Science.gov

Sample records for effective biosolids management

  1. Successful biosolids management

    SciTech Connect

    Rosenblum, E.; Braatelien, E. ); McHaney, S.; Stutz-McDonald, S. )

    1993-05-01

    The San Jose (Calif.) Department of Water Pollution Control has embarked on a program of beneficial biosolids reuse to deal with three decades of stored solids that filled 160 ha (400 ac) of lagoons at the San Jose-Santa Clara Water Pollution Control Plant in San Jose. The effort has taken 10 years of planning and development, and weathered changes in market conditions and federal regulations. It promises to be one of the most cost-effective solids management programs of its kind among similar-sized wastewater treatment agencies in the U.S. The operation includes anaerobic digestion with methane recovery, solar solids drying, and beneficial reuse of biosolids as landfill cover and as an agricultural soil amendment. 2 figs., 2 tabs.

  2. Biosolids and Sludge Management.

    PubMed

    Brisolara, Kari Fitzmorris; Qi, Yinan

    2015-10-01

    This review section covers journal articles and conference papers related to biosolids and sludge management that were published in 2014. The literature review has been divided into the following sections: • Biosolids regulations and management issues; • ;Biosolids characteristics, quality and measurement including microconstituents and pathogens; • Sludge treatment technologies including pretreatment and sludge minimization, conditioning and dewatering, digestion, composting and innovative technologies; • Disposal and reuse including combustion/ incineration, land application and non- agricultural use; • Odor and air emissions; and • Energy issues. PMID:26420083

  3. Biosolids and Sludge Management.

    PubMed

    Fitzmorris Brisolara, Kari; Ochoa, Helena

    2016-10-01

    This review section covers journal articles and conference papers related to biosolids and sludge management that were published in 2015. The literature review has been divided into the following sections: • Biosolids regulations and management issues; • Biosolids characteristics, quality and measurement including microconstituents, pathogens, nanoparticles and metals; • Sludge treatment technologies including pretreatment and sludge minimization, conditioning and dewatering, digestion, composting and innovative technologies; • Disposal and reuse including combustion/incineration, agricultural uses and innovative uses; • Odor and air emissions; and • Energy issues. PMID:27620088

  4. Integrated, long term, sustainable, cost effective biosolids management at a large Canadian wastewater treatment facility.

    PubMed

    Leblanc, R J; Allain, C J; Laughton, P J; Henry, J G

    2004-01-01

    The Greater Moncton Sewerage Commission's 115,000 m3/d advanced, chemically assisted primary wastewater treatment facility located in New Brunswick, Canada, has developed an integrated, long term, sustainable, cost effective programme for the management and beneficial utilization of biosolids from lime stabilized raw sludge. The paper overviews biosolids production, lime stabilization, conveyance, and odour control followed by an indepth discussion of the wastewater sludge as a resource programme, namely: composting, mine site reclamation, landfill cover, land application for agricultural use, tree farming, sod farm base as a soil enrichment, topsoil manufacturing. The paper also addresses the issues of metals, pathogens, organic compounds, the quality control program along with the regulatory requirements. Biosolids capital and operating costs are presented. Research results on removal of metals from primary sludge using a unique biological process known as BIOSOL as developed by the University of Toronto, Canada to remove metals and destroy pathogens are presented. The paper also discusses an ongoing cooperative research project with the Université de Moncton where various mixtures of plant biosolids are composted with low quality soil. Integration, approach to sustainability and "cumulative effects" as part of the overall biosolids management strategy are also discussed. PMID:15259950

  5. Biosolids management: Beneficial use comes of age

    SciTech Connect

    Hodson, C.O.

    1996-12-01

    The most important issues facing the biosolids management industry today are costs, odors and public perception. Of these, public perception has the biggest effect on the industry -- in the way biosolids are generated, used, destroyed, transported and reused. Even in the way they have been named. Officially, sludge is a term affixed to the product that comes out of sewage treatment plants and biosolids is what the processed end product is called. Although it sounds like two different things, the terms are used interchangeably. Still called sludge by some environmental professionals in the water and wastewater industries, biosolids is the official term for sludge being marketed to the public. And apparently it`s working. After years of public misperceptions, biosolids education and public relations programs thrust the organics into the Age of Beneficial Use.

  6. BIOSOLIDS DATABASE MANAGEMENT SYSTEM (BDMS)

    EPA Science Inventory

    Resource Purpose:see hard copy attachment "EPA's Biosolids Data Management System and Plans for Evaluating Biosolids Quality"
    Legislation/Enabling Authority:CWA Section 402
    Supported Program:OW, OWM, OECA, ORD, OSW, Regions 1-10, states, local facilitie...

  7. Managing urban biosolids: Beneficial uses

    SciTech Connect

    Forste, J.B.

    1998-07-01

    Biosolids (the primarily organic product produced by wastewater treatment processes that can be beneficially recycled) are becoming a significant challenge for operators of both small and large urban wastewater facilities. More stringent water quality standards, coupled with increasingly sensitive environmental and public health considerations, have made the treatment and use/disposal of solids from treatment processes a growing and complex field of environmental management.

  8. Review of biosolids management options and co-incineration of a biosolid-derived fuel.

    PubMed

    Roy, Murari Mohon; Dutta, Animesh; Corscadden, Kenny; Havard, Peter; Dickie, Lucas

    2011-11-01

    This paper reviews current biosolids management options, and identifies incineration as a promising technology. Incineration is attractive both for volume reduction and energy recovery. Reported emissions from the incineration of biosolids were compared to various regulations to identify the challenges and future direction of biosolids incineration research. Most of the gaseous and metal emissions were lower than existing regulations, or could be met by existing technologies. This paper also presents the results of an experimental study to investigate the potential use of biosolids for co-incineration with wood pellets in a conventional wood pellet stove. Pilot scale combustion tests revealed that co-incineration of 10% biosolids with 90% premium grade wood pellets resulted in successful combustion without any significant degradation of efficiency and emissions. PMID:21763120

  9. Biosolids management strategies: an evaluation of energy production as an alternative to land application.

    PubMed

    Egan, Maureen

    2013-07-01

    Currently, more than half of the biosolids produced within the USA are land applied. Land application of biosolids introduces organic contaminants into the environment. There are potential ecological and human health risks associated with land application of biosolids. Biosolids may be used as a renewable energy source. Nutrients may be recovered from biosolids used for energy generation for use as fertilizer. The by-products of biosolids energy generation may be used beneficially in construction materials. It is recommended that energy generation replace land application as the leading biosolids management strategy. PMID:23529399

  10. Storage management influences greenhouse gas emissions from biosolids.

    PubMed

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2015-03-15

    Biosolids produced by wastewater treatment plants are often stored in stockpiles and can be a significant source of greenhouse gases (GHG). Growing trees in shallow stockpiled biosolids may remove nutrients, keep the biosolids drier and offset GHG emissions through C sequestration. We directly measured methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) flux from a large biosolid stockpile and two shallow stockpiles, one planted with Salix reichardtii (willow) trees, from December 2009 to January 2011. All stockpiles emitted large annual amounts of GHG ranging from 38 kg CO2-e Mg(-1) dry biosolid for the large stockpile, to 65 kg CO2-e Mg(-1) for the unplanted shallow stockpile, probably due to the greater surface area to volume ratio. GHG emissions were dominated by N2O and CO2 whilst CH4 emissions were negligible (<2%) from the large stockpile and the shallow stockpiles were actually a CH4 sink. Annual willow tree growth was 12 Mg dry biomass ha(-1), but this only offset 8% of the GHG emissions from the shallow planted stockpile. Our data highlight that biosolid stockpiles are significant sources for GHG emissions but alternate management options such as shallow stockpiles or planting for biomass production will not lead to GHG emission reductions. PMID:25585149

  11. MANAGING AVIAN FLU, CARCASS MANAGEMENT & BIOSOLIDS

    EPA Science Inventory

    The avian influenza virus is discussed with emphasis on the impact to poultry and possible movement of the highly pathogenic H5N 1 virus to humans. A review is made of the worldwide effects to date of the avian influenza viruses; methods for the viruses to enter recreational wate...

  12. EFFECTS OF BIOSOLIDS ON SORPTION AND DESORPTION BEHAVIOR OF CADMIUM IN BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    Cadmium sorption and desorption experiments were conducted on different fractions of soils amended with different biosolids with varying chemical properties and unamended soil (control). Biosolids addition increased the slope of the Cd sorption isotherms compared to the control s...

  13. High-solids centrifuge is a boon and a curse for managing anaerobically digested biosolids.

    PubMed

    Murthy, S; Higgins, M; Chen, Y C; Peot, C; Toffey, W

    2006-01-01

    High-solids centrifugation can reduce the cost of managing or disposing of anaerobically digested biosolids. High-solids centrifuges can increase relative cake solids by as much as 5% DS compared with other dewatering devices, such as belt filter presses, with a resulting 15-20% reduction in overall mass of hauled biosolids. Cost reductions can be similar (15-20%) or more, depending on the type of disposal or management involved. For example, the additional removal of water from the cake increases the energy content in the biosolids, thereby facilitating incineration or heat drying processes. For land application, the benefits are more mixed. As explained in this paper, increases in biosolids odours associated with high-solids centrifuges may increase digestion requirements and may compel producers to transport biosolids to more remote, distant sites, potentially increasing transportation costs. High-solids centrifuges shear anaerobically digested biosolids. The shear results in a net increase in labile protein, an odour precursor. Additionally, high-solids centrifugation also results in the inhibition of methanogenesis, a major mechanism for degradation of organosulphur odours. Therefore, the risks and benefits should both be weighed when considering high-solids centrifuges for land application of anaerobically digested biosolids. PMID:16605038

  14. NRMRL BIOSOLIDS RESEARCH UNDERWAY

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL) has a reputation for producing useful and highly regarded research in the area of wastewater sludges and biosolids. Presently many projects are underway which uphold this reputation. NRMRL biosolids research can be categori...

  15. Meta-analysis of biosolid effects on persistence of triclosan and triclocarban in soil.

    PubMed

    Fu, Qiuguo; Sanganyado, Edmond; Ye, Qingfu; Gan, Jay

    2016-03-01

    Biosolids are extensively used in agriculture as fertilizers while offering a practical solution for waste disposal. Many pharmaceutical and personal care products (PPCPs), such as triclosan and triclocarban, are enriched in biosolids. Biosolid amendment changes soil physicochemical properties, which may in turn alter the persistence of PPCPs and hence the risk for secondary contamination such as plant uptake. To delineate the effect of biosolids on PPCPs persistence, triclosan and triclocarban were used as model compounds in this study and their sorption (Kd) and persistence (t1/2) were determined in different soils before and after biosolid amendment. Biosolids consistently increased sorption of triclosan and triclocarban in soil. The Kd of triclosan increased by 3.9-21 times following amendment of a sandy loam soil with biosolids at 2-10%. The persistence of both compounds was prolonged, with t1/2 of triclosan increasing from 10 d in the unamended soil to 63 d after biosolid amendment at 10%. The relationship between t1/2 and Kd was further examined through a meta-analysis using data from this study and all relevant published studies. A significant linear relationship between t1/2 and Kd was observed for triclosan (r(2) = 0.69, p < 0.01) and triclocarban (r(2) = 0.38, p < 0.05) in biosolid-amended soils. On the average, when biosolid amendment increased by 1%, t1/2 of triclosan was prolonged by 7.5 d, while t1/2 of triclocarban was extended by 4.7 d. Therefore, biosolid amendment greatly enhances persistence of triclosan and triclocarban, likely due to enhanced sorption or decreased chemical bioavailability. This finding highlights the importance to consider the effect of biosolids when evaluating the environmental risks of these and other biosolid-borne PPCPs. PMID:26708768

  16. Effects of triclosan and biosolids on microbial community composition in an agricultural soil.

    PubMed

    Park, Inmyoung; Zhang, Nannan; Ogunyoku, Temitope A; Young, Thomas M; Scow, Kate M

    2013-12-01

    Triclosan (TCS) is a widely used antimicrobial agent found at high concentrations in biosolids produced during municipal wastewater treatment. The effect of adding TCS, in the presence or absence of biosolids, on the composition of an agricultural soil microbial community was measured using phospholipid fatty acid analysis (PLFA). Most changes observed in microbial community composition were attributable to the addition of biosolids or to the passage of time, with smaller changes due to TCS exposure, regardless of the presence of biosolids. TCS slightly reduced the relative abundance of Gram-positive and Gram-negative bacteria and fungi, with or without biosolids. Bacteria were more sensitive than eukaryotes, consistent with the mode of action of TCS, which selectively targets fatty acid synthesis and disrupts cell membranes of bacteria. TCS slightly increased biomarkers of microbial stress, but stress biomarkers were lower in all biosolid treated soils, presumably due to increased availability of nutrients mitigating potential TCS toxicity. PMID:24597039

  17. Effects of Triclosan and biosolids on microbial community composition in an agricultural soil

    PubMed Central

    Ogunyoku, Temitope A.; Young, Thomas M.; Scow, Kate M.

    2014-01-01

    Triclosan (TCS) is a widely used antimicrobial agent found at high concentrations in biosolids produced during municipal wastewater treatment. The effect of adding TCS, in the presence or absence of biosolids, on the composition of an agricultural soil microbial community was measured using phospholipid fatty acid analysis (PLFA). Most changes observed in microbial community composition were attributable to addition of biosolids or passage of time, with smaller changes due to TCS exposure, regardless of the biosolids presence. TCS slightly reduced the relative abundance of Gram positive and negative bacteria and fungi, both with or without biosolids. Bacteria were more sensitive than eukaryotes, consistent with the mode of action of TCS, which selectively targets fatty acid synthesis and disrupts cell membranes of bacteria. TCS slightly increased biomarkers of microbial stress, but stress biomarkers were lower in all biosolid treated soils, presumably due to increased availability of nutrients mitigating potential TCS toxicity. PMID:24597039

  18. EFFECT OF BIOSOLIDS APPLICATION ON SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY

    EPA Science Inventory

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized ...

  19. Potential of an Alkaline-stabilized Biosolid to Manage Nematodes: Case Studies on Soybean Cyst and Root-knot Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2001 a collaborative research effort was initiated to evaluate an alkaline stabilized biosolid amendment for plant-parasitic nematode management. This biosolid amendment, N-Viro Soil (NVS), is produced from a unique process that destroys pathogens through a combination of the following stresses:...

  20. Earthworms (Oligochaeta: Acanthodrilidae and Lumbricidae) associated with Hornsby Bend Biosolids Management Plant, Travis County, Texas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Earthworm populations were surveyed in soils from a variety of habitats associated with the Hornsby Bend Biosolids Management Plant, Austin, Texas, from November 2009 through March 2010. Seven species of terrestrial Oligochaeta, including one species new to science, are reported from two families, ...

  1. EFFECTS OF LIME (CAO) ON THE ENDOTOXIN LEVELS OF BIOSOLIDS

    EPA Science Inventory

    Lime addition is a common practice for treating biosolids in order to meet EPA 503 requirements for land application. Since this treatment kills the majority of microorganisms, will it increase the level of endotoxins present in biosolids? And, if endotoxin levels are increased, ...

  2. Moisture Effects on Nitrogen Availability in Municipal Biosolids from End-of-Life Municipal Lagoons.

    PubMed

    Jeke, Nicholson N; Zvomuya, Francis; Ross, Lisette

    2015-11-01

    Nitrogen (N) availability affects plant biomass yield and, hence, phytoextraction of contaminants during phytoremediation of end-of-life municipal lagoons. End-of-life lagoons are characterized by fluctuating moisture conditions, but the effects on biosolid N dynamics have not been adequately characterized. This 130-d laboratory incubation investigated effects of three moisture levels (30, 60, and 90% water-filled pore space [WFPS]) on N mineralization (N) in biosolids from a primary (PB) and a secondary (SB) municipal lagoon cell. Results showed a net increase in N with time at 60% WFPS and a net decrease at 90% WFPS in PB, while N at 30% WFPS did not change significantly. Moisture level and incubation time had no significant effect on N in SB. Nitrogen mineralization rate in PB followed three-half-order kinetics. Potentially mineralizable N (N) in PB was significantly greater at 60% WFPS (222 mg kg) than at 30% WFPS (30 mg kg), but rate constants did not differ significantly between the moisture levels. Nitrogen mineralization in SB followed first-order kinetics, with N significantly greater at 60% WFPS (68.4 mg kg) and 90% WFPS (94.1 mg kg) than at 30% WFPS (32 mg kg). Low N in SB suggests high-N-demanding plants may eventually have limited effectiveness to remediate biosolids in the secondary cell. While high N in PB would provide sufficient N to support high biomass yield, phytoextraction potential is reduced under dry and near-saturated conditions. These results have important implications on the management of moisture during phytoextraction of contaminants in end-of-life municipal lagoons. PMID:26641340

  3. Effect of Pine Waste and Pine Biochar on Nitrogen Mobility in Biosolids.

    PubMed

    Paramashivam, Dharini; Clough, Timothy J; Dickinson, Nicholas M; Horswell, Jacqui; Lense, Obed; Clucas, Lynne; Robinson, Brett H

    2016-01-01

    Humanity produces ∼27 kg of dry matter in biosolids per person per year. Land application of biosolids can improve crop production and remediate soils but may result in excessive nitrate N (NO-N) leaching. Carbonaceous materials can reduce the environmental impact of biosolids application. We aimed to ascertain and compare the potentials for Monterey pine ( D. Don)-sawdust-derived biochars and raw sawdust to reduce NO-N leaching from biosolids. We used batch sorption experiments 1:10 ratio of material to solution (100 mg kg of NH or NO) and column leaching experiments with columns containing biosolids (2.7% total N, 130 mg kg NH and 1350 mg kg NO) mixed with soil, biochar, or sawdust. One type of low-temperature (350°C) biochar sorbed 335 mg kg NH, while the other biochars and sawdust sorbed <200 mg kg NH. None of the materials sorbed NO. Biochar added at rates of 20 to 50% reduced NH-N (<1% of total N) leaching from columns by 40 to 80%. Nitrate leaching (<7% of total N) varied little with biochar form or rate but was reduced by sawdust. Incorporating dried sawdust with biosolids showed promise for mitigating NO-N leaching. This effect likely is due to sorption into the pores of the biochar combined with denitrification and immobilization of N rather than chemical sorption onto surfaces. PMID:26828192

  4. Amendment of biosolids with waste materials and lime: Effect on geoenvironmental properties and leachate production.

    PubMed

    Kayser, Claudia; Larkin, Tam; Singhal, Naresh

    2015-12-01

    Residuals from wastewater treatment operations (biosolids) were mixed with lime, fly ash, lime kiln dust, or two smelter slags to assess their efficacy as potential stabilisation agents by assessing their effects on the shear strength, compressibility, and solids content of mixtures. In addition, the minerals formed and leachate produced during stabilisation were determined. Tests were performed to explore the change of the geoenvironmental properties of the amended biosolids, while under pressure, at different scales using laboratory, pilot and field scale tests. The settlement characteristics of the amended biosolids under a range of applied pressures were determined using a consolidometer. All amended biosolids mixtures showed higher strength than the unamended biosolids, with mixtures containing a combination of 20% fly ash and 20% lime giving the highest (up to eightfold) increase in strength, and that with lime kiln dust and the smelter slags showing the lowest (up to twofold). The biosolids mixtures with only lime gave the second highest increase in strength (up to fourfold), but produced the largest amount of leachate, with higher level of dissolved calcium. The increase in strength correlated with availability of calcium oxide in the mixtures which lead to calcium carbonate formation, accompanied with higher leachate production and settlement during consolidation. Copper, nickel and zinc concentrations increased with alkaline additives and corresponded to higher pH and DOC levels. Nonetheless, concentrations were within the New Zealand regulatory limits for Class A landfills. PMID:26341830

  5. Effect of long-term application of biosolids for land reclamation on surface water chemistry.

    PubMed

    Tian, G; Granato, T C; Pietz, R I; Carlson, C R; Abedin, Z

    2006-01-01

    Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in

  6. Biosolid and alum effects on runoff losses during turfgrass establishment.

    PubMed

    Vietor, D M; Schnell, R W; Munster, C L; Provin, T L; White, R H

    2010-05-01

    Large, volume-based rates of composted biosolids (CB) enhance turfgrass establishment and soil properties, but nonpoint-source runoff losses could occur during production and after transplanting of sod. The objective was to evaluate runoff losses of N, P, sediment, and organic C during establishment of sprigs or transplanted sod of Tifway bermudagrass (Cynodon dactylon L. Pers. X C. transvaalensis Burtt-Davey) with and without CB and aluminum sulfate (Alum). Four treatments comprised Tifway sprigged in a sandy loam soil with and without incorporation of 0.25 m(3) CB m(-3) soil and Alum. In four additional treatments, sod transplanted from Tifway grown with and without CB was established with and without a surface spray of Alum. During early establishment, CB incorporated in soil before sprigging reduced runoff loss of sediment and total N to amounts comparable to transplanted sod. In contrast, mean runoff losses of total dissolved P and soluble-reactive P (SRP) were more than 50% greater for CB-amended sod than for fertilizer-grown sod or Tifway sprigged in soil with or without CB. Yet, the surface spray of Alum reduced runoff loss from sod more than 88% for SRP and 41% for dissolved organic C. Both surface sprays and incorporation of Alum effectively reduced SRP runoff loss from CB, soil, and turfgrass sources during turfgrass establishment. PMID:20056414

  7. Effect of the application of acid treated biosolids on marigold (Tagetes erecta) development.

    PubMed

    Díaz-Avelar, J; Barrios, J A; Jiménez, B

    2004-01-01

    The use of biosolids for land restoration and crop production is a potential solution to improve food production worldwide. However, the microbial content usually restricts its application in crops that are consumed uncooked. An alternative practice is their use in floriculture. In this study, the effects of acid treated sludge on the development of marigold (Tagetes erecta) plants were evaluated under green house conditions. Biosolids were applied at the agronomic rate (AR) based on nitrogen requirements of the marigold. In addition, higher rates (10 and 20xAR) were applied to study their effect on the plants. Biosolids were mixed with tepetate (hard volcanic indurate layers). Due to its origin, tepetate lacks nutrients and organic matter to adequately support plant development. The best treatment for marigold development was 10xAR, as plants reached an average height of 107 cm, with a growing speed of 1.01 cm/d, which is 20 times more than the control. Plants that received no biosolids produced 0.25 buds and 0.5 flowers per plant. In contrast, AR and 10xAR showed a production that ranged from 2 to 29 buds/plant and 4 to 15 flowers/plant, respectively. These results indicate the viability of reusing acid treated biosolids to improve marigold development. PMID:15580992

  8. Surface-applied biosolids enhance soil organic carbon and nitrogen stocks but have contrasting effects on soil physical quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beneficial reuse of biosolids through land application can increase soil organic carbon (SOC) storage while also improving soil physical properties that affect fertility. The effects of continuous biosolids applications in the mid- to long-term, however, are likely to depend on application rate, me...

  9. Carbon storage in a heavy clay soil landfill site after biosolid application.

    PubMed

    Bolan, N S; Kunhikrishnan, A; Naidu, R

    2013-11-01

    Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts>biosolids>biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2-2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha(-1) yr(-1) Mg(-1) biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C. PMID:23380138

  10. Global climate change, land management, and biosolids application to semiarid grasslands

    SciTech Connect

    Loftin, S.R.

    1995-12-31

    Global climate change combined with improper land management, including over-grazing, can lead to a severe reduction in plant cover and soil productivity. This process is especially common in arid and semiarid regions with sparse vegetation cover. New and innovative methods of land management are needed to restore and maintain these ecosystems in a productive and sustainable state. Research conducted in New Mexico on the Rio Puerco Resource Area and the Sevilleta National Wildlife Refuge has shown that biosolids (municipal sewage sludge) application to semiarid grasslands can increase soil nutrient availability, increase plant cover and productivity, and decrease surface runoff and soil erosion without harming environmental quality.

  11. Processing biosolids for market value

    SciTech Connect

    Columbo, J.; Nelson, J.

    1994-09-01

    Until recently, publicly owned treatment works (POTWs) focused on complying with liquid effluent discharge requirements. A distant, secondary emphasis was placed on managing sludge, the other product of the wastewater treatment process. Consequently, the quality of municipal wastewater solids, as well as the cost-effectiveness of solids management, generally suffered.By adopting certain strategies commonly found in the manufacturing industry, municipalities can ensure proper and efficient biosolids production.

  12. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates the effect of surface application of dried Class A biosolids on microbial populations within copper mine tailings. Methods and Results: Mine tailing sites were established at ASARCO Mission Mine close to Sahuarita, Arizona. Site 1 (Dec. 1998) was amended with 248 tons ha-1 of C...

  13. EFFECTS OF COFIRING LIGNIN AND BIOSOLIDS WITH COAL ON FIRESIDE PERFORMANCE AND COMBUSTION PRODUCTS

    SciTech Connect

    Kevin C. Galbreath

    2002-08-01

    Lignin, derived from municipal solid waste and biosolid feedstocks using Masada Resource Group's patented CES OxyNol{trademark} process, and acidified biosolids were evaluated as supplemental fuels with coal for producing steam and electricity. Tests were conducted in a pilot-scale (550,000-Btu/hr [580-MJ/hr]) combustion system to evaluate the effects of coal characteristics, blend mixture (on a dry wt% basis) and furnace exit gas temperature (FEGT) on boiler heat-exchange surface slagging and fouling, NO{sub x} and SO{sub x} production, fly ash characteristics, and combustion efficiency. The effects of blending lignin and acidified biosolids with coal on fuel handling and pulverization characteristics were also addressed. An 80 wt% Colorado--20 wt% subbituminous Powder River Basin coal blend from the Tennessee Valley Authority Colbert Steam Plant, hereafter referred to as the Colbert coal, and a bituminous Pittsburgh No. 8 coal were tested. The lignin and acidified biosolids were characterized by possessing higher moisture content and lower carbon, hydrogen, and heating values relative to the coals. Ash contents of the fuels were similar. The lignin also possessed higher concentrations of TiO{sub 2}, CaO, and SO{sub 3} and lower concentrations of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, K{sub 2}O, and N relative to the coals. The sulfur content of lignin could be reduced through a more thorough washing and drying of the lignin in an efficient commercial-scale dewatering device. Acidified biosolids were distinguished by higher concentrations of P{sub 2}O{sub 5} and MgO and lower SiO{sub 2} and Al{sub 2}O{sub 3} relative to the other fuels. Trace element concentrations, especially for Cr, Pb, Hg, and Ni, were generally greater in the lignin and acidified biosolid fuels relative to the Colbert coal. Maximum trace element emission factors were calculated for 95:5 Colbert coal--lignin and 90:5:5 Colbert coal--lignin--acidified biosolid blends and compared to U

  14. Sustainable approaches for minimizing biosolids production and maximizing reuse options in sludge management: A review.

    PubMed

    Joo, Sung Hee; Dello Monaco, Francesca; Antmann, Eric; Chorath, Philip

    2015-08-01

    Sludge generation during wastewater treatment is inevitable even with proper management and treatment. Yet proper handling and disposal of sludge are still challenging in terms of treatment cost, presence of recalcitrant contaminants of concern, sanitary issues, and public acceptance. Conventional disposal methods (i.e. landfilling, incineration) have created concerns in terms of legislative restrictions and community perception, incentivizing consideration of substitute sludge management options. Furthermore, with proper treatment, biosolids from sludge, rich in organic materials and nutrients, could be utilizable as fertilizer. Despite the challenges of dealing with sludge, no review has dealt with integrated source reduction and reuse as the best sustainable management practices for sludge treatment. In this review, we present two main approaches as potentially sustainable controls: (i) pretreatment for minimizing extensive sludge treatment, and (ii) recycling and reuse of residual sludge. Drawing on these approaches, we also suggest strategies for efficient pretreatment mechanisms and residual reuse, presenting ideas for prospective future research. PMID:26001503

  15. Chemical Characterization of Phosphorus in Soils Amended with Biosolids and DWTRs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of co-application of biosolids and drinking water treatment residues (DWTRs) represents an environmentally sustainable and economically sound strategy for the management of municipal solid wastes. This study demonstrated the effectiveness of reducing water-soluble P in biosolids-amended ...

  16. Effect of biosolids-derived triclosan and triclocarban on the colonization of plant roots by arbuscular mycorrhizal fungi.

    PubMed

    Prosser, R S; Lissemore, L; Shahmohamadloo, R S; Sibley, P K

    2015-03-01

    Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with the majority of crop plants. AMF provide plants with nutrients (e.g., P), modulate the effect of metal and pathogen exposure, and increase tolerance to moisture stress. The benefits of AMF to plant growth make them important to the development of sustainable agriculture. The land application of biosolids is becoming an increasingly common practice in sustainable agriculture, as a source of nutrients. However, biosolids have been found to contain numerous pharmaceutical and personal care products including antimicrobial chemicals such as triclosan and triclocarban. The potential risks that these two compounds may pose to plant-AMF interactions are poorly understood. The current study investigated whether biosolids-derived triclosan and triclocarban affect the colonization of the roots of lettuce and corn plants by AMF. Plants were grown in soil amended with biosolids that contained increasing concentrations of triclosan (0 to 307 μg/g dw) or triclocarban (0 to 304 μg/g dw). A relationship between the concentration of triclosan or triclocarban and colonization of plants roots by AMF was not observed. The presence of biosolids did not have a significant (p>0.05) effect on percent colonization of corn roots but had a significant, positive effect (p<0.05) on lettuce roots. Biosolids-derived triclosan and triclocarban did not inhibit the colonization of crop plant roots by AMF. PMID:25497682

  17. Effects of unseeded areas on species richness of coal mines reclaimed with municipal biosolids

    SciTech Connect

    Halofsky, J.E.; McCormick, L.H.

    2005-12-01

    Land application of municipal biosolids on coal mine spoils can benefit vegetation establishment in mine reclamation. However, the application of biosolids leads to domination by early-successional species, such as grasses, and low establishment of woody and volunteer species, thus reducing potential for forestry as a postmining land use. In this experiment, tree seedlings were planted in strips (0.6-, 1-, and 4-m wide) that were not seeded with grasses, and the effects of unseeded strip width on seedling growth and species richness were assessed. Planted seedling mortality was high; therefore, the effect of unseeded strip width on seedling growth could not be determined. However, it was found that natural plant invasion and species richness were highest in the 4-m unseeded strips. The practice of leaving 4-m-wide unseeded strips in mine reclamation with biosolids in the eastern United States, along with the improvement of tree seedling planting practices and planting stock, would help promote a more species-rich plant community that could be utilized for forestry or a variety of other postmining land uses.

  18. Biosolids, Crop, and Ground-Water Data for a Biosolids-Application Area Near Deer Trail, Colorado, 2004 Through 2006

    USGS Publications Warehouse

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2009-01-01

    From 2004 through 2006, the U.S. Geological Survey monitored the chemical composition of biosolids, crops, dust, and ground water related to biosolids applications near Deer Trail, Colorado, in cooperation with the Metro Wastewater Reclamation District. This monitoring effort was a continuation of the monitoring program begun in 1999 in cooperation with the Metro Wastewater Reclamation District and the North Kiowa Bijou Groundwater Management District. The monitoring program addresses concerns from the public about the chemical effects from applications of biosolids to farmland in the Deer Trail, Colorado, area. This report presents chemical data from 2004 through 2006 for biosolids, crops, and alluvial and bedrock ground water. The chemical data include the constituents of highest concern to the public (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, and plutonium) in addition to many other constituents. The ground-water section also includes climate and water-level data.

  19. Biosolids, crop, and groundwater data for a biosolids-application area near Deer Trail, Colorado, 2009 and 2010

    USGS Publications Warehouse

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2012-01-01

    During 2009 and 2010, the U.S. Geological Survey monitored the chemical composition of biosolids, crops, and groundwater related to biosolids applications near Deer Trail, Colorado, in cooperation with the Metro Wastewater Reclamation District. This monitoring effort was a continuation of the monitoring program begun in 1999 in cooperation with the Metro Wastewater Reclamation District and the North Kiowa Bijou Groundwater Management District. The monitoring program addressed concerns from the public about potential chemical effects from applications of biosolids to farmland in the area near Deer Trail, Colo. This report presents chemical data from 2009 and 2010 for biosolids, crops, and alluvial and bedrock groundwater. The chemical data include the constituents of highest concern to the public (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, and plutonium) in addition to many other constituents. The groundwater section also includes data for precipitation, air temperature, and depth to groundwater at various groundwater-monitoring sites.

  20. Biosolids, crop, and groundwater data for a biosolids-application area near Deer Trail, Colorado, 2007 and 2008

    USGS Publications Warehouse

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2011-01-01

    During 2007 and 2008, the U.S. Geological Survey monitored the chemical composition of biosolids, crops, and groundwater related to biosolids applications near Deer Trail, Colorado, in cooperation with the Metro Wastewater Reclamation District. This monitoring effort was a continuation of the monitoring program begun in 1999 in cooperation with the Metro Wastewater Reclamation District and the North Kiowa Bijou Groundwater Management District. The monitoring program addressed concerns from the public about potential chemical effects from applications of biosolids to farmland in the area near Deer Trail, Colo. This report presents chemical data from 2007 and 2008 for biosolids, crops, and alluvial and bedrock groundwater. The chemical data include the constituents of highest concern to the public (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, and plutonium) in addition to many other constituents. The groundwater section also includes data for precipitation, air temperature, and depth to groundwater at various groundwater-monitoring sites.

  1. EFFECT OF BIOSOLIDS ON PHYTOAVAILABILITY OF CD IN LONG-TERM AMENDED SOILS

    EPA Science Inventory

    Cadmium sorption and desorption experiments were conducted on different fractions of soils amended with different biosolids with varying chemical properties and unamended soil (control). Biosolids addition increased the slope of the Cd sorption isotherms compared to the control s...

  2. EFFECT OF BIOSOLIDS APPLICATION ON SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY (LAKE BUENA VISTA, FL)

    EPA Science Inventory

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized ...

  3. Potential carbon and nitrogen mineralization in soils from a perennial forage production system amended with Class B biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The long-term sustainability of land-application for biosolids management depends on its impacts on soil carbon (C) and nutrient pools (i.e. nitrogen, N) and soil microbial activities. The effects of land-applying Class B biosolids on soil C, N, and microbial activities were measured over a 112-day...

  4. EMERGING INFECTIOUS DISEASE AGENTS AND ISSUES ASSOCIATED WITH THE MANAGEMENT OF TREATED SLUDGES (BIOSOLIDS)

    EPA Science Inventory

    This presentation looks at the pathogenic microorganisms present in municipal sludges and the public's concerns with the land application of sludges/biosolids. Methods for reducing pathogens in sludge; methods for reducing the vector attractiveness of sludge; and issues associate...

  5. Evaluation Of Airborne Endotoxin Concentrations Associated With Management Of Crop Grown On Applied Biosolids

    EPA Science Inventory

    Public health concerns have been expressed regarding inhalation exposure associated with the application of biosolids on cropland, which is due to the potential aerosolization of microorganisms, cell wall products, volatile chemicals, and nuisance odors. Endotoxin is a component...

  6. Toxicity of biosolids-derived triclosan and triclocarban to six crop species.

    PubMed

    Prosser, Ryan S; Lissemore, Linda; Solomon, Keith R; Sibley, Paul K

    2014-08-01

    Biosolids are an important source of nutrients and organic matter, which are necessary for the productive cultivation of crop plants. Biosolids have been found to contain the personal care products triclosan and triclocarban at high concentrations relative to other pharmaceuticals and personal care products. The present study investigates whether exposure of 6 plant species (radish, carrot, soybean, lettuce, spring wheat, and corn) to triclosan or triclocarban derived from biosolids has an adverse effect on seed emergence and/or plant growth parameters. Plants were grown in soil amended with biosolids at a realistic agronomic rate. Biosolids were spiked with triclosan or triclocarban to produce increasing environmentally relevant exposures. The concentration of triclosan and triclocarban in biosolids-amended soil declined by up to 97% and 57%, respectively, over the course of the experiments. Amendment with biosolids had a positive effect on the majority of growth parameters in radish, carrot, soybean, lettuce, and wheat plants. No consistent triclosan- or triclocarban-dependent trends in seed emergence and plant growth parameters were observed in 5 of 6 plant species. A significant negative trend in shoot mass was observed for lettuce plants exposed to increasing concentrations of triclocarban (p<0.001). If best management practices are followed for biosolids amendment, triclosan and triclocarban pose a negligible risk to seed emergence and growth of crop plants. PMID:24764246

  7. Predicting pathogen transport and risk of infection from land-applied biosolids

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Teng, J.; Kumar, A.; Gurian, P.

    2011-12-01

    Biosolids have been recycled as fertilizer to sustainably improve and maintain productive soils and to stimulate plant growth for over forty years, but may contain low levels of microbial pathogens. The Spreadsheet Microbial Assessment of Risk: Tool for Biosolids ("SMART Biosolids") is an environmental transport, exposure and risk model that compiles knowledge on the occurrence, environmental dispersion and attenuation of biosolids-associated pathogens to estimate microbial risk from biosolids land application. The SMART Biosolids model calculates environmental pathogen concentrations and assesses risk associated with exposure to pathogens from land-applied biosolids through five pathways: 1) inhalation of aerosols from land application sites, 2) consumption of groundwater contaminated by land-applied biosolids, 3) direct ingestion of biosolids-amended soils, 4) ingestion of plants contaminated by land-applied biosolids, and 5) consumption of surface water contaminated by runoff from a land application site. The SMART Biosolids model can be applied under a variety of scenarios, thereby providing insight into effective management practices. This study presents example results of the SMART Biosolids model, focusing on the groundwater and surface water pathways, following biosolids application to a typical site in Michigan. Volumes of infiltration and surface water runoff are calculated following a 100-year storm event. Pathogen transport and attenuation through the subsurface and via surface runoff are modeled, and pathogen concentrations in a downstream well and an adjacent pond are calculated. Risks are calculated for residents of nearby properties. For a 100-year storm event occurring immediately after biosolids application, the surface water pathway produces risks that may be of some concern, but best estimates do not exceed the bounds of what has been considered acceptable risk for recreational water use (Table 1); groundwater risks are very uncertain and at the

  8. Effects of biosolids and compost amendment on chemistry of soils contaminated with copper from mining activities.

    PubMed

    Sidhu, Virinder; Sarkar, Dibyendu; Datta, Rupali

    2016-03-01

    Several million metric tons of mining wastes, called stamp sands, were generated in the Upper Peninsula of Michigan during extensive copper (Cu) mining activities in the past. These materials, containing large amounts of Cu, were discharged into various offshoots of Lake Superior. Due to evidences of Cu toxicity on aquatic organisms, in due course, the materials were dredged and dumped on lake shores, thus converting these areas into vast, fallow lands. Erosion of these Cu-contaminated stamp sands back to the lakes is severely affecting aquatic life. A lack of uniform vegetation cover on stamp sands is facilitating this erosion. Understanding the fact that unless the stamp sands are fertilized to the point of sustaining vegetation growth, the problem with erosion and water quality degradation will continue, amending the stamp sands with locally available biosolids and composts, was considered. The purpose of the reported study was to assess potential effects of such organic fertilizer amendments on soil quality. As the first step of a combined laboratory and greenhouse study, a 2-month-long incubation experiment was performed to investigate the effects of biosolids and compost addition on the soil nutrient profile of stamp sands and organic matter content. Results showed that both biosolids and compost amendments resulted in significant increase in nitrogen and phosphorus concentrations and organic matter contents of stamp sands. Sequential extraction data demonstrated that Cu was mostly present as bound forms in stamp sands, and there was no significant increase in the plant available fraction of Cu because of fertilizer application. PMID:26894907

  9. Comparison of Overall Resource Consumption of Biosolids Management System Processes Using Exergetic Life Cycle Assessment.

    PubMed

    Alanya, Sevda; Dewulf, Jo; Duran, Metin

    2015-08-18

    This study focused on the evaluation of biosolids management systems (BMS) from a natural resource consumption point of view. Additionally, the environmental impact of the facilities was benchmarked using Life Cycle Assessment (LCA) to provide a comprehensive assessment. This is the first study to apply a Cumulative Exergy Extraction from the Natural Environment (CEENE) method for an in-depth resource use assessment of BMS where two full-scale BMS and seven system variations were analyzed. CEENE allows better system evaluation and understanding of how much benefit is achievable from the products generated by BMS, which have valorization potential. LCA results showed that environmental burden is mostly from the intense electricity consumption. The CEENE analysis further revealed that the environmental burden is due to the high consumption of fossil and nuclear-based natural resources. Using Cumulative Degree of Perfection, higher resource-use efficiency, 53%, was observed in the PTA-2 where alkaline stabilization rather than anaerobic digestion is employed. However, an anaerobic digestion process is favorable over alkaline stabilization, with 35% lower overall natural resource use. The most significant reduction of the resource footprint occurred when the output biogas was valorized in a combined heat and power system. PMID:26218291

  10. Effects of surface applications of biosolids on groundwater quality and trace-element concentrations in crops near Deer Trail, Colorado, 2004-2010

    USGS Publications Warehouse

    Yager, Tracy J.B.; Crock, James G.; Smith, David B.; Furlong, Edward T.; Hageman, Philip L.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with Metro Wastewater Reclamation District (Metro District), studied biosolids composition and the effects of biosolids applications on groundwater quality and trace-element concentrations in crops of the Metro District properties near Deer Trail, Colorado, during 2004 through 2010. Priority parameters for each monitoring component included the nine trace elements regulated by Colorado for biosolids (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc); other constituents also were analyzed. All concentrations for the priority parameters in monthly biosolids samples were less than Colorado regulatory limits, and the concentrations were relatively consistent. Biosolids likely were the largest source of nitrogen and phosphorus on the Metro District properties. Plutonium isotopes were not detected in the biosolids, but many organic wastewater compounds (organic wastewater compounds: wastewater indicators, pharmaceuticals, and hormones) were detected in substantial concentrations relative to minimum reporting levels and various surface-water concentrations. Bismuth, copper, mercury, nitrogen, phosphorus, silver, biogenic sterols, detergent degradates, disinfectants, fire retardants, fragrances, pharmaceuticals, and plasticizers would be the most likely biosolids signature to indicate the presence of Metro District biosolids in soil or streambed sediment from the study area. Antimony, cadmium, cobalt, copper, molybdenum, nickel, nitrogen, phosphorus, selenium, tungsten, vanadium, zinc, detergent degradates, disinfectants, fire retardants, fragrances, pharmaceuticals or their degradates, and plasticizers would be the most likely biosolids signature for groundwater and surface water in the study area. More biosolids-signature components detected and larger concentration differences from untreated materials, baseline, and blank samples indicate more evidence of biosolids presence or effects

  11. The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea.

    PubMed

    Paramashivam, Dharini; Clough, Tim J; Carlton, Anna; Gough, Kelsi; Dickinson, Nicholas; Horswell, Jacqui; Sherlock, Robert R; Clucas, Lynne; Robinson, Brett H

    2016-02-01

    Lignite has been proposed as a soil amendment that reduces nitrate (NO3(-)) leaching from soil. Our objective was to determine the effect of lignite on nitrogen (N) fluxes from soil amended with biosolids or urea. The effect of lignite on plant yield and elemental composition was also determined. Batch sorption and column leaching experiments were followed by a lysimeter trial where a low fertility soil was amended with biosolids (400 kg N/ha equivalent) and urea (200 kg N/ha equivalent). Treatments were replicated three times, with and without lignite addition (20 t/ha equivalent). Lignite did not reduce NO3(-) leaching from soils amended with either biosolids or urea. While lignite decreased NO3(-) leaching from an unamended soil, the magnitude of this effect was not significant in an agricultural context. Furthermore, lignite increased cumulative N2O production from soils receiving urea by 90%. Lignite lessened the beneficial growth effects of adding biosolids or urea to soil. Further work could investigate whether coating urea granules with lignite may produce meaningful environmental benefits. PMID:26615483

  12. Biosolids application to no-till dryland agroecosytems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dryland agroecosystems are generally ideal environments for recycling biosolids. However, what is the efficacy of biosolids addition to a no-till dryland management agroecosystem? From 2000 to 2010, we studied application of biosolids from the Littleton/Englewood, CO Wastewater Treatment Plant ver...

  13. Phosphorous Speciation in WTR-treated Biosolids Using XANES

    NASA Astrophysics Data System (ADS)

    Zhang, T. Q.; Huff, D.; Lin, Z.-Q.

    2009-04-01

    The concept of co-application of biosolids and drinking water treatment residues (DWTRs) represents an environmentally sustainable and economically sound strategy for the management of municipal solid wastes. This study demonstrated the effectiveness of reducing water-soluble P in biosolids-amended agricultural soil by the addition of DWTRs. Results showed that total P in soil leachate was significantly reduced during the initial 42-days of a 200-day greenhouse study when biosolids (50 g kg-1) were applied along with DWTRs (40 g kg-1). Particulate P was the dominant fraction of P in the soil leachate, which decreases with increasing DWTR application rate. The application of DWTRs does not significantly decrease the growth and yield of wheat (Triticum aestivum L.). The primary P chemical composition in biosolids include cupper phytate [Cu(IP6)6], barium phytate [Ba6IP6], and cupper phosphate [Cu3(PO4)2]. The addition of DWTRs to biosolids alternated the P speciation, and the P speciation change became significant with increasing the incubation time of the mixture of biosolids and DWTRs. The chemical component of Cu3(PO4)2 became non significant (<5%) with the addition of DWTRs. During the 14-day incubation time period, the proportion of P that was adsorbed on amorphous Fe(OH)3 increased substantially from 8 to 46% and Ba6IP6 increased steadily from 30 to 50%, while the proportion of Cu(IP6)6 decreased significantly from 53 to 5%. The amorphous Fe(OH)3-adsorbed P and Ba6IP6 formed the dominant P chemical components in the mixture of biosolids and DWTRs.

  14. EFFECTS OF STORAGE ON STABILITY AND PATHOGEN REDUCTION IN BIOSOLIDS

    EPA Science Inventory

    Storage can be an effective means of stabilizing small quantities of wastewater sludge. This paper summarizes the performance of two laboratory-scale sludge storage units and that of four full-scale tanks sampled at four treatment facilities in eastern Nebraska. The bench-scale u...

  15. Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban.

    PubMed

    Fu, Qiuguo; Wu, Xiaoqin; Ye, Qingfu; Ernst, Fredrick; Gan, Jay

    2016-10-01

    Biosolids from wastewater treatment are primarily disposed of via land applications, where numerous pharmaceuticals and personal care products (PPCPs) may contaminate food crops and pose a human exposure risk. Biosolids are rich in organic carbon and addition of biosolids can increase the sorption of certain PPCPs in soil, decreasing their bioavailability. This study tested the hypothesis that the relative plant uptake of PPCPs decreases with increasing biosolids amendment. Accumulation of triclosan and triclocarban was measured in roots of radish and carrot grown in soils with or without biosolids. Addition of biosolids significantly prolonged the persistence of triclosan in soil. When expressed in bioaccumulation factor (BCF), accumulation of triclosan drastically decreased in biosolids-amended soils, while the effect was limited for triclocarban. Compared to the unamended soil, amending biosolids at 2% (w/w) decreased BCF of triclosan in the edible tissues of radish and carrot by 85.4 and 89.3%, respectively. Measurement using a thin-film passive sampler provided direct evidence showing that the availability of triclosan greatly decreased in biosolids-amended soils. Partial correlation analysis using data from this and published studies validated that biosolids decreased plant uptake primarily by increasing soil organic carbon content and subsequently sorption. Therefore, contamination of food crops by biosolids-borne contaminants does not linearly depend on biosolids use rates. This finding bears significant implications in the overall risk evaluation of biosolids-borne contaminants. PMID:27337347

  16. Biosolids applied to agricultural land: Influence on structural and functional endpoints of soil fauna on a short- and long-term scale.

    PubMed

    Coors, Anja; Edwards, Mark; Lorenz, Pascale; Römbke, Jörg; Schmelz, Rüdiger M; Topp, Edward; Waszak, Karolina; Wilkes, Graham; Lapen, David R

    2016-08-15

    Biosolids have well-documented crop and soil benefits similar to other sources of organic amendment, but there is environmental concern due to biosolids-associated pollutants. The present study investigated two field sites that had received biosolids at commercial-scale rates in parallel to associated field sections which were managed similarly but without receiving biosolids (controls). The investigated endpoints were abundance and diversity of soil organisms (nematodes, enchytraeids and earthworms) and soil fauna feeding activity as measured by the bait lamina assay. Repeated sampling of one of the field sites following the only biosolids application demonstrated an enrichment effect typical for organic amendments, which was mostly exhausted after 44months. After an initial suppression, the proportion of free-living plant-parasitic nematodes tended to increase in the biosolids-amended soil over time. Yet, none of the endpoints at this site indicated significant negative effects resulting from the biosolids until 44months post application. In contrast to the repeatedly tilled first field site, the second one was left fallow after three biosolids applications, and was sampled 96months post last application. It was only at this field site that potential evidence for a long-term impact of biosolids was detected with regard to two endpoints: earthworm abundance and structure of the nematode assemblage. Agricultural management and correlation with abiotic soil parameters explained the observed difference in earthworm abundance. Yet, the development of a highly structured and mature nematode assemblage at the control but not at the biosolids-amended section of this fallow field could not be explained by such correlations nor by soil metal concentrations. Overall, the present study found only weak evidence for negative long-term impacts of biosolids applied at commercial rates on soil fauna. High-level community parameters such as the nematode structure index (SI

  17. Biosolids use for reclaiming fluvial mine tailings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the effect of biosolids and lime on reclamation of a heavily contaminated metal site. Within the Superfund area near Leadville, CO, biosolids and lime were amended (1998) to a 1 ha site at rates of 240 Mg per ha each. In 2006, soil samples were collected on a ...

  18. The effect of liming on antibacterial and hormone levels in wastewater biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to meet Class B quality requirements, wastewater biosolids are regulated for pathogen levels, metal concentrations, and vector attraction. One common method to decrease pathogen levels in these solids is to stabilize them by lime addition (CaO), which raises the pH and temperature of the m...

  19. Effects of sample storage on biosolids compost stability and maturity evaluation.

    PubMed

    Wu, L; Ma, L Q

    2001-01-01

    Compost stability and maturity are important parameters of compost quality. To date, nearly all compost characterization has been performed using samples freshly collected because sample storage can affect compost stability and maturity evaluation. However, sample preservation is sometimes necessary, especially for scientific research purposes. There is little information available on the effects of sample storage on compost stability and maturity. Samples of biosolids compost with different levels of stability and maturity were collected from four compost facilities in Florida (referred to as Register, Winslow, Sunset, and Meadow). Comparisons of CO2 evolution, seed germination rate, and water-soluble organic carbon (WSOC) were made between fresh samples with short storage at 4 degrees C for less than 1 wk and air-dried or frozen compost samples stored for 1 yr. The effects of storage (air-dry or frozen) on the measured parameters depended on compost stability and maturity and on the compost material source. Frozen storage reduced the peak CO2 evolution of Register samples by 12 to 29%, while accumulated CO2 evolution was reduced by 43 to 64% and 110 to 277% with air-dry and frozen storage, respectively. The storage effect on CO2 evolution with more stable compost was inconsistent. Storage did not affect compost phytotoxicity, except for samples from the Sunset facility. Air-drying reduced the WSOC by up to 35%, and freezing increased it by up to 34%, while both storage methods had no significant effect on samples of low WSOC. Despite all these variations, WSOC had a significant and consistent relation to CO2 evolution and seed germination rates with R2 of 0.78 and 0.57, respectively, regardless of storage methods. PMID:11215657

  20. Path analyses of grain P, Zn, Cu, Fe, and Ni in a biosolids-amended dryland wheat agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids land application is an effective means of recycling plant nutrients and is the preferred method of biosolids reuse by the US Environmental Protection Agency. One issue concerning biosolids application is the extent of the contribution of biosolids-borne plant nutrients to the overall crop...

  1. Effects of biosolid amendment on populations of Meloidogyne hapla and soils with different textures and pHs.

    PubMed

    Mennan, Sevilhan; Melakeberhan, Haddish

    2010-09-01

    Temperate vegetable and nursery industries face significant challenges in managing Meloidogyne hapla, a plant-parasite for which few resistant cultivars and/or viable alternatives to methyl bromide exist. N-Viro Soil(R) (NVS), an alkaline-stabilized biosolid product, has soil nutrition enrichment capacity and potential for plant-parasitic nematode suppression. In three sets of experiments, we investigated the effects of NVS on M. hapla populations from Rhode Island (RI), Connecticut (CT), New York, Geneva (NYG) and Lyndonville (NYL), and Michigan (MI), and growth of tomato cv 'Rutgers' in five soils commonly used for vegetable and nursery crop production in the Great Lakes Region of the USA. Either 0 (control) or 600 eggs/100 cm(3) of soil per M. hapla population were added in all experiments. In the first set, NVS was applied at rates of 0, 1, 2 and 4 g/100 cm(3) of sandy loam soil (pH 7) and resulted in variable responses on the numbers of nematodes recovered and plant growth at 30 and 90 days (25+/-2 degrees C); however, the 2g NVS treatment consistently increased plant growth. Either 0 or 2 NVS/100 cm(3) were applied to a coarse loamy (pH 4.5) and sandy loam (pH 8, second set of experiments), and muck (pH 5.5), loamy sand (pH 7.1) and sandy loam (pH 7.5, third set of experiments) soils and experiments terminated four weeks after nematode inoculation. Across experiments, the effect of NVS on the M. hapla populations varied. Generally nematode infection decreased plant growth. NVS increased soil pH the most in muck and the least in sandy loam soil. The most consistent interaction effects of NVS*soil, NVS*M. hapla, soil*M. hapla and/or NVS*soil*M. hapla across the experiments indicate that NVS affects M. hapla populations in different ways in different soil types, suggesting that NVS application is likely to be site-specific. These findings further provide basis that may potentially explain reports of variable effects of NVS on nematodes and how future studies may

  2. Native Australian species are effective in extracting multiple heavy metals from biosolids.

    PubMed

    Mok, Hoi-Fei; Majumder, Ramaprasad; Laidlaw, W Scott; Gregory, David; Baker, Alan J M; Arndt, Stefan K

    2013-01-01

    Selecting native plant species with characteristics suitable for extraction of heavy metals may have multiple advantages over non-native plants. Six Australian perennial woody plant species and one willow were grown in a pot trial in heavy metal-contaminated biosolids and a potting mix. The plants were harvested after fourteen months and above-ground parts were analysed for heavy metal concentrations and total metal contents. All native species were capable of growing in biosolids and extracted heavy metals to varying degrees. No single species was able to accumulate heavy metals at particularly high levels and metal extraction depended upon the bioavailability of the metal in the substrate. Metal extraction efficiency was driven by biomass accumulation, with the species extracting the most metals also having the greatest biomass yield. The study demonstrated that Grevillea robusta, Acacia mearnsii, Eucalyptus polybractea, and E. cladocalyx have the greatest potential as phytoextractor species in the remediation of heavy metal-contaminated biosolids. Species survival and growth were the main determinants of metal extraction efficiency and these traits will be important for future screening of native species. PMID:23819263

  3. Pretreatment raises biosolids quality

    SciTech Connect

    Shimp, G.; McMillian, S.; Hunter, G.

    1994-06-01

    Since publication of the Clean Water Act`s proposed Part 503 regulations on the use and disposal of biosolids in February 1989, the U.S. waste water industry has been sensitized to the issue of biosolids quality. As Publicly Owned Treatment Works (POTWs) prepare for compliance with the new rule, their focus is the Alternate Pollutant Limits that define a clean biosolids product.

  4. Overcoming the toxicity effects of municipal wastewater sludge and biosolid extracts in the Yeast Estrogen Screen (YES) assay.

    PubMed

    Citulski, Joel; Farahbakhsh, Khosrow

    2012-04-01

    For nearly two decades, the Yeast Estrogen Screen (YES) has been used as a valuable tool for determining the total estrogenic potency of various environmental samples, including influent and effluent streams at municipal wastewater plants. However, applying the YES assay to wastewater sludges and stabilized biosolids has been problematic. This is due to co-extracted compounds from the solids either proving toxic to the yeast or masking the presence of estrogenic substances. The present research describes the development and validation of sample preparation steps that mitigate the toxicity effects of municipal wastewater sludge and biosolid samples in the YES assay, while allowing for reliable dose-dependent expression of estrogenic activity. A copper work-up for sulfur removal and chromatographic cleanup with silica and alumina were required in addition to solid-phase extraction to adequately remove interfering compounds. Sample stabilization methods such as autoclaving, lyophilization and formaldehyde treatment were found to be detrimental to the assay. Hence, heat-drying is recommended to prevent cytotoxicity and the degradation of estrogenic substances. PMID:22277884

  5. Restoring Ecosystem Function in Degraded Urban Soil Using Biosolids, Biosolids Blend, and Compost.

    PubMed

    Basta, N T; Busalacchi, D M; Hundal, L S; Kumar, K; Dick, R P; Lanno, R P; Carlson, J; Cox, A E; Granato, T C

    2016-01-01

    Many soils at former industrial sites are degraded. The objective of this research was to determine the ability of compost, biosolids, and biosolids blends to improve soil ecosystem function with minimal potential impact to surface water. Treatments rototilled into the top 12.5 cm of soil were biosolids at 202 Mg ha; biosolids at 404 Mg ha; compost at 137 Mg ha; or a blend consisting of biosolids applied at 202 Mg ha, drinking water treatment residual, and biochar. Rainfall runoff from experimental plots was collected for 3 yr. One year after soil amendments were incorporated, a native seed mix containing grasses, legumes, and forbs was planted. Soil amendments improved soil quality and nutrient pools, established a dense and high-quality vegetative cover, and improved earthworm reproductive measures. Amendments increased soil enzymatic activities that support soil function. Biosolids treatments increased the Shannon-Weaver Diversity Index for grasses. For the forbs group, control plots had the lowest diversity index and the biosolids blend had the highest diversity index. Biosolids and compost increased the number of earthworm juveniles. In general, biosolids outperformed compost. Biosolids increased N and P in rainfall runoff more than compost before vegetation was established. Several microconstituents (i.e., pharmaceutical and personal care products) were detected in runoff water but at concentrations below the probable no-effect levels and therefore should pose little impact to the aquatic environment. Future restoration design should ensure that runoff control measures are used to control sediment loss from the restored sites at least until vegetation is established. PMID:26828162

  6. Land application of biosolids: Comparison among stabilization methods

    SciTech Connect

    Theis, T.L.; Brown, R.L.; Gibbs, J.; Collins, A.G.

    1998-07-01

    The land application of municipal wastewater biosolids provides several commercial and economical advantages if properly administered. The presence of both macro and micro nutrients necessary for plant growth enable biosolids to be used as a fertilizer for agricultural lands, forests, yards, and gardens. Despite these advantages, it is important to remember that biosolids are a by-product of wastewater treatment. Trace metals and organic compounds often found in biosolids can be detrimental to the environment and/or toxic to animals and humans and may accumulate in the food chain. In this study, the long-term effects of accelerated weathering of several biosolids products were investigated with respect to trace element leaching, and plant uptake of trace metals. Emphasis in this paper is placed on comparisons of leachate and uptake data across the biosolid types.

  7. Long-term effects of biosolid-amended soils on phosphorus, copper, manganese and zinc uptake by wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids have been applied to agricultural land for many years as a source of plant nutrients. There are growing concerns of residual phosphorus and metals from long-term biosolids amended fields and their potential impact on the environment. Objectives of this study were to determine, i) phosphor...

  8. Regression modeling weather and biosolids effects on dryland on dryland wheat yields in Eastern Colorado, 2011-2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the western Great Plains, climate dictates dryland wheat (Triticum aestivum, L) and corn (Zea mays, L.) production. Municipalities also use this region to recycle sewage biosolids. Will biosolids (from the Littleton/Englewood, CO Wastewater Treatment Plant) applications to western Great Plains ...

  9. Water Treatment Residuals and Biosolids Long-Term Co-application Effects to Semi-arid Grassland Soils and Vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water treatment residuals (WTRs) and biosolids are byproducts from municipal water treatment processes. Both byproducts have been studied separately for land application benefits. There are possible environmental benefits of WTRs and biosolids co-application but these studies are limited. Our obj...

  10. Long-Term Effects of Land Application of Class B Biosolids on the Soil Microbial Populations, Pathogens, and Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the influence of 20 annual land applications of Class B biosolids on the soil microbial community. The potential benefits and hazards of land application were evaluated by analysis of surface soil samples collected following the 20th land application of biosolids. The study was ...

  11. Anaerobic digestion as a sustainable solution for biosolids management by the Montreal metropolitan community.

    PubMed

    Frigon, J C; Guiot, S R

    2005-01-01

    The Quebec Waste Management Policy (1998-2008) is requesting that the municipalities prepare a waste management plan, including a global objective of 60% of these wastes to be diverted from landfill sites by reduction, re-usage, recycling and valorization. Around 5.8 million tons of wastes were generated on the territory of the Montreal Metropolitan Community in 2001 for a population of about 3.5 millions citizens. In this paper, we present different management scenarios in which anaerobic digestion was used as a valorization step, focusing on the energetic value of the methane produced and the reduction in greenhouse gas (GHG) emissions. The four scenarios prepared cover the valorization of the organic fraction of municipal solid wastes, green wastes and excess sludge and showed potential methane generation of 17-140 Mm3 with a GHG reduction of 62,000-500,000 tons of CO2-equivalents. PMID:16180478

  12. Application of self-sustaining smouldering combustion for the destruction of wastewater biosolids.

    PubMed

    Rashwan, Tarek L; Gerhard, Jason I; Grant, Gavin P

    2016-04-01

    Managing biosolids, the major by-product from wastewater treatment plants (WWTPs), persists as a widespread challenge that often constitutes the majority of WWTP operating costs. Self-sustained smouldering combustion is a new approach for organic waste treatment, in which the waste - the combustion fuel - is destroyed in an energy efficient manner after mixing it with sand. Smouldering has never been applied to biosolids. Column experiments, using biosolids obtained from a WWTP, were employed to identify if, and under what conditions, smouldering could be used for treating biosolids. The parameter space in which smouldering was self-sustaining was mapped as a function of key system metrics: (1) sand/biosolids mass fraction, (2) biosolids moisture content, and (3) forced air flux. It was found that a self-sustaining reaction is achievable using biosolids with water content as high as 80% (with a biosolids lower heating value greater than 1.6 kJ/g). Moreover, results suggest that operator-controlled air flux can assist in keeping the reaction self-sustaining in response to fluctuations in biosolids properties. This proof-of-concept demonstrates the potential for smouldering as a new energy efficient biosolids disposal method for very wet (i.e., minimally processed) biosolids that may offer WWTPs significant operating cost savings. This study emphasizes smouldering's usefulness as a novel waste management technique. PMID:26898476

  13. Distinct Responses in Ammonia-Oxidizing Archaea and Bacteria after Addition of Biosolids to an Agricultural Soil▿

    PubMed Central

    Kelly, John J.; Policht, Katherine; Grancharova, Tanya; Hundal, Lakhwinder S.

    2011-01-01

    The recently discovered ammonia-oxidizing archaea (AOA) have been suggested as contributors to the first step of nitrification in terrestrial ecosystems, a role that was previously assigned exclusively to ammonia-oxidizing bacteria (AOB). The current study assessed the effects of agricultural management, specifically amendment of soil with biosolids or synthetic fertilizer, on nitrification rates and copy numbers of archaeal and bacterial ammonia monooxygenase (amoA) genes. Anaerobically digested biosolids or synthetic fertilizer was applied annually for three consecutive years to field plots used for corn production. Biosolids were applied at two loading rates, a typical agronomic rate (27 Mg hectare−1 year−1) and double the agronomic rate (54 Mg hectare−1 year−1), while synthetic fertilizer was applied at an agronomic rate typical for the region (291 kg N hectare−1 year−1). Both biosolids amendments and synthetic fertilizer increased soil N and corn yield, but only the biosolids amendments resulted in significant increases in nitrification rates and increases in the copy numbers of archaeal and bacterial amoA genes. In addition, only archaeal amoA gene copy numbers increased in response to biosolids applied at the typical agronomic rate and showed a significant correlation with nitrification rates. Finally, copy numbers of archaeal amoA genes were significantly higher than copy numbers of bacterial amoA genes for all treatments. These results implicate AOA as being primarily responsible for the increased nitrification observed in an agricultural soil amended with biosolids. These results also support the hypothesis that physiological differences between AOA and AOB may enable them to occupy distinct ecological niches. PMID:21803892

  14. Phosphorus leaching from biosolids-amended sandy soils.

    PubMed

    Elliott, H A; O'Connor, G A; Brinton, S

    2002-01-01

    Increasing emphasis on phosphorus (P)-based nutrient management underscores the need to understand P behavior in soils amended with biosolids and manures. Laboratory and greenhouse column studies characterized P forms and leachability of eight biosolids products, chicken manure (CM), and commercial fertilizer (triple superphosphate, TSP). Bahiagrass (Paspalum notatum Flugge) was grown for 4 mo on two acid, P-deficient Florida sands, representing both moderate (Candler series: hyperthermic, uncoated Typic Quartzipsamments) and very low (Immokalee series: sandy, siliceous, hyperthermic Arenic Alaquods) P-sorbing capacities. Amendments were applied at 56 and 224 kg P(T) ha(-1), simulating P-based and N-based nutrient loadings, respectively. Column leachate P was dominantly inorganic and lower for biosolids P sources than TSP. For Candler soil, only TSP at the high P rate exhibited P leaching statistically greater (alpha = 0.05) than control (soil-only) columns. For the high P rate and low P-sorbing Immokalee soil, TSP and CM leached 21 and 3.0% of applied P, respectively. Leachate P for six biosolids was <1.0% of applied P and not statistically different from controls. Largo biosolids, generated from a biological P removal process, exhibited significantly greater leachate P in both cake and pelletized forms (11 and 2.5% of applied P, respectively) than other biosolids. Biosolids P leaching was correlated to the phosphorus saturation index (PSI = [Pox]/[Al(ox) + Fe(ox)]) based on oxalate extraction of the pre-applied biosolids. For hiosolids with PSI < or = approximately 1.1, no appreciable leaching occurred. Only Largo cake (PSI = 1.4) and pellets (PSI = 1.3) exhibited P leaching losses statistically greater than controls. The biosolids PSI appears useful for identifying biosolids with potential to enrich drainage P when applied to low P-sorbing soils. PMID:11931462

  15. Native plant restoration of biosolids-amended copper mine tailings

    SciTech Connect

    Kramer, P.A.; Zabowski, D.; Everett, R.L.; Scherer, G.

    1998-12-31

    Copper mine tailings are difficult to revegetate due to nutrient deficiencies, high levels of acidity, and potential metal toxicities. An amendment of biosolids could ameliorate these harsh growing conditions through the addition of available nutrients, improvement of physical soil properties (e.g., increased water holding capacity), and possible lowering of toxic metal availability through complexation with organic matter. A study was conducted on mine tailings at Holden, WA to evaluate the effect of an amendment of biosolids on the survival and growth of five native plant species (Sitka alder, big leaf maple, fireweed, w. yarrow, and pearly everlasting). Plots were established in tailings, gravel over tailings (G/T), and biosolids plus gravel over tailings. Each of the native plant species, except maple, had their highest survival in the biosolids-amended plot with 3 species at 100% survival. The biosolids amendment was shown to improve the growth of all species except maple. Fireweed produced 62 times more biomass in the biosolids-amended plot compared to the unamended plot (G/T). Plant analysis revealed a dramatic increase in nutrient content with the amendment of biosolids. Biosolids improved the survival, growth, and nutritional status of native plant species on the copper mine tailings.

  16. Biosolids recycling at a pulp and paper mill

    SciTech Connect

    Gratton, P.F.; Montgomery, K.L.; Page, S.H.

    1997-12-31

    The Bio Gro Division of Wheelabrator Water Technologies Inc. has traditionally been involved in recycling biosolids from domestic wastewater treatment plants. The biosolids, or primarily organic residuals that result from the treatment of wastewater, have long been used in agriculture as a soil conditioner, fertilizer, organic lime material and also for other soil fertility practices. It has long been known that residuals from certain industrial wastewater processes are very high in nutrients and organic matter which can also be successfully used in agricultural activities. One of these industrial biosolids with well-documented agricultural value is the organic residual from the treatment of wastewater from pulp and paper mills. Most pulp and paper producers in the US recognize the value of pulp and paper biosolids as a material that can fertilize their own tree stands or can be used in normal agricultural practices. In 1995, Bio Gro entered into a contract with a two large pulp and paper mills in Maine for the management of its pulp and paper biosolids. Bio Gro was responsible for implementing the beneficial use options for a mixture of primary and secondary biosolids from the wastewater treatment process which was combined with combustion ash from the facility`s power generation facilities. The contract included the layout of spreading areas, mixing of the residuals and spreading the material on the sites. This paper will explain the process that Bio Gro employed to manage the pulp and paper biosolids generated at the mill.

  17. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; Creamer, Courtney; McLaughlin, Mike J; Fiebiger, Cathy; Wright, Claire; Cavagnaro, Timothy R; Bertsch, Paul M

    2015-11-01

    We investigated effects of Ag2S engineered nanomaterials (ENMs), polyvinylpyrrolidone (PVP) coated Ag ENMs (PVP-Ag), and Ag(+) on arbuscular mycorrhizal fungi (AMF), their colonization of tomato (Solanum lycopersicum), and overall microbial community structure in biosolids-amended soil. Concentration-dependent uptake was measured in all treatments. Plants exposed to 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+) exhibited reduced biomass and greatly reduced mycorrhizal colonization. Bacteria, actinomycetes and fungi were inhibited by all treatment classes, with the largest reductions measured in 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+). Overall, Ag2S ENMs were less toxic to plants, less disruptive to plant-mycorrhizal symbiosis, and less inhibitory to the soil microbial community than PVP-Ag ENMs or Ag(+). However, significant effects were observed at 1 mg kg(-1) Ag2S ENMs, suggesting that the potential exists for microbial communities and the ecosystem services they provide to be disrupted by environmentally relevant concentrations of Ag2S ENMs. PMID:26196315

  18. Effects of biosolids and FGD-gypsum amended soil on metal uptake by lettuce and Edamame soybean and nodules development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids and flue gas desulfurization (FGD)-gypsum amended soils are a rich nutrient source for plant growth and could reduce soil contamination by synthetic fertilizers. According to previous studies, these soil amendments have also enhanced some rhizobacteria (Bradyrhizobium japonicum) in the rh...

  19. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    USGS Publications Warehouse

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    Shallow groundwater in the transitional zone wells, which were located adjacent to and topographically downgradient from all the biosolids land-application fields, were found to be statistically different and had higher nitrate concentrations (medians greater than 12 milligrams per liter) than all the other wells sampled as part of the study. Surface-water nutrient concentrations

  20. Sustainability of land application of class B biosolids.

    PubMed

    Pepper, Ian L; Zerzghi, Huruy; Brooks, John P; Gerba, Charles P

    2008-01-01

    Land application of Class B biosolids is routinely undertaken in the United States. However, due to public concern over potential hazards, the long-term sustainability of land application has been questioned. Thus, the objective of this review article was to evaluate the sustainability of land application of Class B biosolids. To do this we evaluated (i) the fate and transport of potential biological and chemical hazards within biosolids, and (ii) the influence of long-term land application on the microbial and chemical properties of the soil. Direct risks to human health posed by pathogens in biosolids have been shown to be low. Risks from indirect exposure such as aerosolized pathogens or microbially contaminated ground water are also low. A long-term land application study showed enhanced microbial activity and no adverse toxicity effects on the soil microbial community. Long-term land application also increased soil macronutrients including C, N, and, in particular, P. In fact, care should be taken to avoid contamination of surface waters with high phosphate soils. Available soil metal concentrations remained low over the 20-yr land application period due to the low metal content of the biosolids and a high soil pH. Soil salinity increases were not detected due to the low salt content of biosolids and irrigation rates in excess of consumptive use rates for cotton. Our conclusion, based on these studies, is that long-term land application of Class B biosolids is sustainable. PMID:18765778

  1. Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions.

    PubMed

    Case, Sean D C; Gómez-Muñoz, Beatriz; Magid, Jakob; Jensen, Lars Stoumann

    2016-07-01

    Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be of importance for the value of the biosolids when used to fertilise crops. We sourced AD biosolids from a Danish waste water treatment plant (WWTP) and dried it in the laboratory at 70, 130, 190 or 250 °C to >95 % dry matter content. Also, we sourced biosolids from the WWTP dried using its in-house thermal drying process (input temperature 95 °C, thermal fluid circuit temperature 200 °C, 95 % dry matter content). The drying process reduced the ammonium content of the biosolids and reduced it further at higher drying temperatures. These findings were attributed to ammonia volatilisation. The percentage of mineralisable organic N fraction (min-N) in the biosolids, and nitrous oxide (N2O) and carbon dioxide (CO2) production were analysed 120 days after addition to soil. When incubated at soil field capacity (pF 2), none of the dried biosolids had a greater min-N than the AD biosolids (46.4 %). Min-N was lowest in biosolids dried at higher temperatures (e.g. 19.3 % at 250 °C vs 35.4 % at 70 °C). Considering only the dried biosolids, min-N was greater in WWTP-dried biosolids (50.5 %) than all of the laboratory-dried biosolids with the exception of the 70 °C-dried biosolids. Biosolid carbon mineralisation (CO2 release) and N2O production was also the lowest in treatments of the highest drying temperature, suggesting that this material was more recalcitrant. Overall, thermal drying temperature had a significant influence on N availability from the AD biosolids, but drying did not improve the N availability of these biosolids in any case. PMID:27068895

  2. Aquatic hazard assessment for pharmaceuticals, personal care products, and endocrine-disrupting compounds from biosolids-amended land.

    PubMed

    Langdon, K A; Warne, M St J; Kookana, R S

    2010-10-01

    Reuse of biosolids on agricultural land is a common practice. Following the application of biosolids to land, contaminants in the biosolids have the potential to migrate offsite via surface runoff and/or leaching and pose a hazard to aquatic ecosystems. The aim of this screening-level assessment study was to determine the relative hazard posed to aquatic ecosystems by pharmaceuticals, personal care products, and endocrine-disrupting compounds (EDCs) that have been detected and quantified in biosolids. This involved estimating maximum possible runoff water concentrations of compounds, using an equilibrium partitioning approach and then comparing these with the lowest available aquatic toxicity data, using the hazard quotient (HQ) approach. A total of 45 pharmaceuticals, personal care products, and EDCs have been detected in biosolids. Ten of these compounds (tonalide, galaxolide, 17β-estradiol, 17α-ethinylestradiol, ciprofloxacin, doxycycline, norfloxacin, ofloxacin, triclosan, and triclocarban) posed a high (HQ >1.0) hazard to aquatic ecosystems relative to the other compounds. This hazard assessment indicated that further research into potential offsite migration and deleterious effects on aquatic ecosystems is warranted for the 10 organic contaminants identified, and possibly for chemicals with similar physicochemical and toxicological properties, in biosolids-amended soils. Because many antibiotic compounds (e.g., ciprofloxacin, norfloxacin, and ofloxacin) have ionic properties, the methods used may have overestimated their predicted aqueous concentrations and hazard. Further research that includes site-specific variables, e.g., dilution factors in waterways, rain intensity, slope of land, degradation, and the use of management strategies such as buffer zones, is likely to decrease the hazard posed by these high hazard compounds. PMID:20872647

  3. Interactions of triclosan, gemfibrozil and galaxolide with biosolid-amended soils: Effects of the level and nature of soil organic matter.

    PubMed

    Usyskin, Alla; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2015-11-01

    Triclosan, gemfibrozil and galaxolide, representing acidic and non-ionized hydrophobic organic compounds, are biologically active and can be accumulated during wastewater treatment in sewage sludge. The interactions of these substances with the soils amended by sewage sludge-originating biosolids may control their environmental fate. Therefore, the sorption of three organic compounds was studied in dune sand, loess soil, clay soil and mixtures of these media with three different sewage sludge-originating biosolids that were incubated under aerobic conditions for 6 months. For each compound, 15 sorption isotherms were produced at pH 7.8-8.0. The sorption of triclosan and gemfibrozil on sand-containing sorbents was examined also under acidic conditions. In some soil series, the compound's Freundlich constants (KF) are linearly related to the soil organic carbon (OC) content. Notably, for a given OC content, the sand-containing sorbents tend to demonstrate enhanced interactions with triclosan and galaxolide. This may be related with more hydrophobic and/or less rigid soil organic matter (SOM) as compared with the clay-containing soils, implying indirect effects of minerals. Generally the OC-normalized KF vary among different soil-biosolid combinations which is explained by the differences in the composition and properties of SOM, and is also contributed by the non-zero intercepts of the linear KF upon soil OC dependencies. The negative intercepts suggest that below a certain OC level no considerable organic compound-soil interactions would occur. Interactions of molecular and anionic forms of triclosan with a sand-containing sorbent may be comparable, but interactions involving gemfibrozil molecules could be stronger than interactions involving its anion. PMID:26091868

  4. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids.

    PubMed

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R; Topp, Edward

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with (14)C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. PMID:25644844

  5. Transformation of silver nanoparticles in fresh, aged, and incinerated biosolids.

    PubMed

    Impellitteri, Christopher A; Harmon, Stephen; Silva, R Gune; Miller, Bradley W; Scheckel, Kirk G; Luxton, Todd P; Schupp, Donald; Panguluri, Srinivas

    2013-08-01

    accounted for in life-cycle analyses of AgNPs and in management decisions regarding the disposal of incinerated biosolids. PMID:23561507

  6. Monitoring Alkyl Phenol Ethoxylates And Degradation Products After Land Application Of Anaerobically Digested Biosolids

    EPA Science Inventory

    Annually, over 3 million dry tons of treated sewage sludge (or biosolids) are applied on agricultural lands in the U.S. In 2002, the National Research Council (NRC) recommended an examination of biosolids management practices including chemicals such as surfactants used in clean...

  7. Economic Analysis of a Pine Plantation Receiving Repeated Applications of Biosolids

    PubMed Central

    Wang, Hailong; Kimberley, Mark O.; Wilks, Peter J.

    2013-01-01

    Treated biosolids have been applied to 750-ha of a Pinus radiata forest plantation on Rabbit Island near Nelson City in New Zealand since 1996. A long-term research trial was established in 1997 to investigate the effects of the biosolids applications on the receiving environment and tree growth. An analysis of the likely economic impact of biosolids application shows that biosolids application has been beneficial. Stem volume of the high treatment (biosolids applied at 600 kg N ha-1 every three years) was 36% greater than the control treatment (no biosolids applied), and stem volume of the standard treatment (300 kg N ha-1) was 27% greater than the control treatment at age 18 years of age. Biosolids treatments have effectively transformed a low productivity forest site to a medium productivity site. Although this increased productivity has been accompanied by some negative influences on wood quality attributes with reduced wood stiffness, wood density, and larger branches, an economic analysis shows that the increased stem volume and greater average log diameter in the biosolids treatments outweighs these negative effects. The high and standard biosolids treatments are predicted to increase the net stumpage value of logs by 24% and 14% respectively at harvesting, providing a large positive impact on the forest owner’s economic return. PMID:23451262

  8. Plant and soil responses to biosolids application following forest fire.

    PubMed

    Meyer, V F; Redente, E F; Barbarick, K A; Brobst, R B; Paschke, M W; Miller, A L

    2004-01-01

    Soil stability and revegetation is a great concern following forest wildfires. Biosolids application might enhance revegetation efforts and enhance soil stability. In May 1997, we applied Metro Wastewater Reclamation District (Denver, CO, USA) composted biosolids at rates of 0, 5, 10, 20, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to improve soil C and N levels and help establish eight native, seeded grasses. The soils on the site belong to the Sphinx series (sandy-skeletal, mixed, frigid, shallow Typic Ustorthents). Vegetation and soils data were collected for four years following treatment. During the four years following treatment, total plant biomass ranged from approximately 50 to 230 g m(-2) and generally increased with increasing biosolids application. The percentage of bare ground ranged from 4 to 58% and generally decreased with increasing biosolids rate. Higher rates of biosolids application were associated with increased concentrations of N, P, and Zn in tissue of the dominant plant species, streambank wheatgrass [Elymus lanceolatus (Scribn. & J.G. Sm) Gould subsp. lanceolatus], relative to the unamended, unfertilized control. At two months following biosolids application (1997), total soil C and N at soil depths of 0 to 7.5, 7.5 to 15, and 15 to 30 cm showed significant (P < 0.05) linear increases (r2 > 0.88) as biosolids rate increased. The surface soil layer also showed this effect one year after application (1998). For Years 2 through 4 (1999-2001) following treatment, soil C and N levels declined but did not show consistent trends. The increase in productivity and cover resulting from the use of biosolids can aid in the rehabilitation of wildfire sites and reduce soil erosion in ecosystems similar to the Buffalo Creek area. PMID:15224923

  9. Biosolids applications affect runoff water quality following forest fire.

    PubMed

    Meyer, V F; Redente, E F; Barbarick, K A; Brobst, R

    2001-01-01

    Soil erosion and nutrient losses are great concerns following forest wildfires. Biosolids application might enhance revegetation efforts while reducing soil erodibility. Consequently, we applied Denver Metro Wastewater District composted biosolids at rates of 0, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to increase plant cover and growth. Soils were classified as Ustorthents, Ustochrepts, and Haploborols. Simulated rainfall was applied for 30 min at a rate of 100 mm h(-1) to 3- x 10-m paired plots. Biosolids application rates did not significantly affect mean total runoff (p < 0.05). Sediment concentrations were significantly greater (p < 0.05) from the control plots compared with the plots that had received the 80 Mg biosolids ha(-1) rate. Biosolids application rate had mixed effects on water-quality constituents; however, concentrations of all runoff constituents for all treatment rates were below levels recommended for drinking water standards, except Pb. Biosolids application to this site increased plant cover, which should provide erosion control. PMID:11577857

  10. Growth, Root Formation, and Nutrient Value of Triticale Plants Fertilized with Biosolids

    PubMed Central

    Rauw, Wendy Mercedes; Teglas, Michael Bela; Chandra, Sudeep; Forister, Matthew Lewis

    2012-01-01

    Biosolids are utilized as nutrient rich fertilizer. Little material is available on benefits to forage crops resulting from fertilization with biosolids. This paper aimed to compare the effects of fertilization with biosolids versus commercial nitrogen fertilizer on growth, root formation, and nutrient value of triticale plants in a greenhouse experiment. Per treatment, five pots were seeded with five triticale seeds each. Treatments included a nonfertilized control, fertilization with 100, 200, 300, 400, and 500 ml biosolids per pot, and fertilization with a commercial nitrogen fertilizer at the recommended application rate and at double that rate. Biomass production, root length, root diameter, nitrogen, phosphorus, and potassium concentration were analyzed at harvest. Fertilization with biosolids increased triticale production (P < 0.001); production was similar for the 100 to 400 mL treatments. Root length, nitrogen, and phosphorus concentration increased, and potassium concentration decreased linearly with application rate. At the recommended rate, biomass production was similar between fertilization with biosolids and commercial fertilizer. However, plants fertilized with commercial fertilizer had considerably longer roots (P < 0.001), higher nitrogen concentration (P < 0.05), and lower potassium concentration (P < 0.01) than those fertilized with biosolids. Our results indicate that at the recommended application rate, biomass production was similar between fertilization with biosolids and with commercial nitrogen fertilizer, indicating the value of biosolids fertilization as a potential alternative. PMID:22593686

  11. Effect of long-term application of biosolids on biological soil quality: C mineralization, and particulate and non-particulate soil organic C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of C mineralization and fractions in biosolids-amended soil can increase our knowledge on the impact of biosolids application on soil nutrient availability and C sequestration. Soil samples were collected in 2006 from 20 strip-mined fields at Fulton County, Illinois, which received biosol...

  12. Histopathological changes in the perivisceral fat body of Rhinocricus padbergi (Diplopoda, Spirobolida) triggered by biosolids.

    PubMed

    Francisco, Annelise; Christofoletti, Cintya Aparecida; Righetto Neto, Nilton; Fontanetti, Carmem Silvia

    2015-12-01

    Human activities generate a great amount of sewage daily, which is dumped into the sewer system. After sewage-treatment processes, sewage sludge is generated. Such byproduct can be treated by different methods; the result of treatment is a stabilized compost of reduced pathogenicity that has a similar inorganic chemical composition to the raw sewage sludge. After such pretreatment, sewage sludge is called a biosolids, and it can be used in agriculture. In this contest, the present study evaluated the effects of a sample of biosolids on the perivisceral fat body of a diplopod. These invertebrates are soil organisms that play an important role in the dynamics of terrestrial ecosystems, and as a consequence, they are in contact with xenobiotics present in this environmental compartment. Special emphasis is given on the interpretation of the effects of complex mixtures in target organs of diplopods. A semiquantitative analysis for the evaluation of histopathological changes in the perivisceral fat body was proposed. The sample-induced histopathological and ultrastructural changes in individuals exposed to it, and the severity of the effects was positively related to the exposure time, resulting in the deaths of exposed individuals after 90 days. Thus, the results indicate the need for caution in the use of biosolids as well as the need for improving waste management techniques, so they will produce environmentally innocuous final products. PMID:26396012

  13. Reclamation of acidic copper mine tailings using municipal biosolids

    SciTech Connect

    Rogers, M.T.; Thompson, T.L.; Bengson, S.A.

    1998-12-31

    Reclamation of copper mine tailings in a cost effective, successful, and sustainable manner is an ongoing area of evaluation in the arid southwest. A study was initiated in September, 1996 near Hayden, Arizona to evaluate the use of municipal biosolids for reclaiming acidic copper mine tailings (pH of 2.5 to 4.0). The main objectives of the study were to (1) define an appropriate level of biosolids application for optimum plant growth, and (2) evaluate the effects of green waste and lime amendments. The experiment was a randomized complete block design with four biosolid rates of 20, 70, 100 and 135 dry tons/acre, three amendment treatments (none, green waste, and green waste plus lime); with three replications. Non-replicated controls (no treatment, green waste only and lime only) were included for comparison. Shortly after biosolids incorporation to a depth of 10--12 inches, composite soil samples (0--12 inches) of each plot were taken. Biosolids incorporation increased the pH of the tailings (>5.75) and additional increases in pH were noted with lime application. In January 1997, the plots were seeded and sprinkler irrigation was commenced. A total of 4.47 inches of rainfall and 3.8 inches of irrigation were applied until harvest in May 1997. Data from the first growing season indicates optimum growth (>66 lbs/acre) at biosolids rates of 70--100 dry tons/acre. There was a significant positive effect on growth of green waste and lime amendments. Surface NO{sub 3}-N concentrations in biosolids amended plots were greatly reduced (from 23 to 6 mg/kg) by addition of green waste. There was no evidence for NO{sub 3}N leaching below 12 inches.

  14. Water treatment residuals and biosolids coapplications affect semiarid rangeland phosphorus cycling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land co-application of water treatment residuals (WTR) with biosolids has not been extensively researched, but the limited studies performed suggest that WTR sorb excess biosolids-borne P. To understand the long-term effects of a single co-application and the short-term impacts of a repeated co-app...

  15. Water treatment residuals and biosolids co-applications affect semi-arid rangeland phosphorus cycling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land co-application of water treatment residuals (WTR) with biosolids has not been extensively researched, but the limited studies performed suggest that WTR sorb excess biosolids-borne P. To understand the long-term effects of a single co-application and the short-term impacts of a repeated co-app...

  16. Infrequent Composted Biosolids Applications Affect Semi-arid Grassland Soils and Vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field trial evaluated a single and a repeated composted biosolids application in terms of long-term (13-14 years) and short-term (2-3 years) effects, respectively, on soil chemistry and plant community in a Colorado semi-arid grassland. Six composted biosolids rates (0, 2.5, 5, 10, 21, 30 Mg/ha) ...

  17. LIMITED PHYTO-AND BIO-AVAILABILITY PREVENT RISK FROM CADMIUM IN REGULATED BIOSOLIDS (ABSTRACT)

    EPA Science Inventory

    Biosolids are a complex mixture which usually contain 100-times more Zn than Cd, and both inorganic and organic Cd adsorbents. Experiments were conducted to test the effect of persistent inorganic adsorbents in biosolids on phytoavailability of soil Cd to lettuce, and the role of...

  18. LIMITED PHYTO- AND BIO-AVAILABILITY PREVENT RISK FROM CADMIUM IN REGULATED BIOSOLIDS

    EPA Science Inventory

    Biosolids are a complex mixture which usually contain 100-times more Zn than Cd, and both inorganic and organic Cd adsorbents. Experiments were conducted to test the effect of persistent inorganic adsorbents in biosolids on phytoavailability of soil Cd to lettuce, and the role of...

  19. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    respiration, compost, electrical conductivity, salinization, Bac-Trac References: Abdelbasset Lakhdar, Mokded Rabhi, Tahar Ghnaya, Francesco Montemurro, Naceur Jedidi , Chedly Abdelly. Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials 171 (2009) pp 29-37. M. Tejada, C. Garcia, J.L. Gonzalez , M.T. Hernandez . Use of organic amendment as a strategy for saline soil remediation:Influence on the physical, chemical and biological properties of soil. Soil Biology & Biochemistry 38 (2006) pp 1413-1421. I. Gomez; J.M. Disla Soriano; J. Navarro-Pedreño; F. García-Orenes; M.B. Almendro-Candel; M.M. Jordan. Quantification of soil respiration in different saline soil of Alicante (Spain). EGU General Assembly (2012). Viena. Ed. Geophysycal Research Abstracts. Vol 14 EGU2012-2399,(2012). (Acknowledgements: This work was supported by the Spanish MICINN. Project Ref.: CGL2009-11194)

  20. Transformations of nitrogen and carbon in entrenched biosolids at a reclaimed mineral sands mining site.

    PubMed

    Kostyanovsky, K I; Evanylo, G K; Lasley, K K; Shang, C; Sukkariyah, B F; Daniels, W L

    2011-01-01

    Biosolids deep-row incorporation (DRI) provides high levels of nutrients to the reclamation sites; however, additions of N in excess of the vegetation requirements can potentially impair water quality. The effects of anaerobically digested (AD) and lime stabilized (LS) DRI biosolids and inorganic N fertilizer were compared on C and N transformations and transport at a reclaimed mineral sands mining site. Biosolids were applied at 213 and 426 Mg AD biosolids ha(-1) and 328 and 656 Mg LS biosolids ha)(-1) (dry mass), and inorganic N fertilizer was applied at 0 (control) and 504 kg N ha-(-1) yr(-1). Zero tension lysimeters were installed to collect leachate for determination of vertical N transport, and the biosolids seams were analyzed for N and C transformations after 28 mo aging. The leachijng masses from the DRI biosolids treatments were 139 to 291 kg ha(-1) NO3-N, 61 to 243 kg ha(-1) NH4-N, and 61 to 269 kg ha(-1) organic N, while the fertilizer treatment did not differ from the control. Aged biosolids analysis showed that total N lost over the course of 2 yr was 15.2 Mg ha(-1) and 10.9 Mg ha(-1) for LS and AD biosolids, respectively, which was roughly 50% of the N applied. Organic C losses were 81 Mg ha(-1) and 33 Mg ha(-1) for LS and AD biosolids, respectively. Our results indicated that entrenchment of biosolids in coarse-textured media should not be used as a mined land reclamation technique because the anaerobic conditions required to limit mineralization and nitrification cannot be maintained in such permeable soils. PMID:21488494

  1. Comparison of simulated forest responses to biosolids application

    SciTech Connect

    Luxmoore, R.J.; Tharp, M.L.; Efroymson, R.A.

    1999-12-01

    Organic matter and N are added to humus pools of the LINKAGES simulator of forest growth and N cycling at a range of application rates to investigate long-term effects of biosolids (sewage sludge) on forest productivity. Two conifer plantations (Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii], loblolly pine [Pinus taeda L.]) and a northern hardwood forest located in contrasting climatic regions are investigated. Single applications of biosolids are given at 0.5, 10, 20, and 40 Mg/ha, and multiple applications are given on seven occasions at 3-yr intervals of rates of 5 and 10 Mg/ha. Highly significant increases in aboveground phytomass and net primary productivity of Douglas-fir plantations are obtained in a 100-yr simulation with increasing biosolids application rates. Results for loblolly pine from a 50-yr simulation produced about half the growth response of Douglas-fir. Long-term simulations of northern hardwoods showed modest growth responses and small increases in NPP with added biosolids. The phytomass of one overstory and three understory species in the hardwood forest changed in response to different biosolids applications and varying species sensitivity to N supply. Biosolids are a significant resource for enhancing forest productivity, particularly in conifer plantations. Estimates of N leaching losses from simulated forest sites combined with a literature review of leaching losses suggest that biosolids applications at 3-yr intervals with rates less than 8.5 Mg/ha (0.4 Mg N/ha) during active forest growth may pose little off-site contamination risk to ground water or surface waters.

  2. Public attitudes and risk perception toward land application of biosolids within the south-eastern United States.

    PubMed

    Robinson, Kevin G; Robinson, Carolyn H; Raup, Lauren A; Markum, Travis R

    2012-05-15

    A descriptive-correlational study of biosolids recycling was conducted in the south-eastern United States to assess current knowledge, attitudes and risk perceptions of participants in two communities that land apply biosolids as part of their waste management programs. One community, Amelia County VA, has been outspoken against biosolids recycling in the past, whereas the second community, Knoxville, TN region, has voiced few concerns about biosolids recycling. Additionally, gender differences within the entire study population were assessed. A 45-question telephone survey, utilizing a 4-point Likert scale, was developed and administered to 311 randomly selected adults in the two regions. Commonalities identified during the study revealed key risk perceptions by the public regarding biosolids regulations, treatment, and application. Given current perceptions and knowledge, respondents felt that the benefits derived from biosolids recycling do not offset the perceived health and safety risks. However, as distance between application and personal property increased, a decrease in opposition of biosolids reuse became evident for all respondents. Survey participants were dissatisfied with the level of stakeholder involvement in research and decision-making processes concerning biosolids. The outspoken Amelia County residents perceived greater health risks due to inadequate treatment of biosolids and odorous emissions during the application process than the less engaged Knox Metro respondents. Significant gender differences were observed with sampled females perceiving greater risks to health and safety from biosolids recycling than males. There was also indication that decisions and risks were not sufficiently communicated to the public, leading to respondents being inadequately informed about biosolids land application in both communities. Community-specific outreach programs must address these public risk perceptions and the differences in perception caused by

  3. Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field.

    PubMed

    Topp, Edward; Monteiro, Sara C; Beck, Andrew; Coelho, Bonnie Ball; Boxall, Alistair B A; Duenk, Peter W; Kleywegt, Sonya; Lapen, David R; Payne, Michael; Sabourin, Lyne; Li, Hongxia; Metcalfe, Chris D

    2008-06-15

    Municipal biosolids are a source of nutrients for crop production. Beneficial Management Practices (BMPs) can be used to minimize the risk of contamination of adjacent water resources with chemical or microbial agents that are of public or environmental health concern. In this field study, we applied biosolids slurry at a commercial rate using either subsurface injection or broadcast application followed by incorporation. Precipitation was simulated at 1, 3, 7, 22, 36 and 266 days post-application on 2 m(2) microplots to evaluate surface runoff of 9 model pharmaceuticals and personal care products (PPCPs), atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, ibuprofen, acetaminophen, sulfamethoxazole and triclosan. In runoff from the injected plots, concentrations of the model PPCPs were generally below the limits of quantitation. In contrast, in the broadcast application treatment, the concentrations of atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, sulfamethoxazole and triclosan on the day following application ranged from 70-1477 ng L(-1) in runoff and generally declined thereafter with first order kinetics. The total mass of PPCPs mobilized in surface runoff per m(2) of the field ranged from 0.63 microg for atenolol to 21.1 microg for ibuprofen. For ibuprofen and acetaminophen, concentrations in runoff first decreased and then increased, suggesting that these drugs were initially chemically or physically sequestered in the biosolids slurry, and subsequently released in the soil. Carbamazepine and triclosan were detected at low concentrations in a runoff event 266 days after broadcast application. Overall, this study showed that injection of biosolids slurry below the soil surface could effectively eliminate surface runoff of PPCPs. PMID:18377955

  4. Effects of direct land application of calcitic lime and lime- and cement kiln dust-sanitized biosolids on the chemical and spectroscopic characteristics of soil lipids

    SciTech Connect

    Dinel, H.; Schnitzer, M.; Pare, T.; Topp, E. ); Lemee, L.; Ambles, A. . Lab. de Chimie); Pelzer, N. )

    1999-05-01

    To determine the extent to which applications of calcitic lime and sanitized biosolids affect the quality of soil organic matter (SOM), lipids extracted from an unamended soil (CON) and from soils amended with calcitic lime (CAL), and lime (LSB)- and cement kiln dust (CDB)-sanitized biosolids were characterized by chemical analysis and Pyrolysis-Gas chromatography (Py-GC). From diethyl ether (DEE) and CHCl[sub 3] soluble lipids, and from weight ratios of the extracts, the organic matter in the soil amended with CDB-treated biosolids seemed to be more biodegraded and biochemically inert than the organic matter in soils that received LSB-treated biosolids and calcitic lime and that in the control soil.

  5. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    PubMed

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment. PMID:25327023

  6. The effect of thermal hydrolysis pretreatment on the anaerobic degradation of nonylphenol and short-chain nonylphenol ethoxylates in digested biosolids.

    PubMed

    McNamara, P J; Wilson, C A; Wogen, M T; Murthy, S N; Novak, J T; Novak, P J

    2012-06-01

    The presence of micropollutants can be a concern for land application of biosolids. Of particular interest are nonylphenol diethoxylate (NP(2)EO), nonylphenol monoethoxylate (NP(1)EO), and nonylphenol (NP), collectively referred to as NPE, which accumulate in anaerobically digested biosolids and are subject to regulation based on the environmental risks associated with them. Because biosolids are a valuable nutrient resource, it is essential that we understand how various treatment processes impact the fate of NPE in biosolids. Thermal hydrolysis (TH) coupled with mesophilic anaerobic digestion (MAD) is an advanced digestion process that destroys pathogens in biosolids and increases methane yields and volatile solids destruction. We investigated the impact of thermal hydrolysis pretreatment on the subsequent biodegradation of NPE in digested biosolids. Biosolids were treated with TH, anaerobic digestion, and aerobic digestion in laboratory-scale reactors, and NPE were analyzed in the influent and effluent of the digesters. NP(2)EO and NP(1)EO have been observed to degrade to the more estrogenic NP under anaerobic conditions; therefore, changes in the ratio of NP:NPE were of interest. The increase in NP:NPE following MAD was 56%; the average increase of this ratio in four sets of TH-MAD samples, however, was only 24.6 ± 3.1%. In addition, TH experiments performed in pure water verified that, during TH, the high temperature and pressure alone did not directly destroy NPE; TH experiments with NP added to sludge also showed that NP was not destroyed by the high temperature and pressure of TH when in a more complex sludge matrix. The post-aerobic digestion phases removed NPE, regardless of whether TH pretreatment occurred. This research indicates that changes in biosolids processing can have impacts beyond just gas production and solids destruction. PMID:22494493

  7. Perfluorinated Compounds In Lime-Treated Biosolids

    EPA Science Inventory

    Land application of wastewater treatment residuals, or biosolids, is a common practice in the United States, about 50% of all biosolids being applied to agricultural land as a soil amendment. Incidents have been reported in Germany and the United States where biosolids containin...

  8. A matrix approach for assessing biosolids stability

    SciTech Connect

    Switzenbaum, M.S.; Moss, L.H.; Epstein, E.; Pincince, A.B.; Donovan, J.F.

    1998-07-01

    Stability assessment of biosolids must be made on the basis of the stabilization process used and the intended use of the manufactured biosolids. In this manner, a matrix based on technology and use was developed as an approach for assessing biosolids stability. Specific tests were recommended as to the most useful methods of stability assessment for each of the stabilization technologies examined.

  9. SPECTROSCOPIC ANALYSIS OF METALS IN BIOSOLIDS

    EPA Science Inventory

    The results of decades of research illustrate that metals in biosolids-amended soils are retained at a higher rate than soils without biosolids-amendments indicating that either an individual or combination of constituents within biosolids is responsible for the elevated sorption...

  10. Survival of murine norovirus and hepatitis A virus in different types of manure and biosolids.

    PubMed

    Wei, Jie; Jin, Yan; Sims, Tom; Kniel, Kalmia E

    2010-08-01

    Noroviruses and hepatitis A virus (HAV) are common causes of foodborne disease. They are usually shed in feces and have been found in sewage water, biosolids, and animal manures. With the wide application of manure and biosolids on agricultural lands, there is an increasing interest in investigating virus survival in manure and biosolids. In this study, Murine norovirus-1 (MNV) and HAV were inoculated into different types of animal manure and three types of differently treated biosolids at 20 degrees C and 4 degrees C for up to 60 days. Both HAV and MNV viral genomes degraded immediately in high pH biosolids type 2 and 3 at time zero. For other types of manure and biosolids, HAV RNA was significantly reduced in biosolids type 1 and in liquid dairy manure (DM) after 60 days stored at 20 degrees C, but was stable in all types of manure and biosolids type 1 at 4 degrees C. MNV RNA was unstable in pelletized poultry litter and biosolids type 1 at 20 degrees C, and less stable in liquid DM at both temperatures. For MNV infectivity, there was no significant difference among pelletized poultry litter, alum-treated poultry litter, raw poultry litter, and swine manure at either 20 degrees C or 4 degrees C after 60 days of storage. However, HAV stored in swine manure and raw poultry litter had significantly higher infectivity levels than HAV stored in alum-treated poultry litter at both 20 degrees C and 4 degrees C. Overall, both viruses were inactivated rapidly in alkaline pH biosolids and unstable in liquid DM, but alum added in poultry litter had different effects on the two viruses: alum inactivated some HAV at both temperatures but had no effect on MNV. PMID:20455755

  11. Ecological impacts of long-term application of biosolids to a radiata pine plantation.

    PubMed

    Xue, Jianming; Kimberley, Mark O; Ross, Craig; Gielen, Gerty; Tremblay, Louis A; Champeau, Olivier; Horswell, Jacqui; Wang, Hailong

    2015-10-15

    Assessment of the ecological impact of applying biosolids is important for determining both the risks and benefits. This study investigated the impact on soil physical, chemical and biological properties, tree nutrition and growth of long-term biosolids applications to a radiata pine (Pinus radiata D. Don) plantation growing on a Sandy Raw Soil in New Zealand. Biosolids were applied to the trial site every 3 years from tree age 6 to 19 years at three application rates: 0 (Control), 300 (Standard) and 600 (High) kg nitrogen (N) ha(-1), equivalent to 0, 3 and 6 Mg ha(-1) of dry biosolids, respectively. Tree nutrition status and growth have been monitored annually. Soil samples were collected 13 years after the first biosolids application to assess the soil properties and functioning. Both the Standard and High biosolids treatments significantly increased soil (0-50 cm depth) total carbon (C), N, and phosphorus (P), Olsen P and cation exchange capacity (CEC), reduced soil pH, but had no significant effects on soil (0-20 cm depth) physical properties including bulk density, total porosity and unsaturated hydraulic conductivity. The High biosolids treatment also increased concentrations of soil total cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) at 25-50 cm depth, but these concentrations were still considered very low for a soil. Ecotoxicological assessment showed no significant adverse effects of biosolids application on either the reproduction of springtails (Folsomia candida) or substrate utilisation ability of the soil microbial community, indicating no negative ecological impact of bisolids-derived heavy metals or triclosan. This study demonstrated that repeated application of biosolids to a plantation forest on a poor sandy soil could significantly improve soil fertility, tree nutrition and pine productivity. However, the long-term fate of biosolids-derived N, P and litter-retained heavy metals needs to be further monitored in the receiving environment

  12. Phytoavailability of Cadmium in Long-Term Biosolids Amended Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agronomic use of biosolids has raised concern that plant availability of biosolids-Cd will increase with time following cessation of biosolids application. But it was demonstrated that long-term biosolids-amended soils have greater sorptive capacity for Cd than non-biosolids-amended soils. This stud...

  13. Using biosolids from agricultural processing as food for animals

    SciTech Connect

    Belyea, R.L.; Clevenger, T.E.; Van Dyne, D.L.; Eckhoff, S.E.; Wallig, M.A.; Tumbleson, M.E.

    1993-12-31

    A diverse inventory of secondary products arise from processing of agricultural commodities. Societal, economic and physical constraints will curtail traditional disposal methods and create a need for alternatives that conserve, recycle and capitalize on these underutilized resources. Economic viability of some processes or primary products may depend upon practical alternatives for disposing of secondary products. The broad nature of secondary products and the process from which they emanate along with the complex transformations needed for remediation will require the efforts of multidisciplinary teams of scientists to identify creative solutions. Most secondary products have significant nutritional value and could be fed to animals as a means of disposal. However, detailed chemical and biological characterization is needed to determine nutrient concentrations and to ensure safety and efficacy. Feeding studies will be necessary to demonstrate palatability and to determine effects upon animal health and performance. New bioprocessing techniques will be needed to remediate the attributes of some secondary products into more appropriate forms or qualities. The potential for using wash water biosolids as animal food was investigated. Wash water biosolids from a broad cross section of food processing plants were found to be free from pollutants and other harmful entities. Nutrient composition varied considerably within and among different types of food processing plants (i.e., milk vs poultry). However, within a particular plant, variation in mineral concentration of biosolids over several months was quite small. Wash water biosolids from a milk processing plant were found to be free of pollutants and to have nutritional value. Diets containing biosolids were palatable when fed to sheep, cows, turkeys, or swine. Safety and efficacy studies with sheep and swine indicated that feeding up to 20% biosolids did not adversely affect growth, reproduction or survival.

  14. The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils

    SciTech Connect

    Brown, S.L.; Chaney, R.L.; Angle, J.S.; Ryan, J.A.

    1998-09-01

    A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended plots managed at high and low pH. The experiment, established 13 to 15 yr prior to the present cropping, on a Christiana fine sandy loam soil used a variety of biosolids. Two of the biosolids had total Cd concentrations of 13.4 and 210 mg kg{sup {minus}1}. A Cd salt treatment, with Cd added to soil at a rate equivalent to the Cd added by the higher Cd biosolids applied at 100 Mg ha{sup {minus}1}, was also included. The lettuce (Lactuca sativa var. longifolia) cultivar (Paris Island Cos) used in the initial study was also used in the current study. Lettuce Cd was compared between treatments, and in relation to the soil Cd/soil organic C (OC) ratio. There has been no significant increase in plant Cd since the initial cropping. With 16% of the biosolids added OC remaining, lettuce grown on the soil amended with the more contaminated biosolids was not different than that of the initial cropping. Further, significantly less Cd was taken up by lettuce grown on biosolids-amended soil than lettuce grown on soil amended with equivalent rates of Cd salt. The Cd concentration in lettuce grown in the low Cd biosolids treatment was not different from the control. These results indicate that the potential hazards associated with food chain transfer of biosolids-applied Cd are substantially lower than equivalent Cd salt treatments, and that the hazards do not increase over time.

  15. Reducing Phosphorus Runoff from Biosolids with Water Treatment Residuals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large fraction of the biosolids produced in the U.S. are placed in landfills or incinerated to avoid potential water quality problems associated with non-point source phosphorus (P) runoff. The objective of this study was to determine the effect of various chemical amendments on P runoff from bi...

  16. Biosolids composting in Davenport, Iowa

    SciTech Connect

    Boyette, R.A.; Williams, T.; Plett, S.

    1996-09-01

    The City of Davenport, Iowa constructed an aerated static pile composting facility to process 28 dry tons per day of dewatered biosolids and 25,000 cubic yards per year of yard wastes. This is the first large totally enclosed aerated static pile biosolids composting facility to be built in several years in the US. Design of the facility was completed in March 1994, construction began in July 1994, with substantial completion of the facility in August 1995. This paper outlines the major operating systems and describes the major components of the facility. The facility processes all of the City`s anaerobically digested biosolids which is currently dewatered by belt filter presses to 20% solids. Yard wastes are used as the primary bulking agent supplemented by wood chips and shredded rubber tires to minimize O and M costs. A mechanized continuous feed mixing system consisting of hoppers, conveyors, and pugmill mixers is used to combine bulk agents with the dewatered biosolids to the desired ratio for composting. Composting and drying of these materials occurs in a totally enclosed pre-fabricated metal building for maximum environmental control and odor control. Multiple aeration stations provide both positive and negative aeration through pre-cast aeration trenches beneath compost piles.

  17. A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment.

    PubMed

    Rigby, Hannah; Clarke, Bradley O; Pritchard, Deborah L; Meehan, Barry; Beshah, Firew; Smith, Stephen R; Porter, Nichola A

    2016-01-15

    , compared to cooler temperate areas. It is also probably influenced by differences in upstream wastewater treatment processes that affect the balance of primary and secondary, biological sludges in the final combined sludge output from wastewater treatment, as well as the relative effectiveness of sludge stabilization treatments at specific sites. Better characterization of biosolids used in N release and mineralization investigations is therefore necessary to improve comparison of system conditions. Furthermore, the review suggested that some international fertilizer recommendations may underestimate mineralizable N in biosolids, and the N fertilizer value. Consequently, greater inputs of supplementary mineral fertilizer N may be supplied than are required for crop production, potentially increasing the risk of fertilizer N emissions to the environment. Thus greater economic and environmental savings in mineral N fertilizer application are potentially possible than are currently realized from biosolids recycling programmes. PMID:26476511

  18. Chemical, physical and microbial properties and microbial diversity in manufactured soils produced from co-composting green waste and biosolids.

    PubMed

    Belyaeva, O N; Haynes, R J; Sturm, E C

    2012-12-01

    The effects of adding biosolids to a green waste feedstock (100% green waste, 25% v/v biosolids or 50% biosolids) on the properties of composted products were investigated. Following initial composting, 20% soil or 20% fly ash/river sand mix was added to the composts as would be carried out commercially to produce manufactured soil. Temperatures during composting reached 50 °C, or above, for 23 days when biosolids were included as a composting feedstock but temperatures barely reached 40 °C when green waste alone was composted. Addition of biosolids to the feedstock increased total N, EC, extractable NH(4), NO(3) and P but lowered pH, macroporosity, water holding capacity, microbial biomass C and basal respiration in composts. Additions of soil or ash/sand to the composts greatly increased the available water holding capacity of the materials. Principal component analysis (PCA) of PCR-DGGE 16S rDNA amplicons separated bacterial communities according to addition of soil to the compost. For fungal ITS-RNA amplicons, PCA separated communities based on the addition of biosolids. Bacterial species richness and Shannon's diversity index were greatest for composts where soil had been added but for fungal communities these parameters were greatest in the treatments where 50% biosolids had been included. These results were interpreted in relation to soil having an inoculation effect and biosolids having an acidifying effect thereby favouring a fungal community. PMID:22770779

  19. Low Cost Remediation of Mining Sites with Biosolids

    NASA Astrophysics Data System (ADS)

    Daniels, Walter; Evanylo, Gregory; Stuczynski, Tomasz

    2010-05-01

    This paper will present collective results of 25 years of research by the authors into the use of municipal biosolids (sewage sludge) and other residuals to reclaim sites disturbed by a range of mining and construction activities. Loading rate experiments and demonstrations have been conducted on areas drastically disturbed by coal mining, sand mining, heavy mineral mining, urbanization, airport construction and heavy metal processing. At all sites, the post-mining soils were devoid of organic matter, very low in nutrients and frequently quite acidic. At all sites, addition of biosolids at higher than agronomic rates resulted in complete stabilization of the resultant mine soils and vigorous stable vegetation that persisted for > 5 years and has allowed enhanced invasion of native herbaceous species. Application of higher rates is not compatible with establishment of certain native tree species (e.g. Pinus sp.), however, due to adverse effects of soluble salts, nutrient enrichment and enhanced competition by grasses. An underlying goal of this program has been to develop approaches that use higher than agronomic rates of biosolids while simultaneously minimizing losses of N and P to local ground- and surface-waters. In the early 1980's, working on USA coal mining spoils, we determined that that approximately 100 Mg/ha of secondary cake biosolids was optimal for revegetation with herbaceous species, but water quality monitoring was not a concern at that time. This finding raised concerns, however, that the large amounts of total N applied (> 2500 kg/ha) would lead to nitrate-N contamination of local waters. Subsequent work in the early 1990's indicated that similar rates of biosolids could be mixed with woodchips (high palatable C source) and land-applied to large (> 100 ha) coal mining sites with no losses of nitrate-N to surface or ground-water due to microbial immobilization of the applied N. Follow-up work at three sand mining (sand & gravel and mineral sands

  20. Path Analyses of Grain P, Zn, Cu, Fe, and Ni in a Biosolids-Amended Dryland Wheat Agroecosystem.

    PubMed

    Barbarick, Kenneth A; Ippolito, James A; McDaniel, Jacob P

    2016-07-01

    Land application of biosolids is an effective means of recycling plant nutrients and is the primary method of biosolids reuse endorsed by the USEPA. One issue concerning biosolids application is the extent of the contribution of biosolids-borne plant nutrients to the overall crop concentration and uptake or removal of these nutrients. We studied the effects of biosolids application on wheat ( L.) grain P, Zn, Cu, Fe, and Ni concentrations and uptake (removal) at two dryland agroecosystem sites from 1993 to 2014. We hypothesized that biosolids would have the greatest impact on wheat grain and uptake compared with ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA)-extractable nutrient levels, soil pH, or soil organic C concentrations. We used path analyses in combination with multiple linear regression to differentiate the direct, indirect, and total effects of cumulative biosolids applications, soil AB-DTPA, soil pH, and organic C. Biosolids rates, applied biennially from 1993 to 2014 at the beginning of a wheat-fallow rotation, were 0, 2.24, 4.48, 6.72, 8.96, and 11.2 Mg ha. None of the parameters had significant direct, indirect, or total effects on grain concentrations. Biosolids applications had the greatest positive direct impact compared with AB-DTPA levels, soil pH, or soil organic C on P, Zn, Fe, and Ni uptake (removal), whereas AB-DTPA had the greatest positive direct impact on Cu uptake. Soil AB-DTPA, pH, and organic C directly affected some grain concentrations and cumulative uptake, but no consistent trends were noted. This pathway approach allowed differentiation between causation and simple correlation for the effects of cumulative biosolids applications on wheat P, Zn, Cu, Fe, and Ni cumulative uptake but did not provide these same results for grain concentrations. PMID:27380090

  1. Characterization of the biosolids composting process by hyperspectral analysis.

    PubMed

    Ilani, Talli; Herrmann, Ittai; Karnieli, Arnon; Arye, Gilboa

    2016-02-01

    Composted biosolids are widely used as a soil supplement to improve soil quality. However, the application of immature or unstable compost can cause the opposite effect. To date, compost maturation determination is time consuming and cannot be done at the composting site. Hyperspectral spectroscopy was suggested as a simple tool for assessing compost maturity and quality. Nevertheless, there is still a gap in knowledge regarding several compost maturation characteristics, such as dissolved organic carbon, NO3, and NH4 contents. In addition, this approach has not yet been tested on a sample at its natural water content. Therefore, in the current study, hyperspectral analysis was employed in order to characterize the biosolids composting process as a function of composting time. This goal was achieved by correlating the reflectance spectra in the range of 400-2400nm, using the partial least squares-regression (PLS-R) model, with the chemical properties of wet and oven-dried biosolid samples. The results showed that the proposed method can be used as a reliable means to evaluate compost maturity and stability. Specifically, the PLS-R model was found to be an adequate tool to evaluate the biosolids' total carbon and dissolved organic carbon, total nitrogen and dissolved nitrogen, and nitrate content, as well as the absorbance ratio of 254/365nm (E2/E3) and C/N ratios in the dry and wet samples. It failed, however, to predict the ammonium content in the dry samples since the ammonium evaporated during the drying process. It was found that in contrast to what is commonly assumed, the spectral analysis of the wet samples can also be successfully used to build a model for predicting the biosolids' compost maturity. PMID:26680688

  2. Evaluation of a biosolids minimization system

    SciTech Connect

    Bizier, P.A.

    1999-07-01

    The Micronair{trademark} residuals management system has been described by its manufacturer as a zero biosolids system. The system consists of three main parts--RAS screening, inerts removal, and an extremely fine bubble aeration system for the digester. The system's design assumes that trash and other non-biodegradable materials make up the bulk of residuals which would normally be digested. If these materials are removed, then the remaining biological material is assumed to biodegrade to either inerts or dissolved materials. This paper presents additional background on the design and operation of the residuals handling system. In addition, actual data from the facility detailing the operation of the residuals handling system. In addition, actual data from the facility detailing the operation of the Micronair{trademark} system since its initial start-up is provided. Finally, the benefits and drawbacks of the existing system are discussed and points for consideration in future installations identified.

  3. Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids.

    PubMed

    Clarke, Bradley O; Smith, Stephen R

    2011-01-01

    A broad spectrum of organic chemicals is essential to modern society. Once discharged from industrial, domestic and urban sources into the urban wastewater collection system they may transfer to the residual solids during wastewater treatment and assessment of their significance and implications for beneficial recycling of the treated sewage sludge biosolids is required. Research on organic contaminants (OCs) in biosolids has been undertaken for over thirty years and the increasing body of evidence demonstrates that the majority of compounds studied do not place human health at risk when biosolids are recycled to farmland. However, there are 143,000 chemicals registered in the European Union for industrial use and all could be potentially found in biosolids. Therefore, a literature review of 'emerging' OCs in biosolids has been conducted for a selection of chemicals of potential concern for land application based upon human toxicity, evidence of adverse effects on the environment and endocrine disruption. To identify monitoring and research priorities the selected chemicals were ranked using an assessment matrix approach. Compounds were evaluated based upon environmental persistence, human toxicity, evidence of bioaccumulation in humans and the environment, evidence of ecotoxicity and the number and quality of studies focussed on the contaminant internationally. The identified chemicals of concern were ranked in decreasing order of priority: perfluorinated chemicals (PFOS, PFOA); polychlorinated alkanes (PCAs), polychlorinated naphthalenes (PCNs); organotins (OTs), polybrominated diphenyl ethers (PBDEs), triclosan (TCS), triclocarban (TCC); benzothiazoles; antibiotics and pharmaceuticals; synthetic musks; bisphenol A, quaternary ammonium compounds (QACs), steroids; phthalate acid esters (PAEs) and polydimethylsiloxanes (PDMSs). A number of issues were identified and recommendations for the prioritisation of further research and monitoring of 'emerging' OCs for the

  4. Recycling biosolids and lake-dredged materials to pasture-based animal agriculture: Alternative nutrient sources for forage productivity and sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic sewage sludge or biosolids and lake-dredged materials are examples of materials that can be used to cut fertilizer costs in pasture-based animal agriculture. Sustainable biosolids and lake-dredged materials management is based upon controlling and influencing the quantity, quality and chara...

  5. Phosphorus and cadmium availability in soil fertilized with biosolids and ashes.

    PubMed

    Kumpiene, Jurate; Brännvall, Evelina; Wolters, Martin; Skoglund, Nils; Čirba, Stasys; Aksamitauskas, Vladislovas Česlovas

    2016-05-01

    The recycling of hygienized municipal sewage sludge (biosolids) to soil as the source of phosphorus (P) is generally encouraged. The use of biosolids, however, has some concerns, such as the presence of elevated concentrations of potentially toxic trace elements, and the possible presence of pathogens, hormones and antibiotics. Organic substances are destroyed during combustion whereas trace elements could partly be separated from P in different ash fractions. Biomass combustion waste (ash) can instead be considered as an alternative P source. This study evaluates and compares the impact of biosolids and their combustion residues (ashes), when used as fertilizers, on P and Cd solubility in soil, plant growth and plant uptake of these elements. Biosolids were also amended with K and Ca to improve the composition and properties of P in ashes, and incinerated at either 800 °C or 950 °C. Combustion of biosolids improved the Cd/P ratio in ashes by 2-5 times, compared with the initial biosolids. The low Cd content in ashes (4-9 mg Cd (kg P)(-1)) makes this material a particularly attractive alternative to mineral fertilizers. Significantly higher pore water P (as well as total N) was measured in soils containing biosolids, but plants produced a higher biomass in soil fertilized with ashes. The K and Ca amendments prior to biosolids combustion generally decreased the total Cd in ash, but had little effect on P and Cd uptake and biomass growth. Similarly, the combustion temperature had negligible effect on these factors as well. PMID:26933903

  6. Vegetation success, seepage, and erosion on tailing sites reclaimed with cattle and biosolids

    SciTech Connect

    Vinson, J.; Jones, B.; Milczarek, M.; Hammermeister, D.; Word, J.

    1999-07-01

    Reclamation field studies were designed at the Phelps Dodge Morenci Mine in Arizona to evaluate the benefits of biosolids, cattle impact, and other treatment variables on soil-capped tailings. First-year monitoring has provided preliminary data about soil chemical and physical parameters, soil matrix potential profiles, erosion, and vegetation measurements of ground cover, biomass production and frequency. Plots were first seeded in January 1998 with a cover crop of oats or barley. Plots were seeded again in August 1998 with native and native plus non-native plant species. Early productivity from the second seeding was inversely related to seedling density. Plots capped with unamended Gila conglomerate (Gila) materials contained meager plant nutrient levels and produced numerous small seedlings that were poorly rooted and had little standing biomass. Vegetation on the cattle and biosolids treatments was vigorous and productive but at a much lower density than unamended Gila plots. Cattle treatment added little plant-nutrient value to the Gila cap compared to biosolids amendment. However, high rates of biosolids brought excessive salinity. Straw from the cattle treatment provided an effective mulch to improve soil moisture storage but increased the potential for deep seepage. Unamended Gila and biosolids plots had intermediate moisture storage and a modest potential for seepage compared to bare tailings. Mulch cover plus a lower rate of biosolids on Gila is seen as a promising, cost-effective amendment combination for future evaluation.

  7. Nitrogen loss during solar drying of biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solar drying has been used extensively to dewater biosolids for ease of transportation and to a lesser degree to reduce pathogens prior to land application. The nitrogen in biosolids makes it a relatively inexpensive but valuable source of fertilizer. In this study, nitrogen loss from tilled and unt...

  8. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids

    SciTech Connect

    Basta, N.T.; Sloan, J.J.

    1999-03-01

    New federal regulations may increase application of exceptional quality (EQ) biosolids to acidic soils, and information on the effect of this practice on bioavailability of heavy metal is limited. The objective of this study was to compare bioavailability of heavy metal in soil treated with nonalkaline or alkaline EQ biosolids with limestone-treated soils. Three acidic soils (pH 3.7--4.3) were treated with three amounts of lime-stabilized biosolids (LS), anaerobic-digested biosolids (AN), or agricultural limestone (L), and incubated at 25 C. Soil solution Cd, Zn, and other chemical constituents were measured at 1, 30, 90, and 180 d incubation. Soil solution Cd and Zn were AN > LS {ge} L, C. Soil solution Cd and Zn increased with AN applied but decreased wit h LS applied. The high application of LS had soil solution Zn dramatically decreased at soil pH > 5.5 and >5.1, respectively. Soil solution Cd and Zn increases were AN > LS with incubation time. Biosolids treatments increased heavy metal in Ca(NO{sub 3}){sub 2} and NaOAc fractions. Except for Cd, most metal from biosolids were in EDTA and HNO{sub 3} fractions. Heavy metal bioavailability, measured using lettuce (Latuca sativa L.), was AN > LS {ge} L, C. Although state regulations prohibiting application of nonalkaline EQ biosolids to acidic soil is a prudent practice, application of EQ alkaline biosolids that achieves soil pH > 5 minimizes risk from soil solution Cd and Zn and plant uptake of heavy metal.

  9. Behaviour of fullerenes (C60) in the terrestrial environment: potential release from biosolids-amended soils.

    PubMed

    Navarro, Divina A; Kookana, Rai S; Kirby, Jason K; Martin, Sheridan M; Shareef, Ali; Du, Jun; McLaughlin, Mike J

    2013-11-15

    Owing of their wide-range of commercial applications, fullerene (C60) nanoparticles, are likely to reach environments through the application of treated sludge (biosolids) from wastewater treatment plants to soils. We examined the release behaviour of C60 from contaminated biosolids added to soils with varying physicochemical characteristics. Incubation studies were carried out in the dark for up to 24 weeks, by adding biosolids spiked (1.5mg/kg) with three forms of C60 (suspended in water, in humic acid, and precipitated/particulate) to six contrasting soils. Leaching of different biosolids+soil systems showed that only small fractions of C60 (<5% of applied amount) were released, depending on incubation time and soil properties (particularly dissolved organic carbon content). Release of C60 from unamended soils was greater (at least twice as much) than from biosolids-amended soils. The form of C60 used to spike the biosolids had no significant effect on the release of C60 from the different systems. Contact time of C60 in these systems only slightly increased the apparent release up to 8 weeks, followed by a decrease to 24 weeks. Mass balance analysis at the completion of the experiment revealed that 20-60% of the initial C60 applied could not be accounted for in these systems; the reasons for this are discussed. PMID:24076573

  10. Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium.

    PubMed

    Wong, Jonathan W C; Wong, Winnie W Y; Wei, Zhenggui; Jagadeesan, Hema

    2004-05-25

    A greenhouse experiment was conducted to investigate the growth of Brassica juncea and Cd phytoextraction in a mimicked Cd contaminated acidic loamy soil amended with alkaline biosolids, prepared from sewage sludge and coal fly ash, in the presence and absence of EDTA at 2 mmol kg(-1). The acidic loamy soil was spiked with 0, 5, 20, 50 and 100 mg Cd kg(-1) in the form of CdCO(3) and then amended with 4% alkaline biosolids (w/w). Alkaline biosolids and 0.12% CaCO(3) amendments resulted in a higher biomass than unamended soil spiked with 20 mg kg(-1) Cd where plants did not survive and of the two amendments, alkaline biosolids amendment had higher plant dry weight yield and phytoextraction of Cd. Adding 2 mmol kg(-1) EDTA to alkaline biosolids amended soil significantly increased the solubility of Cd ions by 9- to 29-fold, but plant Cd accumulation decreased by a factor of 24-48%. The results indicate that alkaline biosolids amendment is an effective approach for assisting growth of B. juncea and phytoextraction of Cd from the contaminated acidic loamy soil, but further application of chelating agents did not enhance the phytoextraction efficiency of Cd. PMID:15081709

  11. Pyrolysis of wastewater biosolids significantly reduces estrogenicity.

    PubMed

    Hoffman, T C; Zitomer, D H; McNamara, P J

    2016-11-01

    Most wastewater treatment processes are not specifically designed to remove micropollutants. Many micropollutants are hydrophobic so they remain in the biosolids and are discharged to the environment through land-application of biosolids. Micropollutants encompass a broad range of organic chemicals, including estrogenic compounds (natural and synthetic) that reside in the environment, a.k.a. environmental estrogens. Public concern over land application of biosolids stemming from the occurrence of micropollutants hampers the value of biosolids which are important to wastewater treatment plants as a valuable by-product. This research evaluated pyrolysis, the partial decomposition of organic material in an oxygen-deprived system under high temperatures, as a biosolids treatment process that could remove estrogenic compounds from solids while producing a less hormonally active biochar for soil amendment. The estrogenicity, measured in estradiol equivalents (EEQ) by the yeast estrogen screen (YES) assay, of pyrolyzed biosolids was compared to primary and anaerobically digested biosolids. The estrogenic responses from primary solids and anaerobically digested solids were not statistically significantly different, but pyrolysis of anaerobically digested solids resulted in a significant reduction in EEQ; increasing pyrolysis temperature from 100°C to 500°C increased the removal of EEQ with greater than 95% removal occurring at or above 400°C. This research demonstrates that biosolids treatment with pyrolysis would substantially decrease (removal>95%) the estrogens associated with this biosolids product. Thus, pyrolysis of biosolids can be used to produce a valuable soil amendment product, biochar, that minimizes discharge of estrogens to the environment. PMID:27344259

  12. Biosolid stockpiles are a significant point source for greenhouse gas emissions.

    PubMed

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2014-10-01

    CH4 production probably because of aerobic stockpile conditions or CH4 oxidation in the outer stockpile layers. Although the GHG emission rate decreased with biosolid age, managers of biosolid stockpiles should assess alternate storage or uses for biosolids to avoid nutrient losses and GHG emissions. PMID:24835360

  13. Phosphorus availability for beneficial use in biosolids products.

    PubMed

    Hogan, F; McHugh, M; Morton, S

    2001-11-01

    It has become necessary to identify accurately the availability of phosphorus in biosolids products applied to land. The fertiliser value of these products must be quantified not only to satisfy the customer but also to ensure the best use of phosphorus when considering the need to avoid excess concentrations in the wider environment, With the advent of chemical phosphorus removal at more wastewater treatment works, the impact of iron and phosphate availability is particularly important. Existing research has indicated that there is a correlation between phosphate availability, and factors such as biosolids pH and iron concentration. However, it has not yet been possible to draw any firm conclusions, which can be used as a tool to manage the availability of phosphate in practice. Through a joint research programme for Anglian Water, involving literature investigation, laboratory tests on biosolid/soil interactions, and benchmarking phosphate availability over time, the study uses the best available input and output data to indicate the parts of the land bank most at risk from over-enrichment. PMID:11804356

  14. Improvements in biosolids quality resulting from the Clean Water Act.

    PubMed

    Hundal, Lakhwinder S; Kumar, Kuldip; Cox, Albert; Zhang, Heng; Granato, Thomas

    2014-02-01

    Promulgation of the Clean Water Act (CWA) authorized the United States Environmental Protection Agency (U.S. EPA) to regulate quality standards for surface waters and establish regulations limiting the amounts and types of pollutants entering the nation's waters. U.S. EPA imposed national pretreatment standards on industrial wastes discharged to the collection systems of publicly owned treatment works (POTWs) and promulgated General Pretreatment Regulations in 1978. This study analyzed trace metals data from the National Sewage Sludge Surveys conducted by U.S. EPA and the American Metropolitan Sewage Agencies (AMSA) to evaluate the effect of implementation of the national industrial pretreatment standards on concentrations of trace metals in sludges generated by POTWs in the United States. The data showed that implementation of pretreatment programs has been highly effective in reducing the amount of pollutants that enter POTWs and has resulted in a substantial reduction in the levels of trace metals in the municipal sludges. Concentrations of chromium, lead, and nickel in sludge declined by 78, 73, and 63%, respectively, within a year after promulgation of General Pretreatment Regulations. Resulting from these measures, metal concentrations in the sludges generated by a majority of POTWs in the United States are sufficiently low that the sludges can be classified as biosolids and also meet the U.S. EPA's exceptional quality criteria for trace metals in biosolids. This improvement gives POTWs the option to use their biosolids beneficially through land application. PMID:24645543

  15. Potential for enhanced phytoremediation of landfills using biosolids--a review.

    PubMed

    Kim, Kwon-Rae; Owens, Gary

    2010-01-01

    Despite the use of recyclable materials increasing worldwide, waste disposal to landfill remains the most common method of waste management because it is simple and relatively inexpensive. Although landfill disposal is an effective waste management system, if not managed correctly, a number of potential detrimental environmental impacts have been identified including soil and ground water contamination, leachate generation, and gas emissions. In particular, improper post-closure treatment of landfills or deterioration of the conventional clay landfill capping were shown to result in land degradation which required remediation to secure contaminants within the landfill site. Phytoremediation is an attractive technology for landfill remediation, as it can stabilize soil and simultaneously remediate landfill leachate. In addition, landfill phytoremediation systems can potentially be combined with landfill covers (Phytocapping) for hydrological control of infiltrated rainfall. However, for the successful application of any phytoremediation system, the effective establishment of appropriate, desired vegetation is critical. This is because the typically harsh and sterile nature of landfill capping soil limits the sustainable establishment of vegetation. Therefore, the physicochemical properties of landfill capping soils often need to be improved by incorporating soil amendments. Biosolids are a common soil amendment and will often meet these demanding conditions because they contain a variety of plant nutrients such as nitrogen, phosphate, potassium, as well as a large proportion of organic matter. Such amendment will also ameliorate the physical properties of the capping soils by increasing porosity, moisture content, and soil aggregation. Contaminants which potentially originate from biosolids will also be remediated by activities congruent with the establishment of plants and bacteria. PMID:19939550

  16. Effects of sludge retention time on oxic-settling-anoxic process performance: Biosolids reduction and dewatering properties.

    PubMed

    Semblante, Galilee U; Hai, Faisal I; Bustamante, Heriberto; Price, William E; Nghiem, Long D

    2016-10-01

    In this study, the effect of sludge retention time (SRT) on oxic-settling-anoxic (OSA) process was determined using a sequencing batch reactor (SBR) attached to external aerobic/anoxic reactors. The SRT of the external reactors was varied from 10 to 40d. Increasing SRT from 10 to 20d enhanced volatile solids destruction in the external anoxic reactor as evidenced by the release of nutrients, however, increasing the SRT to 40d did not enhance volatile solids destruction further. Relatively short SRT (10-20d) favoured the conversion of destroyed solids into inert products. The application of an intermediate SRT (20d) of the external reactor showed the highest sludge reduction performance (>35%). Moreover, at the optimum SRT, OSA improved sludge dewaterability as demonstrated by lower capillary suction time and higher dewatered cake solids content. PMID:27474952

  17. MICROORGANISMS IN BIOSOLIDS: ANALYTICAL METHODS DEVELOPMENT, STANDARDIZATION, AND VALIDATION

    EPA Science Inventory

    The objective of this presentation is to discuss pathogens of concern in biosolids, the analytical techniques used to evaluate microorganisms in biosolids, and to discuss standardization and validation of analytical protocols for microbes within such a complex matrix. Implicatio...

  18. Evaluation Of Odors Associated With Land Application Of Biosolids

    EPA Science Inventory

    An odor study was performed at a biosolids application demonstration site using several different gas collection devices and analytical methods to determine changes in air concentration of several organic and inorganic compounds associated with biosolids application over various ...

  19. STANDARDIZATION AND VALIDATION OF MICROBIOLOGICAL METHODS FOR EXAMINATION OF BIOSOLIDS

    EPA Science Inventory

    The objective of this presentation is to discuss pathogens of concern in biosolids, the analytical techniques used to evaluate microorganisms in biosolids, and to discuss standardization and validation of analytical protocols for microbes within a complex matrix. Implications of ...

  20. SAMPLE COLLECTION AND HANDLING FOR MICROBIOLOGICAL EXAMINATION OF BIOSOLIDS

    EPA Science Inventory

    The objective of this presentation is to discuss sample collection and handling methods currently in use for detection and enumeration of microorganisms in biosolids and municipal wastewater sludges. Untreated sludges and biosolids are rarely homogeneous and present a challenge ...

  1. THE PHYTOAVAILABILITY OF CADMIUM TO LETTUCE IN LONG-TERM BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended field plots managed at high and low pH. The experiment, established 13-15 yr prior to the present cropping, on a Christiana fine sandy loam soil (a clayey, kaolinitic, mesic Typic Pa...

  2. Toxicity and bioaccumulation of biosolids-borne triclosan in food crops.

    PubMed

    Pannu, Manmeet W; Toor, Gurpal S; O'Connor, George A; Wilson, Patrick C

    2012-09-01

    Triclosan (TCS) is an antimicrobial compound commonly found in biosolids. Thus, plants grown in biosolids-amended soil may be exposed to TCS. We evaluated the plant toxicity and accumulation potential of biosolids-borne TCS in two vegetables (lettuce and radish) and a pasture grass (bahia grass). Vegetables were grown in growth chambers and grass in a greenhouse. Biosolids-amended soil had TCS concentrations of 0.99, 5.9, and 11 mg/kg amended soil. These TCS concentrations represent typical biosolids containing concentrations of 16 mg TCS/kg applied at agronomic rates for 6 to 70 consecutive years, assuming no TCS loss. Plant yields (dry wt) were not reduced at any TCS concentration and the no observed effect concentration was 11 mg TCS/kg soil for all plants. Significantly greater TCS accumulated in the below-ground biomass than in the above-ground biomass. The average bioaccumulation factors (BAFs) were 0.43 ± 0.38 in radish root, 0.04 ± 0.04 in lettuce leaves, 0.004 ± 0.002 in radish leaves, and <0.001 in bahia grass. Soybean (grain) and corn (leaves) grown in our previous field study where soil TCS concentrations were lower (0.04-0.1 mg/kg) had BAF values of 0.06 to 0.16. Based on the data, we suggest a conservative first approximate BAF value of 0.4 for risk assessment in plants. PMID:22761010

  3. Predicting plant available nitrogen in land-applied biosolids

    SciTech Connect

    Gilmour, J.T.; Skinner, V.

    1999-08-01

    The rate at which biosolids (municipal sewage sludge) may be applied to land is dependent on factors including concentrations of metals, pathogens, toxic organic compounds, and nutrients. Where other properties are not limiting, land application rates are often based on matching crop N needs with the plant available N (PAN). The objectives of this study were to quantify biosolids PAN under field conditions and to propose methods including computer simulation to estimate biosolids PAN in a land application program. Six biosolids were evaluated over a 2-yr period. Laboratory incubations were used to obtain decomposition kinetics. Field studies provided a relationship between inorganic fertilizer N rate and sorghum sudangrass [Sorghum bicolor (L.) Moench] tissue N concentration, which was used to determine biosolids PAN in a Captina silt loam soil. Biosolids PAN released during the field experiment was linearly related to biosolids C/N ratio, organic N, or total N. Computer model predictions of PAN in the field were also linearly related to field estimates of biosolids PAN. Decay series obtained using the computer model, average biosolids decomposition kinetics, and average application site weather were very similar to decay series obtained using the computer model, actual weather, and kinetic data. Either decay series and routine analytical data for biosolids are proposed to estimate PAN for a given situation. Use of the computer model and weather data makes the approach site-specific, while analytical data for a specific biosolids makes the approach biosolids-specific.

  4. Fate of triclosan and methyltriclosan in soil from biosolids application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids contain synthetic chemicals that have the potential to alter soil microbial communities and disrupt endocrine functions if they move offsite. In this study, the persistence of triclosan (TCS), an antibacterial compound normally found in biosolids and in soils after biosolids applications ...

  5. EVALUATION OF BACTERIOLOGICAL INDICATORS OF DISINFECTION FOR ALKALINE TREATED BIOSOLIDS

    EPA Science Inventory

    In the United States, treated municipal sludge, also known as biosolids, may be land applied with certain site restrictions. According to U.S. regulations a Class B biosolid is any biosolid that following appropriate treatment, meets the criterion of 2 million or less fecal coli...

  6. A STUDY OF LAND APPLICATION OF ANAEROBICALLY DIGESTED BIOSOLIDS

    EPA Science Inventory

    A field-scale research project was conducted in 2004-2005 to evaluate land application of anaerobically digested biosolids at agronomic levels. Biosolids had not been applied to this land previously. For this study, biosolids wee applied in a 100-m diameter circle by a side dis...

  7. Fate of triclosan and methyltriclosan in soil from biosolids application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids contain synthetic chemicals that have the potential to alter soil microbial communities and disrupt endocrine functions if they move offsite. The persistence of triclosan (TCS), an antibacterial compound normally found in biosolids and in soils after biosolids applications was evaluated. ...

  8. ADSORPTION OF CADMIUM ON BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    A considerable controversy exists over the biosolid phase (organic or inorganic) responsible for the reduction in phytoavailable Cd in soils amended with biosolids as compared to soils amended with inorganic salts. To test the importance of these two phases, 2 biosolids, 15 bioso...

  9. Phytoextraction of Ni and Cd from Biosolids-Contaminated Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Before regulations for utilization of biosolids on land were developed, some biosolids had been applied for many years, and some of those contained levels of contaminants which are now recognized as unacceptable for general use cropland. One such site in Fulton Co. IL, involved a biosolid which con...

  10. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    PubMed

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  11. Earthworm bioassays and seedling emergence for monitoring toxicity, aging and bioaccumulation of anthropogenic waste indicator compounds in biosolids-amended soil

    USGS Publications Warehouse

    Kinney, Chad A.; Campbell, Bryan R.; Thompson, Regina; Furlong, Edward T.; Kolpin, Dana W.; Burkhardt, Mark R.; Zaugg, Steven D.; Werner, Stephen L.; Hay, Anthony G.

    2012-01-01

    Land application of biosolids (treated sewage sludge) can be an important route for introducing xenobiotic compounds into terrestrial environments. There is a paucity of available information on the effects of biosolids amendment on terrestrial organisms. In this study, the influence of biosolids and biosolids aging on earthworm (Eisenia fetida) reproduction and survival and lettuce (Lactuca sativa) seedling emergence was investigated. Earthworms were exposed to soils amended with varying quantities of biosolids (0, 1, 2, 3, or 4% dry mass). To investigate the influence of biosolids aging, the biosolids used in the study were aged for differing lengths of time (2 or 8 weeks) prior to exposure. All of the adult earthworms survived in the biosolids–amended soils at all concentrations that were aged for 2 weeks; however, only 20% of the adults survived in the soil amended with the highest concentration of biosolids and aged for 8 weeks. Reproduction as measured by mean number of juveniles and unhatched cocoons produced per treatment correlated inversely with biosolids concentration, although the effects were generally more pronounced in the 8-week aged biosolids–soil samples. Latent seedling emergence and reduced seedling fitness correlated inversely with biosolids concentration, but these effects were tempered in the 8-week aged versus the 2-week aged soil–biosolids mixtures. Anthropogenic waste indicator compounds (AWIs) were measured in the biosolids, biosolids–soil mixtures, and earthworm samples. Where possible, bioaccumulation factors (BAFs) were calculated or estimated. A wide variety of AWIs were detected in the biosolids (51 AWIs) and earthworm samples (≤ 19 AWI). The earthworms exposed to the 8-week aged biosolids–soil mixtures tended to accumulate greater quantities of AWIs compared to the 2-week aged mixture, suggesting that the bioavailability of some AWIs was enhanced with aging. The BAFs for a given AWI varied with treatment. Notably large

  12. Analytical Results for Municipal Biosolids Samples from a Monitoring Program near Deer Trail, Colorado (U.S.A.), 2007

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.

    2008-01-01

    Since late 1993, the Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colorado (U.S.A.). In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring ground water at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program recently has been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock ground water, and streambed sediment. Streams at the site are dry most of the year, so samples of streambed sediment deposited after rain were used to indicate surface-water effects. This report will present only analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed during 2007. We have presented earlier a compilation of analytical results for the biosolids samples collected and analyzed for 1999 through 2006. More information about the other monitoring components is presented elsewhere in the literature. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity. Nitrogen and chromium also were priority parameters for ground water and sediment components. In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1

  13. Measurement of flame retardants and triclosan in municipal sewage sludge and biosolids.

    PubMed

    Davis, Elizabeth F; Klosterhaus, Susan L; Stapleton, Heather M

    2012-04-01

    As polybrominated diphenyl ethers (PBDEs) face increasing restrictions worldwide, several alternate flame retardants are expected to see increased use as replacement compounds in consumer products. Chemical analysis of biosolids collected from wastewater treatment plants (WWTPs) can help determine whether these flame retardants are migrating from the indoor environment to the outdoor environment, where little is known about their ultimate fate and effects. The objective of this study was to measure concentrations of a suite of flame retardants, and the antimicrobial compound triclosan, in opportunistic samples of municipal biosolids and the domestic sludge Standard Reference Material (SRM) 2781. Grab samples of biosolids were collected from two WWTPs in North Carolina and two in California. Biosolids samples were also obtained during three subsequent collection events at one of the North Carolina WWTPs to evaluate fluctuations in contaminant levels within a given facility over a period of three years. The biosolids and SRM 2781 were analyzed for PBDEs, hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB), di(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), the chlorinated flame retardant Dechlorane Plus (syn- and anti-isomers), and the antimicrobial agent 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan). PBDEs were detected in every sample analyzed, and ΣPBDE concentrations ranged from 1750 to 6358ng/g dry weight. Additionally, the PBDE replacement chemicals TBB and TBPH were detected at concentrations ranging from 120 to 3749 ng/g dry weight and from 206 to 1631 ng/g dry weight, respectively. Triclosan concentrations ranged from 490 to 13,866 ng/g dry weight. The detection of these contaminants of emerging concern in biosolids suggests that these chemicals have the potential to migrate out of consumer products and enter the outdoor environment. PMID:22280921

  14. Risk assessment of land-applied biosolids-borne triclocarban (TCC).

    PubMed

    Snyder, Elizabeth Hodges; O'Connor, George A

    2013-01-01

    Triclocarban (TCC) is monitored under the USEPA High Production Volume (HPV) chemical program and is predominantly used as the active ingredient in select antibacterial bar soaps and other personal care products. The compound commonly occurs at parts-per-million concentrations in processed wastewater treatment residuals (i.e. biosolids), which are frequently land-applied as fertilizers and soil conditioners. Human and ecological risk assessment parameters measured by the authors in previous studies were integrated with existing data to perform a two-tiered human health and ecological risk assessment of land-applied biosolids-borne TCC. The 14 exposure pathways identified in the Part 503 Biosolids Rule were expanded, and conservative screening-level hazard quotients (HQ values) were first calculated to estimate risk to humans and a variety of terrestrial and aquatic organisms (Tier 1). The majority of biosolids-borne TCC exposure pathways resulted in no screening-level HQ values indicative of significant risks to exposed organisms (including humans), even under worst-case land application scenarios. The two pathways for which the conservative screening-level HQ values exceeded one (i.e. Pathway 10: biosolids➔soil➔soil organism➔predator, and Pathway 16: biosolids➔soil➔surface water➔aquatic organism) were then reexamined using modified parameters and scenarios (Tier 2). Adjusted HQ values remained greater than one for Exposure Pathway 10, with the exception of the final adjusted HQ values under a one-time 5 Mg ha(-1) (agronomic) biosolids loading rate scenario for the American woodcock (Scolopax minor) and short-tailed shrew (Blarina brevicauda). Results were used to prioritize recommendations for future biosolids-borne TCC research, which include additional measurements of toxicological effects and TCC concentrations in environmental matrices at the field level. PMID:23183124

  15. Analytical Results for Municipal Biosolids Samples from a Monitoring Program Near Deer Trail, Colorado (USA), 1999 through 2006

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Brown, Z.A.; Adams, M.G.

    2008-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of non-irrigated farmland and rangeland near Deer Trail, Colorado. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring ground water at part of this site (Yager and Arnold, 2003). In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock ground water, and stream bed sediment. Streams at the site are dry most of the year, so samples of stream bed sediment deposited after rain were used to indicate surface-water effects. This report will present only analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed during 1999 through 2006. More information about the other monitoring components is presented elsewhere in the literature (e.g., Yager and others, 2004a, 2004b, 2004c, 2004d). Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity. Nitrogen and chromium also were priority parameters for ground water and sediment components. In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, or (3) were

  16. The Survival of Bacterial and Viral Pathogens in Manure and Biosolids in the Southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims to determine the survival of bacterial pathogens after the application of fecal derived fertilizer sources such as municipal biosolids or manure. The purpose is to elucidate the effect of fecal source on the prolonged viability of pathogens in soil. Soils will be applied and incorp...

  17. HELMINTH OVA AND VIRUS DETECTION IN BIOSOLIDS

    EPA Science Inventory

    Sewage sludge (also known as biosolids), a byproduct from domestic sewage treatment, is often used as an organic soil conditioner and fertilizer. Raw sludge must be treated to reduce levels of potential human pathogenic agents before being used for this purpose. The domestic us...

  18. RESTORATION OF METAL CONTAMINATED SOILS USING BIOSOLIDS

    EPA Science Inventory

    Biosolids in combination with different types of limestone have been applied to metal mine tailings in Bunker Hill, ID, Leadville, Co, Joplin, MO and Tar Creek, OK. For each of these sites, tailings were unable to support a vegetative cover prior to amendment addition. Elevated...

  19. LAND TREATMENT OF BIOSOLIDS/CAFO WASTE

    EPA Science Inventory

    A common disposal practice for municipal biosolids and CAFO manures is to spread this material on agricultural fields as a soil amendment. Recently, questions have arisen about this practice. One concern is that current restrictions are not sufficiently protective of pathogen ...

  20. EVALUATION OF BACTERIOLOGICAL INDICATORS OF BIOSOLIDS DISINFECTION

    EPA Science Inventory

    Under the current regulations (CFR 503), Class B biosolids may be land applied with certain site restrictions. One method for achieving Class B status is to raise the pH of the sludge to >12 for a minimum of 2 hours with an alkaline material (normally lime). Alternately, a Clas...

  1. ORD'S RESEARCH ON PATHOGENS IN BIOSOLIDS

    EPA Science Inventory

    In 2002 the National Academy of Sciences issued a report on EPA's regulations governing the preparation of class A and B biosolids. They stated that the science supporting the rule was outdated and recommended that EPA develop new standardized methods for measuring pathogens in ...

  2. Endotoxin Studies And Biosolids Stabilization Research

    EPA Science Inventory

    This presentation has three parts; a review of bench-scale endotoxin research, a review of observations from a field scale endotoxin release study, and discussion of biosolids stabilization and characterization by PLFA/FAME microbial community analysis. Endotoxins are part of th...

  3. Nitrate and phosphate leaching in a Phaeozem soil treated with biosolids, composted biosolids and inorganic fertilizers.

    PubMed

    Esteller, M V; Martínez-Valdés, H; Garrido, S; Uribe, Q

    2009-06-01

    The use of organic wastes in agriculture may increase the production of crops by incorporating organic matter and nutrients into the soil, and by improving its physical characteristics; however, this use may cause environmental problems such as the leaching of certain ions. The objective of this study was to establish possible nitrogen and phosphorus leaching under real field conditions in Phaeozem soils. The experimental work was performed in a corn (Zea mays L.) field where three plots were conditioned with inorganic fertilizer, three plots with 4.5 Mgha(-1) of biosolids on dry basis, and three plots with the same amount of composted biosolids. The quality of biosolids and composted biosolids complied with the Mexican Official Standards. Soil water samples were collected with suction cups during two agricultural cycles and were analysed. Soil samples were also taken and analysed. The N-NO(3) concentrations in soil water fluctuated between 0.9 and 98mgL(-1) in the composted biosolid treatment, between 0.7 and 64 mgL(-1) in the biosolid treatment, and between 1 and 61 mgL(-1) in the inorganic fertilizer treatment. The maximum concentration of N-NO(2) and N-NH(3) in soil water was 1.02 and 2.65 mgL(-1), respectively. The greatest percentage of nitrogen leached is produced when inorganic fertilizer is used (37.4% and 24.0% N leached in the first and second years, respectively), followed by composted biosolids (17.1% and 13.5% N leached in the first and second years, respectively) and last by biosolids (11% for both years). This difference could be related to the form in which nitrogen is present in the fertilizers, while commercial fertilizer is as inorganic nitrogen, organic wastes are basically presented as organic nitrogen. The maximum PO(4)(3-) concentration in soil water was 1.9 mgL(-1) in the composted biosolid treatment, 1.7mgL(-1) in the biosolid treatment and 0.9 mgL(-1) in the inorganic fertilizer treatment. The estimated percentage of leached phosphorus

  4. Analytical Results for Municipal Biosolids Samples from a Monitoring Program Near Deer Trail, Colorado (U.S.A.), 2008

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.

    2009-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo. (U.S.A.). In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water effects. This report will present only analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed during 2008. Crock and others have presented earlier a compilation of analytical results for the biosolids samples collected and analyzed for 1999 thru 2006, and in a separate report, data for the 2007 biosolids are reported. More information about the other monitoring components is presented elsewhere in the literature. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity. Nitrogen and chromium also were priority parameters for groundwater and sediment components.

  5. Analytical results for municipal biosolids samples from a monitoring program near Deer Trail, Colorado (U.S.A.), 2009

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.

    2010-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver, a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo., U.S.A. In cooperation with the Metro District in 1993, the U.S. Geological Survey began monitoring groundwater at part of this site. In 1999, the Survey began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through the end of 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water effects. This report presents analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed for 2009. In general, the objective of each component of the study was to determine whether concentrations of nine trace elements ('priority analytes') (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. Previous analytical results indicate that the elemental composition of biosolids from the Denver plant was consistent during 1999-2008, and this consistency continues with the samples for 2009. Total concentrations of regulated trace elements remain consistently lower than the regulatory limits for the entire monitoring period. Concentrations of none of the priority analytes appear to have increased during the 11 years of this study.

  6. Analytical results for minicipal biosolids samples from a monitoring program near Deer Trail, Colorado (U.S.A.) 2010

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.

    2011-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo., U.S.A. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program was recently extended through the end of 2010 and is now completed. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water runoff effects. This report summarizes analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed for 2010. In general, the objective of each component of the study was to determine whether concentrations of nine trace elements ("priority analytes") (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied (background). Previous analytical results indicate that the elemental composition of biosolids from the Denver plant was consistent during 1999-2009, and this consistency continues with the samples for 2010. Total concentrations of regulated trace elements remain consistently lower than the regulatory limits for the entire monitoring period. Concentrations of none of the priority analytes appear to have increased during the 12 years

  7. Triclocarban, triclosan, polybrominated diphenyl ethers, and 4-nonylphenol in biosolids and in soil receiving 33-year biosolids application.

    PubMed

    Xia, Kang; Hundal, Lakhwinder S; Kumar, Kuldip; Armbrust, Kevin; Cox, Albert E; Granato, Thomas C

    2010-03-01

    Land application of biosolids is a common practice throughout the world. However, concerns continue to be raised about the safety of this practice, because biosolids may contain trace levels of organic contaminants. The present study evaluated the levels of triclocarban (TCC), triclosan (TCS), 4-nonylphenol (4-NP), and polybrominated diphenyl ethers (PBDEs) in biosolids from 16 wastewater treatment plants and in soils from field plots receiving annual applications of biosolids for 33 years. All of the four contaminants evaluated were detected in most of the biosolids at concentrations ranging from hundreds of microg/kg to over 1,000 mg/kg (dry wt basis). They were detected at microg/kg levels in the biosolids-amended soil, but their concentrations decreased sharply with increasing soil depth for 4-NP, PBDEs, and TCC, indicating limited soil leaching of those compounds. However, potential leaching of TCS in the biosolids-amended soils was observed. The levels of all four compounds in the surface soil increased with increasing biosolids application rate. Compared with the estimated 33-year cumulative input to the soil during the 33-year consecutive biosolids application, most of the PBDEs and a small percentage of 4-NP, TCC, and TCS remained in the top 120-cm soil layer. These observations suggest slow degradation of PBDEs but rapid transformation of 4-NP, TCC, and TCS in the biosolids-amended soils. PMID:20821484

  8. Feasibility of vermicomposting dairy biosolids using a modified system to avoid earthworm mortality.

    PubMed

    Nogales, R; Elvira, C; Benítez, E; Thompson, R; Gomez, M

    1999-01-01

    A laboratory study was conducted to examine the feasibility of vermicomposting dairy biosolids (dairy sludge), either alone or with either of the bulking agents-cereal straw or wood shavings, using the epigeic earthworm-Eisinea andrei. Earthworms added directly to these three substrates died within 48 hours. A system was developed to overcome the toxic effect of unprocessed dairy biosolids. The substrates were placed over a layer of vermicomposted sheep manure into which the earthworms were inoculated. Within two weeks, all earthworms were within the upper layer of substrate. Compared to sheep manure which is a favourable substrate for vermicomposting, the three substrates containing dairy biosolids were more effective in supporting earthworm growth and reproduction. The final products obtained after 63 days of vermicomposting had 39-53% less organic carbon than the initial substrates. Organic fractionation indicated that vermicomposting increased the stability of the materials to biological decomposition. The vermicomposts obtained from the three substrates with dairy biosolids had low heavy metal contents and electrical conductivities, and did not inhibit plant growth when compared with a commercial vermicompost in a bioassay. PMID:10048210

  9. Reducing biosolids disposal costs using land application in forested areas

    SciTech Connect

    Huffines, R.L.

    1995-11-01

    Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells.

  10. Survey of Wastewater Indicators and Human Pathogen Genomes in Biosolids Produced by Class A and Class B Stabilization Treatments ▿

    PubMed Central

    Viau, Emily; Peccia, Jordan

    2009-01-01

    Accurate modeling of the infectious aerosol risk associated with the land application of biosolids requires an in-depth knowledge of the magnitudes and changes in pathogen concentrations for a variety of class A and class B stabilization methods. The following survey used quantitative PCR (qPCR) and culture assays to detect environmentally resistant bacterial and viral pathogens and biosolid indicator organisms for 36 biosolid grab samples. Biosolids were collected from 14 U.S. states and included 16 class B mesophilic anaerobic digestion (MAD) samples and 20 class A biosolid samples from temperature-phased anaerobic digestion (TPAD), MAD plus composting (COM), and MAD plus heat pelletization processes. The indicator concentrations of fecal coliforms and male-specific coliphages as well as pathogen genome concentrations for human adenovirus species, Legionella pneumophila, Staphylococcus aureus, and Clostridium difficile were significantly lower in the class A samples, and a multivariate analysis of variance ranked the stabilization processes from the lowest pathogen/indicator load to the highest as (i) class A COM, (ii) class A TPAD, and (iii) class B MAD. Human adenovirus genomes were found in 88% of the class B samples and 70 to 100% of the class A samples. L. pneumophila, S. aureus, and C. difficile genomes were detected at the qPCR assay detection limits in 19 to 50% of the class B and class A anaerobic digestion samples, while L. pneumophila was detected in 50% of the class A compost samples. When considering all the stabilization methods, both the fecal coliform and the male-specific coliphage concentrations show a significant linear correlation with the pathogen genome concentrations. This survey provides the necessary pathogen concentrations to add to biosolid aerosol risk and pathogen exposure analyses and clarifies the effectiveness of class A stabilization methods with the pathogen and indicator loads in biosolids. PMID:18997022

  11. Impacts of tilling and covering treatments on the biosolids solar drying conversion from class B to class A.

    PubMed

    Song, Inhong; O'Shaughnessy, Susan A; Choi, Christopher Y; Gerba, Charles P

    2014-01-01

    The objective of this study was to evaluate the effects of tillage and cover treatments of solar drying on the conversion of class B treated sewage sludge to a class A product. The experiments were performed over two years at Green Valley, Arizona in steel-constructed sand-filled drying beds of 1.0 m (width) x 3.0 m (length) x 0.6 m (depth). Freshly produced aerobically and anaerobically digested biosolids from nearby wastewater treatment plants received tillage and cover treatments for expediting solar drying and microbial inactivation. During the summer drying, covered drying bed increased faecal inactivation rate by 26% over other treatments and automated rain shield abated faecal coliform regrowth from summer rains. Tilling accelerated evaporation of moisture from the biosolids and increased the inactivation rate of faecal coliforms during the summer season. An automated retractable roof to protect the biosolids from rain aided in maintaining class A criteria by preventing dried biosolids from re-wetting by rainfall. However, results from tilling and passive solar heating during the cold winter seasons did not improve the faecal coliform inactivation rate due mainly to lower ambient temperatures. Thus, tilling and cover treatments can be effective in accelerating biosolids solar drying and thus enhancing pathogen inactivation during the summer season. Investigation on the effects of tillage depth and frequency is recommended to determine optimal tilling practice. PMID:25145218

  12. Alkylphenol ethoxylate degradation products in land-applied sewage sludge (biosolids).

    PubMed

    La Guardia, M J; Hale, R C; Harvey, E; Mainor, T M

    2001-12-15

    Alkylphenol ethoxylates, widely used in commercial and household detergents in the United States, can degrade during the wastewater treatment process to more toxic, estrogenic, and lipophilic compounds. These include octylphenol (OP), nonylphenols (NPs), nonylphenol monoethoxylates (NP1EOs), and nonylphenol diethoxylates (NP2EOs). These compounds have received considerable attention due to their acute toxicity and ability to disrupt the endocrine system. In Europe, regulations have been established to control their impact on the environment. In this study, biosolids derived from all 11 U.S. wastewater treatment plants examined contained detectable levels of OP, NPs, NP1EOs, and NP2EOs. Nine exceeded the current Danish land application limit (30 mg/kg; sum of NPs, NP1EOs, and NP2EOs) by 6-33x. NPs were the major component, and their concentrations therein ranged from 5.4 to 887 mg/kg (dry weight). OP, reportedly 10-20x more estrogenic than NP, was detected in these same nine biosolids at levels up to 12.6 mg/kg. Three biosolids were also subjected to the U.S. Environmental Protection Agency Toxicity Characteristic Leaching Procedure Method 1311. NPs and NP1EOs were both detected in the leachate; the former at concentrations from 9.4 to 309 microg/L. On the basis of effect levels published in the literature, alkylphenol ethoxylate degradates in U.S. biosolids may cause adverse environmental impacts. PMID:11775155

  13. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    PubMed

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to <15% of initial values. A flushing treatment to remove excess salts was therefore not necessary. Irrigation had an impact on biosolids attributes such as salinity and pH, and that this had an influence on metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a

  14. Application of municipal biosolids to dry-land wheat fields - A monitoring program near Deer Trail, Colorado (USA). A presentation for an international conference: "The Future of Agriculture: Science, Stewardship, and Sustainability", August 7-9, 2006, Sacramento, CA

    USGS Publications Warehouse

    Crock, James G.; Smith, David B.; Yager, Tracy J.B.

    2006-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of non-irrigated farmland and rangeland near Deer Trail, Colorado. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring ground water at part of this site. In 1999, the USGS began a more comprehensive study of the entire site to address stakeholder concerns about the chemical effects of biosolids applications. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study included biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock ground water, and stream bed sediment. Streams at the site are dry most of the year, so samples of stream bed sediment deposited after rain were used to indicate surface-water effects. This presentation will only address biosolids, soil, and crops. More information about these and the other monitoring components are presented in the literature (e.g., Yager and others, 2004a, b, c, d) and at the USGS Web site for the Deer Trail area studies at http://co.water.usgs.gov/projects/CO406/CO406.html. Priority parameters identified by the stakeholders for all monitoring components, included the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity, regulated by Colorado for biosolids to be used as an agricultural soil amendment. Nitrogen and chromium also were priority parameters for ground water and sediment components. In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids

  15. Biosolids and dredged materials: alternative sources of nutrients for crop productivity and sustainability of pasture-based agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic sewage sludge or “biosolids” and lake-dredged materials are examples of materials that can be used to cut fertilizer costs in pasture-based animal agriculture. Sustainable biosolids and lake-dredged materials management is based upon controlling and influencing the quantity, quality and cha...

  16. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water.

    PubMed

    Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Fang, Min; Czajkowski, Kevin P

    2010-08-15

    Many pharmaceuticals and personal care products (PPCPs) are commonly found in biosolids and effluents from wastewater treatment plants. Land application of these biosolids and the reclamation of treated wastewater can transfer those PPCPs into the terrestrial and aquatic environments, giving rise to potential accumulation in plants. In this work, a greenhouse experiment was used to study the uptake of three pharmaceuticals (carbamazepine, diphenhydramine, and fluoxetine) and two personal care products (triclosan and triclocarban) by an agriculturally important species, soybean (Glycine max (L.) Merr.). Two treatments simulating biosolids application and wastewater irrigation were investigated. After growing for 60 and 110 days, plant tissues and soils were analyzed for target compounds. Carbamazepine, triclosan, and triclocarban were found to be concentrated in root tissues and translocated into above ground parts including beans, whereas accumulation and translocation for diphenhydramine and fluoxetine was limited. The uptake of selected compounds differed by treatment, with biosolids application resulting in higher plant concentrations, likely due to higher loading. However, compounds introduced by irrigation appeared to be more available for uptake and translocation. Degradation is the main mechanism for the dissipation of selected compounds in biosolids applied soils, and the presence of soybean plants had no significant effect on sorption. Data from two different harvests suggest that the uptake from soil to root and translocation from root to leaf may be rate limited for triclosan and triclocarban and metabolism may occur within the plant for carbamazepine. PMID:20704212

  17. Ecotoxicological assessment of biosolids by microcosms.

    PubMed

    Groth, Vitor Avelar; Carvalho-Pereira, Ticiana; da Silva, Eduardo Mendes; Niemeyer, Júlia Carina

    2016-10-01

    Biosolids have been applied as soil amendments to improve and maintain the soil fertility and faster plant growth. In spite of its beneficial use, the potential risks of land disposal should be analyzed, considering potential ecological receptors in soil and water. This work describes the use of an early warning laboratory microcosm system to evaluate the integrated ecotoxicological potential of two biosolids: BIO-1 and BIO-2 (18 and 28 months after landfarming, respectively), from an effluent treatment station in a petrochemical and industrial district. The endpoints related to habitat function were: a) germination, growth and biomass of Phaseolus vulgaris; b) survival, biomass and number of cocoons of Eisenia andrei (Oligochaeta) and; c) reproduction of Folsomia candida (Collembola). The retention function was evaluated by testing the leachates using the tropical cladoceran Latonopsis australis (Cladocera) in a 48-h acute toxicity test, and growth of the aquatic plant Lemna minor in a 7-d chronic test. Tropical artificial soil (TAS) and a natural soil (NS) from the region were used as control soils. Results showed no chronic toxicity of BIO-1 and BIO-2 to the soil organisms tested, but acute toxicity of BIO-1 in the leachate for 50% of L. australis, and chronic toxicity of both biosolid leachates to L. minor (inhibition of growth rate), indicating potential risks to aquatic ecosystems. The results confirmed the ability of this microcosm system as a rapid tool to assess biosolid toxicity over time and its potential for hazardous waste characterization in environmental risk assessment, in a screening phase. PMID:27448314

  18. Influence of water treatment residuals on dewaterability of wastewater biosolids.

    PubMed

    Taylor, Malcolm; Elliott, Herschel A

    2013-01-01

    Co-dewatering of water treatment residuals (WTR) and wastewater biosolids can potentially benefit municipalities by reducing processing equipment and costs. This study investigated dewaterability (using capillary suction time, CST) of combined alum residuals (Al-WTR) and anaerobically digested biosolids at various blending ratios (BR), defined as the mass ratio of WTR to biosolids on a dry solids basis. Without polymer addition, the CST was 160 s for a BR of 0.75 compared with 355 s for the biosolids alone. The optimum polymer dose (OPD), defined as the polymer dose yielding CST of 20 s, was reduced from 20.6 g kg(-1) dry solids for the biosolids alone to 16.3 and 12.6 g kg(-1) when BR was 0.75 and 1.5, respectively. Precipitated Al hydrous oxides in the WTR likely caused flocculation of the biosolids particles through heterocoagulation or charge neutralization. The solids contents of the blended materials and biosolids at their respective OPDs were not statistically different (α = 0.05) following dewatering by a belt-filter press. We conclude addition of Al-WTR improved biosolids dewaterability and reduced polymer dosage. In practice, the extent of these benefits may be limited by the quantity of WTR produced relative to the amount of wastewater solids generated by a municipality. PMID:23128637

  19. Biosolids application to no-till dryland crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids recycling on dryland winter wheat (Triticum aestivum L.) can supply a reliable, slow-release source of nitrogen (N) and organic. Our past research found that continuous application of biosolids from the Littleton/Englewood, CO wastewater treatment facility to dryland winter wheat-fallow r...

  20. Metal and nanoparticle occurrence in biosolids - amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 40% of the 7 million dry tons of municipal biosolids produced annually in the US are applied to soils for disposal nutrient enrichment. The goal of this study is to prospect agricultural sites with long-term biosolids application for a suite of metals, some of which are regulated and o...

  1. IDENTIFICATION OF IRON PHASES IN BIOSOLIDS VIA MOSSBAUER SPECTROSCOPY

    EPA Science Inventory

    Continuous debate regarding inorganic and organic phases in biosolids as prominent sorbents of metals has yielded limited definitive data. We have demonstrated with X-ray absorption and X-ray fluorescence spectroscopies that metals in biosolids have a significant association with...

  2. Fate of Triclosan and Triclocarban in Land-Applied Biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heavily-used antimicrobials, triclosan and triclocarbon, are commonly present in biosolids generated in waste water treatment plants. A common practice for handling biosolids is to use them as soil amendments. We have embarked on a cooperative study with the Blue Plains Waste Water Treatment P...

  3. CD SPECIATION ASSOCIATED WITH IRON OXIDES AND BIOSOLIDS

    EPA Science Inventory

    The environmental impact and potential hazards of metals in biosolids to plants, animals and the human food chain have been studied for decades. From this body of work, it has been concluded the addition of biosolids to the soil alters the chemical phases in the soil system beyon...

  4. Aggregate Stability and Phosphorous Loss from Soils Treated with Biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid organic material recovered from sewage treatment processes, also known as compost, sewage sludge, or biosolids, can help maintain soil nutrient levels (e.g., nutrient P availability) and may also change soil physical properties. However, nutrient P loss by wind erosion or runoff from biosolid...

  5. Wind Erodibility of Biosolids - Amended Soils: A Status Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metro Wastewater Reclamation District in Denver has been applying municipal biosolids to agricultural land known as the METROGRO Farm since 1993. The farm, located approximately 105 km (65 mi) east of Denver, is in an area historically susceptible to wind erosion. Since biosolids can potentially i...

  6. Economic Value of Biosolids in a Semiarid Agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over half of the municipal biosolids generated in the U.S. are being applied to agricultural land. More information is needed on crop response to biosolids application and on the optimal level of the application from an economic prospective. With this in mind, data from two sites used in a long ter...

  7. Evaluation of odors associated with land application of biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An odor study was performed at a biosolids application demonstration site using several different gas collection devices and analytical methods to determine changes in air concentration of several organic and inorganic compounds associated with biosolids application over various time periods. Vario...

  8. Hyperthermophilic hydrogen production from wastewater biosolids by caldicellulosiruptor bescii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wastewater biosolids are abundant renewable resources that are rich in organic matter and offer a low cost potential feedstock for biohydrogen production. Relevant literature indicates that biosolids conversion rates are relatively low and therefore this option is not considered feasible. This study...

  9. LAND REMEDIATION WITH BIOSOLIDS - SLUDGE MAGIC - TIME BOMB?

    EPA Science Inventory

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized by...

  10. Evaluation of dioxin mobility and spoils leaching in a surface coal mine reclaimed with bleached kraft pulp and paper mill biosolids

    SciTech Connect

    McFadden, D.P.; Krouskop, D.J.; Ayers, K.C.; Proctor, J.L.

    1995-07-01

    A surface coal mine in southeastern Ohio has been reclaimed with approximately 15 to 25 cm thickness of biosolids from a bleached kraft pulp and paper mill wastewater treatment plant. Soil, vegetation, rodents, earthworms, insects, fish, frogs, sediment, and algae samples were collected and analyzed for 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran. Water samples from lakes receiving drainage from unreclaimed and biosolids reclaimed areas were collected and analyzed for various parameters, including pH and metals. The trace levels of dioxin and furan in the pulp and paper mill biosolids did not bioaccumulate in rodents, insects, or earthworms or translocate into plants living in the reclaimed area. The trace levels of dioxin and furan in biosolids did not sufficiently migrate to a drainage lake to result in significant concentrations in fish, frogs, algae, or vegetation. The biosolids reclamation resulted in dramatic decreases in spoils leaching of acid, aluminum, calcium, iron, magnesium, manganese, nickel, and zinc. This work supports the thesis that surface mine reclamation with pulp and paper mill biosolids is safe and effective. 4 refs., 6 tabs.

  11. ADSORPTION OF CADMIUM ONTO ORGANIC, TOTAL INORGANIC, AND METAL OXIDE FRACTIONS IN BIOSOLIDS AND BIOSOLID-AMENDED SOILS

    EPA Science Inventory

    The environmental impact and potential hazards of metals in biosolids to plants, animals and the human food chain from biosolids application on soils has been studied for decades. The early hypothesis known as "Time Bomb" has been questioned by recent research results which tend ...

  12. Estimating potential risks to terrestrial invertebrates and plants exposed to bisphenol A in soil amended with activated sludge biosolids.

    PubMed

    Staples, Charles; Friederich, Urs; Hall, Tilghman; Klecka, Gary; Mihaich, Ellen; Ortego, Lisa; Caspers, Norbert; Hentges, Steven

    2010-02-01

    Bisphenol A (BPA) is a high production volume substance primarily used to produce polycarbonate plastic and epoxy resins. During manufacture and use, BPA may enter wastewater treatment plants. During treatment, BPA may become adsorbed to activated sludge biosolids, which may expose soil organisms to BPA if added to soil as an amendment. To evaluate potential risks to organisms that make up the base of the terrestrial food web (i.e., invertebrates and plants) in accordance with international regulatory practice, toxicity tests were conducted with potworms (Enchytraeids) and springtails (Collembolans) in artificial soil, and six plant types using natural soil. No-observed-effect concentrations (NOEC) for potworms and springtails were equal to or greater than 100 and equal to or greater than 500 mg/kg (dry wt), respectively. The lowest organic matter-normalized NOEC among all tests (dry shoot weight of tomatoes) was 37 mg/kg-dry weight. Dividing by an assessment factor of 10, a predicted-no-effect concentration in soil (PNEC(soil)) of 3.7 mg/kg-dry weight was calculated. Following international regulatory guidance, BPA concentrations in soil hypothetically amended with biosolids were calculated using published BPA concentrations in biosolids. The upper 95th percentile BPA biosolids concentration in North America is 14.2 mg/kg-dry weight, and in Europe is 95 mg/kg-dry weight. Based on recommended biosolids application rates, predicted BPA concentrations in soil (PEC(soil)) would be 0.021 mg/kg-dry weight for North America and 0.14 mg/kg-dry weight for Europe. Hazard quotients (ratio of PEC(soil) and PNEC(soil)) for BPA were all equal to or less than 0.04. This indicates that risks to representative invertebrates and plants at the base of the terrestrial food web are low if exposed to BPA in soil amended with activated sludge biosolids. PMID:20821466

  13. ROLE OF IRON AND MANGANESE OXIDES IN BIOSOLIDS AND BIOSOLIDS-AMENDED SOILS ON METAL BINDING

    EPA Science Inventory

    Biosolids contain high levels of Fe, Mn, and Al. Surfaces of freshly precipitated metal oxides, especially Fe and Mn, are known to be highly active sites for most dissolved metal ion species. We nw have metal sorption/desorption data that illustrate the importance of Fe and Mn fr...

  14. Acidic minespoil reclamation with alkaline biosolids

    SciTech Connect

    Drill, C.; Lindsay, B.J.; Logan, T.L.

    1998-12-31

    The effectiveness of an alkaline stabilized biosolids product, N-Viro Soil (NVS), was studied at a wild animal preserve in Cumberland, OH. The preserve occupies land that was strip mined for high-sulfur coal. While most of the land has been conventionally reclaimed, several highly acidic hot spots remain. Two of these hot spots were studied through concurrent field, greenhouse, and laboratory projects. In April 1995, NVS was applied at rates ranging from 0--960 mt/ha (wet wt.) to plots at the two sites. The plots were seeded using a standard reclamation mix and soil samples were analyzed for chemical characteristics before and after application and also in 1996 and 1997. Soil pH increased from 3.5 to about 11 in the amended plots and soil EC values increased from 21.0 mmho/cm to a maximum of 6.0 mmho/cm in the amended plots immediately after application. Soil Cu and Zn concentrations also increased in the NVS amended plots, but this did not affect plant germination or growth. By the summer of 1996, soil pH values had decreased to 7.3--8.7 and EC values decreased to 0.34--1.36 mmho/cm to the amended plots. Soil samples were collected in September 1995 for physical analyses. N-Viro Soil improved the moisture retention and water conductivity properties of the spoil. The plots were monitored for growth during the summer of 1995 and plant biomass and soil samples were taken in 1996 and 1997 for trace element and nutrient analysis. NVS did not significantly increase trace element concentrations in the biomass. The addition of NVS to acid mine spoil improves the chemical and physical properties of the spoil material thus aiding vegetative establishment and growth. NVS improves the chemical nature of the spoil by increasing pH and providing micro and macronutrients and improves the physical properties of the spoil with the addition of organic matter.

  15. Dispersion Modeling and Characterization of Particulates from Land Application of Class B Biosolids

    NASA Astrophysics Data System (ADS)

    Bhat, Abhishek S.

    This study presents a comprehensive approach to understand the particle characteristics, identify the source profile, develop new equations for emission rates, analyze the source-receptor relationship, and develop and evaluate a numerical model for the dispersion and transport of particles released during the injection of biosolids. Two field studies were conducted in the summer of 2008 and 2009 to collect airborne particulate matter emitted during the injection application of class B biosolids. The sampling was carried out before (pre-application), during (application), and after (post-application) the application. The research work characterized the particulate emissions deposited on the aerosols spectrometer. The mass concentrations of fine (PM2.5) and ultrafine (PM 1.0) particles were highest during the pre-application. The mass concentration of thoracic fraction (PM2.5-10) increased significantly during the application. A bimodal size distribution was observed throughout the sampling. Nuclei mode formation was predominant during the pre-application and the post-application, whereas the accumulation mode was distinctive during the application. Airborne particles were collected on filter papers during the biosolids application process using an aerosol spectrometer. Scanning electron microscopy (SEM) coupled with an energy dispersive spectrometry (EDS) tool was used to analyze particles collected before, during, and after injection of biosolids. The major emphasis of the analysis was on providing in depth information on particle count, size, shape, morphology, and chemical composition. The particle count was significantly sensitive towards the different activities surrounding the application. The combination of SEM, particle analysis software, and EDS technique was capable of revealing detailed information on the size, shape, morphology, and chemical composition of individual particles. These techniques proved to be an effective non-destructive method for the

  16. Dispersion Modeling and Characterization of Particulates from Land Application of Class B Biosolids

    NASA Astrophysics Data System (ADS)

    Bhat, Abhishek S.

    This study presents a comprehensive approach to understand the particle characteristics, identify the source profile, develop new equations for emission rates, analyze the source-receptor relationship, and develop and evaluate a numerical model for the dispersion and transport of particles released during the injection of biosolids. Two field studies were conducted in the summer of 2008 and 2009 to collect airborne particulate matter emitted during the injection application of class B biosolids. The sampling was carried out before (pre-application), during (application), and after (post-application) the application. The research work characterized the particulate emissions deposited on the aerosols spectrometer. The mass concentrations of fine (PM2.5) and ultrafine (PM 1.0) particles were highest during the pre-application. The mass concentration of thoracic fraction (PM2.5-10) increased significantly during the application. A bimodal size distribution was observed throughout the sampling. Nuclei mode formation was predominant during the pre-application and the post-application, whereas the accumulation mode was distinctive during the application. Airborne particles were collected on filter papers during the biosolids application process using an aerosol spectrometer. Scanning electron microscopy (SEM) coupled with an energy dispersive spectrometry (EDS) tool was used to analyze particles collected before, during, and after injection of biosolids. The major emphasis of the analysis was on providing in depth information on particle count, size, shape, morphology, and chemical composition. The particle count was significantly sensitive towards the different activities surrounding the application. The combination of SEM, particle analysis software, and EDS technique was capable of revealing detailed information on the size, shape, morphology, and chemical composition of individual particles. These techniques proved to be an effective non-destructive method for the

  17. Phosphorus recovery prior to land application of biosolids using the “Quick Wash” process developed by USDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To present the case study of a new treatment process, called “quick wash”, that was developed by the USDA-ARS for extraction and recovery of phosphorus from animal manure solids but research has shown the approach is equally effective to recover phosphorus from biosolids prior to applica...

  18. Characterization of odors from limed biosolids treated with nitrate and anthraquinone.

    PubMed

    Kim, Hyunook; McConnell, Laura; Ramirez, Mark; Abu-Orf, Mohammad; Choi, Hong L; Peot, Christopher

    2005-01-01

    Complaints from the public due to odor emissions are one of the biggest problems associated with any biosolids land application program. Chemical additives to reduce or mask odors are one option for producers; however, many chemicals are too expensive or are too unstable to use safely. This project provides a preliminary evaluation of nitrate or nitrate + anthraquinone as additives in controlling odors from limed biosolids. Over a twenty-four day period, odors were measured in the headspace over several treatment levels using two different chemical analysis tools along with olfactometric evaluation of odor intensity and hedonic tone. On six days during the sample period, hydrogen sulfide was measured using a Jerome 631X, a sensor that also responds to other reduce sulfur gases. Other specific sulfides, amines, and mercaptans were also determined using solid phase microextraction with gas chromatography-mass spectrometry. A simple sniff test approach was used with six panelists on five days during the project. The chemical analysis results revealed that the addition of nitrate and especially nitrate + anthraquinone was effective in reducing concentrations of hydrogen sulfide and methylmercaptan when compared to untreated limed biosolids. However, the olfactometric results did not reveal any significant differences between treatments. The panelists also found that all treatments exhibited a fishy or ammonical character, indicative of amines, or ammonia. More advance olfactometric analysis utilizing dilution techniques might have been able to distinguish between treatments, but it is likely that amines were the dominant odorant released from all treatments. This preliminary project suggests that chemical addition of nitrate or nitrate + anthraquinone would be most effective in controlling odors from unlimed biosolids such as anaerobically digested materials. PMID:15663305

  19. Developing Effective Managers.

    ERIC Educational Resources Information Center

    Roberts, T.J.

    In this introductory work, the main principles on which British companies are basing management development programs are presented, and stages in assuring a supply of effective managerial talent are set forth: stages in assuring a supply of effective managerial t"lent are set forth: program planning based on clear objectives and communication;…

  20. Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils.

    PubMed

    Navarro, Irene; de la Torre, Adrián; Sanz, Paloma; Pro, Javier; Carbonell, Gregoria; Martínez, María de Los Ángeles

    2016-08-01

    In the present work, the bioaccumulation behavior of 49 target emerging organic compounds (20 perfluoroalkyl substances, PFASs, and 29 halogenated flame retardants, HFRs) was studied in soil invertebrates (Eisenia andrei). Multi species soil systems (MS·3) were used to assess the fate and the effects associated with the application of four biosolids in agricultural soil on terrestrial soil organisms. Biosolid amendment increased concentrations 1.5-14-fold for PFASs, 1.1-2.4-fold for polybrominated diphenyl ethers, PBDEs, and 1.1-3.6-fold for chlorinated flame retardants, CFRs. Perfluorooctanesulfonate, PFOS, (25%) and BDE-209 (60%) were the predominant PFAS and HFR compounds, respectively, in biosolids-amended soils. Total concentrations (ng/g dry weight) in earthworms from biosolid-amended soils ranged from 9.9 to 101 for PFASs, from 45 to 76 for PBDEs and 0.3-32 for CFRs. Bioaccumulation factors (BAFs) were calculated to evaluate the degree of exposure of pollutants in earthworms. The mean BAF ranged from 2.2 to 198 for PFASs, 0.6-17 for PBDEs and 0.5-20 for CFRs. The relationship of PFAS and PBDE BAFs in earthworms and their log Kow were compared: PFAS BAFs increased while PBDE BAFs declined with increasing log Kow values. The effect of the aging (21 days) on the bioavailability of the pollutants in amended soils was also assessed: the residence time affected differently to the compounds studied. PMID:27174781

  1. Response of soil bacterial community to metal nanoparticles in biosolids.

    PubMed

    Shah, Vishal; Jones, Jamilee; Dickman, Jenifer; Greenman, Steven

    2014-06-15

    The increasing use of engineered nanoparticles (NPs) in industrial and household applications will very likely lead to the increased release of such materials into the public sewer systems. During the wastewater treatment process, some fraction of NPs would always be concentrated in the biosolids. When biosolids is applied on the agricultural land, NPs are introduced into the soil matrix. In the current study we investigate the influence of five different metal nanoparticles present in biosolids on soil microbial community as a function of time. Results indicate that ZnO and Zero Valent Cu NPs were not toxic to soil bacterial community. Biosolids mixed with Ag NPs and TiO2 (both anatase and rutile phase) in contrast changed the bacterial richness and composition in wavering pattern as a function of time. Based on the observations made in the study, we suggest caution when interpreting the toxicity of NPs based on single time point study. PMID:24801897

  2. Transport and Fate of Organic and Inorganic Nitrogen from Biosolids leachates

    NASA Astrophysics Data System (ADS)

    Ilani, Talli; Trifonov, Pavel; Arye, Gilboa

    2014-05-01

    The use of biosolids as a means to ameliorate soil becomes prevalent in the last few years. In agricultural fields, the application of biosolids will be followed by irrigation; resulting in excessive leaching of the dissolved fraction of the organic matter. The dissolved organic matter (DOM) is one of the major players in the chemical, physical and biological processes in soils. The DOM mainly composed of dissolved organic carbon (DOC) and lower proportions of dissolved organic nitrogen (DON) and phosphate (DOP). The DON is considered to be the primary source of mineralisable nitrogen in the soil and can be used as an estimate of the nitrogen supplying capacity of the organic matter. Most of the researches which are dealing with nitrogen fate in terrestrial environments focused on its inorganic fractions (mainly nitrate and ammonium) and their transport toward the dipper soil layers. Since DON can be the source of the inorganic nitrogen (by providing nutrients and energy to nitrifying microbes, which in turn increases the nitrogen source for plants as nitrate), knowledge about the nature of its transport characteristics in the soil is important in the case of biosolids amendment. In addition, irrigation water quality (e.g. fresh water, wastewater or desalinized water) may significantly affect the transport and fate of the various nitrogen forms. The main objective of this study is to examine the fate and co-transport of organic and inorganics nitrogen, originating from biosolids leachates in the subsoil. The effect of water quality and flow rate under saturated steady-state flow is examined by a series of flow-through soil column experiments. The established breakthrough curves of the co-transport of total nitrogen, organic nitrogen (will be calculated from the differences between the total nitrogen measurements and the inorganic nitrogen measurements), nitrate, ammonium, dissolved organic carbon and chloride is presented and discussed.

  3. Interactions in Natural Colloid Systems "Biosolids" - Soil and Plant

    NASA Astrophysics Data System (ADS)

    Kalinichenko, Kira V.; Nikovskaya, Galina N.; Ulberg, Zoya R.

    2016-04-01

    The "biosolids" are complex biocolloid system arising in huge amounts (mln tons per year) from biological municipal wastewater treatment. These contain clusters of nanoparticles of heavy metal compounds (in slightly soluble or unsoluble forms, such as phosphates, sulphates, carbonates, hydroxides, and etc.), cells, humic substances and so on, involved in exopolysaccharides (EPS) net matrix. One may consider that biosolids are the natural nanocomposite. Due to the presence of nitrogen, phosphorus, potassium and other macro- and microelements (heavy metals), vitamins, aminoacids, etc., the biosolids are a depot of bioelements for plant nutrition. Thus, it is generally recognized that most rationally to utilize them for land application. For this purpose the biocolloid process was developed in biosolids system by initiation of microbial vital ability followed by the synthesis of EPS, propagation of ecologically important microorganisms, loosening of the structure and weakening of the coagulation contacts between biosolids colloids, but the structure integrity maintaining [1,2]. It was demonstrated that the applying of biosolids with metabolizing microorganisms to soil provided the improving soil structure, namely the increasing of waterstable aggregates content (70% vs. 20%). It occurs due to flocculation ability of biosolids EPS. The experimental modelling of mutual interactions in systems of soils - biosolids (with metabolizing microorganisms) were realized and their colloid and chemical mechanisms were formulated [3]. As it is known, the most harmonious plant growth comes at a prolonged entering of nutrients under the action of plant roots exudates which include pool of organic acids and polysaccharides [4]. Special investigations showed that under the influence of exudates excreted by growing plants, the biosolids microelements can release gradually from immobilized state into environment and are able to absorb by plants. Thus, the biosolids can serve as an active

  4. Biosolids recycling: Beneficial technology for a better environment

    SciTech Connect

    Not Available

    1994-06-01

    The booklet is written to provide an understanding of the great value that can be derived from the beneficial use of biosolids. The booklet then briefly discusses important aspects of its new regulation (40 Code of Federal Regulations Part 503) that govern the final use or disposal of biosolids. It concludes with a discussion of the scientific basis of the rule and names of people and references to contact for additional information regarding the rule and risk assessment.

  5. Phytotoxicity of biosolids and screening of selected plant species with potential for mercury phytoextraction.

    PubMed

    Lomonte, Cristina; Doronila, Augustine I; Gregory, David; Baker, Alan J M; Kolev, Spas D

    2010-01-15

    Mercury contaminated stockpiles of biosolids (3.5-8.4 mg kg(-1) Hg) from Melbourne Water's Western Treatment Plant (MW-WTP) were investigated to evaluate the possibility for their phytoremediation. Nine plant species (Atriplex codonocarpa, Atriplex semibaccata, Austrodanthonia caespitosa, Brassica juncea, Brassica napus, Gypsophila paniculata, Sorghum bicolor, Themeda triandra and Trifolium subterraneum) were screened for phytoextraction potential in Hg-contaminated biosolids from MW-WTP. In addition, the same plant species were germinated and grown in two other substrates (i.e. potting mix and potting mix spiked with mercury(II)). Growth measurements and the mercury uptake for all three substrates were compared. Some plant species grown in potting mix spiked with mercury(II) grew more vigorously than in the other two substrates and showed higher levels of sulphur in their tissues. These results suggested that the mercury stress activated defence mechanisms and it was hypothesised that this was the likely reason for the enhanced production of sulphur compounds in the plant species studied which stimulated their growth. Some species did not grow in biosolids because of the combined effect of high mercury toxicity and high salt content. Atriplex conodocarpa and Australodanthonia caespitose proved to be the most suitable candidates for mercury phytoextraction because of their ability to translocate mercury from roots to the above-ground tissues. PMID:19775810

  6. Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids

    SciTech Connect

    Han, N.; Thompson, M.L.

    1999-05-01

    The fate of metals in soils where soluble organic compound are present may be strongly influenced by the degree to which they are complexed by organic ligands. The authors undertook this study to determine the combined effect of molecular weight (MW) and hydrophobicity on the Cu-binding ability of dissolved organic compounds in biosolids (i.e., sewage sludge). Dissolved organic matter (DOM) from anaerobically digested sewage biosolids was fractionated by using a combination of MW fractionation and XAD-8 resin chromatography. The Cu-binding abilities of the DOM fractions were obtained by using a Cu{sup 2+}-ion-selective electrode (Cu-ISE) technique. The Cu-binding ability of fractionated DOM decreased significantly with increasing molecular weight, indicating that low-MW DOM had more metal-binding sites than high-MW DOM. Within each MW fraction, the hydrophilic and the hydrophobic components also exhibited differences in Cu-binding ability. For the DOM with MW 500--3,500 Da, the hydrophilic fraction showed a greater Cu-binding capacity than did the hydrophobic fraction, whereas the hydrophobic acid components were most important in binding Cu for DOM with MW > 3,500 Da. The maximum Cu-binding capacities of different biosolids-derived DOM fractions, estimated by employing a Langmuir model, ranged from 1.85 to 14.3 mmol Cu mol{sup {minus}1} dissolved organic C (DOC), which is the same order of magnitude as similar measurements of DOM from other sources.

  7. Impact of biosolids and wastewater effluent application to agricultural land on corticosterone content in lettuce plants.

    PubMed

    Shargil, Dorit; Fine, Pinchas; Gerstl, Zev; Nitsan, Ido; Kurtzman, Daniel

    2016-01-15

    We studied corticosterone occurrence in lettuce plants grown on three biosolids amended soils under irrigation with either tap water or secondary wastewater effluent. Corticosterone was examined as it has possible implications for human health. It is a major glucocorticoid, and as such has an effect on regulation of metabolism, immune functions and stress response. The plants were grown in 220-L lysimeters packed with 3 soils which represent a wide range of physicochemical properties. Lettuce was grown in cycles (two in summer and two in winter) during 3 years, and in every spring season the sludges were re-applied. Corticosterone was quantified using ELISA and LCMS, and was found in the biosolids, tap water, wastewater effluent and lettuce plants. The respective ranges of concentrations were: 11-92 ng g(-1), 0.5-1.6 ng L(-1), 4.2-4.7 ng L(-1); and 1-900 ng g(-1) dry weight. A positive relationship was found between corticosterone concentrations in winter-grown lettuces and the plants fresh weight. The corticosterone content of the plants did not correspond with either the type of irrigation water or the biosolids type and rate of application or the soil properties. PMID:26437348

  8. Tips for Effective Management

    ERIC Educational Resources Information Center

    Supple, Kevin F.

    2009-01-01

    School business officials' days are filled with numbers and reports--audits, balance sheets, check registers, financial statements, journal entries, vouchers, and warrant reports, just to name a few. Those are all important tools that school business officers use to manage the financial resources of the district effectively. However, they are also…

  9. Effective Classroom Management

    ERIC Educational Resources Information Center

    Mansor, Azlin Norhaini; Eng, Wong Kim; Rasul, Mohamad Sattar; Hamzah, Mohd Izham Mohd; Hamid, Aida Hanim A.

    2012-01-01

    This paper attempts to explore and identify the characteristics of an effective teacher who teaches English as a second language to 10 year old students from different ethnics, various social economic background and multi-level language ability, at a private primary school in Malaysia. The study focused on classroom management using a case study…

  10. Pharmaceuticals and Personal Care Products in Archived U.S. Biosolids from the 2001 EPA National Sewage Sludge Survey

    PubMed Central

    McClellan, Kristin; Halden, Rolf U.

    2010-01-01

    In response to the U.S. National Academies’ call for a better assessment of chemical pollutants contained in the approximately 6.9 million dry tons of digested municipal sludge produced annually in the United States, the mean concentration of 72 pharmaceuticals and personal care products (PPCP) were determined in 110 biosolids samples collected by the U.S. Environmental Protection Agency (EPA) in its 2001 National Sewage Sludge Survey. Composite samples of archived biosolids, collected at 94 U.S. wastewater treatment plants from 32 states and the District of Columbia, were analyzed by liquid chromatography tandem mass spectrometry using EPA Method 1694. Thirty-eight (54%) of the 72 analytes were detected in at least one composite sample at concentrations ranging from 0.002 to 48 mg kg−1 dry weight. Triclocarban and triclosan were the most abundant analytes with mean concentrations of 36 ± 8 and 12.6 ± 3.8 mg kg−1 (n = 5), respectively, accounting for 65% of the total PPCP mass found. The loading to U.S. soils from nationwide biosolids recycling was estimated at 210–250 metric tons per year for the sum of the 72 PPCPs investigated. The results of this nationwide reconnaissance of PPCPs in archived U.S. biosolids mirror in contaminant occurrences, frequencies and concentrations, those reported by the U.S. EPA for samples collected in 2006/07. This demonstrates that PPCP releases in U.S. biosolids have been ongoing for many years and the most abundant PPCPs appear to show limited fluctuations in mass over time when assessed on a nationwide basis. The here demonstrated use of five mega composite samples holds promise for conducting cost-effective, routine monitoring on a regional basis. PMID:20106500

  11. Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey.

    PubMed

    McClellan, Kristin; Halden, Rolf U

    2010-01-01

    In response to the U.S. National Academies' call for a better assessment of chemical pollutants contained in the approximately 7 million dry tons of digested municipal sludge produced annually in the United States, the mean concentration of 72 pharmaceuticals and personal care products (PPCP) were determined in 110 biosolids samples collected by the U.S. Environmental Protection Agency (EPA) in its 2001 National Sewage Sludge Survey. Composite samples of archived biosolids, collected at 94 U.S. wastewater treatment plants from 32 states and the District of Columbia, were analyzed by liquid chromatography tandem mass spectrometry using EPA Method 1694. Thirty-eight (54%) of the 72 analytes were detected in at least one composite sample at concentrations ranging from 0.002 to 48 mg kg(-1) dry weight. Triclocarban and triclosan were the most abundant analytes with mean concentrations of 36 +/- 8 and 12.6 +/- 3.8 mg kg(-1) (n = 5), respectively, accounting for 65% of the total PPCP mass found. The loading to U.S. soils from nationwide biosolids recycling was estimated at 210-250 metric tons per year for the sum of the 72 PPCPs investigated. The results of this nationwide reconnaissance of PPCPs in archived U.S. biosolids mirror in contaminant occurrences, frequencies and concentrations, those reported by the U.S. EPA for samples collected in 2006/2007. This demonstrates that PPCP releases in U.S. biosolids have been ongoing for many years and the most abundant PPCPs appear to show limited fluctuations in mass over time when assessed on a nationwide basis. The here demonstrated use of five mega composite samples holds promise for conducting cost-effective, routine monitoring on a regional and national basis. PMID:20106500

  12. Triclosan and methyl-triclosan dissipation in soils after biosolid application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triclosan (TCS) is removed in waste water treatment plants (WWTP) primarily as biosolids (approx. 66%). Therefore, biosolids disposal as land applications represents a significant path for release to the environment. Biosolids collected over three years from a large WWTP had concentrations of TCS ...

  13. Risk of infection related to biological aerosols from Class A and B biosolid practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids land application can involve risks of infection associated with biological aerosols (bioaerosols) generated during the application process. These risks can be from biosolids-borne pathogenic bacteria or viruses. A series of studies were conducted since 2001 involving biosolids land appl...

  14. SPECTROSCOPIC APPROACHES TO DEFINING THE INORGANIC AND ORGANIC CONSTITUENTS OF BIOSOLIDS

    EPA Science Inventory

    The long-term debate over the fate of metals in biosolids and biosolids-amended soils has traditionally relied on intellectual theory and empirical data. The results of decades of research illustrate that metals in biosolids-amended soils are retained at a higher rate than soils...

  15. ADSORPTION OF CADMIUM ONTO DIFFERENT FRACTIONS OF BIOSOLID-AMENDED SOILS

    EPA Science Inventory

    We hypothesized not only organic but also inorganic fraction in biosolids controls the metal availability in soil systems. To test this hypothesis we conducted Cd adsorption experiments on different fractions of biosolids, biosolid amended soils, and unamended soils. Soils were c...

  16. Application of anaerobically digested biosolids to dryland winter wheat: 2006-2007 results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of biosolids to lands in EPA Region 8 is the major method of biosolids disposal, with 85% of the material being reused. This disposal method can greatly benefit municipalities and farmers by recycling plant nutrients in an environmentally sound manner. Our long-term biosolids proje...

  17. Effectively managing wound exudate.

    PubMed

    Chamanga, Edwin

    2015-09-01

    The management of wound exudate remains a clinical challenge despite technological advances in products with better exudate-handling capacities. This clinical challenge is occasionally encountered when thick exudate (viscous exudate) is present, and when most modern dressings do not possess the capabilities to manage the viscosity while enabling exudate absorption. Maceration to the peri-wound area poses another challenge, irrespective of the number of topical barrier application products on the market and the innovation of dressing products that lock exudate away or those that encourage vertical wicking. In addition to all the above, in clinical practice, the assessment and documentation of wound exudate remains sporadic, leading to the challenges of effective wound exudate dressing selection and cost-effective dressings. PMID:26322408

  18. Solid phosphorus phase in aluminum- and iron-treated biosolids.

    PubMed

    Huang, Xiao-Lan; Chen, Yona; Shenker, Moshe

    2007-01-01

    Stabilization of phosphorus (P) in sewage sludge (biosolids) to reduce water-soluble P concentrations is essential for minimizing P loss from amended soils and maximizing the capacity of the soil to safely serve as an outlet for this waste material. The chemical form at which P is retained in biosolids stabilized by Al(2)(SO(4))(3) x 18H(2)O (alum) or FeSO(4) x 7H(2)O (FeSul) was investigated by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray elemental spectrometry (EDXS) and by X-ray diffraction (XRD). Both treatments resulted in the formation of a Ca-P phase, probably brushite. Phosphorus was further retained in the alum-treated biosolids by precipitation of an Al-P phase with an Al/P molar ratio of about 1:1, while in the FeSul-treated biosolids, P was retained by both precipitation with Fe/P molar ratios of 1:1 or 1.5:1, and by adsorption onto newly formed Fe hydroxides exhibiting an Fe/P molar ratio of up to 11:1. All of these mechanisms efficiently reduced P solubility and are crucial in biosolids environmentally safe agronomic beneficial use for this waste product; however, each P phase formed may react differently in the amended soil, depending on soil properties. Thus, the proper P stabilization method would depend on the target soil. PMID:17332259

  19. Removal of Triclocarban and Triclosan during Municipal Biosolid Production

    PubMed Central

    Ogunyoku, Temitope A.; Young, Thomas M.

    2014-01-01

    The antimicrobial compounds triclosan (TCS) and triclocarban (TCC) accumulate in sludges produced during municipal wastewater treatment and persist through sludge treatment processes into finished biosolids. The objective of this research was to determine the extent to which conventional sludge processing systems such as aerobic digestion, anaerobic digestion, and lime stabilization were able to remove TCC and TCS. Sludge and biosolid samples were collected from 10 municipal wastewater treatment plants in the United States. The concentrations of TCC and TCS in sludge and biosolid samples were determined via heated solvent extraction and analysis with liquid chromatography electrospray ionization mass spectrometry. Dry weight concentrations of TCC and TCS frequently were higher in finished biosolids than in the source sludges because of sludge mass reduction during digestion. The removal of TCC and TCS in municipal biosolid processing systems was determined from the measured concentration change after correcting for reductions in solid mass during sludge treatment. Removal in the digester systems ranged from 15 – 68 % for TCC and 20 – 75 % for TCS. Increased solid retention times during sludge treatment operations were correlated with higher removals of TCC and TCS. Apparent first order degradation rates for TCC ranged from 0.015–0.08 1/d and for TCS were between 0.003–0.15 1/d. PMID:24734467

  20. Managing Chemotherapy Side Effects: Infection

    MedlinePlus

    ... ational C ancer I nstitute Managing Chemotherapy Side Effects Infection “I am extra careful to stay away ... doctor or nurse right away. Managing Chemotherapy Side Effects: Infection Take these steps to lower your chances ...

  1. Managing Chemotherapy Side Effects: Diarrhea

    MedlinePlus

    ... ational C ancer I nstitute Managing Chemotherapy Side Effects U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National ... before taking medicine for diarrhea. Managing Chemotherapy Side Effects: Diarrhea These foods and drinks may help if ...

  2. Removal of triclocarban and triclosan during municipal biosolid production.

    PubMed

    Ogunyoku, Temitope A; Young, Thomas M

    2014-03-01

    The antimicrobial compounds triclosan (TCS) and triclocarban (TCC) accumulate in sludges produced during municipal wastewater treatment and persist through sludge treatment processes into finished biosolids. The objective of this research was to determine the extent to which conventional sludge processing systems such as aerobic digestion, anaerobic digestion, and lime stabilization were able to remove TCC and TCS. The concentrations of TCC and TCS in sludge and biosolid samples were determined via heated solvent extraction and analysis with liquid chromatography electrospray ionization mass spectrometry. The removal of TCC and TCS in municipal biosolid processing systems was determined from the measured concentration change after correcting for reductions in solid mass during sludge treatment. Removal in the digester systems ranged from 15 to 68% for TCC and 20 to 75% for TCS. Increased solid retention times during sludge treatment operations were correlated with higher removals of TCC and TCS. PMID:24734467

  3. Metal and nanoparticle occurrence in biosolid-amended soils.

    PubMed

    Yang, Yu; Wang, Yifei; Westerhoff, Paul; Hristovski, Kiril; Jin, Virginia L; Johnson, Mari-Vaughn V; Arnold, Jeffrey G

    2014-07-01

    Metals can accumulate in soils amended with biosolids in which metals have been concentrated during wastewater treatment. The goal of this study is to inspect agricultural sites with long-term biosolid application for a suite of regulated and unregulated metals, including some potentially present as commonly used engineered nanomaterials (ENMs). Sampling occurred in fields at a municipal and a privately operated biosolid recycling facilities in Texas. Depth profiles of various metals were developed for control soils without biosolid amendment and soils with different rates of biosolid application (6.6 to 74 dry tons per hectare per year) over 5 to 25 years. Regulated metals of known toxicity, including chromium, copper, cadmium, lead, and zinc, had higher concentrations in the upper layer of biosolid-amended soils (top 0-30 cm or 0-15 cm) than in control soils. The depth profiles of unregulated metals (antimony, hafnium, molybdenum, niobium, gold, silver, tantalum, tin, tungsten, and zirconium) indicate higher concentrations in the 0-30 cm soil increment than in the 70-100 cm soil increment, indicating low vertical mobility after entering the soils. Titanium-containing particles between 50 nm and 250 nm in diameter were identified in soil by transmission electron microscopy (TEM) coupled with energy dispersive x-ray spectroscopy (EDX) analysis. In conjunction with other studies, this research shows the potential for nanomaterials used in society that enter the sewer system to be removed at municipal biological wastewater treatment plants and accumulate in agricultural fields. The metal concentrations observed herein could be used as representative exposure levels for eco-toxicological studies in these soils. PMID:24742554

  4. Comparison of arsenic content in pelletized poultry house waste and biosolids fertilizer.

    PubMed

    Nachman, Keeve E; Mihalic, Jana N; Burke, Thomas A; Geyh, Alison S

    2008-03-01

    Managers of human biosolids have been incorporating the practice of waste pelletization for use as fertilizer since the mid 1920s, and waste pelletization has recently been embraced by some poultry producers as a way to move nutrients away from saturated agricultural land. However, the presence of arsenic in pelletized poultry house waste (PPHW) resulting from the use of organoarsenical antimicrobial drugs in poultry production raises concerns regarding additional incremental population exposures. Arsenic concentrations were determined in PPHW and pelletized biosolids fertilizer (PBF) samples. Pellets were processed using strong acid microwave digestion and analyzed by graphite furnace atomic absorption spectroscopy. The mean arsenic concentration in PPHW (20.1 ppm) fell within the lower part of the range of previously report arsenic concentrations in unpelletized poultry house waste. Arsenic concentrations in PBF, the source of which is less clear than for PPHW, were approximately a factor of 5 times lower than those in PPHW, with a mean concentration of 4.1 ppm. The pelletization and sale of these biological waste fertilizers present new pathways of exposure to arsenic in consumer populations who would otherwise not come into contact with these wastes. Arsenic exposures in humans resulting from use of these fertilizer pellets should be quantified to avoid potential unintended negative consequences of managing wastes through pelletization. PMID:18023841

  5. Bioaccumulation of triclosan and triclocarban in plants grown in soils amended with municipal dewatered biosolids.

    PubMed

    Prosser, Ryan S; Lissemore, Linda; Topp, Edward; Sibley, Paul K

    2014-05-01

    Biosolids generally contain the microbiocidal agents triclosan (TCS) and triclocarban (TCC) that are persistent during wastewater treatment and sorp to organic material. The present study investigated the concentration of TCS in tissues of radish, carrot, and soybean grown in potted soil amended with biosolids. Highest mean concentrations of TCS in radish, carrot, and soybean root tissue midway through the life cycle were 24.8 ng/g, 49.8 ng/g, and 48.1 ng/g dry weight, respectively; by the conclusion of the test, however, concentrations had declined to 2.1 ng/g, 5.5 ng/g, and 8.4 ng/g dry weight, respectively. Highest mean concentrations of TCS in radish and carrot shoot tissue were 33.7 and 18.3 ng/g dry weight at days 19 and 45, respectively, but had declined to 13.7 ng/g and 5.5 ng/g dry weight at days 34 and 69, respectively. Concentration of TCS in all samples of soybean seeds was below method detection limit (i.e., 2.8 ng/g dry wt). The present study also examined the concentration of TCS and TCC in edible portions of green pepper, carrot, cucumber, tomato, radish, and lettuce plants grown in a field amended with biosolids. Triclosan was detected only in cucumber and radish up to 5.2 ng/g dry weight. Triclocarban was detected in carrot, green pepper, tomato, and cucumber up to 5.7 ng/g dry weight. On the basis of the present study and other studies, we estimate that vegetable consumption represents less than 0.5% of the acceptable daily intake of TCS and TCC. These results demonstrate that, if best management practices for land application of biosolids in Ontario are followed, the concentration of TCS and TCC in edible portions of plants represents a negligible exposure pathway to humans. PMID:24375516

  6. Interfering with therapeutic tranquility: Debates surrounding biosolid waste processing in rural Ontario.

    PubMed

    Mason-Renton, Sarah; Luginaah, Isaac

    2016-09-01

    Uncertainty surrounding potential health effects of techno-industrial facilities continues to result in heightened debate about what are the best and safest options for future generations in rural places regarded by residents for their therapeutic tranquility. This research examines how a proposed biosolid processing facility in rural Ontario producing agricultural fertilizer from primarily urban sewage has in some residents elicited particularly strong concerns about potential health impacts, which are accompanied by perceptions that the tranquil and pastoral nature of their landscape is being altered. However, fueling community conflict between friends and relatives is the contested nature of the landscape's restorative qualities and the facility's disruption of this tranquil place. PMID:27541618

  7. Pathogens and indicators in United States Class B biosolids: national and historic distributions.

    PubMed

    Pepper, Ian L; Brooks, John P; Sinclair, Ryan G; Gurian, Patrick L; Gerba, Charles P

    2010-01-01

    This paper reports on a major study of the incidence of indicator organisms and pathogens found within Class B biosolids within 21 samplings from 18 wastewater treatment plants across the United States. This is the first major study of its kind since the promulgation of the USEPA Part 503 Rule in 1993, and includes samples before and after the Part 503 Rule was promulgated. National distributions collected between 2005 and 2008 show that the incidence of bacterial and viral pathogens in Class B mesophilic, anaerobically digested biosolids were generally low with the exception of adenoviruses, which were more prevalent than enteric viruses. No Ascaris ova were detected in any sample. In contrast, indicator organism numbers were uniformly high, regardless of whether they were bacteria (fecal coliforms) or viruses (phage). Indicators were not correlated with pathogen loads. Historic distributions were collected between 1988 and 2006 at one location in Tucson, AZ. By comparing data collected before and after 1993, the influence of the USEPA Part 503 Rule on indicator and pathogen levels within Class B biosolids can be inferred. In general, the bacterial indicators total and fecal coliforms decreased from the 1980s to present. Enteric virus concentrations after 1993 are much lower than those reported in other studies in the 1980s, although our values from 1988 to 1993 are not significantly different from our values obtained from 1994 to 2006. Presumably this is due to better and more consistent treatment of the wastewater, illustrating that the Part 503 Rule has been effective in reducing public exposure to pathogens relative to 17 yr ago. The percent reduction of both indicators and pathogens during anaerobic mesophilic digestion was between 94 and 99% for all organisms, illustrating that such treatment is effective in reducing pathogen loads. PMID:21284317

  8. Factors Affecting Distribution of Estrogenicity in the Influents, Effluents, and Biosolids of Canadian Wastewater Treatment Plants.

    PubMed

    Shieh, Ben H H; Louie, Alvin; Law, Francis C P

    2016-05-01

    Canadian wastewater treatment plants (WWTPs) release significant amounts of estrogenic chemicals to nearby surface waters. Environmental estrogens have been implicated as the causative agents of many developmental and reproductive problems in animals, including fish. The goals of this study were to assess the estrogenic activity in the influents, effluents, and biosolids of thirteen Canadian WWTPs using the yeast estrogen screen (YES) bioassay and to investigate whether factors, such as wastewater treatment method, sample storage, extraction efficiency, population, and summer/winter temperature had any effects on the distribution of estrogenicity in the WWTPs. Results of the study showed that estrogenicity from the influent to the effluent decreased in seven WWTPs, increased in two WWTPs, and did not change in four WWTPs during the winter. Estrogenic concentrations generally decreased in the order of biosolids > influents > effluents and ranged from 1.57 to 24.6, 1.25E-02 to 3.84E-01, and 9.46E-03 to 3.90E-01 ng estradiol equivalents/g or ml, respectively. The estrogenicity in the final effluents, but not those in the influents and biosolids, was significantly higher in the summer than the winter. Among the WWTP treatment methods, advanced, biological nutrient removal appeared to be the most effective method to remove estrogenic chemicals from wastewaters in Canada. Our studies help to identify factors or mechanisms that affect the distribution of estrogenicity in WWTPs, providing a better understanding on the discharges of estrogenic chemicals from WWTPs. PMID:26433808

  9. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.

    PubMed

    Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E

    2015-01-01

    Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped. PMID:25174422

  10. Greening a Steel Mill Slag Brownfield with Biosolids and Sediments: A Case Study.

    PubMed

    Brose, Dominic A; Hundal, Lakhwinder S; Oladeji, Olawale O; Kumar, Kuldip; Granato, Thomas C; Cox, Albert; Abedin, Zainul

    2016-01-01

    The former US Steel Corporation's South Works site in Chicago, IL, is a 230-ha bare brownfield consisting of steel mill slag fill materials that will need to be reclaimed to support and sustain vegetation. We conducted a case study to evaluate the suitability of biosolids and dredged sediments for capping the steel mill slag to establish good quality turfgrass vegetation. Eight study plots were established on a 0.4-ha parcel that received biosolids and dredged sediment blends of 0, 25, 50, or 100% biosolids (v/v). Turfgrass was successfully established and was thicker and greener in biosolids-amended sediments than in unamended sediments. Concentrations of N, P, K, and micronutrients in turfgrass tissues increased with increasing biosolids. Soil organic carbon, N, P, and micronutrients increased with increasing biosolids. Cadmium, Cu, Ni, and Zn concentrations in biosolids-amended sediments also increased with increasing biosolids but were far below phytotoxicity limits for turfgrass. Lead and Cr concentrations in biosolids-amended plots were comparable to concentrations in unamended sediments. Groundwater monitoring lysimeters and wells below the study site and near Lake Michigan were not affected by nutrients leaching from the amendments. Overall, the results from this case study demonstrated that blends of biosolids and dredged sediments could be successfully used for capping steel mill slag brownfield sites to establish good quality turfgrass vegetation. PMID:26828160

  11. Human health risk assessment of triclosan in land-applied biosolids.

    PubMed

    Verslycke, Tim; Mayfield, David B; Tabony, Jade A; Capdevielle, Marie; Slezak, Brian

    2016-09-01

    Triclosan (5-chloro-2-[2,4-dichlorophenoxy]-phenol) is an antimicrobial agent found in a variety of pharmaceutical and personal care products. Numerous studies have examined the occurrence and environmental fate of triclosan in wastewater, biosolids, biosolids-amended soils, and plants and organisms exposed to biosolid-amended soils. Triclosan has a propensity to adhere to organic carbon in biosolids and biosolid-amended soils. Land application of biosolids containing triclosan has the potential to contribute to multiple direct and indirect human health exposure pathways. To estimate exposures and human health risks from biosolid-borne triclosan, a risk assessment was conducted in general accordance with the methodology incorporated into the US Environmental Protection Agency's Part 503 biosolids rule. Human health exposures to biosolid-borne triclosan were estimated on the basis of published empirical data or modeled using upper-end environmental partitioning estimates. Similarly, a range of published triclosan human health toxicity values was evaluated. Margins of safety were estimated for 10 direct and indirect exposure pathways, both individually and combined. The present risk assessment found large margins of safety (>1000 to >100 000) for potential exposures to all pathways, even under the most conservative exposure and toxicity assumptions considered. The human health exposures and risks from biosolid-borne triclosan are concluded to be de minimis. Environ Toxicol Chem 2016;35:2358-2367. © 2016 SETAC. PMID:27552397

  12. Determination of Biosolids Phosphorus Solubility and Its Relationship to Wastewater Treatment.

    PubMed

    Jameson, Molly; White, Jeffrey G; Osmond, Deanna L; Aziz, Tarek

    2016-07-01

    In North Carolina (NC), biosolids land application rates governed by crop nitrogen (N) requirements typically surpass crop phosphorus (P) needs, increasing surface water pollution potential. The NC Department of Environmental Quality (NCDEQ) is considering P-based biosolids application guidelines for some nutrient-impaired watersheds using the P Loss Assessment Tool (PLAT), but important biosolids information is lacking: total P (TP), water-extractable P (WEP), and percent water-extractable P (PWEP). In each of three seasons, we sampled 28 biosolids from 26 participating water resource recovery facilities (WRRFs) and analyzed for TP, WEP, and percent dry matter (DM), from which PWEP and nonsoluble P were calculated. Based on descriptive statistics and an online survey of treatment processes, biosolids were divided into Class A-alkaline, Class A-heat, Class B-slurry, and Class B-cake. The average TP in Class A alkaline stabilized biosolids was more than five times less than the average of the other biosolids, 5.0 vs. 26.6 g/kg, respectively. Averaged over biosolids, WEP and PWEP were 1.4 g/kg and 5.0%, respectively. Stabilization processes appeared to reduce WEP substantially, so biosolids potential soluble-P loss is low. Our data will allow PLAT to be used for biosolids P-loss risk assessments. PMID:27329056

  13. Particulate matter composition and emission rates from the disk incorporation of class B biosolids into soil

    NASA Astrophysics Data System (ADS)

    Paez-Rubio, Tania; Xin, Hua; Anderson, James; Peccia, Jordan

    Biosolids contain metal, synthetic organic compound, endotoxin, and pathogen concentrations that are greater than concentrations in the agricultural soils to which they are applied. Once applied, biosolids are incorporated into soils by disking and the aerosols produced during this process may pose an airborne toxicological and infectious health hazard to biosolids workers and nearby residents. Field studies at a Central Arizona biosolids land application site were conducted to characterize the physical, chemical, and biological content of the aerosols produced during biosolids disking and the content of bulk biosolids and soils from which the aerosols emanate. Arrayed samplers were used to estimate the vertical source aerosol concentration profile to enable plume height and associated source emission rate calculations. Source aerosol concentrations and calculated emission rates reveal that disking is a substantial source of biosolids-derived aerosols. The biosolids emission rate during disking ranged from 9.91 to 27.25 mg s -1 and was greater than previously measured emission rates produced during the spreading of dewatered biosolids or the spraying of liquid biosolids. Adding biosolids to dry soils increased the moisture content and reduced the total PM 10 emissions produced during disking by at least three times. The combination of bulk biosolids and aerosol measurements along with PM 10 concentrations provides a framework for estimating aerosol concentrations and emission rates by reconstruction. This framework serves to eliminate the difficulty and inherent limitations associated with monitoring low aerosol concentrations of toxic compounds and pathogens, and can promote an increased understanding of the associated biosolids aerosol health risks to workers and nearby residents.

  14. Effective Public Management

    ERIC Educational Resources Information Center

    Bower, Joseph L.

    1977-01-01

    Argues that public management differs from private management not just in degree but in quality, so that American business is an inappropriate analogy for evaluating public management. In particular, "purpose,""organization," and "people" have different meaning and significance in public agencies and private businesses. (JG)

  15. Sustainability of land-application of class B liquid biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sustainability of land-application of Class B liquid biosolids can be evaluated based on a review of the literature with respect to: a) long term field plot studies; and b) more recent studies on the fate and transport of potential biological and chemical hazards resulting from land-application....

  16. Transformation of Silver Nanoparticles in Fresh, Aged, and Incinerated Biosolids

    EPA Science Inventory

    Abstract The purpose of this research was to assess the chemical transformation of silver nanoparticles (AgNPs) in aged, fresh, and incinerated biosolids in order to provide information for AgNP life cycle analyses. Silver nanoparticles were introduced to the influent of a pilot...

  17. EVALUATION OF BIOAEROSOL COMPONENTS ASSOCIATED WITH BIOSOLIDS LAND APPLICATION

    EPA Science Inventory

    Certain deaths and illnesses have been associated with biosolids application sites, although this has not been proven. The USEPA and USDA will monitor bioaerosols during and after land application of sewage sludge to determine the airborne quantity of specific bioaerosol componen...

  18. Utilizing water treatment residuals to reduce phosphorus runoff from biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 40% of biosolids (sewage sludge) produced in the U.S. are incinerated or landfilled rather than land applied due to concern over non-point source phosphorus (P) runoff. The objective of this study was to determine the impact of chemical amendments on water-extractable P (WEP) in appli...

  19. Uptake coefficients for biosolids-amended dryland winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids regulations developed in the United States employed risk assessment impacts of trace element additions on plant uptake. The US Environmental Protection Agency adapted the uptake coefficient (ratio of plant concentration to quantity of element added) when developing limitations on selected...

  20. Source of aersolized bacteria during land application of biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of biosolids can lead to the generation of bioaerosols downwind of the operation, however bioaerosols can also potentially be associated with a number of other onsite sources including soil. The purpose of this study was to determine the diversity of bacterial communities associate...

  1. Biosolids and manure: Antibiotic resistant bacteria and endotoxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of manure and biosolids is a common approach for recapturing and recycling nutrients, moisture, and organic matter present in these residuals, and is currently the most feasible approach to their respective disposals. Although land application of these wastes is common, the presenc...

  2. Fate of tricloasa and methyltriclosan from biosolids application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids contain synthetic chemicals such as Triclosan (TCS) which is heavily used as an antibacterial compound with endocrine disruptor properties. Thus, TCS has the potential to alter soil microbial communities and disrupt endocrine functions if they move offsite. Due to its low solubility and ...

  3. RANGELAND BIOSOLIDS APPLICATIONS AFFECTS ON PLANT PRODUCTIVITY AND SPECIES DIVERSITY.

    EPA Science Inventory

    The study site contains a total of 6 treatment plots replicated 4 times in a randomized complete block design. In spring 2002, biosolids will be reapplied to one-half of each treatment plot at the appropriate rate, except for the 0 Mg ha-1 treatment. The following parameters wi...

  4. Fate of biosolids trace metals in a dryland wheat agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids land application for beneficial reuse applies varying amounts of trace metals to soils. Measuring plant-available or total soil metals is typically performed to ensure environmental protection, yet these techniques do not quantify which soil phases play important roles in terms of metal r...

  5. Modeling nitric oxide emissions from biosolid amended soils

    NASA Astrophysics Data System (ADS)

    Roelle, Paul A.; Aneja, Viney P.; Mathur, Rohit; Vukovich, Jeff; Peirce, Jeffrey

    Utilizing a state-of-the-art mobile laboratory in conjunction with a dynamic flow-through chamber system, nitric oxide concentrations [NO] were measured and NO fluxes were calculated during the summer, winter and spring of 1999/2000. The field site where these measurements were conducted was an agricultural soil amended with biosolids from a municipal wastewater treatment facility. These NO flux values were then used to assess the impact of including biosolid amended soils as a land-use class in an air quality model. The average NO flux from this biosolid amended soil was found to be exponentially dependent on soil temperature [NO Flux ( ng N m-2 s-1)=1.07 exp(0.14 T soil) ; R2=0.81—NO Flux=71.3 ng N m -2 s-1 at 30°C]. Comparing this relationship to results of the widely applied biogenic emissions inventory system (BEIS2) model revealed that for this field site, if the BEIS2 model was used, the NO emissions would have been underestimated by a factor of 26. Using this newly developed NO flux algorithm, combined with North Carolina Division of Water Quality statistics on how many biosolid amended acres are permitted per county, county-based NO inventories from these biosolid amended soils were calculated. Results from this study indicate that county-level biogenic NO emissions can increase by as much as 18% when biosolid amended soils are included as a land-use class. The multiscale air quality simulation platform (MAQSIP) was then used to determine differences in ozone (O 3) and odd-reactive nitrogen compounds (NO y) between models run with and without the biosolid amended acreages included in the inventory. Results showed that during the daytime, when atmospheric mixing heights are typically at their greatest, any increase in O 3 or NO y concentrations predicted by the model were small (<3%). In some locations during late evening/early morning hours, ozone was found to be consumed by as much as 11%.

  6. Bioaerosols from the land application of biosolids in the desert southwest USA.

    PubMed

    Brooks, J P; Tanner, B D; Josephson, K L; Gerba, C P; Pepper, I L

    2004-01-01

    This study evaluated bioaerosol emissions during land application of Class B biosolids in and around Tucson, Arizona, to aid in developing models of the fate and transport of bioaerosols generated from the land application of biosolids. Samples were collected for 20 min at distances between 2 m and 20 m downwind of point sources, using an SKC BioSampler impinger. A total of six samples were collected per sampling event, which consisted of a biosolid spray applicator applying liquid biosolids to a cotton field. Each application represented one exposure. Samples were collected in deionised water amended with peptone and antifoam agent. Ambient weather conditions were also monitored every 10 min following initiation of sampling. Concurrently with downwind samples, background (ambient) air samples were collected to compensate for any ambient airborne microorganisms. In addition, biosolids samples were collected for analysis of target indicator and pathogenic organisms. Soil samples were also collected and analysed. Significant numbers of heterotrophic plate count (HPC) bacteria were found in air samples collected during the biosolid application process. These could have arisen from soil particles being aerosolised during the land application process. Aerosolised soil may contribute significantly to the amount of aerosolised microorganisms. Soil particles may be able to more readily aerosolise, due to their low density, small particle size and low mass. Aerosolised HPC bacteria found during biosolids land application were similar to those found during normal tractor operation on non-biosolids applied fields. Coliforms and coliphages were not routinely detected even though they were found to be present in the biosolids at relatively high concentrations, 10(6) and 10(4)/g (dry weight) of biosolids respectively. This could be due to the die-off rate of aerosolised Gram-negative bacteria or sorption to the solid portion of the biosolids. Low numbers of aerosolised

  7. Energy recovery from biosolids: The City of Los Angeles experience

    SciTech Connect

    Haug, R.T.; Moore, G.L.; Harrison, D.S.

    1995-11-01

    The City of Los Angeles` Hyperion Treatment Plant serves an area of 1,500 sq km (600 sq mi) with a contributory population of nearly 4 million. The plant currently produces more than 250 dry tonnes per day (dtpd) of digested, dewatered biosolids and is being expanded and upgraded to provide pure oxygen, full secondary treatment by 1998. The modern Hyperion Plant began operating in 1951. Since that time, Hyperion has provided anaerobic digestion for its biosolids and has used the produced biogas for power generation. In the 1980`s the City completed a major expansion of its power generation and biosolids handling facilities at Hyperion. These facilities became known as the Hyperion Energy Recovery System (HERS) and their objective is to maximize the recovery of energy from the renewable biosolids. Today, these facilities are operational and continue to be modified to optimize performance and expanded to meet the increased loadings from full secondary treatment. Biogas produced by the anaerobic digestion process is compressed, scrubbed to remove H{sub 2}S, and used to power a gas turbine, combined cycle cogeneration system. Emergency flares are provided in the event of a power plant outage. A portion of the biosolids are transported offsite for beneficial reuse, such as composting and direct land application. The remaining solids are centrifugally dewatered and dried by indirect rotary dryers to produce about 50 dtpd of dried biofuel. Biofuel produced from the drying processes is fired in a fluidized bed gasification and staged combustion process (FBC) designed to recover energy and reduce air emissions. Superheated steam is produced in a waste heat boiler and converted to electrical power is a condensing steam turbine. Bioash from the FBC`s is contracted for off-site reuse, primarily as a fluxing agent in copper smelting and as a source of silica, aluminum, iron and calcium for manufacture of portland cement.

  8. Fate of endocrine-active compounds during municipal biosolids treatment: a review.

    PubMed

    Citulski, Joel A; Farahbakhsh, Khosrow

    2010-11-15

    For two decades, the fates of endocrine-disrupting compounds (EDCs) across various wastewater treatment processes have been studied using chemical and in vitro bioassay measurements. In comparison, little work has been conducted to track the fates of EDCs during municipal biosolids stabilization, particularly using bioassay approaches. This leads to knowledge gaps with respect to understanding which single or combined biosolid treatments facilitate EDC removal, and what the total endocrine-active potency of treated biosolids might be. These unknowns in turn heighten public opposition and distrust of biosolids reuse applications. This review aims to summarize what is currently known regarding EDC removal during commonly used full-scale biosolids treatment processes and highlights analytical challenges that are relevant when in vitro bioassays and chemical analyses are applied to biosolids samples. PMID:20961053

  9. MOBILIZATION OF ENDOCRINE DISRUPTING CHEMICALS AND ESTROGENIC ACTIVITY IN SIMULATED RAINFALL RUNOFF FROM LAND-APPLIED BIOSOLIDS

    PubMed Central

    Giudice, Ben D.; Young, Thomas M.

    2012-01-01

    Municipal biosolids are commonly applied to land as soil amendment or fertilizer as a form of beneficial reuse of what could otherwise be viewed as waste. Balanced against this benefit are potential risks to groundwater and surface water quality from constituents that may be mobilized during storm events. The objective of the present study was to characterize the mobilization of selected endocrine disrupting compounds (EDCs), heavy metals, and total estrogenic activity in rainfall runoff from land-applied biosolids. Rainfall simulations were conducted on soil plots amended with biosolids. Surface runoff and leachate was collected and analyzed for the EDCs bisphenol A, 17α-ethynylestradiol, triclocarban, triclosan, octylphenol, and nonylphenol; a suite of sixteen metals; and estrogenic activity via the ER-CALUX bioassay. Triclocarban (2.3–17.3 ng/L), triclosan (<51–309 ng/L), and octylphenol (<4.9–203 ng/L) were commonly detected. Chromium (2.0–22 µg/L), cobalt (2.5–10 µg/L), nickel (28–235 µg/L), copper (14–110 µg/L), arsenic (1.2–2.7 µg/L), and selenium (0.29–12 µg/L) were quantifiable over background levels. Triclosan, nickel, and copper were detected at levels that might pose some risk to aquatic life, though levels of metals in the biosolids were well below maximum allowable regulatory limits. ER-CALUX results were mostly explained by background bisphenol A contamination and octylphenol in runoff, though unknown contributors and/or matrix effects were also found. PMID:21786314

  10. Validation of mega composite sampling and nationwide mass inventories for 26 previously unmonitored contaminants in archived biosolids from the U.S National Biosolids Repository

    PubMed Central

    Chari, Bipin P.; Halden, Rolf U.

    2012-01-01

    In the present study, archived U.S biosolids from the 2001 Environmental Protection Agency (EPA) National Sewage Sludge Survey were analyzed with an expanded U.S EPA Method 1694, to determine the occurrence of 26 previously unmonitored pharmaceuticals and personal care products (PPCPs) among a total of 120 analytes. The study further served to examine the reproducibility of a mega-composite approach for creating chemical mass inventories in biosolids based on pooled samples from wastewater treatment plants (WWTPs) nationwide. Five mega-composites reflecting 94 WWTPs in 32 states and the District of Columbia were constructed from archived biosolids and analyzed by LC/ESI-MS/MS using a newly introduced analytical method expanding upon U.S EPA Method 1694. In addition, soil-biosolids mixtures from a mesocosm setup were analyzed to experimentally determine the half-lives of biosolids-borne compounds applied on U.S land. Among 59 analytes detected, 33 had been reported previously, whereas 26 are reported in biosolids for the first time, at levels ranging from 1.65 to 673 μg kg−1 dry weight. Newly recognized biosolids constituents were identified as Ca2+ channel blockers, antidepressants, diuretics, β-blockers and analgesics. Using a mass balance approach, the total loading of these 26 pharmaceuticals to U.S soils from biosolids land application was estimated at 5–15 tons year−1. Past and present datasets for 30 pharmaceuticals and personal care products (PPCPs) were determined to be statistically indistinguishable (paired t-test; p = 0.01). This study expands the list of PPCPs reported in U.S biosolids, provides the first estimates of nationwide release rates to and environmental half-lives in U.S agricultural soils, and confirms the utility of using mega-composite sampling for economical tracking of chemical inventories in biosolids on a national scale. PMID:22789759

  11. Ground-Water Quality in the Vicinity of Coal-Refuse Areas Reclaimed with Biosolids in Fulton County, Illinois

    USGS Publications Warehouse

    Morrow, William S.

    2007-01-01

    The Metropolitan Water Reclamation District of Greater Chicago has applied biosolids, followed by revegetation, to reclaim three coal-refuse areas. Most of the reclamation at the three sites was done from 1989 through 1992, and included the application of lime, clay, and various loads of biosolids up to 1,000 dry tons per acre. Water samples collected from 12 monitoring wells installed in the vicinity of the three reclaimed coal-refuse areas were analyzed to better understand the hydrogeology and water-quality effects. Ground water probably flows along preferential paths in the disturbed coal-refuse areas, and is impeded by undisturbed glacial till. Most of the samples contained elevated concentrations of sulfate, iron, and manganese, constituents associated with ground water in coal-mined areas. Concentrations of aluminum, cadmium, nickel, or zinc were somewhat elevated in samples from four wells, and greatest in water samples with pH less than 5. The smaller nutrient concentrations indicate that the applied biosolids are not identifiably affecting nutrients or metal concentrations in shallow ground water near the refuse piles. The coal refuse likely is the primary influence on the chemical characterization of ground-water in the area.

  12. Survey of organic wastewater contaminants in biosolids destined for land application

    USGS Publications Warehouse

    Kinney, C.A.; Furlong, E.T.; Zaugg, S.D.; Burkhardt, M.R.; Werner, S.L.; Cahill, J.D.; Jorgensen, G.R.

    2006-01-01

    In this study, the presence, composition, and concentrations of organic wastewater contaminants (OWCs) were determined in solid materials produced during wastewater treatment. This study was undertaken to evaluate the potential of these solids, collectively referred to as biosolids, as a source of OWCs to soil and water in contact with soil. Nine different biosolid products, produced by municipal wastewater treatment plants in seven different states, were analyzed for 87 different OWCs. Fifty-five of the OWCs were detected in at least one biosolid product. The 87 different OWCs represent a diverse cross section of emerging organic contaminants that enter wastewater treatment plants and may be discharged without being completely metabolized or degraded. A minimum of 30 and a maximum of 45 OWCs were detected in any one biosolid. The biosolids used in this study are produced by several production methods, and the plants they originate from have differing population demographics, yet the percent composition of total OWC content, and of the most common OWCs, typically did not vary greatly between the biosolids tested. The summed OWC content ranged from 64 to 1811 mg/kg dry weight. Six biosolids were collected twice, 3-18 months apart, and the total OWC content of each biosolid varied by less than a factor of 2. These results indicate that the biosolids investigated in this study have OWC compositions and concentrations that are more similar than different and that biosolids are highly enriched in OWCs (as mass-normalized concentrations) when compared to effluents or effluent-impacted water. These results demonstrate the need to better describe the composition and fate of OWCs in biosolids since about 50% of biosolids are land applied and thus become a potentially ubiquitous nonpoint source of OWCs into the environment. ?? 2006 American Chemical Society.

  13. Reclamation of acid sulfate soils using lime-stabilized biosolids.

    PubMed

    Orndorff, Zenah W; Daniels, W Lee; Fanning, Delvin S

    2008-01-01

    Excavation of sulfidic materials during construction has resulted in acid rock drainage (ARD) problems throughout Virginia. The most extensive documented uncontrolled disturbance at a single location is Stafford Regional Airport (SRAP) in Stafford, Virginia. Beginning in 1998, over 150 ha of sulfidic Coastal Plain sediments were disturbed, including steeply sloping cut surfaces and spoils placed into fills. Acid sulfate soils developed, and ARD generated on-site degraded metal and concrete structures and heavily damaged water quality with effects noted over 1 km downstream. The site was not recognized as sulfidic until 2001 when surface soil sampling revealed pH values ranging from 1.9 to 5.3 and peroxide potential acidity (PPA) values ranging from 1 to 42 Mg CaCO(3) per 1000 Mg material. In February 2002 a water quality program was established in and around the site to monitor baseline pH, EC, NO(3)-N, NH(4)-N, PO(4)-P, Fe, Al, Mn, and SO(4)-S, and initial pH values as low as 2.9 were noted in on-site receiving streams. In the spring and fall of 2002, the site was treated with variable rates of lime-stabilized biosolids, straw-mulch, and acid- and salt-tolerant legumes and grasses. By October 2002, the site was fully revegetated (> or = 90% living cover) with the exception of a few highly acidic outcrops and seepage areas. Surface soil sampling in 2003, 2004, and 2006 revealed pH values typically > 6.0. Water quality responded quickly to treatment, although short-term NH(4)(+) release occurred. Despite heavy loadings, no significant surface water P losses were observed. PMID:18574176

  14. Bacterial pathogen indicators regrowth and reduced sulphur compounds' emissions during storage of electro-dewatered biosolids.

    PubMed

    Navab-Daneshmand, Tala; Enayet, Samia; Gehr, Ronald; Frigon, Dominic

    2014-10-01

    Electro-dewatering (ED) increases biosolids dryness from 10-15 to 30-50%, which helps wastewater treatment facilities control disposal costs. Previous work showed that high temperatures due to Joule heating during ED inactivate total coliforms to meet USEPA Class A biosolids requirements. This allows biosolids land application if the requirements are still met after the storage period between production and application. In this study, we examined bacterial regrowth and odour emissions during the storage of ED biosolids. No regrowth of total coliforms was observed in ED biosolids over 7d under aerobic or anaerobic incubations. To mimic on-site contamination during storage or transport, ED samples were seeded with untreated sludge. Total coliform counts decreased to detection limits after 4d in inoculated samples. Olfactometric analysis of ED biosolids odours showed that odour concentrations were lower compared to the untreated and heat-treated control biosolids. Furthermore, under anaerobic conditions, odorous reduced sulphur compounds (methanethiol, dimethyl sulphide and dimethyl disulphide) were produced by untreated and heat-treated biosolids, but were not detected in the headspaces above ED samples. The data demonstrate that ED provides advantages not only as a dewatering technique, but also for producing biosolids with lower microbial counts and odour levels. PMID:25065797

  15. Phytoaccumulation of antimicrobials from biosolids: impacts on environmental fate and relevance to human exposure.

    PubMed

    Aryal, Niroj; Reinhold, Dawn M

    2011-11-01

    Triclocarban and triclosan, two antimicrobials widely used in consumer products, can adversely affect ecosystems and potentially impact human health. The application of biosolids to agricultural fields introduces triclocarban and triclosan to soil and water resources. This research examined the phytoaccumulation of antimicrobials, effects of plant growth on migration of antimicrobials to water resources, and relevance of phytoaccumulation in human exposure to antimicrobials. Pumpkin, zucchini, and switch grass were grown in soil columns to which biosolids were applied. Leachate from soil columns was assessed every other week for triclocarban and triclosan. At the end of the trial, concentrations of triclocarban and triclosan were determined for soil, roots, stems, and leaves. Results indicated that plants can reduce leaching of antimicrobials to water resources. Pumpkin and zucchini growth significantly reduced soil concentrations of triclosan to less than 0.001 mg/kg, while zucchini significantly reduced soil concentrations of triclocarban to 0.04 mg/kg. Pumpkin, zucchini, and switch grass accumulated triclocarban and triclosan in mg per kg (dry) concentrations. Potential human exposure to triclocarban from consumption of pumpkin or zucchini was substantially less than exposure from product use, but was greater than exposure from drinking water consumption. Consequently, research indicated that pumpkin and zucchini may beneficially impact the fate of antimicrobials in agricultural fields, while presenting minimal acute risk to human health. PMID:21903237

  16. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    PubMed

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while

  17. Predicting the concentration range of unmonitored chemicals in wastewater-dominated streams and in run-off from biosolids-amended soils.

    PubMed

    Chari, Bipin P; Halden, Rolf U

    2012-12-01

    Organic compounds such as sterols and hormones have been detected in surface waters at ecologically relevant concentrations with sources including effluent discharged from publicly owned treatment works (POTWs) as well as leachate and runoff from land amended with municipal sludge (biosolids). Greater than 20% of regulated effluents discharged into U.S. surface waters experience in-stream dilution of <10-fold and potential impacts are particularly likely in receiving waters dominated by POTW effluents. The increasing use of biosolids on agricultural land exerts additional stress, thereby necessitating environmental monitoring for potential ecological and human health effects. Alternatively or in addition to monitoring efforts, screening for potentially hazardous chemicals can be performed using empirical models that are scalable and can deliver results rapidly. The present study makes use of data from U.S. EPA's Targeted National Sewage Sludge Survey (TNSSS) to predict the aqueous-phase concentrations and removal efficiencies of 10 sterols (campesterol, β-sitosterol, stigmasterol, β-stigmastanol, cholesterol, desmosterol, cholestanol, coprostanol, epicoprostanol, and ergosterol) as well as the putative toxicity posed by four specific hormones based on their reported biosolids concentrations using published empirical models. Model predictions indicate that removal efficiencies for sterols are uniformly high (~99%) and closely match removal rates calculated from chemical monitoring at POTWs (paired t-test; p=0.01). Results from toxicity modeling indicate that the hormones estrone, estradiol and estriol had the highest leaching potentials amongst the compounds considered here and that 17 β-ethinylestradiol was found to pose a potentially significant threat to fathead minnows (Pimephales promelas) via run-off or leaching from biosolids-amended fields. This study exemplifies the use of in silico analysis to (i) identify potentially problematic organic compounds in

  18. Source Tracking Aerosols Released from Land-Applied Class B Biosolids during High-Wind Events▿

    PubMed Central

    Baertsch, Carolina; Paez-Rubio, Tania; Viau, Emily; Peccia, Jordan

    2007-01-01

    DNA-based microbial source tracking (MST) methods were developed and used to specifically and sensitively track the unintended aerosolization of land-applied, anaerobically digested sewage sludge (biosolids) during high-wind events. Culture and phylogenetic analyses of bulk biosolids provided a basis for the development of three different MST methods. They included (i) culture- and 16S rRNA gene-based identification of Clostridium bifermentans, (ii) direct PCR amplification and sequencing of the 16S rRNA gene for an uncultured bacterium of the class Chloroflexi that is commonly present in anaerobically digested biosolids, and (iii) direct PCR amplification of a 16S rRNA gene of the phylum Euryarchaeota coupled with terminal restriction fragment length polymorphism to distinguish terminal fragments that are unique to biosolid-specific microorganisms. Each method was first validated with a broad group of bulk biosolids and soil samples to confirm the target's exclusive presence in biosolids and absence in soils. Positive responses were observed in 100% of bulk biosolid samples and in less than 11% of the bulk soils tested. Next, a sampling campaign was conducted in which all three methods were applied to aerosol samples taken upwind and downwind of fields that had recently been land applied with biosolids. When average wind speeds were greater than 5 m/s, source tracking results confirmed the presence of biosolids in 56% of the downwind samples versus 3% of the upwind samples. During these high-wind events, the biosolid concentration in downwind aerosols was between 0.1 and 2 μg/m3. The application of DNA-based source tracking to aerosol samples has confirmed that wind is a possible mechanism for the aerosolization and off-site transport of land-applied biosolids. PMID:17513591

  19. Land application of sewage sludge (biosolids) in Australia: risks to the environment and food crops.

    PubMed

    Pritchard, D L; Penney, N; McLaughlin, M J; Rigby, H; Schwarz, K

    2010-01-01

    Australia is a large exporter of agricultural products, with producers responsible for a range of quality assurance programs to ensure that food crops are free from various contaminants of detriment to human health. Large volumes of treated sewage sludge (biosolids), although low by world standards, are increasingly being recycled to land, primarily to replace plant nutrients and to improve soil properties; they are used in agriculture, forestry, and composted. The Australian National Biosolids Research Program (NBRP) has linked researchers to a collective goal to investigate nutrients and benchmark safe concentrations of metals nationally using a common methodology, with various other research programs conducted in a number of states specific to regional problems and priorities. The use of biosolids in Australia is strictly regulated by state guidelines, some of which are under review following recent research outcomes. Communication and research between the water industry, regulators and researchers specific to the regulation of biosolids is further enhanced by the Australian and New Zealand Biosolids Partnership (ANZBP). This paper summarises the major issues and constraints related to biosolids use in Australia using specific case examples from Western Australia, a member of the Australian NBRP, and highlights several research projects conducted over the last decade to ensure that biosolids are used beneficially and safely in the environment. Attention is given to research relating to plant nutrient uptake, particularly nitrogen and phosphorus (including that of reduced phosphorus uptake in alum sludge-amended soil); the risk of heavy metal uptake by plants, specifically cadmium, copper and zinc; the risk of pathogen contamination in soil and grain products; change to soil pH (particularly following lime-amended biosolids); and the monitoring of faecal contamination by biosolids in waterbodies using DNA techniques. Examples of products that are currently

  20. Source tracking aerosols released from land-applied class B biosolids during high-wind events.

    PubMed

    Baertsch, Carolina; Paez-Rubio, Tania; Viau, Emily; Peccia, Jordan

    2007-07-01

    DNA-based microbial source tracking (MST) methods were developed and used to specifically and sensitively track the unintended aerosolization of land-applied, anaerobically digested sewage sludge (biosolids) during high-wind events. Culture and phylogenetic analyses of bulk biosolids provided a basis for the development of three different MST methods. They included (i) culture- and 16S rRNA gene-based identification of Clostridium bifermentans, (ii) direct PCR amplification and sequencing of the 16S rRNA gene for an uncultured bacterium of the class Chloroflexi that is commonly present in anaerobically digested biosolids, and (iii) direct PCR amplification of a 16S rRNA gene of the phylum Euryarchaeota coupled with terminal restriction fragment length polymorphism to distinguish terminal fragments that are unique to biosolid-specific microorganisms. Each method was first validated with a broad group of bulk biosolids and soil samples to confirm the target's exclusive presence in biosolids and absence in soils. Positive responses were observed in 100% of bulk biosolid samples and in less than 11% of the bulk soils tested. Next, a sampling campaign was conducted in which all three methods were applied to aerosol samples taken upwind and downwind of fields that had recently been land applied with biosolids. When average wind speeds were greater than 5 m/s, source tracking results confirmed the presence of biosolids in 56% of the downwind samples versus 3% of the upwind samples. During these high-wind events, the biosolid concentration in downwind aerosols was between 0.1 and 2 microg/m3. The application of DNA-based source tracking to aerosol samples has confirmed that wind is a possible mechanism for the aerosolization and off-site transport of land-applied biosolids. PMID:17513591

  1. Predicting concentrations of trace organic compounds in municipal wastewater treatment plant sludge and biosolids using the PhATE™ model.

    PubMed

    Cunningham, Virginia L; D'Aco, Vincent J; Pfeiffer, Danielle; Anderson, Paul D; Buzby, Mary E; Hannah, Robert E; Jahnke, James; Parke, Neil J

    2012-07-01

    This article presents the capability expansion of the PhATE™ (pharmaceutical assessment and transport evaluation) model to predict concentrations of trace organics in sludges and biosolids from municipal wastewater treatment plants (WWTPs). PhATE was originally developed as an empirical model to estimate potential concentrations of active pharmaceutical ingredients (APIs) in US surface and drinking waters that could result from patient use of medicines. However, many compounds, including pharmaceuticals, are not completely transformed in WWTPs and remain in biosolids that may be applied to land as a soil amendment. This practice leads to concerns about potential exposures of people who may come into contact with amended soils and also about potential effects to plants and animals living in or contacting such soils. The model estimates the mass of API in WWTP influent based on the population served, the API per capita use, and the potential loss of the compound associated with human use (e.g., metabolism). The mass of API on the treated biosolids is then estimated based on partitioning to primary and secondary solids, potential loss due to biodegradation in secondary treatment (e.g., activated sludge), and potential loss during sludge treatment (e.g., aerobic digestion, anaerobic digestion, composting). Simulations using 2 surrogate compounds show that predicted environmental concentrations (PECs) generated by PhATE are in very good agreement with measured concentrations, i.e., well within 1 order of magnitude. Model simulations were then carried out for 18 APIs representing a broad range of chemical and use characteristics. These simulations yielded 4 categories of results: 1) PECs are in good agreement with measured data for 9 compounds with high analytical detection frequencies, 2) PECs are greater than measured data for 3 compounds with high analytical detection frequencies, possibly as a result of as yet unidentified depletion mechanisms, 3) PECs are less

  2. Effective School Management. Fourth Edition

    ERIC Educational Resources Information Center

    Everard, K.B.; Morris, Geoffrey; Wilson, Ian

    2004-01-01

    The main purpose of this book is to help teachers with senior management responsibilities, and the schools and colleges that they work in, to become more effective. It is a book by practitioners for practitioners. They authors believe their book is unique, because there are so few people who have had enough management responsibility and training…

  3. Side Effects (Management)

    MedlinePlus

    ... Cancer is Treated Side Effects Dating, Sex, and Reproduction Advanced Cancer For Children For Teens For Young ... Cancer is Treated Side Effects Dating, Sex, and Reproduction Advanced Cancer For Children For Teens For Young ...

  4. OCCURRENCE OF ANTIBIOTIC RESISTANT BACTERIA AND ENDOTOXIN ASSOCIATED WITH THE LAND APPLICATION OF BIOSOLIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to determine the prevalence of antibiotic resistant bacteria and endotoxin in soil following land application of biosolids. Soil was collected over a 15 month period following land application of biosolids, and antibiotic resistance was ascertained using clinically rel...

  5. MONITORING MICROBES, ALKYL PHENOLS, AND SOIL TOXICITY AFTER LAND APPLICATION OF ANAEROBICALLY DIGESTED BIOSOLIDS

    EPA Science Inventory

    A common disposal practice for municipal biosolids is to spread this material on agricultural fields as a soil amendment. For example, over 3 million dry tons of treated sewage sludge (or biosolids) are applied on agricultural lands in the US. The regulations which govern the lan...

  6. IS "RECLAIMED WATER AND BIOSOLIDS: BENEFITS AND HAZARDS" IT: "BIOACCULULATION AND FOODCHAIN CONTAMINATION IN TERRESTRIAL ECOSYSTEMS"

    EPA Science Inventory

    Biosolids are a complex mixture which contain both inorganic and organic adsorbents. Thus, addition of biosolids to soil not only increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) it alters the phytoavailability of these metals. This reduction in ph...

  7. Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids (Final Report)

    EPA Science Inventory

    biosolids_cover.jpg" vspace = "5" hspace="5" align="right" border="1" alt="Cover of the Land-Applied Biosolids 2011 Final Report "> Millions of tons of treated sewage sludges or “biosolids” are applied annually to f...

  8. Copper and zinc speciation in a biosolids-amended, semiarid grassland soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predicting trace metal solid phase speciation changes associated with long-term biosolids land application is important for understanding and improving environmental quality. Biosolids were surface-applied (no incorporation; 0, 1, 2, 5, 10, and 15 tons per acre) to a semi-arid grassland in 1991 (si...

  9. Multimedia Sampling During The Application Of Biosolids On A Land Test Site (Presentation)

    EPA Science Inventory

    The goal of this research study was to evaluate air and soil sampling methods and analytical techniques for commercial land application of biosolids. Biosolids, were surface applied at agronomic rates to an agricultural field. During the period of August 2004 to January 2005, 3...

  10. Dewatered sewage biosolids provide a productive larval habitat for stable flies and house flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species diversity and seasonal abundance of muscoid flies (Diptera: Muscidae) developing in biosolid cake (dewatered biosolids) stored at a wastewater treatment facility in northeastern Kansas was evaluated. Emergence traps were deployed 19 May-20 Oct 2009 (22 wk) and 27 May-18 Nov 2010 (25 wk). A t...

  11. METAL-BINDING ROLE OF IRON AND MANGANESE OXIDES IN BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    The environmental impact and potential hazards of metals in biosolids to plants, animals and the human food chain have been studied for decades. From this body of work, it has been concluded that the addition of biosolids to the soil alters the soil system beyond that of the simp...

  12. INTERLABORATORY VALIDATION OF USEPA METHOD 1680: FECAL COLIFORMS IN BIOSOLIDS BY MULTIPLE-TUBE FERMENTATION PROCEDURES

    EPA Science Inventory

    In the US, the use and disposal of biosolids (including domestic septage) are regulated under 40 CFR Part 503. Subpart D of this regulation protects public health and the environment through requirements designed to reduce the potential for contact with pathogens in biosolids app...

  13. VALIDATION OF EPA METHOD 1682: SALMONELLA IN BIOSOLIDS BY MODIFIED, SEMISOLID RAPPAPORT-VASSILIADIS (MSRV) MEDIUM

    EPA Science Inventory

    Treated biosolids may be applied to land as a crop nutrient and soil conditioner. However, land application of biosolids may pose the risk of releasing pathogens into the environment if disinfection and use criteria established by EPA at 40 CFR part 503 are not met. Among these c...

  14. SORPTION AND DESORPTION OF CADMIUM BY DIFFERENT FRACTIONS OF BIOSOLIDS - AMENDED SOILS

    EPA Science Inventory

    Series of Cd sorption and desorption experiments were conducted on different fractions of soils amended with biosolids, Cd-salt, and unamended soils (control) to test the hypothesize that not only organic but also inorganic fraction in biosolids controls the metal availability in...

  15. LONG TERM DETENTION FOR THE STABILIZATION OF WASTEWATER BIOSOLIDS FOR SMALL COMMUNITIES

    EPA Science Inventory

    Treated biosolids from small wastewater treatment plants in mid-western US are usually disposed off by land application. This practice allows for the recycling of the nutrients present in the biosolids for food and fiber production and can help re-vegetate sites destroyed by mini...

  16. Estimated occupational risk from bioaerosols generated during land application of Class B biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been speculated that bioaerosols generated during land application of biosolids pose a serious occupational risk, but few scientific studies have been performed to assess levels of aerosolization of microorganisms from biosolids and to estimate the occupational risks of infection. This study ...

  17. Phosphorus recovery prior to land application of biosolids using the "quick wash" process developed by USDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess soil phosphorus (P) beyond the assimilative capacity of soils is a major factor to discontinue application of biosolids to land nearby municipal wastewater treatment plants. For this reason, municipalities incur in hefty fees for transportation and landfilling biosolids that otherwise could b...

  18. ALTERATION OF SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY ASSOCIATED WITH BIOSOLIDS APPLICATION (ABSTRACT)

    EPA Science Inventory

    Biosolids are a complex mixture which contain both inorganic and organic adsorbents. Thus, addition of biosolids to soil not only increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) it alters the phytoavailability of these metals. This reduction in ph...

  19. Recovery of biosolids-applied heavy metals sixteen years after application

    SciTech Connect

    Sloan, J.J.; Dowdy, R.H.; Dolan, M.S.

    1998-11-01

    Little is known of the long-term fate of biosolids-applied heavy metals in soil. The objective of this study was to quantify percent recovery of biosolids-applied heavy metals i a well-drained soil. Three annual applications of biosolids resulted in cumulative biosolids loadings of 0, 60, 120, and 180 Mg ha{sup {minus}1}. Cumulative metal loadings for the 180 Mg ha{sup {minus}1} biosolids rate were 25, 141, 127, 43, 173, and 348 kg ha{sup {minus}1} for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. Soils were sampled to a depth of 0.9 m. Soil organic carbon (OC) was measured. Soil was extracted with 1 M HNO{sub 3} and metals were determined in the supernatants. Soil OC concentrations were linearly correlated to biosolids loadings and did not change significantly during the 16 yr after biosolids applications. Concentrations of extractable Cd, Cr, Cu, Ni, Pb, and Zn in biosolids-treated soils were much greater than the control to a depth of 0.30 m, slightly greater at 0.30 to 0.45 m and same as the control below 0.45 m. For the 180 Mg ha{sup {minus}1} biosolids loading, percent recoveries for Cd, Cr, Cu, Ni, Pb, and Zn were 112, 59, 119, 114, 102, and 97%, respectively. Low recovery of Cr was probably due to incomplete extraction from the soil. These results show that complete recovery of biosolids-applied heavy metals is possible when plot size is large enough to prevent cross-mixing of treated soils during tillage operations and when sediment losses are minimal.

  20. Guide to soil suitability and site selection for beneficial use of domestic wastewater biosolids. Manual 8. (Revised)

    SciTech Connect

    Huddleston, J.H.; Ronayne, M.P.

    1995-09-01

    This guide is designed to help the reader (1) identify the important soil and biosolids characteristics for a particular situation, (2) judge the advantages and disadvantages of using biosolids, and (3) design practices that will make optimum use of the biosolids. This guide is designed for the use of both wastewater technicians unfamiliar with soil science and soil science students unfamiliar with biosolids. The guide reviews basic soil science concepts and helps the reader (1) quantify local soil and biosolids characteristics, (2) understand the potential benefits and disadvantages of biosolids for local soil characteristics, and (3) suggests procedures for designing a biosolids application. A checklist cross-referenced to the text is also provided.

  1. Establishment of vegetation in constructed wetlands using biosolids and quarry fines

    SciTech Connect

    Danehy, T.P.; Zick, R.; Brenner, F.; Chmielewski, J.; Dunn, M.H.; Cooper, D.C.

    1999-07-01

    A common problem with constructing wetlands on abandoned mine sties is the lack of adequate soil needed to establish vegetation. One component of a full-scale passive treatment system built at Jennings Environmental Education Center in Brady Township, Butler County, PA addressed this issue through the development of a field trial to find an inexpensive alternative substrate for wetland plants. A simple soil recipe was followed which called for the mixing of an inorganic material with a nutrient-rich organic material. The inorganic constituent used was silt-size pond cleanings from a sand and gravel operation. The organic material used was a composted product made from exceptional-quality biosolids. Both soil components were obtained from local sources (less than 16 kilometers (12 miles) from the site) and mixed on site with a Caterpillar 963 track loader. The soil was used to construct a channel wetland 3 meters (10 feet) wide by 61 meters (200 feet) long. A seed mixture which contained 24 different wetland plant species native to western Pennsylvania was added to the substrate prior to releasing the water from the vertical flow system into the wetland. After one year, the vegetation was studied to determine the percent cover and species composition in order to document the effectiveness of this method of wetland construction. The preliminary results of this study indicate that this is an effective means to establish and sustain wetland vegetation. The addition of a fabricated substrate consisting of composted biosolids and silt can be a very effective method to establish dense and diverse vegetation in a constructed wetland.

  2. Water Environment Research Foundation (WERF) anaerobic digestion and related processes, odour and health effects study.

    PubMed

    Witherspoon, J R; Adams, G; Cain, W; Cometto-Muniz, E; Forbes, B; Hentz, L; Novack, J T; Higgins, M; Murthy, S; McEwen, D; Ong, H T; Daigger, G T

    2004-01-01

    Biosolids odour emissions can affect the ability of wastewater utilities to implement beneficial biosolids processing and reuse programs. Communities often become more sensitised and vocal about biosolids issues, once they experience odours emanating from a nearby site. Odour impacts from biosolids, including potential human health effects, have been targeted recently by many national and local newspapers, citizens' groups, and regulatory agencies, who have raised significant concerns, ranging from viable disposal methods/sites to outright bans. Many national and local regulatory agencies in the United States are considering biosolids disposal bans in their communities because of misinformation, poor science, and citizen pressure, but primarily because of odour impact concerns. The wastewater industry has a relatively poor understanding of the operations and treatment parameters that influence biosolids odour emissions. Thus, wastewater treatment plants are often unable to control the odour quality of the biosolids that are delivered into communities. A research study to demonstrate the influence of anaerobic digestion, mechanical dewatering, and storage design and operating parameters on the odour quality of the final product was performed and is the subject of this paper. Established and new sampling and analytical methods were used to measure biosolids odour emissions from 11 test sites in North America. By determining the impacts of these control variables on biosolids odour quality, design and operations of anaerobic digestion systems might be enhanced. This paper also summarises a corollary study performed as part of the WERF research study that addresses the health effects of biosolids odours. PMID:15484737

  3. Ciprofloxacin Residues in Municipal Biosolid Compost Do Not Selectively Enrich Populations of Resistant Bacteria

    PubMed Central

    Youngquist, Caitlin P.; Liu, Jinxin; Orfe, Lisa H.; Jones, Stephen S.

    2014-01-01

    Biosolids and livestock manure are valuable high-carbon soil amendments, but they commonly contain antibiotic residues that might persist after land application. While composting reduces the concentration of extractable antibiotics in these materials, if the starting concentration is sufficiently high then remaining residues could impact microbial communities in the compost and soil to which these materials are applied. To examine this issue, ciprofloxacin was added to biosolid compost feedstock to achieve a total concentration of 19 ppm, approximately 5-fold higher than that normally detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (1 to 3.5 ppm). This feedstock was placed into mesh bags that were buried in aerated compost bays. Once a week, a set of bags was removed and analyzed (treated and untreated, three replicates of each; 4 weeks). Addition of ciprofloxacin had no effect on the recovery of resistant bacteria at any time point (P = 0.86), and a separate bioassay showed that aqueous extractions from materials with an estimated 59 ppm ciprofloxacin had no effect on the growth of a susceptible strain of Escherichia coli (P = 0.28). Regression analysis showed that growth of the susceptible strain of E. coli can be reduced given a sufficiently high concentration of ciprofloxacin (P < 0.007), a result that is consistent with adsorption being the primary mechanism of sequestration. While analytical methods detected biologically significant concentrations of ciprofloxacin in the materials tested here, the culture-based methods were consistent with the materials having sufficient adsorptive capacity to prevent typical concentrations of ciprofloxacin residues from selectively enriching populations of resistant bacteria. PMID:25261519

  4. Dewatered sewage biosolids provide a productive larval habitat for stable flies and house flies (Diptera: Muscidae).

    PubMed

    Doud, C W; Taylor, D B; Zurek, L

    2012-03-01

    Species diversity and seasonal abundance of muscoid flies (Diptera: Muscidae) developing in biosolid cake (dewatered biosolids) stored at a wastewater treatment facility in northeastern Kansas were evaluated. Emergence traps were deployed 19 May through 20 October 2009 (22 wk) and 27 May through 18 November 2010 (25 wk). In total, 11,349 muscoid flies were collected emerging from the biosolid cake. Stable flies (Stomoxys calcitrans (L.)) and house flies (Musca domestica (L.)), represented 80 and 18% of the muscoid flies, respectively. An estimated 550 stable flies and 220 house flies per square-meter of surface area developed in the biosolid cake annually producing 450,000 stable flies and 175,000 house flies. Stable fly emergence was seasonally bimodal with a primary peak in mid-July and a secondary peak in late August. House fly emergence peaked with the first stable fly emergence peak and then declined gradually for the remainder of the year. House flies tended to emerge from the biosolid cake sooner after its deposition than did stable flies. In addition, house fly emergence was concentrated around midsummer whereas stable fly emergence began earlier in the spring and continued later into the fall. Biosolid age and temperature were the most important parameters affecting emergence for house flies and stable flies, whereas precipitation was not important for either species. This study highlights the importance of biosolid cake as a larval developmental habitat for stable flies and house flies. PMID:22493845

  5. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons

    SciTech Connect

    Hung-Lung Chiang; Kuo-Hsiung Lin; Chih-Yu Chen; Ching-Guan Choa; Ching-Shyung Hwu; Nina Lai

    2006-05-15

    This study selected biosolids from a petrochemical wastewater treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl{sub 2}) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl{sub 2}-immersed biosolids pyrolyzed at 500{sup o}C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high. 18 refs., 9 figs., 3 tabs.

  6. Growth, yield, and nutrient status of pecans fertilized with biosolids and inoculated with rizosphere fungi.

    PubMed

    Tarango Rivero, S H; Nevárez Moorillón, V G; Orrantia Borunda, E

    2009-03-01

    The application of anaerobically digested biosolids as a nutrient source for pecan, Carya illinoinensis (Wangeh.) K. Koch, cultivar Western, was evaluated. Conventional NPK fertilizers (CF) and biosolids included a treatment with the rhizospheric fungi Pisolithus tinctorius+Scleroderma sp. and Trichoderma sp. After an average of three years, the tree trunks with biosolid treatment grew 9.5% more than with CF; the length of the bearing shoots was 18.1 and 18.3cm and the production of nuts/tree was 9.26 and 8.75kg for pecans with CF and with biosolids, respectively. Western foliar nutrient concentration and nut quality were statistically equal in trees with CF and with biosolids. Soil inoculation with mycorrhizal fungi improved shoot growth by 19.4% when CF was applied, but did not when biosolids were used. Nutrient status and yield did not increase with mycorrhizal fungi. The addition of Trichoderma sp. did not favor any of the variables evaluated with both nutrient sources. Biosolids are efficient fertilizer at promoting the growth, production and nut quality of pecan trees. PMID:18993060

  7. Managing Performance for Effective Classrooms

    ERIC Educational Resources Information Center

    Moreland, Jan

    2011-01-01

    This paper takes the form of a discussion document. A number of ideas surrounding the topics of continuing professional development (CPD), performance management (PM) and effective classrooms in secondary schools are outlined. The paper draws on some of the recent literature in these areas and refers to some current trials within a UK-based…

  8. Optimizing Learning Through Effective Management.

    ERIC Educational Resources Information Center

    Mills, Earl S.; Wood, Duane R.

    A model of an instructional program which uses principles of effective management to optimize learning for adult learners is described. The model is a result of the authors' work with the Institute for Personal and Career Development which is responsible for the external degree program of Central Michigan University. Most adult learners have…

  9. Synthetic organic chemicals in earthworms from agriculture soil amended with municipal biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Biosolids resulting from municipal wastewater treatment are known to contain residues of pharmaceuticals, personal care products (PPCPs) and other synthetic organic compounds. Many of these are contaminants of emerging concern for their potential endocrine disruption of fish and wildli...

  10. EVALUATION OF A DNA PROBE TEST KIT FOR DETECTION OF SALMONELLAE IN BIOSOLIDS

    EPA Science Inventory

    Aims: Current United States regulations (40 CFR 503) for "Class A" biosolids requires use of multiple-tube fermentation techniques for fecal coliform or multiple tube enrichment techniques for Salmonella spp. followed by isolation and biochemical and serological confirmation. T...

  11. IMPLICATIONS OF BIOSOLIDS/COMPOST UTILIZATION ON THE RISK OF SOIL METALS

    EPA Science Inventory

    This presentation summarizes the current work on the fundamental changes in soil mineralogical accomplished by additions of biosolids and P to the system which results in changes in phytoavailability/bioavailability. The concepts of phytoavailability/bioavailability are rather s...

  12. Biosolids - a fuel or a waste? An integrated appraisal of five co-combustion scenarios with policy analysis

    SciTech Connect

    Elise Cartmell; Peter Gostelow; Drusilla Riddell-Black; Nigel Simms; John Oakey; Joe Morris; Paul Jeffrey; Peter Howsam; Simon J. Pollard

    2006-02-01

    An integrated appraisal of five technology scenarios for the co-combustion of biosolids in the UK energy and waste management policy context is presented. Co-combustion scenarios with coal, municipal solid waste, wood, and for cement manufacture were subject to thermodynamic and materials flow modeling and evaluated by 19 stakeholder representatives. All scenarios provided a net energy gain (0.58-5.0 kWh/kg dry solids), having accounted for the energy required for transportation and sludge drying. Co-combustion within the power generation and industrial (e.g., cement) sectors is most readily implemented but provides poor water utility control, and it suffers from poor public perception. Co-combustion with wastes or biomass appears more sustainable but requires greater investment and presents significant risks to water utilities. Incongruities within current energy and waste management policy are discussed and conclusions for improved understanding are drawn. 28 refs., 5 figs., 4 tabs.

  13. Characteristics of effective health care managers.

    PubMed

    Johnson, Sherryl W

    2005-01-01

    This article provides an overview of traditional and contemporary management theories. Concerns, characteristics, and skills of effective managers are also presented. Further, a self-assessment (survey) of 7 highly effective health care managers in a South Georgia community was conducted to determine their ratings on 6 management indices. The assessment or Scale of Transformational Leadership uses a Likert-type scale to allow for the evaluation of managers. The scale contains 6 management elements for assessment: attention, meaning, trust, self, vision, and feeling. Individual ratings and group summary skills rating are presented. Findings revealed the order of managerial importance of the elements as follows (from highest to lowest): Management of Trust, Management of Attention, Management of Self, Management of Feeling, Management of Meaning, and Management of Risk. As a second tier, the final ratings are corroborated by health care management interns. PMID:15923923

  14. Extractable trace elements in the soil profile after years of biosolids application

    SciTech Connect

    Barbarick, K.A.; Ippolito, J.A.; Westfall, D.G.

    1998-07-01

    The US Environmental Protection Agency (USEPA) and some state agencies regulate trace element additions to soil from land application of biosolids. The authors generally consider trace elements added in biosolids (sewage sludge) to accumulate in the soil surface without significant transport below the plow layer. They used 11 yr of field-study information from biosolids addition to dryland hard red winter wheat (Triticum aestivum L. Vona or TAM107) to determine the distribution of NH{sub 4}HCO{sub 3} diethylenetriaminepentaacetic acid (AB-DTPA)-extractable Cd, Cr, Cu, Mo, Ni, Pb, and Zn in 0 to 20 (plow layer), 20 to 60, 60 to 100, and 100 to 150 cm depth increments. This study is unique since it involves multiple biosolids application in a dryland summer fallow agroecosystem. The authors applied five or six applications of biosolids from the cities of Littleton and Englewood, CO, to Weld loam or Platner loam at four locations. This paper focuses on the 0 (control), the 56 or 67 kg of N ha{sup {minus}1} fertilizer rates, and the 6.7 and 26.8 dry Mg of biosolids ha{sup {minus}1} rates that they added every crop year. The authors observed significant (P < 0.10) accumulations of the trace elements in the plow layer of the biosolids-amended soils. Only Zn showed consistent increases in extractable levels below the plow layer at all four sites. The biosolids Zn concentration was larger than any other trace element resulting in larger loading of this element.

  15. Study of Mn Phytoavailability in Soil Treated with Biosolids Using NAA

    NASA Astrophysics Data System (ADS)

    de Fátima Mateus, Natalina; Filho, Tufic Madi

    2011-08-01

    This work evaluated the behavior of Mn absorption by Eucalyptus grandis that was cultivated in soil treated with biosolid. Neutron activation analysis (NAA) followed by gamma ray spectrometry was the analytical method used to determine the Mn content. Manganese is an important micronutrient because it is an activator of enzymes, controller of oxyreduction reactions, essential to the photosynthesis and synthesis of chlorophyll and protein. The results showed that the phytoavailability of Mn was reduced increasing the doses of biosolid applied.

  16. Decay of enteric microorganisms in biosolids-amended soil under wheat (Triticum aestivum) cultivation.

    PubMed

    Schwarz, K R; Sidhu, J P S; Pritchard, D L; Li, Y; Toze, S

    2014-08-01

    There is a growing need for better assessment of health risks associated with land-applied biosolids. This study investigated in-situ decay of seeded human adenovirus (HAdV), Salmonella enterica, Escherichia coli, and bacteriophage (MS2) in biosolids-amended soil under wheat cultivation. The biosolids seeded with microorganisms were placed in decay chambers which were then placed in the topsoil (10 cm depth) at three different sites. Sites were selected in arid wheat-growing regions of Australia with loamy-sand soil type (Western Australia) and sandy soil (South Australia). Seeded E. coli and S. enterica had a relatively short decay time (T90 = 4-56 days) in biosolids-amended soil compared to un-amended soil (T90 = 8-83 days). The decreasing soil moisture over the wheat-growing season significantly (P < 0.05) influenced survival time of both bacteria and MS2 at Western Australia (Moora) and South Australia (Mt Compass) sites, particularly in the un-amended soils. Increasing soil temperature also significantly (P < 0.05) influenced the decay of MS2 at these sites. In this study, no notable decline in HAdV numbers (PCR detectable units) was observed in both biosolids-amended and the un-amended soils at all three sites. The HAdV decay time (T90 ≥ 180 days) in biosolids-amended and un-amended soils was significantly higher than MS2 (T90 = 22-108 days). The results of this study suggest that adenovirus could survive for a longer period of time (>180 days) during the winter in biosolids-amended soil. The stability of adenovirus suggests that consideration towards biosolids amendment frequency, time, rates and appropriate withholding periods are necessary for risk mitigation. PMID:24793663

  17. Persistence of Triclocarban and Triclosan in Soils after Land Application of Biosolids and Bioaccumulation in Eisenia foetida

    PubMed Central

    Higgins, Christopher P.; Paesani, Zachary J.; Chalew, Talia E. Abbot; Halden, Rolf U.; Hundal, Lakhwinder S.

    2010-01-01

    The presence of antimicrobial chemicals triclocarban (TCC) and triclosan (TCS) in municipal biosolids has raised concerns about the potential impacts of these chemicals on soil ecosystems following land application of municipal biosolids. The relative persistence of TCC and TCS in agricultural fields receiving yearly applications of biosolids at six different loading rates over a three-year period was investigated. Soil and biosolids samples were collected, extracted, and analyzed for TCC and TCS using liquid chromatography tandem mass spectrometry. In addition, the potential for bioaccumulation of TCC and TCS from the biosolids-amended soils was assessed over 28 d in the earthworm Eisenia foetida. Standard 28-d bioaccumulation tests were conducted for three biosolids loading rates from two sites, representing agronomic and twice the agronomic rates of biosolids application plots as well as control plots receiving no applications of biosolids. Additional bioaccumulation kinetics data were collected for the soils receiving the high biosolids loadings to ensure attainment of quasi-steady state conditions. The results indicate that TCC is relatively more persistent in biosolids-amended soil than TCS. In addition, TCC bioaccumulated in E. foetida, reaching body burdens of 25 ± 4 and 133 ± 17 ng/gww in worms exposed for 28 d to the two soils amended with biosolids at agronomic rates. The 28-d organic carbon and lipid-normalized biota soil accumulation factors (BSAFs) were calculated for TCC and ranged from 0.22 ± 0.12 to 0.71 ± 0.13. These findings suggest that TCC bioaccumulation is somewhat consistent with the traditional hydrophobic organic contaminant (HOC) partitioning paradigm. However, these data also suggest substantially reduced bioavailability of TCC in biosolids-amended soils when compared to HOC partitioning theory. PMID:21128266

  18. Accumulation and partitioning of biomass, nutrients, and trace elements in switchgrass for phytoremediation of municipal biosolids.

    PubMed

    Jeke, Nicholson N; Zvomuya, Francis; Ross, Lisette

    2016-09-01

    In situ phytoremediation of municipal biosolids is a promising alternative to the land spreading and landfilling of biosolids from end-of-life municipal lagoons. Accumulation and partitioning of dry matter, nitrogen (N), phosphorus (P), and trace elements were determined in aboveground biomass (AGB) and belowground biomass (BGB) of switchgrass (Panicum virgatum L.) to determine the harvest stage that maximizes phytoextraction of contaminants from municipal biosolids. Seedlings were transplanted into 15-L plastic pails containing 3.9 kg (dry wt.) biosolids. Biomass yield components and contaminant concentrations were assessed every 14 days for up to 161 days. Logistic model fits to biomass yield data indicated no significant differences in asymptotic yield between AGB and BGB. Switchgrass partitioned significantly more N and P to AGB than to BGB. Maximum uptake occurred 86 days after transplanting (DAT) for N and 102 DAT for P. Harvesting at peak aboveground element accumulation removed 5% of N, 1.6% of P, 0.2% of Zn, 0.05% of Cd, and 0.1% of Cr initially present in the biosolids. These results will contribute toward identification of the harvest stage that will optimize contaminant uptake and enhance in situ phytoremediation of biosolids using switchgrass. PMID:26940512

  19. Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids.

    PubMed

    Gallen, C; Drage, D; Kaserzon, S; Baduel, C; Gallen, M; Banks, A; Broomhall, S; Mueller, J F

    2016-07-15

    The levels of perfluroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDDs) were studied in Australian landfill leachate and biosolids. Leachate was collected from 13 landfill sites and biosolids were collected from 16 wastewater treatment plants (WWTPs), across Australia. Perfluorohexanoate (PFHxA) (12-5700ng/L) was the most abundant investigated persistent, bioaccumulative and toxic (PBT) chemical in leachate. With one exception, mean concentrations of PFASs were higher in leachate of operating landfills compared to closed landfills. Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane isomers (HBCDDs) were detected typically at operating landfills in comparatively lower concentrations than the PFASs. Decabromodiphenyl ether (BDE-209) (<0.4-2300ng/g) and perfluoroctanesulfonate (PFOS) (biosolids. Using data provided by sites, the volume of leachate discharged to WWTPs for treatment was small (<1% total inflow), and masses of PBTs transferred reached a maximum of 16g/yr (PFHxA). A national estimate of masses of PBTs accumulated in Australian biosolids reached 167kg/yr (BDE-209), a per capita contribution of 7.2±7.2mg/yr. Nationally, approximately 59% of biosolids are repurposed and applied to agricultural land. To our knowledge this study presents the first published data of PFASs and HBCDDs in Australian leachate and biosolids. PMID:27016666

  20. Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil.

    PubMed

    Langdon, Kate A; Warne, Michael Stj; Smernik, Ronald J; Shareef, Ali; Kookana, Rai S

    2013-03-01

    This study compared the degradation of indigenous bisphenol A (BPA) and triclosan (TCS) in a biosolids-amended soil, to the degradation of spiked labelled surrogates of the same compounds (BPA-d16 and TCS-(13)C12). The aim was to determine if spiking experiments accurately predict the degradation of compounds in biosolids-amended soils using two different types of biosolids, a centrifuge dried biosolids (CDB) and a lagoon dried biosolids (LDB). The rate of degradation of the compounds was examined and the results indicated that there were considerable differences between the indigenous and spiked compounds. These differences were more marked for BPA, for which the indigenous compound was detectable throughout the study, whereas the spiked compound decreased to below the detection limit prior to the study completion. The rate of degradation for the indigenous BPA was approximately 5-times slower than that of the spiked BPA-d16. The indigenous and spiked TCS were both detectable throughout the study, however, the shape of the degradation curves varied considerably, particularly in the CDB treatment. These findings show that spiking experiments may not be suitable to predict the degradation and persistence of organic compounds following land application of biosolids. PMID:23376516

  1. Measured physicochemical characteristics and biosolids-borne concentrations of the antimicrobial Triclocarban (TCC).

    PubMed

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2010-06-01

    Triclocarban (TCC) is an active ingredient in antibacterial bar soaps, a common constituent of domestic wastewater, and the subject of recent criticism by consumer advocate groups and academic researchers alike. Activated sludge treatment readily removes TCC from the liquid waste stream and concentrates the antimicrobial in the solid fraction, which is often processed to produce biosolids intended for land application. Greater than half of the biosolids generated in the US are land-applied, resulting in a systematic release of biosolids-borne TCC into the terrestrial and, potentially, the aquatic environment. Multiple data gaps in the TCC literature (including basic physicochemical properties and biosolids concentrations) prevent an accurate, quantitative risk assessment of biosolids-borne TCC. We utilized the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) harmonized test guidelines to measure TCC solubility and log K(ow) values as 0.045 mg L(-1) and 3.5, respectively. The measured physicochemical 2 properties differed from computer model predictions. The mean concentration of TCC in 23 biosolids representative of multiple sludge processing methods was 19+/-11 mg kg(-1). PMID:20385403

  2. Negative Effects of Learning Spreadsheet Management on Learning Database Management

    ERIC Educational Resources Information Center

    Vágner, Anikó; Zsakó, László

    2015-01-01

    A lot of students learn spreadsheet management before database management. Their similarities can cause a lot of negative effects when learning database management. In this article, we consider these similarities and explain what can cause problems. First, we analyse the basic concepts such as table, database, row, cell, reference, etc. Then, we…

  3. Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN and HHCB in biosolid-amended soils.

    PubMed

    Chen, Feng; Ying, Guang-Guo; Ma, Yi-Bing; Chen, Zhi-Feng; Lai, Hua-Jie; Peng, Feng-Jiao

    2014-02-01

    The antimicrobial agents triclocarban (TCC) and triclosan (TCS) and synthetic musks AHTN (Tonalide) and HHCB (Galaxolide) are widely used in many personal care products. These compounds may release into the soil environment through biosolid application to agricultural land and potentially affect soil organisms. This paper aimed to investigate accumulation, dissipation and potential risks of TCC, TCS, AHTN and HHCB in biosolid-amended soils of the three field trial sites (Zhejiang, Hunan and Shandong) with three treatments (CK: control without biosolid application, T1: single biosolid application, T2: repeated biosolid application every year). The one-year monitoring results showed that biosolids application could lead to accumulation of these four chemicals in the biosolid-amended soils, with the residual concentrations in the following order: TCC>TCS>AHTN>HHCB. Dissipation of TCC, TCS, AHTN and HHCB in the biosolid-amended soils followed the first-order kinetics model. Half-lives for TCC, TCS, AHTN and HHCB under the field conditions of Shandong site were 191, 258, 336 and 900 days for T1, and 51, 106, 159 and 83 days for T2, respectively. Repeated applications of biosolid led to accumulation of these personal care products and result in higher ecological risks. Based on the residual levels in the trial sites and limited toxicity data, high risks to soil organisms are expected for TCC and TCS, while low-medium risks for AHTN and HHCB. PMID:24239829

  4. Managing Chemotherapy Side Effects: Memory Changes

    MedlinePlus

    ... C ancer I nstitute Managing Chemotherapy Side Effects Memory Changes What is causing these changes? Your doctor ... thinking or remembering things Managing Chemotherapy Side Effects: Memory Changes Get help to remember things. Write down ...

  5. AGRICULTURAL BEST MANAGEMENT PRACTICE EFFECTIVENESS DATABASE

    EPA Science Inventory

    Resource Purpose:The Agricultural Best Management Practice Effectiveness Database contains the results of research projects which have collected water quality data for the purpose of determining the effectiveness of agricultural management practices in reducing pollutants ...

  6. Managing Chemotherapy Side Effects: Swelling (Fluid Retention)

    MedlinePlus

    ... ancer I nstitute Managing Chemotherapy Side Effects Swelling (Fluid retention) “My hands and feet were swollen and ... at one time. Managing Chemotherapy Side Effects: Swelling (Fluid retention) Weigh yourself. l Weigh yourself at the ...

  7. Bioaerosol emission rate and plume characteristics during land application of liquid class B biosolids.

    PubMed

    Tanner, Benjamin D; Brooks, John P; Haas, Charles N; Gerba, Charles P; Pepper, Ian L

    2005-03-15

    This study investigated bioaerosol emission rates and plume characteristics of bioaerosols generated during land application of liquid Class B biosolids. In addition, it compared the rate of aerosolization of coliphages and total coliform bacteria during land application of liquid Class B biosolids to the rate of aerosolization during land application of groundwater inoculated with similar concentrations of Escherichia coli and coliphage MS2. Air samples were taken immediately downwind of a spray applicator as it applied liquid (approximately 8% solids) biosolids to farmland near Tucson, Arizona. Air samples were also collected immediately downwind of groundwater seeded with MS2 and E. coli applied to land in an identical manner. Air samples, collected with liquid impingers, were taken in horizontal and vertical alignment with respect to the passing spray applicator. Vertical and horizontal sample arrays made it possible to calculate the flux of microorganisms through a virtual plane of air samplers, located 2 m downwind of the passing spray applicator. Neither coliphages nor coliform bacteria were detected in air downwind of spray application of liquid Class B biosolids. Based on limits of detection for the methodology, the rate of aerosolization during land application of liquid biosolids was calculated to be less than 33 plaque forming units (PFU) of coliphage and 10 colony forming units (CFU) of coliform bacteria per meter traveled by the spray applicator. The rate of aerosolization during land application of seeded groundwater was found to be, on average, 2.02 x 10(3) CFU E. coli and 3.86 x 10(3) PFU MS2 aerosolized per meter traveled by the spray applicator. This is greater aerosolization than was observed during land application of biosolids. Because concentrations of coliphages and coliforms were similar in the liquid biosolids and the seeded water, itwas concluded that some property of biosolids reduces aerosolization of microorganisms relative to

  8. Ecological impacts of the N-viro biosolids land-application for wild blueberry (Vaccinium angustifolium. Ait) production in Nova Scotia.

    PubMed

    Farooque, Aitazaz A; Zaman, Qamar U; Madani, Ali; Abbas, Farhat; Percival, David C; Esau, Travis J

    2011-01-01

    Land application of biosolids from processed sewage sludge may deteriorate soil, water, and plants. We investigated the impact of the N-Viro biosolids land-application on the quality of the soil water that moved through Orthic Humo-Ferric Podzols soil of Nova Scotia (NS) at the Wild Blueberry Research Institute, Debert, NS Canada. In addition, the response of major soilproperties and crop yield was also studied. Wild blueberry (Vaccinium angustifolium. Ait) was grown under irrigated and rainfed conditions in 2008 and 2009. Four experimental treatments including (i) NI: N-Viro irrigated, (ii) NR: N-Viro rainfed, (iii) FI: inorganic fertilizer irrigated, and (iv) FR: inorganic fertilizer rainfed (control) were replicated 4 times under randomized complete block design. Soil samples were collected at the end of each year and analyzed for changes in cation exchange capacity (CEC), soil organic matter (SOM), and pH.Soil water samples were collected four times during the study period from the suction cup lysimeters installed within and below crop root zone at 20 and 40 cm depths, respectively. The samples were analyzed for a range of water quality parameters including conductance, hardness, pH, macro- and micronutrients, and the infectious pathogens Escherichia coli (E. coli) and salmonella. Berries were harvested for fruit yield estimates. Irrigation significantly increased CEC during 2008 and the soil pH decreased from 4.93 (2008) to 4.79 (2009). There were significant influences of irrigation, fertilizer, and their interaction, in some cases, on most of the soil water quality parameters except on the infectious bacteria. No presence of E. coli or salmonella were observed in soil and water samples, reflecting the absence of these bacteria in biosolids used in this experiment. Nutrient concentration in the soil water samples collected from the four treatments were higher in the sequence NI > NR > FI > FR. The irrigation treatment had significant effect on the unripe

  9. Comparative study of hotplate wet digestion methods for the determination of mercury in biosolids.

    PubMed

    Lomonte, Cristina; Gregory, David; Baker, Alan J M; Kolev, Spas D

    2008-08-01

    The re-use of biosolids is becoming increasingly popular for land applications. However, biosolids may contain elevated levels of metals and metalloids (including mercury) relative to background environmental concentrations. Consequently, reliable mercury analysis is important to allow classification of biosolids and to determine appropriate options for beneficial uses. This paper reports on a comparative study of 12 hotplate wet digestion methods for their suitability for the determination of mercury in biosolids. The methods were applied to mercury biosolids samples from four localities of two different sewage treatment plants in the State of Victoria, Australia. Samples were also spiked with methylmercury chloride and mercury sulphide to evaluate the Hg recovery in each hotplate digestion method. Aqua regia (HCl:HNO(3)=3:1), reverse aqua regia (HCl:HNO(3)=1:3), nitric, hydrochloric, sulphuric acid and their combinations with or without hydrogen peroxide were studied as wet digestion solutions. The method providing the best mercury recoveries was optimized. Under optimal conditions the corresponding analytical procedure consisted of 1h pre-digestion of 0.4 g biosolids sample with 10 ml reverse aqua regia with temperature increasing to 110 degrees C and 3h digestion at this temperature. In the last 10 min of the digestion step, 2 ml hydrogen peroxide were added to ensure complete decomposition of all mercury containing compounds. After filtering and dilution with deionised water (1:10), the concentration of mercury was determined by cold vapour atomic absorption spectrometry. It is expected, that the wet acid digestion method developed in this study will be also applicable to biosolids from other sewage treatment plants and to other types of solid mercury samples with elevated levels of organic matter. PMID:18602136

  10. Fifteen years of wheat yield, N uptake, and soil nitrate-N dynamics in a biosolids-amended agroecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding N dynamics in biosolids-amended agroecosystems can help avoid over-application and the potential for environmental degradation. We investigated 15-years of biosolids application to dryland-wheat, questioning what is the relationship between cumulative grain yield and N uptake (N remov...

  11. Water treatment residuals and biosolids co-applications affect phosphatases in a semi-arid rangeland soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids and water treatment residuals (WTR) land co-application has not been extensively studied, but may be beneficial by sorbing excess biosolids-borne or soil P onto WTR, reducing the likelihood of off-site movement. Reduction of excess soil P may affect the role of specific P-cleaving enzymes...

  12. 76 FR 30705 - Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... the public and an independent, external panel of scientific experts (73 FR 54400). Dated: May 18, 2011... AGENCY Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids... Pathogens in Land-Applied Biosolids'' EPA/600/R-08/035F, which was prepared by the National Center...

  13. Impacts of land-applying class B municipal biosolids on soil microbial activity and soil nutrient and metal concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impacts of land-applying Class B biosolids on microbial activities and nutrient and metal concentrations in surface soils (0-10 cm) of coastal bermudagrass fields were measured during a 112-day incubation. Application rates were: control, 22, 45, and 67 dry Mg biosolids ha-1 y-1 for 8 years and 22 ...

  14. Growth and cadmium uptake of Swiss chard, Thlaspi caerulescens and corn in pH adjusted biosolids amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Before regulations were established, some biosolids applications added higher Cd levels than presently permitted. Cadmium phytoextraction from such soils would alleviate constraints on land use. Unamended farm soil, and biosolids amended farm soil and mine soil were obtained from Fulton County, Il...

  15. Decomposition and plant-available nitrogen in biosolids: laboratory studies, field studies, and computer simulation.

    PubMed

    Gilmour, John T; Cogger, Craig G; Jacobs, Lee W; Evanylo, Gregory K; Sullivan, Dan M

    2003-01-01

    This research combines laboratory and field studies with computer simulation to characterize the amount of plant-available nitrogen (PAN) released when municipal biosolids are land-applied to agronomic crops. In the laboratory studies, biosolids were incubated in or on soil from the land application sites. Mean biosolids total C, organic N, and C to N ratio were 292 g kg(-1), 41.7 g kg(-1), and 7.5, respectively. Based on CO2 evolution at 25 degrees C and optimum soil moisture, 27 of the 37 biosolids-soil combinations had two decomposition phases. The mean rapid and slow fraction rate constants were 0.021 and 0.0015 d(-1), respectively, and the rapid fraction contained 23% of the total C assuming sequential decomposition. Where only one decomposition phase existed, the mean first order rate constant was 0.0046 d(-1). The mean rate constant for biosolids stored in lagoons for an extended time was 0.00097 d(-1). The only treatment process that was related to biosolids treatment was stabilization by storage in a lagoon. Biosolids addition rates (dry basis) ranged from 1.3 to 33.8 Mg ha(-1) with a mean value of 10.6 Mg ha(-1). A relationship between fertilizer N rate and crop response was used to estimate observed PAN at each site. Mean observed PAN during the growing season was 18.9 kg N Mg(-1) or 37% of the biosolids total N. Observed PAN was linearly related to biosolids total N. Predicted PAN using the computer model Decomposition, actual growing-season weather, actual analytical data, and laboratory decomposition kinetics compared well with observed PAN. The mean computer model prediction of growing-season PAN was 19.2 kg N Mg(-1) and the slope of the regression between predicted and observed PAN was not significantly different from unity. Predicted PAN obtained using mean decomposition kinetics was related to predicted PAN using actual decomposition kinetics suggesting that mean rate constants, actual weather, and actual analytical data could be used in

  16. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.

    PubMed

    Donner, E; Scheckel, K; Sekine, R; Popelka-Filcoff, R S; Bennett, J W; Brunetti, G; Naidu, R; McGrath, S P; Lombi, E

    2015-10-01

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that biosolids Ag concentrations have decreased significantly over recent decades. XANES revealed the importance of reduced-sulfur binding environments for Ag speciation in materials ranging from freshly produced sludge to biosolids weathered under ambient environmental conditions for more than 50 years. Isotopic dilution with (110 m)Ag showed that Ag was predominantly non-labile in both fresh and aged biosolids (13.7% mean lability), with E-values ranging from 0.3 to 60 mg/kg and 5 mM CaNO3 extractable Ag from 1.2 to 609 μg/kg (0.002-3.4% of the total Ag). This study indicates that at the time of soil application, biosolids Ag will be predominantly Ag-sulfides and characterised by low isotopic lability. PMID:26021819

  17. Steroid hormone runoff from agricultural test plots applied with municipal biosolids

    USGS Publications Warehouse

    Yang, Yun-Ya; Gray, James L.; Furlong, Edward T.; Davis, Jessica G.; ReVollo, Rhiannon C.; Borch, Thomas

    2012-01-01

    The potential presence of steroid hormones in runoff from sites where biosolids have been used as agricultural fertilizers is an environmental concern. A study was conducted to assess the potential for runoff of seventeen different hormones and two sterols, including androgens, estrogens, and progestogens from agricultural test plots. The field containing the test plots had been applied with biosolids for the first time immediately prior to this study. Target compounds were isolated by solid-phase extraction (water samples) and pressurized solvent extraction (solid samples), derivatized, and analyzed by gas chromatography–tandem mass spectrometry. Runoff samples collected prior to biosolids application had low concentrations of two hormones (estrone -1 and androstenedione -1) and cholesterol (22.5 ± 3.8 μg L-1). In contrast, significantly higher concentrations of multiple estrogens (-1), androgens (-1), and progesterone (-1) were observed in runoff samples taken 1, 8, and 35 days after biosolids application. A significant positive correlation was observed between antecedent rainfall amount and hormone mass loads (runoff). Hormones in runoff were primarily present in the dissolved phase (<0.7-μm GF filter), and, to a lesser extent bound to the suspended-particle phase. Overall, these results indicate that rainfall can mobilize hormones from biosolids-amended agricultural fields, directly to surface waters or redistributed to terrestrial sites away from the point of application via runoff. Although concentrations decrease over time, 35 days is insufficient for complete degradation of hormones in soil at this site.

  18. Uptake of pharmaceuticals, hormones and parabens into vegetables grown in soil fertilized with municipal biosolids.

    PubMed

    Sabourin, Lyne; Duenk, Peter; Bonte-Gelok, Shelly; Payne, Michael; Lapen, David R; Topp, Edward

    2012-08-01

    Several recent greenhouse studies have established the potential for uptake of human pharmaceuticals from soil fertilized with municipal biosolids into a variety of crops. In the present study, a field experiment was undertaken to evaluate the uptake of organic micropollutants from soil fertilized with municipal biosolids at a regulated application rate into tomatoes, carrots, potatoes and sweet corn produced under normal farming conditions. The vegetables were grown according to farming practices mandated by the province of Ontario Canada, the key feature being a one-year offset between biosolid application and the harvest of crops for human consumption. Biosolids at application, and crop samples following harvest were analyzed for 118 pharmaceuticals and transformation products, 17 hormones or hormone transformation products, and 6 parabens. Analyte concentrations in the biosolids were consistent with those detected in other surveys. Eight of the 141 analytes were detected in one or two crop replicates at concentrations ranging from 0.33 to 6.25 ng/g dry weight, but no analytes were consistently detected above the detection limit in all triplicate treated plots. Overall, this study suggests that the potential for micropollutant uptake into crops under normal farming conditions is low. PMID:22687432

  19. Green production of hydrogen from excess biosolids originating from municipal waste water treatment

    SciTech Connect

    Bagchi, B.; Rawlston, J.; Counce, R.M.; Holmes, J.M.; Bienkowski, P.R.

    2006-07-01

    Technical and economic aspects of equivalent hydrogen (moles of H{sub 2} + moles of CO potentially converted to H{sub 2}) production from biosolids produced in wastewater treatment are evaluated in this paper. ASPEN+ simulation of the gasification of biosolids and coal provides the basis for the analysis of the technical performance of a gasification process. The General Electric (GE, formerly Texaco) Gasifier was chosen for the study. The solids are assumed to be slurried as 50 wt% or 70 wt% solids (typical and maximum attainable) as feed streams for the gasifier with water. In this study, the incremental raw material costs (feed+oxygen) for gasification plants producing the same annual quantity of H{sub 2} from coal and/or biosolids are compared. It may be seen that under the conditions of this study, the estimated cost of H{sub 2} production may be significantly reduced when biosolids are included in the feed materials to gasification, but only when the avoided disposal costs of the biosolids are considered.

  20. Field dissipation of four personal care products in biosolids-amended soils in North China.

    PubMed

    Chen, Feng; Ying, Guang-Guo; Ma, Yi-Bing; Chen, Zhi-Feng; Lai, Hua-Jie

    2014-11-01

    The present study investigated the dissipation behaviors of 4 typical personal care products (PCPs)-triclocarban (TCC), triclosan (TCS), tonalide (AHTN), and galaxolide (HHCB)- in soils amended with biosolids under field conditions in North China. The results showed that the 4 target compounds were detected in all biosolids-amended soils at levels of a few nanograms per gram to thousands of nanograms per gram (dry wt). The residual concentrations of the 4 PCPs were found in the following order: TCC > TCS > AHTN > HHCB. Significant dissipation of the 4 PCPs was observed in the biosolids-amended soils, with half-lives ranging from 26 d to 133 d. Furthermore, repeated biosolids applications and a higher biosolids application rate could lead to higher accumulation of the 4 PCPs in the agricultural soils. Based on the detected concentrations in the field trial and limited ecotoxicity data, high risks to soil organisms are expected for TCC, whereas low to medium risks are expected in most cases for AHTN, HHCB, and TCS. PMID:25044513

  1. Comparison of two dynamic measurement methods of odor and odorant emission rates from freshly dewatered biosolids.

    PubMed

    Wang, Tingting; Sattayatewa, Chakkrid; Venkatesan, Dhesikan; Noll, Kenneth E; Pagilla, Krishna R; Moschandreas, Demetrios J

    2011-06-01

    Odor and odorant emission rates from freshly dewatered biosolids in a dewatering building of a Water Reclamation Plant (WRP) are measured using the EPA flux chamber and wind tunnel methods. Experimental results are compared statistically to test whether the two methods result in similar emission rates when experiments are performed under field conditions. To the best of our knowledge the literature is void of studies comparing the two methods indoors. In this paper the two methods are compared indoors where the wind velocity and air exchange rate are pertinent field conditions and can be measured. The difference between emission rates of odor and hydrogen sulfide measured with the two methods is not statistically significant (P values: 0.505 for odor, 0.130 for H(2)S). It is concluded that both methods can be used to estimate source emissions but selection of the most effective or efficient method depends on prevailing environmental conditions. The wind tunnel is appropriate for outdoor environments where wind effects on source emissions are more pronounced than indoors. The EPA flux chamber depends on the air exchange rate of the chamber, which simulates corresponding conditions of the indoor environment under investigation and is recommended for estimation of indoor pollution sources. PMID:21552636

  2. Evaluation of thermophilic anaerobic digestion processes for full-scale Class A biosolids disinfection at Hyperion Treatment Plant.

    PubMed

    Iranpour, R; Cox, H H J

    2007-05-01

    This paper describes 5 phases of full-scale testing at the City of Los Angeles Hyperion Treatment Plant (HTP) for producing Class A biosolids (U.S. EPA Part 503 Biosolids Rule) by thermophilic anaerobic digestion. Phases I and II were tests with a two-stage continuous-batch process in a thermophilic battery of six digesters and a designated post-digestion train that was isolated from mesophilic operations. These tests demonstrated that digester outflow biosolids met the Class A limits for fecal coliforms and Salmonella sp. However, fecal coliform densities sharply increased during post-digestion. The recurrence was possibly related to a combination of a large drop of the biosolids temperature after the dewatering centrifuges and contamination of thermophilically digested biosolids from mesophilic operations. Phase III was conducted after insulation and electrical heat-tracing of the post-digestion train to maintain a biosolids temperature throughout post-digestion at about the same level as in the digester outflow. Biosolids monitoring at the last points of plant control (silos at Truck Loading Facility and farm for land application) indicated that fecal coliform recurrence was prevented. After completing the conversion of HTP to thermophilic operation, certification tests of Phases IV and V demonstrated Class A compliance of a two-stage continuous-batch process under Alternatives 1 and 3 of the Part 503 Biosolids Rule, respectively. HTP received the permit for Class A (indeed exceptional quality) biosolids land application in Kern County, California, in December 2002 under Alternative 3. Since 2003, HTP has consistently complied with the federal and local standards for Class A biosolids, indicating that Class A limits can be met under conditions less stringent than defined by the Alternative 1 time-temperature requirement for batch treatment. PMID:17054113

  3. Creating Competitive Advantage through Effective Management Education.

    ERIC Educational Resources Information Center

    Longenecker, Clinton O.; Ariss, Sonny S.

    2002-01-01

    Managers trained in executive education programs (n=203) identified ways in which management education can increase an organization's competitive advantage: exposure to new ideas and practices, skill development, and motivation. Characteristics of effective management education included experience-based learning orientation, credible instructors,…

  4. Impact of long-term land application of biosolids on groundwater quality and surface soils

    SciTech Connect

    Surampalli, R.Y.; Lin, K.L.; Banerji, S.K.

    1995-11-01

    A study was conducted to evaluate the long-term land application of Biosolids and its potential impact on groundwater quality and surface soils. For this study, an existing site, that has been in operation for 8--15 years were selected for sampling and analyses. From this site sludge applied soil samples, background soil samples, and groundwater monitoring samples were obtained. The samples were analyzed for the following: pH, conductivity, total solids, fecal coliform, fecal streptococci, nitrate nitrogen, ammonia nitrogen, TKN, arsenic, cadmium, chromium, copper, nickel, lead, and zinc. The results of this study indicate that groundwater at this biosolids application site was not contaminated with heavy metals or pathogens. The bacteriological soil data also indicated that the levels of fecal coliform and fecal streptococci were close to background level with no evidence of contamination. The results also indicate that there is no heavy metals buildup in biosolids-amended soils.

  5. Creating Effective Enrollment Management Systems.

    ERIC Educational Resources Information Center

    Hossler, Don

    A guide to the development and operation of a college enrollment management system is presented for college administrators. After describing current issues that affect traditional student enrollments, the concept of enrollment management is defined, and its basic elements are introduced, along with broader organizational perspectives such as…

  6. Characterization of Phosphorus Species in Biosolids and Manures Using XANES Spectroscopy

    SciTech Connect

    Shober,A.; Hesterberg, D.; Sims, J.; Gardner, S.

    2006-01-01

    Received for publication March 10, 2006. Identification of the chemical P species in biosolids or manures will improve our understanding of the long-term potential for P loss when these materials are land applied. The objectives of this study were to determine the P species in dairy manures, poultry litters, and biosolids using X-ray absorption near-edge structure (XANES) spectroscopy and to determine if chemical fractionation techniques can provide useful information when interpreted based on the results of more definitive P speciation studies. Our XANES fitting results indicated that the predominant forms of P in organic P sources included hydroxylapatite, PO{sub 4} sorbed to Al hydroxides, and phytic acid in lime-stabilized biosolids and manures; hydroxylapatite, PO{sub 4} sorbed on ferrihydrite, and phytic acid in lime- and Fe-treated biosolids; and PO{sub 4} sorbed on ferrihydrite, hydroxylapatite, {beta}-tricalcium phosphate ({beta}-TCP), and often PO{sub 4} sorbed to Al hydroxides in Fe-treated and digested biosolids. Strong relationships existed between the proportions of XANES PO{sub 4} sorbed to Al hydroxides and NH{sub 4}Cl- + NH{sub 4}F-extractable P, XANES PO{sub 4} sorbed to ferrihydrite + phytic acid and NaOH-extractable P, and XANES hydroxylapatite + {beta}-TCP and dithionite-citrate-bicarbonate (DCB)- + H{sub 2}SO{sub 4}-extractable P ({gamma}{sup 2} = 0.67 [P = 0.01], 0.78 [P = 0.01], and 0.89 [P = 0.001], respectively). Our XANES fitting results can be used to make predictions about long-term solubility of P when biosolids and manures are land applied. Fractionation techniques indicate that there are differences in the forms of P in these materials but should be interpreted based on P speciation data obtained using more advanced analytical tools.

  7. Determination of pharmaceuticals in biosolids using accelerated solvent extraction and liquid chromatography/tandem mass spectrometry.

    PubMed

    Ding, Yunjie; Zhang, Weihao; Gu, Cheng; Xagoraraki, Irene; Li, Hui

    2011-01-01

    An analytical method was developed to quantitatively determine pharmaceuticals in biosolid (treated sewage sludge) from wastewater treatment plants (WWTPs). The collected biosolid samples were initially freeze dried, and grounded to obtain relatively homogenized powders. Pharmaceuticals were extracted using accelerated solvent extraction (ASE) under the optimized conditions. The optimal operation parameters, including extraction solvent, temperature, pressure, extraction time and cycles, were identified to be acetonitrile/water mixture (v/v 7:3) as extraction solvent with 3 extraction cycles (15 min for each cycle) at 100 °C and 100 bars. The extracts were cleaned up using solid-phase extraction followed by determination by liquid chromatography coupled with tandem mass spectrometry. For the 15 target pharmaceuticals commonly found in the environment, the overall method recoveries ranged from 49% to 68% for tetracyclines, 64% to 95% for sulfonamides, and 77% to 88% for other pharmaceuticals (i.e. acetaminophen, caffeine, carbamazepine, erythromycin, lincomycin and tylosin). The developed method was successfully validated and applied to the biosolid samples collected from WWTPs located in six cities in Michigan. Among the 15 target pharmaceuticals, 14 pharmaceuticals were detected in the collected biosolid samples. The average concentrations ranged from 2.6 μg/kg for lincomycin to 743.6 μg/kg for oxytetracycline. These results indicated that pharmaceuticals could survive wastewater treatment processes, and accumulate in sewage sludge and biosolids. Subsequent land application of the contaminated biosolids could lead to the dissemination of pharmaceuticals in soil and water environment, which poses potential threats to at-risk populations in the receiving ecosystems. PMID:21112593

  8. Transformation of triclosan and triclocarban in soils and biosolids-applied soils.

    PubMed

    Kwon, Jeong-Wook; Armbrust, Kevin L; Xia, Kang

    2010-01-01

    Triclosan (TCS) and triclocarban (TCC), widely used as antibacterial agents, have been frequently detected in biosolids. Biosolids land application may introduce pharmaceuticals and personal care products (PPCPs) such as TCS and TCC into the environment. Microcosm studies were conducted to investigate TCS and TCC transformation in Marietta fine loam and McLaurin coarse loam. Both compounds were spiked into the soils with and without biosolids amendment under non-sterilized and sterilized conditions and incubated aerobically at 30 degrees C for up to 100 d. In both soils, transformation of TCS followed second-order reaction kinetics, with estimated reaction rate constants of (5.27 +/- 0.920) x 10(-1) and (9.13 +/- 1.58) x 10(-2) (mg kg(-1))(-1) d(-1) for Marietta fine loam and McLaurin coarse loam, respectively. Transformation of TCC in both soils was slower than that for TCS. After 100 d, 53 +/- 1% and 71 +/- 2% of the initially added TCC and only 2.8 +/- 0.35% and 6.2 +/- 0.80% of initially added TCS remained in Marietta fine loam and McLaurin coarse loam, respectively. The transformation of both compounds were faster in the Marietta fine loam (pH 7.8; 1.8% organic matter) than in the McLaurin coarse loam (pH 4.7; 0.65% organic matter). Our result suggests that biotic processes are more of a controlling factor affecting TCS transformation, whereas abiotic processes may affect TCC transformation more significantly. Addition of biosolids to the two soils slowed the transformation of both compounds, indicating interactions between both compounds and biosolids may adversely affect their transformation in soils, an important factor that must be included in models predicting environmental fate of biosolids-associated PPCPs. PMID:20830900

  9. Teacher Plan Book. Management for Effective Teaching.

    ERIC Educational Resources Information Center

    Fairfax County Public Schools, VA. Dept. of Instructional Services.

    Project MET (Management for Effective Teaching) is a pilot project that provides effective, practical ways of managing the Fairfax County (Virginia) Public School system's instructional Program of Studies (POS) for elementary school students. This planning booklet is a part of the support kit that is used by teachers as an aid to implementing…

  10. Cost-Effective Stress Management Training.

    ERIC Educational Resources Information Center

    Shea, Gordon F.

    1980-01-01

    Stress management training can be a cost effective way to improve productivity and job performance. Among many relaxation techniques, the most effective in terms of teachability, participant motivation, and profitability are self-hypnosis, progressive relaxation, and transcendental meditation. (SK)

  11. Investigation of biosolids degradation under flooded environments for use in underwater cover designs for mine tailing remediation.

    PubMed

    Jia, Yu; Nason, Peter; Maurice, Christian; Alakangas, Lena; Öhlander, Björn

    2015-07-01

    To evaluate the potential suitability of digested sewage sludge (frequently termed biosolids) for use as underwater cover material for mine waste tailings, the degradability of biosolids at 20 - 22 °C under flooded anaerobic conditions was evaluated during incubation for 230 days. Leaching of elements from the flooded anaerobic system was also evaluated. Biosolid degradation was confirmed by the generation and accumulation of CH4 and CO2. Specifically, approximately 1.65 mmoL gas/g biosolids was generated as a result of incubation, corresponding to degradation of 7.68% of the organic matter, and the residue was stable at the end of the laboratory experiment. Under field conditions in northern Sweden, it is expected that the degradation rate will be much slower than that observed in the present study (Nason et al. Environ Earth Sci 70:30933105, 2013). Although the majority of biosolid fractions (>92%) were shown to be recalcitrant during the incubation period, long-term monitoring of further degradability of residue is necessary. The leaching results showed that most of the metals and metalloids leached from the biosolids at day 230 were below the limit value for non-hazardous waste, although Ni was the only element approximately three times higher than the limit value for inert material at the landfill site. In conclusion, biosolids have potential for use as covering material for underwater storage of tailings based on their biodegradability and leaching of elements. PMID:25677786

  12. Nitrogen and Phosphorus Loss Potential from Biosolids-Amended Soils and Biotic Response in the Receiving Water.

    PubMed

    Hanief, Aslam; Matiichine, Denis; Laursen, Andrew E; Bostan, I Vadim; McCarthy, Lynda H

    2015-07-01

    Application of municipal biosolids to agricultural soil can improve soil quality and improve crop yields. However, runoff or tile leachate from biosolids-applied fields may contribute to localized eutrophication of surface water. A laboratory experiment was conducted to determine loss potential of nutrients from soils amended with two different biosolids (anaerobically digested and chemically stabilized) relative to loss from a reference soil and to determine response in freshwater microcosms to nutrients lost from soils. Total phosphorus (TP) and total nitrogen (TN) were measured in runoff, and equivalent amounts were added to reference microcosms to determine if aquatic systems would respond similarly to TN and TP loading in bioavailable forms (PO, NH, NO) simulating loading related to inorganic fertilizer application. Nutrient concentrations (TP, TN, PO, NH, NO, and organic P and N) were similar in the runoff from the two biosolids-amended soils and higher than those in the runoff from the reference soil. Runoff from biosolids-amended soils stimulated algal growth and production (chlorophyll a and dissolved oxygen) relative to runoff from reference soil, but the response was weaker than in microcosms receiving equivalent amounts of inorganic N and P. Nutrient runoff from land-applied biosolids does have potential to increase algal production in receiving waters; however, this experiment suggests receiving waters may absorb a single large nutrient loading event associated with runoff from biosolids-amended soil without substantial impact. Moreover, the response to N and P in biosolids versus inorganic nutrient additions suggests biosolids may contribute relatively less to eutrophication than inorganic fertilizers, assuming equivalent TN and TP loading to aquatic systems. PMID:26437111

  13. Effectiveness of Enhanced Safety Management

    SciTech Connect

    Waterfall, K.W. )

    1988-01-01

    This paper discusses the development of an Enhanced Safety Management (ESM) campaign to improve safety and reduce risk in oil and gas exploration. The essentials of ESM are summarized by the author. The paper addresses the method developed to implement ESM and how the control of process designs to control operations minimizes the risk of a major accident.

  14. Mapping the total phosphorus concentration of biosolid amended surface soils using LANDSAT TM data.

    PubMed

    Sridhar, B B Maruthi; Vincent, Robert K; Witter, Jason D; Spongberg, Alison L

    2009-04-01

    Conventional methods for soil sampling and analysis for soil variability in chemical characteristics are too time-consuming and expensive for multi-seasonal monitoring over large-scale areas. Hence, the objectives of this study are: 1) to determine changes in chemical concentrations of soils that are amended with treated sewage sludge; and 2) to determine if LANDSAT TM data can be used to map surface chemical characteristics of such amended soils. For this study, we selected two fields in NW Ohio, designated as F34 and F11, that had been applied with 34 and 11 ton acre(-1) of biosolids, respectively. Soil samples from a total of 70 sampling locations across the two fields were collected one day prior to LANDSAT 5 overpass and were analyzed for several elemental concentrations. The accumulation of Ba, Cd, Cu, S and P were found to be significantly higher in the surface soils of field F34, compared to field F11. Regression equations were established to search for algorithms that could map these five elemental concentrations in the surface soils using six, dark-object-subtracted (DOS) LANDSAT TM bands and the 15 non-reciprocal spectral ratios derived from these six bands for the May 20, 2005, LANDSAT 5 TM image. Phosphorus (P) had the highest R(2) adjusted value (67.9%) among all five elements considered, and the resulting algorithm employed only spectral ratios. This model was successfully tested for robustness by applying it to another LANDSAT TM image obtained on June 5, 2005. Our results enabled us to conclude that LANDSAT TM imagery of bare-soil fields can be used to quantify and map the spatial variation of total phosphorous concentration in surface soils. This research has significant implications for identification and mapping of areas with high P, which is important for implementing and monitoring the best phosphorous management practices across the region. PMID:19215969

  15. Determining the ecological impacts of organic contaminants in biosolids using a high-throughput colorimetric denitrification assay: a case study with antimicrobial agents.

    PubMed

    Holzem, R M; Stapleton, H M; Gunsch, C K

    2014-01-01

    Land application accounts for ∼ 50% of wastewater solid disposal in the United States. Still, little is known regarding the ecological impacts of nonregulated contaminants found in biosolids. Because of the myriad of contaminants, there is a need for a rapid, high-throughput method to evaluate their ecotoxicity. Herein, we developed a novel assay that measures denitrification inhibition in a model denitrifier, Paracoccus denitrificans Pd1222. Two common (triclosan and triclocarban) and four emerging (2,4,5 trichlorophenol, 2-benzyl-4-chlorophenol, 2-chloro-4-phenylphenol, and bis(5-chloro-2-hydroxyphenyl)methane) antimicrobial agents found in biosolids were analyzed. Overall, the assay was reproducible and measured impacts on denitrification over 3 orders of magnitude exposure. The lowest observable adverse effect concentrations (LOAECs) were 1.04 μM for triclosan, 3.17 μM for triclocarban, 0.372 μM for bis-(5-chloro-2-hydroxyphenyl)methane, 4.89 μM for 2-chloro-4-phenyl phenol, 45.7 μM for 2-benzyl-4-chorophenol, and 50.6 μM for 2,4,5-trichlorophenol. Compared with gene expression and cell viability based methods, the denitrification assay was more sensitive and resulted in lower LOAECs. The increased sensitivity, low cost, and high-throughput adaptability make this method an attractive alternative for meeting the initial testing regulatory framework for the Federal Insecticide, Fungicide, and Rodenticide Act, and recommended for the Toxic Substances Control Act, in determining the ecotoxicity of biosolids-derived emerging contaminants. PMID:24410196

  16. Stem revenue losses with effective CDM management.

    PubMed

    Alwell, Michael

    2003-09-01

    Effective CDM management not only minimizes revenue losses due to denied claims, but also helps eliminate administrative costs associated with correcting coding errors. Accountability for CDM management should be assigned to a single individual, who ideally reports to the CFO or high-level finance director. If your organization is prone to making billing errors due to CDM deficiencies, you should consider purchasing CDM software to help you manage your CDM. PMID:14503149

  17. Effective maintenance practices to manage system aging

    NASA Astrophysics Data System (ADS)

    Chockie, Alan; Bjorkelo, Kenneth

    A study for the Nuclear Regulatory Commission was recently undertaken to identify effective maintenance practices that could be adapted by the nuclear industry in the United States to assist in managing the aging degradation of plant systems and components. Four organizations were examined to assess the influence of maintenance programs on addressing the system and component aging degradation issues. An effective maintenance program was found to be essential to the management of system and component aging. Four key elements of an effective maintenance program that are important to an aging management were identified: (1) the selection of critical systems and components; (2) the development of an understanding of aging through the collection and analysis of equipment performance information; (3) the development of appropriate preventive and predictive maintenance tasks to manage equipment and system aging degradation; and (4) the use of feedback mechanisms to continuously improve the management of aging systems and components. These elements were found to be common to all four organizations.

  18. Impact of Joule Heating and pH on Biosolids Electro-Dewatering.

    PubMed

    Navab-Daneshmand, Tala; Beton, Raphaël; Hill, Reghan J; Frigon, Dominic

    2015-05-01

    Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure. PMID:25494946

  19. Fate of biosolids Cu and Zn in a semi-arid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids land application applies varying trace metal amounts to soils. Measuring total soil metals is typically performed to ensure environmental protection, yet this technique does not quantify which soil phases play important metal release or attenuation roles. We assessed the distribution of ...

  20. Fate of microconstituents in biosolids composted in an aerated silage bag

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of silage bags for composting was evaluated as a means to produce Class A Biosolids while minimizing vector attraction and odor emissions. While most composting studies report pathogen concentrations, little is known about the fate of Endocrine Disruptor Chemicals (EDCs) during composting. ...

  1. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.

    EPA Science Inventory

    Increasing commercial use of nanosilver has focussed attention on the fate of silver (Ag) in the wastewater release pathway. This paper reports the speciation and lability of Ag in archived, stockpiled, and contemporary biosolids from the UK, USA and Australia, and indicates that...

  2. USE OF A MOLECULAR PROBE ASSAY FOR MONITORING SALMONELLA SPP. IN BIOSOLIDS SAMPLES

    EPA Science Inventory

    Current federal regulations (40 CFR 503) require enumeration of fecal coliform or salmonellae prior to land application of biosolids. This regulation specifies use of enumeration methods included in "Standard methods for the Examination of Water and Wastewater 18th Edition," (SM)...

  3. EVALUATION OF BIOSOLID SAMPLE PROCESSING TECHNIQUES TO MAXIMIZE RECOVERY OF BACTERIA

    EPA Science Inventory

    Current federal regulations (40 CFR 503) require enumeration of fecal coliform or Salmoella prior to land application of Class A biosolids. This regulation specifies use of enumeration methods included in "Standard Methods for the Examination of Water and Wastewater 18th Edition,...

  4. Real scale environmental monitoring of zoonotic protozoa and helminth eggs in biosolid samples in Brazil.

    PubMed

    Bonatti, Taís Rondello; Franco, Regina Maura Bueno

    2016-09-01

    Biosolid is the product of the activated sludge treatment system and its final disposition is subject of ongoing discussion as this residue can therefore harbor a great number and variety of pathogens. This study was aimed to (1) monitor the presence of Giardia and Cryptosporidium in biosolid samples from a treatment plant in Campinas, SP, Brazil, (2) observe Giardia cyst wall morphological integrity in treated samples using scanning electron microscopy (SEM) and (3) verify the presence and viability of helminth eggs. Cysts were present in 33.3 % of the samples, whereas oocysts were detected in 8.3 %. Viable Ascaris sp. Toxocara sp. and similar to Trichuris sp. eggs were found through the use of Mexican Official Norm. Results demonstrate the difficulties inherent in working with biosolid as factors such as temperature, ionic strength and pH influenced the recovery of cysts and oocysts. Pores and ruptures were not observed in cyst wall visualized by SEM following 45 days of exposure to sunlight, only minimal morphological changes. These observations emphasize both the importance of adequate treatment of sewage sludge and the need to develop appropriate techniques for the detection of Giardia and Cryptosporidium in this type of sample. This is the first time that a study was done in a real scale for biosolid samples in determining the presence of pathogenic protozoa as Giardia and Cryptosporidium in Brazil, and also observed minimal cyst wall damage after sunlight treatment. PMID:27605758

  5. Preliminary evaluation of biosolids characteristics for anaerobic membrane reactors treating municipal wastewaters.

    PubMed

    Dong, Qirong; Dagnew, Martha; Cumin, Jeff; Parker, Wayne

    2015-01-01

    This study assessed the characteristics of biosolids of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating municipal wastewater. The production of total solids (TS) and volatile solids (VS) was comparable to that reported for the extended aeration system at solids residence time (SRT) longer than 40 days. The yields of TS and VS were reduced as SRT increased from 40 to 100 days and increased with the addition of 26 mg/L of FeCl3. The AnMBR destroyed 60-82% of the VS loading in feed wastewater and hence it was concluded the biosolids met the requirements for vector attraction reduction for land application. The concentrations of volatile suspended solids and total suspended solids in the sludge were less than those reported after anaerobic digestion of conventional primary and secondary sludge mixtures, and hence dewatering of the waste stream may be required for some applications. The nutrient content in terms of total Kjeldahl nitrogen and total phosphorus was similar to that of anaerobically digested municipal sludges. The dewaterability of the biosolids was poorer than that reported for sludges from aerobic treatment and anaerobically digested sludges. Dewaterability was improved by addition of FeCl3 and reduced SRT. The biosolids met standards for land application with regards to the concentration of heavy metals but would need further treatment to meet Class B pathogen indicator criteria. PMID:26465317

  6. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil

    SciTech Connect

    Evanylo, G.K.; Abaye, A.O.; Dundas, C.; Zipper, C.E.; Lemus, R.; Sukkariyah, B.; Rockett, J.

    2005-10-01

    The selection of plant species is critical for the successful establishment and long-term maintenance of vegetation on reclaimed surface mined soils. A study was conducted to assess the capability of 16 forage grass and legume species in monocultures and mixes to establish and thrive on a reclaimed Appalachian surface mine amended with biosolids. The 0.15-ha coarse-textured, rocky, non-acid forming mined site was prepared for planting by grading to a 2% slope and amending sandstone overburden materials with a mixture of composted and dewatered, anaerobically digested biosolids at a rate of 368 Mg ha{sup -1} (dry weight). The high rate of biosolids applied provided favorable soil chemical properties but could not overcome physical property limitations due to shallow undeveloped soil perched atop a compacted soil layer at 25 cm depth. The plant species whose persistence and biomass production were the greatest after a decade or more of establishment (i.e., switchgrass, sericea lespedeza, reed canarygrass, tall fescue, and crownvetch) shared the physiological and reproductive characteristics of low fertility requirements, drought and moisture tolerance, and propagation by rhizome and/or stolons. Of these five species, two (tall fescue and sericea lespedeza) are or have been seeded commonly on Appalachian coal surface mines, and often dominate abandoned pasture sites. Despite the high rates of heavy metal-bearing biosolids applied to the soil, plant uptake of Cd, Cu, Ni, and Zn were well within critical concentrations more than a decade after establishment of the vegetation.

  7. Biochar from Pyrolysis of Biosolids for Nutrient Adsorption and Turfgrass Cultivation.

    PubMed

    Carey, D E; McNamara, P J; Zitomer, D H

    2015-12-01

    At water resource recovery facilities, nutrient removal is often required and energy recovery is an ever-increasing goal. Pyrolysis may be a sustainable process for handling wastewater biosolids because energy can be recovered in the py-gas and py-oil. Additionally, the biochar produced has value as a soil conditioner. The objective of this work was to determine if biochar could be used to adsorb ammonia from biosolids filtrate and subsequently be applied as a soil conditioner to improve grass growth. The maximum carrying capacity of base modified biochar for NH3-N was 5.3 mg/g. Biochar containing adsorbed ammonium and potassium was applied to laboratory planters simulating golf course putting greens to cultivate Kentucky bluegrass. Planters that contained nutrient-laden biochar proliferated at a statistically higher rate than planters that contained biosolids, unmodified biochar, peat, or no additive. Nutrient-laden biochar performed as well as commercial inorganic fertilizer with no statistical difference in growth rates. Biochar from digested biosolids successfully immobilized NH3-N from wastewater and served as a beneficial soil amendment. This process offers a means to recover and recycle nutrients from water resource recovery facilities. PMID:26652122

  8. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils

    NASA Astrophysics Data System (ADS)

    Sridhar, B. B. Maruthi; Vincent, Robert K.; Roberts, Sheila J.; Czajkowski, Kevin

    2011-08-01

    The accumulation of heavy metals in the biosolid amended soils and the risk of their uptake into different plant parts is a topic of great concern. This study examines the accumulation of several heavy metals and nutrients in soybeans grown on biosolid applied soils and the use of remote sensing to monitor the metal uptake and plant stress. Field and greenhouse studies were conducted with soybeans grown on soils applied with biosolids at varying rates. The plant growth was monitored using Landsat TM imagery and handheld spectroradiometer in field and greenhouse studies, respectively. Soil and plant samples were collected and then analyzed for several elemental concentrations. The chemical concentrations in soils and roots increased significantly with increase in applied biosolid concentrations. Copper (Cu) and Molybdenum (Mo) accumulated significantly in the shoots of the metal-treated plants. Our spectral and Landsat TM image analysis revealed that the Normalized Difference Vegetative Index (NDVI) can be used to distinguish the metal stressed plants. The NDVI showed significant negative correlation with increase in soil Cu concentrations followed by other elements. This study suggests the use of remote sensing to monitor soybean stress patterns and thus indirectly assess soil chemical characteristics.

  9. VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS

    EPA Science Inventory

    An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)

    was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Method

    performance was evaluated for dimethylselenide (DMSe), dimethyldisel...

  10. µ-XANES AND µ-XRF INVESTIGATIONS OF METAL BINDING MECHANISMS IN BIOSOLIDS

    EPA Science Inventory

    Micro-X-ray fluorescence (µ-XRF) microprobe analysis and micro-X-ray absorption near edge spectroscopy (µ-XANES) were employed to identify Fe and Mn phases and their association with selected toxic elements in two biosolids (limed composted and Nu-Earth) containing low ...

  11. A BETTER INDICATOR STUDY EXAMINES ALTERNATIVE BIOLOGICAL INDICATORS OF DISINFECTION IN LIME-TREATED BIOSOLIDS

    EPA Science Inventory

    Under the current regulations (CFR 503), Class B biosolids may be land applied with certain site restrictions. One method for achieving Class B status is to raise the pH of the sludge to >12 for a minimum of 2 hours with an alkaline material (normally lime). Alternately, a Clas...

  12. Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and emerging alternatives.

    PubMed

    Semblante, Galilee U; Hai, Faisal I; Huang, Xia; Ball, Andrew S; Price, William E; Nghiem, Long D

    2015-12-30

    This paper critically reviews the fate of trace organic contaminants (TrOCs) in biosolids, with emphasis on identifying operation conditions that impact the accumulation of TrOCs in sludge during conventional wastewater and sludge treatment and assessing the technologies available for TrOC removal from biosolids. The fate of TrOCs during sludge thickening, stabilisation (e.g. aerobic digestion, anaerobic digestion, alkaline stabilisation, and composting), conditioning, and dewatering is elucidated. Operation pH, sludge retention time (SRT), and temperature have significant impact on the sorption and biodegradation of TrOCs in activated sludge that ends up in the sludge treatment line. Anaerobic digestion may exacerbate the estrogenicity of sludge due to bioconversion to more potent metabolites. Application of advanced oxidation or thermal pre-treatment may minimise TrOCs in biosolids by increasing the bioavailability of TrOCs, converting TrOCs into more biodegradable products, or inducing complete mineralisation of TrOCs. Treatment of sludge by bioaugmentation using various bacteria, yeast, or fungus has the potential to reduce TrOC levels in biosolids. PMID:26151380

  13. Pathogens and Indicators in United States Class B Biosolids: National and Historic Distributions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports on the first major study of the incidence of indicator organisms and pathogens found within Class B biosolids across the U.S. since the promulgation of the EPA Part 503 Rule in 1993. National distributions collected between 2005 and 2008, show that the incidence of bacterial and v...

  14. Evaluation of Ferrate(VI) as an Conditioner for Dewatering Wastewater Biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of sludge/biosolids is a commonly used practice for final utilization. Therefore, adequate conditioning and stabilization of wastewater solids is very critical for safe land application. The addition of ferrate (FeO42-) has the potential to improve the dewaterbility of solids, des...

  15. Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the recycling of wastewater biosolids via land-application is a commonly used practice for nutrient recovery and soil reclamation, concerns remain that they may become sources of toxic, persistent organic pollutants to the environment. This study concentrates on assessing the presence and the...

  16. [The characterization of biosolids produced by the San Fernando wastewater treatment plant in Itagui, Antioquia, Colombia].

    PubMed

    Bedoya-Urrego, Katherine; Acevedo-Ruíz, José M; Peláez-Jaramillo, Carlos A; Agudelo-López, Sonia Del Pilar

    2013-01-01

    ABSTRACT Objective This study was aimed at evaluating pertinent physicochemical and microbiological (bacteria and parasites) parameters regarding the biosolids produced by the San Fernando wastewater treatment plant (WWTP) in Itagui, Antioquia, Colombia. Methods Twelve samples were collected and evaluated every month from January to December during 2010. The chemical, physical and microbiological tests followed the protocol described in Colombian technical guideline 5167. The protocol described in Mexican official Norm 004 (with some modifications) was used for identifying helminth ova and assessing their viability. Results All samples proved positive for Ascarislumbricoides, viable ova count ranging from 4 to 22 eggs/2gTS. Both Salmonella and Enterobacteriawere detected in all samples evaluated, the latter having 3,000 colony forming unit (CFU)/g minimum concentration. Biosolid sample values met the heavy metal concentration requirement established by national guidelines. There was no statistical association between rainfall and the pathogen's presence in the biosolids. Conclusion Our results suggested that the biosolids being produced by the San Fernando wastewater treatment plant (WWTP) could be used as organic fertilizer; however they should be treated/sanitized to meet the stipulations in Colombian technical guideline 5167. PMID:25124252

  17. Stability of soil organic matter under long-term biosolids application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The long-term impact of biosolids application on soil C sequestration and nutrient availability through soil biological activity measurements remains unknown. We determined a diversity of stable and biologically active soil C and N fractions from strip-mined (Entisol) and un-mined fields (Alfisol a...

  18. Land application of manure and class B biosolids: an occupational and public quantitative microbial risk assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Public exposures to pathogens can vary from contact with fomites to foodborne exposures. Regulations and recommendations for land application of manure or Class B biosolids are designed to limit public exposures to pathogens in each residual waste. Lands receiving these residuals are more fertile ...

  19. RESEARCH TOWARDS DEVELOPING METHODS FOR SELECTED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS (PPCPS) ADAPTED FOR BIOSOLIDS

    EPA Science Inventory

    Development, standardization, and validation of analytical methods provides state-of-the-science

    techniques to evaluate the presence, or absence, of select PPCPs in biosolids. This research

    provides the approaches, methods, and tools to assess the exposures and redu...

  20. USE OF BIOSOLIDS, COMPOSTS AND BY-PRODUCTS TO REMEDIATE METAL TOXIC ECOSYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When mine wastes or smelter-contaminated soils are strongly acidic, phytotoxicity limits plant cover. Often erosion removes much of the contamination, but soils remain barren because of metal phytotoxicity, acidity, infertility, and adverse soil physical properties. Because mixtures of biosolids, ma...

  1. Quantifying effectiveness in emergency management.

    PubMed

    Weaver, John Michael

    2014-01-01

    This study looked at the relationship between the Departments of Defense (DOD) and Homeland Security (DHS). Moreover, it reviewed the interface between their two subordinate organizations (Northern Command under DOD and the Federal Emergency Management Agency under DHS) with primacy over domestic disasters. Understanding the importance of intergovernmental relations (IGRs), the article dissected the interrelatedness of these organizations regarding hurricanes and the subsequent involvement of federal preparation and response efforts. The informal networked relationships were evaluated using regression analysis focusing on secondary sources of data and several variables. The vitality of collaborative networks is grounded in literature and has been espoused by Waugh and Streib in the world of emergency management; this study expanded on their premise. PMID:25350357

  2. Assessing Institutional Effectiveness: Issues, Methods, and Management.

    ERIC Educational Resources Information Center

    Fincher, Cameron, Ed.

    This collection of 12 papers was presented at a 1987 conference at which speakers presented personal perspectives on institutional effectiveness. Papers are organized under three major headings: "Managing Quality: Methods and Outcomes,""Institutional Response," and "Special Issues." Titles include: (1) "Managing the Meaning of Institutional…

  3. Cd, Ni, Cr and Pb distribution in biosolid pellets used as soil amendment

    NASA Astrophysics Data System (ADS)

    Jordán, Manuel M.; Rincón-Mora, Beatriz; Belén Almendro-Candel, María; Navarro Pedreño, Jose; Gómez Lucas, Ignacio; Bech, Jaume; Roca, Nuria; Pardo, Francisco

    2016-04-01

    The application of biosolids to a soil is a method that offers important benefits (Navarro et al. 2003). The transport and application costs are quite low (mostly if they are dehydrated biosolids or pellets) if soils are located near a wastewater treatment plant. It is possible to recycle nutrients (N, P, and K) and organic matter by improving the physical and chemical characteristics of the soil and by reducing the fertilizer costs. However, the use of biosolids may also has several problems, such as the presence of quantities of metals that could be toxic for plants or could contaminate ground-waters after being leached. Heavy metals are one of the most serious environmental pollutants because of its high toxicity, abundance and easy accumulation by plant (Soriano-Disla et al. 2014; Rosen and Chen 2014). Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of biosolids is subject to rigorous controls within the European Union. The present study was designed to examine the partition of selected heavy metals in biosolid pellets, and also to relate the distribution patterns of these metals. Samples were collected from the treatment of urban wastewater at the drying grounds of a wastewater processing plant. The samples correspond to biosolids with humidities below 20% and are representative of the three horizons within the pile: the isolation surface (H1), the mesophilous area (H2), and the thermophilous area (H3). Biosolid aggregates were placed in a pellet press and then compacted. Total content of metals was determined following microwave digestion and analysed by ICP/MS. Triplicate samples were weighed in polycarbonate centrifuge tubes and sequentially extracted. The distribution of chemical forms of Cd, Ni, Cr, and Pb in the biosolids was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible, and residual forms. The

  4. Restoration of drastically eroded land using coal fly ash and poultry biosolid.

    PubMed

    Punshon, Tracy; Adriano, Domy C; Weber, John T

    2002-09-16

    A 3-year field study was conducted at a 12 ha soil-borrow area adjacent to the Columbia Metropolitan Airport, South Carolina to investigate the restorative effects of co-application of coal fly ash (FA) and a poultry biosolid (PB). FA was applied at 0, 22, 280, 560 and 1120 Mg (tonne) ha(-1), and PB at 5 and 10 Mg ha(-1). The area was seeded with erosion-control species Atlantic Coastal panic grass (Panicum amarum var amarum L.), sericea (Lespedeza cuneata var. appalow [Dumont] G. Don.) and weeping love grass (Eragrostis curvula Wolf.). Plant biomass and elemental composition were analyzed in sequential harvests. Soil and groundwater quality characteristics including pH, EC and elemental composition were also monitored throughout the study. In addition, the effect of amendments on the water holding capacity and bulk density of the soil was investigated. Amendment addition significantly increased plant biomass production by a maximum of 26% using 1120 Mg ha(-1) FA and 10 Mg ha(-1) PB. Application of the highest rate of FA significantly increased the plant tissue concentrations of Mn, As, Se and B. Soil pH was initially increased from 4.6 to 6.1 by amendments. Soil salinity was increased in the initial year only. Amended soils had higher concentrations of Ca, Mg, P and K, higher organic matter content and water holding capacity than unamended soil. Concentrations of plant-essential trace elements (B, Cu and Zn) that were marginally deficient in the unamended eroded soil increased to within typical soil concentrations following amendment with FA and PB. Groundwater quality was unaffected throughout the study. The co-application of FA and PB successfully promoted the revegetation of the eroded borrow area with no apparent adverse environmental side effects. PMID:12398338

  5. Selected personal care products and endocrine disruptors in biosolids: an Australia-wide survey.

    PubMed

    Langdon, Kate A; Warne, Michael St J; Smernik, Ronald J; Shareef, Ali; Kookana, Rai S

    2011-02-15

    Personal care products (PCPs) and endocrine disrupting compounds (EDCs) are groups of organic contaminants that have been detected in biosolids around the world. There is a shortage of data on these types on compounds in Australian biosolids, making it difficult to gain an understanding of their potential risks in the environment following land application. In this study, 14 biosolids samples were collected from 13 Australian wastewater treatment plants (WWTPs) to determine concentrations of eight compounds that are PCPs and/or EDCs: 4-t-octylphenol (4tOP), 4-nonylphenol (4NP), triclosan (TCS), bisphenol A (BPA), estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2). Concentration data were evaluated to determine if there were any differences between samples that had undergone anaerobic or aerobic treatment. The concentration data were also compared to other Australian and international data. Only 4tOP, 4NP, TCS, and BPA were detected in all samples and E1 was detected in four of the 14 samples. Their concentrations ranged from 0.05 to 3.08 mg/kg, 0.35 to 513 mg/kg, <0.01 to 11.2 mg/kg, <0.01 to 1.47 mg/kg and <45 to 370 μg/kg, respectively. The samples that were obtained from WWTPs that used predominantly anaerobic treatment showed significantly higher concentrations of the compounds than those obtained from WWTPs that used aerobic treatment. Overall, 4NP, TCS and BPA concentrations in Australian biosolids were lower than global averages (by 42%, 12% and 62%, respectively) and 4tOP concentrations were higher (by 25%), however, of these differences only that for BPA was statistically significant. The European Union limit value for NP in biosolids is 50 mg/kg, which 4 of the 14 samples in this study exceeded. PMID:21216442

  6. Metagenomic Comparison of Antibiotic Resistance Genes Associated with Liquid and Dewatered Biosolids.

    PubMed

    McCall, Crystal A; Bent, Elizabeth; Jørgensen, Tue S; Dunfield, Kari E; Habash, Marc B

    2016-03-01

    Municipal biosolids (MBs) that are land-applied in North America are known to possess an active microbial population that can include human pathogens. Activated sludge is a hotspot for the accumulation of antibiotics and has been shown to be a selective environment for microorganisms that contain antibiotic resistance genes (ARGs); however, the prevalence of ARGs in MBs is not well characterized. In this study, we enriched the plasmid metagenome from raw sewage sludge and two CP2 MBs, a mesophilic anaerobic digestate and a dewatered digestate, to evaluate the presence of ARGs in mobile genetic elements. The CP2-class biosolids are similar to Class B biosolids in the United States. The CP2 biosolids must meet a microbiological cut off of 2 × 10 colony-forming units (CFU) per dry gram or 100 mL of biosolids. The enriched plasmid DNA was sequenced (Illumina MiSeq). Sequence matching against databases, including the Comprehensive Antibiotic Resistance Database (CARD), MG-RAST, and INTEGRALL, identified potential genes of interest related to ARGs and their ability to transfer. The presence and abundance of different ARGs varied between treatments with heterogeneity observed among the same sample types. The MBs plasmid-enriched metagenomes contained ARGs associated with resistance to a variety of antibiotics, including β-lactams, rifampicin, quinolone, and tetracycline as well as the detection of extended spectrum β-lactamase genes. Cultured bacteria from CP2 MBs possessed antibiotic resistances consistent with the MBs metagenome data including multiantibiotic-resistant isolates. The results from this study provide a better understanding of the ARG and MGE profile of the plasmid-enriched metagenome of CP2 MBs. PMID:27065392

  7. Do you manage your environmental risks effectively?

    SciTech Connect

    Thurman, J.

    1996-12-01

    Can operating companies cost-effectively manage environmental risks, meet compliance requirements and attain financial and market-oriented goals? Yes, if top management fully supports incorporating environmental-risk issues into the corporate management system. Using evaluation tools such as risk assessment and environmental audits, operators can fully define their environment condition and risk level. Working these results, HPI companies can take action to reduce the probability of environmental accidents and mitigate adverse event effects. Adopting this top-down, proactive outlook, organizations can evade environmental catastrophes, avoid negative public image and prevent ruined reputations.

  8. Assessment of plant availability and environmental risk of biosolids-phosphorus in a U.S. Midwest Corn-Belt Soil.

    PubMed

    Tian, G; Cox, A E; Kumar, K; Granato, T C; O'Connor, G A; Elliott, H A

    2016-05-01

    A field experiment was conducted from 2005 to 2008 in Fulton County, Western Illinois with biosolids from conventional wastewater treatment applied as corn fertilizer in a series of P rates (0, 163, 325, 488, 650 kg P ha(-1)) along with commercial P fertilizer - triple superphosphate P (TSP) as reference to assess biosolids-P plant availability and potential loss to waterbodies through runoff. Air-dried biosolids and TSP were incorporated into surface soil at end of 2005, and corn (Zea mays) was planted for three consecutive years (2006-2008). Concentrations of soil extractable P except for Mehlich-3 P were always lower in the biosolids than TSP treatments at the same P rates. The soil potentially available P in water extractable P (WEP) and Olsen P derived from biosolids-P estimated by the exponential depletion model was 2-4% and 15-24% of total P in the applied biosolids, respectively. The residence time of biosolids-induced WEP and Olsen P in Midwest soil under annual corn cropping was 5 and 2 years, respectively. Corn tissue analysis showed lower increase in P concentration by biosolids-P than TSP. The elevation rate of soluble reactive P (SRP) concentration in simulated runoff was less by biosolids than TSP. Based on the data in this study, the plant availability and environmental risk of biosolids-P are lower than those of TSP in the Midwest soil, thus use of biosolids as P nutrient for corn would not cause a major impairment to water sources even P applied through biosolids was not completely used by annual crop. PMID:26945189

  9. Side Effects and Their Management

    MedlinePlus

    Donate Donate One Time Monthly Event Tribute For brain tumor information and support Call: 800-886-ABTA (2282) ... Care and Treatment Newly Diagnosed Continuum of Care Brain Tumor Treatments Brain Tumor Treatment Locations Treatment Side Effects & ...

  10. Fate of flame retardants and the antimicrobial agent triclosan in planted and unplanted biosolid-amended soils.

    PubMed

    Davis, Elizabeth F; Gunsch, Claudia K; Stapleton, Heather M

    2015-05-01

    A comprehensive understanding of the fate of contaminant-laden biosolids is needed to fully evaluate the environmental impacts of biosolid land application. The present study examined the fate of several flame retardants and triclosan in biosolid-amended soil in a 90-d greenhouse experiment. Objectives included evaluating the persistence of these compounds in soil, their phytoaccumulation potential by alfalfa (Medicago sativa), and potential degradation reactions. Concentrations of the polybrominated diphenyl ether (PBDE) congeners BDE-47 and BDE-209 and the antimicrobial triclosan declined significantly over time in biosolid-amended soil planted with alfalfa and then reached a steady state by day 28. In contrast, no significant losses of those analytes were observed from soil in nonvegetated pots. The amount of an analyte lost from vegetated soil ranged from 43% for the flame retardant di(2-ethylhexyl)-2,3,4,5-tetrabromophthalate to 61% for triclosan and was significantly and negatively related to the log octanol-water partition coefficient. Alfalfa roots and shoots were monitored for the compounds, but no clear evidence of phytoaccumulation was observed. Methyl triclosan formation was observed in the biosolid-amended soils during the study period, indicating in situ biotransformation of triclosan. The present study demonstrates that, although they are highly recalcitrant, PBDEs, selected alternate brominated flame retardants, and triclosan are capable of undergoing dissipation from biosolid-amended soils in the presence of plants. PMID:25546022

  11. Co-gasification of biosolids with biomass: Thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor.

    PubMed

    Yu, Ming Ming; Masnadi, Mohammad S; Grace, John R; Bi, Xiaotao T; Lim, C Jim; Li, Yonghua

    2014-10-17

    This work studied the feasibility of co-gasification of biosolids with biomass as a means of disposal with energy recovery. The kinetics study at 800°C showed that biomass, such as switchgrass, could catalyze the reactions because switchgrass ash contained a high proportion of potassium, an excellent catalyst for gasification. However, biosolids could also inhibit gasification due to interaction between biomass alkali/alkaline earth metals and biosolids clay minerals. In the pilot scale experiments, increasing the proportion of biosolids in the feedstock affected gasification performance negatively. Syngas yield and char conversion decreased from 1.38 to 0.47m(3)/kg and 82-36% respectively as the biosolids proportion in the fuel increased from 0% to 100%. Over the same range, the tar content increased from 10.3 to 200g/m(3), while the ammonia concentration increased from 1660 to 19,200ppmv. No more than 25% biosolids in the fuel feed is recommended to maintain a reasonable gasification. PMID:25459803

  12. National inventory of perfluoroalkyl substances in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey

    PubMed Central

    Venkatesan, Arjun K.; Halden, Rolf U.

    2013-01-01

    Using liquid chromatography tandem mass spectrometry, we determined the first nationwide inventories of 13 perfluoroalkyl substances (PFASs) in U.S. biosolids via analysis of samples collected by the U.S. Environmental Protection Agency in the 2001 National Sewage Sludge Survey. Perfluorooctane sulfonate [PFOS; 403 ± 127 ng/g dry weight (dw)] was the most abundant PFAS detected in biosolids composites representing 32 U.S. states and the District of Columbia, followed by perfluorooctanoate [PFOA; 34 ± 22 ng/g dw] and perfluorodecanoate [PFDA; 26 ± 20 ng/g dw]. Mean concentrations in U.S. biosolids of the remaining ten PFASs ranged between 2 and 21 ng/g dw. Interestingly, concentrations of PFOS determined here in biosolids collected prior to the phase-out period (2002) were similar to levels reported in the literature for recent years. The mean load of ΣPFASs in U.S. biosolids was estimated at 2749–3450 kg/year, of which about 1375–2070 kg is applied on agricultural land and 467–587 kg goes to landfills as an alternative disposal route. This study informs the risk assessment of PFASs by furnishing national inventories of PFASs occurrence and environmental release via biosolids application on land. PMID:23562984

  13. Fly ash and lime-stabilized biosolid mixtures in mine spoil reclamation: simulated weathering.

    PubMed

    Abbott, D E; Essington, M E; Mullen, M D; Ammons, J T

    2001-01-01

    The use of large quantities of neutral coal fly ash (NFA) may be facilitated by co-application with a lime-stabilized biosolid (LSB) for the reclamation of acid mine spoil (AMS). Although NFA may not aid in the mitigation of acid drainage, questions concerning the leachability and mineralogy of native and NFA- and LSB-born metals must be addressed. In this study, the potential long-term influence of LSB and NFA on AMS leachate chemistry and trace element mineralogy was evaluated using laboratory weathering and selective dissolution techniques. The application of LSB at a rate sufficient to neutralize the potential acidity of the AMS increased leachate pH from approximately 3 to 7.5 for the duration of the study. Fly ash rates (1X, 1.5X, and 2X LSB rate) did not affect leachate pH. The dominant electrolytes in all leachates were Ca and SO4, the concentrations of which were mirrored by solution electrical conductivity (EC). Leachate concentrations of Al, Fe, Mn, K, Cu, Ni, and Zn were significantly reduced by LSB application, whereas concentrations of Ca, SO4, Mg, Cl, F, B, and P were increased. Nitrate concentrations were not affected by LSB. With the exception of leachate B, which increased with increasing NFA rate and was regenerated during the weathering study, NFA did not affect leachate composition. Sequential selective dissolution indicated a transformation of Co, Cr, Cu, Ni, Pb, and Zn into less labile mineral pools with weathering. The results of these evaluations suggest that the application of NFA during AMS reclamation would have little effect on leachate chemistry or the mineralogy of trace elements. Thus, the high-volume application of NFA to AMS during reclamation may offer an additional opportunity for the use of this combustion by-product. PMID:11285924

  14. Management of adverse effects of mood stabilizers.

    PubMed

    Murru, Andrea; Popovic, Dina; Pacchiarotti, Isabella; Hidalgo, Diego; León-Caballero, Jordi; Vieta, Eduard

    2015-08-01

    Mood stabilizers such as lithium and anticonvulsants are still standard-of-care for the acute and long-term treatment of bipolar disorder (BD). This systematic review aimed to assess the prevalence of their adverse effects (AEs) and to provide recommendations on their clinical management. We performed a systematic research for studies reporting the prevalence of AEs with lithium, valproate, lamotrigine, and carbamazepine/oxcarbazepine. Management recommendations were then developed. Mood stabilizers have different tolerability profiles and are eventually associated to cognitive, dermatological, endocrine, gastrointestinal, immunological, metabolic, nephrogenic, neurologic, sexual, and teratogenic AEs. Most of those can be transient or dose-related and can be managed by optimizing drug doses to the lowest effective dose. Some rare AEs can be serious and potentially lethal, and require abrupt discontinuation of medication. Integrated medical attention is warranted for complex somatic AEs. Functional remediation and psychoeducation may help to promote awareness on BD and better medication management. PMID:26084665

  15. Health monitoring for effective management of infrastructure

    NASA Astrophysics Data System (ADS)

    Aktan, A. Emin; Catbas, Fikret N.; Grimmelsman, Kirk A.; Pervizpour, Mesut; Curtis, Joshua M.; Shen, Kaizhen; Qin, Xiaoli

    2002-06-01

    Significance of effectively managing civil infrastructure systems (CIS) throughout CIS life-cycles, and especially during and after natural or man-made disasters is well recognized. Disaster mitigation includes preparedness for hazards to avoid casualties and human suffering, as well as to ensure that critical CIS components can become operational within a short amount of time following a disaster. It follows that mitigating risk due to disasters and CIS managementare intersecting and interacting societal concerns. A coordinated, multi-disciplinary approach that integrates field, theoretical and laboratory research is necessary for innovating both hazard mitigation and infrastructure management. Health monitoring (HM) of CIS is an emerging paradigm for effective management, including emergency response and recovery management. Challenges and opportunities in health monitoring enabled by recent advances in information technology are discussed in this paper. An example of HM research on an actual CIS test-bed is presented.

  16. Rethinking Social Barriers to Effective Adaptive Management.

    PubMed

    West, Simon; Schultz, Lisen; Bekessy, Sarah

    2016-09-01

    Adaptive management is an approach to environmental management based on learning-by-doing, where complexity, uncertainty, and incomplete knowledge are acknowledged and management actions are treated as experiments. However, while adaptive management has received significant uptake in theory, it remains elusively difficult to enact in practice. Proponents have blamed social barriers and have called for social science contributions. We address this gap by adopting a qualitative approach to explore the development of an ecological monitoring program within an adaptive management framework in a public land management organization in Australia. We ask what practices are used to enact the monitoring program and how do they shape learning? We elicit a rich narrative through extensive interviews with a key individual, and analyze the narrative using thematic analysis. We discuss our results in relation to the concept of 'knowledge work' and Westley's (2002) framework for interpreting the strategies of adaptive managers-'managing through, in, out and up.' We find that enacting the program is conditioned by distinct and sometimes competing logics-scientific logics prioritizing experimentation and learning, public logics emphasizing accountability and legitimacy, and corporate logics demanding efficiency and effectiveness. In this context, implementing adaptive management entails practices of translation to negotiate tensions between objective and situated knowledge, external experts and organizational staff, and collegiate and hierarchical norms. Our contribution embraces the 'doing' of learning-by-doing and marks a shift from conceptualizing the social as an external barrier to adaptive management to be removed to an approach that situates adaptive management as social knowledge practice. PMID:27351578

  17. Incentives and Disincentives for Effective Management.

    ERIC Educational Resources Information Center

    Hyatt, James A.; Santiago, Aurora A.

    Experiences of five states that have created incentives for the effective management of higher education or that have eliminated disincentives are examined. After considering the effect of state budgetary controls and regulations on college operations, methods used to determine levels of state support and to allocate state funds are addressed. In…

  18. Rethinking Social Barriers to Effective Adaptive Management

    NASA Astrophysics Data System (ADS)

    West, Simon; Schultz, Lisen; Bekessy, Sarah

    2016-09-01

    Adaptive management is an approach to environmental management based on learning-by-doing, where complexity, uncertainty, and incomplete knowledge are acknowledged and management actions are treated as experiments. However, while adaptive management has received significant uptake in theory, it remains elusively difficult to enact in practice. Proponents have blamed social barriers and have called for social science contributions. We address this gap by adopting a qualitative approach to explore the development of an ecological monitoring program within an adaptive management framework in a public land management organization in Australia. We ask what practices are used to enact the monitoring program and how do they shape learning? We elicit a rich narrative through extensive interviews with a key individual, and analyze the narrative using thematic analysis. We discuss our results in relation to the concept of `knowledge work' and Westley's 2002) framework for interpreting the strategies of adaptive managers—`managing through, in, out and up.' We find that enacting the program is conditioned by distinct and sometimes competing logics—scientific logics prioritizing experimentation and learning, public logics emphasizing accountability and legitimacy, and corporate logics demanding efficiency and effectiveness. In this context, implementing adaptive management entails practices of translation to negotiate tensions between objective and situated knowledge, external experts and organizational staff, and collegiate and hierarchical norms. Our contribution embraces the `doing' of learning-by-doing and marks a shift from conceptualizing the social as an external barrier to adaptive management to be removed to an approach that situates adaptive management as social knowledge practice.

  19. Thermophilic-anaerobic digestion to produce class A biosolids: initial full-scale studies at Hyperion Treatment Plant.

    PubMed

    Iranpour, R; Cox, H H J; Oh, S; Fan, S; Kearney, R J; Abkian, V; Haug, R T

    2006-02-01

    The highest quality of biosolids is called exceptional quality. To qualify for this classification, biosolids must comply with three criteria: (1) metal concentrations, (2) vector-attraction reduction, and (3) the Class A pathogen-density requirements. The City of Los Angeles Bureau of Sanitation Hyperion Treatment Plant (HTP) (Playa del Rey, California) meets the first two requirements. Thus, the objective of this study was to ensure that HTP's biosolids production would meet the Class A pathogen-reduction requirements following the time-temperature regimen for batch processing (U.S. EPA, 1993; Subsection 32, Alternative 1). Because regulations require the pathogen limits to be met at the last point of plant control, biosolids sampling was not limited to immediately after the digesters, i.e., the digester outflows. The sampling extended to several locations in HTP's postdigestion train, in particular, the last points of plant control, i.e., the truck loading facility and the farm for land application. A two-stage, thermophilic-continuous-batch process, consisting of a battery of six egg-shaped digesters, was established in late 2001 for phase I of this study and modified in early 2002 for phase II. As the biosolids were discharged from the second-stage digesters, the Salmonella sp. (pathogen) and fecal-coliform (indicator) densities were well below the limits for Class A biosolids, even though the second-stage-digester temperatures were a few degrees below the temperature required by Alternative 1. Salmonella sp. densities remained below the Class A limit at all postdigestion sampling locations. Fecal-coliform densities were also below the Class A limit at postdigestion-sampling locations, except the truck-loading facility (phases I and II) and the farm for final use of the biosolids (phase II). Although federal regulations require one of the limits for either fecal coliforms or Salmonella sp. to be met, local regulations in Kern County, California, where the

  20. Managing effectively in the downsized organization.

    PubMed

    Arnold, Edwin; Pulich, Marcia

    2003-01-01

    Many health care institutions have downsized in recent years for a variety of reasons including cost savings and the need to be proactive in restructuring the organization for more effective performance. In a downsized organization, top management must develop new strategies to enable line managers at all levels to operate effectively. New policies for human resource strategic planning, selective hiring, employee empowerment, training and development, reduction of status distinctions, sharing of appropriate information with employees, and paying for performance must be implemented. PMID:12688613

  1. Managing Chemotherapy Side Effects: Fatigue (Feeling Weak and Very Tired)

    MedlinePlus

    ... ational C ancer I nstitute Managing Chemotherapy Side Effects Fatigue (Feeling weak and very tired) Why do ... manage or treat your fatigue. Managing Chemotherapy Side Effects: Fatigue (Feeling weak and very tired) Take time ...

  2. Subsurface Sensors to Manage Cattle Feedlot Waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface sensing tools were used to aid collection of biosolids from feedlot surfaces to be utilized by crops, for control and utilization of nutrient laden liquid runoff, and to enhance feedlot surface management to reduce nutrient losses and gaseous emissions. The work described here was all co...

  3. Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility.

    PubMed

    Armstrong, Dana L; Lozano, Nuria; Rice, Clifford P; Ramirez, Mark; Torrents, Alba

    2016-01-01

    While the recycling of wastewater biosolids via land-application is a sustainable practice for nutrient recovery and soil reclamation that has become increasingly common worldwide, concerns remain that this practice may become a source of toxic, persistent organic pollutants to the environment. This study concentrates on assessing the presence and the temporal trends of 12 perfluoroalkyl substances (PFASs), pollutants of global consequence, in limed Class B biosolids from a municipal water resource recovery facility (WRRF), also know as a wastewater treatment plant. PFASs are of significant concern due to their extensive presence and persistence in environmental and biotic samples worldwide, most notably human blood samples. Class B biosolids were collected from the WRRF, prior to land-application, approximately every two to three months, from 2005 to 2013. Overall, this study found that concentrations of the 7 detectable PFAS compounds remained unchanged over the 8-year period, a result that is consistent with other temporal studies of these compounds in sewage sludges. From these analyzed compounds, the highest mean concentrations observed over the study period were 25.1 ng/g dw, 23.5 ng/g dw, and 22.5 ng/g dw for perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS), respectively, and these compounds were detected at concentrations 2.5-5 times higher than the remaining, detectable PFASs. Furthermore, it was observed that PFOS, while demonstrating no overall change during the study, exhibited a visible spike in concentration from late 2006 to early 2007. This study indicates that concentrations of PFASs in WRRFs have been stagnant over time, despite regulation. This study also demonstrates that the use of glass jars with polytetrafluoroethylene-lined lids, a common storage method for environmental samples, will not influence PFOA and PFNA concentrations in archived biosolids samples. PMID:26413802

  4. A quantitative risk assessment for metals in surface water following the application of biosolids to grassland.

    PubMed

    Clarke, Rachel; Peyton, Dara; Healy, Mark G; Fenton, Owen; Cummins, Enda

    2016-10-01

    During episodic rainfall events, land application of treated municipal sludge ('biosolids') may give rise to surface runoff of metals, which may be potentially harmful to human health if not fully treated in a water treatment plant (WTP). This study used surface runoff water quality data generated from a field-scale study in which three types of biosolids (anaerobically digested (AD), lime stabilised (LS), and thermally dried (TD)) were spread on micro-plots of land and subjected to three rainfall events at time intervals of 24, 48 and 360h following application. Making the assumption that this water directly entered abstraction waters for a WTP without any grassed buffer zone being present, accounting for stream dilution, and modelling various performance scenarios within the WTP, the aim of this research was to conduct a human health risk assessment of metals (Cu, Ni, Pb, Zn, Cd and Cr), which may still be present in drinking water after the WTP. Different dose-response relationships were characterised for the different metals with reference to the lifetime average daily dose (LADD) and the Hazard Quotient (HQ). The results for the LADD show that child exposure concentrations were highest for Cu when the measured surface runoff concentrations from the LS biosolids treatment were used as input into the model. The results for the HQ showed that of all the scenarios considered, Cu had the highest HQ for children. However, values were below the threshold value of risk (HQ<0.01 - no existing risk). Under the conditions monitored, metal concentrations in the biosolids applied to grassland were not considered to result in a risk to human health in surface water systems. PMID:27213676

  5. Use of coal combustion byproducts in biosolids stabilization: The N-Viro process

    SciTech Connect

    Logan, T.J.

    1999-07-01

    The patented N-Viro process for alkaline stabilization of municipal sewage sludge (biosolids) is a 10-year old technology that utilizes a variety of alkaline byproducts. These include cement kiln dust, lime kiln dust, flue gas desulfurization (FGD) byproducts, fluidized-bed coal combustion ashes, and Class C and F fly ashes. The alkaline byproducts are used in the N-Viro process to raise pH ({gt}12), produce heat (52--62 C) and increase solids content of the biosolids (50--65% solids). Typical operations use a blend of reactive (produces heat) and non-reactive byproducts in the process, with selection of materials being driven by local availability and cost. There are 38 N-Viro facilities in the US, Canada, Australia, the UK, and Belgium, with the majority in the eastern US. Of these, 15 use coal combustion byproducts (CCBs) on a regular basis. These facilities process more than 250,000 dry tons of biosolids a year, utilize about 125,000 tons of CCBs annually, and produce more than 1,000,000 tons of the resulting product, N-Viro Soil, per year. The use of CCBs is expected to increase dramatically in the next few years. N-Viro Soil, regulated by US EPA as an EQ biosolids, is marketed and distributed as agricultural lime, fertilizer, and as a soil substitute for reclamation and horticulture. This paper discusses the properties of alkaline materials that are required in the N-Viro process, compares those properties to that of various CCBs, and discusses the potential benefit to coal-burning power plants of recycling CCBs to beneficial uses rather than disposal.

  6. Runoff and leachate losses of phosphorus in a sandy Spodosol amended with biosolids.

    PubMed

    Alleoni, Luis R F; Brinton, Scott R; O'Connor, George A

    2008-01-01

    Florida Spodosols are sandy, inherently low in Fe- and Al-based minerals, and sorb phosphorus (P) poorly. We evaluated runoff and leachate P losses from a typical Florida Spodosol amended with biosolids and triple superphosphate (TSP). Phosphorus losses were evaluated with traditional indoor rainfall simulations but used a double-deck box arrangement that allowed leaching and runoff to be determined simultaneously. Biosolids (Lakeland, OCUD, Milorganite, and Disney) represented contrasting values of total P, percent water-extractable P (PWEP), and percentage of solids. All P sources were surface applied at 224 kg P ha(-1), representing a soil P rate typical of N-based biosolids application. All biosolids-P sources lost less P than TSP, and leachate-P losses generally dominated. For Lakeland-amended soil, bioavailable P (BAP) was mainly lost by runoff (81% of total BAP losses). This behavior was due to surface sealing and drying after application of the slurry (31 g kg(-1) solids) material. For all other P sources, BAP losses in leachate were much greater than in runoff, representing 94% of total BAP losses for TSP, 80% for Milorganite, 72% for Disney, and 69% for OCUD treatments. Phosphorus leaching can be extreme and represents a great concern in many coarse-textured Florida Spodosols and other coastal plain soils with low P-sorption capacities. The PWEP values of P sources were significantly correlated with total P and BAP losses in runoff and leachate. The PWEP of a source can serve as a good indicator of potential P loss when amended to sandy soils with low P-retention capacities. PMID:18178899

  7. Managing Chemotherapy Side Effects: Hair Loss (Alopecia)

    MedlinePlus

    ... C ancer I nstitute Managing Chemotherapy Side Effects Hair Loss (Alopecia) “Losing my hair was hard at first. Then I got used ... uncovered.” Questions other people have asked: Why does hair fall out? Chemotherapy can harm the cells that ...

  8. Effective Classroom-Management & Positive Teaching

    ERIC Educational Resources Information Center

    Sieberer-Nagler, Katharina

    2016-01-01

    This article offers practical information for primary teachers to become more knowledgable, skilled and effective in their work. Aspects of positive teaching and learning are explored. Innovative methods for transforming common classroom management struggles into opportunities for positive change and for changing negative behaviors into positive…

  9. CS exposure--clinical effects and management.

    PubMed Central

    Worthington, E; Nee, P A

    1999-01-01

    The number of people exposed to CS spray presenting to accident and emergency departments is on the increase. Its effects, though usually minor and short lived, involve several systems and can occasionally be life threatening. It is therefore important that staff are able to manage these patients and know when and how to protect themselves and others from further contamination. PMID:10353039

  10. Pathogen risk assessment of land applied wastewater and biosolids: A fuzzy set approach

    SciTech Connect

    Dahab, M.F.; Fuerhacker, M.; Zibuschka, F.

    1998-07-01

    There are major concerns associated with land application of wastewater and biosolids including the potential risk to public health from water-borne pollutants that may enter the food chain and from pathogens that may be present in the wastewater. These risks are of particular concern when wastewater is applied to land where crops are grown as part of the human food chain or when direct human contact with the wastewater may occur. In many communities, toxic chemicals may not be present in the biosolids, or their concentrations may be reduced through source control measures. However, pathogens that enter wastewater from infected individuals cannot be controlled at the source and are often found in wastewater or biosolids applied to land. Public health officials have emphasized that microbial pathogens (or pathogen indicators) should not occur in areas where exposure to humans is likely. Under this criteria, the concept of risk assessment which requires the characterization of the occurrence of pathogens, almost seems to be contradictory to basic public health goals. As the understanding of pathogen and pathogen indicator occurrence becomes better refined, the arguments for finding practical application of risk assessment for pathogenic organisms become more compelling.

  11. Establishment and growth of experimental grass species mixtures on coal mine sites reclaimed with municipal biosolids.

    PubMed

    Halofsky, Jessica E; McCormick, Larry H

    2005-05-01

    The Surface Mining Control and Reclamation Act of 1977 requires that coal mine sites in the United States be reclaimed to establish vegetative cover that is diverse, native, and capable of plant succession. However, there is a question as to whether vegetation established on coal mine sites reclaimed with biosolids is diverse and capable of plant succession. The influx of nutrients with the addition of biosolids leads to long-term dominance by early-successional species, most notably grasses, and consequently, a low establishment of woody and volunteer species. Additionally, many grass species commonly planted in reclamation have aggressive growth habits that lead to their dominance in coal mine plant communities. The establishment and growth of selected grass mixes was evaluated to determine whether alternative grass mixes would be less competitive with woody and volunteer species as compared to commonly used grass mixes. Percent vegetative cover, species richness, and the survival of direct-seeded woody species were assessed for each treatment grass mixture. It was found that Poa compressa and a mixture of P. compressa, Panicum virgatum, and Trifolium repens provided adequate coverage while still allowing the highest species richness and survival of woody species. Use of these species mixtures in coal mine reclamation with biosolids in the eastern United States would likely lead to establishment of a more species-rich plant community with a greater woody species component while still providing erosion control and site protection. PMID:15920668

  12. Field drains as a route of rapid nutrient export from agricultural land receiving biosolids.

    PubMed

    Heathwaite, A L; Burke, S P; Bolton, L

    2006-07-15

    We report research on the environmental risk of incidental nutrient transfers from land to water for biosolids amended soils. We show that subsurface (drainflow) pathways of P transport may result in significant concentrations, up to 10 mg total P l(-1), in the drainage network of an arable catchment when a P source (recent biosolids application) coincides with a significant and active transport pathway (rainfall event). However, the high P concentrations were short-lived, with drainage ditch total P concentrations returning to pre-storm concentrations within a few days of the storm event. In the case of the drainflow concentrations reported here, the results are unusual in that they describe an 'incidental event' for a groundwater catchment where such events might normally be expected to be rare owing to the capacity of the hydrological system to attenuate nutrient fluxes for highly adsorbed elements such as P. Consequently, there is a potential risk of P transfers to shallow groundwater systems. We suggest that the findings are not specific to biosolids-alone, which is a highly regulated industry, but that similar results may be anticipated had livestock waste or mineral fertilizer been applied, although the magnitude of losses may differ. The risk appears to be more one of timing and the availability of a rapid transport pathway than of P source. PMID:16603229

  13. Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil.

    PubMed

    Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Sridhar, B B Maruthi

    2012-11-01

    The plant uptake of emerging organic contaminants such as pharmaceuticals and personal care products (PPCPs) is receiving increased attention. Biosolids from municipal wastewater treatment have been previously identified as a major source for PPCPs. Thus, plant uptake of PPCPs from biosolids applied soils needs to be understood. In the present study, the uptake of carbamazepine, diphenhydramine, and triclocarban by five vegetable crop plants was examined in a field experiment. At the time of harvest, three compounds were detected in all plants grown in biosolids-treated soils. Calculated root concentration factor (RCF) and shoot concentration factor (SCF) are the highest for carbamazepine followed by triclocarban and diphenhydramine. Positive correlation between RCF and root lipid content was observed for carbamazepine but not for diphenhydramine and triclocarban. The results demonstrate the ability of crop plants to accumulate PPCPs from contaminated soils. The plant uptake processes of PPCPs are likely affected by their physico-chemical properties, and their interaction with soil. The difference uptake behavior between plant species could not solely be attributed to the root lipid content. PMID:22921256

  14. Loss and in situ production of perfluoroalkyl chemicals in outdoor biosolids-soil mesocosms

    PubMed Central

    Venkatesan, Arjun K.; Halden, Rolf U.

    2014-01-01

    An outdoor mesocosm study was conducted in Baltimore, Maryland, to explore the fate of thirteen perfluoroalkyl substances (PFASs) over the course of three years in biosolids/soil mixtures (1:2) exposed to ambient outdoor conditions. Analysis by liquid chromatography tandem mass spectrometry showed perfluorooctanoate (PFOA) to be the most abundant analyte found early in the soil weathering experiment at 24.1 ng/g dry weight (dw), followed by perfluoroundecanoate (PFUnDA) and perfluorodecanoate (PFDA) at 18.4 and 17.4 ng/g dw, respectively. Short-chain perfluorinated carboxylates (PFCAs; C4-C8) showed observable loss from biosolids/soil mixtures, with experimentally determined first-order half-lives in soil ranging from 385 to 866 days. Perfluorooctane sulfonate (PFOS), perfluorononaoate (PFNA) and PFUnDA levels in biosolids/soil mixtures remained stable, while other long-chain PFCAs [PFDA, perfluorododecanoate (PFDoDA)] and perfluorooctane sulfonamide (PFOSA) levels increased over time, presumably due to the breakdown of unidentified precursors in a process analogous to that reported previously for wastewater treatment plants. This study informs risk assessment initiatives by furnishing data on the environmental persistence of PFASs while also constituting the first report on in situ production of long-chained PFASs in terrestrial environments. PMID:24834828

  15. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review.

    PubMed

    Wu, Xiaoqin; Dodgen, Laurel K; Conkle, Jeremy L; Gan, Jay

    2015-12-01

    Reuse of treated wastewater for agricultural irrigation is growing in arid and semi-arid regions, while increasing amounts of biosolids are being applied to fields to improve agricultural outputs. These historically under-utilized resources contain "emerging contaminants", such as pharmaceutical and personal care products (PPCPs), which may enter agricultural soils and potentially contaminate food crops. In this review, we summarize recent research and provide a detailed overview of PPCPs in the soil-plant systems, including analytical methods for determination of PPCPs in plant tissues, fate of PPCPs in agricultural soils receiving treated wastewater irrigation or biosolids amendment, and plant uptake of PPCPs under laboratory and field conditions. Mechanisms of uptake and translocation of PPCPs and their metabolisms in plants are also reviewed. Field studies showed that the concentration levels of PPCPs in crops that were irrigated with treated wastewater or applied with biosolids were very low. Potential human exposure to PPCPs through dietary intake was discussed. Information gaps and questions for future research have been identified in this review. PMID:26254067

  16. Establishment and growth of experimental grass species mixtures on coal mine sites reclaimed with municipal biosolids

    SciTech Connect

    Halofsky, J.E.; McCormick, L.H.

    2005-05-01

    The Surface Mining Control and Reclamation Act of 1977 requires that coal mine sites in the United States be reclaimed to establish vegetative cover that is diverse, native, and capable of plant succession. However, there is a question as to whether vegetation established on coal mine sites reclaimed with biosolids is diverse and capable of plant succession. The influx of nutrients with the addition of biosolids leads to long-term dominance by early-successional species, most notably grasses, and consequently, a low establishment of woody and volunteer species. Additionally, many grass species commonly planted in reclamation have aggressive growth habits that lead to their dominance in coal mine plant communities. The establishment and growth of selected grass mixes was evaluated to determine whether alternative grass mixes would be less competitive with woody and volunteer species as compared to commonly used grass mixes. Percent vegetative cover, species richness, and the survival of direct-seeded woody species were assessed for each treatment grass mixture. It was found that Poa compress and a mixture of P. compress, Panicum virgatum, and Trifolium repens provided adequate coverage while still allowing the highest species richness and survival of woody species. Use of these species mixtures in coal mine reclamation with biosolids in the eastern United States would likely lead to establishment of a more species-rich plant community with a greater woody species component while still providing erosion control and site protection.

  17. Effective executive management in the pharmaceutical industry.

    PubMed

    Tran, Hoang; Kleiner, Brian H

    2005-01-01

    Along with the boom in information technology and vast development in genomic and proteomic discoveries, the pharmaceutical and biotech industries have been provided the means and tools to create a new page in medicinal history. They are now able to alter the classic ways to cure complex diseases thanks to the completion of the human genome project. To be able to compete in this industry, pharmaceutical management has to be effective not only internally but also externally in socially acceptable conduct. The first department that requires focus is marketing and sales. As the main driving force to increase revenues and profits, marketing and sales employees should be highly motivated by compensation. Also, customer relationships should be maintained for long-term gain. As important as marketing, research and development requires the financial support as well as the critical decision making to further expand the product pipeline. Similarly, finance and technologies should be adequately monitored and invested to provide support as well as prepare for future expansion. On top of that, manufacturing processes and operations are operated per quality systems and FDA guidelines to ensure high quality. Human Resources, on the other hand, should carry the managing and motivation from upper management through systematic recruitment, adequate training, and fair compensation. Moreover, effective management in a pharmaceutical would also require the social welfare and charity to help patients who cannot afford the treatment as well as improving the organization's image. Last but not least, the management should also prepare for the globalization of the industry. Inevitably, large pharmaceutical companies are merging with each other or acquiring smaller companies to enhance the competitive advantages as well as expand their product mix. For effectiveness in a pharmaceutical industry, management should focus more than just the daily routine tasks and short-term goals. Rather, they

  18. Management Effectiveness of the World's Marine Fisheries

    PubMed Central

    Mora, Camilo; Coll, Marta; Libralato, Simone; Pitcher, Tony J.; Sumaila, Rashid U.; Zeller, Dirk; Watson, Reg; Gaston, Kevin J.; Worm, Boris

    2009-01-01

    Ongoing declines in production of the world's fisheries may have serious ecological and socioeconomic consequences. As a result, a number of international efforts have sought to improve management and prevent overexploitation, while helping to maintain biodiversity and a sustainable food supply. Although these initiatives have received broad acceptance, the extent to which corrective measures have been implemented and are effective remains largely unknown. We used a survey approach, validated with empirical data, and enquiries to over 13,000 fisheries experts (of which 1,188 responded) to assess the current effectiveness of fisheries management regimes worldwide; for each of those regimes, we also calculated the probable sustainability of reported catches to determine how management affects fisheries sustainability. Our survey shows that 7% of all coastal states undergo rigorous scientific assessment for the generation of management policies, 1.4% also have a participatory and transparent processes to convert scientific recommendations into policy, and 0.95% also provide for robust mechanisms to ensure the compliance with regulations; none is also free of the effects of excess fishing capacity, subsidies, or access to foreign fishing. A comparison of fisheries management attributes with the sustainability of reported fisheries catches indicated that the conversion of scientific advice into policy, through a participatory and transparent process, is at the core of achieving fisheries sustainability, regardless of other attributes of the fisheries. Our results illustrate the great vulnerability of the world's fisheries and the urgent need to meet well-identified guidelines for sustainable management; they also provide a baseline against which future changes can be quantified. PMID:19547743

  19. Effects of stakeholder involvement in river management

    NASA Astrophysics Data System (ADS)

    Buchecker, M.; Menzel, S.

    2012-04-01

    In the last decades, in many parts of Europe involving local stakeholders or the local public in river management has become a standard procedure. For many decision makers, the purpose of involving other interest groups is limited to achieving a sufficient local acceptance of the project, and accordingly they adopt minimal forms of involvement. Theoretical literature and first empirical studies, however, suggest that stakeholder involvement can have, if done in appropriate quality, have much more far-reaching benefits for a sustainable river management such as a better consensus, social learning and social capital building. But there is so far only little reliable evidence that and under which conditions such benefits or effects in fact result from stakeholder involvement processes. The reason for this is that such involvement processes represent very complex social interventions, and all"affordable"effect measurement methods have their weaknesses. In our project we wanted to find out which were the really robust social effects of stakeholder involvement in river management. We therefore evaluated a number of real Swiss case studies of participatory river management using three different approaches of effect measurements: a quasi-experimental approach using repeated standardized measurement of stakeholders' attitudes, a qualitative long-term ex-post measurement approach based on interviews with stakeholders of five participatory river projects, and a comparative analysis approach based on data of residents effect assessments of participatory river planning gathered in a Swiss national survey. The analysis of all three evaluation studies confirmed that stakeholder involvement in river management projects have substantive social effects. The comparison of the results of the three measurement approaches revealed that social learning and acceptance building were the most robust effects of stakeholder involvement, as they were confirmed by all the three measurement

  20. Multigeneration employees: strategies for effective management.

    PubMed

    Kupperschmidt, B R

    2000-09-01

    Today's health care workforce comprises Traditional, Baby Boomer, and Generation X employees. Effective managers must understand the times and generational characteristics of these employees and they must assure that employees understand and respect one another's differences. They must foster open discussion of how generational differences influence attitudes toward work and organizations. They must provide opportunities for multigeneration employees to contribute their best concurrent with meeting organizational goals. Employees must be offered a conditional security based upon value-added results and collaboration. Managers must use leadership practices that encourage the hearts of dispirited employees. PMID:11183655

  1. Data Overload Impact on Project Management: How Knowledge Management Systems Can Improve Federal Agencies Effectiveness

    ERIC Educational Resources Information Center

    Rodriguez, Jacinto

    2013-01-01

    This mixed method exploratory case study was used to explore the effect data overload has on project management, how data overload affects project management effectiveness, how prepared program office staff is to manage multiple projects effectively, and how the program office's organizational structure and data management systems affect project…

  2. Detection and Occurrence of N-Nitrosamines in Archived Biosolids from the Targeted National Sewage Sludge Survey of the U.S. Environmental Protection Agency

    PubMed Central

    2015-01-01

    The occurrence of eight carcinogenic N-nitrosamines in biosolids from 74 wastewater treatment plants (WWTPs) in the contiguous United States was investigated. Using liquid chromatography-tandem mass spectrometry, seven nitrosamines [(N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine, N-nitrosodi-n-propylamine (NDPA), N-nitrosodibutylamine, N-nitrosopyrrolidine, N-nitrosopiperidine (NPIP), and N-nitrosodiphenylamine (NDPhA)] were detected with varying detection frequency (DF) in 88% of the biosolids samples (n = 80), with five of the seven being reported here for the first time in biosolids. While rarely detected (DF 3%), NDMA was the most abundant compound at an average concentration of 504 ± 417 ng/g dry weight of biosolids. The most frequently detected nitrosamine was NDPhA (0.7—147 ng/g) with a DF of 79%, followed by NDPA (7–505 ng/g) and NPIP (51–1185 ng/g) at 21% and 11%, respectively. The DF of nitrosamines in biosolids was positively correlated with their respective n-octanol–water partition coefficients (R2 = 0.65). The DF and sum of mean concentrations of nitrosamines in biosolids increased with the treatment capacity of WWTPs. Given their frequent occurrence in nationally representative samples and the amount of U.S. biosolids being applied on land as soil amendment, this study warrants more research into the occurrence and fate of nitrosamines in biosolids-amended soils in the context of crop and drinking water safety. PMID:24697330

  3. Detection and occurrence of N-nitrosamines in archived biosolids from the targeted national sewage sludge survey of the U.S. Environmental Protection Agency.

    PubMed

    Venkatesan, Arjun K; Pycke, Benny F G; Halden, Rolf U

    2014-05-01

    The occurrence of eight carcinogenic N-nitrosamines in biosolids from 74 wastewater treatment plants (WWTPs) in the contiguous United States was investigated. Using liquid chromatography-tandem mass spectrometry, seven nitrosamines [(N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine, N-nitrosodi-n-propylamine (NDPA), N-nitrosodibutylamine, N-nitrosopyrrolidine, N-nitrosopiperidine (NPIP), and N-nitrosodiphenylamine (NDPhA)] were detected with varying detection frequency (DF) in 88% of the biosolids samples (n = 80), with five of the seven being reported here for the first time in biosolids. While rarely detected (DF 3%), NDMA was the most abundant compound at an average concentration of 504 ± 417 ng/g dry weight of biosolids. The most frequently detected nitrosamine was NDPhA (0.7-147 ng/g) with a DF of 79%, followed by NDPA (7-505 ng/g) and NPIP (51-1185 ng/g) at 21% and 11%, respectively. The DF of nitrosamines in biosolids was positively correlated with their respective n-octanol-water partition coefficients (R(2) = 0.65). The DF and sum of mean concentrations of nitrosamines in biosolids increased with the treatment capacity of WWTPs. Given their frequent occurrence in nationally representative samples and the amount of U.S. biosolids being applied on land as soil amendment, this study warrants more research into the occurrence and fate of nitrosamines in biosolids-amended soils in the context of crop and drinking water safety. PMID:24697330

  4. MICRO SCALE INVESTIGATIONS TO UNDERSTAND BINDING MECHANISMS OF METALS IN BIOSOLIDS USING SYNCHROTRON BASED X-RAY FLUORESCENCE AND X-RAY ABSORPTION SPECTROSCOPIES

    EPA Science Inventory

    The environmental impact of metals in biosolids to plants, animals and the human food chain has been studied for decades. From the related literature, it can be concluded that, by addition of biosolids to soil, the overall chemical reactivity in the soil system is altered beyond ...

  5. Invasive mycoses: strategies for effective management.

    PubMed

    Kontoyiannis, Dimitrios P

    2012-01-01

    Effective management of invasive fungal infections (IFIs) depends on early individualized therapy that optimizes efficacy and safety. Considering the negative consequences of IFI, for some high-risk patients the potential benefits of prophylactic therapy may outweigh the risks. When using a prophylactic, empiric, or preemptive therapeutic approach, clinicians must take into account the local epidemiology, spectrum of activity, pharmacokinetic and pharmacodynamic parameters, and safety profile of different antifungal agents, together with unique host-related factors that may affect antifungal efficacy or safety. Therapeutic drug monitoring is increasingly recognized as important or necessary when employing lipophilic triazoles (itraconazole, voriconazole, posaconazole) or flucytosine. Because early diagnostics remain limited for uncommon, yet emerging opportunistic molds (e.g., Mucorales), and treatment delay is associated with increased mortality, early effective management often depends on a high index of suspicion, taking into account predisposing factors, host cues favoring mucormycosis, and local epidemiology. Antifungal options for mucormycosis are limited, and optimal management depends on a multimodal approach that includes early diagnosis/clinical suspicion, correction of underlying predisposing factors, radical debridement of affected tissues, and extended antifungal therapy. This article discusses strategies for the effective management of invasive mycoses, with a particular focus on antifungal hepatotoxicity. PMID:22196206

  6. Smart Management in Effective Schools: Effective Management Configurations in General and Vocational Education in the Netherlands

    ERIC Educational Resources Information Center

    Hofman, W. H. Adriaan; Hofman, Roelande H.

    2011-01-01

    Purpose: In this study the authors focus on different (configurations of) leadership or management styles in schools for general and vocational education. Findings: Using multilevel (students and schools) analyses, strong differences in effective management styles between schools with different student populations were observed. Conclusions: The…

  7. Dissipation of contaminants of emerging concern in biosolids applied to non-irrigated farmland in eastern Colorado

    USGS Publications Warehouse

    Yager, Tracy; Furlong, Edward T.; Kolpin, Dana W.; Kinney, Chad A.; Zaugg, Steven D.; Burkhardt, Mark R.

    2013-01-01

    In 2007, a 1.5-year field-scale study was initiated by the U.S. Geological Survey to evaluate the dissipation of contaminants of emerging concern (CECs) following a first agronomic biosolids application to nonirrigated farmland. CECs with the greatest decrease in concentration in the surface biosolids at 180 days post-application included indole, d-limonene, p-cresol, phenol, and skatol. CECs that were present in the largest concentration in 180-day-weathered biosolids included stanols, nonylphenols, bisphenol A, bis(2-ethylhexyl) phthalate, hexahydrohexamethyl cyclopenta-benzopyran (HHCB), and triclosan. CECs that were detected in pre-application soil were 3-beta coprostanol, skatol, acetophenone, beta-sitosterol, beta-stigmastanol, cholesterol, indole, p-cresol, and phenol, most of which are biogenic sterols or fragrances that have natural plant sources in addition to anthropogenic sources, yet their concentrations increased (in some cases, substantially) following biosolids application. Preliminary data indicate the nonylphenols (including NPEO1, NPEO2), OPEO1, benzo[a]pyrene, diethyl phthalate, d-limonene, HHCB, triclosan, and possibly 3-beta coprostanol, skatol, beta-sitosterol, cholesterol, indole, and p-cresol, migrated downward through the soil by 468 days post-application, but indicated little uptake by mature wheat plants. This study indicates that some CECs are sufficiently persistent and mobile to be vertically transported into the soil column following biosolids applications to the land surface, even in semiarid regions.

  8. Gout: Why compare the effectiveness of suboptimal gout management?

    PubMed

    Dalbeth, Nicola; Stamp, Lisa K

    2015-09-01

    Comparative effectiveness research could help inform the choice of agent for urate-lowering therapy, the central component of successful gout management. However, if such studies reflect current clinical practice, are they comparing poor management with inadequate management? PMID:26150126

  9. Management training effects on nurse manager leadership behavior.

    PubMed

    Johnson, K R; D'Argenio, C

    1991-01-01

    Costly organization-based leadership/management development training gives little evidence that such training affects long-term changes in nurse manager leader style adaptability in meeting situations and staff needs. PMID:1922426

  10. EFFECTS OF MANAGEMENT DEVELOPMENT ON MANAGER BEHAVIOR AND SUBORDINATE PERCEPTION.

    ERIC Educational Resources Information Center

    SCHWARZ, FRED R.; AND OTHERS

    AS A RESULT OF COOPERATIVE PLANNING BETWEEN THE UNIVERSITY OF WISCONSIN MANAGEMENT INSTITUTE AND A LARGE INSURANCE COMPANY, 57 TOP MANAGERS WERE GIVEN A TWO UNIT MANAGEMENT DEVELOPMENT PROGRAM. GROUP B BEGAN TRANING FIVE MONTHS AFTER GROUP A. THE WORKSHOP SESSIONS INCLUDED DISCUSSIONS, CASE STUDIES, BUZZ GROUPS, AND ROLE PLAYING. IN PHASE ONE,…

  11. Cost effective management of space venture risks

    NASA Technical Reports Server (NTRS)

    Giuntini, Ronald E.; Storm, Richard E.

    1986-01-01

    The development of a model for the cost-effective management of space venture risks is discussed. The risk assessment and control program of insurance companies is examined. A simplified system development cycle which consists of a conceptual design phase, a preliminary design phase, a final design phase, a construction phase, and a system operations and maintenance phase is described. The model incorporates insurance safety risk methods and reliability engineering, and testing practices used in the development of large aerospace and defense systems.

  12. PCR Inhibitor Levels in Concentrates of Biosolid Samples Predicted by a New Method Based on Excitation-Emission Matrix Spectroscopy▿

    PubMed Central

    Rock, Channah; Alum, Absar; Abbaszadegan, Morteza

    2010-01-01

    Biosolids contain a wide variety of organic contaminants that are known for their ability to inhibit PCR. During sample processing, these contaminants are coconcentrated with microorganisms. Elevated concentrations of these compounds in concentrates render samples unsuitable for molecular applications. Glycine-based elution and recovery methods have been shown to generate samples with fewer PCR inhibitory compounds than the current U.S. EPA-recommended method for pathogen recovery from biosolids. Even with glycine-based methods, PCR inhibitors still persist in concentrations that may interfere with nucleic acid amplification. This results in considerable loss of time and resources and increases the probability of false negatives. A method to estimate the degree of inhibition prior to application of molecular methods is desirable. Here we report fluorescence excitation-emission matrix (EEM) profiling as a tool for predicting levels of molecular inhibition in sample concentrates of biosolids. PMID:20971866

  13. Controlling Legal Risk for Effective Hospital Management

    PubMed Central

    Park, Hyun Jun; Cho, Duk Young; Park, Yong Sug; Kim, Sun Wook; Park, Jae-Hong

    2016-01-01

    Purpose To analyze the types of medical malpractice, medical errors, and medical disputes in a university hospital for the proposal of countermeasures that maximize the efficiency of hospital management, medical departments, and healthcare providers. Materials and Methods This study retrospectively reviewed and analyzed 55 closed civil lawsuits among 64 medical lawsuit cases carried out in Pusan National University Hospital from January 2000 to April 2013 using medical records, petitions, briefs, and data from the Medical Dispute Mediation Committee. Results Of 55 civil lawsuits, men were the main plaintiffs in 31 cases (56.4%). The average period from medical malpractice to malpractice proceeding was 16.5 months (range, 1 month to 6.4 years), and the average period from malpractice proceeding to the disposition of a lawsuit was 21.7 months (range, 1 month to 4 years and 11 months). Conclusions Hospitals can effectively manage their legal risks by implementing a systematic medical system, eliminating risk factors in administrative service, educating all hospital employees on preventative strategies, and improving customer service. Furthermore, efforts should be made to establish standard coping strategies to manage medical disputes and malpractice lawsuits, operate alternative dispute resolution methods including the Medical Dispute Mediation Committee, create a compliance support center, deploy a specialized workforce including improved legal services for employees, and specialize the management-level tasks of the hospital. PMID:27169130

  14. Measurements of GEM fluxes and atmospheric mercury concentrations (GEM, RGM and Hg p) from an agricultural field amended with biosolids in Southern Ont., Canada (October 2004-November 2004)

    NASA Astrophysics Data System (ADS)

    Cobbett, Frank D.; Van Heyst, Bill J.

    Five weeks of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle bound mercury (Hg p) concentrations as well as fluxes of GEM were measured at Maryhill, Ontario, Canada above a biosolids amended field. The study occurred during the autumn of 2004 (October-November) to capture the effects of cool weather conditions on the behaviour of mercury in the atmosphere. The initial concentration of total mercury (Hg) in the amended soil was relatively low (0.4 μg g -1±10%). A micrometeorological approach was used to infer the flux of GEM using a continuous two-level sampling system with inlets at 0.40 and 1.25 m above the soil surface to measure the GEM concentration gradient. The required turbulent transfer coefficients were derived from meteorological parameters measured on site. The average GEM flux over the study was 0.1±0.2 ng m -2 h -1(±one standard deviation). The highest averaged hourly GEM fluxes occurred when the averaged net radiation was highest, although the slight diurnal patterns observed were not statistically significant for the complete flux data series. GEM emission fluxes responded to various local events including the passage of a cold front when the flux increased to 2 ng m -2 h -1 and during a biosolids application event at an adjacent field when depositional fluxes peaked at -3 ng m -2 h -1. Three substantial rain events during the study kept the surface soil moisture near field capacity and only slightly increased the GEM flux. Average concentrations of RGM (2.3±3.0 pg m -3), Hg p (3.0±6.2 pg m -3) and GEM (1.8±0.2 ng m -3) remained relatively constant throughout the study except when specific local events resulted in elevated concentrations. The application of biosolids to an adjacent field produced large increases in Hg p (25.8 pg m -3) and RGM (21.7 pg m -3) concentrations only when the wind aligned to impact the experimental equipment. Harvest events (corn) in adjacent fields also corresponded to higher

  15. Satellite data management for effective data access

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick D.; Kotlarek, Thomas L.

    1987-01-01

    The management of data generated from satellite missions has not always led to effective access of that data by the scientific community. NASA has tried to alleviate this problem for ocean scientists, by initiating a program, the NASA Ocean Data System (NODS). The menu-based user interface that NODS employs allows a user to make request and receive answers within a short time of accessing the system. A catalog system, which holds information about oceanographic data sets may be queried to determine the suitability of a particular data set. Once a candidate data set is found, the user is directed to the person or place which actually holds the data. NODS also has an archive system that holds data from ocean-observing satellites. The archive may be queried to obtain a manageable data subset that can be delivered in a useful form.

  16. Manager. Outlining for Busy Managers the Key Points of Effective Management. The Supervisor's "Do-It-Yourself" Series 2.

    ERIC Educational Resources Information Center

    Rabey, Gordon P.

    This guide, which is intended for new supervisors and managers to use in an independent study setting, deals with the key points of effective management. The following topics are discussed in the individual sections: understanding what a manager is and why managers are appointed; setting objectives and achieving results; planning and controlling…

  17. Managing Chemotherapy Side Effects: Skin and Nail Changes

    MedlinePlus

    N ational C ancer I nstitute Managing Chemotherapy Side Effects Skin and Nail Changes “I was glad to ... human services national institutes of health Managing Chemotherapy Side Effects: Skin and Nail Changes Protect your skin from ...

  18. Chemical evaluation of nutrient supply from fly ash-biosolids mixtures

    SciTech Connect

    Schumann, A.W.; Sumner, M.E.

    2000-02-01

    Prediction of plant nutrient supply from fly ash and biosolids (sewage sludge and poultry manure) may enhance their agricultural use as crop fertilizer. Two mild extraction methods (42-d equilibration with ion-exchange resins; 2-d equilibration with pH 4.8 buffered nutrient solution) and analysis of nutrient data by the Diagnosis and Recommendation Integrated System (DRIS) were tested with 29 fly ash samples, four biosolids samples, and their mixtures. The resin method was useful for major nutrient (N, P, K, Ca, Mg, S) extraction from fly ashes and organic materials, particularly where mineralizable fractions of N and P under aerobic conditions are required. However, resins were inefficient in extracting P from high-Fe sewage sludges because organic waste samples caused premature failure of semipermeable membranes and fouling of resins. Extraction of fly ash with dilute buffered nutrient solution was more successful because micronutrient recovery was improved, major nutrients were correlated to the resin method, both addition and removal of nutrients were recorded. DRIS analysis was possible, and equilibration was rapid (2 d). The overall nutrient supply from these extremely variable fly ashes was: Cu = Fe {approx} B {approx} Mo > Ca > S > Zn >> Mn > N > Mg > P > K (high micronutrient, low major nutrient supply). For biosolids, the major nutrients ranked: P > N {approx} Ca > S > Mg > K (sewage sludges), and N > Ca {approx} K > P > Mg > S (poultry manures). In mixtures of fly ash with 26% sewage sludge the order was: Ca > S > N > Mg > P > K, while in mixtures of fly ash and 13% poultry manure, the nutrients ranked: Ca > K {approx} N {approx} S > Mg > P. Optimal plant nutrition (especially N-P-K balancing) should be possible by mixing these three waste materials.

  19. Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, μ-XRF and μ-XANES investigations.

    PubMed

    Mamindy-Pajany, Yannick; Sayen, Stéphanie; Mosselmans, J Frederick W; Guillon, Emmanuel

    2014-07-01

    Metal solid phase speciation plays an important role in the control of the long-term stability of metals in biosolid-amended soils. The present work used pH-adsorption edge experiments and synchrotron-based spectroscopy techniques to understand the solid phase speciation of copper, nickel and zinc in a biosolid-amended soil. Comparison of metal adsorption edges on the biosolid-amended soil and the soil sample showed that Cu, Ni, and Zn can be retained by both soil and biosolid components such as amorphous iron phases, organic matter and clay minerals. These data are combined with microscopic results to obtain structural information about the surface complexes formed. Linear combination fitting of K-edge XANES spectra of metal hot-spots indicated consistent differences in metal speciation between metals. While organic matter plays a dominant role in Ni binding in the biosolid-amended soil, it was of lesser importance for Cu and Zn. This study suggests that even if the metals can be associated with soil components (clay minerals and organic matter), biosolid application will increase metals retention in the biosolid-amended soil by providing reactive organic matter and iron oxide fractions. Among the studied metals, the long-term mobility of Ni could be affected by organic matter degradation while Cu and Zn are strongly associated with iron oxides. PMID:24899255

  20. Discussion of and reply to ``Beneficial use of municipal wastewater biosolids through drying and pelletizing``

    SciTech Connect

    Albrecht, R.; Billman, R.B.; Krotz, R.W.; Hepp, M.P.; Wojichowski, D.L.

    1995-11-01

    The authors present some comments and questions that contribute to the content and appropriate use of this paper by Mark P. Hepp and David L. Wojichowski. It would be helpful if technical information about the energy requirements, as well as operational costs were provided. Information on product distribution is extremely important. This appears to be one of the largest municipal facilities on the east coast and reflects New York City`s commitment to solve its biosolids disposal problems. This article also contains the original authors` reply to the comments and questions.

  1. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop... sludge (biosolids) as defined in 40 CFR part 503; and (3) Burning as a means of disposal for crop... 7 Agriculture 3 2010-01-01 2010-01-01 false Soil fertility and crop nutrient management...

  2. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop... sludge (biosolids) as defined in 40 CFR part 503; and (3) Burning as a means of disposal for crop... 7 Agriculture 3 2011-01-01 2011-01-01 false Soil fertility and crop nutrient management...

  3. USA’S PRACTICES FOR CONTROLLING PATHOGENS IN BIOSOLIDS

    EPA Science Inventory

    The U.S.A. initially established regulations for the management of sewage sludge in 1979 and updated them in 1993. They are briefly discussed with emphasis on the rationale for the procedures chosen to disinfect sludge and control its vector attractiveness. By controlling pathoge...

  4. On-site assessment of extractable soil nutrients after long-term biosolids applications to perennial forage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate soil nutrient loading and depth distributions of extractable nitrogen (N), phosphorus (P), and potassium (K) after long-term, continuous annual surface-applications of anaerobically-digested Class B biosolids at a municipal recycling facility in central Te...

  5. DEVELOPMENT AND VALIDATION OF ANALYTICAL METHODS FOR ENUMERATION OF FECAL INDICATORS AND EMERGING CHEMICAL CONTAMINANTS IN BIOSOLIDS

    EPA Science Inventory

    In 2002 the National Research Council (NRC) issued a report which identified a number of issues regarding biosolids land application practices and pointed out the need for improved and validated analytical techniques for regulated indicator organisms and pathogens. They also call...

  6. Modeling uptake of selected pharmaceuticals and personal care products into food crops from biosolids-amended soil.

    PubMed

    Prosser, Ryan S; Trapp, Stefan; Sibley, Paul K

    2014-10-01

    Biosolids contain a variety of pharmaceuticals and personal care products (PPCPs). Studies have observed the uptake of PPCPs into plants grown in biosolids-amended soils. This study examined the ability of Dynamic Plant Uptake (DPU) model and Biosolids-amended Soil Level IV (BASL4) model to predict the concentration of eight PPCPs in the tissue of plants grown in biosolids-amended soil under a number of exposure scenarios. Concentrations in edible tissue predicted by the models were compared to concentrations reported in the literature by calculating estimated human daily intake values for both sets of data and comparing them to an acceptable daily intake value. The equilibrium partitioning (EqP) portion of BASL4 overpredicted the concentrations of triclosan, triclocarban, and miconazole in root and shoot tissue by two to three orders of magnitude, while the dynamic carrot root (DCR) portion overpredicted by a single order of magnitude. DPU predicted concentrations of triclosan, triclocarban, miconazole, carbamazepine, and diphenhydramine in plant tissues that were within an order of magnitude of concentrations reported in the literature. The study also found that more empirical data are needed on the uptake of cimetidine, fluoxetine, and gemfibrozil, and other ionizable PPCPs, to confirm the utility of both models. All hazard quotient values calculated from literature data were below 1, with 95.7% of hazard quotient values being below 0.1, indicating that consumption of the chosen PPCPs in plant tissue poses de minimus risk to human health. PMID:25207852

  7. FOOD CHAIN TRANSFER AND BIOAVAILABILITY OF CD AND OTHER ELEMENTS IN PLANTS GROWN ON BIOSOLIDS AMENDED SOILS

    EPA Science Inventory

    Application of biosolids, livestock manures, compost, and many byproducts add heavy metals to soil. Exposure of humans, livestock and wildlife to these added heavy metals continues to be a concern despite the research and risk assessments which suggest otherwise. Key concepts gov...

  8. Science in Action: Study Examines the Fate of Multiple Contaminants when Biosolids Are Applied to Agricultural Land

    EPA Science Inventory

    Biosolids are defined as sewage sludge that has been treated to meet federal and state regulations for land application. In the years since regulations were issued, wastewater treatment technologies and practices have changed and public concerns about the land application of bios...

  9. Effective Transition Management: The Seamless System

    NASA Technical Reports Server (NTRS)

    Burke, Marty

    1995-01-01

    In this age of shrinking resources, cost avoidance has become as critical as direct cost savings. There is no doubt that Effective Transition Management (ETM) achieves this aim. What then, is ETM and how does it achieve its goal? It is the introduction and use of a hierarchical decision model and computerized tracking system which successfully integrates capital acquisition into the support base. You will discover that because this proven system is generic, compatible and flexible, its applications are virtually unlimited. It is this highly dynamic process which I would like to share with you. Skilled specialists are now rotated rapidly through acquisition programs on a requirements-driven basis. Managers continue their quest for inefficient areas to trim, slash or cut. However, there is one area of operations in every major corporation and government department that, as yet, has not received the attention it deserves. This essential element is Transition Management. Capital acquisitions, at some point, must be handed off to a support matrix for the 'in-service' phase of their life cycle. Most of us who have been on the receiving end can usually cite outrageous examples of adjustment, recovery or disaster. This means buying what amounts to a second initial sparing package, re-aligning the range and depth of inventory to match a changed maintenance concept, interpreting contractor-developed configuration control data or ensuring that the latest information is contained in the technical publications. This list is endless. For major purchases, this 'in-service' phase is often fifteen, twenty or more years. The least desirable, yet most common condition, is to suffer up to five years of recovering from errors or omissions after the transition to the support matrix occurs. Without ETM, making new equipment fully operational may thus become a long and costly process.

  10. Determination of inorganic and organic priority pollutants in biosolids from meat processing industry

    SciTech Connect

    Sena, Rennio F. de Tambosi, Jose L.; Floriani, Silvia L.; Virmond, Elaine; Schroeder, Horst Fr.; Moreira, Regina F.P.M.; Jose, Humberto J.

    2009-09-15

    The biosolids (BS) generated in the wastewater treatment process of a meat processing plant were monitored and the priority pollutant content was characterized. The trace metal and organic pollutant content - polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) - were determined quantitatively and compared to guideline limits established by the US EPA and EU. PCBs were not detected in the solid samples, while trace metals, PAHs and PCDD/PCDF were detected in concentrations below the limits established by international standards. Toxic equivalent factors were evaluated for the biosolids, and the results proved that these wastes can be safely deposited on land or used in combustion/incineration plants. Since no previous data were found for meat processing waste, comparisons were made using municipal sewage sludge data reported in the literature. Since, this report monitored part of the priority pollutants established by the US EPA for meat and poultry processing wastewater and sludge, the results verified that low pollution loads are generated by the meat processing plant located in the southern part of Brazil. However, the BS generated in the treatment processes are in accordance with the limits established for waste disposal and even for soil fertilizer.

  11. A multiphase analysis of partitioning and hazard index characteristics of siloxanes in biosolids.

    PubMed

    Surita, Sharon C; Tansel, Berrin

    2014-04-01

    Siloxanes are widely used in personal care and industrial products due to their soft texture, low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. As a result, they are released to gas phase during waste decompositions and found in biogas at landfills and digester gas at wastewater treatment facilities. The objectives of this study were to investigate the release of siloxanes in aqueous and gaseous phase as well as in biosolids in a local wastewater treatment facility. The formation reactions were estimated using first order kinetics for commonly found siloxanes (L3, D3, D4, D5 and D6) during waste decomposition. Expected concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence parameter. D4 and D5 presented the highest initial gaseous phase concentrations of 5000 and 1800 μg/m(3) respectively. Based on first order kinetics, partition coefficients and initial concentrations, the hazards potentials were largest for D4 in both liquid phase and biosolids while D6 poses the highest risk in gaseous phase. PMID:24580825

  12. Nitrogen mineralization and transformation from composts and biosolids during field incubation in a sandy soil

    SciTech Connect

    He, Z.L.; Alva, A.K.; Yan, P.; Li, Y.C.; Calvert, D.V.; Stoffella, P.J.; Banks, D.J.

    2000-02-01

    Field evaluation of nutrient release from composts is important to estimate nutrient contribution to crops, potential leaching of nutrients, and, ultimately, to determine optimum application rates, timing, and placement of composts. Field incubation and laboratory analyses were conducted to evaluate the mineralization rate and transformation of N in biosolids (BSD), yard waste (YW), and West Palm Beach co-compost (WPCC). Each of the composts or biosolids was packed into PVC columns and inserted vertically into the upper layer of an Oldsmar fine sand of raised citrus beds. The top end of the PVC column was capped to prevent excessive leaching of nutrients from the columns. The moisture equilibrium between the incubated sample and the soil in the field was attained through the bottom and four side holes of each column, which were separated from the contacting soil by 400-mesh nylon screen. A set of the incubated columns was removed at monthly intervals, and the soil underlying each column was sampled to analyze for KCl-extractable NH{sub 4}-N and NO{sub 3}-N. Total C and N of the incubated samples were determined at the end of the 1-year incubation.

  13. Data standardization. The key to effective management

    USGS Publications Warehouse

    Wagner, C. Russell

    1991-01-01

    Effective management of the nation's water resources is dependent upon accurate and consistent hydrologic information. Before the emergence of environmental concerns in the 1960's, most hydrologic information was collected by the U.S. Geological Survey and other Federal agencies that used fairly consistent methods and equipment. In the past quarter century, however, increased environmental awareness has resulted in an expansion of hydrologic data collection not only by Federal agencies, but also by state and municipal governments, university investigators, and private consulting firms. The acceptance and use of standard methods of collecting and processing hydrologic data would contribute to cost savings and to greater credibility of flow information vital to responsible assessment and management of the nation's water resources. This paper traces the evolution of the requirements and uses of open-channel flow information in the U.S., and the sequence of efforts to standardize the methods used to obtain this information in the future. The variable nature of naturally flowing rivers results in continually changing hydraulic properties of their channels. Those persons responsible for measurement of water flowing in open channels (streamflow) must use a large amount of judgement in the selection of appropriate equipment and technique to obtain accurate flow information. Standardization of the methods used in the measurement of streamflow is essential to assure consistency of data, but must also allow considerable latitude for individual judgement to meet constantly changing field conditions.

  14. Effective Management of Polarities: Educating Men to Manage Unsolvable Problems.

    ERIC Educational Resources Information Center

    Hurst, Joseph B.; Vanderveen, Neil

    1994-01-01

    Article distinguishes between two types of problems: those that necessitate either-or solutions, and those called polarities, which require both-and solutions. Suggests how inherently unsolvable polarities can be managed by integrating them into men's counseling groups. Suggestions include direct teaching, individual analysis and action planning,…

  15. [Effectiveness of incorporating a quality management system].

    PubMed

    Seki, Akira; Hankins, Raleigh W; Miya, Tetsumasa

    2010-01-01

    In 2003, the ISO 15189 international standardization program on the quality and competence of the clinical reference laboratory was introduced. To date, 46 facilities have committed themselves to providing a higher level of medical service by incorporating a quality management system (QMS) and acquiring accreditation. QMS is defined as "setting up a policy and goals pertaining to quality, and adopting an appropriate system," and is a scheme that includes all managerial and technical factors that can affect test results. Regarding the Health Sciences Research Institute Group, 4 facilities have previously received the accreditation described above, but in the process of implementing the QMS, a number of problems have been identified. Here, we report on the effectiveness of adopting such a QMS based on the results of employee questionnaires, internal audits, customer complaint analyses, and external audits by the Japan Accreditation Board for Conformity Assessment (JAB), the official inspection body for accreditation. PMID:20169949

  16. Degree of phosphorus saturation of an Oxisol amended with biosolids in a long-term field experiment.

    PubMed

    Alleoni, Luís Reynaldo Ferracciú; Fernandes, Antonio Rodrigues; de Campos, Murilo

    2014-04-01

    When applied to agricultural soils, phosphate fertilizers and the mineral or organic compounds present in solid and/or liquid waste may raise phosphorus (P) content and increase soil P saturation. The degree of phosphorus saturation (DPS) is a good indicator of potential P loss from agricultural soils. The purpose of this study was to calculate the DPS of samples from an Oxisol amended for 5 years with biosolids and mineral fertilizer. DPS was calculated based on P, iron, and aluminum extracted by ammonium oxalate and oxalic acid (DPSox) or by Mehlich-1 solution (DPSM1). Treatments included NPK mineral fertilization (175 kg ha(-1) of P), B1 = 19.02 t ha(-1) of biosolids (350 kg ha(-1) of P), B2 = 38.17 t ha(-1) of biosolids (703 kg ha(-1) of P), B3 = 76.26 t ha(-1) of biosolids (1,405 kg ha(-1) of P), and a control (no P added). Water-extractable P (WEP) was also measured. Critical levels of DPSox and DPSM1 (21 and 24 %, respectively) were only achieved in the topsoil (0-0.1 m) at the highest biosolid dose. Concentration of WEP was positively correlated to DPSox and DPSM1. The DPSM1 method may be an alternative to DPSox for assessing the environmental risk of P loss from soil into surface runoff. PMID:24407786

  17. Biosolids pollutant levels in land application for beneficial re-use in the Houston Metropolitan Area of Texas

    SciTech Connect

    Pehl, C.E.

    1995-12-01

    Wastewater treatment plant biosolids have been land applied for beneficial re-use to agriculture sites around the Houston Metropolitan area for nearly ten years. After 1992, both federal and state regulations dramatically changed. The new Texas regulations required that all application sites five years or older be reregistered. Initially, the reregistration procedures required a soil analysis of ten pollutants: Arsenic, CAdmium, Chromium, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium and Zinc, at three soil depths. This information could then compared with current average pollutant concentrations from required biosolids analyses of wastewater treatment plants in both the City of Houston and the surrounding metropolitan area, to evaluate future site longevity using new 40 CFR 503 application and concentration levels. Biosolids land applied in the Houston area during this period were generally {open_quotes}exceptional quality{close_quotes} in compliance with the 40 CFR 503 criterion, Table 3. The previously applied sites were well within the cumulative loading levels, Table 2, and should remain active sites for the foreseeable future. The Arsenic level for Kaechele Ranch, for example, had an average background level of 12.3 kg/ha, after nearly eight years of application and would still require 88 years to reach maximum pollutant loading, at an application rate of 26.9 dry metric tons/hectare/year (12 dry tons). The Bell site, which received no biosolids, had 3.3 kg/ha background for Arsenic, requiring 388 years at 269 dry metric tons/hectare/year. The 40 CFR 503 regulatory limits, developed from risk assessment models and evaluated by peer review, are conservative estimates. However, comparison with actual operational data illustrates that within the Houston Metropolitan area current biosolids recycling efforts, based on the agronomic loading rate, can continue and remain in compliance with new pollutant restrictions.

  18. Long-term use of biosolids as organic fertilizers in agricultural soils: potentially toxic elements occurrence and mobility.

    PubMed

    Marguí, E; Iglesias, M; Camps, F; Sala, L; Hidalgo, M

    2016-03-01

    The presence of potentially toxic elements (PTEs) may hinder a more widespread application of biosolids in agriculture. At present, the European Directive 86/278/CEE limit the total concentrations of seven metals (Cu, Cr, Ni, Pb, Zn, Cd and Hg) in agricultural soils and in sewage sludges used as fertilizers but it has not taken into consideration the potential impacts of other emerging micropollutants that may be present in the biosolids as well as their mobility. The aim of this study was to evaluate the accumulation and mobility of 13 elements (including regulated metals and other inorganic species) in agricultural soils repeatedly amended with biosolids for 15 years. Firstly, three digestions programs using different acid mixtures were tested to evaluate the most accurate and efficient method for analysis of soil and sludge. Results demonstrated that sewage sludge application increased concentrations of Pb and Hg in soil, but values did not exceed the quality standard established by legislation. In addition, other elements (As, Co, Sb, Ag, Se and Mn) that at present are not regulated by the Spanish and European directives were identified in the sewage sludge, and significant differences were found between Ag content in soils amended with biosolids in comparison with control soils. This fact can be related to the increasing use of silver nanoparticles in consumer products due to their antibacterial properties. Results from the leaching tests show up that, in general, the mobility degree for both regulated and non-regulated elements in soils amended with biosolids was quite low (<10 %). PMID:26507732

  19. Field dissipation of 4-nonylphenol, 4-t-octylphenol, triclosan and bisphenol A following land application of biosolids.

    PubMed

    Langdon, K A; Warne, M St J; Smernik, R J; Shareef, A; Kookana, R S

    2012-03-01

    The persistence of contaminants entering the environment through land application of biosolids needs to be understood to assess the potential risks associated. This study used two biosolids treatments to examine the dissipation of four organic compounds: 4-nonylphenol, 4-t-octylphenol, bisphenol A and triclosan, under field conditions in South Australia. The pattern of dissipation was assessed to determine if a first-order or a biphasic model better described the data. The field dissipation data was compared to previously obtained laboratory degradation data. The concentrations of 4-nonylphenol, 4-t-octylphenol and bisphenol A decreased during the field study, whereas the concentration of triclosan showed no marked decrease. The time taken for 50% of the initial concentration of the compounds in the two biosolids to dissipate (DT50), based on a first-order model, was 257 and 248 d for 4-nonylphenol, 231 and 75 d for 4-t-octylphenol and 289 and 43 d for bisphenol A. These field DT50 values were 10- to 20-times longer for 4-nonylphenol and 4-t-octylphenol and 2.5-times longer for bisphenol A than DT50 values determined in the laboratory. A DT50 value could not be determined for triclosan as this compound showed no marked decrease in concentration. The biphasic model provided a significantly improved fit to the 4-t-octylphenol data in both biosolids treatments, however, for 4-nonylphenol and bisphenol A it only improved the fit for one treatment. This study shows that the use of laboratory experiments to predict field persistence of compounds in biosolids amended soils may greatly overestimate degradation rates and inaccurately predict patterns of dissipation. PMID:22196087

  20. Degradation of 4-nonylphenol, 4-t-octylphenol, bisphenol A and triclosan following biosolids addition to soil under laboratory conditions.

    PubMed

    Langdon, K A; Warne, M St J; Smernik, R J; Shareef, A; Kookana, R S

    2011-09-01

    Land application of biosolids is common practice in many countries, however, there are some potential risks associated with the presence of contaminants within the biosolids. This laboratory study examined the degradation of four commonly found organic compounds, 4-nonylphenol, 4-t-octylphenol, bisphenol A, and triclosan, in soil following the addition of two biosolids over 32 weeks. The pattern of degradation was assessed to determine if it followed a standard first-order decay model or if a biphasic model with a degrading and a recalcitrant fraction better described the data. The time taken for the initial concentrations to decrease by 50% (DT50), based on a first-order model, was 12-25 d for 4-nonylphenol, 10-14 d for 4-t-octylphenol, 18-102 d for bisphenol A, and 73-301 d for triclosan. For 4-nonylphenol, bisphenol A and triclosan, the biphasic model fitted the degradation data better than the first-order model, indicating the presence of a degrading fraction and a non-degrading recalcitrant fraction. The recalcitrant fraction for these three compounds at the completion of the 32 week experiment was 17-21%, 24-42%, and 30-51% of the initial concentrations, respectively. For 4-t-octylphenol, the first-order model was sufficient in explaining the degradation data, indicating that no recalcitrant fraction was present. This study showed that biphasic degradation occurred for some organic compounds in biosolids amended soil and that the use of standard first-order degradation models may underestimate the persistence of some organic compounds following land application of biosolids. PMID:21703660

  1. Guide to Effective Purchasing. Operational Management Programme.

    ERIC Educational Resources Information Center

    Frediani, Pam

    This manual is intended to help create and sustain good relations between purchasers and suppliers of foods and related products. It is designed to guide anyone involved in the purchasing function: purchasing officers and managers in medium and large establishments, food and beverage managers, catering managers, chefs, caterers, restaurateurs,…

  2. High-Iron Biosolids Compost-Induced Changes in Lead and Arsenic Speciation and Bioaccessibility in Co-contaminated Soils

    SciTech Connect

    Brown, Sally L; Clausen, Ingrid; Chappell, Mark A; Scheckel, Kirk G; Newville, Matthew; Hettiarachchi, Ganga M

    2012-10-23

    The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids–based composts to reduce the bioaccessibility of soil Pb and As in situ. Lead and As bioaccessibility were evaluated using an in vitro assay. Changes in Pb, As, and Fe speciation were determined on select samples after the second laboratory incubation using μ–X-ray fluorescence mapping followed by μ–X-ray absorption near-edge structure (XANES). A compost with Fe added to wastewater treatment residuals (Fe WTR compost) added to soils at 100 g kg-1 decreased Pb bioaccessibility in both laboratory incubations. Mixed results were observed for As. Composts tested in the field trial (Fe added as Fe powder or FeCl2) did not reduce bioaccessible Pb, and limited reductions were observed in bioaccessible As. These composts had no effect on Pb bioaccessibility during the second laboratory incubation. Bulk XANES showed association of Pb with sulfates and carbonates in the control soil. μ-XANES for three points in the Fe WTR amended soil showed Pb present as Fe-sorbed Pb (88 and 100% of two points) and pyromorphite (12 and 53% of two points). Bulk XANES of the Fe WTR compost showed 97% of total Fe present as Fe3+. The results of this study indicate that addition of high-Fe biosolids compost is an effective means to reduce Pb accessibility only for certain types of Fe-rich materials.

  3. Case management: a management system for quality and cost effective outcomes.

    PubMed

    Dees, J P; Anderson, N L

    1996-08-01

    1. Case management is an effective strategy for occupational health nurses to use to reduce corporate health insurance, workers' compensation, and disability expenditures. 2. Case management has evolved from a reactive to a proactive strategy useful in many arenas. While there are differences among group health, workers' compensation, and disability, the basic case management process is the same. 3. Early intervention and comprehensive assessment are the foundation of a successful case management process. 4. Occupational health nurses have extensive clinical, interpersonal, and management skills enabling them to excel as case managers. PMID:8852236

  4. Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate.

    PubMed

    DeVolder, Pam S; Brown, Sally L; Hesterberg, Dean; Pandya, Kumi

    2003-01-01

    Lead poisoning of waterfowl from direct ingestion of wetland mine tailings has been reported at the Coeur d'Alene River basin in Idaho. A greenhouse study was conducted to evaluate the effects of surface applications of amendments on lead bioavailability in the tailings. Treatments included sediment only, and sediment with three different surface amendments: (i) biosolids compost plus wood ash, (ii) compost + wood ash + a low SO4(2-) addition as K2SO4, and (iii) compost + wood ash + a high SO4(2-) addition. Measured variables included growth and tissue Pb, Zn, and Cd concentration of arrowhead (Sagittaria latifolia Willd.) and cattail (Typha latifolia L.) and soil pH, redox potential (Eh), pore water Pb, Pb speciation by X-ray absorption spectroscopy, and in vitro Pb bioavailability. The compost + ash amendment alleviated phytotoxicity for both plant species. Bioavailability of Pb as measured by a rapid in vitro extract decreased by 24 to 34% (over control) in the tailings directly below the amendment layer in the compost + SO4 treatments. The ratio of acid volatile sulfide (AVS) to simultaneously extracted metals (SEM) also indicated a reduction in Pb bioavailability (1:40 control, 1:20 compost, 1:8 compost + low SO4, and 1:3 compost + high SO4). Extended X-ray adsorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopy data indicated that lead sulfide was greater after 99 d in the treatments that included additions of sulfate. These results indicated that, under reducing conditions, surface amendments of compost + wood ash (with or without sulfate) decreased the bioavailability of Pb in metal-contaminated mine tailings. PMID:12809286

  5. Soil and biosolid nano- and macro-colloid properties and contaminant transport behavior

    NASA Astrophysics Data System (ADS)

    Ghezzi, Jessique L.

    Despite indications that they are potential contaminant transport systems and threats to groundwater quality, very little effort has been invested in comparing contaminant transport behavior of natural environmental nanocolloids and their corresponding macrocolloid fractions in the presence of As, Se, Pb, and Cu contaminants. This study involved physico-chemical, mineralogical, stability and contaminant-transport characterizations of nano- (< 100 nm) and macro-colloids (100-2000 nm) fractionated from three Kentucky soils and one biosolid waste. Particle size was investigated with SEM/TEM and dynamic light scattering. Surface reactivity was estimated using CEC and zeta potential. Mineralogical composition was determined by XRD, FTIR, and thermogravimetric analyses. Sorption isotherms assessed affinities for Cu2+, Pb2+, AsO3-, and SeO4 -2 contaminants, while settling kinetics experiments of suspensions at 0, 2 and 10 mg/L contaminants determined stability and transportability potential. Undisturbed 18x30 cm KY Ashton Loam soil monoliths were also used for transport experiments, involving infusion of 50 mg L-1 colloid suspensions spiked with 2 mg L-1 mixed contaminant loads in unsaturated, steady state, unit gradient downward percolation experiments. Overall, nanocolloids exhibited greater stability over corresponding macrocolloids in the presence and absence of contaminants following specific mineralogy trends. Physicochemical characterizations indicated that extensive organic carbon surface coatings and higher Al/Fe:Si ratios may have induced higher stability in the nanocolloid fractions, in spite of some hindrance by nano-aggregation phenomena. In the transport experiments, nanocolloids eluted significantly higher concentrations of colloids, total, and colloid-bound metals than corresponding macrocolloids. Contaminant elutions varied by colloid type, mineralogy and contaminant, with the following sequences: soil-colloids>bio-colloids, smectitic>mixed.kaolinitic>biosolid

  6. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates

    PubMed Central

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be “hotspots” for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7–9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3

  7. Release dynamics of dissolved organic matter in soil amended with biosolids

    NASA Astrophysics Data System (ADS)

    Trifonov, Pavel; Ilani, Talli; Arye, Gilboa

    2014-05-01

    Among the soil organic matter (SOM) components, dissolved organic matter (DOM) is the link between the solid phase and the soil solution. Previous studies emphasize the turnover of dissolved organic carbon (DOC) and nitrogen (DON) in soils as major pathways of element cycling. In addition to DOM contribution to carbon, nitrogen and other nutrient budgets, it also influence soil biological activity, reduces metal-ion toxicity, increase the transport of some compounds and contribute to the mineral weathering. Amending soils with biosolids originated from sludge have become very popular in the recent years. Those additions significantly affect the quantity and the composition of the DOM in agricultural soils. It should be noted that under most irrigation habitants, the soil is subjected to drying and re-wetting cycles, inducing a complex changes of soil structure, aggregation, SOM quality and micro-flora. However, most studies that addressed the above issues (directly or indirectly) are engaged with soils under cover of naturally occurring forests of relatively humid areas rather than agricultural soils in arid areas. In the current study we examined the DOC and DON release dynamic of sand and loess soils sampled from the Negev Desert of Israel. Each one of the soils were mixing with 5% (w/w) of one of the biosolids and packed into a Plexiglass column (I.d. 5.2 cm, L=20 cm). The flow-through experiments were conducted under low (1 ml/min) or high (10 ml/min) flow rates in a continuous or interrupted manner. The leachates were collected in time intervals equivalent to about 0.12 pore volume of a given soil-biosolids mixture. The established leaching curves of DOC, DON, NO3-, NH4+ and Cl- are analyzed by water flow and solute transport model for saturate (continuous runs) or variably saturate water flow conditions (interrupted runs). The chemical equilibrium or non-equilibrium (i.e. equilibrium and/or kinetics adsorption/desorption) versions of the convection dispersion

  8. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates.

    PubMed

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be "hotspots" for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like

  9. Australian Teachers' Views of Their Effectiveness in Behaviour Management.

    ERIC Educational Resources Information Center

    Safran, Stephen P.

    1989-01-01

    Teachers (N=125) in Brisbane (Queensland, Australia) completing the Teacher Manageability Scale rated themselves as more effective in behavior management than 182 Ohio teachers. Behaviors difficult to manage included lack of communication, task dependency, negative aggressiveness, cognitive confusion, and inattention. Personal efficacy was the…

  10. A Proposed Model of the Effective Management of Children's Pain.

    PubMed

    Simons, Joan

    2015-08-01

    The aim of this study was to understand the various factors that contribute to the delivery of effective pain management. The current picture of pain management is complex and contradictory, with children in the hospital still experiencing unnecessary pain, nurses reporting better pain care than is evidenced, and parents who are reluctant to report their child's pain. There is a real need to focus on areas of excellence where pain management innovations have been successfully implemented. Five hospitals were visited in three countries: the United Kingdom, Sweden, and Australia, spending a week in each country. In all, 28 health care professionals were interviewed exploring innovations in pain management; the effect of improvements on children, parents, and nurses; and what helped and hindered the delivery of effective pain management. Better pain management provides nurses with confidence, which in turn gives children and parents confidence in their care and reduces anxiety for nurses. Resources, on the other hand, were a common issue in relation to obstacles to innovation. A recurring theme in all areas visited was the issue of culture and how it affected both negatively and positively on the management of children's pain. Strong leadership was integral to moving practice forward and to introducing the innovations that led to effective pain management. The key findings identified that underpin the effective management of children's pain are effective leadership, resources, and confidence; the consequences are less stress for children and nurses, more trusting relationships, and greater job satisfaction. A model of effective pain management is proposed. PMID:26256220

  11. Effective Learning & Teaching in Business & Management.

    ERIC Educational Resources Information Center

    Macfarlane, Bruce, Ed.; Ottewill, Roger, Ed.

    This book is a guide to surveying and understanding the key issues, best practices, and new developments in business and management studies. The chapters focus on teaching and learning in business and management education. The chapters are: (1) "Traditions and Tensions" (Bruce Macfarlane and Roger Ottewill); (2) "Understanding Learners" (Roger…

  12. Effective Records Management: The District Administrator's Role.

    ERIC Educational Resources Information Center

    Marrese, Marylynn

    1990-01-01

    School districts should have a records management system through which student, employee, and related documents are maintained. Explains the meaning of records management, the implications of choosing not to establish an ongoing program, and how to be a leader in the program. (eight references) (MLF)

  13. Effectiveness of pain management following electrical injury.

    PubMed

    Li, Adrienne L K; Gomez, Manuel; Fish, Joel S

    2010-01-01

    The purpose of this study was to evaluate the effectiveness of pain management after electrical injury. A retrospective hospital chart review was conducted among electrically injured patients discharged from the outpatient burn clinic of a rehabilitation hospital (July 1, 1999, to July 31, 2008). Demographic data, numeric pain ratings (NPRs) at initial assessment and discharge, medications, nonpharmacologic modalities, and their effects before admission and after rehabilitation were collected. Pain management effects were compared between high (> or =1000 v) and low (<1000 v) voltage, and between electrical contact and electrical flash patients, using Student's t-test and chi, with a P < .05 considered significant. Of 82 electrical patients discharged during the study period, 27 were excluded because of incomplete data, leaving 55 patients who had a mean age +/-SD of 40.7 +/- 11.3 years, TBSA of 19.2 +/- 22.7%, and treatment duration of 16.5 +/- 15.7 months. The majority were men (90.9%), most injuries occurred at work (98.2%), mainly caused by low voltage (n = 32, 58.2%), and the rest caused by high voltage (n = 18, 32.7%). Electrical contact was more common (54.5%) than electrical flash (45.5%). Pain was a chief complaint (92.7%), and hands were the most affected (61.8%), followed by head and neck (38.2%), shoulders (38.2%), and back torso (38.2%). Before rehabilitation, the most common medication were opioids (61.8%), relieving pain in 82.4%, followed by acetaminophen (47.3%) alleviating pain in 84.6%. Heat treatment was the most common nonpharmacologic modality (20.0%) relieving pain in 81.8%, followed by massage therapy (14.5%) alleviating pain in 75.0%. During the rehabilitation program, antidepressants were the most common medication (74.5%), relieving pain in 22.0%, followed by nonsteroidal antiinflammatory drugs (61.8%), alleviating pain in 70.6%. Massage therapy was the most common nonpharmacologic modality (60.0%), alleviating pain in 75.8%, and then

  14. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids

    SciTech Connect

    Griffin, M.E.; McMahon, K.D.; Mackie, R.I.; Raskin, L.

    1998-02-05

    An aggressive start-up strategy was used to initiate codigestion in two anaerobic, continuously mixed bench-top reactors at mesophilic (37 C) and thermophilic (55 C) conditions. The digesters were inoculated with mesophilic anaerobic sewage sludge and cattle manure and were fed a mixture of simulated municipal solid waste and biosolids in proportions that reflect US production rates. The design organic loading rate was 3.1 kg volatile solids/m{sup 3}/day and the retention time was 20 days. Ribosomal RNA-targeted oligonucleotide probes were used to determine the methanogenic community structure in the inocula and the digesters. Chemical analyses were performed to evaluate digester performance. The aggressive start-up strategy was successful for the thermophilic reactor, despite the use of a mesophilic inoculum.

  15. New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge.

    PubMed

    Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic

    2014-04-15

    Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data. PMID:24572272

  16. Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario

    PubMed Central

    Colman, Benjamin P.; Arnaout, Christina L.; Anciaux, Sarah; Gunsch, Claudia K.; Hochella, Michael F.; Kim, Bojeong; Lowry, Gregory V.; McGill, Bonnie M.; Reinsch, Brian C.; Richardson, Curtis J.; Unrine, Jason M.; Wright, Justin P.; Yin, Liyan; Bernhardt, Emily S.

    2013-01-01

    A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg−1 soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles. PMID:23468930

  17. Biosolid-borne tetracyclines and sulfonamides in plants.

    PubMed

    Mathews, Shiny; Reinhold, Dawn

    2013-07-01

    Tetracyclines and sulfonamides used in human and animal medicine are released to terrestrial ecosystems from wastewater treatment plants or by direct manure application. The interactions between plants and these antibiotics are numerous and complex, including uptake and accumulation, phytometabolism, toxicity responses, and degradation in the rhizosphere. Uptake and accumulation of antibiotics have been studied in plants such as wheat, maize, potato, vegetables, and ornamentals. Once accumulated in plant tissue, organic contaminants can be metabolized through a sequential process of transformation, conjugation through glycosylation and glutathione pathways, and ultimately sequestration into plant tissue. While studies have yet to fully elucidate the phytometabolism of tetracyclines and sulfonamides, an in-depth review of plant and mammalian studies suggest multiple potential transformation and conjugation pathways for tetracyclines and sulfonamides. The presence of contaminants in the vicinity or within the plants can elicit stress responses and defense mechanisms that can help tolerate the negative effects of contaminants. Antibiotics can change microbial communities and enzyme activity in the rhizosphere, potentially inducing microbial antibiotic resistance. On the other hand, the interaction of microbes and root exudates on pharmaceuticals in the rhizosphere can result in degradation of the parent molecule to less toxic compounds. To fully characterize the environmental impacts of increased antibiotic use in human medicine and animal production, further research is essential to understand the effects of different antibiotics on plant physiology and productivity, uptake, translocation, and phytometabolism of antibiotics, and the role of antibiotics in the rhizosphere. PMID:23591931

  18. Net effect of 250 years of forest management in Europe

    NASA Astrophysics Data System (ADS)

    Luyssaert, Sebastiaan; Naudts, Kim; McGrath, Matthew M.; Ryder, James; Chen, Yiying; Otto, Juliane; Valade, Aude

    2015-04-01

    Globally, 70% of the forest is managed and the importance of management is still increasing both in relative and absolute terms. In Europe, almost all forest is intensively managed by humans. Forests not only influence the global carbon cycle, they also dramatically affect the water vapour and energy fluxes exchanged with the overlying atmosphere. Recently, forest management has become a top priority on the agenda of the political negotiations to mitigate climate change. However, the net effect of biogeochemical and biophysical impacts of forest management is poorly understood. To this aim, the land surface model ORCHIDEE was extended for studying the effects of forest management on the land-atmosphere interaction and forest management was reconstructed for Europe between 1600 and 2010. The effects of forest management on the C-budget was quantified by means of a factorial experiment between 1750 and 2000. Climate change alone was responsible for a cumulated terrestrial sink of 8.1 Pg between 1750 and 2000, land cover changes and forest management sequestered another 0.8 Pg. In the absence of forest management, climate change alone would not have been able to compensate for the losses due to land cover changes. The factorial experiment was extended by coupled land-atmopshere simulations to quantify the effects of forest management on the climate over Europe. The net effect of both biogeochemical and biophysical changes due to present day land management is an increase of the top of the atmosphere radiative forcing by 0.11 to 0.16 Wm-2 on top of the increase due to climate change. 0.09 to 0.14 Wm-2 can be attributed to forest management including litter raking, changes in management strategies and species changes.

  19. Reproduction Symposium: does grazing on biosolids-treated pasture pose a pathophysiological risk associated with increased exposure to endocrine disrupting compounds?

    PubMed

    Evans, N P; Bellingham, M; Sharpe, R M; Cotinot, C; Rhind, S M; Kyle, C; Erhard, H; Hombach-Klonisch, S; Lind, P M; Fowler, P A

    2014-08-01

    Biosolids (processed human sewage sludge), which contain low individual concentrations of an array of contaminants including heavy metals and organic pollutants such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and polychlorinated dibenzodioxins/polychlorinated dibenzofurans known to cause physiological disturbances, are increasingly being used as an agricultural fertilizer. This could pose a health threat to both humans and domestic and wild animal species. This review summarizes results of a unique model, used to determine the effects of exposure to mixtures of environmentally relevant concentrations of pollutants, in sheep grazed on biosolids-treated pastures. Pasture treatment results in nonsignificant increases in environmental chemical (EC) concentrations in soil. Whereas EC concentrations were increased in some tissues of both ewes and their fetuses, concentrations were low and variable and deemed to pose little risk to consumer health. Investigation of the effects of gestational EC exposure on fetal development has highlighted a number of issues. The results indicate that gestational EC exposure can adversely affect gonadal development (males and females) and that these effects can impact testicular morphology, ovarian follicle numbers and health, and the transcriptome and proteome in adult animals. In addition, EC exposure can be associated with altered expression of GnRH, GnRH receptors, galanin receptors, and kisspeptin mRNA within the hypothalamus and pituitary gland, gonadotroph populations within the pituitary gland, and regional aberrations in thyroid morphology. In most cases, these anatomical and functional differences do not result in altered peripheral hormone concentrations or reproductive function (e.g., lambing rate), indicating physiological compensation under the conditions tested. Physiological compensation is also suggested from studies that indicate that EC effects may be greater when exposure occurs either

  20. Effective Instructional Management: Perceptions and Recommendations from High School Administrators

    ERIC Educational Resources Information Center

    Knechtel, Troy

    2010-01-01

    The two overarching research questions of this study are: What are the perceptions of high school administrators regarding the effectiveness of their current approach to instructional management? What recommendations do high school administrators have for effective strategies for instructional management? To answer these questions, a qualitative…

  1. Organizing for effective managed care contracting.

    PubMed

    Mayer, T

    2001-01-01

    While many forums have debated the fairness and ethical implications of managed care arrangements, it is unlikely that physicians will escape practicing within fixed budgets in the future; the economics of health care simply requires it. Although a backlash has developed against managed care, it is actually more recognition of how pervasive it has become, rather than any threat to its existence. Currently managed care comprises the majority of commercial insurance, is making substantial inroads into Medicaid, and is challenging the reductions in Medicare reimbursement by dropping plans at a time when the Federal government's entire strategy for controlling Medicare costs is based upon managed care through its Medicare+Choice program. PMID:11317578

  2. How effective incident management retains market share.

    PubMed

    Enright, Courtenay

    2012-01-01

    This paper discusses the need for business continuity practitioners to make incident management a focal element of their programme. Particularly during the first few minutes and hours of a business disruption, an established incident management methodology is not only key to achieving a successful, coordinated recovery, but it can play an even more important role in maintaining customer confidence following a disruption or crisis. PMID:22948102

  3. Start-up and operation of a biosolids dryer/pelletizer using indirect thermal technology in Baltimore, Maryland

    SciTech Connect

    White, T.M.; Lindenberg, K. von

    1996-12-31

    On December 18, 1991, the City of Baltimore contracted with Wheelabrator Clean Water Systems Inc. (WCWS) (formerly Bio Gro Systems Inc.) for the construction and operation of a 54.8 dry tons per day (dtpd) biosolids dryer/pelletizer facility. The plant has been constructed at the Back River Wastewater Treatment Plant (BRWWTP) in Essex, Maryland and is in the first year of a 20-year operating contract. The facility is the largest indirect biosolids dryer facility in the world and the first of its type in North America. This paper discusses the development of the project and several of the key start-up issues that resulted in successful commercial operation by the end of 1994. Also, some process equipment difficulties that were experienced during start-up and resulting system modifications are reviewed.

  4. Plant nutrient availability from mixtures of fly ashes and biosolids

    SciTech Connect

    Schumann, A.W.; Summer, M.E.

    1999-10-01

    Nutrient imbalances, both deficiencies and excesses, are one reason for the poor acceptance of waste materials as fertilizer substitutes. Two greenhouse experiments were established using 24 different fly ashes with sewage sludge and poultry manure to estimate nutrient availability and imbalances to maize (Zea mays L.). The maximum maize growth attained with fly ash amendment of 80 Mg ha{sup {minus}1} was significantly less (50%) than a fertilized control treatment. The additional growth improvements obtained from mixtures with sewage sludge or poultry manure ranged from 30 to 49% and 30 to 71%, respectively. Organic materials applied alone achieved only 54 and 62% of the maximum potential, while growth on poultry manure mixtures was up to 94% of the best performing fertilized treatment. Results of foliage and soil analyses suggest that P and K were the main nutrient deficiencies, while B phytotoxicity and an imbalance in the K/Ca/Mg ratio also were likely causes of plant growth reduction. Fly ashes did not contribute significant P or K to correct soil and plant deficiencies, but more often exacerbated the imbalances by precipitation or adsorption of soil P. Sewage sludge mixed at 26% and poultry manure at 13% (DM) with fly ash had negligible effect on availability of phytotoxic fly ash B, but were good sources of P (both) and K (poultry manure). Good agreement between plant nutrition in pot experiments and previous laboratory extraction studies implies that chemical analysis, efficient formulation and optimized application rates may overcome nutrient limitations for use of wastes as fertilizer substitutes.

  5. Brominated flame retardants in U.S. biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms.

    PubMed

    Venkatesan, Arjun K; Halden, Rolf U

    2014-05-15

    We determined national baseline levels and release inventories of 77 traditional and novel brominated flame retardants (BFRs) in biosolids composites (prepared from 110 samples) from the U.S. Environmental Protection Agency's 2001 national sewage sludge survey (NSSS). Additionally, analyses were performed on archived samples from a 3-year outdoor mesocosm study to determine the environmental persistence of BFRs in biosolids-amended soil. The total polybrominated diphenylether (PBDE) concentration detected in biosolids composites was 9400 ± 960 μg/kg dry weight, of which deca-BDE constituted 57% followed by nona- and penta-BDE at 18 and 13%, respectively. The annual mean loading rate estimated from the detected concentrations and approximate annual biosolids production and disposal numbers in the U.S., of the sum of PBDEs and non-BDE BFRs was calculated to be 47,900-60,100 and 12,900-16,200 kg/year, of which 24,000-36,000 and 6400-9700 kg/year are applied on land, respectively. Mean concentration of PBDEs were higher in the 2001 samples compared to levels reported in EPA's 2006/7 Targeted NSSS, reflecting on-going efforts in phasing-out PBDEs in the U.S. In outdoor soil mesocosms, >99% of the initial BFRs mass in the biosolids/soil mixtures (1:2) persisted over the monitoring duration of three years. Estimates of environmental releases may be refined in the future by analyzing individual rather than composited samples, and by integrating currently unavailable data on disposal of biosolids on a plant-specific basis. This study informs the risk assessment of BFRs by furnishing national inventories of BFR occurrence and environmental release via biosolids application on land. PMID:24607311

  6. Brominated flame retardants in U.S. biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms

    PubMed Central

    Venkatesan, Arjun K.; Halden, Rolf U.

    2014-01-01

    We determined national baseline levels and release inventories of 77 traditional and novel brominated flame retardants (BFRs) in biosolids composites (prepared from 110 samples) from the U.S. Environmental Protection Agency’s 2001 national sewage sludge survey (NSSS). Additionally, analyses were performed on archived samples from a 3-year outdoor mesocosm study to determine the environmental persistence of BFRs in biosolids-amended soil. The total polybrominated diphenylether (PBDE) concentration detected in biosolids composites was 9,400±960 μg/kg dry weight, of which deca-BDE constituted 57% followed by nona- and penta-BDE at 18 and 13%, respectively. The annual mean loading rate estimated from the detected concentrations and approximate annual biosolids production and disposal numbers in the U.S., of the sum of PBDEs and non-BDE BFRs was calculated to be 47,900–60,100 and 12,900–16,200 kg/year, of which 24,000–36,000 and 6,400–9,700 kg/year are applied on land, respectively. Mean concentration of PBDEs were higher in the 2001 samples compared to levels reported in EPA’s 2006/7 Targeted NSSS, reflecting on-going efforts in phasing-out PBDEs in the U.S. In outdoor soil mesocosms, >99% of the initial BFRs mass in the biosolids/soil mixtures (1:2) persisted over the monitoring duration of three years. Estimates of environmental releases may be refined in the future by analyzing individual rather than composited samples, and by integrating currently unavailable data on disposal of biosolids on a plant-specific basis. This study informs the risk assessment of BFRs by furnishing national inventories of BFR occurrence and environmental release via biosolids application on land. PMID:24607311

  7. How Effective Managers Use Information Systems

    ERIC Educational Resources Information Center

    Alter, Steven L.

    1976-01-01

    Based on a study of 56 computerized decision-support systems, discusses the potential value of various decision-support systems, examines the challenges and risks such systems pose to managers, and suggests strategies for meeting those challenges and risks. (JG)

  8. Students' Pressure, Time Management and Effective Learning

    ERIC Educational Resources Information Center

    Sun, Hechuan; Yang, Xiaolin

    2009-01-01

    Purpose: This paper aims to survey the status quo of the student pressure and the relationship between their daily time management and their learning outcomes in three different types of higher secondary schools at Shenyang, the capital city of Liaoning Province in mainland China. Design/methodology/approach: An investigation was carried out in 14…

  9. Effects of conservation practices on fisheries management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beasley Lake watershed was subjected to a series of conservation management practices with the goal of reducing sediment and nutrients entering the lake via agricultural runoff. Concurrent with the application of conservation practices, the lake was renovated and restocked to produce a sports fishe...

  10. Effects of Organic Management on Student Achievement

    ERIC Educational Resources Information Center

    Miller, Robert J.; Rowan, Brian

    2006-01-01

    Proponents of school restructuring often promote the purported benefits of professional forms of management that call for staff cooperation and collegiality, teachers' participation in school decision making, and supportive leadership by school principals. A theoretical perspective on organizations known as contingency theory refers to such…

  11. Effective Performance Appraisal: Viewpoints from Managers.

    ERIC Educational Resources Information Center

    Laird, Angela; Clampitt, Phillip G.

    1985-01-01

    Interviewed 61 managers of Fortune 500 companies who reported the following problems with administering performance appraisals: (1) multiple use of the form; (2) subjectivity and inflated ratings; and (3) difficulties in defining objectives and in disseminating the evaluation to employees. (PD)

  12. The Effectiveness of Time Management Strategies Instruction on Students' Academic Time Management and Academic Self Efficacy

    ERIC Educational Resources Information Center

    Kader, Fathi Abdul Hamid Abdul; Eissa, Mourad Ali

    2015-01-01

    This study investigated the effect of using time management strategies instruction on improving first year learning disabled students' academic time management and academic self efficacy. A total of 60 students identified with LD participated. The sample was divided into two groups; experimental (n = 30 boys) and control (n = 30 boys). ANCOVA and…

  13. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    ERIC Educational Resources Information Center

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  14. Effective Communication: High-Level Management Receptive to Low-Level Management Ideas.

    ERIC Educational Resources Information Center

    Chressanthis, June D.; Janousek, Kelly

    Based on the premise that senior staff or high-level managers have the knowledge and experience required to make daily decisions and also have a degree of power and respect, this document proposes that these managers are in a position to be effective leaders who can and should foster an atmosphere of receptiveness for innovation and positive…

  15. The effect of regulation on the professionally managed utility

    SciTech Connect

    Czamanski, O.Z.

    1980-12-01

    Mixed empirical evidence concerning the A-J effect suggests that regulatory constraints affect utilities differently, depending upon their organizational structure. An important characteristic of firms is the concern for profits on the part of managements. This concern is related to the extent that management owns the firms' residual claims. In the case of many utilities, professional management means divorce of ownership from the firm's decision-making.

  16. Becoming an effective clinical engineering or biomedical technology manager.

    PubMed

    Brush, L C

    1992-01-01

    The BMET or CE Supervisor is a technical manager who is close to the actual work of a biomedical or clinical engineering department. The MPTI is a management training tool that has identified differences between the effective and less-effective technical managers. These behaviors or styles can be considered and applied to the clinical engineering and BMET work environments. Effective BMET or CE Supervisors have a management identity. They are both people-oriented and task-oriented. They are good problem-solvers, and will plan and structure the work tasks and environment. When the situation requires a change in plans, however, they can adapt to the new situation easily. If a decision needs to be made that affects the organization, they will check with higher management or peer managers. Less-effective BMET or CE Supervisors will make important decisions alone, without checking with others. They plan and structure tasks and the work environment, but they are less willing to change when faced with a new situation. They are not people-oriented, and their ability to assess social situations is low. Their need for achievement recognition is often too high. The work environment has an effect on how the competence of a manager is perceived. A "one-desk manager" in a small, one-person biomedical engineering department has more autonomy than a CE Supervisor in a large department. Working for a medical device manufacturing firm often requires a greater management identity. An engineering consultant is often a managing specialist, rather than a traditional manager.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10120059

  17. A QUALITATIVE APPROACH IN COMPLIANCE MONITORING OF MICROORGANISMS AND EVALUATION OF BIOSOLIDS RISK MANAGEMENT

    EPA Science Inventory

    Municipal wastewaters receive discharges from homes, commercial establishments, industry and hospitals. Combined sewer systems carry waste from all the above sources as well as storm water. Within such mixtures are the microorganisms which reside in virtually all parts of the s...

  18. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure

    USGS Publications Warehouse

    Kinney, C.A.; Furlong, E.T.; Kolpin, D.W.; Burkhardt, M.R.; Zaugg, S.D.; Werner, S.L.; Bossio, J.P.; Benotti, M.J.

    2008-01-01

    Analysis of earthworms offers potential for assessing the transfer of organic anthropogenic waste indicators (AWIs) derived from land-applied biosolid or manure to biota. Earthworms and soil samples were collected from three Midwest agricultural fields to measure the presence and potential for transfer of 77 AWIs from land-applied biosolids and livestock manure to earthworms. The sites consisted of a soybean field with no amendments of human or livestock waste (Site 1), a soybean field amended with biosolids from a municipal wastewater treatment plant (Site 2), and a cornfield amended with swine manure (Site 3). The biosolid applied to Site 2 contained a diverse composition of 28 AWIs, reflecting the presence of human-use compounds. The swine manure contained 12 AWIs, and was dominated by biogenic sterols. Soil and earthworm samples were collected in the spring (about 30 days after soil amendment) and fall (140-155 days after soil amendment) at all field sites. Soils from Site 1 contained 21 AWIs and soil from Sites 2 and 3 contained 19 AWIs. The AWI profiles at Sites 2 and 3 generally reflected the relative composition of AWIs present in waste material applied. There were 20 AWIs detected in earthworms from Site 1 (three compounds exceeding concentrations of 1000 ??g/kg), 25 AWIs in earthworms from Site 2 (seven compounds exceeding concentrations of 1000 ??g/kg), and 21 AWIs in earthworms from Site 3 (five compounds exceeding concentrations of 1000 ??g/kg). A number of compounds thatwere present in the earthworm tissue were at concentrations less than reporting levels in the corresponding soil samples. The AWIs detected in earthworm tissue from the three field sites included pharmaceuticals, synthetic fragrances, detergent metabolites, polycyclic aromatic hydrocarbons (PAHs), biogenic sterols, disinfectants, and pesticides, reflecting a wide range of physicochemical properties. For those contaminants detected in earthworm tissue and soil, bioaccumulation factors

  19. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils.

    PubMed

    Gaylor, Michael O; Harvey, Ellen; Hale, Robert C

    2013-12-01

    Polybrominated diphenyl ether (PBDE) flame retardants have been used in consumer polymers at up to percent levels. While long viewed as biologically inaccessible therein, PBDEs may become bioaccessible following volatilization or polymer deterioration. PBDEs may then enter soils via polymer fragmentation or following land application of sewage sludge-derived biosolids. Studies of direct PBDE uptake from these materials by soil organisms are scarce. We thus exposed earthworms ( Eisenia fetida ) to artificial soil amended with a Class B anaerobically digested biosolid (ADB), an exceptional quality composted biosolid (CB), PBDE-containing polyurethane foam (PUF) microparticles, and Penta-BDE-spiked artificial soil (SAS). Worms accumulated mg/kg (lipid) ∑Penta-PBDE burdens from all substrates. Biota-soil accumulation factors (BSAFs) for worms exposed to ADB- and CB-amended soils were comparable after 28 d. BSAFs generally decreased with increasing congener KOW and substrate dosage. Biosolids-associated PBDE bioavailability was lower than spiked PBDEs. BSAFs for worms exposed to PUF microparticles ranged from 3.9 to 33.4, with ∑Penta-PBDE tissue burdens reaching 3740 mg/kg lipid. Congener accumulation patterns were similar in worms and polyethylene passive sampling devices immersed in ADB-amended soil coincident with exposed worms. However, passive sampler accumulation factors were lower than BSAFs. Our results demonstrate that PBDEs may accumulate in organisms ingesting soils containing biosolids or waste plastics. Such organisms may then transfer their burdens to predators or translocate them from the site of application/disposal. PMID:24160918

  20. Tillage Management and Previous Crop Effects on Soil Physical Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the potential positive effects of diverse crop rotations and no-till soil management on crop productivity and soil resource conservation, research to remove the constraints to widespread adoption of these crop and soil management practices in eastern South Dakota and western Minnesota is ...

  1. An Effective Time and Management Strategy in Quality Circles.

    ERIC Educational Resources Information Center

    Halverson, Don E.

    Contending that participation in quality circles enhances effective time management by school administrators and teachers, this guide provides both a theoretical briefing and practical recommendations for better time management. A pre- posttest prefaces a review of basic concepts of quality circles with reference to the work of Abraham Maslow,…

  2. Total Quality Management and Institutional Effectiveness: Synergy through Congruence.

    ERIC Educational Resources Information Center

    Losak, John; Scigliano, John

    This paper provides a framework for an institutional self study integrating total quality management (TQM) and institutional effectiveness (IE) models within the context of standards of the Southern Association of Colleges and Schools. It highlights the common dimensions in general management principles between TQM and IE and the strategies for…

  3. Effective Classroom Management at the Beginning of the School Year.

    ERIC Educational Resources Information Center

    Emmer, Edmund T.; And Others

    1980-01-01

    The major goals of the project reported here were to learn how teachers who are effective managers handle beginning-of-the-year activities and to determine what basic principles of management underlie their teaching. Twenty-seven third-grade teachers in eight elementary schools served as subjects. (MP)

  4. Effect of a Stress Management Class: One Year Later.

    ERIC Educational Resources Information Center

    Somerville, Addison W.; And Others

    1984-01-01

    Graduate and undergraduate students showed a reduction in anxiety during a 16-week course designed to include information on the causes and effects of stress as well as practical techniques for stress management. A follow-up study showed that the students were still successfully using the stress management techniques a year later. (RM)

  5. Better Choices: Evaluating the Effectiveness of Behavior Management Programs

    ERIC Educational Resources Information Center

    Acuna, Miguel T.

    2011-01-01

    Managing student behavior is often looked upon as a sidebar in teaching. The lack of formal classroom management training in teacher education programs reveals the low importance placed on this skill. As a result, teachers are often very well prepared to instruct, but in terms of effectively understanding the behavior of students--particularly…

  6. EFFECTIVE RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS WORKSHOP NEWMEDIA CD

    EPA Science Inventory

    This product is a CD-ROM version of the workshop, Effective Risk Management of Endocrine Disrupting Chemicals, held in January 2002, in Cincinnati, Ohio. The goal of this workshop was to introduce the science and engineering behind managing the potential risk of suspected endocri...

  7. Make safety programs work efficiently with an effective management plan

    SciTech Connect

    Lyle, D.

    1995-07-01

    Like budgets or any other major projects, safety works better when everyone in the company commits to manage the program effectively. Let someone overspend a budget or miss a projected revenue plan and a company moves quickly to correct the problem. However, there is a tendency to ignore a manager whose department has a poor safety record, as though it`s bad luck.

  8. Social and Cultural Factors That Effect University Women Managers

    ERIC Educational Resources Information Center

    Arslan, Hasan; Sabo, Helena Maria; Siyli, Nese Aysin

    2012-01-01

    In this study, social and cultural effects of the low rate of woman managers at universities are tried to be identified. Women have been increasingly appearing in every field of business; on the other hand, although women compared to men constitute majority in educational organisations, they appear in the positions other than management. We will…

  9. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    PubMed

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P < 0.05), while negatively with root lipid contents (P < 0.05). These suggested the promotion effects of protein and inhibition effects of lipid on root uptake. The translocation factors correlated positively with the ratios between protein contents in shoots to those in roots (P < 0.05), showing the importance of protein on PFOS and PFOA translocation. This study is the first to reveal the different roles of protein and lipid in the accumulation and distribution of PFOS and PFOA in plants. PMID:27381874

  10. Effectiveness of case management for homeless persons: a systematic review.

    PubMed

    de Vet, Renée; van Luijtelaar, Maurice J A; Brilleslijper-Kater, Sonja N; Vanderplasschen, Wouter; Beijersbergen, Mariëlle D; Wolf, Judith R L M

    2013-10-01

    We reviewed the literature on standard case management (SCM), intensive case management (ICM), assertive community treatment (ACT), and critical time intervention (CTI) for homeless adults. We searched databases for peer-reviewed English articles published from 1985 to 2011 and found 21 randomized controlled trials or quasi-experimental studies comparing case management to other services. We found little evidence for the effectiveness of ICM. SCM improved housing stability, reduced substance use, and removed employment barriers for substance users. ACT improved housing stability and was cost-effective for mentally ill and dually diagnosed persons. CTI showed promise for housing, psychopathology, and substance use and was cost-effective for mentally ill persons. More research is needed on how case management can most effectively support rapid-rehousing approaches to homelessness. PMID:23947309

  11. Effectiveness of Case Management for Homeless Persons: A Systematic Review

    PubMed Central

    de Vet, Renée; van Luijtelaar, Maurice J. A.; Brilleslijper-Kater, Sonja N.; Vanderplasschen, Wouter; Beijersbergen, Mariëlle D.

    2013-01-01

    We reviewed the literature on standard case management (SCM), intensive case management (ICM), assertive community treatment (ACT), and critical time intervention (CTI) for homeless adults. We searched databases for peer-reviewed English articles published from 1985 to 2011 and found 21 randomized controlled trials or quasi-experimental studies comparing case management to other services. We found little evidence for the effectiveness of ICM. SCM improved housing stability, reduced substance use, and removed employment barriers for substance users. ACT improved housing stability and was cost-effective for mentally ill and dually diagnosed persons. CTI showed promise for housing, psychopathology, and substance use and was cost-effective for mentally ill persons. More research is needed on how case management can most effectively support rapid-rehousing approaches to homelessness. PMID:23947309

  12. Effective and Innovative Practices for Stronger Facilities Management.

    ERIC Educational Resources Information Center

    Banick, Sarah

    2002-01-01

    Describes the five winners of the APPA's Effective & Innovative Practices Award. These facilities management programs and processes were recognized for enhancing service delivery, lowering costs, increasing productivity, improving customer service, generating revenue, or otherwise benefiting the educational institution. (EV)

  13. Heavy Metal Displacement in Chelate-Assisted Phytoremediation of Biosolids Soil

    NASA Astrophysics Data System (ADS)

    Kirkham, M. B.; Liphadzi, M. S.

    2005-05-01

    Heavy metals in biosolids (sewage sludge) applied to land contaminate the soil. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with biosolids following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals, as affected by a chelate, in soil (Haynie very fine sandy loam) from a 25-year old sludge farm. Soil columns (105 cm long; 39 cm in diameter) either had a plant (hybrid poplar; Populus deltoides Marsh. x P. nigra L.) or no plant. When the poplars were 144 days old, the tetrasodium salt of the chelating agent EDTA (ethylenediamine-tetraacetic acid) was irrigated onto the soil at a rate of 1 g per kg of soil. Drainage water, soil, and plants were analyzed for three toxic heavy metals (Cd, Ni, Pb) and four essential heavy metals (Cu, Fe, Mn, Zn). Without EDTA, concentrations of the seven heavy metals in the leachate from columns with or without plants were low or below detection limits. With or without plants, the EDTA mobilized all heavy metals and increased their concentration in drainage water. Without plants, the concentrations of Cd, Cu, Fe, Pb, and Zn in the leachate from columns with EDTA were above drinking-water standards. (There is no drinking-water standard for Ni.) The presence of poplar plants in the soil reduced the concentrations of Cu, Fe, and Zn in the leachate so it fell within drinking-water standards. Concentrations of Cd and Pb in the leachate remained above drinking-water standards with or without plants. At harvest (124 days after the EDTA application), total concentration of each heavy metal in the soil at different depths in the columns with EDTA was similar to that in the columns without EDTA. The chelate did not affect the concentration of heavy metals in the roots, stems, or leaves

  14. Crisis management can leave residual effects.

    PubMed

    Margolis, G L; DeMuro, P R

    1991-10-01

    A healthcare organization that once suffered from poor financial performance may fail to correct recovery methods that can cause lingering legal and accounting problems. A crisis management style is prone to creating problems with an organization's debt structure, Medicare and Medicaid payment, tax issues, labor relations, licensing and accreditation, compliance with fraud and abuse rules, and accounting for charity care. After stabilizing a worrisome financial situation, a healthcare organization should conduct an internal audit to ensure that its legal and accounting practices remain above board. PMID:10145510

  15. Effective pain management and improvements in patients' outcomes and satisfaction.

    PubMed

    Glowacki, Diane

    2015-06-01

    Adequate pain management is a compelling and universal requirement in health care. Despite considerable advancements, the adverse physiological and psychological implications of unmanaged pain remain substantially unresolved. Ineffective pain management can lead to a marked decrease in desirable clinical and psychological outcomes and patients' overall quality of life. Effective management of acute pain results in improved patient outcomes and increased patient satisfaction. Although research and advanced treatments in improved practice protocols have documented progressive improvements in management of acute and postoperative pain, little awareness of the effectiveness of best practices persists. Improved interventions can enhance patients' attitudes to and perceptions of pain. What a patient believes and understands about pain is critical in influencing the patient's reaction to the pain therapy provided. Use of interdisciplinary pain teams can lead to improvements in patients' pain management, pain education, outcomes, and satisfaction. PMID:26033099

  16. The effect of scientific evidence on conservation practitioners' management decisions.

    PubMed

    Walsh, Jessica C; Dicks, Lynn V; Sutherland, William J

    2015-02-01

    A major justification of environmental management research is that it helps practitioners, yet previous studies show it is rarely used to inform their decisions. We tested whether conservation practitioners focusing on bird management were willing to use a synopsis of relevant scientific literature to inform their management decisions. This allowed us to examine whether the limited use of scientific information in management is due to a lack of access to the scientific literature or whether it is because practitioners are either not interested or unable to incorporate the research into their decisions. In on-line surveys, we asked 92 conservation managers, predominantly from Australia, New Zealand, and the United Kingdom, to provide opinions on 28 management techniques that could be applied to reduce predation on birds. We asked their opinions before and after giving them a summary of the literature about the interventions' effectiveness. We scored the overall effectiveness and certainty of evidence for each intervention through an expert elicitation process-the Delphi method. We used the effectiveness scores to assess the practitioners' level of understanding and awareness of the literature. On average, each survey participant changed their likelihood of using 45.7% of the interventions after reading the synopsis of the evidence. They were more likely to implement effective interventions and avoid ineffective actions, suggesting that their intended future management strategies may be more successful than current practice. More experienced practitioners were less likely to change their management practices than those with less experience, even though they were not more aware of the existing scientific information than less experienced practitioners. The practitioners' willingness to change their management choices when provided with summarized scientific evidence suggests that improved accessibility to scientific information would benefit conservation management

  17. Effects of threat management interactions on conservation priorities.

    PubMed

    Auerbach, Nancy A; Wilson, Kerrie A; Tulloch, Ayesha I T; Rhodes, Jonathan R; Hanson, Jeffrey O; Possingham, Hugh P

    2015-12-01

    Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost-effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio-diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species. PMID:26171646

  18. Visions Management: Effective Teaching through Technology.

    ERIC Educational Resources Information Center

    Larson, Robert W.

    In making effective use of technology, instructors must face several challenges, such as deciding which technology is really necessary for effective teaching and working with limited department budgets. In addressing these issues, faculty should be aware of three major trends in communications technology: miniaturization of the media of…

  19. Risk factors and effective management of preeclampsia

    PubMed Central

    English, Fred A; Kenny, Louise C; McCarthy, Fergus P

    2015-01-01

    Preeclampsia, a hypertensive disorder of pregnancy is estimated to complicate 2%–8% of pregnancies and remains a principal cause of maternal and fetal morbidity and mortality. Preeclampsia may present at any gestation but is more commonly encountered in the third trimester. Multiple risk factors have been documented, including: family history, nulliparity, egg donation, diabetes, and obesity. Significant progress has been made in developing tests to predict risk of preeclampsia in pregnancy, but these remain confined to clinical trial settings and center around measuring angiogenic profiles, including placental growth factor or newer tests involving metabolomics. Less progress has been made in developing new treatments and therapeutic targets, and aspirin remains one of the few agents shown to consistently reduce the risk of developing preeclampsia. This review serves to discuss recent advances in risk factor identification, prediction techniques, and management of preeclampsia in antenatal, intrapartum, and postnatal patients. PMID:25767405

  20. Simultaneous determination of benzotriazoles and ultraviolet filters in ground water, effluent and biosolid samples using gas chromatography-tandem mass spectrometry.

    PubMed

    Liu, You-Sheng; Ying, Guang-Guo; Shareef, Ali; Kookana, Rai S

    2011-08-01

    A new method using gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed for the determination of four benzotriazoles, i.e. benzotriazole (BT), 5-methylbenzotriazole (5-TTri), 5-chlorobenzotriazole (CBT), 5,6-dimethylbenzotriazole (XTri), and six UV filters, i.e. benzophenone-3 (BP-3), 3-(4-methylbenzylidene)camphor (4-MBC), octyl 4-methoxycinnamate (OMC), 2-(3-t-butyl-2-hydroxy-5-methylphenyl)-5-chloro benzotriazole (UV-326), 2-(2'-hydroxy-5'-octylphenyl)-benzotriazole (UV-329), and octocrylene (OC) in ground water, effluent and biosolid samples. Solid phase extraction (SPE) and pressurized liquid extraction (PLE) were applied as the preconcentration method for water samples (ground water and effluent) and biosolid samples, respectively. The optimized method allowed us to quantify all target compounds with the method detection limits ranging from 0.29 to 11.02 ng/L, 0.5 to 14.1 ng/L and 0.33 to 8.23 ng/g in tap water, effluent and biosolid samples, respectively. The recoveries of the target analytes in tap water, effluent and biosolid samples were 70-150%, 82-127% and 81-133%, respectively. The developed analytical method was applied in the determination of these target compounds in ground water, effluent and biosolid samples collected from Bolivar sewage treatment plants in South Australia. In effluent samples, the target compounds BT, 5-TTri, CBT, XTri and BP-3 tested were detected with the maximum concentration up to 2.2 μg/L for BT. In biosolid samples, eight out of ten compounds tested were found to be present at the concentrations ranging between 18.7 ng/g (5-TTri) and 250 ng/g (4-MBC). PMID:21704319