferences and edge states in Bismuth based Josephson junctions

    NASA Astrophysics Data System (ADS)

    Murani, Anil; Sengupta, Shamashis; Kasumov, Alik; Gueron, Sophie; Bouchiat, Hélène; MESO group Team

    We have investigated proximity induced superconductivity in single crystal bismuth nanowires connected to superconducting electrodes with a high critical field. I will specially report recent results on nanowires whose crystalline orientation could be determined by electron diffraction. At low temperature a supercurrent is measured which persists up to the critical field of the electrodes and exhibits sample dependent fast squid-like oscillations (period one to few hundred gauss) modulated by slower (few thousand Gauss) oscillations. We attribute this striking result to the appearance of 1D topological edge channels on special surfaces of Bi due to its strong spin-orbit coupling, in addition to a strong Zeeman effect caused by an unusually high g-factor.

  2. Analytical approach to the edge state of the Kane-Mele model

    NASA Astrophysics Data System (ADS)

    Doh, Hyeonjin; Jeon, Gun Sang; Choi, Hyoung Joon

    2014-03-01

    We investigate the edge state of a two-dimensional topological insulator based on the Kane- Mele model. We consider the two semi-infinite honeycomb lattices with a zig-zag and an armchair boundary, respectively. We construct the effective Hamiltonians for the edge states assuming exponentially decaying wave functions. With the boundary conditions for the both types of the boundaries, we derive the self-consistent equations for the energies and the decaying factors of the edge states. The numerical solutions of the self-consistent equations exhibit intriguing spatial behaviors of the edge states with respect to the spin-orbit coupling and the sub-lattice potential. We found the bifurcation behavior of the edge state width with respect to the sub-lattice potential in zigzag boundary. The bifurcation behavior discriminates the boundary dependencies of the edge state properties. We also discuss the relation between the sample size and the interaction parameters in the phase transition from normal insulator to topological insulator. This work was supported by NRF of Korea (Grant No. 2011-0018306).

  3. Time-of-Flight Measurements of Single-Electron Wave Packets in Quantum Hall Edge States

    NASA Astrophysics Data System (ADS)

    Kataoka, M.; Johnson, N.; Emary, C.; See, P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.; Pepper, M.; Janssen, T. J. B. M.

    2016-03-01

    We report time-of-flight measurements on electrons traveling in quantum Hall edge states. Hot-electron wave packets are emitted one per cycle into edge states formed along a depleted sample boundary. The electron arrival time is detected by driving a detector barrier with a square wave that acts as a shutter. By adding an extra path using a deflection barrier, we measure a delay in the arrival time, from which the edge-state velocity v is deduced. We find that v follows 1 /B dependence, in good agreement with the E →×B → drift. The edge potential is estimated from the energy dependence of v using a harmonic approximation.

  4. Experimental Investigation of Dynamic Stall on an Airfoil with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2013-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils modeled after whale flippers has centered on the static aerodynamic characteristics of these airfoils. In the current work, NACA 0012 airfoils modified with leading edge tubercles are investigated to determine the effect of the tubercles on the dynamic characteristics, specifically on dynamic stall vortex formation, of the airfoils. Molecular Tagging Velocimetry (MTV) is used to measure the flow field around the modified airfoils at nondimensional pitch rates of Ω = 0.1, 0.2, and 0.4. The results show that the characteristics of the dynamics stall vortex are dependent on the location relative to the peak or valley of the leading edge bumps. These characteristics are also found to be different than those observed in dynamic stall on a smooth leading edge airfoil. In specific, the location of the dynamic stall vortex appears to form further aft on the airfoil for the tubercle case versus the smooth case. This work supported by NSF Grant # 0845882.

  5. Transport of Massless Dirac Fermions in Non-topological Type Edge States

    PubMed Central

    Latyshev, Yu I.; Orlov, A. P.; Volkov, V. A.; Enaldiev, V. V.; Zagorodnev, I. V.; Vyvenko, O. F.; Petrov, Yu V.; Monceau, P.

    2014-01-01

    There are two types of intrinsic surface states in solids. The first type is formed on the surface of topological insulators. Recently, transport of massless Dirac fermions in the band of “topological” states has been demonstrated. States of the second type were predicted by Tamm and Shockley long ago. They do not have a topological background and are therefore strongly dependent on the properties of the surface. We study the problem of the conductivity of Tamm-Shockley edge states through direct transport experiments. Aharonov-Bohm magneto-oscillations of resistance are found on graphene samples that contain a single nanohole. The effect is explained by the conductivity of the massless Dirac fermions in the edge states cycling around the nanohole. The results demonstrate the deep connection between topological and non-topological edge states in 2D systems of massless Dirac fermions. PMID:25524881

  6. Transport of massless Dirac fermions in non-topological type edge states.

    PubMed

    Latyshev, Yu I; Orlov, A P; Volkov, V A; Enaldiev, V V; Zagorodnev, I V; Vyvenko, O F; Petrov, Yu V; Monceau, P

    2014-01-01

    There are two types of intrinsic surface states in solids. The first type is formed on the surface of topological insulators. Recently, transport of massless Dirac fermions in the band of "topological" states has been demonstrated. States of the second type were predicted by Tamm and Shockley long ago. They do not have a topological background and are therefore strongly dependent on the properties of the surface. We study the problem of the conductivity of Tamm-Shockley edge states through direct transport experiments. Aharonov-Bohm magneto-oscillations of resistance are found on graphene samples that contain a single nanohole. The effect is explained by the conductivity of the massless Dirac fermions in the edge states cycling around the nanohole. The results demonstrate the deep connection between topological and non-topological edge states in 2D systems of massless Dirac fermions. PMID:25524881

  7. A numerical and experimental study of the effects of dynamic roughness on laminar leading edge separation

    NASA Astrophysics Data System (ADS)

    Gall, Peter D.

    The aircraft industry, as a whole, has been deeply concerned with improving the aerodynamic efficiency of current and future flight vehicles, particularly in the commercial and military markets. However, of particular interest to the field of aerodynamics is the elusive concept of a workable flow control mechanism. Effective flow control is a concept which if properly applied can increase aerodynamic efficiency. Various concepts and ideas to obtain successful flow control have been studied in an attempt to reap these rewards. Some examples include boundary layer blowing (steady and periodic), suction, and compliant walls for laminar flow control. The overall goal of flow control is to increase performance by increasing lift, reducing drag, and delaying or eliminating leading edge separation. The specific objectives of flow control are to (1) delay or eliminate flow separation, (2) delay boundary layer transition, and (3) and reduce skin friction drag. The purpose of this research is to investigate dynamic roughness as a novel method of flow control technology for external boundary layer flows. As opposed to standard surface roughness, dynamic roughness incorporates small time dependent perturbations to the surface of the airfoil. These surface perturbations are actual humps and/or ridges on the surface of the airfoil that are on the scale of the laminar boundary, and oscillate with an unsteady motion. Research has shown that this can provide a means to modify the instantaneous and mean velocity profile near the wall and favorably control the existing state of the boundary layer. Several flow control parameters were studied including dynamic roughness frequency, amplitude, and geometry. The results of this study have shown, both numerically and experimentally, that dynamic roughness can provide an effective means for eliminating both a short and long laminar separation bubble and possibly prove a viable alternative in effective flow control, hence reaping some of

  8. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.

    PubMed

    Kotakoski, Jani; Santos-Cottin, David; Krasheninnikov, Arkady V

    2012-01-24

    Electron beam of a transmission electron microscope can be used to alter the morphology of graphene nanoribbons and create atomically sharp edges required for applications of graphene in nanoelectronics. Using density-functional-theory-based simulations, we study the radiation hardness of graphene edges and show that the response of the ribbons to irradiation is not determined by the equilibrium energetics as assumed in previous experiments, but by kinetic effects associated with the dynamics of the edge atoms after impacts of energetic electrons. We report an unexpectedly high stability of armchair edges, comparable to that of pristine graphene, and demonstrate that the electron energy should be below ~50 keV to minimize the knock-on damage. PMID:22188561

  9. Confinement effect on spin-polarized edge states in graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Ramos-Castillo, Carlos; de Coss, Romeo

    2014-03-01

    One of the most intriguing phenomena in condensed matter physics is the existence of edge states on the boundary of a 2D system. In graphene, the edge states have distinct properties from the bulk states and play important roles in the physicochemical properties of the material. In this work, we show ab-initio results of spin-polarized electronic edge states in graphene quantum dots of different sizes and shape. We found a critical size at which the singlet nonmagnetic ground state becomes singlet open-shell with antiferromagnetic order. We found that the critical size is strongly influenced by the shape of the quantum dot. We discuss this behavior based on energetics and electronic structure of the system under study. The calculations are base on the Density functional Theory (DFT). The Linear Combination of Atomic Orbital (LCAO) method for bases functions it was used. For exchange-correlation functional has been used the Generalized Gradient Approximation (GGA).

  10. Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator

    NASA Astrophysics Data System (ADS)

    Ortiz, Laura; Molina, Rafael A.; Platero, Gloria; Lunde, Anders Mathias

    2016-05-01

    We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.

  11. Electric field control of spin-resolved edge states in graphene quantum nanorings

    SciTech Connect

    Farghadan, R.; Saffarzadeh, A.

    2014-05-07

    The electric-field effect on the electronic and magnetic properties of triangular and hexagonal graphene quantum rings with zigzag edge termination is investigated by means of the single-band tight-binding Hamiltonian and the mean-field Hubbard model. It is shown how the electron and spin states in the nanoring structures can be manipulated by applying an electric field. We find different spin-depolarization behaviors with variation of electric field strength due to the dependence of spin densities on the shapes and edges of this kind of nanorings. In the case of triangular quantum rings, the magnetization on the inner and outer edges can be selectively tuned and the spin states depolarize gradually as the field strength is increased, while in the case of hexagonal nanorings, the transverse electric field reduces the magnetic moments on both inner and outer edges symmetrically and rapidly.

  12. Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states

    SciTech Connect

    Fendley, Paul; Fisher, Matthew P.A.; Nayak, Chetan

    2009-07-15

    We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a bulk non-Abelian quasiparticle and the edge is due to resonant tunneling to a zero mode on the quasiparticle, which causes the zero mode to hybridize with the edge. This can be reformulated as the flow from one conformally invariant boundary condition to another in an associated critical statistical mechanical model. Tunneling from one edge to another at a point contact can split the system in two, either partially or completely. This can be reformulated in the critical statistical mechanical model as the flow from one type of defect line to another. We illustrate these two phenomena in detail in the context of the {nu}=5/2 quantum Hall state and the critical Ising model. We briefly discuss the case of Fibonacci anyons and conclude by explaining the general formulation and its physical interpretation.

  13. The poleward edge of the mid-latitude trough - Its formation, orientation and dynamics

    NASA Astrophysics Data System (ADS)

    Rodger, A. S.; Brace, L. H.; Hoegy, W. R.; Winningham, J. D.

    1986-08-01

    Data from the Advanced Ionospheric Sounder (AIS) deployed at Halley, Antarctica (76-deg S, 27-deg W; L = 4.2) and the Dynamics Explorer-2 spacecraft (DE-2) are used to investigate several aspects of the formation processes and dynamics of the poleward edge of the midlatitude electron density trough. These include a study of the flux and energy of charged particles precipitating into the F-region as a function of Magnetic Local Time. It is found that local energetic electron precipitation is a major source of ionization of the poleward edge in the evening sector, but only after magnetic midnight transport processes become more important. Occasionally a significant increase in the flux of conjugate photoelectrons is colocated with the poleward edge of the trough in the morning sector. The combination of AIS and DE-2 data has allowed identification of significant longitudinal structure on the poleward edge of the trough that may be the result of substorm activity. It is found that the orientation of the poleward edge of the trough and the locus of the plasmapause predicted from the 'tear-drop' model vary in rather a similar manner with local time, though no close physical link between the two features is inferred from this coincidence.

  14. The poleward edge of the mid-latitude trough - Its formation, orientation and dynamics

    NASA Technical Reports Server (NTRS)

    Rodger, A. S.; Brace, L. H.; Hoegy, W. R.; Winningham, J. D.

    1986-01-01

    Data from the Advanced Ionospheric Sounder (AIS) deployed at Halley, Antarctica (76-deg S, 27-deg W; L = 4.2) and the Dynamics Explorer-2 spacecraft (DE-2) are used to investigate several aspects of the formation processes and dynamics of the poleward edge of the midlatitude electron density trough. These include a study of the flux and energy of charged particles precipitating into the F-region as a function of Magnetic Local Time. It is found that local energetic electron precipitation is a major source of ionization of the poleward edge in the evening sector, but only after magnetic midnight transport processes become more important. Occasionally a significant increase in the flux of conjugate photoelectrons is colocated with the poleward edge of the trough in the morning sector. The combination of AIS and DE-2 data has allowed identification of significant longitudinal structure on the poleward edge of the trough that may be the result of substorm activity. It is found that the orientation of the poleward edge of the trough and the locus of the plasmapause predicted from the 'tear-drop' model vary in rather a similar manner with local time, though no close physical link between the two features is inferred from this coincidence.

  15. Dynamic vortex interactions with flexible fibers and edges for prediction of owl noise suppression

    NASA Astrophysics Data System (ADS)

    Korykora, Sarah; Jaworski, Justin

    2015-11-01

    The compliant trailing-edge fringe of owls and the soft downy material on their upper wing surfaces are thought to enable their silent flight by weakening the interaction of boundary layer turbulence with these flexible structures. Previous analysis of turbulence noise generation by wave-bearing elastic edges have shown that the far-field acoustic power scaling can be weakened by up to the square of the Mach number relative to a rigid edge. However, it is unclear whether or not the wave-bearing feature or simply the flexible nature of the edge scatterer produces this noise suppression. To assess this distinction, a dynamic vortex interaction model is developed whereby the motion of a line vortex round a rigid but elastically-restrained wall-mounted fiber or trailing edge is determined numerically. Special attention is paid to the dynamic interaction between the flexible structure and vortex, which is accomplished via a conformal mapping relationship determined in closed form. Results from this analysis seek to develop a vortex sound model to discern the effect of flexible versus wave-bearing scatterers on turbulence noise suppression and help explain the mechanisms of silent owl flight.

  16. Zero-field Dissipationless Chiral Edge Current in Quantum Anomalous Hall State

    NASA Astrophysics Data System (ADS)

    Chang, Cui-Zu; Zhao, Weiwei; Kim, Duk Y.; Wei, Peng; Jain, J. K.; Liu, Chaoxing; Chan, Moses H. W.; Moodera, Jagadeesh S.

    The quantum anomalous Hall (QAH) state is predicted to possess, at zero magnetic field, chiral edge channels that conduct spin polarized current without dissipation, and thus holds great promise for future high-performance information processing. In this talk, we will discuss our transport experiments that probe the QAH state with gate bias and temperature dependences, by local and nonlocal magnetoresistance measurements. This allows us to unambiguously distinguish the dissipationless edge transport from transport via other dissipative channels in the QAH system. Our experiments confirm a fundamental feature of the QAH state, namely the dissipationless transport by edge channels in zero applied fields, which will be crucial for future chiral interconnected electric and spintronic applications. This research is supported by the NSF Grants (DMR-1420620, Penn State MRSEC; in MIT by DMR-1207469 and the STC Center for Integrated Quantum Materials under NSF Grant DMR-1231319) and by ONR Grant N00014-13-1-0301.

  17. Topological edge states in two-gap unitary systems: a transfer matrix approach

    NASA Astrophysics Data System (ADS)

    Tauber, Clément; Delplace, Pierre

    2015-11-01

    We construct and investigate a family of two-band unitary systems living on a cylinder geometry and presenting localized edge states. Using the transfer matrix formalism, we solve and investigate in detail such states in the thermodynamic limit. Analytic considerations then suggest the construction of a family of Riemann surfaces associated to the band structure of the system. In this picture, the corresponding edge states naturally wind around non-contractile loops, defining a topological invariant associated to each gap of the system.

  18. Shot noise in the edge states of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Aseev, P. P.; Nagaev, K. E.

    2016-07-01

    We calculate the resistance and shot noise in the edge states of a two-dimensional topological insulator that result from the exchange of electrons between these states and conducting puddles in the bulk of the insulator. The two limiting cases where the energy relaxation is either absent or very strong are considered. A finite time of spin relaxation in the puddles is introduced phenomenologically. Depending on this time and on the strength of coupling between the edge states and the puddles, the Fano factor F =SI/2 e I ranges from 0 to 1/3, which is in an agreement with the available experimental data.

  19. Peptide-induced membrane curvature in edge-stabilized open bilayers: a theoretical and molecular dynamics study.

    PubMed

    Pannuzzo, Martina; Raudino, Antonio; Böckmann, Rainer A

    2014-07-14

    Peptide- or protein-induced curvatures of lipid membranes may be studied in molecular dynamics (MD) simulations. In these, membranes are usually modeled as infinitely extended bilayers by using periodic boundary conditions. However, the enforced periodicity results in an underestimation of the bending power of peptides, unless the patch size is much larger than the induced curvature radii. In this letter, we propose a novel approach to evaluate the bending power of a given distribution and/or density of peptides based on the use of flat open-edged lipid patches. To ensure long-lived metastable structures, the patch rim is stabilized in MD simulations by a local enrichment with short-chain lipids. By combining the theory of continuum elastic media with MD simulations, we prove that open-edged patches evolve from a planar state to a closed vesicle, with a transition rate that strongly depends on the concentration of lipid soluble peptides. For close-to-critical values for the patch size and edge energy, the response to even small changes in peptide concentration adopts a transition-like behavior (buckling instability). The usage of open-edged membrane patches amplifies the bending power of peptides, thereby enabling the analysis of the structural properties of membrane-peptide systems. We applied the presented method to investigate the curvature induced by aggregating β -amyloid peptides, unraveling a strong sensitivity of membrane deformation to the peptide concentration. PMID:25028040

  20. Peptide-induced membrane curvature in edge-stabilized open bilayers: A theoretical and molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pannuzzo, Martina; Raudino, Antonio; Böckmann, Rainer A.

    2014-07-01

    Peptide- or protein-induced curvatures of lipid membranes may be studied in molecular dynamics (MD) simulations. In these, membranes are usually modeled as infinitely extended bilayers by using periodic boundary conditions. However, the enforced periodicity results in an underestimation of the bending power of peptides, unless the patch size is much larger than the induced curvature radii. In this letter, we propose a novel approach to evaluate the bending power of a given distribution and/or density of peptides based on the use of flat open-edged lipid patches. To ensure long-lived metastable structures, the patch rim is stabilized in MD simulations by a local enrichment with short-chain lipids. By combining the theory of continuum elastic media with MD simulations, we prove that open-edged patches evolve from a planar state to a closed vesicle, with a transition rate that strongly depends on the concentration of lipid soluble peptides. For close-to-critical values for the patch size and edge energy, the response to even small changes in peptide concentration adopts a transition-like behavior (buckling instability). The usage of open-edged membrane patches amplifies the bending power of peptides, thereby enabling the analysis of the structural properties of membrane-peptide systems. We applied the presented method to investigate the curvature induced by aggregating β -amyloid peptides, unraveling a strong sensitivity of membrane deformation to the peptide concentration.

  1. Properties of Edge States at the Graphene P-N Junction Interface

    NASA Astrophysics Data System (ADS)

    Le, Son; Klimov, Nikolai; Newell, David; Yan, Jun; Lee, Ji Ung; Richter, Curt

    The Landau level edge states from the p- and the n-section of a graphene P/N junction (pnJ) interact with each other differently across the junction depending upon the properties of the junction and the graphene. Full equilibration was reported for a two terminal graphene pnJ device in Williams et al.. In our four-terminal device, however, only the lowest Landau level edge state is equilibrated across the pnJ. When the two devices are compared, the LL energy spacings, the length of the edge states along the pnJ interface, and the carrier mobility are similar. Electrostatic simulations for our device geometry and that of contrast the rate of change of the electrostatic potential across the pnJs. Edge states at an electrostatically smooth junction are spatially further apart than those at a relatively abrupt junction, which decreases the probability of edge states mixing. Thus, we attribute the difference in equilibration in our device and that of to the dramatic difference in the shape of the electrostatic junction.

  2. Image analysis tools to quantify cell shape and protein dynamics near the leading edge.

    PubMed

    Ryan, Gillian L; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-01

    We present a set of flexible image analysis tools to analyze dynamics of cell shape and protein concentrations near the leading edge of cells adhered to glass coverslips. Plugins for ImageJ streamline common analyses of microscopic images of cells, including the calculation of leading edge speeds, total and average intensities of fluorescent markers, and retrograde flow rate measurements of fluorescent single-molecule speckles. We also provide automated calculations of auto- and cross-correlation functions between velocity and intensity measurements. The application of the methods is illustrated on images of XTC cells. PMID:23165752

  3. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    SciTech Connect

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-29

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode(ELM) crashes and the consistent collisionality scaling of ELMenergy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELMenergy losses vs collisionality via a density scan. Moreover, the linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. For nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELMenergy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. Finally, the critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  4. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    SciTech Connect

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  5. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    DOE PAGESBeta

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-29

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode(ELM) crashes and the consistent collisionality scaling of ELMenergy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELMenergy losses vs collisionality via a density scan. Moreover, the linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lowermore » n. For nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELMenergy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. Finally, the critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.« less

  6. Low Temperature STM Experiments on Helical Edge States in InAs/GaSb

    NASA Astrophysics Data System (ADS)

    Du, Rui-Rui; Li, Tingxin; Mou, Xiaoyang; Du, Lingjie; Sullivan, Gerald

    2014-03-01

    Inverted InAs/GaSb quantum wells have been recently shown to be a 2D topological insulator hosting robust helical edge states. Attributing to the fact that the hybridized minigap in this system opens at a finite wavevector, the edge states here have a low Fermi velocity VF, and consequently their transport properties may reveal interesting interaction effects. Moreover, the VF in this system can be continuously tuned by electrostatic gates, providing an experimental knob for tuning the interactions. We report work in progress for STM/STS measurements of edge states in the tunneling regime, where the edge states are exposed at the cleaved edge/UHV interface. Experiments are performed in a 400 mK STM/vector magnet system with in situ sample cleavage and thin film deposition capabilities. Ref. I. Knez, R.-R. Du and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011); L-.J. Du, I. Knez, G. Sullivan, R-.R. Du, ArXiv:1306.1925 (2013). The work in PKU is supported by Basic Research Program of MOST; work in Rice is supported by NSF and DOE.

  7. Topological Edge States in the One-Dimensional Superlattice Bose-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Höning, Michael; Fleischhauer, Michael

    2013-06-01

    We analyze interacting ultracold bosonic atoms in a one-dimensional superlattice potential with alternating tunneling rates t1 and t2 and inversion symmetry, which is the bosonic analogue of the Su-Schrieffer-Heeger model. A Z2 topological order parameter is introduced which is quantized for the Mott insulating (MI) phases. Depending on the ratio t1/t2 the n=1/2 MI phase is topologically nontrivial, which results in many-body edge states at open boundaries. In contrast to the Su-Schrieffer-Heeger model the bosonic counterpart lacks chiral symmetry and the edge states are no longer midgap. This leads to a generalization of the bulk-edge correspondence, which we discuss in detail. The edge states can be observed in cold atom experiments by creating a step in the effective confining potential, e.g., by a second heavy atom species, which leads to an interface between two MI regions with filling n=1 and n=1/2. The shape and energy of the edge states as well as the conditions for their occupation are determined analytically in the strong coupling limit and in general by density-matrix renormalization group simulations.

  8. Topological edge States in the one-dimensional superlattice Bose-Hubbard model.

    PubMed

    Grusdt, Fabian; Höning, Michael; Fleischhauer, Michael

    2013-06-28

    We analyze interacting ultracold bosonic atoms in a one-dimensional superlattice potential with alternating tunneling rates t1 and t2 and inversion symmetry, which is the bosonic analogue of the Su-Schrieffer-Heeger model. A Z2 topological order parameter is introduced which is quantized for the Mott insulating (MI) phases. Depending on the ratio t1/t2 the n=1/2 MI phase is topologically nontrivial, which results in many-body edge states at open boundaries. In contrast to the Su-Schrieffer-Heeger model the bosonic counterpart lacks chiral symmetry and the edge states are no longer midgap. This leads to a generalization of the bulk-edge correspondence, which we discuss in detail. The edge states can be observed in cold atom experiments by creating a step in the effective confining potential, e.g., by a second heavy atom species, which leads to an interface between two MI regions with filling n=1 and n=1/2. The shape and energy of the edge states as well as the conditions for their occupation are determined analytically in the strong coupling limit and in general by density-matrix renormalization group simulations. PMID:23848851

  9. Edge-state transport in graphene p -n junctions in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Klimov, Nikolai N.; Le, Son T.; Yan, J.; Agnihotri, Pratik; Comfort, Everett; Lee, Ji Ung; Newell, David B.; Richter, Curt A.

    2015-12-01

    We experimentally investigate charge carrier transport in a graphene p -n junction device by using independent p -type and n -type electrostatic gating which allow full characterization of the junction interface in the quantum Hall regime covering a wide range of filling factors [-10 ≤(ν1,ν2) ≤10 ] . Recent charge transport measurements across a graphene p -n junction in this quantized regime presume that equilibration of all of the Landauer-Büttiker edge states occurs across the p -n junction interface. Here we show that, in our devices, only the edge state associated with the lowest Landau level fully equilibrate across the p -n junction, while none of the other edge states equilibrate to transmit current across the junction.

  10. Edge-states in graphene nanoribbons: a combined spectroscopy and transport study

    NASA Astrophysics Data System (ADS)

    Baringhaus, Jens; Edler, Frederik; Tegenkamp, Christoph

    2013-10-01

    Graphene structures of finite size are expected to reveal exceptional electronic and magnetic properties which are highly attractive for future nano-technological applications. In this study we have looked at the edge-states in graphene nanoribbons (GNR) grown by self-assembly on mesa structured SiC(0001) templates. By means of a 4-tip STM/SEM system, both local spectroscopy and lateral transport have been performed in situ on the same nanostructures. The conductance in these structures was found to be e2/h for temperatures up to 400 K. Scanning tunneling spectroscopy clearly reveals edge-localized states on these ribbons. The local bonding of these ribbons to their support turns out to be essential in order to preserve the metallicity of the edge-states.

  11. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure.

    PubMed

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A; Kuk, Young

    2016-01-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk. PMID:27503427

  12. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    PubMed Central

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-01-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk. PMID:27503427

  13. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    NASA Astrophysics Data System (ADS)

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-08-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  14. Interaction between the intrinsic edge state and the helical boundary state of topological insulator phase in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Lü, Xiaoling; Jiang, Liwei; Zheng, Yisong

    2016-04-01

    Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can also be established in such a two-dimensional carbon material at the boundary of topological insulator (TI) phase realized by the extrinsic Rashba spin-orbital coupling (SOC) in gated bilayer graphene. We theoretically investigate the interaction between these two kinds of edge (boundary) states when they coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands at the two line defects are not equal to each other. In such a case, the backscattering lacking is still forbidden since the Kramers pairs are valley polarized.

  15. Comparative dynamics of avian communities across edges and interiors of North American ecoregions

    USGS Publications Warehouse

    Karanth, K.K.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.

    2006-01-01

    Aim Based on a priori hypotheses, we developed predictions about how avian communities might differ at the edges vs. interiors of ecoregions. Specifically, we predicted lower species richness and greater local turnover and extinction probabilities for regional edges. We tested these predictions using North American Breeding Bird Survey (BBS) data across nine ecoregions over a 20-year time period. Location Data from 2238 BBS routes within nine ecoregions of the United States were used. Methods The estimation methods used accounted for species detection probabilities < 1. Parameter estimates for species richness, local turnover and extinction probabilities were obtained using the program COMDYN. We examined the difference in community-level parameters estimated from within exterior edges (the habitat interface between ecoregions), interior edges (the habitat interface between two bird conservation regions within the same ecoregion) and interior (habitat excluding interfaces). General linear models were constructed to examine sources of variation in community parameters for five ecoregions (containing all three habitat types) and all nine ecoregions (containing two habitat types). Results Analyses provided evidence that interior habitats and interior edges had on average higher bird species richness than exterior edges, providing some evidence of reduced species richness near habitat edges. Lower average extinction probabilities and turnover rates in interior habitats (five-region analysis) provided some support for our predictions about these quantities. However, analyses directed at all three response variables, i.e. species richness, local turnover, and local extinction probability, provided evidence of an interaction between habitat and region, indicating that the relationships did not hold in all regions. Main conclusions The overall predictions of lower species richness, higher local turnover and extinction probabilities in regional edge habitats, as opposed to

  16. Occupation probabilities and current densities of bulk and edge states of a Floquet topological insulator

    NASA Astrophysics Data System (ADS)

    Dehghani, Hossein; Mitra, Aditi

    2016-05-01

    Results are presented for the occupation probabilities and current densities of bulk and edge states of half-filled graphene in a cylindrical geometry and irradiated by a circularly polarized laser. It is assumed that the system is closed and that the laser has been switched on as a quench. Laser parameters corresponding to some representative topological phases are studied: one where the Chern number of the Floquet bands equals the number of chiral edge modes, a second where anomalous edge states appear in the Floquet Brillouin zone boundaries, and a third where the Chern number is zero, yet topological edge states appear at the center and boundaries of the Floquet Brillouin zone. Qualitative differences are found for the high-frequency off-resonant and low-frequency on-resonant laser with edge states arising due to resonant processes occupied with a high effective temperature on the one hand, while edge states arising due to off-resonant processes occupied with a low effective temperature on the other. For an ideal half-filled system where only one of the bands in the Floquet Brillouin zone is occupied and the other empty, particle-hole and inversion symmetry of the Floquet Hamiltonian implies zero current density. However the laser switch-on protocol breaks the inversion symmetry, resulting in a net cylindrical sheet of current density at steady state. Due to the underlying chirality of the system, this current density profile is associated with a net charge imbalance between the top and bottom of the cylinders.

  17. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS

    PubMed Central

    Almquist, Zack W.; Butts, Carter T.

    2015-01-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218

  18. Structure and dynamics of the water films confined between edges of pyrophyllite: A first principle study

    NASA Astrophysics Data System (ADS)

    Churakov, Sergey V.

    2007-03-01

    Edge sites of clay minerals play a key role for pH dependent sorption of ions from solutions of electrolytes. Pyrophyllite, Al 2[Si 4O 10](OH) 2, is an important structural prototype for a variety of 2:1 dioctahedral phyllosilicates but in contrast to the other clays has no permanent structural charge. The structure of thin water films confined between most common edges of 1Tc pyrophyllite: (0 1 0), (1 1 0) and (1 0 0), was analyzed by means of ab initio molecular dynamic simulations. The system setup allowed for a full flexibility of the interfaces and a proton exchange between the edges of pyrophyllite and water molecules in solution. The structure of hydrated surfaces is compared with the recent predictions of static geometry optimizations for edge-vacuum interfaces. All surfaces studied reveal a strong hydrophilic character of edge similar to the hydrated silica surface and the facets of simple layered hydroxides. Spontaneous proton transfer between different surface sites were observed in molecular dynamics simulations of the (0 1 0) interface. The proton bound to the tbnd Si sbnd OH site was found to exchange with the tbnd Al sbnd OH group by the mechanism tbnd Si sbnd OH +tbnd Al sbnd OH ↔tbnd Si sbnd O+tbnd Al sbnd OH 2+. The direction of the proton transfer agrees with the scale of relative proton affinities for surface sites obtained from the static calculations. Alternatively, the proton attached to the tbnd Al sbnd OH 2 site exchanges with the tbnd Al sbnd OH group. In both reactions, the protons are transferred through the chains of hydrogen bonds formed between water molecules in the solution and the surface sites. The observed mechanisms might be one of the basic schemes for the surface proton diffusion in compacted clays. Kinetics of the proton transfer at edge sites is limited by the rate of rearrangements of the water molecules near interface.

  19. Tuning equilibration of quantum Hall edge states in graphene - Role of crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Dubey, Sudipta; Deshmukh, Mandar M.

    2016-07-01

    We probe quantum Hall effect in a tunable 1-D lateral superlattice (SL) in graphene created using electrostatic gates. Lack of equilibration is observed along edge states formed by electrostatic gates inside the superlattice. We create strong local electric field at the interface of regions of different charge densities. Crossed electric and magnetic fields modify the wavefunction of the Landau Levels (LLs) - a phenomenon unique to graphene. In the region of copropagating electrons and holes at the interface, the electric field is high enough to modify the Landau levels resulting in increased scattering that tunes equilibration of edge states and this results in large longitudinal resistance.

  20. Nanoscale Mach-Zehnder interferometer with spin-resolved quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Karmakar, Biswajit; Venturelli, Davide; Chirolli, Luca; Giovannetti, Vittorio; Fazio, Rosario; Roddaro, Stefano; Pfeiffer, Loren N.; West, Ken W.; Taddei, Fabio; Pellegrini, Vittorio

    2015-11-01

    We realize a nanoscale-area Mach-Zehnder interferometer with co-propagating quantum Hall spin-resolved edge states and demonstrate the persistence of gate-controlled quantum interference oscillations, as a function of an applied magnetic field, at relatively large temperatures. Arrays of top-gate magnetic nanofingers are used to induce a resonant charge transfer between the pair of spin-resolved edge states. To account for the pattern of oscillations measured as a function of magnetic field and gate voltage, we have developed a simple theoretical model which satisfactorily reproduces the data.

  1. Spatially Resolving Spin-split Edge States of Chiral Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Crommie, M. F.

    2011-03-01

    A central question in the field of graphene-related research is how graphene behaves when it is patterned at the nanometer scale with different edge geometries. The most fundamental shape in this regard is the graphene nanoribbon (GNR), a narrow strip of graphene that is characterized by its width and chirality. GNRs have been predicted to exhibit a wide range of behavior that includes tunable energy gaps and unique 1D edge states with unusual magnetic structure. I will discuss a scanning tunneling microscopy and spectroscopy (STS) study of GNRs that allows us to examine how GNR electronic structure depends on the chirality of atomically well-defined GNR edges. Our STS measurements reveal the presence of 1D GNR edge states that closely match theoretical expectations for GNRs of similar width and chirality. We additionally observe width-dependent energy splitting in GNR edge states, providing compelling evidence of their magnetic nature. This work performed in collaboration with Chenggang Tao, Liying Jiao, Oleg V. Yazyev, Yen-Chia Chen, Juanjuan Feng, Xiaowei Zhang, Rodrigo B. Capaz, James M. Tour, Alex Zettl, Steven G. Louie, and Hongjie Dai.

  2. 12 CFR 225.121 - Acquisition of Edge corporation affiliate by State member banks of registered bank holding company.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Acquisition of Edge corporation affiliate by... Acquisition of Edge corporation affiliate by State member banks of registered bank holding company. (a) The... of the holding company's Edge corporation subsidiary organized under section 25(a) of the...

  3. Topological phase transition and quantum spin Hall edge states of antimony few layers.

    PubMed

    Kim, Sung Hwan; Jin, Kyung-Hwan; Park, Joonbum; Kim, Jun Sung; Jhi, Seung-Hoon; Yeom, Han Woong

    2016-01-01

    While two-dimensional (2D) topological insulators (TI's) initiated the field of topological materials, only very few materials were discovered to date and the direct access to their quantum spin Hall edge states has been challenging due to material issues. Here, we introduce a new 2D TI material, Sb few layer films. Electronic structures of ultrathin Sb islands grown on Bi2Te2Se are investigated by scanning tunneling microscopy. The maps of local density of states clearly identify robust edge electronic states over the thickness of three bilayers in clear contrast to thinner islands. This indicates that topological edge states emerge through a 2D topological phase transition predicted between three and four bilayer films in recent theory. The non-trivial phase transition and edge states are confirmed for epitaxial films by extensive density-functional-theory calculations. This work provides an important material platform to exploit microscopic aspects of the quantum spin Hall phase and its quantum phase transition. PMID:27624972

  4. Selective Equilibration of Spin-Polarized Quantum Hall Edge States in Graphene

    NASA Astrophysics Data System (ADS)

    Amet, F.; Williams, J. R.; Watanabe, K.; Taniguchi, T.; Goldhaber-Gordon, D.

    2014-05-01

    We report on transport measurements of dual-gated, single-layer graphene devices in the quantum Hall regime, allowing for independent control of the filling factors in adjoining regions. Progress in device quality allows us to study scattering between edge states when the fourfold degeneracy of the Landau level is lifted by electron correlations, causing edge states to be spin and/or valley polarized. In this new regime, we observe a dramatic departure from the equilibration seen in more disordered devices: edge states with opposite spins propagate without mixing. As a result, the degree of equilibration inferred from transport can reveal the spin polarization of the ground state at each filling factor. In particular, the first Landau level is shown to be spin polarized at half filling, providing an independent confirmation of a conclusion of Young et al. [Nat. Phys. 8, 550 (2012)]. The conductance in the bipolar regime is strongly suppressed, indicating that copropagating edge states, even with the same spin, do not equilibrate along PN interfaces. We attribute this behavior to the formation of an insulating ν =0 stripe at the PN interface.

  5. Direct imaging of topological edge states in cold-atom systems

    PubMed Central

    Goldman, Nathan; Dalibard, Jean; Dauphin, Alexandre; Gerbier, Fabrice; Lewenstein, Maciej; Zoller, Peter; Spielman, Ian B.

    2013-01-01

    Detecting topological order in cold-atom experiments is an ongoing challenge, the resolution of which offers novel perspectives on topological matter. In material systems, unambiguous signatures of topological order exist for topological insulators and quantum Hall devices. In quantum Hall systems, the quantized conductivity and the associated robust propagating edge modes—guaranteed by the existence of nontrivial topological invariants—have been observed through transport and spectroscopy measurements. Here, we show that optical-lattice-based experiments can be tailored to directly visualize the propagation of topological edge modes. Our method is rooted in the unique capability for initially shaping the atomic gas and imaging its time evolution after suddenly removing the shaping potentials. Our scheme, applicable to an assortment of atomic topological phases, provides a method for imaging the dynamics of topological edge modes, directly revealing their angular velocity and spin structure. PMID:23569266

  6. Direct imaging of topological edge states in cold-atom systems.

    PubMed

    Goldman, Nathan; Dalibard, Jean; Dauphin, Alexandre; Gerbier, Fabrice; Lewenstein, Maciej; Zoller, Peter; Spielman, Ian B

    2013-04-23

    Detecting topological order in cold-atom experiments is an ongoing challenge, the resolution of which offers novel perspectives on topological matter. In material systems, unambiguous signatures of topological order exist for topological insulators and quantum Hall devices. In quantum Hall systems, the quantized conductivity and the associated robust propagating edge modes--guaranteed by the existence of nontrivial topological invariants--have been observed through transport and spectroscopy measurements. Here, we show that optical-lattice-based experiments can be tailored to directly visualize the propagation of topological edge modes. Our method is rooted in the unique capability for initially shaping the atomic gas and imaging its time evolution after suddenly removing the shaping potentials. Our scheme, applicable to an assortment of atomic topological phases, provides a method for imaging the dynamics of topological edge modes, directly revealing their angular velocity and spin structure. PMID:23569266

  7. Edge-state-induced Andreev oscillation in quantum anomalous Hall insulator-superconductor junctions

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Wang, Jing; Zhang, Shou-Cheng

    2016-04-01

    We study the quantum Andreev oscillation induced by interference of the edge chiral Majorana fermions in junctions made of quantum anomalous Hall (QAH) insulators and superconductors (SCs). We show two chiral Majorana fermions on a QAH edge with SC proximity generically have a momentum difference Δ k , which depends on the chemical potentials of both the QAH insulator and the SC. Due to the spatial interference induced by Δ k , the longitudinal conductance of QAH-SC junctions oscillates with respect to the edge lengths and the chemical potentials, which can be probed via charge transport. Furthermore, we show the dynamical SC phase fluctuation will give rise to a geometrical correction to the longitudinal conductance of the junctions.

  8. Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics

    SciTech Connect

    Ubbelohde, N.; Maire, N.; Haug, R. J.; Roszak, K.; Hohls, F.; Novotný, T.

    2013-12-04

    For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.

  9. Hierarchy of Floquet gaps and edge states for driven honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Perez-Piskunow, P. M.; Foa Torres, L. E. F.; Usaj, Gonzalo

    2015-04-01

    Electromagnetic driving in a honeycomb lattice can induce gaps and topological edge states with a structure of increasing complexity as the frequency of the driving lowers. While the high-frequency case is the most simple to analyze we focus on the multiple photon processes allowed in the low-frequency regime to unveil the hierarchy of Floquet edge states. In the case of low intensities an analytical approach allows us to derive effective Hamiltonians and address the topological character of each gap in a constructive manner. At high intensities we obtain the net number of edge states, given by the winding number, with a numerical calculation of the Chern numbers of each Floquet band. Using these methods, we find a hierarchy that resembles that of a Russian nesting doll. This hierarchy classifies the gaps and the associated edge states in different orders according to the electron-photon coupling strength. For large driving intensities, we rely on the numerical calculation of the winding number, illustrated in a map of topological phase transitions. The hierarchy unveiled with the low-energy effective Hamiltonians, along with the map of topological phase transitions, discloses the complexity of the Floquet band structure in the low-frequency regime. The proposed method for obtaining the effective Hamiltonian can be easily adapted to other Dirac Hamiltonians of two-dimensional materials and even the surface of a three-dimensional topological insulator.

  10. Transitions between dynamical behaviors of oscillator networks induced by diversity of nodes and edges

    NASA Astrophysics Data System (ADS)

    Werner, Sebastian; Lehnertz, Klaus

    2015-07-01

    We study the impact of dynamical and structural heterogeneity on the collective dynamics of large small-world networks of pulse-coupled integrate-and-fire oscillators endowed with refractory periods and time delay. Depending on the choice of homogeneous control parameters (here, refractoriness and coupling strength), these networks exhibit a large spectrum of dynamical behaviors, including asynchronous, partially synchronous, and fully synchronous states. Networks exhibit transitions between these dynamical behaviors upon introducing heterogeneity. We show that the probability for a network to exhibit a certain dynamical behavior (network susceptibility) is affected differently by dynamical and structural heterogeneity and depends on the respective homogeneous dynamics.

  11. Transitions between dynamical behaviors of oscillator networks induced by diversity of nodes and edges.

    PubMed

    Werner, Sebastian; Lehnertz, Klaus

    2015-07-01

    We study the impact of dynamical and structural heterogeneity on the collective dynamics of large small-world networks of pulse-coupled integrate-and-fire oscillators endowed with refractory periods and time delay. Depending on the choice of homogeneous control parameters (here, refractoriness and coupling strength), these networks exhibit a large spectrum of dynamical behaviors, including asynchronous, partially synchronous, and fully synchronous states. Networks exhibit transitions between these dynamical behaviors upon introducing heterogeneity. We show that the probability for a network to exhibit a certain dynamical behavior (network susceptibility) is affected differently by dynamical and structural heterogeneity and depends on the respective homogeneous dynamics. PMID:26232952

  12. Photonic simulation of topological superconductor edge state and zero-energy mode at a vortex

    PubMed Central

    Tan, Wei; Chen, Liang; Ji, Xia; Lin, Hai-Qing

    2014-01-01

    Photonic simulations of quantum Hall edge states and topological insulators have inspired considerable interest in recent years. Interestingly, there are theoretical predictions for another type of topological states in topological superconductors, but debates over their experimental observations still remain. Here we investigate the photonic analogue of the px + ipy model of topological superconductor. Two essential characteristics of topological superconductor, particle-hole symmetry and px + ipy pairing potentials, are well emulated in photonic systems. Its topological features are presented by chiral edge state and zero-energy mode at a vortex. This work may fertilize the study of photonic topological states, and open up the possibility for emulating wave behaviors in superconductors. PMID:25488408

  13. Edge states and integer quantum Hall effect in topological insulator thin films.

    PubMed

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-01-01

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films. PMID:26304795

  14. Initial Investigations of H-mode Edge Dynamics in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Fonck, R. J.; Thome, K. E.; Thompson, D. S.

    2013-10-01

    Experiments with ultra-low aspect ratio (A < 1 . 2) H-mode plasmas in PEGASUS enable unique measurements of Edge Localized Mode (ELM) phenomena of import to next-step fusion devices. The modest temperatures and pulse lengths in PEGASUS allow the use of insertable probes to diagnose the edge plasma with high spatial and temporal resolution. In particular, the compatibility of the Hall probe Jedge diagnostic with the H-mode edge to date affords the opportunity to study current profile dynamics throughout the ELM cycle. A pedestal in Jedge is formed following the L-H transition that is transiently destroyed during ELMs. Presently, Type I and Type III ELMs are accessible. Both types generate field-aligned filaments during the ELM. A prominent current-hole Jedge perturbation and low- n MHD signature is evident during Type III ELM crash events, similar to that seen in prior peeling mode studies conducted in L-mode with strong edge current drive. In contrast, Type I ELMs are found to have a complex MHD signature comprised of multiple intermediate toroidal mode numbers (5 < n < 15) , a steepening of the Jedge gradient scale length as well as a slight hump in Jedge , which is consistent with a peeling-ballooning nature and the presence of bootstrap current drive. Particle trapping and associated neoclassical effects are expected to be large in PEGASUS plasmas at A ~ 1, even with modest pedestal parameters. Work supported by US DOE Grant DE-FG02-96ER54375.

  15. Nonequilibrium noise correlations in a point contact of helical edge states

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Wen; Lee, Yu-Li; Chung, Chung-Hou

    2012-12-01

    We investigate theoretically the nonequilibrium finite-frequency current noise in a four-terminal quantum point contact of interacting helical edge states at a finite bias voltage. Special focus is put on the effects of the single-particle and two-particle scattering between the two helical edge states on the fractional charge quasiparticle excitations shown in the nonequilibrium current noise spectra. Via the Keldysh perturbative approach, we find that the effects of the single-particle and the two-particle scattering processes on the current noise depend sensitively on the Luttinger liquid parameter. Moreover, the Fano factors for the auto- and cross correlations of the currents in the terminals are distinct from the ones for tunneling between the chiral edge states in the quantum Hall liquid. The current noise spectra in the single-particle-scattering-dominated and the two-particle-scattering-dominated regime are shown. Experimental implications of our results on the transport through the helical edges in two-dimensional topological insulators are discussed.

  16. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics

    PubMed Central

    Martin, Katrin; Reimann, Andreas; Fritz, Rafael D.; Ryu, Hyunryul; Jeon, Noo Li; Pertz, Olivier

    2016-01-01

    The three canonical Rho GTPases RhoA, Rac1 and Cdc42 co-ordinate cytoskeletal dynamics. Recent studies indicate that all three Rho GTPases are activated at the leading edge of motile fibroblasts, where their activity fluctuates at subminute time and micrometer length scales. Here, we use a microfluidic chip to acutely manipulate fibroblast edge dynamics by applying pulses of platelet-derived growth factor (PDGF) or the Rho kinase inhibitor Y-27632 (which lowers contractility). This induces acute and robust membrane protrusion and retraction events, that exhibit stereotyped cytoskeletal dynamics, allowing us to fairly compare specific morphodynamic states across experiments. Using a novel Cdc42, as well as previously described, second generation RhoA and Rac1 biosensors, we observe distinct spatio-temporal signaling programs that involve all three Rho GTPases, during protrusion/retraction edge dynamics. Our results suggest that Rac1, Cdc42 and RhoA regulate different cytoskeletal and adhesion processes to fine tune the highly plastic edge protrusion/retraction dynamics that power cell motility. PMID:26912264

  17. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    SciTech Connect

    Sahdan, Muhammad Fauzi; Darma, Yudi

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  18. Time-dependent simulation and analytical modelling of electronic Mach-Zehnder interferometry with edge-states wave packets.

    PubMed

    Beggi, Andrea; Bordone, Paolo; Buscemi, Fabrizio; Bertoni, Andrea

    2015-12-01

    We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder interferometers based on Landau edge-states transport, and assess the effect of the spatial localization of carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically the time-dependent Schrödinger equation with a suitable 2D potential profile reproducing the interferometer design. An external magnetic field, driving the system to the quantum Hall regime with filling factor one, is included. The injected carriers are represented by a superposition of edge states, and their interference pattern-controlled via magnetic field and/or area variation-reproduces the one of (Ji et al 2003 Nature 422 415). By tuning the system towards different regimes, we find two additional features in the transmission spectra, both related to carrier localization, namely a damping of the Aharonov-Bohm oscillations with increasing difference in the arms length, and an increased mean transmission that we trace to the energy-dependent transmittance of quantum point contacts. Finally, we present an analytical model, also accounting for the finite spatial dispersion of the carriers, able to reproduce the above effects. PMID:26548374

  19. Time-dependent simulation and analytical modelling of electronic Mach-Zehnder interferometry with edge-states wave packets

    NASA Astrophysics Data System (ADS)

    Beggi, Andrea; Bordone, Paolo; Buscemi, Fabrizio; Bertoni, Andrea

    2015-12-01

    We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder interferometers based on Landau edge-states transport, and assess the effect of the spatial localization of carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically the time-dependent Schrödinger equation with a suitable 2D potential profile reproducing the interferometer design. An external magnetic field, driving the system to the quantum Hall regime with filling factor one, is included. The injected carriers are represented by a superposition of edge states, and their interference pattern—controlled via magnetic field and/or area variation—reproduces the one of (Ji et al 2003 Nature 422 415). By tuning the system towards different regimes, we find two additional features in the transmission spectra, both related to carrier localization, namely a damping of the Aharonov-Bohm oscillations with increasing difference in the arms length, and an increased mean transmission that we trace to the energy-dependent transmittance of quantum point contacts. Finally, we present an analytical model, also accounting for the finite spatial dispersion of the carriers, able to reproduce the above effects.

  20. Topological Edge States with Zero Hall Conductivity in a Dimerized Hofstadter Model

    NASA Astrophysics Data System (ADS)

    Lau, Alexander; Ortix, Carmine; van den Brink, Jeroen

    2015-11-01

    The Hofstadter model is a simple yet powerful Hamiltonian to study quantum Hall physics in a lattice system, manifesting its essential topological states. Lattice dimerization in the Hofstadter model opens an energy gap at half filling. Here we show that even if the ensuing insulator has a Chern number equal to zero, concomitantly a doublet of edge states appear that are pinned at specific momenta. We demonstrate that these states are topologically protected by inversion symmetry in specific one-dimensional cuts in momentum space, define and calculate the corresponding invariants, and identify a platform for the experimental detection of these novel topological states.

  1. Formation and Development of the Dynamic Stall Vortex on a Wing with Leading Edge Tubercles

    NASA Astrophysics Data System (ADS)

    Hrynuk, John; Bohl, Douglas

    2015-11-01

    Humpback whales are unique in that their flippers have leading edge ``bumps'' or tubercles. Past work on airfoils inspired by whale flippers has centered on the static aerodynamic characteristics of these airfoils. The current study uses Molecular Tagging Velocimetry (MTV) to investigate the effects of tubercles on dynamically pitching NACA 0012 airfoils. A baseline (i.e. straight leading edge) wing and one modified with leading edge tubercles are investigated. Tracking of the Dynamic Stall Vortex (DSV) is performed to quantitatively compare the DSV formation location, path, and convective velocity for tubercled and baseline wings. The results show that there is a spanwise variation in the initial formation location and motion of the DSV on the modified wing. Once formed, the DSV aligns into a more uniform spanwise structure. As the pitching motion progresses, the DSV on the modified wing convects away from the airfoil surface later and slower than is observed for the baseline airfoil. The results indicate that the tubercles may delay stall when compared to the baseline airfoil. This work was supported by NSF Grant # 0845882.

  2. Humidity variations across the edge of trade wind cumuli: Observations and dynamical implications

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Geerts, Bart

    2010-07-01

    Aircraft data are used to analyze the composite horizontal structure of shallow tropical maritime cumulus clouds across the cloud edge into the ambient clear air. The emphasis is on humidity variations, and their implications for cumulus dynamics. The Lyman-α humidity probe has the required fast response and is unaffected by wetting in-cloud. On average the water vapor mixing ratio increases gradually from the clear air towards the cloud edge, and air is often sub-saturated in the outer fringe of the cloud, implying that droplets are evaporating. Similarly, conserved variables such as the total water concentration and the wet equivalent potential temperature gradually transition in the "margin" of cumulus clouds. The gradual change of water vapor mixing ratio and conserved variables across the cloud edge highlights the significance of lateral entrainment and detrainment, and it reveals a characteristic penetration depth of mixing eddies of 10 to 15% of the cloud diameter, or about 50 m. An ˜ 100 m wide region just outside the cloud is generally characterized by negatively buoyant, sinking air. The excess water vapor in this region, also documented in several recent studies, confirms that the negative buoyancy is caused by evaporative cooling in the cloud margin. Although rather weak, this cooling appears strong enough to evoke a dynamical response, even in the relative small trade wind cumuli.

  3. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    SciTech Connect

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  4. Topological transition and edge states in HgTe quantum wells from first principles

    NASA Astrophysics Data System (ADS)

    Küfner, Sebastian; Bechstedt, Friedhelm

    2014-05-01

    (HgTe)N(CdTe)M(110) and (001) superlattices are studied by means of ab initio calculations versus the thickness of the HgTe quantum wells (QWs). The used approximate quasiparticle theory including spin-orbit coupling (SOC) gives the correct band ordering, band gap, and SOC splitting for bulk HgTe and CdTe. The resulting band discontinuities indicate confinement also for occupied states. In agreement with earlier k .p calculations and experiments we find a topological transition from the topological nontrivial quantum spin Hall state into a trivial insulator with decreasing QW thickness. The spatial localization near the interfaces and the spin polarization are demonstrated for the edge states for QWs with thicknesses near the critical one. They do not depend on the QW orientation and are therefore topologically protected. Below the critical QW thickness, the trivial insulator exhibits drastic confinement effects with a significant gap opening. We show that the inclusion of inversion symmetry, the nonaxial rotation symmetry of the QWs, and the real QW barriers lead to some agreement but also significant deviations from the predictions within toy models. The deviations concern the critical thickness, the number and localization of edge states, and the possibility to find QW subbands between edge states.

  5. Long-distance entanglement of spin qubits via quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2016-02-01

    The implementation of a functional quantum computer involves entangling and coherent manipulation of a large number of qubits. For qubits based on electron spins confined in quantum dots, which are among the most investigated solid-state qubits at present, architectural challenges are often encountered in the design of quantum circuits attempting to assemble the qubits within the very limited space available. Here, we provide a solution to such challenges based on an approach to realizing entanglement of spin qubits over long distances. We show that long-range Ruderman-Kittel-Kasuya-Yosida interaction of confined electron spins can be established by quantum Hall edge states, leading to an exchange coupling of spin qubits. The coupling is anisotropic and can be either Ising type or XY type, depending on the spin polarization of the edge state. Such a property, combined with the dependence of the electron spin susceptibility on the chirality of the edge state, can be utilized to gain valuable insights into the topological nature of various quantum Hall states.

  6. Long-distance entanglement of spin qubits via quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    The implementation of a functional quantum computer involves entangling and coherent manipulation of a large number of qubits. For qubits based on electron spins confined in quantum dots, which are among the most investigated solid-state qubits at present, architectural challenges are often encountered in the design of quantum circuits attempting to assemble the qubits within the very limited space available. Here, we provide a solution to such challenges based on an approach to realizing entanglement of spin qubits over long distances. We show that long-range Ruderman-Kittel-Kasuya-Yosida interaction of confined electron spins can be established by quantum Hall edge states, leading to an exchange coupling of spin qubits. The coupling is anisotropic and can be either Ising-type or XY-type, depending on the spin polarization of the edge state. Such a property, combined with the dependence of the electron-spin susceptibility on the chirality of the edge state, can be utilized to gain valuable insights into the topological nature of various quantum Hall states.

  7. Dynamic Stall Measurements and Computations for a VR-12 Airfoil with a Variable Droop Leading Edge

    NASA Technical Reports Server (NTRS)

    Martin, P. B.; McAlister, K. W.; Chandrasekhara, M. S.; Geissler, W.

    2003-01-01

    High density-altitude operations of helicopters with advanced performance and maneuver capabilities have lead to fundamental research on active high-lift system concepts for rotor blades. The requirement for this type of system was to improve the sectional lift-to-drag ratio by alleviating dynamic stall on the retreating blade while simultaneously reducing the transonic drag rise of the advancing blade. Both measured and computational results showed that a Variable Droop Leading Edge (VDLE) airfoil is a viable concept for application to a rotor high-lift system. Results are presented for a series of 2D compressible dynamic stall wind tunnel tests with supporting CFD results for selected test cases. These measurements and computations show a dramatic decrease in the drag and pitching moment associated with severe dynamic stall when the VDLE concept is applied to the Boeing VR-12 airfoil. Test results also show an elimination of the negative pitch damping observed in the baseline moment hysteresis curves.

  8. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals.

    PubMed

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  9. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    PubMed Central

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  10. The use of bulk states to accelerate the band edge statecalculation of a semiconductor quantum dot

    SciTech Connect

    Vomel, Christof; Tomov, Stanimire Z.; Wang, Lin-Wang; Marques,Osni A.; Dongarra, Jack J.

    2006-05-10

    We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quantum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spectrum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous calculations.

  11. Chiral and nonchiral edge states in quantum Hall systems with charge density modulation

    NASA Astrophysics Data System (ADS)

    Szumniak, Paweł; Klinovaja, Jelena; Loss, Daniel

    2016-06-01

    We consider a system of weakly coupled wires with quantum Hall effect (QHE) and in the presence of a spatially periodic modulation of the chemical potential along the wire, equivalent to a charge density wave (CDW). We investigate the competition between the two effects which both open a gap. We show that by changing the ratio between the amplitudes of the CDW modulation and the tunneling between wires, one can switch between nontopological CDW-dominated phase to topological QHE-dominated phase. Both phases host edge states of chiral and nonchiral nature robust to on-site disorder. However, only in the topological phase, the edge states are immune to disorder in the phase shifts of the CDWs. We provide analytical solutions for filling factor ν =1 and study numerically effects of disorder as well as present numerical results for higher filling factors.

  12. Edge-state-enhanced transport in a two-dimensional quantum walk

    NASA Astrophysics Data System (ADS)

    Asboth, Janos K.; Edge, Jonathan M.

    2015-02-01

    Quantum walks on translation-invariant regular graphs spread quadratically faster than their classical counterparts. The same coherence that gives them this quantum speedup inhibits or even stops their spread in the presence of disorder. We ask how to create an efficient transport channel from a fixed source site (A ) to fixed target site (B ) in a disordered two-dimensional discrete-time quantum walk by cutting some of the links. We show that the somewhat counterintuitive strategy of cutting links along a single line connecting A to B creates such a channel. The efficient transport along the cut is due to topologically protected chiral edge states, which exist even though the bulk Chern number in this system vanishes. We give a realization of the walk as a periodically driven lattice Hamiltonian and identify the bulk topological invariant responsible for the edge states as the quasienergy winding of this Hamiltonian.

  13. Edge cracks in nickel and aluminium single crystals: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chandra, Sagar; Samal, M. K.; Chavan, V. M.; Patel, R. J.

    2016-05-01

    A molecular dynamics study of edge cracks in Ni and Al single crystals under mode-I loading conditions is presented. Simulations are performed using embedded-atom method potentials for Ni and Al at a temperature of 0.5K. The results reveal that Ni and Al show different fracture mechanisms. Overall failure behavior of Ni is brittle, while fracture in Al proceeds through void nucleation and coalescence with a zig-zag pattern of crack growth. The qualitative nature of results is discussed in the context of vacancy-formation energies and surface energies of the two FCC metals.

  14. Quantum fluctuation theorem in an interacting setup: point contacts in fractional quantum Hall edge state devices.

    PubMed

    Komnik, A; Saleur, H

    2011-09-01

    We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage. PMID:21981487

  15. A New Dynamic Edge Detection toward Better Human-Robot Interaction

    NASA Astrophysics Data System (ADS)

    Hafiz, Abdul Rahman; Alnajjar, Fady; Murase, Kazuyuki

    Robot’s vision plays a significant role in human-robot interaction, e.g., face recognition, expression understanding, motion tracking, etc. Building a strong vision system for the robot, therefore, is one of the fundamental issues behind the success of such an interaction. Edge detection, which is known as the basic units for measuring the strength of any vision system, has recently been taken attention from many groups of robotic researchers. Most of the reported works surrounding this issue have been based on designing a static mask, which sequentially move through the pixels in the image to extract edges. Despite the success of these works, such statically could restrict the model’s performance in some domains. Designing a dynamic mask by the inspiration from the basic principle of “retina”, and which supported by a unique distribution of photoreceptor, therefore, could overcome this problem. A human-like robot (RobovieR-2) has been used to examine the validity of the proposed model. The experimental results show the validity of the model, and it is ability to offer a number of advantages to the robot, such as: accurate edge detection and better attention to the front user, which is a step towards human-robot interaction.

  16. Dynamic representation of spectral edges in guinea pig primary auditory cortex

    PubMed Central

    Montejo, Noelia

    2015-01-01

    The central representation of a given acoustic motif is thought to be strongly context dependent, i.e., to rely on the spectrotemporal past and present of the acoustic mixture in which it is embedded. The present study investigated the cortical representation of spectral edges (i.e., where stimulus energy changes abruptly over frequency) and its dependence on stimulus duration and depth of the spectral contrast in guinea pig. We devised a stimulus ensemble composed of random tone pips with or without an attenuated frequency band (AFB) of variable depth. Additionally, the multitone ensemble with AFB was interleaved with periods of silence or with multitone ensembles without AFB. We have shown that the representation of the frequencies near but outside the AFB is greatly enhanced, whereas the representation of frequencies near and inside the AFB is strongly suppressed. These cortical changes depend on the depth of the AFB: although they are maximal for the largest depth of the AFB, they are also statistically significant for depths as small as 10 dB. Finally, the cortical changes are quick, occurring within a few seconds of stimulus ensemble presentation with AFB, and are very labile, disappearing within a few seconds after the presentation without AFB. Overall, this study demonstrates that the representation of spectral edges is dynamically enhanced in the auditory centers. These central changes may have important functional implications, particularly in noisy environments where they could contribute to preserving the central representation of spectral edges. PMID:25744885

  17. On the Connection Between Flap Side-Edge Noise and Tip Vortex Dynamics

    NASA Technical Reports Server (NTRS)

    Casalino, D.; Hazir, A.; Fares, E.; Duda, B.; Khorrami, M. R.

    2015-01-01

    The goal of the present work is to investigate how the dynamics of the vortical flow about the flap side edge of an aircraft determine the acoustic radiation. A validated lattice- Boltzmann CFD solution of the unsteady flow about a detailed business jet configuration in approach conditions is used for the present analysis. Evidence of the connection between the noise generated by several segments of the inboard flap tip and the aerodynamic forces acting on the same segments is given, proving that the noise generation mechanism has a spatially coherent and acoustically compact character on the scale of the flap chord, and that the edge-scattering effects are of secondary importance. Subsequently, evidence of the connection between the kinematics of the tip vortex system and the aerodynamic force is provided. The kinematics of the dual vortex system are investigated via a core detection technique. Emphasis is placed on the mutual induction effects between the two main vortices rolling up from the pressure and suction sides of the flap edge. A simple heuristic formula that relates the far-field noise spectrum and the cross-spectrum of the unsteady vortical positions is developed.

  18. Magnetic edge states and mixed-parity pairing in spin-triplet superconductors

    NASA Astrophysics Data System (ADS)

    Cuoco, Mario; Gentile, Paola; Noce, Canio; Vekhter, Ilya; Romano, Alfonso

    2014-03-01

    We show that a spontaneous magnetic moment may appear at the edge of a spin-triplet superconductor if the system allows for pairing in a subdominant channel and non-uniform spatial profile. To unveil the microscopic mechanism behind such effect we combine numerical solution of the Bogoliubov-De Gennes equations for a tight-binding model with nearest-neighbor attraction, and the symmetry based Ginzburg-Landau approach. We find that a modulation of the electronic density near the edge of the system leads to a non-unitary superconducting state where spin-singlet pairing coexists with the dominant triplet superconducting order. We demonstrate that the spin polarization at the edge appears due to the inhomogeneity of the non-unitary state and originates in the lifting of the spin-degeneracy of the Andreev bound-states. For chiral spin-triplet superconductors spin current flows along the interface and surface charge currents exhibit anomalous dependence on the magnetization. - A. Romano, P. Gentile, C. Noce, I. Vekhter, M. Cuoco, Phys. Rev. Lett. 110, 267002 (2013). This research has received funding from the EU -FP7/2007-2013 under grant agreement N. 264098 - MAMA, and was supported in part by US NSF via Grant No. DMR-1105339

  19. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry

    NASA Astrophysics Data System (ADS)

    Du, Haifeng; Che, Renchao; Kong, Lingyao; Zhao, Xuebing; Jin, Chiming; Wang, Chao; Yang, Jiyong; Ning, Wei; Li, Runwei; Jin, Changqing; Chen, Xianhui; Zang, Jiadong; Zhang, Yuheng; Tian, Mingliang

    2015-10-01

    The emergence of a topologically nontrivial vortex-like magnetic structure, the magnetic skyrmion, has launched new concepts for memory devices. Extensive studies have theoretically demonstrated the ability to encode information bits by using a chain of skyrmions in one-dimensional nanostripes. Here, we report experimental observation of the skyrmion chain in FeGe nanostripes by using high-resolution Lorentz transmission electron microscopy. Under an applied magnetic field, we observe that the helical ground states with distorted edge spins evolve into individual skyrmions, which assemble in the form of a chain at low field and move collectively into the interior of the nanostripes at elevated fields. Such a skyrmion chain survives even when the width of the nanostripe is much larger than the size of single skyrmion. This discovery demonstrates a way of skyrmion formation through the edge effect, and might, in the long term, shed light on potential applications.

  20. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry

    PubMed Central

    Du, Haifeng; Che, Renchao; Kong, Lingyao; Zhao, Xuebing; Jin, Chiming; Wang, Chao; Yang, Jiyong; Ning, Wei; Li, Runwei; Jin, Changqing; Chen, Xianhui; Zang, Jiadong; Zhang, Yuheng; Tian, Mingliang

    2015-01-01

    The emergence of a topologically nontrivial vortex-like magnetic structure, the magnetic skyrmion, has launched new concepts for memory devices. Extensive studies have theoretically demonstrated the ability to encode information bits by using a chain of skyrmions in one-dimensional nanostripes. Here, we report experimental observation of the skyrmion chain in FeGe nanostripes by using high-resolution Lorentz transmission electron microscopy. Under an applied magnetic field, we observe that the helical ground states with distorted edge spins evolve into individual skyrmions, which assemble in the form of a chain at low field and move collectively into the interior of the nanostripes at elevated fields. Such a skyrmion chain survives even when the width of the nanostripe is much larger than the size of single skyrmion. This discovery demonstrates a way of skyrmion formation through the edge effect, and might, in the long term, shed light on potential applications. PMID:26446692

  1. Progress in the peeling-ballooning model of edge localized modes: Numerical studies of nonlinear dynamics

    SciTech Connect

    Snyder, P.B.; Wilson, H.R.; Xu, X.Q.

    2005-05-15

    Nonlinear three-dimensional electromagnetic simulations are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to nonlinear ballooning theory as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.

  2. Imaging of quantum Hall edge states under quasiresonant excitation by a near-field scanning optical microscope

    SciTech Connect

    Ito, H.; Shibata, Y.; Mamyoda, S.; Ootuka, Y.; Nomura, S.; Kashiwaya, S.; Yamaguchi, M.; Akazaki, T.; Tamura, H.

    2013-12-04

    A high resolution mapping of quantum Hall edge states has been performed by locally creating electrons with small excess energies with a near-field scanning optical microscope in a dilution refrigerator. We have observed fine structures parallel to the edge in photovoltage signals, which appear only at low temperature. The observed fine structures near sample edges have been seen to shift inward with increase in magnetic field in accordance with Chklovskii Shklovskii, and Glazman model.

  3. Transverse Mode Dynamics of Broad-Area Edge- and Surface-Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Goorjian, Peter; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper reports new results of our recent theoretical and simulational research in broad-area diode lasers. In a broad-area edge- or surface-emitting laser, the large space dimension in the direction transverse to the propagation direction requires an adequate treatment of inhomogeneities of the relevant physical quantities, such as laser field intensity and electron-hole carrier densities. The density inhomogeneity requires gain and refractive index nonlinearities across the laser structure to be included. All these features can be captured by a set of space-time resolved partial differential equations, the so-called effective Bloch equations established recently. We have solved this set of equations for both edge-emitting and surface-emitting lasers. This allows us to investigate temporal dynamics of transverse mode structures in these lasers. The influence of the transverse pumping profile and geometrical structure of the devices will be reported for VCSELs, as well as the complex temporal competition dynamics of different modes.

  4. Noiseless manipulation of helical edge state transport by a quantum magnet

    NASA Astrophysics Data System (ADS)

    Silvestrov, P. G.; Recher, P.; Brouwer, P. W.

    2016-05-01

    The current through a helical edge state of a quantum spin Hall insulator may be fully transmitted through a magnetically gapped region due to a combination of spin-transfer torque and spin pumping [Meng et al., Phys. Rev. B 90, 205403 (2014), 10.1103/PhysRevB.90.205403]. Using a scattering approach, we here argue that in such a system the current is effectively carried by electrons with energies below the magnet-induced gap and well below the Fermi energy. This has striking consequences, such as the absence of shot noise, an exponential suppression of thermal noise, and an obstruction of thermal transport. For two helical edges covered by the same quantum magnet, the device can act as a robust noiseless current splitter.

  5. Edge structure of graphene monolayers in the ν =0 quantum Hall state

    NASA Astrophysics Data System (ADS)

    Knothe, Angelika; Jolicoeur, Thierry

    2015-10-01

    Monolayer graphene at neutrality in the quantum Hall regime has many competing ground states with various types of ordering. The outcome of this competition is modified by the presence of the sample boundaries. In this paper we use a Hartree-Fock treatment of the electronic correlations allowing for space-dependent ordering. The armchair edge influence is modeled by a simple perturbative effective magnetic field in valley space. We find that all phases found in the bulk of the sample, ferromagnetic, canted antiferromagnetic, charge-density wave, and Kekulé distortion, are smoothly connected to a Kekulé-distorted edge. The single-particle excitations are computed taking into account the spatial variation of the order parameters. An eventual metal-insulator transition as a function of the Zeeman energy is not simply related to the type of bulk order.

  6. Carbon K edge spectroscopy of internal interface and defect states of chemical vapor deposited diamond films

    SciTech Connect

    Nithianandam, J.; Rife, J.C. ); Windischmann, H. )

    1992-01-06

    We have made carbon {ital K} edge reflectivity and absorption measurements using synchrotron radiation on diamond crystals and chemical vapor deposited diamond films to determine their electronic structures. Our spectra of diamond films show that both {ital sp}{sup 2} and {ital sp}{sup 3} bonded carbon atoms are formed during initial nucleation and growth. Transmission spectra of a diamond film with 30 nm diameter cystallites show striking features below the carbon {ital sp}{sup 3} {ital K} edge due to internal interface states and/or defects. We compare these absorption features to x-ray absorption spectra of clean diamond (111) surface, graphite, and hydrocarbon gases to understand surface chemistry involved in the deposition process.

  7. Electrically tunable spin filtering for electron tunneling between spin-resolved quantum Hall edge states and a quantum dot

    SciTech Connect

    Kiyama, H. Fujita, T.; Teraoka, S.; Oiwa, A.; Tarucha, S.

    2014-06-30

    Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.

  8. GMF promotes leading edge dynamics and collective cell migration in vivo

    PubMed Central

    Poukkula, Minna; Hakala, Markku; Pentinmikko, Nalle; Sweeney, Meredith O.; Jansen, Silvia; Mattila, Jaakko; Hietakangas, Ville; Goode, Bruce L.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Lamellipodia are dynamic actin-rich cellular extensions, which drive advancement of the leading edge during cell migration [1–3]. Lamellipodia undergo periodic extension/retraction cycles [4–8], but the molecular mechanisms underlying these dynamics and their role in cell migration have remained obscure. We show that gliamaturation factor (GMF), which is an Arp2/3 complex inhibitor and actin filament debranching factor [9, 10], regulates lamellipodial protrusion dynamics in living cells. In cultured S2R+ cells, GMF silencing resulted in an increase in the width of lamellipodial actin filament arrays. Importantly, live-imaging of mutant Drosophila egg chambers revealed that the dynamics of actin-rich protrusions in migrating border cells are diminished in the absence of GMF. Consequently, velocity of border cell clusters undergoing guided migration was reduced in GMF mutant flies. Furthermore, genetic studies demonstrated that GMF cooperates with the Drosophila homologue of Aip1 (flare) in promoting disassembly of Arp2/3-nucleated actin filament networks and driving border cell migration. These data suggest that GMF functions in vivo to promote the disassembly of Arp2/3-nucleated actin filament arrays, making an important contribution to cell migration within a three-dimensional tissue environment. PMID:25308079

  9. Dynamics of the ballooning mode and the relation to edge-localized modes in a spherical tokamak

    SciTech Connect

    Khan, R.; Mizuguchi, N.; Nakajima, N.; Hayashi, T.

    2007-06-15

    Nonlinear simulations based on the magnetohydrodynamic model have been executed to reveal the dynamics of the ballooning mode in the spherical tokamak plasma. The simulation results have reproduced the characteristic features of the edge-localized mode crash phase, where the filamentary structures are formed along the magnetic field in the edge region, and separated from the core plasma. Moreover, the finite Larmor radius effect is addressed.

  10. Emergence of Helical Edge Conduction in Graphene in the ν = 0 Quantum Hall State

    NASA Astrophysics Data System (ADS)

    Fertig, Herbert; Tikhonov, Pavel; Shimshoni, Efrat; Murthy, Ganpathy

    The conductance of graphene subject to a strong, tilted magnetic field exhibits a dramatic change with tilt-angle, interpreted as an evidence for the transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) ν = 0 quantum Hall state. We develop a theory for the electric transport in this system based on the spin-charge connection, whereby the evolution in the nature of collective spin excitations throughout this quantum phase transition is reflected in the charge-carrying modes. To this end we study quantum fluctuations of the spin-valley configuration in a system with an edge, and derive an effective theory describing collective charge edge excitations coupled to neutral bulk excitations. Focusing particularly on the FM phase, naively expected to exhibit perfect conductance due to the emergence helical edge modes, we analyze the mechanism whereby the coupling to bulk excitations assists in generating back-scattering. Finally, we calculate the conductance as a function of temperature and the Zeeman energy à€`` the parameter that tunes the transition between the two phases. Support provided by the US-Israel BSF, ISF, and NSF.

  11. Topological phase and edge states dependence of the RKKY interaction in zigzag silicene nanoribbon

    NASA Astrophysics Data System (ADS)

    Zare, Moslem; Parhizgar, Fariborz; Asgari, Reza

    2016-07-01

    We propose versatile materials based on the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in a zigzag silicene nanoribbon (ZSNR) on half filling in the presence of an out-of-plane electric field. We show that the topological phase transition in the band dispersion of ZSNR can be probed by using the RKKY interaction. We find that, due to the zero-energy edge states of the ZSNR, the exchange coupling is significantly enhanced when the impurities are located on the zigzag edges, and also explore that the strength of the interaction in the topological insulator phase is much greater than that when the system is in the band insulator region. We present a model to investigate the phase of a system of two magnetic impurities located on the edge of the ZSNR and find that three different magnetic phases, spiral, ferromagnetic, and antiferromagnetic, are possible for different values of the electric field. This electrical tunability of the magnetic phases in silicene can be explored by using current experimental techniques and can be of interest in the field of spintronics.

  12. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors.

    PubMed

    Wu, Di; Li, Xiao; Luan, Lan; Wu, Xiaoyu; Li, Wei; Yogeesh, Maruthi N; Ghosh, Rudresh; Chu, Zhaodong; Akinwande, Deji; Niu, Qian; Lai, Keji

    2016-08-01

    The understanding of various types of disorders in atomically thin transition metal dichalcogenides (TMDs), including dangling bonds at the edges, chalcogen deficiencies in the bulk, and charges in the substrate, is of fundamental importance for TMD applications in electronics and photonics. Because of the imperfections, electrons moving on these 2D crystals experience a spatially nonuniform Coulomb environment, whose effect on the charge transport has not been microscopically studied. Here, we report the mesoscopic conductance mapping in monolayer and few-layer MoS2 field-effect transistors by microwave impedance microscopy (MIM). The spatial evolution of the insulator-to-metal transition is clearly resolved. Interestingly, as the transistors are gradually turned on, electrical conduction emerges initially at the edges before appearing in the bulk of MoS2 flakes, which can be explained by our first-principles calculations. The results unambiguously confirm that the contribution of edge states to the channel conductance is significant under the threshold voltage but negligible once the bulk of the TMD device becomes conductive. Strong conductance inhomogeneity, which is associated with the fluctuations of disorder potential in the 2D sheets, is also observed in the MIM images, providing a guideline for future improvement of the device performance. PMID:27444021

  13. Edge effects in game-theoretic dynamics of spatially structured tumours.

    PubMed

    Kaznatcheev, Artem; Scott, Jacob G; Basanta, David

    2015-07-01

    Cancer dynamics are an evolutionary game between cellular phenotypes. A typical assumption in this modelling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard for local neighbourhood structure. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go versus grow game. We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary--such as a blood vessel, organ capsule or basement membrane--we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (epithelial-mesenchymal transition-positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Our results caution that pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. Although we concentrate on applications in mathematical oncology, we expect our approach to extend to other evolutionary game models where interaction neighbourhoods change at fixed system boundaries. PMID:26040596

  14. Edge effects in game-theoretic dynamics of spatially structured tumours

    PubMed Central

    Kaznatcheev, Artem; Scott, Jacob G.; Basanta, David

    2015-01-01

    Cancer dynamics are an evolutionary game between cellular phenotypes. A typical assumption in this modelling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard for local neighbourhood structure. We address this limitation by using the Ohtsuki–Nowak transform to introduce spatial structure to the go versus grow game. We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary—such as a blood vessel, organ capsule or basement membrane—we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (epithelial–mesenchymal transition-positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Our results caution that pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. Although we concentrate on applications in mathematical oncology, we expect our approach to extend to other evolutionary game models where interaction neighbourhoods change at fixed system boundaries. PMID:26040596

  15. Dynamical System Approach for Edge Detection Using Coupled FitzHugh-Nagumo Neurons.

    PubMed

    Li, Shaobai; Dasmahapatra, Srinandan; Maharatna, Koushik

    2015-12-01

    The prospect of emulating the impressive computational capabilities of biological systems has led to considerable interest in the design of analog circuits that are potentially implementable in very large scale integration CMOS technology and are guided by biologically motivated models. For example, simple image processing tasks, such as the detection of edges in binary and grayscale images, have been performed by networks of FitzHugh-Nagumo-type neurons using the reaction-diffusion models. However, in these studies, the one-to-one mapping of image pixels to component neurons makes the size of the network a critical factor in any such implementation. In this paper, we develop a simplified version of the employed reaction-diffusion model in three steps. In the first step, we perform a detailed study to locate this threshold using continuous Lyapunov exponents from dynamical system theory. Furthermore, we render the diffusion in the system to be anisotropic, with the degree of anisotropy being set by the gradients of grayscale values in each image. The final step involves a simplification of the model that is achieved by eliminating the terms that couple the membrane potentials of adjacent neurons. We apply our technique to detect edges in data sets of artificially generated and real images, and we demonstrate that the performance is as good if not better than that of the previous methods without increasing the size of the network. PMID:26276989

  16. Edge plasma dynamics during L-H transition in the JFT-2M tokamak

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.

    2015-06-01

    This article presents a radial electric field measurement by a heavy ion beam probe in the JFT-2M tokamak, during the L-H transition. An abrupt increase (time scale of O(100 µs)) of the strong edge radial electric field (localized in the radius with FWHM ∼7 mm) results in the increase of density gradient and turbulence reduction. Rapid inward propagation of the turbulence suppression front is observed at the transition. After the transition, the electric field structure in the tiny edge localized modes (ELMs) is analyzed. Transport self-regulation events observed in the vicinity of the L-H transition, i.e. the limit cycle oscillation (LCO) in the L-mode, the tiny ELM in the H-mode, as well as the L-H transition itself, are summarized in a single Lissajous diagram in the electric field-density gradient space, which provides a comprehensive explanation of the transition dynamics. This article is dedicated to the memory of Professor Tihiro Ohkawa.

  17. Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2008-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  18. Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2005-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  19. Three Dimensional Mapping of Nicle Oxidation States Using Full Field Xray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, G.J.; Chu, Y.; Harris, W.M.; Izzo, J.R.; Grew, K.N., Chiu, W.K.S.; Yi, J.; Andrews, J.C.; Liu, Y., Pierro, P.

    2011-04-28

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  20. Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.

    2006-10-01

    Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.

  1. Dynamic spectra of radio frequency bursts associated with edge-localized modes

    NASA Astrophysics Data System (ADS)

    Thatipamula, Shekar G.; Yun, G. S.; Leem, J.; Park, H. K.; Kim, K. W.; Akiyama, T.; Lee, S. G.

    2016-06-01

    Electromagnetic emissions in the radio frequency (RF) range are detected in the high-confinement-mode (H-mode) plasma using a fast RF spectrometer on the KSTAR tokamak. The emissions at the crash events of edge-localized modes (ELMs) are found to occur as strong RF bursts with dynamic features in intensity and spectrum. The RF burst spectra (obtained with frequency resolution better than 10 MHz) exhibit diverse spectral features and evolve in multiple steps before the onset and through the ELM crash: (1) a narrow-band spectral line around 200 MHz persistent for extended duration in the pre-ELM crash times, (2) harmonic spectral lines with spacing comparable to deuterium or hydrogen ion cyclotron frequency at the pedestal, (3) rapid onset (faster than ~1 μs) of intense RF burst with wide-band continuum in frequency which coincides with the onset of ELM crash, and (4) a few additional intense RF bursts with chirping-down narrow-band spectrum during the crash. These observations indicate plasma waves are excited in the pedestal region and strongly correlated with the ELM dynamics such as the onset of the explosive crash. Thus the investigation of RF burst occurrence and their dynamic spectral features potentially offers the possibility of exploring H-mode physics in great detail.

  2. Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe5

    NASA Astrophysics Data System (ADS)

    Wu, R.; Ma, J.-Z.; Nie, S.-M.; Zhao, L.-X.; Huang, X.; Yin, J.-X.; Fu, B.-B.; Richard, P.; Chen, G.-F.; Fang, Z.; Dai, X.; Weng, H.-M.; Qian, T.; Ding, H.; Pan, S. H.

    2016-04-01

    Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe5 crystal hosts a large full gap of ˜100 meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.

  3. Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction

    SciTech Connect

    Milovanović, S. P. Peeters, F. M.; Ramezani Masir, M.

    2014-09-22

    The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.

  4. One-dimensional edge state transport in a topological Kondo insulator

    NASA Astrophysics Data System (ADS)

    Nakajima, Yasuyuki; Syers, Paul; Wang, Xiangfeng; Wang, Renxiong; Paglione, Johnpierre

    2016-03-01

    Topological insulators, with metallic boundary states protected against time-reversal-invariant perturbations, are a promising avenue for realizing exotic quantum states of matter, including various excitations of collective modes predicted in particle physics, such as Majorana fermions and axions. According to theoretical predictions, a topological insulating state can emerge from not only a weakly interacting system with strong spin-orbit coupling, but also in insulators driven by strong electron correlations. The Kondo insulator compound SmB6 is an ideal candidate for realizing this exotic state of matter, with hybridization between itinerant conduction electrons and localized f-electrons driving an insulating gap and metallic surface states at low temperatures. Here we exploit the existence of surface ferromagnetism in SmB6 to investigate the topological nature of metallic surface states by studying magnetotransport properties at very low temperatures. We find evidence of one-dimensional surface transport with a quantized conductance value of e2/h originating from the chiral edge channels of ferromagnetic domain walls, providing strong evidence that topologically non-trivial surface states exist in SmB6.

  5. Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires

    NASA Astrophysics Data System (ADS)

    Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.

    2007-12-01

    Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.

  6. Emergence of helical edge conduction in graphene at the ν =0 quantum Hall state

    NASA Astrophysics Data System (ADS)

    Tikhonov, Pavel; Shimshoni, Efrat; Fertig, H. A.; Murthy, Ganpathy

    2016-03-01

    The conductance of graphene subject to a strong, tilted magnetic field exhibits a dramatic change from insulating to conducting behavior with tilt angle, regarded as evidence for the transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) ν =0 quantum Hall state. We develop a theory for the electric transport in this system based on the spin-charge connection, whereby the evolution in the nature of collective spin excitations is reflected in the charge-carrying modes. To this end, we derive an effective field-theoretical description of the low-energy excitations, associated with quantum fluctuations of the spin-valley domain-wall ground-state configuration which characterizes the two-dimensional (2D) system with an edge. This analysis yields a model describing a one-dimensional charged edge mode coupled to charge-neutral spin-wave excitations in the 2D bulk. Focusing particularly on the FM phase, naively expected to exhibit perfect conductance, we study a mechanism whereby the coupling to these bulk excitations assists in generating backscattering. Our theory yields the conductance as a function of temperature and the Zeeman energy—the parameter that tunes the transition between the FM and CAF phases—with behavior in qualitative agreement with experiment.

  7. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.

    PubMed

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications. PMID:27335758

  8. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress

    PubMed Central

    Kim, Chang-Wan; Dai, Mai Duc

    2016-01-01

    Summary We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications. PMID:27335758

  9. Hartree simulations of coupled quantum Hall edge states in corner-overgrown heterostructures

    NASA Astrophysics Data System (ADS)

    Steinke, L.; Cantwell, P.; Stach, E.; Schuh, D.; Fontcuberta i Morral, A.; Bichler, M.; Abstreiter, G.; Grayson, M.

    2013-04-01

    The electronic states in a corner-overgrown bent GaAs/AlGaAs quantum well heterostructure are studied with numerical Hartree simulations. Transmission electron microscope pictures of the junction sharpness are shown to justify the sharp-corner potential assumed for these calculations. In a tilted magnetic field, both facets of the bent quantum well are brought to a quantum Hall (QH) state, and the corner hosts an unconventional hybrid system of coupled counter-propagating quantum Hall edges and an additional 1D accumulation wire. We show how, in contrast to coplanar barrier-junctions of QH systems, the coupling between the three subsystems increases as a function of the applied magnetic field, and discuss the implications of the numerical results for the interpretation of experimental data on bent quantum Hall systems reported elsewhere.

  10. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    NASA Astrophysics Data System (ADS)

    Woods, Benjamin K. S.; Kothera, Curt S.; Wang, Gang; Wereley, Norman M.

    2014-09-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

  11. Mechanisms and dynamics of the external transport barrier formation in non-linear plasma edge simulations

    NASA Astrophysics Data System (ADS)

    Chôné, L.; Beyer, P.; Sarazin, Y.; Fuhr, G.; Bourdelle, C.; Benkadda, S.

    2015-07-01

    L-H transition features are reproduced using three-dimensional first-principles plasma edge turbulence simulations. A transport barrier is observed to form spontaneously above a threshold of the input power. The physical mechanism relies on the coupling between the equilibrium pressure gradient and the poloidal flow, through both the radial force balance and the neoclassical friction. Accounting for the actual radial profile and time evolution of the latter is key to the barrier formation. It is found that neoclassical friction acts as an energy source for the flow, which largely overcomes the sink due to the turbulent Reynolds stress during the whole barrier lifetime. Importantly, experimentally reported dynamical features are recovered during the formation and lifetime of the barrier. This includes dithering of the radial electric field, which is reminiscent of experimentally observed limit-cycle oscillations and quasi-periodic relaxation oscillations showing similarities with type-III ELMs. These rich dynamics emerge from interplay between turbulence, turbulence-driven flows and the equilibrium flow governed by force balance.

  12. THE STATE OF MANGANESE IN THE PHOTOSYNTHETIC APPARATUS. II. X-RAY ABSORPTION EDGE STUDIES ON MANGANESE IN PHOTOSYNTHETIC MEMBRANES

    SciTech Connect

    Kirby, J. A.; Goodin, D. B.; Wydrzynski, T.; Robertson, A. S.; Klein, M. P.

    1980-11-01

    X-ray absorption spectra at the Manganese K-edge are presented for spinach chloroplasts, and chloroplasts which have been Tris-treated and hence unable to evolve oxygen. A significant change in the electronic environment of manganese is observed and is attributed to the release of manganese from the thylakoid membranes with a concomitant change in oxidation state. A correlation of the K-edge energy, defined as the energy at the first inflection point, with coordination charge has been established for a number of manganese compounds of known structure and oxidation state. Comparison of the manganese K-edge energies of the chloroplast samples with the reference compounds places the average oxidation state of the chloroplasts between +2 and +3. Using the edge spectra for Tris-treated membranes which were osmotically shocked to remove the released manganese, difference edge spectra were synthesized to approximate the active pool of manganese. Coordination charge predictions for this fraction are consistent with an average resting oxidation state higher than +2. The shape at the edge is also indicative of heterogeneity of the manganese site, of low symmetry, or both.

  13. Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions.

    PubMed

    Maistrenko, Yuri; Penkovsky, Bogdan; Rosenblum, Michael

    2014-06-01

    We discuss the desynchronization transition in networks of globally coupled identical oscillators with attractive and repulsive interactions. We show that, if attractive and repulsive groups act in antiphase or close to that, a solitary state emerges with a single repulsive oscillator split up from the others fully synchronized. With further increase of the repulsing strength, the synchronized cluster becomes fuzzy and the dynamics is given by a variety of stationary states with zero common forcing. Intriguingly, solitary states represent the natural link between coherence and incoherence. The phenomenon is described analytically for phase oscillators with sine coupling and demonstrated numerically for more general amplitude models. PMID:25019710

  14. Klein tunneling of helical edge states in narrow strips of a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Takagaki, Y.

    2016-01-01

    The quantum transmission of helical edge states across a square potential barrier is numerically investigated in narrow channels of a two-dimensional topological insulator. Although the transmission probability in general decreases when a potential offset is introduced in the middle of the channels, the transmission remains almost perfect regardless of the amplitude and length of the potential offset when the hybridization energy gap is closed by tuning the off-diagonal spin-orbit terms in the effective four-band Hamiltonian. The approximate absence of scattering resembling the Klein tunneling, where the transmission is unimpeded as an electron propagates relativistically as a hole in the barrier without decay, improves further when an interference condition is satisfied within the barrier. The dependence of the residual reflection on the Fermi level reveals anomalous characteristics in the Klein tunneling regime.

  15. Magnetic-flux-driven topological quantum phase transition and manipulation of perfect edge states in graphene tube

    PubMed Central

    Lin, S.; Zhang, G.; Li, C.; Song, Z.

    2016-01-01

    We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them. PMID:27554930

  16. State-to-state dynamics of molecular energy transfer

    SciTech Connect

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  17. Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Tung, C.

    1993-01-01

    The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.

  18. Peer pressure is a double-edged sword in vaccination dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Xi; Zhang, Hai-Feng

    2013-10-01

    Whether or not to change behavior depends not only on the personal success of each individual, but also on the success and/or behavior of others. Using this as motivation, we incorporate the impact of peer pressure into a susceptible-vaccinated-infected-recovered (SVIR) epidemiological model, where the propensity to adopt a particular vaccination strategy depends both on individual success as well as on the strategies of neighbors. We show that plugging into the peer pressure is a double-edged sword, which, on the one hand, strongly promotes vaccination when its cost is below a critical value, but, on the other hand, it can also strongly impede it if the critical value is exceeded. We explain this by revealing a facilitated cluster formation process that is induced by the peer pressure. Due to this, the vaccinated individuals are inclined to cluster together and therefore become unable to efficiently inhibit the spread of the infectious disease if the vaccination is costly. If vaccination is cheap, however, they reinforce each other in using it. Our results are robust to variations of the SVIR dynamics on different population structures.

  19. Dynamic edge warping - An experimental system for recovering disparity maps in weakly constrained systems

    NASA Technical Reports Server (NTRS)

    Boyer, K. L.; Wuescher, D. M.; Sarkar, S.

    1991-01-01

    Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.

  20. Dynamics of Affective States during Complex Learning

    ERIC Educational Resources Information Center

    D'Mello, Sidney; Graesser, Art

    2012-01-01

    We propose a model to explain the dynamics of affective states that emerge during deep learning activities. The model predicts that learners in a state of engagement/flow will experience cognitive disequilibrium and confusion when they face contradictions, incongruities, anomalies, obstacles to goals, and other impasses. Learners revert into the…

  1. Interpretation of the U L3-edge EXAFS in uranium dioxide using molecular dynamics and density functional theory simulations

    NASA Astrophysics Data System (ADS)

    Bocharov, Dmitry; Chollet, Melanie; Krack, Matthias; Bertsch, Johannes; Grolimund, Daniel; Martin, Matthias; Kuzmin, Alexei; Purans, Juris; Kotomin, Eugene

    2016-05-01

    X-ray absorption spectroscopy is employed to study the local structure of pure and Cr-doped UO2 at 300 K. The U L3-edge EXAFS spectrum is interpreted within the multiplescattering (MS) theory using the results of the classical and ab initio molecular dynamics simulations, allowing us to validate the accuracy of theoretical models. The Cr K-edge XANES is simulated within the full-multiple-scattering formalism considering a substitutional model (Cr at U site). It is shown that both unrelaxed and relaxed structures, produced by ab initio density functional theory (DFT) calculations, fail to describe the experiment.

  2. Edge states and local electronic structure around an adsorbed impurity in a topological superconductor

    NASA Astrophysics Data System (ADS)

    Tai, Yuan-Yen; Choi, Hongchul; Ahmed, Towfiq; Ting, C. S.; Zhu, Jian-Xin

    2015-11-01

    Recently, topological superconducting states have attracted much interest. In this paper, we consider a topological superconductor with Z2 topological mirror order [Y.-Y. Tai et al., Phys. Rev. B 91, 041111(R) (2015), 10.1103/PhysRevB.91.041111] and s±-wave superconducting pairing symmetry, within a two-orbital model originally designed for iron-based superconductivity [Y.-Y. Tai et al., Europhys. Lett. 103, 67001 (2013), 10.1209/0295-5075/103/67001]. We predict the existence of gapless edge states. We also study the local electronic structure around an adsorbed interstitial magnetic impurity in the system, and find the existence of low-energy in-gap bound states even with a weak spin polarization on the impurity. We also discuss the relevance of our results to a recent scanning tunneling microscopy experiment on a Fe(Te,Se) compound with an adsorbed Fe impurity [J.-X. Yin et al., Nat. Phys. 11, 543 (2015), 10.1038/nphys3371], for which our density functional calculations show the Fe impurity is spin polarized.

  3. Evidence of a Shockley-Read-Hall Defect State Independent of Band-Edge Energy in InAs /In (As ,Sb ) Type-II Superlattices

    NASA Astrophysics Data System (ADS)

    Aytac, Y.; Olson, B. V.; Kim, J. K.; Shaner, E. A.; Hawkins, S. D.; Klem, J. F.; Flatté, M. E.; Boggess, T. F.

    2016-05-01

    A set of seven InAs /In (As ,Sb ) type-II superlattices (T2SLs) are designed to have specific band-gap energies between 290 meV (4.3 μ m ) and 135 meV (9.2 μ m ) in order to study the effects of the T2SL band-gap energy on the minority-carrier lifetime. A temperature-dependent optical pump-probe technique is used to measure the carrier lifetimes, and the effect of a midgap defect level on the carrier-recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 ±12 meV relative to the valence-band edge of bulk GaSb for the entire set of T2SL structures, even though the T2SL valence-band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs /In (As ,Sb ) T2SLs is singular and is nearly independent of the exact position of the T2SL band-gap or band-edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the band gap, a result that should significantly increase the minority-carrier lifetime.

  4. Evidence of a Shockley-Read-Hall Defect State Independent of Band-Edge Energy in InAs/In(As,Sb) Type-II Superlattices

    DOE PAGESBeta

    Aytac, Y.; Olson, B. V.; Kim, J. K.; Shaner, E. A.; Hawkins, S. D.; Klem, J. F.; Flatté, M. E.; Boggess, T. F.

    2016-05-24

    A set of seven InAs/InAsSb type-II superlattices (T2SLs) were designed to have speci c bandgap energies between 290 meV (4.3 m) and 135 meV (9.2 m) in order to study the e ects of the T2SL bandgap energy on the minority carrier lifetime. A temperature dependent optical pump-probe technique is used to measure the carrier lifetimes, and the e ect of a mid-gap defect level on the carrier recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 12 meV relative to the valence band edge of bulk GaSb for the entiremore » set of T2SL structures, even though the T2SL valence band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs/InAsSb T2SLs is singular and is nearly independent of the exact position of the T2SL bandgap or band edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the bandgap, a result that should signi cantly increase the minority carrier lifetime.« less

  5. Improving Surface Geostrophic Current from a GOCE-Derived Mean Dynamic Topography Using Edge-Enhancing Diffusion Filtering

    NASA Astrophysics Data System (ADS)

    Sánchez-Reales, J. M.; Andersen, O. B.; Vigo, M. I.

    2016-03-01

    With increased geoid resolution provided by the gravity and steady-state ocean circulation explorer (GOCE) mission, the ocean's mean dynamic topography (MDT) can be now estimated with an accuracy not available prior to using geodetic methods. However, an altimetric-derived MDT still needs filtering in order to remove short wavelength noise unless integrated methods are used in which the three quantities are determined simultaneously using appropriate covariance functions. We studied nonlinear anisotropic diffusive filtering applied to the oceańs MDT and a new approach based on edge-enhancing diffusion (EED) filtering is presented. EED filters enable controlling the direction and magnitude of the filtering, with subsequent enhancement of computations of the associated surface geostrophic currents (SGCs). Applying this method to a smooth MDT and to a noisy MDT, both for a region in the Northwestern Pacific Ocean, we found that EED filtering provides similar estimation of the current velocities in both cases, whereas a non-linear isotropic filter (the Perona and Malik filter) returns results influenced by local residual noise when a difficult case is tested. We found that EED filtering preserves all the advantages that the Perona and Malik filter have over the standard linear isotropic Gaussian filters. Moreover, EED is shown to be more stable and less influenced by outliers. This suggests that the EED filtering strategy would be preferred given its capabilities in controlling/preserving the SGCs.

  6. Screening and edge states in two-dimensional metals in a magnetic field

    SciTech Connect

    Shikin, V. B. Nazin, S. S.

    2011-08-15

    The length {lambda}{sub 0} at which the lateral electric-field component E{sub Up-Tack} perpendicular to the boundary is conserved near the boundary of two-dimensional (2D) samples, which is covered by 2D electrons, has been determined. The existence of the finite such length follows from the self-consistent process of the screening of the external fields forming the boundaries of real 2D systems by the electrons of the metal. The effect of E{sub Up-Tack} on the structure of magnetic edge states has been taken into account in the mean field approximation in a wide range of the external field from the semiclassical limit ({epsilon}{sub F} Much-Greater-Than h{omega}{sub c}), where {epsilon}{sub F} is the Fermi energy of the 2D system and h{omega}{sub c} is the cyclotron energy to the quantum Hall effect (QHE) region ({epsilon}{sub F} Much-Less-Than h{omega}{sub c}). The positions of the magnetic edge state peaks against the background of their ideal distribution along the perimeter of the 2D circle in the known problem of transverse magnetic focusing have been determined in the semiclassical limit. The systematic description of the structure of the skin layer with {lambda}{sub H} {>=} {lambda}{sub 0}, consisting of the set of the so-called integer strips (overlapping or independent), which are carriers of the universal quantum conductance, has been proposed in the QHE regime. A relatively large probability of the overlapping of the fields of adjacent strips, as well as the possibility of describing coupled integer cascades, is remarkable. The existing data on the tunneling current through integer strips in the {lambda}{sub H} layer providing suitable information on the actual state of the boundary of the 2D system have been commented. A natural analogy between the properties of magnetic edge states and a well-known problem of the details of the ballistic conductance {sigma}{sub Double-Vertical-Line }(H) of narrow electron channels in the magnetic field H has been

  7. A Bayesian state-space formulation of dynamic occupancy models.

    PubMed

    Royle, J Andrew; Kéry, Marc

    2007-07-01

    Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by non-detection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and WinBUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site

  8. A Bayesian state-space formulation of dynamic occupancy models

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.

    2007-01-01

    Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by nondetection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and Win BUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site

  9. Mapping quantum state dynamics in spontaneous emission.

    PubMed

    Naghiloo, M; Foroozani, N; Tan, D; Jadbabaie, A; Murch, K W

    2016-01-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893

  10. Mapping quantum state dynamics in spontaneous emission

    NASA Astrophysics Data System (ADS)

    Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.

    2016-05-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution.

  11. Mapping quantum state dynamics in spontaneous emission

    PubMed Central

    Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.

    2016-01-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893

  12. ACCRETION THROUGH THE INNER EDGES OF PROTOPLANETARY DISKS BY A GIANT SOLID STATE PUMP

    SciTech Connect

    Kelling, T.; Wurm, G.

    2013-09-01

    At the inner edge of a protoplanetary disk, solids are illuminated by stellar light. This illumination heats the solids and creates temperature gradients along their surfaces. Interactions with ambient gas molecules lead to a radial net gas flow. Every illuminated solid particle within the edge is an individual small gas pump transporting gas inward. In total, the inner edge can provide local mass flow rates as high as M-dot = 10{sup -5} M{sub Sun} yr{sup -1}.

  13. Markov state models of biomolecular conformational dynamics

    PubMed Central

    Chodera, John D.; Noé, Frank

    2014-01-01

    It has recently become practical to construct Markov state models (MSMs) that reproduce the long-time statistical conformational dynamics of biomolecules using data from molecular dynamics simulations. MSMs can predict both stationary and kinetic quantities on long timescales (e.g. milliseconds) using a set of atomistic molecular dynamics simulations that are individually much shorter, thus addressing the well-known sampling problem in molecular dynamics simulation. In addition to providing predictive quantitative models, MSMs greatly facilitate both the extraction of insight into biomolecular mechanism (such as folding and functional dynamics) and quantitative comparison with single-molecule and ensemble kinetics experiments. A variety of methodological advances and software packages now bring the construction of these models closer to routine practice. Here, we review recent progress in this field, considering theoretical and methodological advances, new software tools, and recent applications of these approaches in several domains of biochemistry and biophysics, commenting on remaining challenges. PMID:24836551

  14. Spin-polarised edge states in atomic Mn chains supported on Cu2N/Cu (100).

    PubMed

    Choi, Deung-Jang; Robles, Roberto; Gauyacq, Jean-Pierre; Rubio-Verdú, Carmen; Lorente, Nicolás; Ignacio Pascual, José

    2016-06-15

    Scanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu2N/Cu (100) reveal an unsuspected electronic edge state at [Formula: see text] eV above the Fermi energy. This Tamm-like state is strongly localised to the terminal Mn atoms of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at [Formula: see text]  -1 eV is mainly spin unpolarised due to the extended p-states of the N atoms that mediate the coupling between the Mn atoms in the chain. The spin polarisation of the edge state is affected by the antiferromagnetic ordering of the chains leading to non-trivial consequences. PMID:27158116

  15. Spin-polarised edge states in atomic Mn chains supported on Cu2N/Cu (100)

    NASA Astrophysics Data System (ADS)

    Choi, Deung-Jang; Robles, Roberto; Gauyacq, Jean-Pierre; Rubio-Verdú, Carmen; Lorente, Nicolás; Pascual, José Ignacio

    2016-06-01

    Scanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu2N/Cu (100) reveal an unsuspected electronic edge state at ∼ 1 eV above the Fermi energy. This Tamm-like state is strongly localised to the terminal Mn atoms of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at ∼   ‑1 eV is mainly spin unpolarised due to the extended p-states of the N atoms that mediate the coupling between the Mn atoms in the chain. The spin polarisation of the edge state is affected by the antiferromagnetic ordering of the chains leading to non-trivial consequences.

  16. Dynamics of molecules in extreme rotational states

    PubMed Central

    Yuan, Liwei; Teitelbaum, Samuel W.; Robinson, Allison; Mullin, Amy S.

    2011-01-01

    We have constructed an optical centrifuge with a pulse energy that is more than 2 orders of magnitude larger than previously reported instruments. This high pulse energy enables us to create large enough number densities of molecules in extreme rotational states to perform high-resolution state-resolved transient IR absorption measurements. Here we report the first studies of energy transfer dynamics involving molecules in extreme rotational states. In these studies, the optical centrifuge drives CO2 molecules into states with J ∼ 220 and we use transient IR probing to monitor the subsequent rotational, translational, and vibrational energy flow dynamics. The results reported here provide the first molecular insights into the relaxation of molecules with rotational energy that is comparable to that of a chemical bond.

  17. Ultrafast excited-state dynamics of isocytosine.

    PubMed

    Szabla, Rafał; Góra, Robert W; Šponer, Jiří

    2016-07-27

    The alternative nucleobase isocytosine has long been considered as a plausible component of hypothetical primordial informational polymers. To examine this hypothesis we investigated the excited-state dynamics of the two most abundant forms of isocytosine in the gas phase (keto and enol). Our surface-hopping nonadiabatic molecular dynamics simulations employing the algebraic diagrammatic construction to the second order [ADC(2)] method for the electronic structure calculations suggest that both tautomers undergo efficient radiationless deactivation to the electronic ground state with time constants which amount to τketo = 182 fs and τenol = 533 fs. The dominant photorelaxation pathways correspond to ring-puckering (ππ* surface) and C[double bond, length as m-dash]O stretching/N-H tilting (nπ* surface) for the enol and keto forms respectively. Based on these findings, we infer that isocytosine is a relatively photostable compound in the gas phase and in these terms resembles biologically relevant nucleobases. The estimated S1 [radiolysis arrow - arrow with voltage kink] T1 intersystem crossing rate constant of 8.02 × 10(10) s(-1) suggests that triplet states might also play an important role in the overall excited-state dynamics of the keto tautomer. The reliability of ADC(2)-based surface-hopping molecular dynamics simulations was tested against multireference quantum-chemical calculations and the potential limitations of the employed ADC(2) approach are briefly discussed. PMID:27346684

  18. Magnetic field effects on edge and bulk states in topological insulators based on HgTe/CdHgTe quantum wells with strong natural interface inversion asymmetry

    NASA Astrophysics Data System (ADS)

    Durnev, M. V.; Tarasenko, S. A.

    2016-02-01

    We present a theory of the electron structure and the Zeeman effect for the helical edge states emerging in two-dimensional topological insulators based on HgTe/HgCdTe quantum wells with strong natural interface inversion asymmetry. The interface inversion asymmetry, reflecting the real atomistic structure of the quantum well, drastically modifies both bulk and edge states. For the in-plane magnetic field, this asymmetry leads to a strong anisotropy of the edge-state effective g factor, which becomes dependent on the edge orientation. The interface inversion asymmetry also couples the counterpropagating edge states in the out-of-plane magnetic field leading to the opening of the gap in the edge-state spectrum by arbitrary small fields.

  19. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    NASA Astrophysics Data System (ADS)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  20. Numerical evaluations of the effect of leading-edge protuberances on the static and dynamic stall characteristics of an airfoil

    NASA Astrophysics Data System (ADS)

    Cai, C.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Wang, F. B.

    2013-12-01

    Wavy leading edge modifications of airfoils through imitating humpback whale flippers has been considered as a viable passive way to control flow separation. In this paper, flows around a baseline 634-021 airfoil and one with leading-edge sinusoidal protuberances were simulated using S-A turbulence model. When studying the static stall characteristics, it is found that the modified airfoil does not stall in the traditional manner, with increasing poststall lift coefficients. At high angles of attack, the flows past the wavy leading edge stayed attached for a distance, while the baseline foil is in a totally separated flow condition. On this basis, the simulations of pitch characteristic were carried out for both foils. At high angles of attack mild variations in lift and drag coefficients of the modified foil can be found, leading to a smaller area of hysteresis loop. The special structure of wavy leading edge can help maintain high consistency of the flow field in dynamic pitching station within a particular range of angles of attack.

  1. Stochastic Model of Integrin-Mediated Signaling and Adhesion Dynamics at the Leading Edges of Migrating Cells

    PubMed Central

    Cirit, Murat; Krajcovic, Matej; Choi, Colin K.; Welf, Erik S.; Horwitz, Alan F.; Haugh, Jason M.

    2010-01-01

    Productive cell migration requires the spatiotemporal coordination of cell adhesion, membrane protrusion, and actomyosin-mediated contraction. Integrins, engaged by the extracellular matrix (ECM), nucleate the formation of adhesive contacts at the cell's leading edge(s), and maturation of nascent adhesions to form stable focal adhesions constitutes a functional switch between protrusive and contractile activities. To shed additional light on the coupling between integrin-mediated adhesion and membrane protrusion, we have formulated a quantitative model of leading edge dynamics combining mechanistic and phenomenological elements and studied its features through classical bifurcation analysis and stochastic simulation. The model describes in mathematical terms the feedback loops driving, on the one hand, Rac-mediated membrane protrusion and rapid turnover of nascent adhesions, and on the other, myosin-dependent maturation of adhesions that inhibit protrusion at high ECM density. Our results show that the qualitative behavior of the model is most sensitive to parameters characterizing the influence of stable adhesions and myosin. The major predictions of the model, which we subsequently confirmed, are that persistent leading edge protrusion is optimal at an intermediate ECM density, whereas depletion of myosin IIA relieves the repression of protrusion at higher ECM density. PMID:20195494

  2. Edge states, spin transport, and impurity-induced local density of states in spin-orbit coupled graphene

    NASA Astrophysics Data System (ADS)

    Seshadri, Ranjani; Sengupta, K.; Sen, Diptiman

    2016-01-01

    We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.

  3. Dynamics of helical states in MST

    NASA Astrophysics Data System (ADS)

    Munaretto, Stefano; Auriemma, F.; Brower, D.; Chapman, B. E.; den Hartog, D. J.; Ding, W. X.; Duff, J.; Franz, P.; Goetz, J. A.; Holly, D.; Lin, L.; McCollam, K. J.; McGarry, M.; Morton, L.; Nornberg, M. D.; Parke, E.; Sarff, J. S.

    2014-10-01

    The thermal and the magnetic dynamics of quasi-single-helicity (QSH) plasmas evolve independently during the formation and sustainment of the core helical structure. At higher plasma current (and Lundquist number) MST plasmas transition from an axisymmetric multi-helicity state to a QSH state characterized by a strong core helical mode and reduced secondary mode amplitudes. Plasmas in the QSH state tend to wall-lock, often in an orientation that is unfavorable for optimized measurements of the 3D structure using MST's advanced diagnostics. Recently a technique to control the locking position through an applied resonant magnetic perturbation has been developed. Using this technique it is possible to adjust the 3D phase more optimally for specific diagnostics, to study the dynamics of the QSH structure and thermal features. The multi-chord FIR interferometer shows the presence of a density structure for the duration of the QSH state. Measurements of the time evolution of the electron temperature profile using the Thomson Scattering diagnostic reveal that the transition to QSH allows the presence of a 3D thermal structure, but this structure is intermittent. Understanding the mechanism(s) driving these dynamics is the goal of this work. Work supported by the US DOE and NSF.

  4. State-Resolved Dynamics of Photofragmentation

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Pern

    2003-10-01

    We discuss experiments on the dynamics of photodissociation that employ methods to select the energy, sometimes quantum states, of the reactant and to determine the quantum states and energy, sometimes also the orientation and alignment, of products. A summary of new advances of experimental methods is followed by applications to photodissociation of various types. Representative examples of simple bond fission, molecular elimination, and three-body dissociation with determined electronic states-sometimes the orientation of their angular momentum-of product atoms or distributions of electronic and internal states of product molecules illustrate the detailed information and insight that one can derive from such experiments. Photodissociation of van der Waals complexes, ions, species adsorbed on surfaces, and species in solution is excluded from this review.

  5. Motorcycle state estimation for lateral dynamics

    NASA Astrophysics Data System (ADS)

    Teerhuis, A. P.; Jansen, S. T. H.

    2012-08-01

    The motorcycle lean (or roll) angle development is one of the main characteristics of motorcycle lateral dynamics. Control of motorcycle motions requires an accurate assessment of this quantity and for safety applications also the risk of sliding needs to be considered. Direct measurement of the roll angle and tyre slip is not available; therefore, a method of model-based estimation is developed to estimate the state of a motorcycle. This paper investigates the feasibility of such a motorcycle state estimator (MCSE). A simplified analytic model of a motorcycle is developed by comparison to an extended multi-body model of the motorcycle, designed in Matlab/SimMechanics. The analytic model is used inside an extended Kalman filter. Experimental results of an instrumented Yamaha FJR1300 motorcycle show that the MCSE is a feasible concept for obtaining signals related to the lateral dynamics of the motorcycle.

  6. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    SciTech Connect

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  7. Dynamically defined measures and equilibrium states

    NASA Astrophysics Data System (ADS)

    Werner, Ivan

    2011-12-01

    A technique of dynamically defined measures is developed and its relation to the theory of equilibrium states is shown. The technique uses Carathéodory's method and the outer measure introduced in a previous work by I. Werner [Math. Proc. Camb. Phil. Soc. 140(2), 333-347 (2006), 10.1017/S0305004105009072]. As an application, equilibrium states for contractive Markov systems [I. Werner, J. London Math. Soc. 71(1), 236-258 (2005), 10.1112/S0024610704006088] are obtained.

  8. Design and longitudinal dynamic stability analysis of a slender delta kite for high altitudes using leading edge suction analogy

    NASA Astrophysics Data System (ADS)

    Madduri, Bharath

    In this thesis, the longitudinal dynamic stability modes, namely Phugoid and Short-period of delta kite with single tether are examined, for different aspect ratios (A) and flow conditions. The equations of motion, of kite are solved in polar-inertial wind frame and the tether is approximated by straight line elements. The vortex lift and induced drag due to leading edge vortices are calculated using Polhamus leading edge suction analogy. The Polhamus proportionality constants (Kp, Kv) are used to estimate the overall coefficient of lift and drag (C L, CD) and are computed using Multhopp lifting surface theory. The values of total coefficient of lift and drag (CL, CD) are examined for a wide variety of aspect ratio of delta kite and are validated by comparing with the experimental data. Linear stability analysis is performed for the chosen design variables to ensure the nominal design has stable longitudinal dynamics. A plot of the root locus of the system matrix for longitudinal dynamics as a function of geometry and flight conditions, provided an intuitive understanding of the flight modes of the kite, with respect to design parameters of interest.

  9. State-to-state reaction dynamics: A selective review

    NASA Astrophysics Data System (ADS)

    Teslja, Alexey; Valentini, James J.

    2006-10-01

    A selective review of state-to-state reaction dynamics experiments is presented. The review focuses on three classes of reactions that exemplify the rich history and illustrate the current state of the art in such work. These three reactions are (1) the hydrogen exchange reaction, H +H2→H2+H and its isotopomers; (2) the H +RH→H2+R reactions, where RH is an alkane, beginning with H +CH4→H2+CH3 and extending to much larger alkanes; and (3) the Cl +RH→HCl+R reactions, principally Cl +CH4→HCl+CH3. We describe the experiments, discuss their results, present comparisons with theory, and introduce heuristic models.

  10. Slope-scale dynamic states of rockfalls

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Crosta, G. B.

    2009-04-01

    Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a

  11. Dynamic interactions of helium-vacancy clusters with edge dislocations in alpha-Fe

    SciTech Connect

    Yang, Li; Zu, Xiaotao T.; Gao, Fei; Peng, SM; Heinisch, Howard L.; Long, XG; Kurtz, Richard J.

    2010-04-01

    The effects of He-vacancy (He-V) clusters on the mobility of an a/2<111>{110} edge dislocation in alpha-Fe are investigated by atomic simulation with empirical potentials at 0 K. A number of small HenVm (n/m = 0~4) clusters initially placed at the same position on the slip plane are comparatively studied. The results show that the interaction of He-V clusters with edge dislocations depends on not only the helium-to-vacancy (He/V) ratio, but also the cluster size. The small He-V clusters with low He/V ratios have a small effect on the dislocation mobility, but the larger clusters with higher He/V ratios significantly increase the critical resolved shear stress for dislocation glide. One of interesting results is that the He-V clusters almost stay at their original positions, and do not move along with the dislocation.

  12. Dynamics of GaN band edge photoluminescence at near-room-temperature regime

    NASA Astrophysics Data System (ADS)

    Chen, Xiang-Bai; Huso, Jesse; Morrison, John L.; Bergman, Leah

    2006-02-01

    In this paper we present an approach based on the known radiative recombination rate model to study the dynamics and characteristics of photoluminescence (PL) transitions at room-temperature (RT) regime of GaN thin film. The model states that the dependence of the PL intensity on the laser excitation intensity is IPL~Ilaserα in which the value of the exponent α reveals whether the PL is due to an exciton or band gap recombination mechanism. We elaborated on the model and studied the temperature behavior of the exponent α in the range of 180-400 K in order to explore the recombination type for that range. It was found that at the temperature range just below RT ~180-270 K the exponent is a slowly increasing function of temperature and has an average value of ~1.2, implying a free-exciton recombination mechanism. At ~280 K the value of the exponent was found to exhibit a step-function-like behavior with a sharp increase from 1.2 to 1.7. At the temperature range just above RT ~300-400 K the exponent was found again to be a slowly increasing function of temperature with an average value of ~1.7, implying that at that temperature range the PL involves mainly band gap transitions. From the temperature behavior of the exponent, the activation energy of the free exciton was inferred to be ~24 meV.

  13. Entanglement dynamics via coherent-state propagators

    SciTech Connect

    Ribeiro, A. D.; Angelo, R. M.

    2010-11-15

    The dynamical generation of entanglement in closed bipartite systems is investigated in the semiclassical regime. We consider a model of two particles, initially prepared in a product of coherent states, evolving in time according to a generic Hamiltonian, and derive a formula for the linear entropy of the reduced density matrix using the semiclassical propagator in the coherent-state representation. The formula is explicitly written in terms of quantities that define the stability of classical trajectories of the underlying classical system. The formalism is then applied to the problem of two nonlinearly coupled harmonic oscillators, and the result is shown to be in remarkable agreement with the exact quantum measure of entanglement in the short-time regime. An important by-product of our approach is a unified semiclassical formula, which contemplates both the coherent-state propagator and its complex conjugate.

  14. Dynamic edge effects in small mammal communities across a conservation-agricultural interface in Swaziland.

    PubMed

    Hurst, Zachary M; McCleery, Robert A; Collier, Bret A; Fletcher, Robert J; Silvy, Nova J; Taylor, Peter J; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269

  15. Dynamic Edge Effects in Small Mammal Communities across a Conservation-Agricultural Interface in Swaziland

    PubMed Central

    Hurst, Zachary M.; McCleery, Robert A.; Collier, Bret A.; Fletcher, Robert J.; Silvy, Nova J.; Taylor, Peter J.; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269

  16. Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Drops of Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Yunker, Peter J.; Lohr, Matthew A.; Still, Tim; Borodin, Alexei; Durian, D. J.; Yodh, A. G.

    2013-03-01

    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge on the air-water interface in two-dimensions. The deposition front, or growth line, varies in space and time. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes. Interestingly, three distinct growth processes were discovered in the evaporating colloidal suspensions by tuning particle shape-dependent capillary interactions and thus varying the microscopic rules of deposition. Sphere deposition exhibits a classic Poisson like growth process; deposition of slightly anisotropic particles, however, appears to belong to the Kardar-Parisi-Zhang (KPZ) universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by KPZ fluctuations in the presence of quenched disorder. We gratefully acknowledge financial support from the National Science Foundation through DMR-0804881, the PENN MRSEC DMR11-20901, and NASA NNX08AO0G.

  17. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film.

    PubMed

    Wang, Z F; Zhang, Huimin; Liu, Defa; Liu, Chong; Tang, Chenjia; Song, Canli; Zhong, Yong; Peng, Junping; Li, Fangsen; Nie, Caina; Wang, Lili; Zhou, X J; Ma, Xucun; Xue, Q K; Liu, Feng

    2016-09-01

    Superconducting and topological states are two most intriguing quantum phenomena in solid materials. The entanglement of these two states, the topological superconducting state, will give rise to even more exotic quantum phenomena. While many materials are found to be either a superconductor or a topological insulator, it is very rare that both states exist in one material. Here, we demonstrate by first-principles theory as well as scanning tunnelling spectroscopy and angle-resolved photoemission spectroscopy experiments that the recently discovered 'two-dimensional (2D) superconductor' of single-layer FeSe also exhibits 1D topological edge states within an energy gap of ∼40 meV at the M point below the Fermi level. It is the first 2D material that supports both superconducting and topological states, offering an exciting opportunity to study 2D topological superconductors through the proximity effect. PMID:27376684

  18. 12 CFR 211.6 - Permissible activities of Edge and agreement corporations in the United States.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulation D (12 CFR part 204). (3) Credit activities. An Edge or agreement corporation may: (i) Finance the..., and other depository institutions (as described in Regulation D (12 CFR part 204)); or (G) Are... depository institutions (as described in Regulation D (12 CFR part 204)); (ii) Issue obligations to...

  19. 12 CFR 211.6 - Permissible activities of Edge and agreement corporations in the United States.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... economies and industries only. (7) Banking services for employees. Provide banking services, including... credit or services to the customer; (F) Are received from Edge or agreement corporations, foreign banks, and other depository institutions (as described in Regulation D (12 CFR part 204)); or (G)...

  20. 12 CFR 211.6 - Permissible activities of Edge and agreement corporations in the United States.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and other depository institutions (as described in Regulation D (12 CFR part 204)); or (G) Are... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Permissible activities of Edge and agreement... permitted by section 25A(6) of the FRA (12 U.S.C. 615) and are incidental to international or...

  1. 12 CFR 211.6 - Permissible activities of Edge and agreement corporations in the United States.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and other depository institutions (as described in Regulation D (12 CFR part 204)); or (G) Are... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Permissible activities of Edge and agreement... permitted by section 25A(6) of the FRA (12 U.S.C. 615) and are incidental to international or...

  2. Toward integrated multi-scale pedestal simulations including edge-localized-mode dynamics, evolution of edge-localized-mode cycles, and continuous fluctuations

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xia, T. Y.; Yan, N.; Liu, Z. X.; Kong, D. F.; Diallo, A.; Groebner, R. J.; Hubbard, A. E.; Hughes, J. W.

    2016-05-01

    The high-fidelity BOUT++ two-fluid code suite has demonstrated significant recent progress toward integrated multi-scale simulations of tokamak pedestal, including Edge-Localized-Mode (ELM) dynamics, evolution of ELM cycles, and continuous fluctuations, as observed in experiments. Nonlinear ELM simulations show three stages of an ELM event: (1) a linear growing phase; (2) a fast crash phase; and (3) a slow inward turbulence spreading phase lasting until the core heating flux balances the ELM energy loss and the ELM is terminated. A new coupling/splitting model has been developed to perform simulations of multi-scale ELM dynamics. Simulation tracks five ELM cycles for 10 000 Alfvén times for small ELMs. The temporal evolution of the pedestal pressure is similar to that of experimental measurements for the pedestal pressure profile collapses and recovers to a steep gradient during ELM cycles. To validate BOUT++ simulations against experimental data and develop physics understanding of the fluctuation characteristics for different tokamak operation regimes, both quasi-coherent fluctuations (QCFs) in ELMy H-modes and Weakly Coherent Modes in I-modes have been simulated using three dimensional 6-field 2-fluid electromagnetic model. The H-mode simulation results show that (1) QCFs are localized in the pedestal region having a predominant frequency at f ≃300 -400 kHz and poloidal wavenumber at kθ≃0.7 cm-1 , and propagate in the electron diamagnetic direction in the laboratory frame. The overall signatures of simulation results for QCFs show good agreement with C-Mod and DIII-D measurements. (2) The pedestal profiles giving rise to QCFs are near the marginal instability threshold for ideal peeling-ballooning modes for both C-Mod and DIII-D, while the collisional electromagnetic drift-Alfvén wave appears to be dominant for DIII-D. (3) Particle diffusivity is either smaller than the heat diffusivity for DIII-D or similar to the heat diffusivity for C-Mod. Key I

  3. Angiosperm flora used by meliponine guilds (Apidae, Meliponina) occurring at rainforest edges in the state of Ceará, Brazil.

    PubMed

    Lima-Verde, Luiz W; Loiola, Maria I B; Freitas, Breno M

    2014-09-01

    Information about the use of floristic resources of the immediate edges of ombrophilous forest (Atlantic rainforest) fragments by stingless bees is not readily available in the scientific literature. Considering the importance of these plant species for local guilds of stingless bees, this study aimed to identify and characterize the flora of the immediate borders of four Atlantic rainforest fragments situated in Baturité massif, state of Ceará, used as food resource by stingless bees. We studied the growth-form of the plants, the floristic similarity between edges and the effect of rainfall on the flowering, and suggested simple techniques for handling these areas. We compiled a total of 82 plant species with a predominance of tree and shrub form. There were different floristic richness between areas and rainfall had differentiated influence on flowering, according to the edge. We concluded that the florist components of the studied edges are relevant to the stingless bee guilds, but alternative management practices are needed to conserve both plant and bee species. PMID:25004131

  4. Estimating Power System Dynamic States Using Extended Kalman Filter

    SciTech Connect

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw; Zhou, Ning

    2014-10-31

    Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This new dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.

  5. The mechanisms of spatial and temporal patterning of cell-edge dynamics.

    PubMed

    Verkhovsky, Alexander B

    2015-10-01

    Adherent cells migrate and change their shape by means of protrusion and retraction at their edges. When and where these activities occur defines the shape of the cell and the way it moves. Despite a great deal of knowledge about the structural organization, components, and biochemical reactions involved in protrusion and retraction, the origins of their spatial and temporal patterns are still poorly understood. Chemical signaling circuitry is believed to be an important source of patterning, but recent studies highlighted mechanisms based on physical forces, motion, and mechanical feedback. PMID:26432504

  6. Trailing-edge dynamics and morphing of a deformable flat plate at high Reynolds number by time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Chinaud, M.; Rouchon, J. F.; Duhayon, E.; Scheller, J.; Cazin, S.; Marchal, M.; Braza, M.

    2014-05-01

    The present paper investigates the turbulent wake structure in the near-region past the trailing edge of a deformable inclined plate. The plate is actuated by shape memory alloys. Using these actuators a significant deformation (bending) can be achieved (≈10% of the chord) under the aerodynamic loads corresponding to a Reynolds number of 200 000. The shear-layer dynamics as well as the mean velocity and turbulent stresses have been quantified for a reference case (flat plate inclined at 10°). The present study investigates the modification of the shear-layer and near-wake dynamics achieved by means of the dynamic deformation of the plate compared with static cases that include three intermediate positions of the deformed plate. The comparison of the static cases with the dynamic regime discusses the validity of the quasi-static hypothesis for the present low frequency actuation. It is found that the present actuation enhances the shearing mechanisms past the trailing-edge and modifies the von-Kármán mode as well as the structure of the shear-layer, Kelvin-Helmholtz eddies. Moreover, the increase of the bending enhances the appearance of the pairing mechanism between successive shear-layer eddies and the interaction between the von-Kármán and shear-layer instability modes. Furthermore, it has been found that the increase of the plate's curvature leads to an attenuation of the shear-layer amplitude and of the overall spectral energy, concerning the most deformed position.

  7. Invisible RNA state dynamically couples distant motifs

    PubMed Central

    Lee, Janghyun; Dethoff, Elizabeth A.; Al-Hashimi, Hashim M.

    2014-01-01

    Using on- and off-resonance carbon and nitrogen R1ρ NMR relaxation dispersion in concert with mutagenesis and NMR chemical shift fingerprinting, we show that the transactivation response element RNA from the HIV-1 exists in dynamic equilibrium with a transient state that has a lifetime of ∼2 ms and population of ∼0.4%, which simultaneously remodels the structure of a bulge, stem, and apical loop. This is accomplished by a global change in strand register, in which bulge residues pair up with residues in the upper stem, causing a reshuffling of base pairs that propagates to the tip of apical loop, resulting in the creation of three noncanonical base pairs. Our results show that transient states can remodel distant RNA motifs and possibly give rise to mechanisms for rapid long-range communication in RNA that can be harnessed in processes such as cooperative folding and ribonucleoprotein assembly. PMID:24979799

  8. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  9. Intense laser field and conduction band-edge nonparabolicity effects on hydrogenic impurity states of InGaN QW

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou

    2015-09-01

    In this paper, hydrogenic impurity ground-state binding energy in unstrained wurtzite (In, Ga)N symmetric quantum well is investigated. The heterostructure is considered under the action of an intense laser field (ILF) incorporating an additional internal probe as well as the conduction band-edge nonparabolicity effect (CBENP). The variational approach is used within the framework of single band effective-mass approximation with two-parametric 1S-hydrogenic trial wavefunction. The competition effect between internal and external perturbations is also shown. Our results reveal that the binding energy is the largest for the well width around the effective Bohr radius and is strongly influenced by both parameters. Moreover, the principle effect of ILF (CBENP) is to reduce (enhance) the binding energy. It is found that the lift of the conduction band-edge can be easily eliminated by adjusting the ILF-parameter.

  10. Dynamics of Liquids in Edges and Corners (DYLCO): IML-2 Experiment for the BDPU

    NASA Technical Reports Server (NTRS)

    Langbein, D.; Weislogel, M.

    1998-01-01

    Knowledge of the behavior of fluids possessing free surfaces is important to many fluid systems, particularly in space, where the normally subtle effects of surface wettability play a more dramatic and often surprising role. DYLCO for the IML-2 mission was proposed as a simple experiment to probe the particular behavior of capillary surfaces in containers of irregular cross section. Temperature control was utilized to vary the fluid-solid contact angle, a questionable thermodynamic parameter of the system, small changes in which can dramatically influence the configuration, stability, and flow of a capillary surface. Container shapes, test fluid, and temperature ranges were selected for observing both local changes in interface curvature as well as a global change in fluid orientation due to a critical wetting phenomenon. The experiment hardware performed beyond what was expected and fluid interfaces could be readily digitized post flight to show the dependence of the interface curvature on temperature. For each of the containers tested surfaces were observed which did not satisfy the classic equations for the prediction of interface shape with constant contact angle boundary condition. This is explained by the presence of contact angle hysteresis arising from expansion and contraction of the liquid during the heating and cooling steps of the test procedure. More importantly, surfaces exceeding the critical surface curvature required for critical wetting were measured, yet no wetting was observed. These findings are indeed curious and pose key questions concerning the role of hysteresis for this critical wetting phenomena. The stability of such surfaces was determined numerically and it is shown that stability is enhance (reduced) when a surface is in its 'advancing' ('receding') state, The analysis shows complete instability as the critical wetting condition is reached. The case of ideal dynamic wetting is addressed analytically in detail with results of

  11. Near-edge X-ray absorption spectroscopy signature of image potential states in multilayer epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Coelho, P. M.; dos Reis, D. D.; Matos, M. J. S.; Mendes-de-Sa, T. G.; Goncalves, A. M. B.; Lacerda, R. G.; Malachias, A.; Magalhaes-Paniago, R.

    2016-02-01

    Single layer behavior in multilayer epitaxial graphene has been a matter of intense investigation. This is due to the layer decoupling that occurs during growth of graphene on some types of substrates, such as carbon-terminated silicon carbide. We show here that near-edge X-ray absorption spectroscopy can be used to observe the signature of this decoupling. To this end, samples of multilayer graphene from silicon carbide sublimation were grown with different degrees of decoupling. Raman spectroscopy was used to infer the degree of structural decoupling. X-ray grazing-incidence diffraction and scanning tunneling microscopy showed that growth initiates with the presence of bilayer graphene commensurate structures, while layer decoupling is associated to the formation of incommensurate structures observed for longer sublimation time. Near-edge X-ray absorption spectroscopy was used to probe the electronic states above the Fermi energy. Besides the σ* and π* empty states, image potential states are observed and show a clear change of intensity as a function of incident angle. These image potential states evolve from a graphite- to graphene-like behavior as a function of growth time and can be used to infer the degree of structural coupling among layers.

  12. Landscape changes and colony site dynamics: How gull-billed terns cope at the sea's edge

    USGS Publications Warehouse

    Erwin, R.M.; Williams, B.; Watts, B.; Truitt, B.; Stotts, D.; Eyler, B.

    1996-01-01

    Gull-billed Terns have declined dramatically in coastal Virginia over the past 20 years, with apparently low reproductive success. They nest, usually in mixed-species colonies, in two discrete habitat types: large, sandy barrier islands or shell/sandbars on the edges of marsh islands in the lagoon systems. The smaller shell/sandbars seem to provide more consistent nestling habitat and predation pressures than do barrier islands among years. We hypothesize that colony site turnover (between years) should be higher in the more uncertain barrier island habitats than among the shell/sandbar colonies. Our results do not corroborate the prediction. We postulate that social (and other) factors may explain these differences.

  13. Dynamic state allocation for MEG source reconstruction

    PubMed Central

    Woolrich, Mark W.; Baker, Adam; Luckhoo, Henry; Mohseni, Hamid; Barnes, Gareth; Brookes, Matthew; Rezek, Iead

    2013-01-01

    Our understanding of the dynamics of neuronal activity in the human brain remains limited, due in part to a lack of adequate methods for reconstructing neuronal activity from noninvasive electrophysiological data. Here, we present a novel adaptive time-varying approach to source reconstruction that can be applied to magnetoencephalography (MEG) and electroencephalography (EEG) data. The method is underpinned by a Hidden Markov Model (HMM), which infers the points in time when particular states re-occur in the sensor space data. HMM inference finds short-lived states on the scale of 100 ms. Intriguingly, this is on the same timescale as EEG microstates. The resulting state time courses can be used to intelligently pool data over these distinct and short-lived periods in time. This is used to compute time-varying data covariance matrices for use in beamforming, resulting in a source reconstruction approach that can tune its spatial filtering properties to those required at different points in time. Proof of principle is demonstrated with simulated data, and we demonstrate improvements when the method is applied to MEG. PMID:23545283

  14. Dynamical States of Low Temperature Cirrus

    NASA Technical Reports Server (NTRS)

    Barahona, D.; Nenes, A.

    2011-01-01

    Low ice crystal concentration and sustained in-cloud supersaturation, commonly found in cloud observations at low temperature, challenge our understanding of cirrus formation. Heterogeneous freezing from effloresced ammonium sulfate, glassy aerosol, dust and black carbon are proposed to cause these phenomena; this requires low updrafts for cirrus characteristics to agree with observations and is at odds with the gravity wave spectrum in the upper troposphere. Background temperature fluctuations however can establish a dynamical equilibrium between ice production and sedimentation loss (as opposed to ice crystal formation during the first stages of cloud evolution and subsequent slow cloud decay) that explains low temperature cirrus properties. This newly-discovered state is favored at low temperatures and does not require heterogeneous nucleation to occur (the presence of ice nuclei can however facilitate its onset). Our understanding of cirrus clouds and their role in anthropogenic climate change is reshaped, as the type of dynamical forcing will set these clouds in one of two preferred microphysical regimes with very different susceptibility to aerosol.

  15. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    SciTech Connect

    Nelson, George J.; Harris, William M.; Izzo, John R. Jr.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu Yijin; Pianetta, Piero

    2011-04-25

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  16. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    NASA Astrophysics Data System (ADS)

    Nelson, George J.; Harris, William M.; Izzo, John R.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero

    2011-04-01

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  17. Spin-filtered Edge States with an Electrically Tunable Gap in a Two-Dimensional Topological Crystallin Insulator

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Hsieh, Timothy H.; Wei, Peng; Duan, Wenhui; Moodera, Jagadeesh; Fu, Liang

    2014-03-01

    Three-dimensional topological crystalline insulators (TCIs) were recently predicted and observed in the SnTe class of IV-VI semiconductors, which host metallic surface states protected by crystal symmetries. In this work, we study thin films of these materials and expose their potential device applications. We demonstrate that thin films of SnTe and Pb1-xSnxSe(Te) grown along the (001) direction are topologically nontrivial in a wide range of film thickness and carry conducting spin-filtered edge states that are protected by the (001) mirror symmetry via a topological invariant. Application of an electric field perpendicular to the film will break the mirror symmetry and generate a band gap in these edge states. This functionality motivates us to propose a novel topological transistor device, in which charge and spin transport are maximally entangled and simultaneously controlled by an electric field. The high on/off operation speed and coupling of spin and charge in such a device may lead to electronic and spintronic applications for TCIs. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.

  18. Strong reflection and periodic resonant transmission of helical edge states in topological-insulator stub-like resonators

    SciTech Connect

    Takagaki, Y.

    2015-08-07

    The helical edge states of two-dimensional topological insulators (TIs) experience appreciable quantum mechanical scattering in narrow channels when the width changes abruptly. The interference of the geometry scattering in narrow-wide-narrow waveguide structures is shown to give rise to the strong suppression of transmission when the incident energy is barely above the propagation threshold. Periodic resonant transmission takes place in this high reflection regime while the length of the wide section is varied. The resonance condition is governed by the transverse confinement in the wide section, where the form of quantization is manifested to differ for the two orthogonal directions. The confined energy levels in TI quantum dots are derived based on this observation. In addition, the off-diagonal spin-orbit term is found to produce an anomalous resonance state, which merges with the bottom ordinary resonance state to annihilate.

  19. The effect of stacking fault energy on interactions between an edge dislocation and a spherical void by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Asari, K.; Hetland, O. S.; Fujita, S.; Itakura, M.; Okita, T.

    2013-11-01

    Molecular dynamics simulations were conducted using a set of six interatomic potentials for FCC metals that differed only in stacking fault energy (SFE), to clarify the effect of SFE on interactions between a dissociated edge dislocation and a void. There are two different types of interaction mechanism: separate depinning of the individual partial dislocations and almost simultaneous depinning of the combined partial dislocations. The interaction mechanism depends on both the SFE and void size, and changes the absolute value of the critical resolved shear stress (CRSS) and its dependence on the SFE. In the separate depinning case, the CRSS is relatively low and is almost independent of the SFE, while in the simultaneous case, the CRSS is increases with SFE. The void size for which the change in interaction mechanism occurs increases with decreasing SFE.

  20. Identifying low-dimensional dynamics in type-I edge-localised-mode processes in JET plasmas

    SciTech Connect

    Calderon, F. A.; Chapman, S. C.; Nicol, R. M.; Dendy, R. O.; Webster, A. J.; Alper, B. [EURATOM Collaboration: JET EFDA Contributors

    2013-04-15

    Edge localised mode (ELM) measurements from reproducibly similar plasmas in the Joint European Torus (JET) tokamak, which differ only in their gas puffing rate, are analysed in terms of the pattern in the sequence of inter-ELM time intervals. It is found that the category of ELM defined empirically as type I-typically more regular, less frequent, and having larger amplitude than other ELM types-embraces substantially different ELMing processes. By quantifying the structure in the sequence of inter-ELM time intervals using delay time plots, we reveal transitions between distinct phase space dynamics, implying transitions between distinct underlying physical processes. The control parameter for these transitions between these different ELMing processes is the gas puffing rate.

  1. Dynamical Heterogeneity of the Glassy State

    NASA Astrophysics Data System (ADS)

    Wisitsorasak, Apiwat

    The understanding and the complete description of the glass transition are impeded by the complexity of nature of the glass. Parts of this complexity come from the emergence of long-lived inherent structures of a liquid at a temperature below which the activated reconfiguration events play a dominant role. Molecules in a glass change their locations through the activated process at a rate which varies throughout the glass owing to these local and aperiodic structures. Motions in one location also cause or relieve constrains, thereby altering the rate of transitions of neighboring regions. The key to understanding this problem is the interplay between the activated events that generate mobility and the transport of mobility. In the following we explore fluctuating mobility generation and transport in glasses to understand the dynamics of the glassy state within the framework of the random first order transition theory of glass. Fluctuating mobility generation and transport in the glass that arise from there being a distribution of local stability and thus effective temperature are treated by numerically solving stochastic continuum equations for mobility and fictive temperature fields. Fluctuating spatiotemporal structures in aging and rejuvenating glasses lead to dynamical heterogeneity in glasses with characteristics that are distinct from those found in the equilibrium liquid. We illustrate in this thesis how the heterogeneity in glasses gives rises of a non-Gaussian distribution of activation free energies, the stretching exponent, and the growth of characteristic lengths. These are studied along with the four-point dynamic correlation function. Asymmetric thermodynamic responses upon heating and cooling are also predicted to be the results of the heterogeneity and the out-of-equilibrium behavior of glasses below the glass transition temperature. Moreover the dynamical heterogeneity can lead to a growth front of mobility in rejuvenating glasses that emanates

  2. Fragility of Nonlocal Edge-Mode Transport in the Quantum Spin Hall State

    NASA Astrophysics Data System (ADS)

    Mani, Arjun; Benjamin, Colin

    2016-07-01

    Nonlocal currents and voltages are better at withstanding the deleterious effects of dephasing than local currents and voltages in nanoscale systems. This hypothesis is known to be true in quantum Hall setups. We test this hypothesis in a four-terminal quantum spin Hall setup wherein we compare the local resistance measurement with the nonlocal one. In addition to inelastic-scattering-induced dephasing, we also test the resilience of the resistance measurements in the aforesaid setups to disorder and spin-flip scattering. We find the axiom that nonlocal resistance is less affected by the detrimental effects of disorder and dephasing to be untrue, in general, for the quantum spin Hall case. This has important consequences since it is widely communicated that nonlocal transport through edge channels in topological insulators have potential applications in low-power information processing.

  3. Intrinsic and dynamically generated scalar meson states

    NASA Astrophysics Data System (ADS)

    Shakin, C. M.; Wang, Huangsheng

    2001-01-01

    Recent work by Maltman has given us confidence that our assignment of scalar meson states to various nonets based upon our generalized Nambu-Jona-Lasinio (NJL) model is correct. [For example, in our model the a0(980) and the f0(980) are in the same nonet as the K*0(1430).] In this work we make use of our model to provide a precise definition of ``preexisting'' resonances and ``dynamically generated'' resonances when considering various scalar mesons. [This distinction has been noted by Meissner in his characterization of the f0(400-1200) as nonpreexisting.] We define preexisting (or intrinsic) resonances as those that appear as singularities of the qq¯ T matrix and are in correspondence with qq¯ states bound in the confining field. [Additional singularities may be found when studying the T matrices describing π-π or π-K scattering, for example. Such features may be seen to arise, in part, from t-channel and u-channel ρ exchange in the case of π-π scattering, leading to the introduction of the σ(500-600). In addition, threshold effects in the qq¯ T matrix can give rise to significant broad cross section enhancements. The latter is, in part, responsible for the introduction of the κ(900) in a study of π-K scattering, for example.] We suggest that it is only the intrinsic resonances which correspond to qq¯ quark-model states, and it is only the intrinsic states that are to be used to form quark-model qq¯ nonets of states. [While the κ(900) and σ(500-600) could be placed in a nonet of dynamically generated states, it is unclear whether there is evidence that requires the introduction of other members of such a nonet.] In this work we show how the phenomena related to the introduction of the σ(500-600) and the κ(900) are generated in studies of π-π and π-K scattering, making use of our generalized Nambu-Jona-Lasinio model. We also calculate the decay constants for the a0 and K*0 mesons and compare our results with those obtained by Maltman. We find

  4. Detecting Interplanetary Dust Particles with Radars to Study the Dynamics at the Edge of the Space

    NASA Technical Reports Server (NTRS)

    Janches, Diego

    2015-01-01

    The Earth's mesosphere is the region of the atmosphere between approximately 60-120 km altitude, where the transition from hydrodynamic flow to molecular diffusion occurs. It is highly dynamic region where turbulence by wave braking is produced and energy is deposited from sources from both, below and above this altitude range. Because aircraft and nearly all balloons reach altitudes below approximately 50 km and orbital spacecrafts are well above approximately 400 km, the mesosphere has only been accessed through the use of sounding rockets or remote sensing techniques, and as a result, it is the most poorly understood part of the atmosphere. In addition, millions of Interplanetary Dust Particles (IDPs) enter the atmosphere. Within the mesosphere most of these IDPs melt or vaporize as a result of collisions with the air particles producing meteors that can be detected with radars. This provides a mean to study the dynamics of this region. In this lecture the basic principles of the utilization of meteor radars to study the dynamics of the mesosphere will be presented. A system overview of these systems will be provided as well as discuss the advantages/disadvantages of these systems, provide details of the data processing methodology and give a brief overview of the current status of the field as well as the vision for the next decade.

  5. Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases

    PubMed Central

    Zhou, Tao; Gao, Yi; Wang, Z. D.

    2014-01-01

    We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally. PMID:24918901

  6. Excited state structural dynamics in higher lying electronic states: S2 state of malachite green

    NASA Astrophysics Data System (ADS)

    Laptenok, Sergey P.; Addison, Kiri; Heisler, Ismael A.; Meech, Stephen R.

    2014-06-01

    The S2 fluorescence of malachite green is measured with sub 100 fs time resolution. Ultrafast spectral dynamics in the S2 state preceding S2 decay are resolved. Measurements in different solvents show that these sub 100 fs dynamics are insensitive to medium polarity and viscosity. They are thus assigned to ultrafast structural evolution between the S2 Franck-Condon and equilibrium configurations.

  7. Getting to the edge: protein dynamical networks as a new frontier in plant–microbe interactions

    PubMed Central

    Garbutt, Cassandra C.; Bangalore, Purushotham V.; Kannar, Pegah; Mukhtar, M. S.

    2014-01-01

    A systems perspective on diverse phenotypes, mechanisms of infection, and responses to environmental stresses can lead to considerable advances in agriculture and medicine. A significant promise of systems biology within plants is the development of disease-resistant crop varieties, which would maximize yield output for food, clothing, building materials, and biofuel production. A systems or “-omics” perspective frames the next frontier in the search for enhanced knowledge of plant network biology. The functional understanding of network structure and dynamics is vital to expanding our knowledge of how the intercellular communication processes are executed. This review article will systematically discuss various levels of organization of systems biology beginning with the building blocks termed “-omes” and ending with complex transcriptional and protein–protein interaction networks. We will also highlight the prevailing computational modeling approaches of biological regulatory network dynamics. The latest developments in the “-omics” approach will be reviewed and discussed to underline and highlight novel technologies and research directions in plant network biology. PMID:25071795

  8. Bulk-edge correspondence of entanglement spectrum in two-dimensional spin ground states

    NASA Astrophysics Data System (ADS)

    Santos, Raul A.

    2013-01-01

    General local spin S ground states, described by a valence bond solid (VBS) on a two-dimensional lattice are studied. The norm of these ground states is mapped to a classical O(3) model on the same lattice. Using this quantum-to-classical mapping, we obtain the partial density matrix ρA associated with a subsystem A of the original ground state. We show that the entanglement spectrum of ρA in a translation invariant lattice is related with the spectrum of a quantum XXX Heisenberg model and all its conserved charges on the boundary of the region A.

  9. Bosonic anomalies, induced fractional quantum numbers, and degenerate zero modes: The anomalous edge physics of symmetry-protected topological states

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Santos, Luiz H.; Wen, Xiao-Gang

    2015-05-01

    The boundary of symmetry-protected topological states (SPTs) can harbor new quantum anomaly phenomena. In this work, we characterize the bosonic anomalies introduced by the 1+1D non-onsite-symmetric gapless edge modes of (2+1)D bulk bosonic SPTs with a generic finite Abelian group symmetry (isomorphic to G =∏iZNi=ZN1×ZN2×ZN3×⋯ ). We demonstrate that some classes of SPTs (termed "Type II") trap fractional quantum numbers (such as fractional ZN charges) at the 0D kink of the symmetry-breaking domain walls, while some classes of SPTs (termed "Type III") have degenerate zero energy modes (carrying the projective representation protected by the unbroken part of the symmetry), either near the 0D kink of a symmetry-breaking domain wall, or on a symmetry-preserving 1D system dimensionally reduced from a thin 2D tube with a monodromy defect 1D line embedded. More generally, the energy spectrum and conformal dimensions of gapless edge modes under an external gauge flux insertion (or twisted by a branch cut, i.e., a monodromy defect line) through the 1D ring can distinguish many SPT classes. We provide a manifest correspondence from the physical phenomena, the induced fractional quantum number, and the zero energy mode degeneracy to the mathematical concept of cocycles that appears in the group cohomology classification of SPTs, thus achieving a concrete physical materialization of the cocycles. The aforementioned edge properties are formulated in terms of a long wavelength continuum field theory involving scalar chiral bosons, as well as in terms of matrix product operators and discrete quantum lattice models. Our lattice approach yields a regularization with anomalous non-onsite symmetry for the field theory description. We also formulate some bosonic anomalies in terms of the Goldstone-Wilczek formula.

  10. Blob Dynamics in 3D BOUT Simulations of Tokamak Edge Turbulence

    SciTech Connect

    Russell, D; D'Ippolito, D; Myra, J; Nevins, W; Xu, X

    2004-08-23

    Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential {phi}, temperature T{sub e} and current density J{sub {parallel}} associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E {center_dot} B drift velocities (> 1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the {phi}, T{sub e}, J{sub {parallel}} dipoles.

  11. Nonequilibrium Probabilistic Dynamics of the Logistic Map at the Edge of Chaos

    NASA Astrophysics Data System (ADS)

    Borges, Ernesto P.; Tsallis, Constantino; Añaños, Garín F.; de Oliveira, Paulo Murilo

    2002-12-01

    We consider nonequilibrium probabilistic dynamics in logisticlike maps xt+1=1-a|xt|z, (z>1) at their chaos threshold: We first introduce many initial conditions within one among W>>1 intervals partitioning the phase space and focus on the unique value qsen<1 for which the entropic form Sq≡(1- ∑i=1Wpqi)/(q-1) linearly increases with time. We then verify that Sqsen(t)-Sqsen(∞) vanishes like t-1/[qrel(W)-1] [qrel(W)>1]. We finally exhibit a new finite-size scaling, qrel(∞)-qrel(W)~W- |qsen|. This establishes quantitatively, for the first time, a long pursued relation between sensitivity to the initial conditions and relaxation, concepts which play central roles in nonextensive statistical mechanics.

  12. A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models

    PubMed Central

    Rolls, David A.; Wang, Peng; McBryde, Emma; Pattison, Philippa; Robins, Garry

    2015-01-01

    We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure. PMID:26555701

  13. Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur chemical state in anaerobic granular sludge

    NASA Astrophysics Data System (ADS)

    van Hullebusch, E.; Rossano, S.; Farges, F.; Lenz, M.; Labanowski, J.; Lagarde, P.; Flank, A.-M.; Lens, P.

    2009-11-01

    Sulfur is an essential biological element, yet its biochemistry in anaerobic biofilm is poorly understood because there are few tools for studying this element in biological systems. X-ray absorption spectroscopy provides a unique approach to determining the chemical speciation of sulfur in intact biological samples. When treating sulfate containing wastewaters in full scale up-flow anaerobic sludge bed bioreactors, microbial activity forms biofilms, consisting of a complex mixture of cells and associated extracellular substances as well as undefined inorganic precipitates. In addition to the anaerobic sludges, a large variety of model compounds of S (esp. sulfides) were investigated to find consistencies in the XANES that were used to model each "valence state" of S. The results confirmed that attributing a specific valence to most sulfides is impossible as we measured a continuum of edge shifts from sulfur "-2" to "-1", depending on the electronic structure of S in the probed sulfides. In the sludges, various sulfur hot spots were probed for speciation, despite photo-reduction was sometimes a problem. First, we index the main features of complex K-edge XANES spectra for S2--type units and sulfate units. Organic sulfur compounds were also shown to contribute significantly to the sulfur species present in some anaerobic granular sludge.

  14. ON EDGE CHIPPING TESTING AND SOME PERSONAL PERSPECTIVES ON THE STATE OF THE ART OF MECHANICAL TESTING

    PubMed Central

    Quinn, G. D.

    2014-01-01

    Objective The edge chipping test is used to measure the fracture resistance of dental restoration ceramics and resin composites. This paper focuses on the progress of evaluating chipping resistance of these materials and also on the progress of standardization of this test method. This paper also makes observations about the state of the art of mechanical testing of ceramic and composite restorative materials in general. Interlaboratory comparative studies (“round robins”) are recommended. Methods An edge chipping machine was used to evaluate dozens of materials including porcelains, glass ceramics, aluminas, zirconias, filled resin-composites, new hybrid ceramic-resin composites, laminated composite ceramics, and even polymethyl methacrylate based denture materials. Force versus distance data were collected over a broad range with different indenters. Several chipping resistance parameters were quantified. Results Older restorative materials such as feldspathic porcelains and veneering materials had limited chipping resistance, but more modern ceramics and filled composites show significant improvements. A yttria-partially stabilized zirconia had the greatest resistance to chipping. Much of the early work on edge chipping resistance of brittle materials emphasized linear force versus distance trends obtained with relatively blunt Rockwell C indenters. More recently, trends for dental restorative materials with alternative sharper indenters have been nonlinear. A new phenomenological model with a simple quadratic function fits all data exceptionally well. It is loosely based on an energy balance between indenter work and fracture and deformation energies in the chipped material. Significance Although a direct comparison of our laboratory scale tests on idealized simple geometries to clinical outcomes has not yet been done, anecdotal evidence suggests the procedure does produce clinically relevant rankings and outcomes. Despite the variations in the trends and

  15. Passivation of defect states in surface and edge regions on pn-junction Si solar cells by use of hydrogen cyanide solutions

    NASA Astrophysics Data System (ADS)

    Takahashi, Masao; Shishido, Takeru; Iwasa, Hitoo; Kobayashi, Hikaru

    2009-06-01

    The local photovoltage of the pn-junction single-crystalline silicon solar cells observed by spot light scanning gradually decreases in the vicinity of edges. The energy conversion efficiency is increased by shadowing the edge regions where the local photovoltage is lower, showing that the defect density is high in the edge regions. From the analysis of the local photovoltage, the spacial distribution of defect states is obtained. The cyanide method, i. e., immersion of solar cells in HCN solutions at room temperature, increases the local photovoltage and increases the energy conversion efficiency.

  16. Is the United States Losing Its Edge in Science and Technology? Research Brief

    ERIC Educational Resources Information Center

    Galama, Titus; Hosek, James

    2008-01-01

    The United States continues to lead the world in science and technology. It generally benefits from the influx of foreign science and engineering students and workers, and it will likely continue to benefit from the development of new technologies by other nations, as long as it maintains the capability to acquire and implement such technologies.…

  17. Computational Plasma Physics at the Bleeding Edge: Simulating Kinetic Turbulence Dynamics in Fusion Energy Sciences

    NASA Astrophysics Data System (ADS)

    Tang, William

    2013-04-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).

  18. Edge remap for solids

    SciTech Connect

    Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  19. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  20. Final-State Projection Method in Charge-Transfer Multiplet Calculations: An Analysis of Ti L-Edge Absorption Spectra.

    PubMed

    Kroll, Thomas; Solomon, Edward I; de Groot, Frank M F

    2015-10-29

    A projection method to determine the final-state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d(0) system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a nontrivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  1. Novel roles for protein disulphide isomerase in disease states: a double edged sword?

    PubMed Central

    Parakh, Sonam; Atkin, Julie D.

    2015-01-01

    Protein disulphide isomerase (PDI) is a multifunctional redox chaperone of the endoplasmic reticulum (ER). Since it was first discovered 40 years ago the functions ascribed to PDI have evolved significantly and recent studies have recognized its distinct functions, with adverse as well as protective effects in disease. Furthermore, post translational modifications of PDI abrogate its normal functional roles in specific disease states. This review focusses on recent studies that have identified novel functions for PDI relevant to specific diseases. PMID:26052512

  2. Spurious and realistic solutions for the quantum spin Hall edge states in InAs/GaSb/AlSb quantum wells.

    PubMed

    Klipstein, P C

    2016-09-21

    A solution of the 4  ×  4 k · p Hamiltonian for the quantum spin Hall (QSH) edge states in ideal semiconductor topological insulator (TI) quantum wells (QWs) was recently demonstrated by the author using standard boundary conditions for the wave function and its derivative, in order to address unphysical behavior associated with open boundary conditions (Klipstein 2015 Phys. Rev. B 91 035310). For HgTe/CdTe QWs which have strong s-p hybridization, there are two non-degenerate solutions in each spin direction with a finite amplitude at the edge, one of which was shown to be spurious. For the case of weakly hybridized InAs/GaSb/AlSb QWs, the solutions near the zone center are degenerate, and the question is now settled of which solution is spurious. The physical solutions for the ideal QW are then used as the basis for a perturbation treatment of the edge state dispersions in realistic QWs, where interface, bulk and structural asymmetries are also present. Interactions are included with more remote states than considered previously, as required for a consistent treatment of the TI bulk states, where a large difference exists in the spin splittings of the conduction and valence band edges. The asymmetry perturbations induce only minor changes to the edge state dispersions, which no longer merge smoothly with the bulk band extrema. PMID:27420636

  3. Spurious and realistic solutions for the quantum spin Hall edge states in InAs/GaSb/AlSb quantum wells

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.

    2016-09-01

    A solution of the 4  ×  4 k · p Hamiltonian for the quantum spin Hall (QSH) edge states in ideal semiconductor topological insulator (TI) quantum wells (QWs) was recently demonstrated by the author using standard boundary conditions for the wave function and its derivative, in order to address unphysical behavior associated with open boundary conditions (Klipstein 2015 Phys. Rev. B 91 035310). For HgTe/CdTe QWs which have strong s-p hybridization, there are two non-degenerate solutions in each spin direction with a finite amplitude at the edge, one of which was shown to be spurious. For the case of weakly hybridized InAs/GaSb/AlSb QWs, the solutions near the zone center are degenerate, and the question is now settled of which solution is spurious. The physical solutions for the ideal QW are then used as the basis for a perturbation treatment of the edge state dispersions in realistic QWs, where interface, bulk and structural asymmetries are also present. Interactions are included with more remote states than considered previously, as required for a consistent treatment of the TI bulk states, where a large difference exists in the spin splittings of the conduction and valence band edges. The asymmetry perturbations induce only minor changes to the edge state dispersions, which no longer merge smoothly with the bulk band extrema.

  4. The effect of dephasing on edge state transport through p-n junctions in HgTe/CdTe quantum wells.

    PubMed

    Zhang, Ying-Tao; Song, Juntao; Sun, Qing-Feng

    2014-02-26

    Using the Landauer-Büttiker formula, we study the effect of dephasing on the transport properties of the HgTe/CdTe p-n junction. It is found that in the HgTe/CdTe p-n junction the topologically protected gapless helical edge states manifest a quantized 2e²/h plateau robust against dephasing, in sharp contrast to the case for the normal HgTe/CdTe quantum well. This robustness of the transport properties of the edge states against dephasing should be attributed to the special construction of the HgTe/CdTe p-n junction, which limits the gapless helical edge states to a very narrow region and thus weakens the influence of the dephasing on the gapless edge states to a large extent. Our results demonstrate that the p-n junction could be a substitute device for use in experimentally observing the robust edge states and quantized plateau. Finally, we present a feasible scheme based on current experimental methods. PMID:24501192

  5. Dynamical K Edge and Line Variations in the X-ray Spectrum of the Ultra-compact Binary 4U 0614+091

    NASA Astrophysics Data System (ADS)

    Schulz, N. S.; Nowak, M. A.; Chakrabarty, D.; Canizares, C. R.

    2010-12-01

    We observed the ultra-compact binary candidate 4U 0614+091 for a total of 200 ks with the high-energy transmission gratings on board the Chandra X-ray Observatory. The source is found at various intensity levels with spectral variations present. X-ray luminosities vary between 2.0 × 1036 erg s-1 and 3.5 × 1036 erg s-1. Continuum variations are present at all times and spectra can be fit well with a power-law component, a high kT blackbody component, and a broad line component near oxygen. The spectra require adjustments to the Ne K edge and in some occasions also to the Mg K edge. Once further resolved, the Ne K edge region appears variable in terms of optical depths and morphology. The edge vicinity reveals an average velocity smear of ~3500 km s-1 implying a characteristic radius of the order of <109 cm consistent with an ultra-compact binary nature. The variability proves that the excess is intrinsic to the source. The data seem to indicate excess column densities of up to several 1018 cm-2. However, there are some serious problems with an Ne I interpretation in ultra-compact disks and we need to consider alternative interpretations, which include a variable O VIII ionization edge, as likely candidates. We test such possibilities with existing observations. The prominent soft emission line complex near the O VIII Lyα position appears extremely broad and relativistic effects from near the innermost disk have to be included. Gravitationally broadened line fits also provide nearly edge-on angles of inclination consistent with the observed high dynamics near the Ne K edge. The emissions appear consistent with an ionized disk with ionization parameters of the order of 104 at radii of a few 107 cm. The line wavelengths with respect to O VIII Lyα are found variably blueshifted indicating more complex inner disk dynamics.

  6. Modeling and Simulation of Plasma Edge Behavior

    SciTech Connect

    Charles K. Birdsall, Professor

    2002-02-14

    A typical steady state plasma edge consists of a strongly nonneutral sheath region, starting from the wall, joined to a quasineutral pre-sheath region, & then becoming the plasma bulk, which is essentially neutral. In particular, we find that the sheath/pre-sheath boundary not static, but dynamic, both in a stable thermal plasma, with considerable sheath boundary motion and heating.

  7. Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives

    SciTech Connect

    SINTEF Building and Infrastructure; Norwegian University of Science and Technology; Bergh, Sofie Van Den; Hart, Robert; Jelle, Bjrn Petter; Gustavsen, Arild

    2013-01-31

    Insulating glass (IG) units typically consist of multiple glass panes that are sealed and held together structurally along their perimeters. This report describes a study of edge seals in IG units. First, we summarize the components, requirements, and desired properties of edge construction in IG units, based on a survey of the available literature. Second, we review commercially available window edge seals and describe their properties, to provide an easily accessible reference for research and commercial purposes. Finally, based on the literature survey and review of current commercial edge seal systems, we identify research opportunities for future edge seal improvements and solutions.

  8. Interaction of run-in edge dislocations with twist grain boundaries in Al-a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Naveen Kumar, N.; Samal, M. K.; Chavan, V. M.; Patel, R. J.

    2016-06-01

    Grain boundaries play an important role in outlining the mechanical properties of crystalline materials. They act as sites for absorption/nucleation of dislocations, which are the main carriers of plastic deformation. In view of this, the interactions between edge dislocations and twist grain boundaries-dislocation pileup, dislocation absorption and dislocation emission were explored by performing molecular dynamics simulations in face-centered cubic Al using embedded atom method. The ?1 1 0? twist grain boundaries with various misorientation angles were selected for this purpose. It was found that the misorientation angle of boundary and stress anomalies arising from repeated dislocation absorption at the grain boundaries are the important parameters in determining the ability of the boundary to emit dislocations. Complex network of dislocations results in later stages of deformation, which may have a significant effect on the mechanical properties of the material. The peculiarities of dislocation nucleation, their emission from twist grain boundaries and the ramifications of this study towards development of higher length scale material models are discussed.

  9. Destination state screening of active spaces in spin dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krzystyniak, M.; Edwards, Luke J.; Kuprov, Ilya

    2011-06-01

    We propose a novel avenue for state space reduction in time domain Liouville space spin dynamics simulations, using detectability as a selection criterion - only those states that evolve into or affect other detectable states are kept in the simulation. This basis reduction procedure (referred to as destination state screening) is formally exact and can be applied on top of the existing state space restriction techniques. As demonstrated below, in many cases this results in further reduction of matrix dimension, leading to considerable acceleration of many spin dynamics simulation types. Destination state screening is implemented in the latest version of the Spinach library (http://spindynamics.org).

  10. A model of cerebellar computations for dynamical state estimation

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.; Assad, C.

    2001-01-01

    The cerebellum is a neural structure that is essential for agility in vertebrate movements. Its contribution to motor control appears to be due to a fundamental role in dynamical state estimation, which also underlies its role in various non-motor tasks. Single spikes in vestibular sensory neurons carry information about head state. We show how computations for optimal dynamical state estimation may be accomplished when signals are encoded in spikes. This provides a novel way to design dynamical state estimators, and a novel way to interpret the structure and function of the cerebellum.

  11. Dynamic study of sub-micro sized LiFePO4 cathodes by in-situ tender X-ray absorption near edge structure

    NASA Astrophysics Data System (ADS)

    Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong

    2016-01-01

    Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.

  12. Phase diagram and edge states of the ν =5 /2 fractional quantum Hall state with Landau level mixing and finite well thickness

    NASA Astrophysics Data System (ADS)

    Tylan-Tyler, Anthony; Lyanda-Geller, Yuli

    2015-05-01

    The ν =5 /2 fractional quantum Hall effect is a system of intense experimental and theoretical interest as its ground state may host non-Abelian excitations, but the exact nature of the ground state is still undetermined. We present the results of an exact diagonalization study of an electron system in the disk configuration, including the effects of Landau level (LL) mixing and the finite thickness of the quantum well confining the electrons. The degeneracy between the two leading candidates for the ground state, the Pfaffian and anti-Pfaffian, is broken by interactions with a neutralizing background, in addition to the inclusion of two- and three-body interactions via LL mixing. As a result of the neutralizing background in the disk configuration, there is a phase transition from the anti-Pfaffian to the Pfaffian as LL mixing is turned on, in stark contrast to what is observed in spherical geometry. This behavior is in agreement with existing experiments, showing the appearance of the Pfaffian state at strong LL mixing before the system enters a compressible phase. The inclusion of LL mixing leads to an increased charge e /4 quasihole size. LL mixing interactions are also shown to overcome the effects of edge reconstruction. Due to finite thickness effects, these properties are enhanced dramatically. We also find that only the Pfaffian and anti-Pfaffian states continue to possess energy gaps at finite width, while gaps for compressible stripe states close, which is in agreement with available experimental data.

  13. Resonant inelastic x-ray scattering on iso-C{sub 2}H{sub 2}Cl{sub 2} around the chlorine K-edge: Structural and dynamical aspects

    SciTech Connect

    Kawerk, Elie E-mail: ekawerk@units.it; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Simon, Marc; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; and others

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  14. Superconducting proximity effect in graphene: Injecting Cooper pairs in quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Komatsu, Katsuyoshi; Li, Chuan; Autier-Laurent, Sandrine; Kasumov, Alik; Bouchiat, Helene; Gueron, Sophie

    2012-02-01

    A superconductor-graphene(SG) hybrid system, such as an SGS junction or an SG interface, provides an ideal platform to investigate the relativistic nature of Dirac fermions combined with superconductivity. Instead of the retro-reflection of carriers in an ordinary superconductor-normal metal interface, an SG interface is theoretically predicted to show the specular reflection of quasiparticle carriers. We show that a supercurrent flows through a SGS junction with Nb electrodes even through a very long graphene distance of 1.2μm, more than 3 times the length previously reported. This supercurrent disappears in the vicinity of the Dirac point, indicating a strong sensitivity of the transmission of Andreev pairs to the formation of charge puddles with size greater than the superconducting coherence length. We also present data on similar size graphene samples with superconducting electrodes with a high critical field (more than 7Tesla) for which the properties of the normal state are dominated by quantum Hall physics. Whereas the behavior of the supercurrent is similar to the Nb/Graphene/Nb system in zero field, new features are observed in the high field quantum Hall regime.

  15. Phase Operator and Phase State in Thermo Field Dynamics

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Jiang, Nian-Quan

    We extend the Susskind-Glogower phase operator and phase state in quantum optics to thermo field dynamics (TFD). Based on the thermo entangled state representation, we introduce thermo excitation and de-excitation operators with which the phase operator and phase state in TFD can be constructed. The phase state treated as a limiting case of a new SU(1, 1) coherent states is also exhibited.

  16. Interaction-enhanced magnetically ordered insulating state at the edge of a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Kharitonov, Maxim

    2012-10-01

    We develop a theory of the correlated magnetically ordered insulating state at the edge of a two-dimensional topological insulator. We demonstrate that the gapped spin-polarized state, induced by the application of the magnetic field B, is naturally facilitated by electron interactions, which drive the critical easy-plane ferromagnetic correlations in the helical liquid. As the key manifestation, the gap Δ in the spectrum of collective excitations, which carry both spin and charge, is enhanced and exhibits a scaling dependence Δ∝B1/(2-K), controlled by the Luttinger liquid parameter K. This scaling dependence could be probed through the activation behavior G˜(e2/h)exp(-Δ/T) of the longitudinal conductance of a Hall-bar device at lower temperatures, providing a straightforward way to extract the parameter K experimentally. Our findings thus suggest that the signatures of the interaction-driven quantum criticality of the helical liquid could be revealed already in a standard Hall-bar measurement.

  17. Shelf-edge sedimentary systems off Rio de Janeiro State, northern Santos basin-Brazil

    NASA Astrophysics Data System (ADS)

    Maia, R. M. C.; Dos Reis, A. T.; Gorini, C.; Silva, C. G.; Rabineau, M.; Granjeon, D.

    2012-04-01

    The sedimentary record of the continental shelf off Rio de Janeiro State is related to the opening and evolution of Atlantic Ocean. The combined analysis of high resolution seismic acquired in the early 80's (Geomar cruises) and 2D seismic lines of petroleum industry, coupled with chronostratigraphic data from oil industry's exploratory wells, allowed us to observe two different orders of sequences: of 3-4th order, that represents sedimentary units related of the Milankovitch cycles (100/40/20ky), and of 2nd order (10-100my). High resolution seismic allowed us to outline a first architectural framework for the actual shelf that is composed of stacked seismic units making up the major seismic sequences bounded by angular unconformities. According to the intern and extern configuration of their clinoforms, the seismic sequences were grouped into two distinctive stratigraphic sets, identified as Set I (Pliocene) and Set II (Upper Quaternary). Some architectural components of note include: (1) the characteristic upbuilt-outbuilt geometry of sequences that compose Set I (SqA, SqB and SqC), indicating that deposition has probably been favoured by a combination of prevailing subsidence regime (upbuilt pattern) accompanied by forced regressive deposits (outbuilt pattern); (2) the majority of sequences that make up Set II outbuilts as a composite seaward-thickening progradational wedge formed under dominant forced regression conditions, implying that the generation of accommodation space was less important than during the build-up of Set I. However, these sequences consistently pinch out in a progressively landward direction, suggesting a prevailing and increasing subsidence regime able to induce the progressive seaward tilting of the margin during the middle-late Pleistocene, and the subsequent partial preservation of regressive sequences of about 100-200 m thick at the level of the present-day mid-shelf, that prograded seaward for circa 15-25 km. These architectural

  18. Distributed Dynamic State Estimation with Extended Kalman Filter

    SciTech Connect

    Du, Pengwei; Huang, Zhenyu; Sun, Yannan; Diao, Ruisheng; Kalsi, Karanjit; Anderson, Kevin K.; Li, Yulan; Lee, Barry

    2011-08-04

    Increasing complexity associated with large-scale renewable resources and novel smart-grid technologies necessitates real-time monitoring and control. Our previous work applied the extended Kalman filter (EKF) with the use of phasor measurement data (PMU) for dynamic state estimation. However, high computation complexity creates significant challenges for real-time applications. In this paper, the problem of distributed dynamic state estimation is investigated. One domain decomposition method is proposed to utilize decentralized computing resources. The performance of distributed dynamic state estimation is tested on a 16-machine, 68-bus test system.

  19. The Edge, Fall 1999.

    ERIC Educational Resources Information Center

    Edge, 1999

    1999-01-01

    "The Edge" is a Canadian publication for youth. The mandate of the Edge is to support and celebrate all career journeys embraced by youth. This issue contains career profile articles covering three jobs: crane operator, indoor climbing instructor, and product certification tester. Career trends and the state of today's workplace are also…

  20. Propagating confined states in phase dynamics

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Deissler, Robert J.

    1992-01-01

    Theoretical treatment is given to the possibility of the existence of propagating confined states in the nonlinear phase equation by generalizing stationary confined states. The nonlinear phase equation is set forth for the case of propagating patterns with long wavelengths and low-frequency modulation. A large range of parameter values is shown to exist for propagating confined states which have spatially localized regions which travel on a background with unique wavelengths. The theoretical phenomena are shown to correspond to such physical systems as spirals in Taylor instabilities, traveling waves in convective systems, and slot-convection phenomena for binary fluid mixtures.

  1. Quantitative Evaluation of the Carbon Hybridization State by Near Edge X-ray Absorption Fine Structure Spectroscopy.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Carpick, Robert W

    2016-03-01

    The characterization of the local bonding configuration of carbon in carbon-based materials is of paramount importance since the properties of such materials strongly depend on the distribution of carbon hybridization states, the local ordering, and the degree of hydrogenation. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy is one of the most powerful techniques for gaining insights into the bonding configuration of near-surface carbon atoms. The common methodology for quantitatively evaluating the carbon hybridization state using C 1s NEXAFS measurements, which is based on the analysis of the sample of interest and of a highly ordered pyrolytic graphite (HOPG) reference sample, was reviewed and critically assessed, noting that inconsistencies are found in the literature in applying this method. A theoretical rationale for the specific experimental conditions to be used for the acquisition of HOPG reference spectra is presented together with the potential sources of uncertainty and errors in the correctly computed fraction of sp(2)-bonded carbon. This provides a specific method for analyzing the distribution of carbon hybridization state using NEXAFS spectroscopy. As an illustrative example, a hydrogenated amorphous carbon film was analyzed using this method and showed good agreement with X-ray photoelectron spectroscopy (which is surface sensitive). Furthermore, the results were consistent with analysis from Raman spectroscopy (which is not surface sensitive), indicating the absence of a structurally different near-surface region in this particular thin film material. The present work can assist surface scientists in the analysis of NEXAFS spectra for the accurate characterization of the structure of carbon-based materials. PMID:26814796

  2. Dynamics and statistics of unstable quantum states

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.; Zelevinsky, V. G.

    1989-11-01

    The statistical theory of spectra formulated in terms of random matrices is extended to unstable states. The energies and widths of these states are treated as real and imaginary parts of complex eigenvalues for an effective non-hermitian hamiltonian. Eigenvalue statistics are investigated under simple assumptions. If the coupling through common decay channels is weak we obtain a Wigner distribution for the level spacings and a Porter-Thomas one for the widths, with the only exception for spacings less than widths where level repulsion fades out. Meanwhile in the complex energy plane the repulsion of eigenvalues is quadratic in accordance with the T-noninvariant character of decaying systems. In the opposite case of strong coupling with the continuum, k short-lived states are formed ( k is the number of open decay channels). These states accumulate almost the whole total width, the rest of the states becoming long-lived. Such a perestroika corresponds to separation of direct processes (a nuclear analogue of Dicke coherent superradiance). At small channel number, Ericson fluctuations of the cross sections are found to be suppressed. The one-channel case is considered in detail. The joint distribution of energies and widths is obtained. The average cross sections and density of unstable states are calculated.

  3. Vesicle Geometries Enabled by Dynamically Trapped States.

    PubMed

    Su, Jiaye; Yao, Zhenwei; de la Cruz, Monica Olvera

    2016-02-23

    Understanding and controlling vesicle shapes is a fundamental challenge in biophysics and materials design. In this paper, we design dynamic protocols for enlarging the shape space of both fluid and crystalline vesicles beyond the equilibrium zone. By removing water from within the vesicle at different rates, we numerically produced a series of dynamically trapped stable vesicle shapes for both fluid and crystalline vesicles in a highly controllable fashion. In crystalline vesicles that are continuously dehydrated, simulations show the initial appearance of small flat areas over the surface of the vesicles that ultimately merge to form fewer flat faces. In this way, the vesicles transform from a fullerene-like shape into various faceted polyhedrons. We perform analytical elasticity analysis to show that these salient features are attributable to the crystalline nature of the vesicle. The potential to use dynamic protocols, such as those used in this study, to engineer vesicle shape transformations is helpful for exploiting the richness of vesicle geometries for desired applications. PMID:26795199

  4. Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

    SciTech Connect

    Pinjari, Rahul V.; Delcey, Mickaël G.; Guo, Meiyuan; Lundberg, Marcus; Odelius, Michael

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d{sup 5}) model systems with well-known electronic structure, viz., atomic Fe{sup 3+}, high-spin [FeCl{sub 6}]{sup 3−} with ligand donor bonding, and low-spin [Fe(CN){sub 6}]{sup 3−} that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  5. Evolution of tungsten degradation under combined high cycle edge-localized mode and steady-state heat loads

    NASA Astrophysics Data System (ADS)

    Loewenhoff, Th; Bürger, A.; Linke, J.; Pintsuk, G.; Schmidt, A.; Singheiser, L.; Thomser, C.

    2011-12-01

    Combined thermal shock and steady-state heat loads (SSHLs) can have an impact on divertor materials and are therefore important for lifetime estimations and evaluations of operational thresholds of divertor components in future fusion devices such as ITER. This paper discusses the results of tests performed in the electron beam facility JUDITH 2 (Forschungszentrum Jülich, Germany) on actively cooled tungsten specimens, loaded with edge-localized mode-like thermal shocks (pulse duration 0.48 ms, power densities 0.14-0.55 GW m-2, frequency 25 Hz and up to 1000 000 pulses) either with or without an additional SSHL of 10 MW m-2. The material showed no damage at 0.14 GW m-2 (independent of the SSHL) for up to 250 000 pulses. At a power density of 0.27 GW m-2 (without SSHL), surface roughening occurred at 100 000 pulses, developing into a crack network at 1000 000 pulses. In general, the additional SSHL resulted in an earlier (in terms of pulse number) and more severe material degradation.

  6. π Spin Berry Phase in a Quantum-Spin-Hall-Insulator-Based Interferometer: Evidence for the Helical Spin Texture of the Edge States

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Deng, Wei-Yin; Hou, Jing-Min; Shi, D. N.; Sheng, L.; Xing, D. Y.

    2016-08-01

    The quantum spin Hall insulator is characterized by helical edge states, with the spin polarization of the electron being locked to its direction of motion. Although the edge-state conduction has been observed, unambiguous evidence of the helical spin texture is still lacking. Here, we investigate the coherent edge-state transport in an interference loop pinched by two point contacts. Because of the helical character, the forward interedge scattering enforces a π spin rotation. Two successive processes can only produce a nontrivial 2 π or trivial 0 spin rotation, which can be controlled by the Rashba spin-orbit coupling. The nontrivial spin rotation results in a geometric π Berry phase, which can be detected by a π phase shift of the conductance oscillation relative to the trivial case. Our results provide smoking gun evidence for the helical spin texture of the edge states. Moreover, it also provides the opportunity to all electrically explore the trajectory-dependent spin Berry phase in condensed matter.

  7. π Spin Berry Phase in a Quantum-Spin-Hall-Insulator-Based Interferometer: Evidence for the Helical Spin Texture of the Edge States.

    PubMed

    Chen, Wei; Deng, Wei-Yin; Hou, Jing-Min; Shi, D N; Sheng, L; Xing, D Y

    2016-08-12

    The quantum spin Hall insulator is characterized by helical edge states, with the spin polarization of the electron being locked to its direction of motion. Although the edge-state conduction has been observed, unambiguous evidence of the helical spin texture is still lacking. Here, we investigate the coherent edge-state transport in an interference loop pinched by two point contacts. Because of the helical character, the forward interedge scattering enforces a π spin rotation. Two successive processes can only produce a nontrivial 2π or trivial 0 spin rotation, which can be controlled by the Rashba spin-orbit coupling. The nontrivial spin rotation results in a geometric π Berry phase, which can be detected by a π phase shift of the conductance oscillation relative to the trivial case. Our results provide smoking gun evidence for the helical spin texture of the edge states. Moreover, it also provides the opportunity to all electrically explore the trajectory-dependent spin Berry phase in condensed matter. PMID:27563984

  8. At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters

    PubMed Central

    Rössert, Christian; Dean, Paul; Porrill, John

    2015-01-01

    Models of the cerebellar microcircuit often assume that input signals from the mossy-fibers are expanded and recoded to provide a foundation from which the Purkinje cells can synthesize output filters to implement specific input-signal transformations. Details of this process are however unclear. While previous work has shown that recurrent granule cell inhibition could in principle generate a wide variety of random outputs suitable for coding signal onsets, the more general application for temporally varying signals has yet to be demonstrated. Here we show for the first time that using a mechanism very similar to reservoir computing enables random neuronal networks in the granule cell layer to provide the necessary signal separation and extension from which Purkinje cells could construct basis filters of various time-constants. The main requirement for this is that the network operates in a state of criticality close to the edge of random chaotic behavior. We further show that the lack of recurrent excitation in the granular layer as commonly required in traditional reservoir networks can be circumvented by considering other inherent granular layer features such as inverted input signals or mGluR2 inhibition of Golgi cells. Other properties that facilitate filter construction are direct mossy fiber excitation of Golgi cells, variability of synaptic weights or input signals and output-feedback via the nucleocortical pathway. Our findings are well supported by previous experimental and theoretical work and will help to bridge the gap between system-level models and detailed models of the granular layer network. PMID:26484859

  9. At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters.

    PubMed

    Rössert, Christian; Dean, Paul; Porrill, John

    2015-10-01

    Models of the cerebellar microcircuit often assume that input signals from the mossy-fibers are expanded and recoded to provide a foundation from which the Purkinje cells can synthesize output filters to implement specific input-signal transformations. Details of this process are however unclear. While previous work has shown that recurrent granule cell inhibition could in principle generate a wide variety of random outputs suitable for coding signal onsets, the more general application for temporally varying signals has yet to be demonstrated. Here we show for the first time that using a mechanism very similar to reservoir computing enables random neuronal networks in the granule cell layer to provide the necessary signal separation and extension from which Purkinje cells could construct basis filters of various time-constants. The main requirement for this is that the network operates in a state of criticality close to the edge of random chaotic behavior. We further show that the lack of recurrent excitation in the granular layer as commonly required in traditional reservoir networks can be circumvented by considering other inherent granular layer features such as inverted input signals or mGluR2 inhibition of Golgi cells. Other properties that facilitate filter construction are direct mossy fiber excitation of Golgi cells, variability of synaptic weights or input signals and output-feedback via the nucleocortical pathway. Our findings are well supported by previous experimental and theoretical work and will help to bridge the gap between system-level models and detailed models of the granular layer network. PMID:26484859

  10. Two-particle quantum correlations at graphene edges

    NASA Astrophysics Data System (ADS)

    Gräfe, Markus; Szameit, Alexander

    2015-09-01

    Its remarkable properties render graphene—in its pure and artificial forms—one of the most attractive materials in current research, with major attention given to the topological edge states at the bearded and zigzag edge. In our work, we exploit these quasi-one-dimensional (1D) systems in terms of quantum transport and quantum random walks and investigate how two-particle quantum states evolve at these edges. We find that their quantum correlation dynamics are clearly influenced by the lattice geometry and elaborate on the differences to those in genuine 1D lattices.

  11. Ground state structures and excited state dynamics of pyrrole-water complexes: Ab initio excited state molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kumar, Anupriya; Kołaski, Maciej; Kim, Kwang S.

    2008-01-01

    Structures of the ground state pyrrole-(H2O)n clusters are investigated using ab initio calculations. The charge-transfer driven femtosecond scale dynamics are studied with excited state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field method for pyrrole-(H2O)n clusters. Upon the excitation of these clusters, the charge density is located over the farthest water molecule which is repelled by the depleted π-electron cloud of pyrrole ring, resulting in a highly polarized complex. For pyrrole-(H2O), the charge transfer is maximized (up to 0.34a.u.) around ˜100fs and then oscillates. For pyrrole-(H2O)2, the initial charge transfer occurs through the space between the pyrrole and the π H-bonded water molecule and then the charge transfer takes place from this water molecule to the σ H-bonded water molecule. The total charge transfer from the pyrrole to the water molecules is maximized (up to 0.53a.u.) around ˜100fs.

  12. Understanding the Current Dynamical States of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2008-09-01

    We appear to be on the verge of a major paradigm shift in our understanding of the current dynamical states of Galactic globular clusters. Fregeau (2008) brought together two recent theoretical breakthroughs as well as an observational breakthrough made possible by Chandra -- that a globular cluster's X-ray source population scales with its dynamical encounter frequency -- to persuasively argue that we have misunderstood the dynamical states of Galactic globular clusters. The observational evidence hinges on Chandra results from clusters which are classified as "core collapsed," of which there are only a handful of observations. I propose a nearly complete census with Chandra of the rest of the "core collapsed" globular clusters.

  13. Dynamic battery cell model and state of charge estimation

    NASA Astrophysics Data System (ADS)

    Wijewardana, S.; Vepa, R.; Shaheed, M. H.

    2016-03-01

    Mathematical modelling and the dynamic simulation of battery storage systems can be challenging and demanding due to the nonlinear nature of the battery chemistry. This paper introduces a new dynamic battery model, with application to state of charge estimation, considering all possible aspects of environmental conditions and variables. The aim of this paper is to present a suitable convenient, generic dynamic representation of rechargeable battery dynamics that can be used to model any Lithium-ion rechargeable battery. The proposed representation is used to develop a dynamic model considering the thermal balance of heat generation mechanism of the battery cell and the ambient temperature effect including other variables such as storage effects, cyclic charging, battery internal resistance, state of charge etc. The results of the simulations have been used to study the characteristics of a Lithium-ion battery and the proposed battery model is shown to produce responses within 98% of known experimental measurements.

  14. Cascades and cognitive state: focused attention incurs subcritical dynamics.

    PubMed

    Fagerholm, Erik D; Lorenz, Romy; Scott, Gregory; Dinov, Martin; Hellyer, Peter J; Mirzaei, Nazanin; Leeson, Clare; Carmichael, David W; Sharp, David J; Shew, Woodrow L; Leech, Robert

    2015-03-18

    The analysis of neuronal avalanches supports the hypothesis that the human cortex operates with critical neural dynamics. Here, we investigate the relationship between cascades of activity in electroencephalogram data, cognitive state, and reaction time in humans using a multimodal approach. We recruited 18 healthy volunteers for the acquisition of simultaneous electroencephalogram and functional magnetic resonance imaging during both rest and during a visuomotor cognitive task. We compared distributions of electroencephalogram-derived cascades to reference power laws for task and rest conditions. We then explored the large-scale spatial correspondence of these cascades in the simultaneously acquired functional magnetic resonance imaging data. Furthermore, we investigated whether individual variability in reaction times is associated with the amount of deviation from power law form. We found that while resting state cascades are associated with approximate power law form, the task state is associated with subcritical dynamics. Furthermore, we found that electroencephalogram cascades are related to blood oxygen level-dependent activation, predominantly in sensorimotor brain regions. Finally, we found that decreased reaction times during the task condition are associated with increased proximity to power law form of cascade distributions. These findings suggest that the resting state is associated with near-critical dynamics, in which a high dynamic range and a large repertoire of brain states may be advantageous. In contrast, a focused cognitive task induces subcritical dynamics, which is associated with a lower dynamic range, which in turn may reduce elements of interference affecting task performance. PMID:25788679

  15. Capturing Dynamics in the Power Grid: Formulation of Dynamic State Estimation through Data Assimilation

    SciTech Connect

    Zhou, Ning; Huang, Zhenyu; Meng, Da; Elbert, Stephen T.; Wang, Shaobu; Diao, Ruisheng

    2014-03-31

    With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.

  16. Access to a New Plasma Edge State with High Density and Pressures using the Quiescent H Mode

    NASA Astrophysics Data System (ADS)

    Solomon, W. M.; Snyder, P. B.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R.; Osborne, T. H.

    2014-09-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

  17. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    SciTech Connect

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.; Fenstermacher, M. E.; Garofalo, A. M.; Grierson, B. A.; Loarte, A.; McKee, G. R.; Nazikian, R; Osborne, T. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

  18. Access to a new plasma edge state with high density and pressures using the quiescent H mode.

    PubMed

    Solomon, W M; Snyder, P B; Burrell, K H; Fenstermacher, M E; Garofalo, A M; Grierson, B A; Loarte, A; McKee, G R; Nazikian, R; Osborne, T H

    2014-09-26

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements. PMID:25302895

  19. Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.

    PubMed

    Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred

    2016-03-22

    We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures. PMID:26889780

  20. Dynamic State Estimation Utilizing High Performance Computing Methods

    SciTech Connect

    Schneider, Kevin P.; Huang, Zhenyu; Yang, Bo; Hauer, Matthew L.; Nieplocha, Jaroslaw

    2009-03-18

    The state estimation tools which are currently deployed in power system control rooms are based on a quasi-steady-state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper presents an overview of the Kalman Filtering process and then focuses on the implementation of the predication component on multiple processors.

  1. Dynamical generation of maximally entangled states in two identical cavities

    SciTech Connect

    Alexanian, Moorad

    2011-11-15

    The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.

  2. Excited-state dynamics of astaxanthin aggregates

    NASA Astrophysics Data System (ADS)

    Fuciman, Marcel; Durchan, Milan; Šlouf, Václav; Keşan, Gürkan; Polívka, Tomáš

    2013-05-01

    Astaxanthin forms three types of aggregates in hydrated dimethyl sulfoxide (DMSO). In DMSO/water ratio of 1:1, a red-shifted J-aggregate with maximum at 570 nm is generated, while a ratio of 1:9 produces blue-shifted H-aggregates with peaks at 386 nm (H1) and 460 nm (H2). Monomeric astaxanthin in DMSO has an S1 lifetime of 5.3 ps, but a long-lived (33 ps) S∗ signal was also identified. Aggregation changes the S1 lifetimes to 17 ps (H1), 30 ps (H2), and 14 ps (J). Triplet state of astaxanthin, most likely generated via singlet homofission, was observed in H1 and H2 aggregates.

  3. Observation of ice-rule violation and monopole dynamics via edge nucleation of domain walls in artificial spin ice lattice

    NASA Astrophysics Data System (ADS)

    Krishnia, S.; Purnama, I.; Lew, W. S.

    2016-12-01

    In a patterned Co honeycomb spin ice structure, we show that violation in the ice-rule or magnetic monopoles, can be observed during a magnetization reversal process in 430 Oe≤H≤760 Oe magnetic field (H) range. The monopoles are shown to originate from the nucleation of domain walls at the edges, and they hop towards the other edge via the propagation of magnetic domain walls. The paths that the domain walls traveled or the Dirac strings, are shown to increase in length with magnetic fields increment and no random flipping of the bars are observed in the structure.

  4. The effect of site geometry, Ti content and Ti oxidation state on the Ti K-edge XANES spectrum of synthetic hibonite

    NASA Astrophysics Data System (ADS)

    Doyle, P. M.; Berry, A. J.; Schofield, P. F.; Mosselmans, J. F. W.

    2016-08-01

    The Al-rich oxide hibonite (CaAl12O19) is modeled to be the second mineral to condense from a gas of solar composition and is found within calcium-aluminum-rich inclusions and the matrix of chondritic meteorites. Both Ti3+ and Ti4+ are reported in meteoritic hibonite, so hibonite has been proposed as a single mineral oxybarometer that could be used to elucidate conditions within the first 0.2 Myrs of the Solar System. Synthetic hibonites with Ti3+/(Ti3+ + Ti4+) (hereafter Ti3+/ΣTi) ranging between 0 and 1 were prepared as matrix-matched standards for meteoritic hibonite. The largest yield of both Ti-free and Ti-bearing hibonite at ∼1300 and ∼1400 °C was obtained by a single sinter under reducing conditions. In situ micro-beam Ti K-edge X-ray absorption near edge structure (XANES) spectra were recorded from the synthetic hibonites, as well as from terrestrial hibonite. Spectral features in the post-crest region were shown to correlate with the Ti4+ content. Furthermore, Ti4+ on the M2 trigonal bipyramidal and the adjoining M4 octahedral sites appears to cause variability in the post-crest region as a function of orientation. For this suite of synthetic hibonites it was observed that the pre-edge peak region is not influenced by orientation, but is controlled by Ti3+/ΣTi, site geometry and/or Ti concentration. In particular, the pre-edge peak intensities reflect Ti coordination environment and distortion of the M4 octahedral site. Therefore, although pre-edge peak intensities have previously been used to determine Ti3+/ΣTi in meteoritic minerals, we excluded use of the pre-edge peak intensities for quantifying Ti valence states in hibonite. The energy of the absorption edge at a normalized intensity of 0.8 (E0.8) and the energy of the minimum between the pre-edge region and the absorption edge (Em1) were found to vary systematically with Ti3+/ΣTi. Ti3+/ΣTi in hibonite as a function of Em1 was modeled by a quadratic function that may be used to quantify Ti3

  5. Engineering applications of a dynamical state feedback chaotification method

    NASA Astrophysics Data System (ADS)

    Şahin, Savaş; Güzeliş, Cüneyt

    2012-09-01

    This paper presents two engineering applications of a chaotification method which can be applied to any inputstate linearizable (nonlinear) system including linear controllable ones as special cases. In the used chaotification method, a reference chaotic and linear system can be combined into a special form by a dynamical state feedback increasing the order of the open loop system to have the same chaotic dynamics with the reference chaotic system. Promising dc motor applications of the method are implemented by the proposed dynamical state feedback which is based on matching the closed loop dynamics to the well known Chua and also Lorenz chaotic systems. The first application, which is the chaotified dc motor used for mixing a corn syrup added acid-base mixture, is implemented via a personal computer and a microcontroller based circuit. As a second application, a chaotified dc motor with a taco-generator used in the feedback is realized by using fully analog circuit elements.

  6. Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads

    SciTech Connect

    Valkass, R. A. J. Yu, W.; Shelford, L. R.; Keatley, P. S.; Loughran, T. H. J.; Hicken, R. J.; Cavill, S. A.; Laan, G. van der; Dhesi, S. S.; Bashir, M. A.; Gubbins, M. A.; Czoschke, P. J.; Lopusnik, R.

    2015-06-08

    Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures were acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.

  7. Influence of high hydrostatic pressure on the vibrational spectrum of an edge dislocation and its dynamic interaction with point defects

    NASA Astrophysics Data System (ADS)

    Malashenko, V. V.; Belykh, N. V.

    2013-03-01

    The slip of a single edge dislocation in an elastic field of point defects chaotically distributed over a crystal with allowance for a high hydrostatic pressure has been studied theoretically. The numerical estimations have demonstrated that hydrostatic compression of some metals and alloys increases the dislocation drag force by point defects in them by several tens of percent.

  8. Configuration and Heating Power Dependence of Edge Parameters and H-mode Dynamics in National Spherical Torus Experiment (NSTX)

    SciTech Connect

    C.E. Bush; M.G. Bell; R.E. Bell; J. Boedo; E.D. Fredrickson; S.M. Kaye; S. Kubota; B.P. LeBlanc; R. Maingi; R.J. Maqueda; S.A. Sabbagh; V.A. Soukhanovskii; D. Stutman; D.W. Swain; J.B. Wilgen; S.J. Zweben; W.M. Davis; D.A. Gates; D.W. Johnson; R. Kaita; H.W. Kugel; D. Mastrovito; S. Medley; J.E. Menard; D. Mueller; M. Ono; F. Paoletti; S.J. Paul; Y-K.M. Peng; R. Raman; P.G. Roney; A.L. Roquemore; C.H. Skinner; E.J. Synakowski; G. Taylor; the NSTX Team

    2003-01-09

    Edge parameters play a critical role in H-mode (high-confinement mode) access, which is a key component of plasma discharge optimization in present-day toroidal confinement experiments and the design of next-generation devices. Because the edge magnetic topology of a spherical torus (ST) differs from a conventional aspect ratio tokamak, H-modes in STs exhibit important differences compared with tokamaks. The dependence of the NSTX (National Spherical Torus Experiment) edge plasma on heating power, including the L-H transition requirements and the occurrence of edge-localized modes (ELMs), and on divertor configuration is quantified. Comparisons between good L-modes (low-confinement modes) and H-modes show greater differences in the ion channel than the electron channel. The threshold power for the H-mode transition in NSTX is generally above the predictions of a recent ITER (International Thermonuclear Experimental Reactor) scaling. Correlations of transition and ELM phenomena with turbulent fluctuations revealed by Gas Puff Imaging (GPI) and reflectometry are observed. In both single-null and double-null divertor discharges, the density peaks off-axis, sometimes developing prominent ''ears'' which can be sustained for many energy confinement times, tau subscript ''E'', in the absence of ELMs. A wide variety of ELM behavior is observed, and ELM characteristics depend on configuration and fueling.

  9. Task-Related Edge Density (TED)-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    PubMed

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function. PMID:27341204

  10. Task-Related Edge Density (TED)—A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain

    PubMed Central

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach “Task-related Edge Density” (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function. PMID:27341204

  11. Dynamics of open bosonic quantum systems in coherent state representation

    SciTech Connect

    Dalvit, D. A. R.; Berman, G. P.; Vishik, M.

    2006-01-15

    We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.

  12. State variable modeling of the integrated engine and aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Sprinţu, Iuliana

    2014-12-01

    This study explores the dynamic characteristics of the combined aircraft-engine system, based on the general theory of the state variables for linear and nonlinear systems, with details leading first to the separate formulation of the longitudinal and the lateral directional state variable models, followed by the merging of the aircraft and engine models into a single state variable model. The linearized equations were expressed in a matrix form and the engine dynamics was included in terms of variation of thrust following a deflection of the throttle. The linear model of the shaft dynamics for a two-spool jet engine was derived by extending the one-spool model. The results include the discussion of the thrust effect upon the aircraft response when the thrust force associated with the engine has a sizable moment arm with respect to the aircraft center of gravity for creating a compensating moment.

  13. Efficient DMFT impurity solver using real-time dynamics with matrix product states

    NASA Astrophysics Data System (ADS)

    Ganahl, Martin; Aichhorn, Markus; Evertz, Hans Gerd; Thunström, Patrik; Held, Karsten; Verstraete, Frank

    2015-10-01

    We propose to calculate spectral functions of quantum impurity models using the time evolving block decimation (TEBD) for matrix product states. The resolution of the spectral function is improved by a so-called linear prediction approach. We apply the method as an impurity solver within the dynamical mean-field theory (DMFT) for the single- and two-band Hubbard model on the Bethe lattice. For the single-band model, we observe sharp features at the inner edges of the Hubbard bands. A finite-size scaling shows that they remain present in the thermodynamic limit. We analyze the real time-dependence of the double occupation after adding a single electron and observe oscillations at the same energy as the sharp feature in the Hubbard band, indicating a long-lived coherent superposition of states that correspond to the Kondo peak and the side peaks. For a two-band Hubbard model, we observe an even richer structure in the Hubbard bands, which cannot be related to a multiplet structure of the impurity, in addition to sharp excitations at the band edges of a type similar to the single-band case.

  14. In-plane magnetic-field effect on transport properties of the chiral edge state in a quasi-three-dimensional quantum well structure

    SciTech Connect

    Zhang, B.; Brooks, J.; Wang, Z.; Simmons, J.; Reno, J.; Lumpkin, N.; OBrien, J.; Clark, R.

    1999-09-01

    The transport properties of a quasi-three-dimensional, 200-layer quantum-well structure are investigated at integer filling in the quantum Hall state, concomitant with the chiral edge state condition. We find that the transverse magnetoresistance R{sub xx}, the Hall resistance R{sub xy}, and the vertical resistance R{sub zz} all follow a similar behavior with {ital both} temperature and in-plane magnetic field. A general characteristic of the influence of increasing in-plane field B{sub in} is that the quantization condition first improves, but above a critical value B{sub in}{sup C}, the quantization is systematically removed. We consider the interplay of the chiral edge state transport and the bulk (quantum Hall) transport properties. This mechanism may arise from the competition of the cyclotron energy with the superlattice band-structure energies. A comparison of the results with existing theories of the chiral edge state transport with in-plane field is also discussed. {copyright} {ital 1999} {ital The American Physical Society}

  15. Dynamic Resting State Functional Connectivity in Awake and Anesthetized Rodents

    PubMed Central

    Liang, Zhifeng; Liu, Xiao; Zhang, Nanyin

    2014-01-01

    Since its introduction, resting-state functional magnetic resonance imaging (rsfMRI) has been a powerful tool for investigating functional neural networks in both normal and pathological conditions. When measuring resting-state functional connectivity (RSFC), most rsfMRI approaches do not consider its temporal variations and thus only provide the averaged RSFC over the scan time. Recently, there has been a surge of interest to investigate the dynamic characteristics of RSFC in humans, and promising results have been yielded. However, our knowledge regarding the dynamic RSFC in animals remains sparse. In the present study we utilized the single-volume coactivation method to systematically study the dynamic properties of RSFC within the networks of infralimbic cortex (IL) and primary somatosensory cortex (S1) in both awake and anesthetized rats. Our data showed that both IL and S1 networks could be decomposed into several spatially reproducible but temporally changing co-activation patterns (CAPs), suggesting that dynamic RSFC was indeed a characteristic feature in rodents. In addition, we demonstrated that anesthesia profoundly impacted the dynamic RSFC of neural circuits subserving cognitive and emotional functions but had less effects on sensorimotor systems. Finally, we examined the temporal characteristics of each CAP, and found that individual CAPs exhibited consistent temporal evolution patterns. Together, these results suggest that dynamic RSFC might be a general phenomenon in vertebrate animals. In addition, this study has paved the way for further understanding the alterations of dynamic RSFC in animal models of brain disorders. PMID:25315787

  16. Controlling the Excited-State Dynamics of Nuclear Spin Isomers Using the Dynamic Stark Effect.

    PubMed

    Waldl, Maria; Oppel, Markus; González, Leticia

    2016-07-14

    Stark control of chemical reactions uses intense laser pulses to distort the potential energy surfaces of a molecule, thus opening new chemical pathways. We use the concept of Stark shifts to convert a local minimum into a local maximum of the potential energy surface, triggering constructive and destructive wave-packet interferences, which then induce different dynamics on nuclear spin isomers in the electronically excited state of a quinodimethane derivative. Model quantum-dynamical simulations on reduced dimensionality using optimized ultrashort laser pulses demonstrate a difference of the excited-state dynamics of two sets of nuclear spin isomers, which ultimately can be used to discriminate between these isomers. PMID:26840424

  17. Transition state theory and the dynamics of hard disks

    NASA Astrophysics Data System (ADS)

    Barnett-Jones, M.; Dickinson, P. A.; Godfrey, M. J.; Grundy, T.; Moore, M. A.

    2013-11-01

    The dynamics of two- and five-disk systems confined in a square has been studied using molecular dynamics simulations and compared with the predictions of transition state theory. We determine the partition functions Z and Z‡ of transition state theory using a procedure first used by Salsburg and Wood for the pressure. Our simulations show this procedure and transition state theory are in excellent agreement with the simulations. A generalization of the transition state theory to the case of a large number of disks N is made and shown to be in full agreement with simulations of disks moving in a narrow channel. The same procedure for hard spheres in three dimensions leads to the Vogel-Fulcher-Tammann formula for their alpha relaxation time.

  18. Magnetic vortex state stability, reversal and dynamics in restricted geometries.

    PubMed

    Guslienko, K Yu

    2008-06-01

    Magnetic vortices are typically the ground states in geometrically confined ferromagnets with small magnetocrystalline anisotropy. In this article I review static and dynamic properties of the magnetic vortex state in small particles with nanoscale thickness and sub-micron and micron lateral sizes (magnetic dots). Magnetic dots made of soft magnetic material shaped as flat circular and elliptic cylinders are considered. Such mesoscopic dots undergo magnetization reversal through successive nucleation, displacement and annihilation of magnetic vortices. The reversal process depends on the stability of different possible zero-field magnetization configurations with respect to the dot geometrical parameters and application of an external magnetic field. The interdot magnetostatic interaction plays an important role in magnetization reversal for dot arrays with a small dot-to-dot distance, leading to decreases in the vortex nucleation and annihilation fields. Magnetic vortices reveal rich, non-trivial dynamical properties due to existance of the vortex core bearing topological charges. The vortex ground state magnetization distribution leads to a considerable modification of the nature of spin excitations in comparison to those in the uniformly magnetized state. A magnetic vortex confined in a magnetically soft ferromagnet with micron-sized lateral dimensions possesses a characteristic dynamic excitation known as a translational mode that corresponds to spiral-like precession of the vortex core around its equilibrium position. The translation motions of coupled vortices are considered. There are, above the vortex translation mode eigenfrequencies, several dynamic magnetization eigenmodes localized outside the vortex core whose frequencies are determined principally by dynamic demagnetizing fields appearing due to restricted dot geometry. The vortex excitation modes are classified as translation modes and radially or azimuthally symmetric spin waves over the vortex

  19. The Protonation States of Oxo-Bridged MnIV-Dimers Resolved by Experimental and Computational Mn K Pre-Edge X-Ray Absorption Spectroscopy

    PubMed Central

    Krewald, Vera; Lassalle-Kaiser, Benedikt; Boron, Thaddeus T.; Pollock, Christopher J.; Kern, Jan; Beckwith, Martha A.; Yachandra, Vittal K.; Pecoraro, Vincent L.; Yano, Junko; Neese, Frank; DeBeer, Serena

    2013-01-01

    In nature, the protonation of oxo bridges is a commonly encountered mechanism for fine-tuning chemical properties and reaction pathways. Often, however, the protonation states are difficult to establish experimentally. This is of particular importance in the oxygen evolving complex of Photosystem II, where identification of the bridging oxo protonation states is one of the essential requirements toward unraveling the mechanism. In order to establish a combined experimental and theoretical protocol for the determination of protonation states, we have systematically investigated a series of Mn model complexes by Mn K pre-edge X-ray absorption spectroscopy. An ideal test case for selective bis-μ-oxo-bridge protonation in a Mn-dimer is represented by the system [MnIV2(salpn)2(μ-OH(n))2](n+). Although the three species [MnIV2(salpn)2(μ-O)2], [MnIV2(salpn)2(μ-O)(μ-OH)]+ and [MnIV2(salpn)2(μ-OH)2]2+ differ only in the protonation of the oxo bridges, they exhibit distinct differences in the pre-edge region while maintaining the same edge energy. The experimental spectra are correlated in detail to theoretical ly calculated spectra. A time-dependent density functional theory approach for calculating the pre-edge spectra of molecules with multiple metal centers is presented, using both high-spin (HS) and broken-symmetry (BS) electronic structure solutions. The most intense pre-edge transitions correspond to an excitation of the Mn-1s core electrons into the unoccupied orbitals of local eg character (dz2 and dxy based in the chosen coordinate system). The lowest by energy experimental feature is dominated by excitations of 1s-α electrons and the second observed feature is primarily attributed to 1s-β electron excitations. The observed energetic separation is due to spin polarization effects in spin-unrestricted density functional theory and models final state multiplet effects. The effects of spin polarization on the calculated Mn K pre-edge spectra, in both the HS

  20. The architecture of dynamic reservoir in the echo state network

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  1. The architecture of dynamic reservoir in the echo state network.

    PubMed

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities. PMID:23020466

  2. Instability-related delamination growth of embedded and edge delaminations. Ph.D. Thesis - Virginia Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1988-01-01

    Compressive loads can cause local buckling in composite laminates that have a near surface delamination. This buckling causes load redistribution and secondary loads, which in turn cause interlaminar stresses and delamination growth. The goal of this research was to enhance the understanding of this instability-related delamination growth in laminates containing either an embedded or an edge delamination.

  3. 12 CFR 225.121 - Acquisition of Edge corporation affiliate by State member banks of registered bank holding company.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Acquisition of Edge corporation affiliate by... COMPANIES AND CHANGE IN BANK CONTROL (REGULATION Y) Regulations Financial Holding Companies Interpretations... the amount limitation in the last sentence of paragraph 12 of section 25(a) of the Federal Reserve...

  4. Co K-edge magnetic circular dichroism across the spin state transition in LaCoO3 single crystal

    NASA Astrophysics Data System (ADS)

    Efimov, V.; Ignatov, A.; Troyanchuk, I. O.; Sikolenko, V. V.; Rogalev, A.; Wilhelm, F.; Efimova, E.; Tiutiunnikov, S. I.; Karpinsky, D.; Kriventsov, V.; Yakimchuk, E.; Molodtsov, S.; Sainctavit, P.; Prabhakaran, D.

    2016-05-01

    We report on Co K-edge x-ray magnetic circular dichroism (XMCD) measurements of LaCoO3 single crystal in temperature range from 5 to 300 K and external magnetic field of 17 T. The response consists of pre-edge (at 7712 eV) and bi-polar peak (up at 7727, down at 7731 eV) with amplitudes, respectively, less than 10-3 and 10-2 of the Co K-edge jump. Using the sum rule the orbital magnetic moment of 4p Co is evaluated. Its temperature dependence reaches a maximum of (2.7 ± 0.9) x10-3 μB at 120 K, following the trend for the total magnetic moment on the Co obtained from the superconducting quantum interference device measurements. However, on warming from 25 to 120 K, the orbital magnetic moment of the 4p Co doubles while total magnetic moment of Co increases 10 times. First principle calculations are in order to relate the Co K-edge XMCD results to the orbital and spin moment of 3d Co.

  5. Unified EDGE

    Energy Science and Technology Software Center (ESTSC)

    2007-06-18

    UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines,more » and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written in Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in “Basis Manual Set” by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.« less

  6. Unified EDGE

    SciTech Connect

    2007-06-18

    UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines, and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written in Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in “Basis Manual Set” by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.

  7. Bonding and magnetism in nanosized graphene molecules: Singlet states of zigzag edged hexangulenes C6m2H6m(m =2,3,…,10)

    NASA Astrophysics Data System (ADS)

    Philpott, Michael R.; Kawazoe, Yoshiyuki

    2009-12-01

    A novel molecular phenomenon is predicted on the basis of trends identified in an ab initio density functional theory study of the electronic and geometric structure of the hexagonal shaped zigzag edged graphene hydrocarbon molecules C6m2H6m(m =2,…,10). Electrons in the interior organize to form a graphene core that grows with edge size m. Electrons in the highest occupied molecular orbital levels, localized primarily on the perimeter carbons, polarize the interior atoms with a intensity that decays rapidly with distance from the perimeter. Three distinctive bond length patterns emerge: (i) a central graphene core that grows with size m; (ii) shape-similar transverse and radial bond length patterns on interior rows close to the edges; and (iii) quinoidal bonds radiating from each apex that link adjacent edges. Concomitant with these changes are: (i) a monotonic decrease in atomic charge from center to perimeter and (ii) relegation of spin in diradical states to the outer atomic rows of the bipartite lattice.

  8. Bonding and magnetism in nanosized graphene molecules: Singlet states of zigzag edged hexangulenes C(6m(2) )H(6m)(m=2,3,...,10).

    PubMed

    Philpott, Michael R; Kawazoe, Yoshiyuki

    2009-12-01

    A novel molecular phenomenon is predicted on the basis of trends identified in an ab initio density functional theory study of the electronic and geometric structure of the hexagonal shaped zigzag edged graphene hydrocarbon molecules C(6m(2) )H(6m)(m=2,...,10). Electrons in the interior organize to form a graphene core that grows with edge size m. Electrons in the highest occupied molecular orbital levels, localized primarily on the perimeter carbons, polarize the interior atoms with a intensity that decays rapidly with distance from the perimeter. Three distinctive bond length patterns emerge: (i) a central graphene core that grows with size m; (ii) shape-similar transverse and radial bond length patterns on interior rows close to the edges; and (iii) quinoidal bonds radiating from each apex that link adjacent edges. Concomitant with these changes are: (i) a monotonic decrease in atomic charge from center to perimeter and (ii) relegation of spin in diradical states to the outer atomic rows of the bipartite lattice. PMID:19968359

  9. Critical dynamic approach to stationary states in complex systems

    NASA Astrophysics Data System (ADS)

    Rozenfeld, A. F.; Laneri, K.; Albano, E. V.

    2007-04-01

    A dynamic scaling Ansatz for the approach to stationary states in complex systems is proposed and tested by means of extensive simulations applied to both the Bak-Sneppen (BS) model, which exhibits robust Self-Organised Critical (SOC) behaviour, and the Game of Life (GOL) of J. Conway, whose critical behaviour is under debate. Considering the dynamic scaling behaviour of the density of sites (ρ(t)), it is shown that i) by starting the dynamic measurements with configurations such that ρ(t=0) →0, one observes an initial increase of the density with exponents θ= 0.12(2) and θ= 0.11(2) for the BS and GOL models, respectively; ii) by using initial configurations with ρ(t=0) →1, the density decays with exponents δ= 0.47(2) and δ= 0.28(2) for the BS and GOL models, respectively. It is also shown that the temporal autocorrelation decays with exponents Ca = 0.35(2) (Ca = 0.35(5)) for the BS (GOL) model. By using these dynamically determined critical exponents and suitable scaling relationships, we also obtain the dynamic exponents z = 2.10(5) (z = 2.10(5)) for the BS (GOL) model. Based on this evidence we conclude that the dynamic approach to stationary states of the investigated models can be described by suitable power-law functions of time with well-defined exponents.

  10. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy

    SciTech Connect

    Caram, Justin R.; Zheng, Haibin; Rolczynski, Brian S.; Griffin, Graham B.; Engel, Gregory S.; Dahlberg, Peter D.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.

    2014-02-28

    Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques.

  11. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy

    PubMed Central

    Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.

    2014-01-01

    Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185

  12. Optimal PMU Placement Evaluation for Power System Dynamic State Estimation

    SciTech Connect

    Zhang, Jinghe; Welch, Greg; Bishop, Gary; Huang, Zhenyu

    2010-10-10

    Abstract - The synchronized phaor measurements unit (PMU), developed in the 1980s, is concidered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high-speed, precisely synchronized sensor data, which has been found to be usefule for dynamic, state estimation of power the power grid.

  13. Combined Steady-State and Dynamic Heat Exchanger Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  14. Dynamics Resonances in Atomic States of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Arefieff, K. N.; Miculis, K.; Bezuglov, N. N.; Dimitrijević, M. S.; Klyucharev, A. N.; Mihajlov, A. A.; Srećković, V. A.

    2015-12-01

    Ionized geocosmic media parameters in a thermal and a subthermal range of energy have a number of unique features. The photoresonance plasma that is formed by optical excitation of the lowest excited (resonance) atomic states is one example of conversion of radiation energy into electrical one. Since spontaneous fluorescence of excited atoms is probabilistic, the description of the radiating quantized system evolution along with photon energy transfer in a cold atom medium, should include elements of stochastic dynamics. Finally, the chaotic dynamics of a weakly bound Rydberg electron over a grid of the energy level diagram of a quasi-molecular Rydberg complex provides an excitation migration of the electron forward to the ionization continuum. This work aims at discussing the specific features of the dynamic resonances formalism in the description of processes involving Rydberg states of an excited atom, including features in the fluorescence spectrum partially caused by the quantum defect control due to the presence of statistic electromagnetic fields.

  15. Alphaherpesvirus Latency: A Dynamic State of Transcription and Reactivation.

    PubMed

    Bloom, David C

    2016-01-01

    Alphaherpesviruses infect a variety of species from sea turtles to man and can cause significant disease in mammals including humans and livestock. These viruses are characterized by a lytic and latent state in nerve ganglia, with the ability to establish a lifelong latent infection that is interrupted by periodic reactivation. Previously, it was accepted that latency was a dominant state and that only during relatively infrequent reactivation episodes did latent genomes within ganglia become transcriptionally active. Here, we review recent data, focusing mainly on Herpes Simplex Virus type 1 which indicate that the latent state is more dynamic than recently appreciated. PMID:26997590

  16. Mental states as macrostates emerging from brain electrical dynamics

    NASA Astrophysics Data System (ADS)

    Allefeld, Carsten; Atmanspacher, Harald; Wackermann, Jiří

    2009-03-01

    Psychophysiological correlations form the basis for different medical and scientific disciplines, but the nature of this relation has not yet been fully understood. One conceptual option is to understand the mental as "emerging" from neural processes in the specific sense that psychology and physiology provide two different descriptions of the same system. Stating these descriptions in terms of coarser- and finer-grained system states (macro- and microstates), the two descriptions may be equally adequate if the coarse-graining preserves the possibility to obtain a dynamical rule for the system. To test the empirical viability of our approach, we describe an algorithm to obtain a specific form of such a coarse-graining from data, and illustrate its operation using a simulated dynamical system. We then apply the method to an electroencephalographic recording, where we are able to identify macrostates from the physiological data that correspond to mental states of the subject.

  17. Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft x-ray source.

    PubMed

    La-O-Vorakiat, Chan; Siemens, Mark; Murnane, Margaret M; Kapteyn, Henry C; Mathias, Stefan; Aeschlimann, Martin; Grychtol, Patrik; Adam, Roman; Schneider, Claus M; Shaw, Justin M; Nembach, Hans; Silva, T J

    2009-12-18

    We use few-femtosecond soft x-ray pulses from high-harmonic generation to extract element-specific demagnetization dynamics and hysteresis loops of a compound material for the first time. Using a geometry where high-harmonic beams are reflected from a magnetized Permalloy grating, large changes in the reflected intensity of up to 6% at the M absorption edges of Fe and Ni are observed when the magnetization is reversed. A short pump pulse is used to destroy the magnetic alignment, which allows us to measure the fastest, elementally specific demagnetization dynamics, with 55 fs time resolution. The use of high harmonics for probing magnetic materials promises to combine nanometer spatial resolution, elemental specificity, and femtosecond-to-attosecond time resolution, making it possible to address important fundamental questions in magnetism. PMID:20366281

  18. Edge Bioinformatics

    Energy Science and Technology Software Center (ESTSC)

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in amore » genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance« less

  19. Edge Bioinformatics

    SciTech Connect

    Lo, Chien-Chi

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance

  20. Dynamics of multistable states during ongoing and evoked cortical activity.

    PubMed

    Mazzucato, Luca; Fontanini, Alfredo; La Camera, Giancarlo

    2015-05-27

    Single-trial analyses of ensemble activity in alert animals demonstrate that cortical circuits dynamics evolve through temporal sequences of metastable states. Metastability has been studied for its potential role in sensory coding, memory, and decision-making. Yet, very little is known about the network mechanisms responsible for its genesis. It is often assumed that the onset of state sequences is triggered by an external stimulus. Here we show that state sequences can be observed also in the absence of overt sensory stimulation. Analysis of multielectrode recordings from the gustatory cortex of alert rats revealed ongoing sequences of states, where single neurons spontaneously attain several firing rates across different states. This single-neuron multistability represents a challenge to existing spiking network models, where typically each neuron is at most bistable. We present a recurrent spiking network model that accounts for both the spontaneous generation of state sequences and the multistability in single-neuron firing rates. Each state results from the activation of neural clusters with potentiated intracluster connections, with the firing rate in each cluster depending on the number of active clusters. Simulations show that the model's ensemble activity hops among the different states, reproducing the ongoing dynamics observed in the data. When probed with external stimuli, the model predicts the quenching of single-neuron multistability into bistability and the reduction of trial-by-trial variability. Both predictions were confirmed in the data. Together, these results provide a theoretical framework that captures both ongoing and evoked network dynamics in a single mechanistic model. PMID:26019337

  1. Dynamics of Multistable States during Ongoing and Evoked Cortical Activity

    PubMed Central

    Mazzucato, Luca

    2015-01-01

    Single-trial analyses of ensemble activity in alert animals demonstrate that cortical circuits dynamics evolve through temporal sequences of metastable states. Metastability has been studied for its potential role in sensory coding, memory, and decision-making. Yet, very little is known about the network mechanisms responsible for its genesis. It is often assumed that the onset of state sequences is triggered by an external stimulus. Here we show that state sequences can be observed also in the absence of overt sensory stimulation. Analysis of multielectrode recordings from the gustatory cortex of alert rats revealed ongoing sequences of states, where single neurons spontaneously attain several firing rates across different states. This single-neuron multistability represents a challenge to existing spiking network models, where typically each neuron is at most bistable. We present a recurrent spiking network model that accounts for both the spontaneous generation of state sequences and the multistability in single-neuron firing rates. Each state results from the activation of neural clusters with potentiated intracluster connections, with the firing rate in each cluster depending on the number of active clusters. Simulations show that the model's ensemble activity hops among the different states, reproducing the ongoing dynamics observed in the data. When probed with external stimuli, the model predicts the quenching of single-neuron multistability into bistability and the reduction of trial-by-trial variability. Both predictions were confirmed in the data. Together, these results provide a theoretical framework that captures both ongoing and evoked network dynamics in a single mechanistic model. PMID:26019337

  2. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  3. Dependence of the L- to H-mode Power Threshold on Toroidal Rotation and the Link to Edge Turbulence Dynamics

    SciTech Connect

    McKee, G; Gohil, P; Schlossberg, D; Boedo, J; Burrell, K; deGrassie, J; Groebner, R; Makowski, M; Moyer, R; Petty, C; Rhodes, T; Schmitz, L; Shafer, M; Solomon, W; Umansky, M; Wang, G; White, A; Xu, X

    2008-10-13

    The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion {del}B drift away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW with near zero net injected torque, and to <2 MW with counter injection. Plasmas with the ion {del}B drift towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. At low rotation, the poloidal flow of turbulent eddies near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear may facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The poloidal turbulence velocity spectrum exhibits a transition from a Geodesic Acoustic Mode zonal flow to a higher-power, lower frequency, zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER.

  4. Static and dynamic polarizability for C2+ in Rydberg states

    NASA Astrophysics Data System (ADS)

    Stancalie, V.

    2015-07-01

    This work presents results from a non-perturbative calculation of dynamic polarizability of C III ions in 1s22sns (1Se) Rydberg states. We employ a two-state model for dressed atomic states to investigate the effect of the frequency-dependent polarizability of optically dressed 1s22sns(1Se) states (n = 5 - 12) on transitions to nearby states (1s22pns(1P1o)). Our model calculation results indicate that the resonance structure of the polarizabilities is entirely captured by the transition terms whereas the free electron polarizability only provides a smooth background. The resonance structure is evident in the plots and the widths increase with increasing principal quantum number. This work refers to highly excited 1s22sns (1S) Rydberg states, embedded in the electric dipole field of the 2s - 2p core transition in Li-like C3+ ion. The contributions of the individual transitions to the static polarizabilities of these Rydberg states are obtained from the use of the sum-over-state method. To this aim, both the C2+ ground state and the C3+ target state energies have been carefully calculated based on the configuration interactions method implemented in the General-purpose Relativistic Atomic Structure Package. Agreement is reasonably good with existing data wherever available. These results are believed to be the first such values for this system and will be important for ionic spectroscopy and plasma diagnostics.

  5. State machine analysis of sensor data from dynamic processes

    DOEpatents

    Cook, William R.; Brabson, John M.; Deland, Sharon M.

    2003-12-23

    A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.

  6. Nonclassical polarization dynamics in classical-like states

    NASA Astrophysics Data System (ADS)

    Luis, Alfredo; Sanz, Ángel S.

    2015-08-01

    Quantum polarization is investigated by means of a trajectory picture based on the Bohmian formulation of quantum mechanics. Relevant examples of classical-like two-mode field states are thus examined, namely, Glauber and SU(2) coherent states. Although these states are often regarded as classical, the analysis here shows that the corresponding electric-field polarization trajectories display topologies very different from those expected from classical electrodynamics. Rather than incompatibility with the usual classical model, this result demonstrates the dynamical richness of quantum motions, determined by local variations of the system quantum phase in the corresponding (polarization) configuration space, absent in classical-like models. These variations can be related to the evolution in time of the phase, but also to its dependence on configurational coordinates, which is the crucial factor to generate motion in the case of stationary states like those considered here. In this regard, for completeness these results are compared with those obtained from nonclassical NOON states.

  7. Quantum dynamics of charge state in silicon field evaporation

    NASA Astrophysics Data System (ADS)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki

    2016-08-01

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to the ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.

  8. A hierarchical state space approach to affective dynamics

    PubMed Central

    Lodewyckx, Tom; Tuerlinckx, Francis; Kuppens, Peter; Allen, Nicholas; Sheeber, Lisa

    2010-01-01

    Linear dynamical system theory is a broad theoretical framework that has been applied in various research areas such as engineering, econometrics and recently in psychology. It quantifies the relations between observed inputs and outputs that are connected through a set of latent state variables. State space models are used to investigate the dynamical properties of these latent quantities. These models are especially of interest in the study of emotion dynamics, with the system representing the evolving emotion components of an individual. However, for simultaneous modeling of individual and population differences, a hierarchical extension of the basic state space model is necessary. Therefore, we introduce a Bayesian hierarchical model with random effects for the system parameters. Further, we apply our model to data that were collected using the Oregon adolescent interaction task: 66 normal and 67 depressed adolescents engaged in a conflict interaction with their parents and second-to-second physiological and behavioral measures were obtained. System parameters in normal and depressed adolescents were compared, which led to interesting discussions in the light of findings in recent literature on the links between cardiovascular processes, emotion dynamics and depression. We illustrate that our approach is flexible and general: The model can be applied to any time series for multiple systems (where a system can represent any entity) and moreover, one is free to focus on whatever component of the versatile model. PMID:21516216

  9. Dynamic Resting-State Functional Connectivity in Major Depression.

    PubMed

    Kaiser, Roselinde H; Whitfield-Gabrieli, Susan; Dillon, Daniel G; Goer, Franziska; Beltzer, Miranda; Minkel, Jared; Smoski, Moria; Dichter, Gabriel; Pizzagalli, Diego A

    2016-06-01

    Major depressive disorder (MDD) is characterized by abnormal resting-state functional connectivity (RSFC), especially in medial prefrontal cortical (MPFC) regions of the default network. However, prior research in MDD has not examined dynamic changes in functional connectivity as networks form, interact, and dissolve over time. We compared unmedicated individuals with MDD (n=100) to control participants (n=109) on dynamic RSFC (operationalized as SD in RSFC over a series of sliding windows) of an MPFC seed region during a resting-state functional magnetic resonance imaging scan. Among participants with MDD, we also investigated the relationship between symptom severity and RSFC. Secondary analyses probed the association between dynamic RSFC and rumination. Results showed that individuals with MDD were characterized by decreased dynamic (less variable) RSFC between MPFC and regions of parahippocampal gyrus within the default network, a pattern related to sustained positive connectivity between these regions across sliding windows. In contrast, the MDD group exhibited increased dynamic (more variable) RSFC between MPFC and regions of insula, and higher severity of depression was related to increased dynamic RSFC between MPFC and dorsolateral prefrontal cortex. These patterns of highly variable RSFC were related to greater frequency of strong positive and negative correlations in activity across sliding windows. Secondary analyses indicated that increased dynamic RSFC between MPFC and insula was related to higher levels of recent rumination. These findings provide initial evidence that depression, and ruminative thinking in depression, are related to abnormal patterns of fluctuating communication among brain systems involved in regulating attention and self-referential thinking. PMID:26632990

  10. Anharmonic densities of states: A general dynamics-based solution.

    PubMed

    Jellinek, Julius; Aleinikava, Darya

    2016-06-01

    Density of states is a fundamental physical characteristic that lies at the foundation of statistical mechanics and theoretical constructs that derive from them (e.g., kinetic rate theories, phase diagrams, and others). Even though most real physical systems are anharmonic, the vibrational density of states is customarily treated within the harmonic approximation, or with some partial, often limited, account for anharmonicity. The reason for this is that the problem of anharmonic densities of states stubbornly resisted a general and exact, yet convenient and straightforward in applications, solution. Here we formulate such a solution within both classical and quantum mechanics. It is based on actual dynamical behavior of systems as a function of energy and as observed, or monitored, on a chosen time scale, short or long. As a consequence, the resulting anharmonic densities of states are fully dynamically informed and, in general, time-dependent. As such, they lay the ground for formulation of new statistical mechanical frameworks that incorporate time and are ergodic, by construction, with respect to actual dynamical behavior of systems. PMID:27276941

  11. Anharmonic densities of states: A general dynamics-based solution

    NASA Astrophysics Data System (ADS)

    Jellinek, Julius; Aleinikava, Darya

    2016-06-01

    Density of states is a fundamental physical characteristic that lies at the foundation of statistical mechanics and theoretical constructs that derive from them (e.g., kinetic rate theories, phase diagrams, and others). Even though most real physical systems are anharmonic, the vibrational density of states is customarily treated within the harmonic approximation, or with some partial, often limited, account for anharmonicity. The reason for this is that the problem of anharmonic densities of states stubbornly resisted a general and exact, yet convenient and straightforward in applications, solution. Here we formulate such a solution within both classical and quantum mechanics. It is based on actual dynamical behavior of systems as a function of energy and as observed, or monitored, on a chosen time scale, short or long. As a consequence, the resulting anharmonic densities of states are fully dynamically informed and, in general, time-dependent. As such, they lay the ground for formulation of new statistical mechanical frameworks that incorporate time and are ergodic, by construction, with respect to actual dynamical behavior of systems.

  12. Photoionization dynamics of the C2+ ion in Rydberg states

    NASA Astrophysics Data System (ADS)

    Stancalie, Viorica

    2014-11-01

    The goal of this work is to examine in detail the ionization dynamics of Be-like C ion in Rydberg states. An initial calculation has been done to output the lifetime due to spontaneous decay for unperturbed 1s22sns (1Se) Rydberg states using the multi-configuration Dirac-Fock (MCDF) method with configuration interaction option implemented in the general-purpose relativistic atomic structure package (GRASP). Both the C2+ ground state and the C3+ target state energies have been carefully calculated. We report results from a detailed and systematic study of the behaviour of complex photoionization amplitudes, the lifetime due to spontaneous decay for unperturbed 1s22sns (1Se) Rydberg states, the `resonant' phase shift and the rapidly increasing of this shift from well below to well above the resonance position. The sum-over-state method is used to calculate the static dipole polarizability, while the frequency-dependent polarizability values of C2+ ion in these Rydberg states are obtained from two-state model calculation results. Contribution to the Topical Issue "Elementary Processes with Atoms and Molecules in Isolated and Aggregated States", edited by Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejcik, John Tanis and Kurt H. Becker.

  13. Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer

    NASA Astrophysics Data System (ADS)

    Nitsche, Thomas; Elster, Fabian; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Barkhofen, Sonja; Silberhorn, Christine

    2016-06-01

    Quantum walks are a well-established model for the study of coherent transport phenomena and provide a universal platform in quantum information theory. Dynamically influencing the walker’s evolution gives a high degree of flexibility for studying various applications. Here, we present time-multiplexed finite quantum walks of variable size, the preparation of non-localised input states and their dynamical evolution. As a further application, we implement a state transfer scheme for an arbitrary input state to two different output modes. The presented experiments rely on the full dynamical control of a time-multiplexed quantum walk, which includes adjustable coin operation as well as the possibility to flexibly configure the underlying graph structures.

  14. Dynamics and spectroscopy of CH₂OO excited electronic states.

    PubMed

    Kalinowski, Jaroslaw; Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig; Räsänen, Markku; Gerber, R Benny

    2016-04-28

    The excited states of the Criegee intermediate CH2OO are studied in molecular dynamics simulations using directly potentials from multi-reference perturbation theory (MR-PT2). The photoexcitation of the species is simulated, and trajectories are propagated in time on the excited state. Some of the photoexcitation events lead to direct fragmentation of the molecule, but other trajectories describe at least several vibrations in the excited state, that may terminate by relaxation to the ground electronic state. Limits on the role of non-adiabatic contributions to the process are estimated by two different simulations, one that forces surface-hopping at potential crossings, and another that ignores surface hopping altogether. The effect of non-adiabatic transitions is found to be small. Spectroscopic implications and consequences for the interpretation of experimental results are discussed. PMID:27040614

  15. Entanglement dynamics in three-qubit X states

    SciTech Connect

    Weinstein, Yaakov S.

    2010-09-15

    I explore the entanglement dynamics of a three-qubit system in an initial X state undergoing decoherence including the possible exhibition of entanglement sudden death. To quantify entanglement I utilize negativity measures and make use of appropriate entanglement witnesses. The negativity results are then extended to X states with an arbitraty number of qubits. I also demonstrate nonstandard behavior of the tripartite negativity entanglement metric: its sudden appearance after some amount of decoherence, followed quickly by its disappearance. Finally, I solve for a lower bound on the three-qubit X-state concurrence, demonstrate when this bound goes to 0, and outline simplifcations for the calculation of higher-order X-state concurrences.

  16. Nonadiabatic quantum state engineering driven by fast quench dynamics

    NASA Astrophysics Data System (ADS)

    Herrera, Marcela; Sarandy, Marcelo S.; Duzzioni, Eduardo I.; Serra, Roberto M.

    2014-02-01

    There are a number of tasks in quantum information science that exploit nontransitional adiabatic dynamics. Such a dynamics is bounded by the adiabatic theorem, which naturally imposes a speed limit in the evolution of quantum systems. Here, we investigate an approach for quantum state engineering exploiting a shortcut to the adiabatic evolution, which is based on rapid quenches in a continuous-time Hamiltonian evolution. In particular, this procedure is able to provide state preparation faster than the adiabatic brachistochrone. Remarkably, the evolution time in this approach is shown to be ultimately limited by its "thermodynamical cost," provided in terms of the average work rate (average power) of the quench process. We illustrate this result in a scenario that can be experimentally implemented in a nuclear magnetic resonance setup.

  17. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  18. Cusps in the quench dynamics of a Bloch state

    NASA Astrophysics Data System (ADS)

    Zhang, J. M.; Yang, Hua-Tong

    2016-06-01

    We report some nonsmooth dynamics of a Bloch state in a one-dimensional tight binding model with the periodic boundary condition. After a sudden change of the potential of an arbitrary site, quantities like the survival probability of the particle in the initial Bloch state show cusps periodically, with the period being the Heisenberg time associated with the energy spectrum. This phenomenon is a nonperturbative counterpart of the nonsmooth dynamics observed previously (Zhang J. M. and Haque M., arXiv:1404.4280) in a periodically driven tight binding model. Underlying the cusps is an exactly solvable model, which consists of equally spaced levels extending from -∞ to +∞ , between which two arbitrary levels are coupled to each other by the same strength.

  19. Understanding ion association states and molecular dynamics using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Masser, Hanqing

    A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO

  20. Ultrafast excited-state dynamics of copper(I) complexes.

    PubMed

    Iwamura, Munetaka; Takeuchi, Satoshi; Tahara, Tahei

    2015-03-17

    Bis-diimine Cu(I) complexes exhibit strong absorption in the visible region owing to the metal-to-ligand charge transfer (MLCT) transitions, and the triplet MLCT ((3)MLCT) states have long lifetimes. Because these characteristics are highly suitable for photosensitizers and photocatalysts, bis-diimine Cu(I) complexes have been attracting much interest. An intriguing feature of the Cu(I) complexes is the photoinduced structural change called "flattening". Bis-diimine Cu(I) complexes usually have tetrahedron-like D2d structures in the ground (S0) state, in which two ligands are perpendicularly attached to the Cu(I) ion. With MLCT excitation, the central Cu(I) ion is formally oxidized to Cu(II), which induces the structural change to the "flattened" square-planar-like structure that is seen for usual Cu(II) complexes. In this Account, we review our recent studies on ultrafast excited-state dynamics of bis-diimine Cu(I) complexes carried out using femtosecond time-resolved optical spectroscopy. Focusing on three prototypical bis-diimine Cu(I) complexes that have 1,10-phenanthroline ligands with different substituents at the 2,9-positions, i.e., [Cu(phen)2](+) (phen = 1,10-phenanthroline), [Cu(dmphen)2](+) (dmphen = 2,9-dimethyl-1,10-phenanthroline), and [Cu(dpphen)2](+) (dpphen = 2,9-diphenyl-1,10-phenanthroline), we examined their excited-state dynamics by time-resolved emission and absorption spectroscopies with 200 fs time resolution, observed the excited-state coherent nuclear motion with 30 fs time resolution and performed complementary theoretical calculations. This combined approach vividly visualizes excited-state processes in the MLCT state of bis-diimine Cu(I) complexes. It was demonstrated that flattening distortion, internal conversion, and intersystem crossing occur on the femtosecond-early picosecond time scale, and their dynamics is clearly identified separately. The flattening distortion predominantly occurs in the S1 state on the subpicosecond time

  1. Observation of broadband unidirectional transmission by fusing the one-way edge states of gyromagnetic photonic crystals.

    PubMed

    Li, Zhen; Wu, Rui-xin; Li, Qing-Bo; Lin, Zhi-fang; Poo, Yin; Liu, Rong-Juan; Li, Zhi-Yuan

    2015-04-20

    We experimentally demonstrate a broadband one-way transmission by merging the operating bands of two types of one-way edge modes that are associated with Bragg scattering and magnetic surface plasmon (MSP) resonance, respectively. By tuning the configuration of gyromagnetic photonic crystals and applied bias magnetic field, the fused bandwidth of unidirectional propagation is up to 2 GHz in microwave frequency range, much larger than either of the individual one-way bandwidth associated with Bragg scattering or MSP resonance. Our scheme for broadband one-way transmission paves the way for the practical applications of one-way transmission. PMID:25969002

  2. Edge-edge interactions in stacked graphene nanoplatelets

    SciTech Connect

    Cruz Silva, Eduardo; Terrones Maldonado, Humberto; Terrones Maldonado, Mauricio; Jia, Xiaoting; Sumpter, Bobby G; Dresselhaus, M; Meunier, V.

    2013-01-01

    High-resolution transmission electron microscopy (HRTEM) studies show the dynamics of small graphene platelets on larger graphene layers. The platelets move nearly freely to eventually lock in at well-defined positions close to the edges of the larger underlying graphene sheet. While such movement is driven by a shallow potential energy surface described by an interplane interaction, the lock-in position occurs by via edge-edge interactions of the platelet and the graphene surface located underneath. Here we quantitatively study this behavior using van der Waals density functional calculations. Local interactions at the open edges are found to dictate stacking configurations that are different from Bernal (AB) stacking. These stacking configurations are known to be otherwise absent in edge-free two-dimensional (2D) graphene. The results explain the experimentally observed platelet dynamics and provide a detailed account of the new electronic properties of these combined systems.

  3. Synergy of Edge Shear Layer and Micro Turbulence in the Dynamics of the Density Limit of H-mode Discharges

    SciTech Connect

    Singh, R.

    2010-11-23

    Theoretical model for the physical mechanism of Greenwald density limit is presented. The importance of the role of shear layer associated with Zonal Flows (ZFs) and edge turbulence driven by high-m drift resistive ballooning mode (high-m DRBM) for Greenwald scaling is established. We have studied the multiscale interaction of zonal flows (ZFs) in the background of high-m DRBM turbulence. When the collision damping weak and model predicts unrealistically low value of saturated primary turbulence, we have studied the tertiary instability of ZFs, which take the place of collisional damping of ZFs. A self-consistent, simplified low-dimensional model of these interactions is constructed and derived the density scaling closed to Greenwald limit, which is based on experimental observations i.e., n{sub G{alpha}} I {sub P} /a{sup 2}(where n{sub G}, the plasma density and I{sub P}, the current).

  4. Phase State and Dynamics of Fluids in Mesoporous Solids

    NASA Astrophysics Data System (ADS)

    Valiullin, Rustem

    2011-03-01

    Fundamental understanding of the correlations between the phase state and dynamics of fluids confined to mesoporous solids is an important prerequisite for their optimal use in practical applications. The present contribution describes some recent progress in the exploration of such interrelations using nuclear magnetic resonance. In particular, transport properties of fluids during gas-liquid, solid-liquid and liquid-liquid transitions occurring in pore spaces of mesoporous solids are discussed and are shown to bear strong correlations. From the results presented it will, in particular, become evident that molecular diffusivity is a sensitive microscopic parameter not only to the thermodynamic state of the system, but also the history of its preparation.

  5. Accelerated Superposition State Molecular Dynamics for Condensed Phase Systems.

    PubMed

    Ceotto, Michele; Ayton, Gary S; Voth, Gregory A

    2008-04-01

    An extension of superposition state molecular dynamics (SSMD) [Venkatnathan and Voth J. Chem. Theory Comput. 2005, 1, 36] is presented with the goal to accelerate timescales and enable the study of "long-time" phenomena for condensed phase systems. It does not require any a priori knowledge about final and transition state configurations, or specific topologies. The system is induced to explore new configurations by virtue of a fictitious (free-particle-like) accelerating potential. The acceleration method can be applied to all degrees of freedom in the system and can be applied to condensed phases and fluids. PMID:26620930

  6. Dynamic states of a unidirectional ring of chen oscillators

    SciTech Connect

    Carvalho, Ana

    2015-03-10

    We study curious dynamical patterns appearing in a network of a unidirectional ring of Chen oscillators coupled to a ‘buffer’ cell. The network has Z{sub 3} exact symmetry group. We simulate the coupled cell systems associated to the two networks and obtain steady-states, rotating waves, quasiperiodic behavior, and chaos. The different patterns appear to arise through a sequence of Hopf, period-doubling and period-halving bifurcations. The network architecture appears to explain some patterns, whereas the properties of the chaotic oscillator may explain others. We use XPPAUT and MATLAB to compute numerically the relevant states.

  7. Reconstructing dynamic molecular states from single-cell time series.

    PubMed

    Huang, Lirong; Pauleve, Loic; Zechner, Christoph; Unger, Michael; Hansen, Anders S; Koeppl, Heinz

    2016-09-01

    The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe the time evolution of the system in a self-consistent manner. This is a prerequisite for a principled understanding of the inner workings of a system. Owing to the complexity of intracellular processes, experimental techniques that can retrieve a sufficient summary are beyond our reach. For the case of stochastic biomolecular reaction networks, we show how to convert the partial state information accessible by experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximations to the corresponding infinite-dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic promoter and mRNA states from noisy protein abundance measurements. PMID:27605167

  8. Topology of Sustainable Management of Dynamical Systems with Desirable States

    NASA Astrophysics Data System (ADS)

    Heitzig, Jobst; Kittel, Tim

    2015-04-01

    To keep the Earth System in a desirable region of its state space, such as the recently suggested 'tolerable environment and development window', 'planetary boundaries', or 'safe (and just) operating space', in addition to the identification of the quantitative internal dynamics and the available options for influencing it (management), there is an urgent need to understand the systems' state space structure with regard to questions such as (i) which of its parts can be reached from which others with or without leaving the desirable region, (ii) which parts are in a variety of senses 'safe' to stay in when management options break away, and which qualitative decision problems may occur as a consequence of this structure. To complement existing approaches from optimal control focusing on quantitative optimization and being much applied in both engineering and integrated assessment, we develop a mathematical theory of the qualitative topology that partitions the state space of a dynamical system with management options and desirable states including terminology suggestions for the various resulting parts. Our detailed formal classification of the possible states and management options with respect to the possibility of avoiding or leaving the undesired region indicates that before performing some form of quantitative optimization, the sustainable management of the Earth System may require decisions of a more discrete type, e.g. choosing between ultimate safety and permanent desirability, or between permanent safety and increasing future options.

  9. Invisible Electronic States and Their Dynamics Revealed by Perturbations

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.

    2011-06-01

    Sooner or later everyone working in the field of spectroscopy encounters perturbations. These can range in size from a small shift of a single rotational level to total destruction of the vibrational and rotational patterns of an electronic state. To some workers perturbations are a source of terror, but to others they are the most fascinating features of molecular spectra, because they give information about molecular dynamics, and about states that would otherwise be invisible as a result of unfavorable selection rules. An example of the latter is the essentially complete characterization of the tilde{b}^3A_2 state of SO_2 from the vibronic perturbations it causes in the tilde{a}^3B_1 state. The S_1-trans state of acetylene is a beautiful example of dynamics in action. The level patterns of the three bending vibrations change dramatically with increasing vibrational excitation as a result of the vibrational angular momentum and the approach to the isomerization barrier. Several vibrational levels of the S_1-cis isomer, previously thought to be unobservable, can now be assigned. They obtain their intensity through interactions with nearby levels of the trans isomer.

  10. Excited state dynamics of the astaxanthin radical cation

    NASA Astrophysics Data System (ADS)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  11. Dynamic recruitment of resting state sub-networks

    PubMed Central

    O'Neill, George C.; Bauer, Markus; Woolrich, Mark W.; Morris, Peter G.; Barnes, Gareth R.; Brookes, Matthew J.

    2015-01-01

    Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with evidence suggesting that they are integral to healthy brain function and perturbed in pathology. Despite rapid progress in this area, the temporal dynamics governing the functional connectivities that underlie RSN structure remain poorly understood. Here, we present a framework to help further our understanding of RSN dynamics. We describe a methodology which exploits the direct nature and high temporal resolution of magnetoencephalography (MEG). This technique, which builds on previous work, extends from solving fundamental confounds in MEG (source leakage) to multivariate modelling of transient connectivity. The resulting processing pipeline facilitates direct (electrophysiological) measurement of dynamic functional networks. Our results show that, when functional connectivity is assessed in small time windows, the canonical sensorimotor network can be decomposed into a number of transiently synchronising sub-networks, recruitment of which depends on current mental state. These rapidly changing sub-networks are spatially focal with, for example, bilateral primary sensory and motor areas resolved into two separate sub-networks. The likely interpretation is that the larger canonical sensorimotor network most often seen in neuroimaging studies reflects only a temporal aggregate of these transient sub-networks. Our approach opens new frontiers to study RSN dynamics, showing that MEG is capable of revealing the spatial, temporal and spectral signature of the human connectome in health and disease. PMID:25899137

  12. Enhanced repertoire of brain dynamical states during the psychedelic experience.

    PubMed

    Tagliazucchi, Enzo; Carhart-Harris, Robin; Leech, Robert; Nutt, David; Chialvo, Dante R

    2014-11-01

    The study of rapid changes in brain dynamics and functional connectivity (FC) is of increasing interest in neuroimaging. Brain states departing from normal waking consciousness are expected to be accompanied by alterations in the aforementioned dynamics. In particular, the psychedelic experience produced by psilocybin (a substance found in "magic mushrooms") is characterized by unconstrained cognition and profound alterations in the perception of time, space and selfhood. Considering the spontaneous and subjective manifestation of these effects, we hypothesize that neural correlates of the psychedelic experience can be found in the dynamics and variability of spontaneous brain activity fluctuations and connectivity, measurable with functional Magnetic Resonance Imaging (fMRI). Fifteen healthy subjects were scanned before, during and after intravenous infusion of psilocybin and an inert placebo. Blood-Oxygen Level Dependent (BOLD) temporal variability was assessed computing the variance and total spectral power, resulting in increased signal variability bilaterally in the hippocampi and anterior cingulate cortex. Changes in BOLD signal spectral behavior (including spectral scaling exponents) affected exclusively higher brain systems such as the default mode, executive control, and dorsal attention networks. A novel framework enabled us to track different connectivity states explored by the brain during rest. This approach revealed a wider repertoire of connectivity states post-psilocybin than during control conditions. Together, the present results provide a comprehensive account of the effects of psilocybin on dynamical behavior in the human brain at a macroscopic level and may have implications for our understanding of the unconstrained, hyper-associative quality of consciousness in the psychedelic state. PMID:24989126

  13. Learning to Estimate Dynamical State with Probabilistic Population Codes

    PubMed Central

    Sabes, Philip N.

    2015-01-01

    Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152

  14. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    PubMed

    Makin, Joseph G; Dichter, Benjamin K; Sabes, Philip N

    2015-11-01

    Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152

  15. Dynamic models for problems of species occurrence with multiple states

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture?recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics.

  16. Modeling species occurrence dynamics with multiple states and imperfect detection

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.

  17. Imaging Excited State Dynamics with 2d Electronic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Engel, Gregory S.

    2012-06-01

    Excited states in the condensed phase have extremely high chemical potentials making them highly reactive and difficult to control. Yet in biology, excited state dynamics operate with exquisite precision driving solar light harvesting in photosynthetic complexes though excitonic transport and photochemistry through non-radiative relaxation to photochemical products. Optimized by evolution, these biological systems display manifestly quantum mechanical behaviors including coherent energy transfer, steering wavepacket trajectories through conical intersections and protection of long-lived quantum coherence. To image the underlying excited state dynamics, we have developed a new spectroscopic method allowing us to capture excitonic structure in real time. Through this method and other ultrafast multidimensional spectroscopies, we have captured coherent dynamics within photosynthetic antenna complexes. The data not only reveal how biological systems operate, but these same spectral signatures can be exploited to create new spectroscopic tools to elucidate the underlying Hamiltonian. New data on the role of the protein in photosynthetic systems indicates that the chromophores mix strongly with some bath modes within the system. The implications of this mixing for excitonic transport will be discussed along with prospects for transferring underlying design principles to synthetic systems.

  18. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2016-01-01

    The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1-1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the

  19. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain

    PubMed Central

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint

    2016-01-01

    The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1–1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the

  20. Comparison between knife-edge and frisbee-shaped surrogate surfaces for making dry deposition measurements: Wind tunnel experiments and computational fluid dynamics (CFD) modeling

    NASA Astrophysics Data System (ADS)

    Huang, Jiaoyan; Liu, Ying; Holsen, Thomas M.

    2011-08-01

    Dry deposition is a major pathway for atmospheric contaminant movement from the atmosphere to the earth surface. Despite its importance, there is no generally accepted direct method to measure dry deposition. Recently, the interest in using surrogate surfaces to measure dry deposition is growing, primarily because of their ease of use. However, a problem with these surfaces is extrapolating the results obtained to natural surfaces. There are two popular surrogate plates used to measure dry deposition. One had a sharp leading edge (knife-edge) (KSS), and the other has a smooth-edge (frisbee-shaped) (FSS). In this study, the performances of these two surrogate surfaces to directly measure gas dry deposition were explored using wind tunnel experiments and two-dimensional (2D) computational fluid dynamic (CFD) models. Although the fluid fields above these two plates were different, both created laminar boundary layers (distance above the surface where the velocity gradient is constant) with a constant thickness after approximately five cm. In the wind tunnel, gaseous elemental mercury (GEM) deposition to gold-coated filters was used to measure deposition velocities ( Vd) in part because for this combination deposition is air-side controlled. The GEM Vd to both surfaces increased with increasing wind speeds. Based on both measurements and CFD simulations, the Vds to the FSS were approximately 30% higher and more variable than to the KSS when the wind flow was parallel to the surfaces. However, when the angle between the surfaces and the wind was varied the Vds to the FSS were less dependent on the incident angle than to the KSS.

  1. Protein-induced excited-state dynamics of protochlorophyllide.

    PubMed

    Hanf, Robert; Fey, Sonja; Dietzek, Benjamin; Schmitt, Michael; Reinbothe, Christiane; Reinbothe, Steffen; Hermann, Gudrun; Popp, Jürgen

    2011-07-14

    The light-driven NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme of chlorophyll biosynthesis in angiosperms. POR's unique requirement for light to become catalytically active makes the enzyme an attractive model to study the dynamics of enzymatic reactions in real time. Here, we use picosecond time-resolved fluorescence and femtosecond pump-probe spectroscopy to examine the influence of the protein environment on the excited-state dynamics of the substrate, protochlorophyllide (PChlide), in the enzyme/substrate (PChlide/POR) and pseudoternary complex including the nucleotide cofactor NADP(+) (PChlide/NADP(+)/ POR). In comparison with the excited-state processes of unbound PChlide, the lifetime of the thermally equilibrated S(1) excited state is lengthened from 3.4 to 4.4 and 5.4 ns in the PChlide/POR and PChlide/NADP(+)/POR complex, whereas the nonradiative rates are decreased by ∼30 and 40%, respectively. This effect is most likely due to the reduced probability of nonradiative decay into the triplet excited state, thus keeping the risk of photosensitized side reactions in the enzyme low. Further, the initial reaction path involves the formation of an intramolecular charge-transfer state (S(ICT)) as an intermediate product. From a strong blue shift in the excited-state absorption, it is concluded that the S(ICT) state is stabilized by local interactions with specific protein sites in the catalytic pocket. The possible relevance of this result for the catalytic reaction in the enzyme POR is discussed. PMID:21678944

  2. Dynamics of Pertussis Transmission in the United States.

    PubMed

    Magpantay, F M G; Rohani, P

    2015-06-15

    Past patterns of infectious disease transmission set the stage on which modern epidemiologic dynamics are played out. Here, we present a comprehensive account of pertussis (whooping cough) transmission in the United States during the early vaccine era. We analyzed recently digitized weekly incidence records from Morbidity and Mortality Weekly Reports from 1938 to 1955, when the whole-cell pertussis vaccine was rolled out, and related them to contemporary patterns of transmission and resurgence documented in monthly incidence data from the National Notifiable Diseases Surveillance System. We found that, during the early vaccine era, pertussis epidemics in US states could be categorized as 1) annual, 2) initially annual and later multiennial, or 3) multiennial. States with predominantly annual cycles tended to have higher per capita birth rates, more household crowding, more children per family, and lower rates of school attendance than the states with multiennial cycles. Additionally, states that exhibited annual epidemics during 1938-1955 have had the highest recent (2001-2010) incidence, while those states that transitioned from annual cycles to multiennial cycles have had relatively low recent incidence. Our study provides an extensive picture of pertussis epidemiology in the United States dating back to the onset of vaccination, a back-story that could aid epidemiologists in understanding contemporary transmission patterns. PMID:26022662

  3. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS₂).

    PubMed

    Woodward, R I; Kelleher, E J R; Howe, R C T; Hu, G; Torrisi, F; Hasan, T; Popov, S V; Taylor, J R

    2014-12-15

    We fabricate a few-layer molybdenum disulfide (MoS₂) polymer composite saturable absorber by liquid-phase exfoliation, and use this to passively Q-switch an ytterbium-doped fiber laser, tunable from 1030 to 1070 nm. Self-starting Q-switching generates 2.88 μs pulses at 74 kHz repetition rate, with over 100 nJ pulse energy. We propose a mechanism, based on edge states within the bandgap, responsible for the wideband nonlinear optical absorption exhibited by our few-layer MoS₂ sample, despite operating at photon energies lower than the material bandgap. PMID:25607060

  4. Electronic defect states at the LaAlO3/SrTiO3 heterointerface revealed by O K-edge X-ray absorption spectroscopy.

    PubMed

    Palina, Natalia; Annadi, Anil; Asmara, Teguh Citra; Diao, Caozheng; Yu, Xiaojiang; Breese, Mark B H; Venkatesan, T; Ariando; Rusydi, Andrivo

    2016-05-18

    Interfaces of two dissimilar complex oxides exhibit exotic physical properties that are absent in their parent compounds. Of particular interest is insulating LaAlO3 films on an insulating SrTiO3 substrate, where transport measurements have shown a metal-insulator transition as a function of LaAlO3 thickness. Their origin has become the subject of intense research, yet a unifying consensus remains elusive. Here, we report evidence for the electronic reconstruction in both insulating and conducting LaAlO3/SrTiO3 heterointerfaces revealed by O K-edge X-ray absorption spectroscopy. For the insulating samples, the O K-edge XAS spectrum exhibits features characteristic of electronically active point defects identified as noninteger valence states of Ti. For conducting samples, a new shape-resonance at ∼540.5 eV, characteristic of molecular-like oxygen (empty O-2p band), is observed. This implies that the concentration of electronic defects has increased in proportion with LaAlO3 thickness. For larger defect concentrations, the electronic defect states are no longer localized at the Ti orbitals and exhibit pronounced O 2p-O 2p character. Our results demonstrate that, above a critical thickness, the delocalization of O 2p electronic states can be linked to the presence of oxygen vacancies and is responsible for the enhancement of conductivity at the oxide heterointerfaces. PMID:27146607

  5. Analysis and Modelling of the Steady-State and Dynamic-State Discharge in SMES System

    NASA Astrophysics Data System (ADS)

    Chen, Xiao Yuan; Jin, Jian Xun

    The steady-state and dynamic-state discharge processes have been discussed to develop a superconducting magnetic energy storage (SMES) model in the paper. The SMES model allows the integrated analysis and optimization of the SMES devices, and their control systems, and can also serve as an independent storage module in the practical SMES application circuits, thus provide a method to link superconductivity technology to conventional power electronics in a SMES device.

  6. Absorbing-state phase transitions with extremal dynamics

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Garcia, Guilherme J. M.

    2005-06-01

    Extremal dynamics represents a path to self-organized criticality in which the order parameter is tuned to a value of zero. The order parameter is associated with a phase transition to an absorbing state. Given a process that exhibits a phase transition to an absorbing state, we define an “extremal absorbing” process, providing the link to the associated extremal (nonabsorbing) process. Stationary properties of the latter correspond to those at the absorbing-state phase transition in the former. Studying the absorbing version of an extremal dynamics model allows to determine certain critical exponents that are not otherwise accessible. In the case of the Bak-Sneppen (BS) model, the absorbing version is closely related to the “ f -avalanche” introduced by Paczuski, Maslov, and Bak [Phys. Rev. E 53, 414 (1996)], or, in spreading simulations to the “BS branching process” also studied by these authors. The corresponding nonextremal process belongs to the directed percolation universality class. We revisit the absorbing BS model, obtaining refined estimates for the threshold and critical exponents in one dimension. We also study an extremal version of the usual contact process, using mean-field theory and simulation. The extremal condition slows the spread of activity and modifies the critical behavior radically, defining an “extremal directed percolation” universality class of absorbing-state phase transitions. Asymmetric updating is a relevant perturbation for this class, even though it is irrelevant for the corresponding nonextremal class.

  7. Imaging the dynamics of free-electron Landau states

    PubMed Central

    Schattschneider, P.; Schachinger, Th.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Bliokh, K. Y.; Nori, Franco

    2014-01-01

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563

  8. Low-energy-state dynamics of entanglement for spin systems

    SciTech Connect

    Jafari, R.

    2010-11-15

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  9. Imaging the dynamics of free-electron Landau states.

    PubMed

    Schattschneider, P; Schachinger, Th; Stöger-Pollach, M; Löffler, S; Steiger-Thirsfeld, A; Bliokh, K Y; Nori, Franco

    2014-01-01

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563

  10. Swords with Blunt Edges

    ERIC Educational Resources Information Center

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  11. Towards a physics of evolution: Critical diversity dynamics at the edges of collapse and bursts of diversification

    NASA Astrophysics Data System (ADS)

    Hanel, Rudolf; Kauffman, Stuart A.; Thurner, Stefan

    2007-09-01

    Systems governed by the standard mechanisms of biological or technological evolution are often described by catalytic evolution equations. We study the structure of these equations and find an analogy with classical thermodynamic systems. In particular, we can demonstrate the existence of several distinct phases of evolutionary dynamics: a phase of fast growing diversity, one of stationary, finite diversity, and one of rapidly decaying diversity. While the first two phases have been subject to previous work, here we focus on the destructive aspects—in particular the phase diagram—of evolutionary dynamics. The main message is that within a critical region, massive loss of diversity can be triggered by very small external fluctuations. We further propose a dynamical model of diversity which captures spontaneous creation and destruction processes fully respecting the phase diagrams of evolutionary systems. The emergent time series show rich diversity dynamics, including power laws as observed in actual economical data, e.g., firm bankruptcy data. We believe the present model presents a possibility to cast the famous qualitative picture of Schumpeterian economic evolution, into a quantifiable and testable framework.

  12. Bell states and entanglement dynamics on two coupled quantum molecules

    SciTech Connect

    Oliveira, P.A.; Sanz, L.

    2015-05-15

    This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the path to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.

  13. Dynamics of Majorana states in a topological Josephson junction.

    PubMed

    Houzet, Manuel; Meyer, Julia S; Badiane, Driss M; Glazman, Leonid I

    2013-07-26

    Topological Josephson junctions carry 4π-periodic bound states. A finite bias applied to the junction limits the lifetime of the bound state by dynamically coupling it to the continuum. Another characteristic time scale, the phase adjustment time, is determined by the resistance of the circuit "seen" by the junction. We show that the 4π periodicity manifests itself by an even-odd effect in Shapiro steps only if the phase adjustment time is shorter than the lifetime of the bound state. The presence of a peak in the current noise spectrum at half the Josephson frequency is a more robust manifestation of the 4π periodicity, as it persists for an arbitrarily long phase adjustment time. We specify, in terms of the circuit parameters, the conditions necessary for observing the manifestations of 4π periodicity in the noise spectrum and Shapiro step measurements. PMID:23931386

  14. Nature and evolution of the band-edge states in MoS2: From monolayer to bulk

    NASA Astrophysics Data System (ADS)

    Padilha, J. E.; Peelaers, H.; Janotti, A.; Van de Walle, C. G.

    2014-11-01

    Exploring two-dimensional layered materials, such as molybdenum disulfide (MoS2), for (opto)electronic applications requires detailed knowledge of their electronic band structures. Using first-principles calculations we trace the evolution of the band structure as a function of the number of layers, starting from a monolayer, which has a direct gap, to the bulk material, which has an indirect gap. We find that, with respect to the vacuum level, the valence-band maximum (VBM) increases rapidly with the number of layers, while the conduction-band minimum (CBM) remains almost constant. For two or more layers the VBM always occurs at Γ and the CBM occurs at K. These findings are analyzed in terms of the orbital composition of the valence- and conduction-band edges at the various high-symmetry points in the Brillouin zone.

  15. A Dynamic Bayesian Network for Mt. Etna Volcano State Assessment

    NASA Astrophysics Data System (ADS)

    Cannavo', Flavio; Cassisi, Carmelo; Aliotta, Marco; Cannata, Andrea; Montalto, Placido; Prestifilippo, Michele

    2015-04-01

    Nowadays, the real-time monitoring of Mt. Etna volcano is mostly delegated to one or more human experts in volcanology, who interpret the data coming from different kind of monitoring networks. Among their duties, the evaluation of the volcano state is one of the most critical task for civil protection purposes. Unfortunately, the coupling of highly non-linear and complex volcanic dynamic processes leads to measurable effects that can show a large variety of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data the volcano state needs to be expressed in probabilistic terms, thus making the fast volcano state assessment sometimes impracticable for the personnel on duty at the 24h control room. With the aim of aiding the personnel on duty in volcano monitoring, here we present an expert system approach based on Bayesian networks to estimate automatically the ongoing volcano state from all the available different kind of measurements. A Bayesian network is a static probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph. We consider model variables both the measurements and the possible states of the volcano. In order to include the time in the model, we use a Dynamic Bayesian Network (DBN) which relates variables to each other over adjacent time steps. The model output consists of an estimation of the probability distribution of the feasible volcano states. We build the model by considering the long record of data from 2011 to 2014 and we cross-validate it by considering 3 years for parameter estimation and 1 year for testing in simulated real-time mode.

  16. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  17. Edge Dislocations in Smectic-A Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ambrožič, M.; Slavinec, M.; Kralj, S.

    We study theoretically static structure and annihilation dynamics of edge dislocations in a smectic-A liquid crystal confined to a plan-parallel cell. The Landau-Ginzburg type phenomenological approach is used in terms of a complex order parameter. We investigate a structure of an isolated dislocation that is enforced by boundary conditions. We further follow the annihilation dynamics of a pair of dislocations into a defectless state.

  18. Signatures of discrete breathers in coherent state quantum dynamics

    SciTech Connect

    Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis

    2013-02-07

    In classical mechanics, discrete breathers (DBs) - a spatial time-periodic localization of energy - are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space - a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes - high order tunneling modes - that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments that

  19. Superdeformed states in hypernuclei with antisymmetrized molecular dynamics

    NASA Astrophysics Data System (ADS)

    Isaka, Masahiro; Kimura, Masaaki; Hiyama, Emiko; Sagawa, Hiroyuki

    2014-09-01

    One of the main purposes of hypernuclear physics is to reveal the responses to the addition of a Λ particle in (hyper)nuclei. Recently, as an example of such responses, several authors investigated the difference of BΛ between the spherical (ground) and largely deformed (superdeformed) states. For example, the relativistic mean-field (RMF) calculations predicted the large BΛ in the superdeformed states in several Λ hypernuclei such as Λ37Ar and Λ39Ar. On the other hand, in Λ41Ca and Λ46Sc, it was discussed that BΛ in the spherical states is larger than that in the superdeformed states based on the antisymmetrized molecular dynamics (AMD). In the present study, we have applied the AMD to Ar Λ hypernuclei to reveal the difference of BΛ between the spherical and superdeformed states. Especially, we will focus on Λ39Ar as well as Λ37Ar, because it would be possible to produce Λ39Ar by the JLab experiments. In this talk, we will show the difference of BΛ in Ar hypernuclei and compare it with the previous AMD results and RMF predictions. Furthermore, we will predict the changes of the excitation spectra in Λ39Ar due to the difference of BΛ.

  20. Dynamics of biomembranes with active multiple-state inclusions.

    PubMed

    Chen, Hsuan-Yi; Mikhailov, Alexander S

    2010-03-01

    Nonequilibrium dynamics of biomembranes with active multiple-state inclusions is considered. The inclusions represent protein molecules which perform cyclic internal conformational motions driven by the energy brought with adenosine triphosphate (ATP) ligands. As protein conformations cyclically change, this induces hydrodynamical flows and also directly affects the local curvature of a membrane. On the other hand, variations in the local curvature of the membrane modify the transition rates between conformational states in a protein, leading to a feedback in the considered system. Moreover, active inclusions can move diffusively through the membrane so that their surface concentration varies. The kinetic description of this system is constructed and the stability of the uniform stationary state is analytically investigated. We show that, as the rate of supply of chemical energy is increased above a certain threshold, this uniform state becomes unstable and stationary or traveling waves spontaneously develop in the system. Such waves are accompanied by periodic spatial variations of the membrane curvature and the inclusion density. For typical parameter values, their characteristic wavelengths are of the order of hundreds of nanometers. For traveling waves, the characteristic frequency is of the order of a thousand Hz or less. The predicted instabilities are possible only if at least three internal inclusion states are present. PMID:20365764

  1. Connecting exact coherent states to turbulent dynamics in channel flow

    NASA Astrophysics Data System (ADS)

    Park, Jae Sung; Graham, Michael D.

    2015-11-01

    The discovery of nonlinear traveling wave solutions to the Navier-Stokes equations or exact coherent states has greatly advanced the understanding of the nature of turbulent shear flows. These solutions are unstable saddle points in state space, while the time evolution of a turbulent flow is a dynamical trajectory wandering around them. In this regard, it is of interest to investigate how closely the turbulent trajectories approach these invariant states. Here, we present connections between turbulent trajectories and one intriguing solution family in channel flow. A state space visualization of turbulent trajectories is presented in a three-dimensional space. The lifetime of the trajectories is well represented by closeness to two distinct solutions resembling in many ways the active and hibernating phases of minimal channel turbulence (Xi & Graham PRL 2010). The connections are then examined by comparing mean profiles and flow structures. More importantly, the connections are confirmed by calculating the L2 distance between the trajectories and the traveling waves. Lastly, paths of an intermittent bursting phenomenon are identified in state space and the relationship between bursting paths and the traveling waves or hibernating turbulence is further discussed. This work was supported by the Air Force Office of Scientific Research through grant FA9550-15-1-0062 (Flow Interactions and Control Program).

  2. Camera Edge Response

    NASA Astrophysics Data System (ADS)

    Zisk, Stanley H.; Wittels, Norman

    1988-02-01

    Edge location is an important machine vision task. Machine vision systems perform mathematical operations on rectangular arrays of numbers that are intended to faithfully represent the spatial distribution of scene luminance. The numbers are produced by periodic sampling and quantization of the camera's video output. This sequence can cause artifacts to appear in the data with a noise spectrum that is high in power at high spatial frequencies. This is a problem because most edge detection algorithms are preferentially sensitive to the high-frequency content in an image. Solid state cameras can introduce errors because of the spatial periodicity of their sensor elements. This can result in problems when image edges are aligned with camera pixel boundaries: (a) some cameras introduce transients into the video signal while switching between sensor elements; (b) most cameras use analog low-pass filters to minimize sampling artifacts and these introduce video phase delays that shift the locations of edges. The problems compound when the vision system samples asynchronously with the camera's pixel rate. Moire patterns (analogous to beat frequencies) can result. In this paper, we examine and model quantization effects in a machine vision system with particular emphasis on edge detection performance. We also compare our models with experimental measurements.

  3. Living on the Leading Edge. State Policy Issues for Education and Economic Dvelopment in a Global Economy.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    Three papers presented to The Task Force on Education and Economic Development of The National Conference of Lieutenant Governors are as follows: "Education and American Resurgence" (Frank Newman); "State Economic Development and Education: A Framework for Policy Development" (Mark S. Tucker); and "State Policy on Partnerships Between Higher…

  4. Tracking and controlling unstable steady states of dynamical systems

    NASA Astrophysics Data System (ADS)

    Tamaševičiūtė, Elena; Mykolaitis, Gytis; Bumelienė, Skaidra; Tamaševičius, Arūnas

    2014-03-01

    An adaptive controller for stabilization of unknown unstable steady states (spirals, nodes and saddles) of nonlinear dynamical systems is considered and its robustness under the changes of the location of the fixed point in the phase space is demonstrated. An analog electronic controller, based on a low-pass filter technique, is described. It can be easily switched between a stable and an unstable mode of operation for stabilizing either spirals/nodes or saddles, respectively. Numerical and experimental results for two autonomous systems, the damped Duffing-Holmes oscillator and the chaotic Lorenz system, are presented.

  5. Dynamic quantum secret sharing protocol based on GHZ state

    NASA Astrophysics Data System (ADS)

    Liao, Ci-Hong; Yang, Chun-Wei; Hwang, Tzonelish

    2014-08-01

    This work proposes a new dynamic quantum secret sharing (DQSS) protocol using the measurement property of Greenberger-Horne-Zeilinger state and the controlled-NOT gate. In the proposed DQSS protocol, an agent can obtain a shadow of the secret key by simply performing a measurement on single photons. In comparison with the existing DQSS protocols, it provides better qubit efficiency and has an easy way to add a new agent. The proposed protocol is also free from the eavesdropping attack, the collusion attack, and can have an honesty check on a revoked agent.

  6. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

  7. Edge detection

    NASA Astrophysics Data System (ADS)

    Hildreth, E. C.

    1985-09-01

    For both biological systems and machines, vision begins with a large and unwieldly array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene such as the location of object boundaries and the structure, color and texture of object surfaces, from the two-dimensional image that is projected onto the eye or camera. This goal is not achieved in a single step: vision proceeds in stages, with each stage producing increasingly more useful descriptions of the image and then the scene. The first clues about the physical properties of the scene are provided by the changes of intensity in the image. The importance of intensity changes and edges in early visual processing has led to extensive research on their detection, description and use, both in computer and biological vision systems. This article reviews some of the theory that underlies the detection of edges, and the methods used to carry out this analysis.

  8. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  9. Edge phonons in black phosphorus.

    PubMed

    Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  10. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  11. On the dynamics of high Rydberg states of large molecules

    NASA Astrophysics Data System (ADS)

    Jortner, Joshua; Bixon, M.

    1995-04-01

    In this paper we explore the level structure, the optical excitation modes and the dynamics of a mixed Stark manifold of very high Rydberg states (with principal quantum numbers n=80-250) of large molecules, e.g., 1,4 diaza bicyclo [2,2,2] octane (DABCO) and bis (benzene) chromium (BBC) [U. Even, R. D. Levine, and R. Bersohn, J. Phys. Chem. 98, 3472 (1994)] and of autoionizing Rydbergs of atoms [F. Merkt, J. Chem. Phys. 100, 2623 (1994)], interrogated by time-resolved zero-electron kinetic energy (ZEKE) spectroscopy. We pursue the formal analogy between the level structure, accessibility and decay of very high Rydbergs in an external weak (F≂0.1-1 V cm-1) electric field and intramolecular (interstate and intrastate) relaxation in a bound molecular level structure. The onset n=nM of the strong mixing (in an external field F and in the field exerted by static ions) of a doorway state, which is characterized by a low azimuthal quantum number l, a finite quantum defect δ, and a total nonradiative width Γs≂Γ0/n3, with the inactive high l manifold is specified by nM≂80.6δ1/5(F/V cm-1)-1/5. At n≥nM the level structure and dynamics are characterized by the product γρ, where ρ is the density of states and γ=ΓsD(n) is the average decay width of the eigenstates, with the dilution factor D(n)≊n-2 for (lml) mixing and D(n)≂n-1 for (l) mixing, whereupon γρ=(Γ0/4δR)(nM/n)5, being independent of D(n). The sparse level structure is realized for γρ≪1, while the dense level structure prevails for γρ≳1, resulting in two limiting situations; (a) a dense limit for n≥nM and a sparse limit for n≫nM, and (b) a sparse limit for all n≥nM. The experimental information currently available on the decay dynamics of molecular (DABCO and BBC) and atomic (Ar) Rydbergs for n≥nM corresponds to case (b). The time-resolved dynamics was characterized in terms of the excited state total population probability P(t) and the population probability I(t) of the doorway

  12. Involvement of Sub-Bandgap States in Subpicosecond Exciton and Biexciton Dynamics of Ternary AgInS2 Nanocrystals.

    PubMed

    Dana, Jayanta; Debnath, Tushar; Ghosh, Hirendra N

    2016-08-18

    We have synthesized three AgxInS2 (AIS) ternary nanocrystals (NCs), where x varies from 0.25 to 1, and reported their biexcitonic feature which depends on the stoichiometry ratio of Ag/In. The broadening of absorption band and dual photoluminescence in different AIS NCs indicates the existence of Ag-related sub-bandgap (S-states) and antisite states. Ultrafast charge carrier dynamics in AIS NCs that involve multiple states like higher excited state, band-edge, Ag-related sub-bandgap, and antisite states have been carried out by employing femtosecond transient absorption spectroscopy, which strongly depends on Ag/In ratio. The probe-induced biexcitonic feature that originated from antisite state has been observed in these AIS NCs even at low pump fluency ( = ∼0.2). The enhancement of binding energy of biexciton and slow down of electron cooling dynamics has been demonstrated by gradual increment of pump fluence as well as with different stoichiometry of Ag and In. PMID:27472249

  13. Dynamic control of metastable remanent states in mesoscale magnetic elements

    SciTech Connect

    Ding, J.; Jain, S.; Pearson, J. E.; Novosad, V.; Lendinez, S.; Khovaylo, V.

    2015-05-07

    The formation of the vortex-antivortex-vortex (v-av-v) metastable remanent states in elongated magnetic elements have been systematically investigated using micromagnetic modeling. It is demonstrated that the v-av-v magnetization pattern can be effectively stabilized by exciting the single vortex state with an external RF field. Furthermore, we show that a set of different polarity combinations of the vortex cores can be achieved by adjusting the frequency and amplitude of the excitation field. The corresponding dynamic response in time- and frequency-domain has also been presented. Owing to the diversity of the collective modes with different vortex-antivortex combinations, this system may open promising perspectives in the area of spin transfer torque oscillators.

  14. Semiclassical Dynamics of Electron Wave Packet States with Phase Vortices

    SciTech Connect

    Bliokh, Konstantin Yu.; Bliokh, Yury P.; Savel'ev, Sergey; Nori, Franco

    2007-11-09

    We consider semiclassical higher-order wave packet solutions of the Schroedinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) ({Dirac_h}/2{pi})l (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.

  15. Dynamics of an N-vortex state at small distances

    SciTech Connect

    Ovchinnikov, Yu. N.

    2013-01-15

    We investigate the dynamics of a state of N vortices, placed at the initial instant at small distances from some point, close to the 'weight center' of vortices. The general solution of the time-dependent Ginsburg-Landau equation for N vortices in a large time interval is found. For N = 2, the position of the 'weight center' of two vortices is time independent. For N {>=} 3, the position of the 'weight center' weakly depends on time and is located in the range of the order of a{sup 3}, where a is a characteristic distance of a single vortex from the 'weight center.' For N = 3, the time evolution of the N-vortex state is fixed by the position of vortices at any time instant and by the values of two small parameters. For N {>=} 4, a new parameter arises in the problem, connected with relative increases in the number of decay modes.

  16. State-dependent neutral delay equations from population dynamics.

    PubMed

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations. PMID:25117688

  17. The dynamics of high autoionizing Rydberg states of Ar

    NASA Astrophysics Data System (ADS)

    Bixon, M.; Jortner, Joshua

    1995-09-01

    In this paper we present a theoretical study of the autoionization dynamics of high 2P1/2np'[3/2]1 Rydbergs (with the principal quantum numbers n=100-280) of Ar in weak homogeneous electric fields (F=0.01-1.0 V/cm), which were experimentally interrogated by time-resolved zero-electron kinetic energy (ZEKE) spectroscopy [M. Mühlpfordt and U. Even, J. Chem. Phys. 103, 4427 (1995)], and which exhibit a marked dilution (i.e., ˜2 orders of magnitude lengthening) of the lifetimes relative to those inferred on the basis of the n3 scaling law for the spectral linewidths of the np' (n=12-24) Rydbergs. The multichannel effective Hamiltonian (Heff) with several doorway state(s) (for excitation and decay) and pure escape states (for decay) was advanced and utilized to treat the dynamics of the mixed Stark manifold of the ZEKE Rydbergs. Heff of dimension 2n-1 is then constructed for a n Rydberg manifold using independent experimental information on the (l dependent) quantum defects δ(l) and the (l, K, J dependent) decay widths, which are of the form Γ0(lKJ)/(n-δ(l))3, with Γ0(lKJ) being the decay widths constants. Here, l, K, and J are the azimuthal, the electronic and the total electronic angular momentum quantum numbers, respectively. Two coupling ranges are distinguished according to the strength of the reduced electric field F¯(n,p')=(F/V cm-1)n5/ 3.4×109[δ(p')(mod1)]. Range (A); The onset of the effective coupling of the doorway and escape states, i.e., 0.7≤F¯(n,p')≤2. Range (B); The strong mixing domain F¯(n,p')≥3. The lifetimes in range (B) can be well represented by a nearly democratic mixing of all the doorway and escape states (lKJ), with the average value <τ(n)>≂<τSM(n)>= 2n4ℏ/[J(lJK)Γ0(lJK)]. In range (B) <τ(n)> increases with increasing n and is only weakly F dependent. Range (A) is characterized by a hierarchy of two time scales for the decay, with a short decay component, which manifests the residue of the doorway state, and a

  18. On the Dynamical State of the HD 82943 Planetary System

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Lee, M. H.; Howard, A. W.; Marcy, G. W.; Johnson, J. A.; Wright, J. T.

    2012-05-01

    We present new results from an analysis of radial velocity data of the HD 82943 planetary system based on 10 years of measurements obtained with the Keck telescope. Previous study has shown that the HD 82943 system has two planets that are likely in 2:1 mean-motion resonance (MMR), with the orbital periods about 220 and 440 days (Lee et al. 2006). However, alternative fits that are qualitatively different have also been suggested, with the two planets in 1:1 resonance or the addition of a third planet possibly in a Laplace 4:2:1 resonance with the other two (Gozdziewski & Konacki 2006; Beague et al. 2008). Here we use the chi-square minimization method combined with parameter grid search to investigate the orbital parameters and dynamical states of the qualitatively different types of fits. Our results tend to support the 2:1 MMR configuration for this system. The fits of coplanar 2:1 MMR show a chi-square minimum at 20 degree inclination that is dynamically stable with both resonant angles librating around 0 degree. The fits of 1:1 resonance and 3-planet Laplace resonance are ruled out according to chi-square statistic and dynamical instability. This work is supported in part by Hong Kong RGC grant HKU 7034/09P.

  19. Role of structural inhomogeneities in resting-state brain dynamics.

    PubMed

    Vuksanović, Vesna; Hövel, Philipp

    2016-08-01

    Brain imaging methods allow a non-invasive assessment of both structural and functional connectivity. However, the mechanism of how functional connectivity arises in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which functional correlations arise from underlying structural connections taking into account inhomogeneities in the interactions between the brain regions of interest. The local dynamics of a neural population is assumed to be of phase-oscillator type. The considered structural connectivity patterns describe long-range anatomical connections between interacting neural elements. We find a dependence of the simulated functional connectivity patterns on the parameters governing the dynamics. We calculate graph-theoretic measures of the functional network topology obtained from numerical simulations. The effect of structural inhomogeneities in the coupling term on the observed network state is quantified by examining the relation between simulated and empirical functional connectivity. Importantly, we show that simulated and empirical functional connectivity agree for a narrow range of coupling strengths. We conclude that identification of functional connectivity during rest requires an analysis of the network dynamics. PMID:27468323

  20. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2005-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, non-axial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  1. Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2004-01-01

    The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, nonaxial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.

  2. Thermalization dynamics in a quenched many-body state

    NASA Astrophysics Data System (ADS)

    Kaufman, Adam; Preiss, Philipp; Tai, Eric; Lukin, Alex; Rispoli, Matthew; Schittko, Robert; Greiner, Markus

    2016-05-01

    Quantum and classical many-body systems appear to have disparate behavior due to the different mechanisms that govern their evolution. The dynamics of a classical many-body system equilibrate to maximally entropic states and quickly re-thermalize when perturbed. The assumptions of ergodicity and unbiased configurations lead to a successful framework of describing classical systems by a sampling of thermal ensembles that are blind to the system's microscopic details. By contrast, an isolated quantum many-body system is governed by unitary evolution: the system retains memory of past dynamics and constant global entropy. However, even with differing characteristics, the long-term behavior for local observables in quenched, non-integrable quantum systems are often well described by the same thermal framework. We explore the onset of this convergence in a many-body system of bosonic atoms in an optical lattice. Our system's finite size allows us to verify full state purity and measure local observables. We observe rapid growth and saturation of the entanglement entropy with constant global purity. The combination of global purity and thermalized local observables agree with the Eigenstate Thermalization Hypothesis in the presence of a near-volume law in the entanglement entropy.

  3. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals.

    PubMed

    Rabouw, Freddy T; de Mello Donega, Celso

    2016-10-01

    Colloidal semiconductor nanocrystals have attracted continuous worldwide interest over the last three decades owing to their remarkable and unique size- and shape-, dependent properties. The colloidal nature of these nanomaterials allows one to take full advantage of nanoscale effects to tailor their optoelectronic and physical-chemical properties, yielding materials that combine size-, shape-, and composition-dependent properties with easy surface manipulation and solution processing. These features have turned the study of colloidal semiconductor nanocrystals into a dynamic and multidisciplinary research field, with fascinating fundamental challenges and dazzling application prospects. This review focuses on the excited-state dynamics in these intriguing nanomaterials, covering a range of different relaxation mechanisms that span over 15 orders of magnitude, from a few femtoseconds to a few seconds after photoexcitation. In addition to reviewing the state of the art and highlighting the essential concepts in the field, we also discuss the relevance of the different relaxation processes to a number of potential applications, such as photovoltaics and LEDs. The fundamental physical and chemical principles needed to control and understand the properties of colloidal semiconductor nanocrystals are also addressed. PMID:27573500

  4. Corresponding states for mesostructure and dynamics of supercooled water.

    PubMed

    Limmer, David T; Chandler, David

    2013-01-01

    Water famously expands upon freezing, foreshadowed by a negative coefficient of expansion of the liquid at temperatures close to its freezing temperature. These behaviors, and many others, reflect the energetic preference for local tetrahedral arrangements of water molecules and entropic effects that oppose it. Here, we provide theoretical analysis of mesoscopic implications of this competition, both equilibrium and non-equilibrium, including mediation by interfaces. With general scaling arguments bolstered by simulation results, and with reduced units that elucidate corresponding states, we derive a phase diagram for bulk and confined water and water-like materials. For water itself, the corresponding states cover the temperature range of 150 K to 300 K and the pressure range of 1 bar to 2 kbar. In this regime, there are two reversible condensed phases - ice and liquid. Out of equilibrium, there is irreversible polyamorphism, i.e., more than one glass phase, reflecting dynamical arrest of coarsening ice. Temperature-time plots are derived to characterize time scales of the different phases and explain contrasting dynamical behaviors of different water-like systems. PMID:24640507

  5. Low-dimensional dynamics of resting-state cortical activity.

    PubMed

    Mehrkanoon, Saeid; Breakspear, Michael; Boonstra, Tjeerd W

    2014-05-01

    Endogenous brain activity supports spontaneous human thought and shapes perception and behavior. Connectivity-based analyses of endogenous, or resting-state, functional magnetic resonance imaging (fMRI) data have revealed the existence of a small number of robust networks which have a rich spatial structure. Yet the temporal information within fMRI data is limited, motivating the complementary analysis of electrophysiological recordings such as electroencephalography (EEG). Here we provide a novel method based on multivariate time-frequency interdependence to reconstruct the principal resting-state network dynamics in human EEG data. The stability of network expression across subjects is assessed using resampling techniques. We report the presence of seven robust networks, with distinct topographic organizations and high frequency (∼ 5-45 Hz) fingerprints, nested within slow temporal sequences that build up and decay over several orders of magnitude. Interestingly, all seven networks are expressed concurrently during these slow dynamics, although there is a temporal asymmetry in the pattern of their formation and dissolution. These analyses uncover the complex temporal character of endogenous cortical fluctuations and, in particular, offer an opportunity to reconstruct the low dimensional linear subspace in which they unfold. PMID:24104726

  6. Dynamics of axially localized states in Taylor-Couette flows.

    PubMed

    Lopez, Jose M; Marques, Francisco

    2015-05-01

    We present numerical simulations of the flow confined in a wide gap Taylor-Couette system, with a rotating inner cylinder and variable length-to-gap aspect ratio. A complex experimental bifurcation scenario differing from the classical Ruelle-Takens route to chaos has been experimentally reported in this geometry. The wavy vortex flow becomes quasiperiodic due to an axisymmetric very low frequency mode. This mode plays a key role in the dynamics of the system, leading to the occurrence of chaos via a period-doubling scenario. Further increasing the rotation of the inner cylinder results in the appearance of a new flow pattern which is characterized by large amplitude oscillations localized in some of the vortex pairs. The purpose of this paper is to study numerically the dynamics of these axially localized states, paying special attention to the transition to chaos. Frequency analysis from time series simultaneously recorded at several points has been applied in order to identify the flow transitions taking place. It has been found that the very low frequency mode is essential to explain the behavior associated with the different transitions towards chaos including localized states. PMID:26066253

  7. Unraveling the Solid-Liquid-Vapor Phase Transition Dynamics at the Atomic Level with Ultrafast X-Ray Absorption Near-Edge Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dorchies, F.; Lévy, A.; Goyon, C.; Combis, P.; Descamps, D.; Fourment, C.; Harmand, M.; Hulin, S.; Leguay, P. M.; Petit, S.; Peyrusse, O.; Santos, J. J.

    2011-12-01

    X-ray absorption near-edge spectroscopy (XANES) is a powerful probe of electronic and atomic structures in various media, ranging from molecules to condensed matter. We show how ultrafast time resolution opens new possibilities to investigate highly nonequilibrium states of matter including phase transitions. Based on a tabletop laser-plasma ultrafast x-ray source, we have performed a time-resolved (˜3ps) XANES experiment that reveals the evolution of an aluminum foil at the atomic level, when undergoing ultrafast laser heating and ablation. X-ray absorption spectra highlight an ultrafast transition from the crystalline solid to the disordered liquid followed by a progressive transition of the delocalized valence electronic structure (metal) down to localized atomic orbitals (nonmetal—vapor), as the average distance between atoms increases.

  8. Fluctuations in Electronic Energy Affecting Singlet Fission Dynamics and Mixing with Charge-Transfer State: Quantum Dynamics Study.

    PubMed

    Fujihashi, Yuta; Ishizaki, Akihito

    2016-02-01

    Singlet fission is a spin-allowed process by which a singlet excited state is converted to two triplet states. To understand mechanisms of the ultrafast fission via a charge transfer (CT) state, one has investigated the dynamics through quantum-dynamical calculations with the uncorrelated fluctuation model; however, the electronic states are expected to experience the same fluctuations induced by the surrounding molecules because the electronic structure of the triplet pair state is similar to that of the singlet state except for the spin configuration. Therefore, the fluctuations in the electronic energies could be correlated, and the 1D reaction coordinate model may adequately describe the fission dynamics. In this work we develop a model for describing the fission dynamics to explain the experimentally observed behaviors. We also explore impacts of fluctuations in the energy of the CT state on the fission dynamics and the mixing with the CT state. The overall behavior of the dynamics is insensitive to values of the reorganization energy associated with the transition from the singlet state to the CT state, although the coherent oscillation is affected by the fluctuations. This result indicates that the mixing with the CT state is rather robust under the fluctuations in the energy of the CT state as well as the high-lying CT state. PMID:26732701

  9. State selective dynamics of molecules, clusters, and nanostructures

    SciTech Connect

    Keto, John W.

    2005-06-01

    Early objectives of this grant were: (1) Measure two-photon excitation of even parity excitons in liquid an solid xenon, (2) Study state-to-state energy transver between two-photon laser excited states or rare-gas atoms to other rare has atoms, (3) study reactive half-collisions between xenon and chlorine leading to the XeCl* B state, (4) measure the spectra of ro-vibrational states of cluster ions and radicals formed in high-pressure discharges and to study their dynamics, (5) measure the surface and bulk electronic states of nanoparticles produced by a unique method of synthesis--laser ablation of microspheres (LAM). Using near-field and microluminescence techniques, we obtained spectra of single nanocrystals to compare with spectra obtained in a supersonic jet apparatus using resonance excitation followed by photoionization (REMPI) with time-of-flight mass analysis. These materials combine the functional advantages obtained from the size-tunable properties of nanocomposite materials with the fabrication and direct-write advantages of NPs manufactured by LAM. We demostrated that CdSe nanoparticles produced by LAM were efficiient fluorescers, even when deposited dry on sapphire substrates. Si nanoparticles were fluorescent when captured in ethylene glycol. We also obtiained efficient fluorescence from Er doped phosphate glass nanopartiicles which have application to gain wafeguides in integrated optics or to nanoslush lasers. We used a femptosecond laser to study the nonlinear spectra of NC composites. We are currently measuring fluorescence and second and third-order susceptibilities of composites of Ag, Si, and GaN nanoparticles encapsulated within thin films of sapphire or SiO 2.

  10. Seasonal Population Dynamics of Three Potato Pests in Washington State.

    PubMed

    D'Auria, Elizabeth M; Wohleb, Carrie H; Waters, Timothy D; Crowder, David W

    2016-08-01

    Pest phenology models allow producers to anticipate pest outbreaks and deploy integrated pest management (IPM) strategies. Phenology models are particularly useful for cropping systems with multiple economically damaging pests throughout a season. Potato (Solanum tuberosum L.) crops of Washington State, USA, are attacked by many insect pests including the potato tuberworm (Phthorimaea operculella Zeller), the beet leafhopper (Circulifer tenellus Baker), and the green peach aphid (Myzus persicae Sulzer). Each of these pests directly damages potato foliage or tubers; C. tenellus and M. persicae also transmit pathogens that can drastically reduce potato yields. We monitored the seasonal population dynamics of these pests by conducting weekly sampling on a network of commercial farms from 2007 to 2014. Using these data, we developed phenology models to characterize the seasonal population dynamics of each pest based on accumulated degree-days (DD). All three pests exhibited consistent population dynamics across seasons that were mediated by temperature. Of the three pests, C. tenellus was generally the first detected in potato crops, with 90% of adults captured by 936 DD. In contrast, populations of P. operculella and M. persicae built up more slowly over the course of the season, with 90% cumulative catch by 1,590 and 2,634 DD, respectively. Understanding these seasonal patterns could help potato producers plan their IPM strategies while allowing them to move away from calendar-based applications of insecticides. More broadly, our results show how long-term monitoring studies that explore dynamics of multiple pest species can aid in developing IPM strategies in crop systems. PMID:27271946

  11. Edge-state-dependent tunneling of dipole-exchange spin waves in submicrometer magnetic strips with an air gap

    NASA Astrophysics Data System (ADS)

    Xing, X. J.; Zhang, D.; Li, S. W.

    2012-12-01

    We have investigated the tunneling of dipole-exchange spin waves across an air gap in submicrometer-sized permalloy magnetic strips by means of micromagnetic simulations. The magnetizations beside the gap could form three distinct end-domain states with various strengths of dipolar coupling. Spin-wave tunneling through the gap at individual end-domain states is studied. It is found that the tunneling behavior is strongly dependent on these domain states. Nonmonotonic decay of transmission of spin waves with the increase of the gap width is observed. The underlying mechanism for these behaviors is proposed. The tunneling characteristics of the dipole-exchange spin waves differ essentially from those of the magnetostatic ones reported previously.

  12. Edge States and Topological Insulating Phases Generated by Curving a Nanowire with Rashba Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Gentile, Paola; Cuoco, Mario; Ortix, Carmine

    2015-12-01

    We prove that curvature effects in low-dimensional nanomaterials can promote the generation of topological states of matter by considering the paradigmatic example of quantum wires with Rashba spin-orbit coupling, which are bent in a nanoscale periodic serpentine structure. The effect of the periodic curvature generally results in the appearance of insulating phases with a corresponding novel butterfly spectrum characterized by the formation of finite measure complex regions of forbidden energies. When the Fermi energy lies in the gaps, the system displays localized end states protected by topology. We further show that for certain superstructure periods the system possesses topologically nontrivial insulating phases at half filling. Our results suggest that the local curvature and the topology of the electronic states are inextricably intertwined in geometrically deformed nanomaterials.

  13. Edge States and Topological Insulating Phases Generated by Curving a Nanowire with Rashba Spin-Orbit Coupling.

    PubMed

    Gentile, Paola; Cuoco, Mario; Ortix, Carmine

    2015-12-18

    We prove that curvature effects in low-dimensional nanomaterials can promote the generation of topological states of matter by considering the paradigmatic example of quantum wires with Rashba spin-orbit coupling, which are bent in a nanoscale periodic serpentine structure. The effect of the periodic curvature generally results in the appearance of insulating phases with a corresponding novel butterfly spectrum characterized by the formation of finite measure complex regions of forbidden energies. When the Fermi energy lies in the gaps, the system displays localized end states protected by topology. We further show that for certain superstructure periods the system possesses topologically nontrivial insulating phases at half filling. Our results suggest that the local curvature and the topology of the electronic states are inextricably intertwined in geometrically deformed nanomaterials. PMID:26722937

  14. Initial-state dependence of the quench dynamics in integrable quantum systems. III. Chaotic states

    NASA Astrophysics Data System (ADS)

    He, Kai; Rigol, Marcos

    2013-04-01

    We study sudden quantum quenches in which the initial states are selected to be either eigenstates of an integrable Hamiltonian that is nonmappable to a noninteracting one or a nonintegrable Hamiltonian, while the Hamiltonian after the quench is always integrable and mappable to a noninteracting one. By studying weighted energy densities and entropies, we show that quenches starting from nonintegrable (chaotic) eigenstates lead to an “ergodic” sampling of the eigenstates of the final Hamiltonian, while those starting from the integrable eigenstates do not (or at least it is not apparent for the system sizes accessible to us). This goes in parallel with the fact that the distribution of conserved quantities in the initial states is thermal in the nonintegrable cases and nonthermal in the integrable ones, and means that, in general, thermalization occurs in integrable systems when the quench starts form an eigenstate of a nonintegrable Hamiltonian (away from the edges of the spectrum), while it fails (or requires larger system sizes than those studied here to become apparent) for quenches starting at integrable points. We test those conclusions by studying the momentum distribution function of hard-core bosons after a quench.

  15. The NE Greenland Ice Sheet during the last glacial - a dynamic retreat from the shelf edge triggered by ice melting?

    NASA Astrophysics Data System (ADS)

    Sverre Laberg, Jan; Forwick, Matthias; Husum, Katrine

    2014-05-01

    The dynamics of the north-eastern sector of the Greenland Ice Sheet during the last glacial are still poorly constrained and large uncertainties about its extent exist. We present new swath-bathymetry data and sub-bottom profiles acquired from the outer parts of a shelf-crossing trough. These data reveal glacial landforms suggesting that grounded ice extended to the shelf break. Thus, the hypothesis of a mid-shelf position of the ice sheet in this area during the last glacial maximum is rejected, instead other studies predicting an ice expansion to the shelf break is reinforced. The results presented here also add further details on the behavior of the ice sheet during the initial deglaciation. The outer trough studied was characterized by the formation of a complex pattern of moraine ridges and sediment wedges overlying mega-scale glacial lineations, providing evidence of repeated halts and readvances of the ice sheet during an early phase of its decay. This suggests that the early deglaciation was related to melting of the grounded ice due to temperature increase in the ocean, rather than being triggered by abrupt sea level rise. The latter should, according to established models, result in ice lift-off and a sea floor dominated by landforms formed during full-glacial conditions (mega-scale glacial lineations) and ice disintegration (iceberg plough-marks).

  16. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  17. L-Edge Xanes Measurements of the Oxidation State of Tungsten in Iron Bearing and Iron Free Silicate Glasses

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Sutton, S.; Newville, M.

    2008-01-01

    Tungsten is important in constraining core formation of the Earth because this element is a moderately siderophile element (depleted 10 relative to chondrites) and, as a member of the Hf-W isotopic system, it is useful in constraining the timing of core formation. A number of previous experimental studies have been carried out to determine the silicate solubility and metal-silicate partitioning behavior of W, including its concomitant oxidation state. However, results of previous studies are inconsistent on whether W occurs as W(4+) or W(6+). It is assumed that W(4+) is the cation valence relevant to core formation. Given the sensitivity to silicate composition of high valence cations, knowledge of the oxidation state of W over a wide range of fO2 is critical to understanding the oxidation state of the mantle and core formation processes. This study seeks to measure the W valence and change in valence state over the range of fO2 most relevant to core formation, around IW-2.

  18. Living on the Edge: Contrasted Wood-Formation Dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean Conditions

    PubMed Central

    Martinez del Castillo, Edurne; Longares, Luis A.; Gričar, Jožica; Prislan, Peter; Gil-Pelegrín, Eustaquio; Čufar, Katarina; de Luis, Martin

    2016-01-01

    Wood formation in European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.e., in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at 1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech forest in this region. Microcores containing phloem, cambium and xylem were collected biweekly from twenty-four trees from the beginning of March to the end of November to assess the different phases of wood formation. The samples were prepared for light microscopy to observe the following phenological phases: onset and end of cell production, onset and end of secondary wall formation in xylem cells and onset of cell maturation. The temporal dynamics of wood formation widely differed among years, altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied between the first week of May and the third week of June. Cambial activity then slowed down and stopped in summer, resulting in a length of growing season of 48–75 days. In contrast, the growing season for P. sylvestris started earlier and cambium remained active in autumn, leading to a period of activity varying from 139-170 days. The intra-annual wood-formation pattern is site and species-specific. Comparison with other studies shows a clear latitudinal trend in the duration of wood formation, positive for Fagus sylvatica and negative for P. sylvestris. PMID:27047534

  19. Tunable skewed edges in puckered structures

    NASA Astrophysics Data System (ADS)

    Grujić, Marko M.; Ezawa, Motohiko; Tadić, Milan Ž.; Peeters, François M.

    2016-06-01

    We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field Ez. A topological argument is presented, revealing the condition for the emergence of such edge states.

  20. Probing 5 f -state configurations in URu2Si2 with U LIII-edge resonant x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Booth, C. H.; Medling, S. A.; Tobin, J. G.; Baumbach, R. E.; Bauer, E. D.; Sokaras, D.; Nordlund, D.; Weng, T.-C.

    2016-07-01

    Resonant x-ray emission spectroscopy (RXES) was employed at the U LIII absorption edge and the Lα 1 emission line to explore the 5 f occupancy, nf, and the degree of 5 f -orbital delocalization in the hidden-order compound URu2Si2 . By comparing to suitable reference materials such as UF4, UCd11, and α -U, we conclude that the 5 f orbital in URu2Si2 is at least partially delocalized with nf=2.87 ±0.08 , and does not change with temperature down to 10 K within the estimated error. These results place further constraints on theoretical explanations of the hidden order, especially those requiring a localized f2 ground state.

  1. Hugoniot equation of state and dynamic strength of boron carbide

    NASA Astrophysics Data System (ADS)

    Grady, Dennis E.

    2015-04-01

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic

  2. Hugoniot equation of state and dynamic strength of boron carbide

    SciTech Connect

    Grady, Dennis E.

    2015-04-28

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable

  3. Influence of ligand substitution on excited state structural dynamics in Cu(I) bis-phenanthroline complexes.

    SciTech Connect

    Lockard, J. V.; Kabehie, S.; Zink, J. I.; Smolentsev, G.; Soldatov, A.; Chen, L. X.

    2010-01-01

    This study explores the influences of steric hindrance and excited state solvent ligation on the excited state dynamics of Cu{sup I} diimine complexes. Ultrafast excited state dynamics of Cu(I)bis(3,8-di(ethynyltrityl)-1,10-phenanthroline) [Cu{sup I}(detp){sub 2}]{sup +} are measured using femtosecond transient absorption spectroscopy. The steady state electronic absorption spectra and measured lifetimes are compared to those of Cu(I)bis(1,10-phenanthroline), [Cu{sup I}(phen){sub 2}]{sup +}, and Cu(I)bis(2-9-dimethyl-1,10-phenanthroline), [Cu{sup I}(dmp){sub 2}]{sup +}, model complexes to determine the influence of different substitution patterns of the phenanthroline ligand on the structural dynamics associated with the metal to ligand charge transfer excited states. Similarities between the [Cu{sup I}(detp){sub 2}]{sup +} and [Cu{sup I}(phen){sub 2}]{sup +} excited state lifetimes were observed in both coordinating and noncoordinating solvents and attributed to the lack of steric hindrance from substitution at the 2- and 9-positions. The solution-phase X-ray absorption spectra of [Cu{sup I}(detp){sub 2}]{sup +}, [Cu{sup I}(phen){sub 2}]{sup +}, and [Cu{sup I}(dmp){sub 2}]{sup +} are reported along with finite difference method calculations that are used to determine the degree of ground state dihedral angle distortion in solution and to account for the pre-edge features observed in the XANES region.

  4. The Edge

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.

    Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  5. Theoretical description of excited state dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  6. Baryon content and dynamic state of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Wang, D.

    2016-06-01

    We are carrying out a panchromatic observing program to study the baryon content and dynamic state of galaxy clusters. In this talk, I will present results primarily from XMM-Newton observations of optically-selected clusters in the redshift range of 0.1-0.4. These clusters are selected because of their fortuitous alignment with background far-UV-bright QSOs, which thus allows for Ly-alpha and O VI absorption line spectroscopy with HST/COS, probing physical processes of the evolving intracluster medium, freshly accreted from the intergalactic medium and/or stripped out of individual galaxies, as well as the gaseous halos of individual cluster galaxies. Interestingly, such clusters tend to be dynamically young and often consist of merging subcluster pairs at similar redshifts. These subclusters themselves typically show substantial substructures, including strongly distorted radio lobes, as well as large position offsets between the diffuse X-ray centroids and the brightest galaxies. A comparison of the hot gas and stellar masses of each cluster with the expected cosmological baryonic mass fraction indicates a significant room for other gas components. I will also briefly examine the limitations of both optically and X-ray selected clusters, as well as how they may be used in a complementary fashion.

  7. Universal dynamic magnetism in Yb pyrochlores with disparate ground states

    NASA Astrophysics Data System (ADS)

    Hallas, A. M.; Gaudet, J.; Butch, N. P.; Tachibana, M.; Freitas, R. S.; Luke, G. M.; Wiebe, C. R.; Gaulin, B. D.

    2016-03-01

    The ytterbium pyrochlore magnets, Yb2B2O7 (B =Sn ,Ti ,Ge ) are well described by Seff=1 /2 quantum spins decorating a network of corner-sharing tetrahedra and interacting via anisotropic exchange. Structurally, only the nonmagnetic B -site cation, and hence primarily the lattice parameter, changes across the series. Nonetheless, a range of magnetic behaviors is observed: the low-temperature magnetism in Yb2Ti2O7 and Yb2Sn2O7 has a ferromagnetic character, while Yb2Ge2O7 displays an antiferromagnetically ordered Néel state at low temperatures. While the static properties of the ytterbium pyrochlores are distinct, inelastic neutron scattering measurements reveal a common character to their exotic spin dynamics. All three ytterbium pyrochlores show a gapless continuum of spin excitations, resembling overdamped ferromagnetic spin waves at low Q . Furthermore, the specific heat of the series also follows a common form, with a broad, high-temperature anomaly followed by a sharp low-temperature anomaly at TC or TN. The novel spin dynamics we report correlate strongly with the broad specific heat anomaly only, remaining unchanged across the sharp anomaly. This result suggests that the primary order parameter in the ytterbium pyrochlores associated with the sharp anomaly is "hidden" and not simple magnetic dipole order.

  8. Molecular dynamics ensemble, equation of state, and ergodicity.

    PubMed

    Wood, W W; Erpenbeck, J J; Baker, G A; Johnson, J D

    2001-01-01

    The variant of the NVE ensemble known as the molecular dynamics ensemble was recently redefined by Ray and Zhang [Phys. Rev. E 59, 4781 (1999)] to include the specification of a time invariant G (a function of phase and, explicitly, the time) in addition to the total linear momentum M. We reformulate this ensemble slightly as the NVEMR ensemble, in which R/N is the center-of-mass position, and consider the equation of state of the hard-sphere system in this ensemble through both the virial function and the Boltzmann entropy. We test the quasiergodic hypothesis by a comparison of old molecular dynamics and Monte Carlo results for the compressibility factor of the 12-particle, hard-disk systems. The virial approach, which had previously been found to support the hypothesis in the NVEM ensemble, remains unchanged in the NVEMR ensemble. The entropy S approach depends on whether S is defined through the phase integral over the energy sphere or the energy shell, the parameter straight theta being 0 or 1, respectively. The ergodic hypothesis is found to be supported for straight theta=0 but not for straight theta=1. PMID:11304233

  9. Molecular dynamics ensemble, equation of state, and ergodicity

    SciTech Connect

    Wood, William W.; Erpenbeck, Jerome J.; Baker, George A.; Johnson, J. D.

    2001-01-01

    The variant of the NVE ensemble known as the molecular dynamics ensemble was recently redefined by Ray and Zhang [Phys. Rev. E 59, 4781 (1999)] to include the specification of a time invariant G (a function of phase and, explicitly, the time) in addition to the total linear momentum M. We reformulate this ensemble slightly as the NVEMR ensemble, in which R/N is the center-of-mass position, and consider the equation of state of the hard-sphere system in this ensemble through both the virial function and the Boltzmann entropy. We test the quasiergodic hypothesis by a comparison of old molecular dynamics and Monte Carlo results for the compressibility factor of the 12-particle, hard-disk systems. The virial approach, which had previously been found to support the hypothesis in the NVEM ensemble, remains unchanged in the NVEMR ensemble. The entropy S approach depends on whether S is defined through the phase integral over the energy sphere or the energy shell, the parameter {theta} being 0 or 1, respectively. The ergodic hypothesis is found to be supported for {theta}=0 but not for {theta}=1.

  10. Dynamic shared state maintenance in distributed virtual environments

    NASA Astrophysics Data System (ADS)

    Hamza-Lup, Felix George

    Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for

  11. Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.

    PubMed

    von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M

    2016-07-28

    Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments. PMID:27353150

  12. State-to-State Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    NASA Astrophysics Data System (ADS)

    Ng, Cheuk-Yiu

    2014-04-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  13. Cloning a real d-dimensional quantum state on the edge of the no-signaling condition

    SciTech Connect

    Navez, Patrick; Cerf, Nicolas J.

    2003-09-01

    We investigate the class of quantum cloning machines that equally duplicate all real states in a Hilbert space of arbitrary dimension. By using the no-signaling condition, namely, that cloning cannot make superluminal communication possible, we derive an upper bound on the fidelity of this class of quantum cloning machines. Then, for each dimension d, we construct an optimal symmetric cloner whose fidelity saturates this bound. Similar calculations can also be performed in order to recover the fidelity of the optimal universal cloner in d dimensions.

  14. State-to-state unimolecular reaction dynamics: Technical progress report. [Tetramethyldioxetane

    SciTech Connect

    Crim, F.F.

    1986-01-01

    The combination of a selective excitation technique with spectroscopic product detection provides new experimental data on the dynamics of unimolecular reactions. In these experiments, direct excitation of overtone vibrations prepares highly vibrationally excited molecules and time-resolved spectroscopic detection monitors reaction products, often at the level of individual quantum states. We have studied the unimolecular decomposition of a nearly monoenergetic cyclic peroxide, tetramethyldioxetane, in a free-jet expansion and have directly measured its unimolecular decay rate. The vibrational overtone spectroscopy of the molecule in the expansion reveals previously unobserved inhomogeneous structure that is a significant factor in determining the lineshapes. Measurements on hydrogen peroxide in a low pressure gas have produced new spectroscopic and dynamic data, as well. We detect individual rotational states of the OH fragment from the vibrational overtone initiated unimolecular dissociation of HOOH and obtain vibrational overtone excitation spectra by varying the excitation laser wavelength. Two-photon vibrational overtone predissociation spectroscopic measurements can now be made. Different statistical models can be used to describe the unimolecular decay dynamics of small polyatomic molecules.

  15. Edge instabilities of topological superconductors

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  16. Molecular dynamics investigation of the interaction of an edge dislocation with Frank loops in Fe-Ni10-Cr20 alloy

    NASA Astrophysics Data System (ADS)

    Baudouin, Jean-Baptiste; Nomoto, Akiyoshi; Perez, Michel; Monnet, Ghiath; Domain, Christophe

    2015-10-01

    The inhibition of dislocations motion by irradiation-induced defects, such as dislocation loops, is one of the main mechanisms of irradiation hardening of austenitic stainless steels. In this work, Molecular Dynamics (MD) simulations of interaction between an edge dislocation and Frank loops in Fe-Ni10-Cr20 ternary alloy mimicking austenitic stainless steels are carried out to investigate and model dislocation behavior. An empirical interatomic potential developed recently for a ternary FeNiCr system is used for the MD calculations. The interactions are calculated at different temperatures, loop orientations, loop size and solute atom configurations. The results show that the loop strength and the interaction processes depend on the solute atom configuration, the geometrical configurations between the dislocation and the loop and temperature. It is also demonstrated that a small Frank loop is not so weak an obstacle in the alloy. The interaction leads microstructural change such as loop shearing, loop unfaulting and loop absorption in the dislocation. In the former two cases, the loop remains after the interaction, however in some cases an absorption of the remaining loop by subsequent interactions with successive dislocations is observed.

  17. Vibrational State Dependent Large Amplitude Tunneling Dynamics in Malonaldehyde

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant; Nesbitt, David J.

    2011-06-01

    The quantum dynamics of intramolecular proton transfer in malonaldehyde has represented a major challenge for first principles theoretical calculation, in large measure due to the highly concerted motion of all 9 nuclei throughout the tunneling event. This talk describes efforts to predict quantum state dependent tunneling rates from high level ab initio calculations, exploiting the large amplitude motion (LAM) Hamiltonian methods of Hougen, Bunker and Johns.A An effective adiabatic potential surface for the tunneling path is constructed from CCSD(T)/AVnZ-F12 calculations using explicitly correlated basis set methods and extrapolated to the complete basis set (CBS) limit. This potential is adiabatically corrected by zero point excitation in the remaining 3N-7 = 20 vibrational modes, with the multidimensional tunneling dependence of the effective mass explicitly taken into AccountB and numerically solved with Numerov methods. Of special importance, this method permits calculation of mode dependent tunneling splittings as a function of vibrational quantum state, which offers interesting prospects for comparison with recent FTIR slit jet cooled data of Suhm and coworkers.C A J. T. Hougen, P. R. Bunker and J. W. C. Johns, J. Mol. Spectrosc. 34, 136 (1970). B D. J. Rush and K. B. Wiberg, J. Phys. Chem. A 101, 3143 (1997). C N. O. B. Luttschwager, T. N. Wassermann, S. Coussan and M. A. Suhm, Phys. Chem. Chem. Phys., DOI: 10.1039/c002345k (2010)

  18. Surface hopping investigation of benzophenone excited state dynamics.

    PubMed

    Favero, Lucilla; Granucci, Giovanni; Persico, Maurizio

    2016-04-21

    We present a simulation of the photodynamics of benzophenone for the first 20 ps after n →π* excitation, performed by trajectory surface hopping calculations with on-the-fly semiempirical determination of potential energy surfaces and electronic wavefunctions. Both the dynamic and spin-orbit couplings are taken into account, and time-resolved fluorescence emission is also simulated. The computed decay time of the S1 state is in agreement with experimental observations. The direct S1→ T1 intersystem crossing (ISC) accounts for about 2/3 of the S1 decay rate. The remaining 1/3 goes through T2 or higher triplets. The nonadiabatic transitions within the triplet manifold are much faster than ISC and keep the population of T1 at about 3/4 of the total triplet population, and that of the other states (mainly T2) at 1/4. Two internal coordinates are vibrationally active immediately after n →π* excitation: one is the C[double bond, length as m-dash]O stretching and the other one is a combination of the conrotatory torsion of phenyl rings and of bending involving the carbonyl C atom. The period of the torsion-bending mode coincides with oscillations in the time-resolved photoelectron spectra of Spighi et al. and substantially confirms their assignment. PMID:27031566

  19. Dynamic steady state of periodically driven quantum systems

    NASA Astrophysics Data System (ADS)

    Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.

    2016-01-01

    Using the density matrix formalism, we prove the existence of the periodic steady state for an arbitrary periodically driven system described by linear dynamic equations. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution (t →+∞ ) due to relaxation processes. The presented derivation simultaneously contains a simple and effective computational algorithm (without using either the Floquet or Fourier formalisms), which automatically guarantees a full account of all frequency components. As a particular example, for three-level Λ system we calculate the line shape and field-induced shift of the dark resonance formed by the field with a periodically modulated phase. Also we have analytically solved a basic theoretical problem of the direct frequency comb spectroscopy, when the two-level system is driven by the periodic sequence of rectangular pulses. In this case, the radical dependence of the spectroscopy line shape on pulse area is found. Moreover, the existence of quasiforbidden spectroscopic zones, in which the Ramsey fringes are significantly reduced, is predicted. Our results have a wide area of applications in laser physics, spectroscopy, atomic clocks, and magnetometry. Also they can be useful for any area of quantum physics where periodically driven systems are considered.

  20. Aragonite saturation state dynamics in a coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Harris, Katherine E.; Degrandpre, Michael D.; Hales, Burke

    2013-06-01

    upwelling zones may be at enhanced risk from ocean acidification as upwelling brings low aragonite saturation state (ΩAr) waters to the surface that are further suppressed by anthropogenic CO2. ΩAr was calculated with pH, pCO2, and salinity-derived alkalinity time series data from autonomous pH and pCO2 instruments moored on the Oregon shelf and shelf break during different seasons from 2007 to 2011. Surface ΩAr values ranged between 0.66 ± 0.04 and 3.9 ± 0.04 compared to an estimated pre-industrial range of 1.0 ± 0.1 to 4.7 ± 0.1. Upwelling of high-CO2 water and subsequent removal of CO2 by phytoplankton imparts a dynamic range to ΩAr from ~1.0 to ~4.0 between spring and autumn. Freshwater input also suppresses saturation states during the spring. Winter ΩAr is less variable than during other seasons and is controlled primarily by mixing of the water column.