Sample records for effective one-electron description

  1. Seebeck coefficient of one electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durrani, Zahid A. K., E-mail: z.durrani@imperial.ac.uk

    2014-03-07

    The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.

  2. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: Analysis of basic electronic effects

    NASA Astrophysics Data System (ADS)

    Gräfenstein, Jürgen; Cremer, Dieter

    2004-12-01

    For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. 1J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas 2J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of 1J(C,H) and 2J(H,H), respectively, for hydrocarbons.

  3. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    NASA Astrophysics Data System (ADS)

    Turi, László

    2016-04-01

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  4. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turi, László, E-mail: turi@chem.elte.hu

    2016-04-21

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions withmore » n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.« less

  5. From information theory to quantitative description of steric effects.

    PubMed

    Alipour, Mojtaba; Safari, Zahra

    2016-07-21

    Immense efforts have been made in the literature to apply the information theory descriptors for investigating the electronic structure theory of various systems. In the present study, the information theoretic quantities, such as Fisher information, Shannon entropy, Onicescu information energy, and Ghosh-Berkowitz-Parr entropy, have been used to present a quantitative description for one of the most widely used concepts in chemistry, namely the steric effects. Taking the experimental steric scales for the different compounds as benchmark sets, there are reasonable linear relationships between the experimental scales of the steric effects and theoretical values of steric energies calculated from information theory functionals. Perusing the results obtained from the information theoretic quantities with the two representations of electron density and shape function, the Shannon entropy has the best performance for the purpose. On the one hand, the usefulness of considering the contributions of functional groups steric energies and geometries, and on the other hand, dissecting the effects of both global and local information measures simultaneously have also been explored. Furthermore, the utility of the information functionals for the description of steric effects in several chemical transformations, such as electrophilic and nucleophilic reactions and host-guest chemistry, has been analyzed. The functionals of information theory correlate remarkably with the stability of systems and experimental scales. Overall, these findings show that the information theoretic quantities can be introduced as quantitative measures of steric effects and provide further evidences of the quality of information theory toward helping theoreticians and experimentalists to interpret different problems in real systems.

  6. Unified Description of Inelastic Propensity Rules for Electron Transport through Nanoscale Junctions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Ueba, Hiromu; Lorente, Nicolás; Brandbyge, Mads

    2008-06-01

    We present a method to analyze the results of first-principles based calculations of electronic currents including inelastic electron-phonon effects. This method allows us to determine the electronic and vibrational symmetries in play, and hence to obtain the so-called propensity rules for the studied systems. We show that only a few scattering states—namely those belonging to the most transmitting eigenchannels—need to be considered for a complete description of the electron transport. We apply the method on first-principles calculations of four different systems and obtain the propensity rules in each case.

  7. Electrons in one dimension

    PubMed Central

    Berggren, K.-F.; Pepper, M.

    2010-01-01

    In this article, we present a summary of the current status of the study of the transport of electrons confined to one dimension in very low disorder GaAs–AlGaAs heterostructures. By means of suitably located gates and application of a voltage to ‘electrostatically squeeze’ the electronic wave functions, it is possible to produce a controllable size quantization and a transition from two-dimensional transport. If the length of the electron channel is sufficiently short, then transport is ballistic and the quantized subbands each have a conductance equal to the fundamental quantum value 2e2/h, where the factor of 2 arises from the spin degeneracy. This mode of conduction is discussed, and it is shown that a number of many-body effects can be observed. These effects are discussed as in the spin-incoherent regime, which is entered when the separation of the electrons is increased and the exchange energy is less than kT. Finally, results are presented in the regime where the confinement potential is decreased and the electron configuration relaxes to minimize the electron–electron repulsion to move towards a two-dimensional array. It is shown that the ground state is no longer a line determined by the size quantization alone, but becomes two distinct rows arising from minimization of the electrostatic energy and is the precursor of a two-dimensional Wigner lattice. PMID:20123751

  8. Topological electronic liquids: Electronic physics of one dimension beyond the one spatial dimension

    NASA Astrophysics Data System (ADS)

    Wiegmann, P. B.

    1999-06-01

    There is a class of electronic liquids in dimensions greater than 1 that shows all essential properties of one-dimensional electronic physics. These are topological liquids-correlated electronic systems with a spectral flow. Compressible topological electronic liquids are superfluids. In this paper we present a study of a conventional model of a topological superfluid in two spatial dimensions. This model is thought to be relevant to a doped Mott insulator. We show how the spectral flow leads to the superfluid hydrodynamics and how the orthogonality catastrophe affects off-diagonal matrix elements. We also compute the major electronic correlation functions. Among them are the spectral function, the pair wave function, and various tunneling amplitudes. To compute correlation functions we develop a method of current algebra-an extension of the bosonization technique of one spatial dimension. In order to emphasize a similarity between electronic liquids in one dimension and topological liquids in dimensions greater than 1, we first review the Fröhlich-Peierls mechanism of ideal conductivity in one dimension and then extend the physics and the methods into two spatial dimensions.

  9. Hydrodynamic description of transport in strongly correlated electron systems.

    PubMed

    Andreev, A V; Kivelson, Steven A; Spivak, B

    2011-06-24

    We develop a hydrodynamic description of the resistivity and magnetoresistance of an electron liquid in a smooth disorder potential. This approach is valid when the electron-electron scattering length is sufficiently short. In a broad range of temperatures, the dissipation is dominated by heat fluxes in the electron fluid, and the resistivity is inversely proportional to the thermal conductivity, κ. This is in striking contrast to the Stokes flow, in which the resistance is independent of κ and proportional to the fluid viscosity. We also identify a new hydrodynamic mechanism of spin magnetoresistance.

  10. One-electron reduced density matrices of strongly correlated harmonium atoms.

    PubMed

    Cioslowski, Jerzy

    2015-03-21

    Explicit asymptotic expressions are derived for the reduced one-electron density matrices (the 1-matrices) of strongly correlated two- and three-electron harmonium atoms in the ground and first excited states. These expressions, which are valid at the limit of small confinement strength ω, yield electron densities and kinetic energies in agreement with the published values. In addition, they reveal the ω(5/6) asymptotic scaling of the exchange components of the electron-electron repulsion energies that differs from the ω(2/3) scaling of their Coulomb and correlation counterparts. The natural orbitals of the totally symmetric ground state of the two-electron harmonium atom are found to possess collective occupancies that follow a mixed power/Gaussian dependence on the angular momentum in variance with the simple power-law prediction of Hill's asymptotics. Providing rigorous constraints on energies as functionals of 1-matrices, these results are expected to facilitate development of approximate implementations of the density matrix functional theory and ensure their proper description of strongly correlated systems.

  11. Continuum and atomistic description of excess electrons in TiO2

    NASA Astrophysics Data System (ADS)

    Maggio, Emanuele; Martsinovich, Natalia; Troisi, Alessandro

    2016-02-01

    The modelling of an excess electron in a semiconductor in a prototypical dye sensitised solar cell is carried out using two complementary approaches: atomistic simulation of the TiO2 nanoparticle surface is complemented by a dielectric continuum model of the solvent-semiconductor interface. The two methods are employed to characterise the bound (excitonic) states formed by the interaction of the electron in the semiconductor with a positive charge opposite the interface. Density-functional theory (DFT) calculations show that the excess electron in TiO2 in the presence of a counterion is not fully localised but extends laterally over a large region, larger than system sizes accessible to DFT calculations. The numerical description of the excess electron at the semiconductor-electrolyte interface based on the continuum model shows that the exciton is also delocalised over a large area: the exciton radius can have values from tens to hundreds of Ångströms, depending on the nature of the semiconductor (characterised by the dielectric constant and the electron effective mass in our model).

  12. Theoretical description of protein field effects on electronic excitations of biological chromophores.

    PubMed

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-11

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  13. Theoretical description of protein field effects on electronic excitations of biological chromophores

    NASA Astrophysics Data System (ADS)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  14. Density-Functional Theory description of transport in the single-electron transistor

    NASA Astrophysics Data System (ADS)

    Zawadzki, Krissia; Oliveira, Luiz N.

    The Kondo effect governs the low-temperature transport properties of the single electron transistor (SET), a quantum dot bridging two electron gases. In the weak coupling limit, for odd dot occupation, the gate-potential profile of the conductance approaches a step, known as the Kondo plateau. The plateau and other SET properties being well understood on the basis of the Anderson model, more realistic (i. e., DFT) descriptions of the device are now desired. This poses a challenge, since the SET is strongly correlated. DFT computations that reproduce the conductance plateau have been reported, e. g., by, which rely on the exact functional provided by the Bethe-Ansatz solution for the Anderson model. Here, sticking to DFT tradition, we employ a functional derived from a homogeneous system: the parametrization of the Lieb-Wu solution for the Hubbard model due to. Our computations reproduce the plateau and yield other results in accurate agreement with the exact diagonalization of the Anderson Hamiltonian. The prospects for extensions to realistic descriptions of two-dimensional nanostructured devices will be discussed. Luiz N. Oliveira thanks CNPq (312658/2013-3) and Krissia Zawadzki thanks CNPq (140703/2014-4) for financial support.

  15. One-Dimensional Modeling Studies of the Gaseous Electronics Conference RF Reference Cell

    PubMed Central

    Govindan, T. R.; Meyyappan, M.

    1995-01-01

    A review of the one-dimensional modeling studies in the literature of the Gaseous Electronics Conference (GEC) reference plasma reactor is presented. Most of the studies are based on the fluid model description of the discharge and some utilize hybrid fluid-kinetic schemes. Both models are discussed here briefly. The models provide a basic understanding of the discharge mechanisms and reproduce several critical discharge features observed experimentally. PMID:29151755

  16. Real-Time Description of the Electronic Dynamics for a Molecule Close to a Plasmonic Nanoparticle

    PubMed Central

    2016-01-01

    The optical properties of molecules close to plasmonic nanostructures greatly differ from their isolated molecule counterparts. To theoretically investigate such systems from a quantum-chemistry perspective, one has to take into account that the plasmonic nanostructure (e.g., a metal nanoparticle–NP) is often too large to be treated atomistically. Therefore, a multiscale description, where the molecule is treated by an ab initio approach and the metal NP by a lower level description, is needed. Here we present an extension of one such multiscale model [Corni, S.; Tomasi, J. J. Chem. Phys.2001, 114, 3739], originally inspired by the polarizable continuum model, to a real-time description of the electronic dynamics of the molecule and of the NP. In particular, we adopt a time-dependent configuration interaction (TD CI) approach for the molecule, the metal NP is described as a continuous dielectric of complex shape characterized by a Drude–Lorentz dielectric function, and the molecule–NP electromagnetic coupling is treated by an equation-of-motion (EOM) extension of the quasi-static boundary element method (BEM). The model includes the effects of both the mutual molecule–NP time-dependent polarization and the modification of the probing electromagnetic field due to the plasmonic resonances of the NP. Finally, such an approach is applied to the investigation of the light absorption of a model chromophore, LiCN, in the presence of a metal–NP of complex shape. PMID:28035246

  17. Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.

    2016-10-01

    In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.

  18. Radiation effects in spacecraft electronics

    NASA Technical Reports Server (NTRS)

    Raymond, James P.

    1989-01-01

    Effects on the internal spacecraft electronics due to exposure to the natural and enhanced space radiation environment will be reviewed. The emphasis will be placed on the description of the nature of both the exposure environment and failure mechanisms in semiconductors. Understanding both the system environment and device effects is critical in the use of laboratory simulation environments to obtain the data necessary to design and qualify components for successful application.

  19. Redesign of Library Workflows: Experimental Models for Electronic Resource Description.

    ERIC Educational Resources Information Center

    Calhoun, Karen

    This paper explores the potential for and progress of a gradual transition from a highly centralized model for cataloging to an iterative, collaborative, and broadly distributed model for electronic resource description. The purpose is to alert library managers to some experiments underway and to help them conceptualize new methods for defining,…

  20. Generalized description of few-electron quantum dots at zero and nonzero magnetic fields

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2007-01-01

    We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.

  1. Developing a model for the adequate description of electronic communication in hospitals.

    PubMed

    Saboor, Samrend; Ammenwerth, Elske

    2011-01-01

    Adequate information and communication systems (ICT) can help to improve the communication in hospitals. Changes to the ICT-infrastructure of hospitals must be planed carefully. In order to support a comprehensive planning, we presented a classification of 81 common errors of the electronic communication on the MIE 2008 congress. Our objective now was to develop a data model that defines specific requirements for an adequate description of electronic communication processes We first applied the method of explicating qualitative content analysis on the error categorization in order to determine the essential process details. After this, we applied the method of subsuming qualitative content analysis on the results of the first step. A data model for the adequate description of electronic communication. This model comprises 61 entities and 91 relationships. The data model comprises and organizes all details that are necessary for the detection of the respective errors. It can be for either used to extend the capabilities of existing modeling methods or as a basis for the development of a new approach.

  2. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    NASA Astrophysics Data System (ADS)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  3. What people know about electronic devices: A descriptive study

    NASA Astrophysics Data System (ADS)

    Kieras, D. E.

    1982-10-01

    Informal descriptive results on the nature of people's natural knowledge of electronic devices are presented. Expert and nonexpert subjects were given an electronic device to examine and describe orally. The devices ranged from familiar everyday devices, to those familiar only to the expert, to unusual devices unfamiliar even to an expert. College students were asked to describe everyday devices from memory. The results suggest that device knowledge consists of the major categories of what the device is for, how it is used, its structure in terms of subdevices, its physical layout, how it works, and its behavior. A preliminary theoretical framework for device knowledge is that it consists of a hierarchy of schemas, corresponding to a hierarchial decomposition of the device into subdevices, with each level containing the major categories of information.

  4. Excess electrons in methanol clusters: Beyond the one-electron picture

    NASA Astrophysics Data System (ADS)

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-01

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  5. Excess electrons in methanol clusters: Beyond the one-electron picture.

    PubMed

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-28

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  6. Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy.

    PubMed

    McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R

    2015-10-14

    Entanglement is sometimes regarded as the quintessential measure of the quantum nature of a system and its significance for the understanding of coupled electronic and vibrational motions in molecules has been conjectured. Previously, we considered the entanglement developed in a spatially localized diabatic basis representation of the electronic states, considering design rules for qubits in a low-temperature chemical quantum computer. We extend this to consider the entanglement developed during high-energy processes. We also consider the entanglement developed using adiabatic electronic basis, providing a novel way for interpreting effects of the breakdown of the Born-Oppenheimer (BO) approximation. We consider: (i) BO entanglement in the ground-state wavefunction relevant to equilibrium thermodynamics, (ii) BO entanglement associated with low-energy wavefunctions relevant to infrared and tunneling spectroscopies, (iii) BO entanglement in high-energy eigenfunctions relevant to chemical reaction processes, and (iv) BO entanglement developed during reactive wavepacket dynamics. A two-state single-mode diabatic model descriptive of a wide range of chemical phenomena is used for this purpose. The entanglement developed by BO breakdown correlates simply with the diameter of the cusp introduced by the BO approximation, and a hierarchy appears between the various BO-breakdown correction terms, with the first-derivative correction being more important than the second-derivative correction which is more important than the diagonal correction. This simplicity is in contrast to the complexity of BO-breakdown effects on thermodynamic, spectroscopic, and kinetic properties. Further, processes poorly treated at the BO level that appear adequately treated using the Born-Huang adiabatic approximation are found to have properties that can only be described using a non-adiabatic description. For the entanglement developed between diabatic electronic states and the nuclear motion

  7. Emergent gauge fields and their nonperturbative effects in correlated electrons

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Tanaka, Akihiro

    2015-06-01

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner’s and Anderson’s physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner’s description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner’s paradigm. In this review paper, we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the

  8. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  9. Electron trapping and transport by supersonic solitons in one-dimensional systems

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J. S.

    1978-01-01

    A one-dimensional chain of ions or molecules and electrons described by a Froehlich-type Hamiltonian with quartic phonon anharmonicities is investigated. It is shown that the anharmonic lattice supports supersonic solitons which under favorable circumstances may trap electrons and transport them along the lattice. For a lattice constant/soliton spatial extent quotient of the order of 0.1, rough estimates give electron trapping energies in the meV range. They imply a useful temperature range, up to tens of degrees K, for observing the new effect. The activation energy of a lattice soliton is proportional to the molecular mass and is therefore quite high (about 1 eV) for typical quasi-one-dimensional organic systems.

  10. Effective description of domain wall strings

    NASA Astrophysics Data System (ADS)

    Rodrigues, Davi R.; Abanov, Ar.; Sinova, J.; Everschor-Sitte, K.

    2018-04-01

    The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of magnetic skyrmions, previously accessible only through sophisticated micromagnetic numerical calculations and spectral analysis. These analytical expressions provide the scaling behavior of the different physics on parameters that experiments can test.

  11. Electron localisation in static and time-dependent one-dimensional model systems

    NASA Astrophysics Data System (ADS)

    Durrant, T. R.; Hodgson, M. J. P.; Ramsden, J. D.; Godby, R. W.

    2018-02-01

    The most direct signature of electron localisation is the tendency of an electron in a many-body system to exclude other same-spin electrons from its vicinity. By applying this concept directly to the exact many-body wavefunction, we find that localisation can vary considerably between different ground-state systems, and can also be strongly disrupted, as a function of time, when a system is driven by an applied electric field. We use this measure to assess the well-known electron localisation function (ELF), both in its approximate single-particle form (often applied within density-functional theory) and its full many-particle form. The full ELF always gives an excellent description of localisation, but the approximate ELF fails in time-dependent situations, even when the exact Kohn-Sham orbitals are employed.

  12. Optical and electronic structure description of metal-doped phthalocyanines.

    PubMed

    Leal, Luciano Almeida; da Cunha, Wiliam Ferreira; Ribeiro Junior, Luiz Antonio; Pereira, Tamires Lima; Blawid, Stefan Michael; de Sousa Junior, Rafael Timóteo; da Silva Filho, Demétrio Antonio

    2017-05-01

    Phthalocyanines represent a crucial class of organic compounds with high technological appeal. By doping the center of these systems with metals, one obtains the so-called metal-phthalocyanines, whose property of being an effective electron donor allows for potentially interesting uses in organic electronics. In this sense, investigating optical and electronic structure changes in the phthalocyanine profiles in the presence of different metals is of fundamental importance for evaluating the appropriateness of the resulting system as far as these uses are concerned. In the present work, we carry out this kind of effort for phthalocyanines doped with different metals, namely, copper, nickel, and magnesium. Density functional theory was applied to obtain the absorption spectra, and electronic and structural properties of the complexes. Our results suggest that depending on the dopant, a different level of change is achieved. Moreover, electrostatic potential energy mapping shows how the charge distribution can be affected by solar radiation. Our contribution is crucial in describing the best possible candidates for use in different organic photovoltaic applications. Graphical Abstract Representation of meta-phthalocyanine systems. All calculations of this work are based on varying metal position along z axis, considering the z-axis has its zero point matching with the center of phthalocyanine cavityconsidering.

  13. Modeling Electron Transport within the Framework of Hydrodynamic Description of Hall Thrusters (Preprint)

    DTIC Science & Technology

    2008-06-16

    Framework of Hydrodynamic Description of Hall Thrusters (Preprint) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) M . keidar (The George...within the framework of hydrodynamic description of Hall thrusters (PREPRINT) M . Keidar 1 and L. Brieda 2 1) Department of Mechanical and...the electron current density: y yw y m ew y w z w ew dV V y kT mV kT e kT e kT m B E nj y )sin() 2 exp()exp()exp( 2 2 2 2 2/1 0 (2) In this case, a

  14. Angle-Differential Cross Sections for Radiative Recombination and the Photoelectric Effect in the K, L, and M Shells of One-Electron Systems Calculated Within AN Exact Relativistic Description

    NASA Astrophysics Data System (ADS)

    Ichihara, Akira; Eichler, Jörg

    2001-11-01

    An extensive tabulation of angle-differential cross sections for radiative recombination and, consequently, for the photoelectric effect of hydrogen-like ions with representative charge numbers Z=18, 36, 54, 66, 79, 82, and 92 is presented for the K, L, and M shells and electron energies ranging from 1.0 keV to 1.5 MeV. The cross sections, accurate to three digits, are based on fully relativistic calculations including the effects of the finite nuclear size and all multipole orders of the photon field. In order to provide a good overview, the following procedure has been adopted: For the charge numbers 18, 54, and 92, the differential cross sections are presented in figures for all subshells and for representative energies. Furthermore, as a sample of the calculations, we present a complete table for the case of Z=79. The full tabulation for all charge numbers mentioned above is provided in electronic form (http://www.idealibrary.com/links/doi/10.1006/adnd.2001.0868/dat). By simple scaling, the dependence on the projectile energy in MeV/u can be derived for accelerator experiments, and, by using elementary formulas, the differential cross section for the photoelectric effect as a function of the electron emission angle can also be obtained.

  15. Critical screening in the one- and two-electron Yukawa atoms

    NASA Astrophysics Data System (ADS)

    Montgomery, H. E.; Sen, K. D.; Katriel, Jacob

    2018-02-01

    The one- and two-electron Yukawa atoms, also referred to as the Debye-Hückel or screened Coulomb atoms, have been topics of considerable interest both for intrinsic reasons and because of their relevance to terrestrial and astrophysical plasmas. At sufficiently high screening the one-electron Yukawa atom ceases to be bound. Some calculations appeared to suggest that as the screening increases in the ground state of the two-electron Yukawa atom (in which both the one-particle attraction and the interparticle repulsion are screened) the two electrons are detached simultaneously, at the same screening constant at which the one-electron atom becomes unbound. Our results rule this scenario out, offering an alternative that is not less interesting. In particular, it is found that for Z <1 a mild amount of screening actually increases the binding energy of the second electron. At the nuclear charge Zc≈0.911028 ... , at which the bare Coulomb two-electron atom becomes unbound, and even over a range of lower nuclear charges, an appropriate amount of screening gives rise to a bound two-electron system.

  16. ProbeZT: Simulation of transport coefficients of molecular electronic junctions under environmental effects using Büttiker's probes

    NASA Astrophysics Data System (ADS)

    Korol, Roman; Kilgour, Michael; Segal, Dvira

    2018-03-01

    We present our in-house quantum transport package, ProbeZT. This program provides linear response coefficients: electrical and electronic thermal conductances, as well as the thermopower of molecular junctions in which electrons interact with the surrounding thermal environment. Calculations are performed based on the Büttiker probe method, which introduces decoherence, energy exchange and dissipation effects phenomenologically using virtual electrode terminals called probes. The program can realize different types of probes, each introducing various environmental effects, including elastic and inelastic scattering of electrons. The molecular system is described by an arbitrary tight-binding Hamiltonian, allowing the study of different geometries beyond simple one-dimensional wires. Applications of the program to study the thermoelectric performance of molecular junctions are illustrated. The program also has a built-in functionality to simulate electron transport in double-stranded DNA molecules based on a tight-binding (ladder) description of the junction.

  17. Description of Bacterial Respiratory Infections among Department of Defense Beneficiaries, Utilizing Electronic Clinical Laboratory Data, October 2008-September 2013

    DTIC Science & Technology

    2014-08-01

    i Description of bacterial respiratory infections among Department of Defense beneficiaries, utilizing electronic clinical laboratory...Description of Bacterial Respiratory Infections in the DOD, October 2008-September 2013 Prepared: 12 July 2014 EpiData Center Department ii...Description of Bacterial Respiratory Infections in the DOD, October 2008-September 2013 Prepared: 12 July 2014 EpiData Center Department Abstract

  18. One-electron propagation in Fermi, Pasta, Ulam disordered chains with Gaussian acoustic pulse pumping

    NASA Astrophysics Data System (ADS)

    Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.

    In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.

  19. Crystal field effect in light actinide dioxides and oxychalcogenides-a unified phenomenological description

    NASA Astrophysics Data System (ADS)

    Gajek, Z.

    2004-05-01

    The electronic properties of the actinide ions in the series of semi-conducting, antiferromagnetic compounds: dioxides, AnO2 and oxychalcogenides, AnOY, where An=U, Np and Y=S, Se, are re-examined from the point of view of the consistency of the crystal field (CF) model. The discussion is based on the supposition that the effective metal-ligand interaction solely determines the net CF effect in non-metallic compounds. The main question we address here is, whether a reliable, consistent description of the CF effect in terms of the intrinsic parameters can be achieved for this particular family of compounds. Encouraging calculations reported previously for the AnO2 and UOY series serve as a reference data in the present estimation of electronic structure parameters for neptunium oxychalcogenides.

  20. Ab initio description of the diluted magnetic semiconductor Ga1-xMnxAs: Ferromagnetism, electronic structure, and optical response

    NASA Astrophysics Data System (ADS)

    Craco, L.; Laad, M. S.; Müller-Hartmann, E.

    2003-12-01

    Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.

  1. An Electronic Finding Aid Using Extensible Markup Language (XML) and Encoded Archival Description (EAD).

    ERIC Educational Resources Information Center

    Chang, May

    2000-01-01

    Describes the development of electronic finding aids for archives at the University of Illinois, Urbana-Champaign that used XML (extensible markup language) and EAD (encoded archival description) to enable more flexible information management and retrieval than using MARC or a relational database management system. EAD template is appended.…

  2. Electronic field emission models beyond the Fowler-Nordheim one

    NASA Astrophysics Data System (ADS)

    Lepetit, Bruno

    2017-12-01

    We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.

  3. Computationally efficient description of relativistic electron beam transport in dense plasma

    NASA Astrophysics Data System (ADS)

    Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady

    2006-10-01

    A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.

  4. Cluster molecular orbital description of the electronic structures of mixed-valence iron oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1986-01-01

    A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak FeFe bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange model, FeFe bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.

  5. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.

  6. Single electron relativistic clock interferometer

    NASA Astrophysics Data System (ADS)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  7. Support Vector Data Descriptions and k-Means Clustering: One Class?

    PubMed

    Gornitz, Nico; Lima, Luiz Alberto; Muller, Klaus-Robert; Kloft, Marius; Nakajima, Shinichi

    2017-09-27

    We present ClusterSVDD, a methodology that unifies support vector data descriptions (SVDDs) and k-means clustering into a single formulation. This allows both methods to benefit from one another, i.e., by adding flexibility using multiple spheres for SVDDs and increasing anomaly resistance and flexibility through kernels to k-means. In particular, our approach leads to a new interpretation of k-means as a regularized mode seeking algorithm. The unifying formulation further allows for deriving new algorithms by transferring knowledge from one-class learning settings to clustering settings and vice versa. As a showcase, we derive a clustering method for structured data based on a one-class learning scenario. Additionally, our formulation can be solved via a particularly simple optimization scheme. We evaluate our approach empirically to highlight some of the proposed benefits on artificially generated data, as well as on real-world problems, and provide a Python software package comprising various implementations of primal and dual SVDD as well as our proposed ClusterSVDD.

  8. Southwest electronic one-stop shopping, motor carrier test report

    DOT National Transportation Integrated Search

    1997-12-22

    The Electronic One-Stop System (EOSS) used in this credential test was designed to replace current normal credentialling procedures with a personal computer-based electronic method that allows users to prepare, apply for, and obtain certain types of ...

  9. Southwest electronic one-stop shopping, state agency test report

    DOT National Transportation Integrated Search

    1997-12-22

    The Electronic One-Stop System (EOSS) used in this credential test was designed to replace current normal credentialling procedures with a personal computer-based electronic method that allows users to prepare, apply for, and obtain certain types of ...

  10. Inelastic collisions of positrons with one-valence-electron targets

    NASA Technical Reports Server (NTRS)

    Abdel-Raouf, Mohamed Assad

    1990-01-01

    The total elastic and positronium formation cross sections of the inelastic collisions between positrons and various one-valence-electron atoms, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron ions, (namely hydrogen-like, lithium-like and alkaline-earth positive ions) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.

  11. Effects of perceived descriptive norms on corrupt intention: The mediating role of moral disengagement.

    PubMed

    Zhao, Huanhuan; Zhang, Heyun; Xu, Yan

    2017-01-31

    The present study attempts to examine the effect of perceived descriptive norms on corrupt intention (e.g., bribe-taking intention) and then further explore the psychological mechanism underlying this effect. Based on social cognitive theory, we established a mediation model in which moral disengagement partially mediated the link between perceived descriptive norms and corrupt intention. In Study 1, participants (N = 690) completed a series of questionnaires, and the results demonstrated that, while perceived descriptive norms were positively associated with corrupt intention, it was partially mediated by moral disengagement. In Study 2, we conducted a priming experiment (N = 161) to test the causal relationship and psychological mechanism between perceived descriptive norms and corrupt intention. The results revealed that perceived descriptive norms triggered the propensity of individuals to morally disengage, which in turn, partially increased their corrupt intention. This study not only extends previous research by providing evidence that moral disengagement may be one of the reasons why perceived descriptive norms facilitate corrupt intention, but also suggests that reshaping normative beliefs and preventing the moral disengagement of individuals may be the effective ways to curb corrupt behaviours. © 2017 International Union of Psychological Science.

  12. Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators.

    PubMed

    Battiato, Marco; Aguilera, Irene; Sánchez-Barriga, Jaime

    2017-07-17

    Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin-orbit coupling. Such topological phase transitions are unique in nature as they lead to the emergence of topological surface states which are characterized by a peculiar spin texture that is believed to play a central role in the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Here, we provide a generalized G W +Boltzmann approach for the description of ultrafast dynamics in topological insulators driven by electron-electron and electron-phonon scatterings. Taking the prototypical insulator Bi 2 Te 3 as an example, we test the robustness of our approach by comparing the theoretical prediction to results of time- and angle-resolved photoemission experiments. From this comparison, we are able to demonstrate the crucial role of the excited spin texture in the subpicosecond relaxation of transient electrons, as well as to accurately obtain the magnitude and strength of electron-electron and electron-phonon couplings. Our approach could be used as a generalized theory for three-dimensional topological insulators in the bulk-conducting transport regime, paving the way for the realization of a unified theory of ultrafast dynamics in topological materials.

  13. Monte Carlo study of the effective Sherman function for electron polarimetry

    NASA Astrophysics Data System (ADS)

    Drągowski, M.; Włodarczyk, M.; Weber, G.; Ciborowski, J.; Enders, J.; Fritzsche, Y.; Poliszczuk, A.

    2016-12-01

    The PEBSI Monte Carlo simulation was upgraded towards usefulness for electron Mott polarimetry. The description of Mott scattering was improved and polarisation transfer in Møller scattering was included in the code. An improved agreement was achieved between the simulation and available experimental data for a 100 keV polarised electron beam scattering off gold foils of various thicknesses. The dependence of the effective Sherman function on scattering angle and target thickness, as well as the method of finding optimal conditions for Mott polarimetry measurements were analysed.

  14. Fourier-Legendre expansion of the one-electron density matrix of ground-state two-electron atoms.

    PubMed

    Ragot, Sébastien; Ruiz, María Belén

    2008-09-28

    The density matrix rho(r,r(')) of a spherically symmetric system can be expanded as a Fourier-Legendre series of Legendre polynomials P(l)(cos theta=rr(')rr(')). Application is here made to harmonically trapped electron pairs (i.e., Moshinsky's and Hooke's atoms), for which exact wavefunctions are known, and to the helium atom, using a near-exact wavefunction. In the present approach, generic closed form expressions are derived for the series coefficients of rho(r,r(')). The series expansions are shown to converge rapidly in each case, with respect to both the electron number and the kinetic energy. In practice, a two-term expansion accounts for most of the correlation effects, so that the correlated density matrices of the atoms at issue are essentially a linear functions of P(l)(cos theta)=cos theta. For example, in the case of Hooke's atom, a two-term expansion takes in 99.9% of the electrons and 99.6% of the kinetic energy. The correlated density matrices obtained are finally compared to their determinantal counterparts, using a simplified representation of the density matrix rho(r,r(')), suggested by the Legendre expansion. Interestingly, two-particle correlation is shown to impact the angular delocalization of each electron, in the one-particle space spanned by the r and r(') variables.

  15. Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure

    NASA Astrophysics Data System (ADS)

    Brockt, C.; Jeckelmann, E.

    2017-02-01

    We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.

  16. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Danhong; Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106; Gumbs, Godfrey

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases andmore » then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.« less

  17. Adult Competency Education Kit. Basic Skills in Speaking, Math, and Reading for Employment. Part P: ACE Competency Based Job Descriptions: #77--Secretary; #78--Keypunch Operator; Assembly Worker Core Job Description; #82--Electronics Assembler; #83--Printed Circuit Assembler; #84--Micro Electronics Assembler; #85--Chassis Assembler; #87--Machinist Apprentice.

    ERIC Educational Resources Information Center

    San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.

    This thirteenth of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Secretary, Keypunch Operator, Electronics Assembler, Printed Circuit Assembler, Micro Electronincs Assembler, Chassis Assembler, and Machinist Apprentice. Each begins with a fact sheet that includes…

  18. On the effectiveness of vocal imitations and verbal descriptions of sounds.

    PubMed

    Lemaitre, Guillaume; Rocchesso, Davide

    2014-02-01

    Describing unidentified sounds with words is a frustrating task and vocally imitating them is often a convenient way to address the issue. This article reports on a study that compared the effectiveness of vocal imitations and verbalizations to communicate different referent sounds. The stimuli included mechanical and synthesized sounds and were selected on the basis of participants' confidence in identifying the cause of the sounds, ranging from easy-to-identify to unidentifiable sounds. The study used a selection of vocal imitations and verbalizations deemed adequate descriptions of the referent sounds. These descriptions were used in a nine-alternative forced-choice experiment: Participants listened to a description and picked one sound from a list of nine possible referent sounds. Results showed that recognition based on verbalizations was maximally effective when the referent sounds were identifiable. Recognition accuracy with verbalizations dropped when identifiability of the sounds decreased. Conversely, recognition accuracy with vocal imitations did not depend on the identifiability of the referent sounds and was as high as with the best verbalizations. This shows that vocal imitations are an effective means of representing and communicating sounds and suggests that they could be used in a number of applications.

  19. Access to electronic health knowledge in five countries in Africa: a descriptive study.

    PubMed

    Smith, Helen; Bukirwa, Hasifa; Mukasa, Oscar; Snell, Paul; Adeh-Nsoh, Sylvester; Mbuyita, Selemani; Honorati, Masanja; Orji, Bright; Garner, Paul

    2007-05-17

    Access to medical literature in developing countries is helped by open access publishing and initiatives to allow free access to subscription only journals. The effectiveness of these initiatives in Africa has not been assessed. This study describes awareness, reported use and factors influencing use of on-line medical literature via free access initiatives. Descriptive study in four teaching hospitals in Cameroon, Nigeria, Tanzania and Uganda plus one externally funded research institution in The Gambia. Survey with postgraduate doctors and research scientists to determine Internet access patterns, reported awareness of on-line medical information and free access initiatives; semi structured interviews with a sub-sample of survey participants to explore factors influencing use. In the four African teaching hospitals, 70% of the 305 postgraduate doctors reported textbooks as their main source of information; 66% had used the Internet for health information in the last week. In two hospitals, Internet cafés were the main Internet access point. For researchers at the externally-funded research institution, electronic resources were their main source, and almost all had used the Internet in the last week. Across all 333 respondents, 90% had heard of PubMed, 78% of BMJ on line, 49% the Cochrane Library, 47% HINARI, and 19% BioMedCentral. HINARI use correlates with accessing the Internet on computers located in institutions. Qualitative data suggested there are difficulties logging into HINARI and that sometimes it is librarians that limit access to passwords. Text books remain an important resource for postgraduate doctors in training. Internet use is common, but awareness of free-access initiatives is limited. HINARI and other initiatives could be more effective with strong institutional endorsement and management to promote and ensure access.

  20. Effect of electron-electron scattering on the conductance of a quantum wire studied with the Boltzman transport equation

    NASA Astrophysics Data System (ADS)

    Lyo, S. K.; Huang, Danhong

    2006-05-01

    Electron-electron scattering conserves total momentum and does not dissipate momentum directly in a low-density system where the umklapp process is forbidden. However, it can still affect the conductance through the energy relaxation of the electrons. We show here that this effect can be studied with arbitrary accuracy in a multisublevel one-dimensional (1D) single quantum wire system in the presence of roughness and phonon scattering using a formally exact solution of the Boltzmann transport equation. The intrasubband electron-electron scattering is found to yield no net effect on the transport of electrons in 1D with only one sublevel occupied. For a system with a multilevel occupation, however, we find a significant effect of intersublevel electron-electron scattering on the temperature and density dependence of the resistance at low temperatures.

  1. Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness

    NASA Astrophysics Data System (ADS)

    Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.

    2013-05-01

    Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.

  2. One-Electron Reduction of Penicillins in Relation to the Oxidative Stress Phenomenon

    PubMed Central

    Szabó, László; Tóth, Tünde; Takács, Erzsébet; Wojnárovits, László

    2015-01-01

    Certain bactericidal antibiotics target mitochondrial components and, due to the leakage of electrons from the electron transport chain, one-electron reduction might occur that can lead to intermediates passing the electron to suitable acceptors. This study aimed at investigating the one-electron reduction mechanism of selected penicillin derivatives using pulse radiolysis techniques. Penicillins can accommodate the electron on each of their carbonyl carbon. Ketyl radicals are thus produced, which are reducing agents with possibility to interact with suitable biomolecules. A detailed mechanism of the reduction is reported. PMID:26690427

  3. Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene.

    PubMed

    Zheng, Huihuo; Gan, Yu; Abbamonte, Peter; Wagner, Lucas K

    2017-10-20

    Electron correlation in graphene is unique because of the interplay between the Dirac cone dispersion of π electrons and long-range Coulomb interaction. Because of the zero density of states at Fermi level, the random phase approximation predicts no metallic screening at long distance and low energy, so one might expect that graphene should be a poorly screened system. However, empirically graphene is a weakly interacting semimetal, which leads to the question of how electron correlations take place in graphene at different length scales. We address this question by computing the equal time and dynamic structure factor S(q) and S(q,ω) of freestanding graphene using ab initio fixed-node diffusion Monte Carlo simulations and the random phase approximation. We find that the σ electrons contribute strongly to S(q,ω) for relevant experimental values of ω even at distances up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb interactions results in the observed weakly correlated semimetal.

  4. A fluid description of plasma double-layers

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1979-01-01

    The space-charge double-layer that forms between two plasmas with different densities and thermal energies was investigated using three progressively realistic models which are treated by fluid theory, and take into account four species of particles: electrons and ions reflected by the double-layer, and electrons and ions transmitted through it. The two plasmas are assumed to be cold, and the self-consistent potential, electric field and space-charge distributions within the double-layer are determined. The effects of thermal velocities are taken into account for the reflected particles, and the modifications to the cold plasma solutions are established. Further modifications due to thermal velocities of the transmitted particles are examined. The applicability of a one dimensional fluid description, rather than plasma kinetic theory, is discussed. Theoretical predictions are compared with double layer potentials and lengths deduced from laboratory and space plasma experiments.

  5. Interactions between electrons, mesoscopic Josephson effect and asymmetric current fluctuations

    NASA Astrophysics Data System (ADS)

    Huard, B.

    2006-07-01

    This article discusses three experiments on the properties of electronic transport at the mesoscopic scale. The first one allowed to measure the energy exchange rate between electrons in a metal contaminated by a very weak concentration of magnetic impurities. The role played by magnetic impurities in the Kondo regime on those energy exchanges is quantitatively investigated, and the global measured exchange rate is larger than expected. The second experiment is a measurement of the current-phase relation in a system made of two superconductors linked through a single atom. We thus provide quantitative support for the recent description of the mesoscopic Josephson effect. The last experiment is a measurement of the asymmetry of the current fluctuations in a mesoscopic conductor, using a Josephson junction as a threshold detector. Cet ouvrage décrit trois expériences portant sur les propriétés du transport électronique à l'échelle mésoscopique. La première a permis de mesurer le taux d'échange d'énergie entre électrons dans un métal contenant une très faible concentration d'impuretés magnétiques. Nous avons validé la description quantitative du rôle des impuretés magnétiques dans le régime Kondo sur ces échanges énergétiques et aussi montré que le taux global d'échange est plus fort que prévu. La seconde expérience est une mesure de la relation courant-phase dans un système constitué de deux supraconducteurs couplés par un seul atome. Elle nous a permis de conforter quantitativement la récente description de l'effet Josephson mésoscopique. La dernière expérience est unemesure de l'asymétrie des fluctuations du courant dans un conducteur mésoscopique en utilisant une Jonction Josephson comme détecteur de seuil.

  6. Radiative one- and two-electron transitions into the empty K shell of He-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadrekar, Riddhi; Natarajan, L.

    2011-12-15

    The branching ratios between the single and double electron radiative transitions to empty K shell in He-like ions with 2s2p configuration are evaluated for 15 ions with 4{<=}Z{<=}26 using fully relativistic multiconfiguration Dirac-Fock wavefunctions in the active space approximation. The effects of configuration interaction and Breit contributions on the transition parameters have been analyzed in detail. Though the influence of Breit interaction on the electric dipole allowed one-electron radiative transitions is negligible, it substantially changes the spin-forbidden rates and the two-electron one-photon transition probabilities. Also, while the single electron transition rates are gauge independent, the correlated double-electron probabilities are foundmore » to be gauge sensitive. The probable uncertainties in the computed transition rates have been evaluated by considering the line strengths and the differences between the calculated and experimental transition energies as accuracy indicators. The present results are compared with other available experimental and theoretical data.« less

  7. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.

    PubMed

    Cadet, Jean; Wagner, J Richard; Shafirovich, Vladimir; Geacintov, Nicholas E

    2014-06-01

    The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.

  8. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA

    PubMed Central

    Cadet, Jean; Wagner, J. Richard; Shafirovich, Vladimir; Geacintov, Nicholas E.

    2014-01-01

    Purpose The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. Conclusion There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation. PMID:24369822

  9. Linear electro-optic effect in semiconductors: Ab initio description of the electronic contribution

    NASA Astrophysics Data System (ADS)

    Prussel, Lucie; Véniard, Valérie

    2018-05-01

    We propose an ab initio framework to derive the electronic part of the second-order susceptibility tensor for the electro-optic effect in bulk semiconductors. We find a general expression for χ(2 ) evaluated within time-dependent density-functional theory, including explicitly the band-gap corrections at the level of the scissors approximation. Excitonic effects are accounted for, on the basis of a simple scalar approximation. We apply our formalism to the computation of the electro-optic susceptibilities for several semiconductors, such as GaAs, GaN, and SiC. Taking into account the ionic contribution according to the Faust-Henry coefficient, we obtain a good agreement with experimental results. Finally, using different types of strain to break centrosymmetry, we show that high electro-optic coefficients can be obtained in bulk silicon for a large range of frequencies.

  10. Thermally Driven One-Fluid Electron-Proton Solar Wind: Eight-Moment Approximation

    NASA Astrophysics Data System (ADS)

    Olsen, Espen Lyngdal; Leer, Egil

    1996-05-01

    In an effort to improve the "classical" solar wind model, we study an eight-moment approximation hydrodynamic solar wind model, in which the full conservation equation for the heat conductive flux is solved together with the conservation equations for mass, momentum, and energy. We consider two different cases: In one model the energy flux needed to drive the solar wind is supplied as heat flux from a hot coronal base, where both the density and temperature are specified. In the other model, the corona is heated. In that model, the coronal base density and temperature are also specified, but the temperature increases outward from the coronal base due to a specified energy flux that is dissipated in the corona. The eight-moment approximation solutions are compared with the results from a "classical" solar wind model in which the collision-dominated gas expression for the heat conductive flux is used. It is shown that the "classical" expression for the heat conductive flux is generally not valid in the solar wind. In collisionless regions of the flow, the eight-moment approximation gives a larger thermalization of the heat conductive flux than the models using the collision-dominated gas approximation for the heat flux, but the heat flux is still larger than the "saturation heat flux." This leads to a breakdown of the electron distribution function, which turns negative in the collisionless region of the flow. By increasing the interaction between the electrons, the heat flux is reduced, and a reasonable shape is obtained on the distribution function. By solving the full set of equations consistent with the eight-moment distribution function for the electrons, we are thus able to draw inferences about the validity of the eight-moment description of the solar wind as well as the validity of the very commonly used collision-dominated gas approximation for the heat conductive flux in the solar wind.

  11. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    PubMed

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  12. Electron kinetic effects in atmosphere breakdown by an intense electromagnetic pulse.

    PubMed

    Solovyev, A A; Terekhin, V A; Tikhonchuk, V T; Altgilbers, L L

    1999-12-01

    A physical model is proposed for description of electron kinetics driven by a powerful electromagnetic pulse in the Earth's atmosphere. The model is based on a numerical solution to the Boltzmann kinetic equation for two groups of electrons. Slow electrons (with energies below a few keV) are described in a two-term approximation assuming a weak anisotropy of the electron distribution function. Fast electrons (with energies above a few keV) are described by a modified macroparticle method, taking into account the electron acceleration in the electric field, energy losses in the continuous deceleration approximation, and the multiple pitch angle scattering. The model is applied to a problem of the electric discharge in a nitrogen, which is preionized by an external gamma-ray source. It is shown that the runaway electrons have an important effect on the energy distribution of free electrons, and on the avalanche ionization rate. This mechanism might explain the observation of multiple lightning discharges observed in the Ivy-Mike thermonuclear test in the early 1950's.

  13. Implications of the effective one-component analysis of pair correlations in colloidal fluids with polydispersity

    NASA Astrophysics Data System (ADS)

    Pond, Mark J.; Errington, Jeffrey R.; Truskett, Thomas M.

    2011-09-01

    Partial pair-correlation functions of colloidal suspensions with continuous polydispersity can be challenging to characterize from optical microscopy or computer simulation data due to inadequate sampling. As a result, it is common to adopt an effective one-component description of the structure that ignores the differences between particle types. Unfortunately, whether this kind of simplified description preserves or averages out information important for understanding the behavior of the fluid depends on the degree of polydispersity and can be difficult to assess, especially when the corresponding multicomponent description of the pair correlations is unavailable for comparison. Here, we present a computer simulation study that examines the implications of adopting an effective one-component structural description of a polydisperse fluid. The square-well model that we investigate mimics key aspects of the experimental behavior of suspended colloids with short-range, polymer-mediated attractions. To characterize the partial pair-correlation functions and thermodynamic excess entropy of this system, we introduce a Monte Carlo sampling strategy appropriate for fluids with a large number of pseudo-components. The data from our simulations at high particle concentrations, as well as exact theoretical results for dilute systems, show how qualitatively different trends between structural order and particle attractions emerge from the multicomponent and effective one-component treatments, even with systems characterized by moderate polydispersity. We examine consequences of these differences for excess-entropy based scalings of shear viscosity, and we discuss how use of the multicomponent treatment reveals similarities between the corresponding dynamic scaling behaviors of attractive colloids and liquid water that the effective one-component analysis does not capture.

  14. One-electron pseudo-potential investigation of NO(X2Π)-Arn clusters (n = 1,2,3,4)

    NASA Astrophysics Data System (ADS)

    Hammami, H.; Ben Mohamed, F. E.; Mohamed, D.; Ben El Hadj Rhouma, M.; Al Mogren, M. M.; Hochlaf, M.

    2017-10-01

    In this work, we investigate the minimal energy and low-lying isomers of the ground state of NOArn clusters using a hybrid pseudo-potential model, where a single electron quantum description is combined with the classical argon-argon pair potential and an expansion in terms of the Legendre polynomials. In such model, we use two centres of polarisation for NO+, where we considered for each nuclear configuration an analytic dipole polarisation for N+ and O+. The reliability of our model is checked by comparison of the NO(X2Π)-Ar potential energy surface with that deduced using the multireference configuration interaction (MRCI+Q) approach. The results of this formalism agree quite well with the MRCI ones over a wide range of nuclear arrangements.

  15. Effects of curved midline and varying width on the description of the effective diffusivity of Brownian particles

    NASA Astrophysics Data System (ADS)

    Chávez, Yoshua; Chacón-Acosta, Guillermo; Dagdug, Leonardo

    2018-05-01

    Axial diffusion in channels and tubes of smoothly-varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with a position-dependent effective diffusion coefficient, by means of the modified Fick–Jacobs equation. In this work, we derive analytical expressions for the position-dependent effective diffusivity for two-dimensional asymmetric varying-width channels, and for three-dimensional curved midline tubes, formed by straight walls. To this end, we use a recently developed theoretical framework using the Frenet–Serret moving frame as the coordinate system (2016 J. Chem. Phys. 145 074105). For narrow tubes and channels, an effective one-dimensional description reducing the diffusion equation to a Fick–Jacobs-like equation in general coordinates is used. From this last equation, one can calculate the effective diffusion coefficient applying Neumann boundary conditions.

  16. Biological versus Electronic Adaptive Coloration: How Can One Inform the Other?

    DTIC Science & Technology

    2012-01-01

    Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc. Natl Acad. Sci. USA 108, 9148–9153. (doi...Patrick B. Dennis, Rajesh R. Naik, Eric Forsythe and inform the other? Biological versus electronic adaptive coloration : how can one References...TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Biological versus electronic adaptive coloration : how can one inform the

  17. Simplified Numerical Description of SPT Operations

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1995-01-01

    A simplified numerical model of the plasma discharge within the SPT-100 stationary plasma thruster was developed to aid in understanding thruster operation. A one dimensional description was used. Non-axial velocities were neglected except for the azimuthal electron velocity. A nominal operating condition of 4.5 mg/s of xenon anode flow was considered with 4.5 Amperes of discharge current, and a peak radial magnetic field strength of 130 Gauss. For these conditions, the calculated results indicated ionization fractions of 0.99 near the thruster exit with a potential drop across the discharge of approximately 250 Volts. Peak calculated electron temperatures were found to be sensitive to the choice of total ionization cross section for ionization of atomic xenon by electron bombardment and ranged from 51 eV to 60 eV. The calculated ionization fraction, potential drop, and electron number density agree favorably with previous experiments. Calculated electron temperatures are higher than previously measured.

  18. Two-Fluid Description of Collisionless Perpendicular Shocks

    NASA Astrophysics Data System (ADS)

    Gomez, D. O.; Morales, L. F.; Dmitruk, P.; Bertucci, C.

    2017-12-01

    Collisionless shocks are ubiquitous in space physics and astrophysics, such as the bow shocks formed by the solar wind in front of planets, the termination shock at the heliospheric boundary or the supernova shock fronts expanding in the interstellar plasma. Although the one-fluid magnetohydrodynamic framework provides a reasonable description of the large scale structures of the upstream and downstream plasmas, it falls short of providing an adequate description of the internal structure of the shock. A more comprehensive description of the inner and outer features of collisionless shocks would require the use of kinetic theory. Nonetheless, in the present work we show that a complete two-fluid framework (considering the role of both ions and electrons in the dynamics) can properly capture some of the features observed in real shocks. For the specific case of perpendicular shocks, i.e. cases in which the magnetic field is perpendicular to the shock normal, we integrate the one-dimensional two-fluid MHD equations numerically, to describe the generation of shocks and their spatial structure along the shock normal. Starting from finite amplitude fast-magnetosonic waves, our simulations show the generation of a stationary fast-magnetosonic shock. More importantly, we show that the ramp thickness is of the order of a few electron inertial lengths. The parallel and perpendicular components of the self-consistent electric field are derived, and their role in accelerating particles is discussed.

  19. Effects of tunnelling and asymmetry for system-bath models of electron transfer

    NASA Astrophysics Data System (ADS)

    Mattiat, Johann; Richardson, Jeremy O.

    2018-03-01

    We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.

  20. 78 FR 37998 - Electronic One Touch Bingo System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... decision regarding the classification of server based electronic bingo system games that can be played... Class II or Class III game. DATES: The agency must receive comments on or before August 26, 2013... from the regulated community regarding the status of one touch bingo as a Class II or a Class III game...

  1. Electronic structure description of the cis-MoOS unit in models for molybdenum hydroxylases.

    PubMed

    Doonan, Christian J; Rubie, Nick D; Peariso, Katrina; Harris, Hugh H; Knottenbelt, Sushilla Z; George, Graham N; Young, Charles G; Kirk, Martin L

    2008-01-09

    The molybdenum hydroxylases catalyze the oxidation of numerous aromatic heterocycles and simple organics and, unlike other hydroxylases, utilize water as the source of oxygen incorporated into the product. The electronic structures of the cis-MoOS units in CoCp2[TpiPrMoVOS(OPh)] and TpiPrMoVIOS(OPh) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate), new models for molybdenum hydroxylases, have been studied in detail using S K-edge X-ray absorption spectroscopy, vibrational spectroscopy, and detailed bonding calculations. The results show a highly delocalized Mo=S pi* LUMO redox orbital that is formally Mo(dxy) with approximately 35% sulfido ligand character. Vibrational spectroscopy has been used to quantitate Mo-Ssulfido bond order changes in the cis-MoOS units as a function of redox state. Results support a redox active molecular orbital that has a profound influence on MoOS bonding through changes to the relative electro/nucleophilicity of the terminal sulfido ligand accompanying oxidation state changes. The bonding description for these model cis-MoOS systems supports enzyme mechanisms that are under orbital control and dominantly influenced by the unique electronic structure of the cis-MoOS site. The electronic structure of the oxidized enzyme site is postulated to play a role in polarizing a substrate carbon center for nucleophilic attack by metal activated water and acting as an electron sink in the two-electron oxidation of substrates.

  2. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  3. Invited Paper - Density functional theory: coverage of dynamic and non-dynamic electron correlation effects

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter

    The electron correlation effects covered by density functional theory (DFT) can be assessed qualitatively by comparing DFT densities ρ(r) with suitable reference densities obtained with wavefunction theory (WFT) methods that cover typical electron correlation effects. The analysis of difference densities ρ(DFT)-ρ(WFT) reveals that LDA and GGA exchange (X) functionals mimic non-dynamic correlation effects in an unspecified way. It is shown that these long range correlation effects are caused by the self-interaction error (SIE) of standard X functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange, for the bonding region a delocalized exchange hole, and does not cover any correlation effects. Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or MP2 densities. The correlation functional changes X-only DFT densities in a manner observed when higher order coupling effects between lower order N-electron correlation effects are included. Hybrid functionals lead to changes in the density similar to those caused by SICDFT, which simply reflects the fact that hybrid functionals have been developed to cover part of the SIE and its long range correlation effects in a balanced manner. In the case of spin-unrestricted DFT (UDFT), non-dynamic electron correlation effects enter the calculation both via the X functional and via the wavefunction, which may cause a double-counting of correlation effects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT (PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems provided certain conditions are fulfilled. More reliable, however, is a combination of DFT and WFT methods, which makes the routine description of multireference systems possible. The development of such methods implies a separation of dynamic and non-dynamic correlation effects. Strategies for accomplishing this goal are discussed in general and tested in

  4. Numerology, hydrogenic levels, and the ordering of excited states in one-electron atoms

    NASA Astrophysics Data System (ADS)

    Armstrong, Lloyd, Jr.

    1982-03-01

    We show that the observed ordering of Rydberg states of one-electron atoms can be understood by assuming that these states are basically hydrogenic in nature. Much of the confusion concerning this point is shown to arise from the failure to differentiate between hydrogenic ordering as the nuclear charge approaches infinity, and hydrogenic ordering for an effective charge of one. The origin of κ ordering of Rydberg levels suggested by Sternheimer is considered within this picture, and the predictions of κ ordering are compared with those obtained by assuming hydrogenic ordering.

  5. Fokker-Planck description of electron and photon transport in homogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcasu, A.Z.; Holloway, J.P.

    1997-06-01

    Starting from a Fokker-Planck description of particle transport, which is valid when the scattering is forwardly peaked and the energy change in scattering is small, we systematically obtain an approximate diffusionlike equation for the particle density by eliminating the direction variable {bold {cflx {Omega}}} with an elimination scheme based on Zwanzig{close_quote}s projection operator formalism in the interaction representation. The elimination procedure closely follows one described by Grigolini and Marchesoni [in {ital Memory Function Approaches to Stochastic Problems in Condensed Matter}, edited by Myron W. Evans, Paolo Grigolini, and Guiseppe P. Parravicini, Advances in Physical Chemistry, Vol. 62 (Wiley-Interscience, New York,more » 1985), Chap. II, p. 29], but with a different projection operator. The resulting diffusion equation is correct up to the second order in the coupling operator between the particle direction and position variable. The diffusion coefficients and mobility in the resulting diffusion equation depend on the initial distribution of the particles in direction and on the path length traveled by the particles. The full solution is obtained for a monoenergetic and monodirectional pulsed point source of particles in an infinite homogeneous medium. This solution is used to study the penetration and the transverse and longitudinal spread of the particles as they are transported through the medium. Application to diffusive wave spectroscopy in calculating the path-length distribution of photons, as well as application to dose calculations in tissue due to an electron beam are mentioned. {copyright} {ital 1997} {ital The American Physical Society}« less

  6. Laser flash photolysis experiments on the effects of freezing and salt addition on intramolecular electron transfer within one-electron reduced ascorbate oxidase.

    PubMed

    Hazzard, J T; Maritano, S; Tollin, G; Marchesini, A

    1997-03-01

    Laser flash photolysis has been used to investigate the effects of freezing protein solutions and of adding various salts on the kinetics of one-electron photoreduction by 5-deazariboflavin semiquinone (5-DRFH.) of oxidized ascorbate oxidase (AO) from zucchini in 100 mM phosphate buffer (pH 7.0). The initial reaction between oxidized AO and 5-DRFH. is quite rapid (k approximately 10(8) M-1 s-1) and occurs at the blue Type I Cu center. Subsequent to this, a slower, protein concentration-independent intramolecular reoxidation of the Type I Cu is observed, with kET approximately 150 s-1, resulting in 40-50% reoxidation of the blue Cu center and the establishment of an electron transfer (ET) equilibrium between the various Cu centers in AO. When such a sample of AO was frozen overnight at -30 degrees C, flash photolysis of the thawed sample showed no effect on the kinetics of reduction of the Type I Cu by 5-DRFH. However, the rate constant for intramolecular ET decreased to a value of 2.7 s-1, with only 20% reoxidation of the Type I center. Reduction of the enzyme with ascorbic acid, followed by O2 oxidation, resulted in restoration of rapid intramolecular reoxidation (kET = 130 s-1), with 33% of the Type I Cu reduced by 5-DRFH. being reoxidized. These results are consistent with previous work which showed that samples of AO with initially low activity can be reactivated by ascorbic acid turnover in the presence of O2. When AO was frozen in the presence of ascorbic acid, similar inhibition of intramolecular ET was obtained, whereas upon turnover of this sample by further addition of ascorbic acid and exposure to O2, activity was not restored. The effects of addition of (NH4)2SO4, Na2SO4, NH4Cl, NaCl, KCl, and KF on the kinetics of Type I Cu reduction by 5-deazariboflavin semiquinone and on the subsequent intramolecular ET were also examined. A twofold increase in the bimolecular rate constant for reduction of the Type I Cu was observed for the two sodium salts at high

  7. One Electron-Initiated Two-Electron Oxidation of Water by Aluminum Porphyrins with Earth's Most Abundant Metal.

    PubMed

    Kuttassery, Fazalurahman; Mathew, Siby; Sagawa, Shogo; Remello, Sebastian Nybin; Thomas, Arun; Yamamoto, Daisuke; Onuki, Satomi; Nabetani, Yu; Tachibana, Hiroshi; Inoue, Haruo

    2017-05-09

    We report herein a new molecular catalyst for efficient water splitting, aluminum porphyrins (tetra-methylpyridiniumylporphyrinatealuminum: AlTMPyP), containing earth's most abundant metal as the central ion. One-electron oxidation of the aluminum porphyrin initiates the two-electron oxidation of water to form hydrogen peroxide as the primary reaction product with the lowest known overpotential (97 mV). The aluminum-peroxo complex was detected by a cold-spray ionization mass-spectrometry in high-resolution MS (HRMS) mode and the structure of the intermediate species was further confirmed using laser Raman spectroscopy, indicating the hydroperoxy complex of AlTMPyP to be the key intermediate in the reaction. The two-electron oxidation of water to form hydrogen peroxide was essentially quantitative, with a Faradaic efficiency of 99 %. The catalytic reaction was found to be highly efficient, with a turnover frequency up to ∼2×10 4  s -1 . A reaction mechanism is proposed involving oxygen-oxygen bond formation by the attack of a hydroxide ion on the oxyl-radical-like axial ligand oxygen atom in the one-electron-oxidized form of AlTMPyP(O - ) 2 , followed by a second electron transfer to the electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Course Descriptions in Environmental Studies Part One: Historical Courses.

    ERIC Educational Resources Information Center

    Hughes, Donald; And Others

    1984-01-01

    Presents descriptions (syllabi, outlines, goals) of selected environmental studies courses which approach the discipline from an historical and humanistic perspective. Areas explored in the courses include human ecology, American environmental history, environmental politics, and others. (JN)

  9. Further description of Cruzia tentaculata (Rudolphi, 1819) Travassos, 1917 (Nematoda: Cruzidae) by light and scanning electron microscopy.

    PubMed

    Adnet, F A O; Anjos, D H S; Menezes-Oliveira, A; Lanfredi, R M

    2009-04-01

    Species of Cruzia are parasites of the large intestine of marsupials, reptiles, amphibians, and mammalians. Cruzia tentaculata specimens were collected from the large intestine of Didelphis marsupialis (Mammalia: Didelphidae) from Colombia (new geographical record) and from Brazil and analyzed by light and scanning electron microscopy. The morphology of males and females by light microscopy corroborated most of the previous description and the ultrastructure by scanning electron microscopy evidence: the topography of the cuticle, deirids, amphids, phasmids in both sexes, a pair of papillae near the vulva opening, and the number and location of male caudal papillae, adding new features for species identification only observed by this technique.

  10. Record of genus Xestophrys Redtenbacher, 1891 (Orthoptera: Tettigoniidae: Conocephalinae; Copiphorini) and description of one new species from India.

    PubMed

    Farooqi, Mohd Kaleemullah; Usmani, Mohd Kamil

    2018-03-04

    The study deals with one new record of genus Xestophrys Redtenbacher, 1891 (Conocephalinae: Copiphorinae) and one new species from India, and provides species descriptions and illustrations of the male. All type specimens are deposited in the Zoology Museum, Aligarh Muslim University, India.

  11. Topological Excitations of One-Dimensional Correlated Electron Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salkola, M.I.; Schrieffer, J.R.; Salkola, M.I.

    1999-02-01

    Elementary, low-energy excitations are examined by bosonization in one-dimensional systems with quasi-long-range order. A new, independently measurable attribute is introduced to describe such excitations. It is defined as a number w which determines how many times the phase of the order parameter winds as an excitation is transposed from far left to far right. The winding number is zero for electrons and holes with conventional quantum numbers, but it acquires a nontrivial value w=1 for neutral spin- (1) /(2) excitations and for spinless excitations with a unit electron charge. It may even be irrational, if the charge is irrational. Thus,more » these excitations are topological. {copyright} {ital 1999} {ital The American Physical Society }« less

  12. Spin-dependent electron many-body effects in GaAs

    NASA Astrophysics Data System (ADS)

    Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.

    2005-12-01

    Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .

  13. The verbal facilitation effect: re-reading person descriptions as a system variable to improve identification performance.

    PubMed

    Sporer, Siegfried L; Kaminski, Kristina S; Davids, Maike C; McQuiston, Dawn

    2016-11-01

    When witnesses report a crime, police usually ask for a description of the perpetrator. Several studies suggested that verbalising faces leads to a detriment in identification performance (verbal overshadowing effect [VOE]) but the effect has been difficult to replicate. Here, we sought to reverse the VOE by inducing context reinstatement as a system variable through re-reading one's own description before an identification task. Participants (N = 208) watched a video film and were then dismissed (control group), only described the perpetrator, or described and later re-read their own descriptions before identification in either target-present or target-absent lineups after a 2-day or a 5-week delay. Identification accuracy was significantly higher after re-reading (85.0%) than in the no description control group (62.5%) irrespective of target presence. Data were internally replicated using a second target and corroborated by several small meta-analyses. Identification accuracy was related to description quality. Moreover, there was a tendency towards a verbal facilitation effect (VFE) rather than a VOE. Receiver operating characteristic (ROC) curve analyses confirm that our findings are not due to a shift in response bias but truly reflect improvement of recognition performance. Differences in the ecological validity of study paradigms are discussed.

  14. One-electron oxidation of individual DNA bases and DNA base stacks.

    PubMed

    Close, David M

    2010-02-04

    In calculations performed with DFT there is a tendency of the purine cation to be delocalized over several bases in the stack. Attempts have been made to see if methods other than DFT can be used to calculate localized cations in stacks of purines, and to relate the calculated hyperfine couplings with known experimental results. To calculate reliable hyperfine couplings it is necessary to have an adequate description of spin polarization which means that electron correlation must be treated properly. UMP2 theory has been shown to be unreliable in estimating spin densities due to overestimates of the doubles correction. Therefore attempts have been made to use quadratic configuration interaction (UQCISD) methods to treat electron correlation. Calculations on the individual DNA bases are presented to show that with UQCISD methods it is possible to calculate hyperfine couplings in good agreement with the experimental results. However these UQCISD calculations are far more time-consuming than DFT calculations. Calculations are then extended to two stacked guanine bases. Preliminary calculations with UMP2 or UQCISD theory on two stacked guanines lead to a cation localized on a single guanine base.

  15. One- or two-electron water oxidation, hydroxyl radical, or H 2O 2 evolution

    DOE PAGES

    Siahrostami, Samira; Li, Guo -Ling; Viswanathan, Venkatasubramanian; ...

    2017-02-23

    Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H 2O 2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O 2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H 2O 2, and O 2.

  16. Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators

    PubMed Central

    Battiato, Marco; Sánchez-Barriga, Jaime

    2017-01-01

    Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin–orbit coupling. Such topological phase transitions are unique in nature as they lead to the emergence of topological surface states which are characterized by a peculiar spin texture that is believed to play a central role in the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Here, we provide a generalized GW+Boltzmann approach for the description of ultrafast dynamics in topological insulators driven by electron–electron and electron–phonon scatterings. Taking the prototypical insulator Bi2Te3 as an example, we test the robustness of our approach by comparing the theoretical prediction to results of time- and angle-resolved photoemission experiments. From this comparison, we are able to demonstrate the crucial role of the excited spin texture in the subpicosecond relaxation of transient electrons, as well as to accurately obtain the magnitude and strength of electron–electron and electron–phonon couplings. Our approach could be used as a generalized theory for three-dimensional topological insulators in the bulk-conducting transport regime, paving the way for the realization of a unified theory of ultrafast dynamics in topological materials. PMID:28773171

  17. One- and two-dimensional pulse electron paramagnetic resonance spectroscopy: concepts and applications.

    PubMed

    Van Doorslaer, S; Schweiger, A

    2000-06-01

    During the last two decades, the possibilities of pulse electron paramagnetic resonance (EPR) and pulse electron nuclear double resonance (ENDOR) spectroscopy have increased tremendously. While at the beginning of the 1980s pulse-EPR and ENDOR applications were still a rarity, the techniques are now very frequently applied in chemistry, physics, materials science, biology and mineralogy. This is mainly due to the considerable efforts invested in the last few years on instrument development and pulse-sequence design. Pulse-EPR spectrometers are now commercially available, which enables many research groups to use these techniques. In this work, an overview of state-of-the-art pulse EPR and ENDOR spectroscopy is given. The rapid expansion of the field, however, does not allow us to give an exhaustive record of all the pulse methods introduced so far. After a brief and very qualitative description of the basic principles of pulse EPR, we discuss some of the experiments in more detail and illustrate the potential of the methods with a number of selected applications.

  18. Electronic wave function and binding effects in M-shell ionization of gold by protons

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Banaś, D.; Jabłoński, Ł.; Mukoyama, T.

    2018-02-01

    The measured M-X-ray production cross sections for protons, which are used in the particle induced X-ray emission (PIXE) technique, are systematically underestimated for low impact energies by the ECPSSR and ECUSAR theories. These theories, which are based on the plane wave Born approximation (PWBA) and use the screened hydrogenic wave functions, include corrections for the projectile Coulomb deflection and electron relativistic and binding effects. In the present paper, in order to interpret the observed disagreement at low impact energies, the systematic calculations of the M-shell ionization cross sections for gold were performed using the semiclassical (SCA) and the binary encounter (BEA) approximations in order to identify a role of the electronic wave function and electron binding effects. In these calculations the different wave functions, from nonrelativistic hydrogenic to selfconsistent Dirac-Hartree-Fock, were considered and the binding effect was treated within extreme separated- (SA) and united-atoms (UA) limits. The results are discussed in details and the observed discrepancies are attributed to inadequate description of the electron binding effect at the lowest impact energies for which the molecular approach is required.

  19. Effective temperature of an ultracold electron source based on near-threshold photoionization.

    PubMed

    Engelen, W J; Smakman, E P; Bakker, D J; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an accurate beam line model. Experimental data is presented for the source temperature as a function of the wavelength of the photoionization laser, for both nanosecond and femtosecond ionization pulses. For the nanosecond laser, temperatures as low as 14 ± 3 K were found; for femtosecond photoionization, 30 ± 5 K is possible. With a typical source size of 25 μm, this results in electron bunches with a relative transverse coherence length in the 10⁻⁴ range and an emittance of a few nm rad. © 2013 Elsevier B.V. All rights reserved.

  20. Electronic collaboration: Some effects of telecommunication media and machine intelligence on team performance

    NASA Technical Reports Server (NTRS)

    Wellens, A. Rodney

    1991-01-01

    Both NASA and DoD have had a long standing interest in teamwork, distributed decision making, and automation. While research on these topics has been pursued independently, it is becoming increasingly clear that the integration of social, cognitive, and human factors engineering principles will be necessary to meet the challenges of highly sophisticated scientific and military programs of the future. Images of human/intelligent-machine electronic collaboration were drawn from NASA and Air Force reports as well as from other sources. Here, areas of common concern are highlighted. A description of the author's research program testing a 'psychological distancing' model of electronic media effects and human/expert system collaboration is given.

  1. Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.

    2018-02-01

    We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.

  2. Entanglement entropy of electronic excitations.

    PubMed

    Plasser, Felix

    2016-05-21

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  3. Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence

    NASA Astrophysics Data System (ADS)

    Che, Haihong

    2013-10-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation associated with electron heating in Buneman instability. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions can be described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports in Buneman instability are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the bulk energy of electron streams and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into electron heat and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation which relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drives local momentum transports, while phase mixing converts convective momentum into thermal momentum.These two local momentum transports sustain the Buneman waves and act as the micro-macro link in the anomalous heating process. This research is supported by the NASA Postdoctoral Program at NASA/GSFC administered by Oak Ridge Associated Universities through a contract with NASA.

  4. Atomic and electronic properties of quasi-one-dimensional MOS2 nanowires

    PubMed Central

    Seivane, Lucas Fernandez; Barron, Hector; Botti, Silvana; Marques, Miguel Alexandre Lopes; Rubio, Ángel; López-Lozano, Xóchitl

    2013-01-01

    The structural, electronic and magnetic properties of quasi-one-dimensional MoS2 nanowires, passivated by extra sulfur, have been determined using ab initio density-functional theory. The nanostructures were simulated using several different models based on experimental electron microscopy images. It is found that independently of the geometrical details and the coverage of extra sulfur at the Mo-edge, quasi-one-dimensional metallic states are predominant in all the low-energy model structures despite their reduced dimensionality. These metallic states are localized mainly at the edges. However, the electronic and magnetic character of the NWs does not depend only on the S saturation but also on the symmetry configuration of the S edge atoms. Our results show that for the same S saturation the magnetization can be decreased by increasing the pairing of the S and Mo edge atoms. In spite of the observed pairing of S dimers at the Mo-edge, the nanowires do not experience a Peierls-like metal-insulator transition PMID:25429189

  5. Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.

    PubMed

    Rybkin, Vladimir V; VandeVondele, Joost

    2017-04-06

    Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO 2 , HO 2 , and O 2 ) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO 2 , where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.

  6. Effects of target plasma electron-electron collisions on correlated motion of fragmented protons.

    PubMed

    Barriga-Carrasco, Manuel D

    2006-02-01

    The objective of the present work is to examined the effects of plasma target electron-electron collisions on H2 + protons traversing it. Specifically, the target is deuterium in a plasma state with temperature Te=10 eV and density n=10(23) cm(-3), and proton velocities are vp=vth, vp=2vth, and vp=3vth, where vth is the electron thermal velocity of the target plasma. Proton interactions with plasma electrons are treated by means of the dielectric formalism. The interactions among close protons through plasma electronic medium are called vicinage forces. It is checked that these forces always screen the Coulomb explosions of the two fragmented protons from the same H2 + ion decreasing their relative distance. They also align the interproton vector along the motion direction, and increase the energy loss of the two protons at early dwell times while for longer times the energy loss tends to the value of two isolated protons. Nevertheless, vicinage forces and effects are modified by the target electron collisions. These collisions enhance the calculated self-stopping and vicinage forces over the collisionless results. Regarding proton correlated motion, when these collisions are included, the interproton vector along the motion direction overaligns at slower proton velocities (vp=vth) and misaligns for faster ones (vp=2vth, vp=3vth). They also contribute to a great extend to increase the energy loss of the fragmented H2 + ion. This later effect is more significant in reducing projectile velocity.

  7. COMPUTATIONAL ELECTROCHEMISTRY: AQUEOUS ONE-ELECTRON OXIDATION POTENTIALS FOR SUBSTITUTED ANILINES

    EPA Science Inventory

    Semiempirical molecular orbital theory and density functional theory are used to compute one-electron oxidation potentials for aniline and a set of 21 mono- and di-substituted anilines in aqueous solution. Linear relationships between theoretical predictions and experiment are co...

  8. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  9. Dynamic mapping of EDDL device descriptions to OPC UA

    NASA Astrophysics Data System (ADS)

    Atta Nsiah, Kofi; Schappacher, Manuel; Sikora, Axel

    2017-07-01

    OPC UA (Open Platform Communications Unified Architecture) is already a well-known concept used widely in the automation industry. In the area of factory automation, OPC UA models the underlying field devices such as sensors and actuators in an OPC UA server to allow connecting OPC UA clients to access device-specific information via a standardized information model. One of the requirements of the OPC UA server to represent field device data using its information model is to have advanced knowledge about the properties of the field devices in the form of device descriptions. The international standard IEC 61804 specifies EDDL (Electronic Device Description Language) as a generic language for describing the properties of field devices. In this paper, the authors describe a possibility to dynamically map and integrate field device descriptions based on EDDL into OPCUA.

  10. Electron Effective-Attenuation-Length Database

    National Institute of Standards and Technology Data Gateway

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  11. Damping of acoustic flexural phonons in silicene: influence on high-field electronic transport

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Mokhtar Hamham, El; Martín, María J.

    2018-06-01

    Silicene is a two-dimensional buckled material with broken horizontal mirror symmetry and Dirac-like dispersion. Under such conditions, flexural acoustic (ZA) phonons play a dominant role. Consequently, it is necessary to consider some suppression mechanism for electron–phonon interactions with long wavelengths in order to reach mobilities useful for electronic applications. In this work, we analyze, by means of an ensemble Monte Carlo simulator, the influence of several possibilities for the description of the effect of ZA phonon damping on electronic transport in silicene. The results show that a hard cutoff situation (total suppression for phonons with a wavelength longer than a critical one), as it has been proposed in the literature, does not yield a realistic picture regarding the electronic distribution function, and it artificially induces a negative differential resistance at moderate and high fields. Sub-parabolic dispersions, on the other hand, may provide a more realistic description in terms of the behavior of the electron distribution in the momentum space, but need extremely short cutoff wavelengths to reach functional mobility and drift velocity values.

  12. Application of nonlinear models to estimate the gain of one-dimensional free-electron lasers

    NASA Astrophysics Data System (ADS)

    Peter, E.; Rizzato, F. B.; Endler, A.

    2017-06-01

    In the present work, we make use of simplified nonlinear models based on the compressibility factor (Peter et al., Phys. Plasmas, vol. 20 (12), 2013, 123104) to predict the gain of one-dimensional (1-D) free-electron lasers (FELs), considering space-charge and thermal effects. These models proved to be reasonable to estimate some aspects of 1-D FEL theory, such as the position of the onset of mixing, in the case of a initially cold electron beam, and the position of the breakdown of the laminar regime, in the case of an initially warm beam (Peter et al., Phys. Plasmas, vol. 21 (11), 2014, 113104). The results given by the models are compared to wave-particle simulations showing a reasonable agreement.

  13. Week Long Topography Study of Young Adults Using Electronic Cigarettes in Their Natural Environment.

    PubMed

    Robinson, R J; Hensel, E C; Roundtree, K A; Difrancesco, A G; Nonnemaker, J M; Lee, Y O

    2016-01-01

    Results of an observational, descriptive study quantifying topography characteristics of twenty first generation electronic nicotine delivery system users in their natural environment for a one week observation period are presented. The study quantifies inter-participant variation in puffing topography between users and the intra-participant variation for each user observed during one week of use in their natural environment. Puff topography characteristics presented for each user include mean puff duration, flow rate and volume for each participant, along with descriptive statistics of each quantity. Exposure characteristics including the number of vaping sessions, total number of puffs and cumulative volume of aerosol generated from ENDS use (e-liquid aerosol) are reported for each participant for a one week exposure period and an effective daily average exposure. Significant inter-participant and intra-participant variation in puff topography was observed. The observed range of natural use environment characteristics is used to propose a set of topography protocols for use as command inputs to drive machine-puffed electronic nicotine delivery systems in a controlled laboratory environment.

  14. Week Long Topography Study of Young Adults Using Electronic Cigarettes in Their Natural Environment

    PubMed Central

    Roundtree, K. A.; Difrancesco, A. G.; Nonnemaker, J. M.; Lee, Y. O.

    2016-01-01

    Results of an observational, descriptive study quantifying topography characteristics of twenty first generation electronic nicotine delivery system users in their natural environment for a one week observation period are presented. The study quantifies inter-participant variation in puffing topography between users and the intra-participant variation for each user observed during one week of use in their natural environment. Puff topography characteristics presented for each user include mean puff duration, flow rate and volume for each participant, along with descriptive statistics of each quantity. Exposure characteristics including the number of vaping sessions, total number of puffs and cumulative volume of aerosol generated from ENDS use (e-liquid aerosol) are reported for each participant for a one week exposure period and an effective daily average exposure. Significant inter-participant and intra-participant variation in puff topography was observed. The observed range of natural use environment characteristics is used to propose a set of topography protocols for use as command inputs to drive machine-puffed electronic nicotine delivery systems in a controlled laboratory environment. PMID:27736944

  15. One- and two-photon absorption spectra of the yellow fluorescent protein citrine: effects of intramolecular electron-vibrational coupling and intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Chen, Fasheng; Zhao, Xinyi; Liang, WanZhen

    2018-04-01

    Both the vibrationally resolved and statistically averaged one-photon absorption (OPA) and two-photon absorption (TPA) spectra of the anionic form of chromophore (AC) in its micro-environment of yellow fluorescent protein (YFP) Citrine have been calculated. The result comparison has been made with those of the AC model compounds in vacuo and methanol solution, which allows us to allocate the individual contribution of the intramolecular electron-vibrational coupling, the electrostatic π-stacking interaction between Tyr203 and AC, and the interaction between AC and its micro-environment to the spectra. The results reveal that the non-Condon vibronic coupling effect is responsible for the blue shift of TPA absorption maximum compared with its OPA counterpart corresponding to S0 → S1, and that the π-stacking interaction between Tyr203 and AC alters the relative intensities of TPA maxima, which further enhances the higher-energy vibronic peaks and weakens the lowest-energy peak. The statically averaged OPA and TPA spectra calculated by quantum mechanics/molecular mechanics (QM/MM) methods based on Born-Oppenheimer molecular dynamics simulation largely deviate the experimental spectral lineshapes, which further verifies the significant contribution of non-Condon vibronic coupling effect on the spectra. The interaction of individual amino acid residue or water close to AC+Tyr203 has different effects on the spectra, which may increase/decrease the excitation energy depending on its position and electronic property.

  16. Feynman Path Integral Approach to Electron Diffraction for One and Two Slits: Analytical Results

    ERIC Educational Resources Information Center

    Beau, Mathieu

    2012-01-01

    In this paper we present an analytic solution of the famous problem of diffraction and interference of electrons through one and two slits (for simplicity, only the one-dimensional case is considered). In addition to exact formulae, various approximations of the electron distribution are shown which facilitate the interpretation of the results.…

  17. Electronic phase diagram of half-doped perovskite manganites on the plane of quenched disorder versus one-electron bandwidth

    NASA Astrophysics Data System (ADS)

    Tomioka, Y.; Ito, T.; Sawa, A.

    2018-01-01

    For half-doped manganese oxides that have a perovskite structure, R E1 -xA ExMn O3 (x =0.5 ) (RE and AE are rare-earth and alkaline-earth elements, respectively), the phase competition (stability) between the antiferromagnetic charge- or orbital-ordered insulator (CO/OO AFI), ferromagnetic metal (FM), layered (A-type) antiferromagnetic phase [AF(A)], and spin-glass-like insulator (SGI), have been studied using single crystals prepared by the floating zone method. The CO/OO AFI, FM, AF(A), and SGI are displayed on the plane of the disorder (the variance of the RE and AE cations) versus the effective one-electron bandwidth (the averaged ionic radius of the RE and AE). In the plane of the disorder versus the effective one-electron bandwidth, similar to the phase diagram of R E1 -xA ExMn O3 (x =0.45 ), the CO/OO AFI, FM, and SGI dominate at the lower-left, right, and upper regions, respectively. However, the CO/OO AFI for x =0.5 is more stable than that for x =0.45 , and it expands to the plane points that correspond to the R E0.5S r0.5Mn O3 (R E =Nd and Sm) specimens as the hole concentration is commensurate with the ordering of M n3 + /M n4 + with a ratio of 1/1. The y -dependent electronic phases for R E0.5(Sr1-yB ay ) 0.5Mn O3 (0 ≤y ≤0.5 ) (R E =Sm , N d0.5S m0.5 , Nd, and Pr) show that the AF(A) intervenes between the CO/OO AFI and FM. Besides the region around (La1-yP ry ) 0.5S r0.5Mn O3 (0 ≤y ≤1 ) that has a smaller disorder, the AF(A) also exists at the regions around R E0.5(Sr1-yB ay ) 0.5Mn O3 (0 effects of the disorder on the AF(A) as well as on the competition between the CO/OO AFI, FM, and AF(A) that is unique to x =0.5 . The comparison of phase diagrams between x =0.45 and 0.5 brings further

  18. Nonlocal electron energy transport and flux inhibition in laser produced plasmas in one and two dimensions

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2011-10-01

    As the mean free path of the heat conducting electrons in laser produced plasmas can, at certain points, be greater than the temperature gradient scale length, the classical, local model can be invalid. More energetic electrons can advance ahead of the main heat front and preheat the fusion target. Also, experiments show that the main heat front does not propagate as rapidly as classical theory would predict, so there is heat flux inhibition. This latter effect is usually treated by limiting the flux to some arbitrary fraction f of the free streaming flux; f's have ranged from 0.03 to 0.3. However the choice of flux limit is arbitrary and the choice affects plasma temperature, which in turn affects thresholds for laser plasma instabilities; too low a limit has given too high a temperature and false optimism regarding instability threshold. We have developed a velocity dependent Krook model for nonlocal electron energy transport. It shows preheat and flux limitation are not separate effects, but are two sides of the same coin. The model gives an analytic solution for the nonlocal electron energy flux, and it is relatively simple and inexpensive to incorporate in a fluid simulation run at the ion time scale. It shows that in some sense, preheat is subtracted from the main electron energy flux, thereby giving rise to flux limitation. We have developed the theory and compared it with Fokker Planck simulations of simple configurations. We have incorporated the model into our code FAST2D and used it to model foil acceleration and evaluate and compare a number of competing physical effects in one and two dimensions, and compared with experiments. We have investigated the effect on spherical implosions, especially the effect on corona temperature, pressure, fuel adiabat and preheat, and ultimately gain. Supported by ONR and NNSA/DoE.

  19. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    DOE PAGES

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; ...

    2017-12-18

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less

  20. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less

  1. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun

    2017-12-01

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.

  2. Effective International Medical Disaster Relief: A Qualitative Descriptive Study.

    PubMed

    Broby, Nicolette; Lassetter, Jane H; Williams, Mary; Winters, Blaine A

    2018-04-01

    Purpose The aim of this study was to assist organizations seeking to develop or improve their medical disaster relief effort by identifying fundamental elements and processes that permeate high-quality, international, medical disaster relief organizations and the teams they deploy. A qualitative descriptive design was used. Data were gathered from interviews with key personnel at five international medical response organizations, as well as during field observations conducted at multiple sites in Jordan and Greece, including three refugee camps. Data were then reviewed by the research team and coded to identify patterns, categories, and themes. The results from this qualitative, descriptive design identified three themes which were key characteristics of success found in effective, well-established, international medical disaster relief organizations. These characteristics were first, ensuring an official invitation had been extended and the need for assistance had been identified. Second, the response to that need was done in an effective and sustainable manner. Third, effective organizations strived to obtain high-quality volunteers. By following the three key characteristics outlined in this research, organizations are more likely to improve the efficiency and quality of their work. In addition, they will be less likely to impede the overall recovery process. Broby N , Lassetter JH , Williams M , Winters BA . Effective international medical disaster relief: a qualitative descriptive study. Prehosp Disaster Med. 2018;33(2):119-126.

  3. Achieving One-Electron Oxidation of a Mononuclear Nonheme Iron(V)-Imido Complex

    DOE PAGES

    Hong, Seungwoo; Lu, Xiaoyan; Lee, Yong -Min; ...

    2017-09-29

    Here, a mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [Fe V(NTs)(TAML)] – (1), was oxidized by one-electron oxidants, affording formation of an iron(V)-imido TAML cation radical species, [Fe V(NTs)(TAML +•)] (2); 2 is a diamagnetic (S = 0) complex, resulting from the antiferromagnetic coupling of the low-spin iron(V) ion (S = 1/2) with the one-electron oxidized ligand (TAML +•). 2 is a competent oxidant in C–H bond functionalization and nitrene transfer reaction, showing that the reactivity of 2 is greater than that of 1.

  4. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.

    2017-09-01

    Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  5. Effects of Thermal Resistance on One-Dimensional Thermal Analysis of the Epidermal Flexible Electronic Devices Integrated with Human Skin

    NASA Astrophysics Data System (ADS)

    Li, He; Cui, Yun

    2017-12-01

    Nowadays, flexible electronic devices are increasingly used in direct contact with human skin to monitor the real-time health of human body. Based on the Fourier heat conduction equation and Pennes bio-heat transfer equation, this paper deduces the analytical solutions of one - dimensional heat transfer for flexible electronic devices integrated with human skin under the condition of a constant power. The influence of contact thermal resistance between devices and skin is considered as well. The corresponding finite element model is established to verify the correctness of analytical solutions. The results show that the finite element analysis agrees well with the analytical solution. With bigger thermal resistance, temperature increase of skin surface will decrease. This result can provide guidance for the design of flexible electronic devices to reduce the negative impact that exceeding temperature leave on human skin.

  6. Molecular basis of LFER. Modeling of the electronic substituent effect using fragment quantum self-similarity measures.

    PubMed

    Gironés, Xavier; Carbó-Dorca, Ramon; Ponec, Robert

    2003-01-01

    A new approach allowing the theoretical modeling of the electronic substituent effect is proposed. The approach is based on the use of fragment Quantum Self-Similarity Measures (MQS-SM) calculated from domain averaged Fermi Holes as new theoretical descriptors allowing for the replacement of Hammett sigma constants in QSAR models. To demonstrate the applicability of this new approach its formalism was applied to the description of the substituent effect on the dissociation of a broad series of meta and para substituted benzoic acids. The accuracy and the predicting power of this new approach was tested on the comparison with a recent exhaustive study by Sullivan et al. It has been shown that the accuracy and the predicting power of both procedures is comparable, but, in contrast to a five-parameter correlation equation necessary to describe the data in the study, our approach is more simple and, in fact, only a simple one-parameter correlation equation is required.

  7. Low-Energy Elastic Electron Scattering by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Zatsarinny O.; Bartschat, K.; Tayal, S. S.

    2006-01-01

    The B-spline R-matrix method is employed to investigate the low-energy elastic electron scattering by atomic oxygen. Flexible non-orthogonal sets of radial functions are used to construct the target description and to represent the scattering functions. A detailed investigation regarding the dependence of the predicted partial and total cross sections on the scattering model and the accuracy of the target description is presented. The predicted angle-integrated elastic cross sections are in good agreement with experiment, whereas significant discrepancies are found in the angle-differential elastic cross sections near the forward direction. .The near-threshold results are found to strongly depend on the treatment of inner-core short-range correlation effects in the target description, as well as on a proper account of the target polarizability. A sharp increase in the elastic cross sections below 1 eV found in some earlier calculations is judged to be an artifact of an unbalanced description of correlation in the N-electron target structure and the (N+l)-electron-collision problems.

  8. Application of the weighted-density approximation to the accurate description of electron-positron correlation effects in materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Saniz, Rolando; Barbiellini, Bernardo; Bansil, Arun; Partoens, Bart

    2017-08-01

    We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.

  9. Magnetic-field-induced effects in the electronic structure of itinerant d- and f-metal systems

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.

    2009-08-01

    A paramagnetic response of transition metals and itinerant d- and f-metal compounds in an external magnetic field is studied by employing ab initio full-potential LMTO method in the framework of the local spin density approximation. Within this method the anisotropy of the magnetic susceptibility in hexagonal close-packed transition metals is evaluated for the first time. This anisotropy is owing to the orbital Van Vleck-like paramagnetic susceptibility, which is revealed to be substantial in transition-metal systems due to hybridization effects in the electronic structure. It is demonstrated that compounds TiCo, Ni3Al, YCo2, CeCo2, YNi5, LaNi5, and CeNi5 are strong paramagnets close to the quantum critical point. For these systems the Stoner approximation underestimates the spin susceptibility, whereas the calculated field-induced spin moments provide a good description of the large paramagnetic susceptibilities and magnetovolume effects. It is revealed that an itinerant description of hybridized f electrons produces magnetic properties of the compounds CeCo2, CeNi5, UAl3, UGa3, USi3, and UGe3 in close agreement with experiment. In the uranium compounds UX3 the strong spin-orbit coupling together with hybridization effects give rise to peculiar magnetic states in which the field-induced spin moments are antiparallel to the external field, and the magnetic response is dominated by the orbital contribution.

  10. Geometric effects in the electronic transport of deformed nanotubes

    NASA Astrophysics Data System (ADS)

    Santos, Fernando; Fumeron, Sébastien; Berche, Bertrand; Moraes, Fernando

    2016-04-01

    Quasi-two-dimensional systems may exibit curvature, which adds three-dimensional influence to their internal properties. As shown by da Costa (1981 Phys. Rev. A 23 1982-7), charged particles moving on a curved surface experience a curvature-dependent potential which greatly influence their dynamics. In this paper, we study the electronic ballistic transport in deformed nanotubes. The one-electron Schrödinger equation with open boundary conditions is solved numerically with a flexible MAPLE code made available as supplementary data. We find that the curvature of the deformations indeed has strong effects on the electron dynamics, suggesting its use in the design of nanotube-based electronic devices.

  11. Hidden One-Dimensional Electronic Structure of η-Mo_4O_11

    NASA Astrophysics Data System (ADS)

    Gweon, G.-H.; Mo, S.-K.; Allen, J. W.; Höchst, H.; Sarrao, J. L.; Fisk, Z.

    2002-03-01

    η-Mo_4O_11 is a layered metal that undergoes two charge density wave (CDW) transitions at 109 K and 30 K, and is unique in showing a bulk quantum Hall effect. Research so far indicates that this material has a ``hidden one-dimensional'' (hidden-1d) Fermi surface (FS) in the normal state (T > 109 K), whose nesting property drives the 109 K CDW formation. Here, we directly confirm this picture by angle resolved photoemission spectroscopy (ARPES). We also observe a gap opening associated with the 109 K transition. Most interesting, this material shows the same ARPES line shape anomalies that suggest electron fractionalization in other hidden-1d materials like NaMo_6O_17 and KMo_6O_17. Studies of the 30 K transition are in progress.

  12. Nonsingular bouncing cosmology: Consistency of the effective description

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt

    2016-05-01

    We explicitly confirm that spatially flat nonsingular bouncing cosmologies make sense as effective theories. The presence of a nonsingular bounce in a spatially flat universe implies a temporary violation of the null energy condition, which can be achieved through a phase of ghost condensation. We calculate the scale of strong coupling and demonstrate that the ghost-condensate bounce remains trustworthy throughout, and that all perturbation modes within the regime of validity of the effective description remain under control. For this purpose we require the perturbed action up to third order in perturbations, which we calculate in both flat and co-moving gauge—since these two gauges allow us to highlight different physical aspects. Our conclusion is that there exist healthy descriptions of nonsingular bouncing cosmologies providing a viable resolution of the big-bang singularities in cosmological models. Our results also suggest a variant of ekpyrotic cosmology, in which entropy perturbations are generated during the contracting phase, but are only converted into curvature perturbations after the bounce.

  13. Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Braun, Jürgen; Minár, Ján; Ebert, Hubert

    2018-04-01

    Various apparative developments extended the potential of angle-resolved photoemission spectroscopy tremendously during the last two decades. Modern experimental arrangements consisting of new photon sources, analyzers and detectors supply not only extremely high angle and energy resolution but also spin resolution. This provides an adequate platform to study in detail new materials like low-dimensional magnetic structures, Rashba systems, topological insulator materials or high TC superconductors. The interest in such systems has grown enormously not only because of their technological relevance but even more because of exciting new physics. Furthermore, the use of photon energies from few eV up to several keV makes this experimental technique a rather unique tool to investigate the electronic properties of solids and surfaces. The following article reviews the corresponding recent theoretical developments in the field of angle-resolved photoemission with a special emphasis on correlation effects, temperature and relativistic aspects. The most successful theoretical approach to deal with angle-resolved photoemission is the so-called spectral function or one-step formulation of the photoemission process. Nowadays, the one-step model allows for photocurrent calculations for photon energies ranging from a few eV to more than 10 keV, to deal with arbitrarily ordered and disordered systems, to account for finite temperatures, and considering in addition strong correlation effects within the dynamical mean-field theory or similar advanced approaches.

  14. Doing one's utmost: nurses' descriptions of caring for dying patients in an intensive care environment.

    PubMed

    Fridh, Isabell; Forsberg, Anna; Bergbom, Ingegerd

    2009-10-01

    The aim of this study was to explore nurses' experiences and perceptions of caring for dying patients in an intensive care unit (ICU) with focus on unaccompanied patients, the proximity of family members and environmental aspects. Interviews were conducted with nine experienced ICU nurses. A qualitative descriptive approach was employed. The analysis was performed by means of conventional content analysis [Hsieh HF, Shannon SE. Three approaches to qualitative content analysis. Qual Health Res 2005;15:1277-88] following the steps described by e.g. Elo and Kyngas [Elo S, Kyngas H. The qualitative content analysis process. J Adv Nurs 2008;62:107-15]. The analysis resulted in a main category; Doing one's utmost, described by four generic categories and 15 sub-categories, comprising a common vision of the patients' last hours and dying process. This description was dominated by the nurses' endeavour to provide dignified end-of-life care (EOLC) and, when relatives were present, to give them an enduring memory of their loved one's death as a calm and dignified event despite his/her previous suffering and death in a high-technological environment. This study contributes new knowledge about what ICU nurses focus on when providing EOLC to unaccompanied patients but also to those whose relatives were present. Nurses' EOLC was mainly described as their relationship and interaction with the dying patient's relatives, while patients who died alone were considered tragic but left a lesser impression in the nurses' memory.

  15. APES: Acute Precipitating Electron Spectrometer - A High Time Resolution Monodirectional Magnetic Deflection Electron Spectrometer

    NASA Technical Reports Server (NTRS)

    Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-01-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  16. DMM: A MULTIGROUP, MULTIREGION ONE-SPACE-DIMENSIONAL COMPUTER PROGRAM USING NEUTRON DIFFUSION THEORY. PART II. DMM PROGRAM DESCRIPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanagh, D.L.; Antchagno, M.J.; Egawa, E.K.

    1960-12-31

    Operating instructions are presented for DMM, a Remington Rand 1103A program using one-space-dimensional multigroup diffusion theory to calculate the reactivity or critical conditions and flux distribution of a multiregion reactor. Complete descriptions of the routines and problem input and output specifications are also included. (D.L.C.)

  17. Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices

    DOE PAGES

    Hubertus J. J. van Dam

    2016-04-27

    Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less

  18. F-15 digital electronic engine control system description

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.

  19. Electronic spin polarization in the Majorana bound state in one-dimensional wires

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Aksenov, S. V.

    2017-10-01

    We have studied the effect of magnetic field and disorder on the electronic z-spin polarization at the ends of the one-dimensional wire with strong Rashba spin-orbit coupling deposited on an s-wave superconductor. It was shown that in the topologically nontrivial phase the polarization as well as the energy of the Majorana bound state oscillate as a function of the magnetic field. Despite being substantially nonzero in the low transversal and longitudinal fields the polarization at one of the wire's ends is significantly suppressed at a certain range of the magnitudes and angles of the canted magnetic field. Thus, in this case the polarization cannot be regarded as a local order parameter. However, the sum of the absolute values of the polarization at both ends remains significantly nonzero. It was demonstrated that Anderson disorder does not seriously affect observed properties but leads to the appearance of the additional areas with weak spin polarization at the high magnetic fields.

  20. Effect of descriptive information and experience on automation reliance.

    PubMed

    Yuviler-Gavish, Nirit; Gopher, Daniel

    2011-06-01

    The present research addresses the issue of reliance on decision support systems for the long-term (DSSLT), which help users develop decision-making strategies and long-term planning. It is argued that providing information about a system's future performance in an experiential manner, as compared with a descriptive manner, encourages users to increase their reliance level. Establishing appropriate reliance on DSSLT is contingent on the system developer's ability to provide users with information about the system's future performance. A sequence of three studies contrasts the effect on automation reliance of providing descriptive information versus experience for DSSLT with two different positive expected values of recommendations. Study I demonstrated that when automation reliance was determined solely on the basis of description, it was relatively low, but it increased significantly when a decision was made after experience with 50 training simulations. Participants were able to learn to increase their automation reliance levels when they encountered the same type of recommendation again. Study 2 showed that the absence of preliminary descriptive information did not affect the automation reliance levels obtained after experience. Study 3 demonstrated that participants were able to generalize their learning about increasing reliance levels to new recommendations. Using experience rather than description to give users information about future performance in DSSLT can help increase automation reliance levels. Implications for designing DSSLT and decision support systems in general are discussed.

  1. Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1987-01-01

    Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.

  2. A descriptive study of effect-size reporting in research reviews.

    PubMed

    Floyd, Judith A

    2017-06-01

    To describe effect-size reporting in research reviews completed in support of evidence-based practice in nursing. Many research reviews report nurses' critical appraisal of level, quality and overall strength of evidence available to address clinical questions. Several studies of research-review quality suggest effect-size information would be useful to include in these reviews, but none focused on reviewers' attention to effect sizes. Descriptive. One hundred and four reviews indexed in CINAHL as systematic reviews and published from July 2012-February 2014 were examined. Papers were required to be peer-reviewed, written in English, contain an abstract and have at least one nurse author. Reviews were excluded if they did not use critical appraisal methods to address evidence of correlation, prediction or effectiveness. Data from remaining papers (N = 73) were extracted by three or more independent coders using a structured coding form and detailed codebook. Data were stored, viewed and analysed using Microsoft Office Excel ® spreadsheet functions. Sixteen percent (n = 12) of the sample contained effect-size information. Of the 12, six included all the effect-size information recommended by APA guidelines. Independent of completeness of reporting, seven contained discussion of effect sizes in the paper, but none included effect-size information in abstracts. Research reviews available to practicing nurses often fail to include information needed to accurately assess how much improvement may result from implementation of evidence-based policies, programs, protocols or practices. Manuscript reviewers are urged to hold authors to APA standards for reporting/discussing effect-size information in both primary research reports and research reviews. © 2016 John Wiley & Sons Ltd.

  3. Reduced electronic correlation effects in half substituted Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Liu, Z.-H.; Yaresko, A. N.; Li, Y.; Evtushinsky, D. V.; Dai, P.-C.; Borisenko, S. V.

    2018-06-01

    We report a comprehensive study of the tridimensional nature and orbital character of the low-energy electronic structure in 50% Cobalt doped Ba(Fe1-xCox)2As2 (d6.5), by using polarization- and photon energy-dependent angle-resolved photoemission spectroscopy. An extra electron-like Fermi surface is observed around the Brillouin zone boundary compared with isoelectronic KyFe2-xSe2 (d6.5). The bands near the Fermi level (EF) are mainly derived from Fe/Co 3d t2g orbitals, revealing visible dispersions along the kz direction. In combination with the local density approximation and the dynamical mean-field theory calculations, we find that the As 4p bands are non-renormalized and the whole 3d band needs to be renormalized by a "single" factor of ˜1.6, indicating moderate electronic correlation effects. The "single" factor description of the correlation strength among the different 3d orbitals is also in sharp contrast to orbital-dependent correlation effects in BaFe2As2. Our findings indicate a remarkable reduction of correlation effects with little difference among 3d orbitals in BaFeCoAs2, due to the increased filling of the electronic 3d shell in the presence of significant Hund's coupling. The results support that the electronic correlation effects and multiple orbital physics play an important role in the superconductivity of the 122 system and in other ferropnictides.

  4. Effect of electron temperature on small-amplitude electron acoustic solitary waves in non-planar geometry

    NASA Astrophysics Data System (ADS)

    Bansal, Sona; Aggarwal, Munish; Gill, Tarsem Singh

    2018-04-01

    Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg-de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of τ , solitary wave structures behave differently in cylindrical ( {m} = 1), spherical ( {m} = 2) and planar geometry ( {m} = 0) but looks similar at large values of τ . These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.

  5. Magneto-Optic Kerr Effect in a Magnetized Electron Gun

    NASA Astrophysics Data System (ADS)

    Hardy, Benjamin; Grames, Joseph; CenterInjectors; Sources Team

    2016-09-01

    Magnetized electron sources have the potential to improve ion beam cooling efficiency. At the Gun Test Stand at Jefferson Lab, a solenoid magnet will be installed adjacent to the photogun to magnetize the electron beam. Due to the photocathode operating in a vacuum chamber, measuring and monitoring the magnetic field at the beam source location with conventional probes is impractical. The Magneto-Optical Kerr Effect (MOKE) describes the change on polarized light by reflection from a magnetized surface. The reflection from the surface may alter the polarization direction, ellipticity, or intensity, and depends linearly upon the surface magnetization of the sample. By replacing the photocathode with a magnetized sample and reflecting polarized light from the sample surface, the magnetic field at the beam source is inferred. A controlled MOKE system has been assembled to test the magnetic field. Calibration of the solenoid magnet is performed by comparing the MOKE signal with magnetic field measurements. The apparatus will provide a description of the field at electron beam source. The report summarizes the method and results of controlled tests and calibration of the MOKE sample with the solenoid magnet field measurements. This work is supported by the National Science Foundation, Research Experience for Undergraduates Award 1359026 and the Department of Energy, Laboratory Directed Research and Development Contract DE-AC05-06OR23177.

  6. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  7. The Effect of Electronic Devices Self-Efficacy, Electronic Devices Usage and Information Security Awareness on Identity-Theft Anxiety Level

    ERIC Educational Resources Information Center

    Sanga, Sushma

    2016-01-01

    Identity-theft means stealing someone's personal information and using it without his or her permission. Each year, millions of Americans are becoming the victims of identity-theft, and this is one of the seriously growing and widespread issues in the U.S. This study examines the effect of electronic devices self-efficacy, electronic devices…

  8. Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Dan, Nguyen Trung; Bechstedt, F.

    1996-02-01

    We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.

  9. Electron Transport in Hall Thrusters

    NASA Astrophysics Data System (ADS)

    McDonald, Michael Sean

    Despite high technological maturity and a long flight heritage, computer models of Hall thrusters remain dependent on empirical inputs and a large part of thruster development to date has been heavily experimental in nature. This empirical approach will become increasingly unsustainable as new high-power thrusters tax existing ground test facilities and more exotic thruster designs stretch and strain the boundaries of existing design experience. The fundamental obstacle preventing predictive modeling of Hall thruster plasma properties and channel erosion is the lack of a first-principles description of electron transport across the strong magnetic fields between the cathode and anode. In spite of an abundance of proposed transport mechanisms, accurate assessments of the magnitude of electron current due to any one mechanism are scarce, and comparative studies of their relative influence on a single thruster platform simply do not exist. Lacking a clear idea of what mechanism(s) are primarily responsible for transport, it is understandably difficult for the electric propulsion scientist to focus his or her theoretical and computational tools on the right targets. This work presents a primarily experimental investigation of collisional and turbulent Hall thruster electron transport mechanisms. High-speed imaging of the thruster discharge channel at tens of thousands of frames per second reveals omnipresent rotating regions of elevated light emission, identified with a rotating spoke instability. This turbulent instability has been shown through construction of an azimuthally segmented anode to drive significant cross-field electron current in the discharge channel, and suggestive evidence points to its spatial extent into the thruster near-field plume as well. Electron trajectory simulations in experimentally measured thruster electromagnetic fields indicate that binary collisional transport mechanisms are not significant in the thruster plume, and experiments

  10. Electronic Health Record Implementation: A SWOT Analysis.

    PubMed

    Shahmoradi, Leila; Darrudi, Alireza; Arji, Goli; Farzaneh Nejad, Ahmadreza

    2017-10-01

    Electronic Health Record (EHR) is one of the most important achievements of information technology in healthcare domain, and if deployed effectively, it can yield predominant results. The aim of this study was a SWOT (strengths, weaknesses, opportunities, and threats) analysis in electronic health record implementation. This is a descriptive, analytical study conducted with the participation of a 90-member work force from Hospitals affiliated to Tehran University of Medical Sciences (TUMS). The data were collected by using a self-structured questionnaire and analyzed by SPSS software. Based on the results, the highest priority in strength analysis was related to timely and quick access to information. However, lack of hardware and infrastructures was the most important weakness. Having the potential to share information between different sectors and access to a variety of health statistics was the significant opportunity of EHR. Finally, the most substantial threats were the lack of strategic planning in the field of electronic health records together with physicians' and other clinical staff's resistance in the use of electronic health records. To facilitate successful adoption of electronic health record, some organizational, technical and resource elements contribute; moreover, the consideration of these factors is essential for HER implementation.

  11. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    NASA Technical Reports Server (NTRS)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  12. Probing mesoscopic crystals with electrons: One-step simultaneous inelastic and elastic scattering theory

    NASA Astrophysics Data System (ADS)

    Nazarov, Vladimir U.; Silkin, Vyacheslav M.; Krasovskii, Eugene E.

    2017-12-01

    Inelastic scattering of the medium-energy (˜10 -100 eV) electrons underlies the method of the high-resolution electron energy-loss spectroscopy (HREELS), which has been successfully used for decades to characterize pure and adsorbate-covered surfaces of solids. With the emergence of graphene and other quasi-two-dimensional (Q2D) crystals, HREELS could be expected to become the major experimental tool to study this class of materials. We, however, identify a critical flaw in the theoretical picture of the HREELS of Q2D crystals in the context of the inelastic scattering only ("energy-loss functions" formalism), in contrast to its justifiable use for bulk solids and surfaces. The shortcoming is the neglect of the elastic scattering, which we show is inseparable from the inelastic one, and which, affecting the spectra dramatically, must be taken into account for the meaningful interpretation of the experiment. With this motivation, using the time-dependent density functional theory for excitations, we build a theory of the simultaneous inelastic and elastic electron scattering at Q2D crystals. We apply this theory to HREELS of graphene, revealing an effect of the strongly coupled excitation of the π +σ plasmon and elastic diffraction resonances. Our results open a path to the theoretically interpretable study of the excitation processes in crystalline mesoscopic materials by means of HREELS, with its supreme resolution on the meV energy scale, which is far beyond the capacity of the now overwhelmingly used EELS in transmission electron microscopy.

  13. Electrons and Phonons in Semiconductor Multilayers

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.

    1996-11-01

    This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.

  14. A Electronic Map Data Model Based on PDF

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaodong; Yang, Chuncheng; Meng, Nina; Peng, Peng

    2018-05-01

    In this paper, we proposed the PDFEMAP (PDF electronic map) that is a kind of new electronic map products aiming at the current situation and demand of the use of electronic map products. Firstly gives the definition and characteristics of PDFEMAP, followed by a detailed description of the data model and method for generating PDFEMAP, and finally expounds application modes of the PDFEMAP which feasibility and effectiveness are verified.

  15. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  16. A statistical formulation of one-dimensional electron fluid turbulence

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Montgomery, D.

    1977-01-01

    A one-dimensional electron fluid model is investigated using the mathematical methods of modern fluid turbulence theory. Non-dissipative equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. Spectral densities are calculated, yielding a wavenumber electric field energy spectrum proportional to k to the negative second power for large wavenumbers. The equations of motion are numerically integrated and the resulting spectra are found to compare well with the theoretical predictions.

  17. Advanced electronic displays and their potential in future transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.

    1981-01-01

    It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.

  18. One-electron redox processes in a cyclic selenide and a selenoxide: a pulse radiolysis study.

    PubMed

    Singh, Beena G; Thomas, Elizabeth; Kumakura, Fumio; Dedachi, Kenichi; Iwaoka, Michio; Priyadarsini, K Indira

    2010-08-19

    One-electron redox reactions of cyclic selenium compounds, DL-trans-3,4-dihydroxy-1-selenolane (DHS(red)), and DL-trans-3,4-dihydroxy-1-selenolane oxide (DHS(ox)) were carried out in aqueous solutions using nanosecond pulse radiolysis, and the resultant transients were detected by absorption spectroscopy. Both *OH radical and specific one-electron oxidant, Br(2)(*-) radical reacted with DHS(red) to form similar transients absorbing at 480 nm, which has been identified as a dimer radical cation (DHS(red))(2)(*+). Secondary electron transfer reactions of the (DHS(red))(2)(*+) were studied with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS(2-)) and superoxide (O(2)(*-)) radicals. The bimolecular rate constants for the electron transfer reaction between (DHS(red))(2)(*+) with ABTS(2-) was determined as 2.4 +/- 0.4 x 10(9) M(-1) s(-1). From this reaction, the yield of (DHS(red))(2)(*+) formed on reaction with *OH radical was estimated in the presence of varying phosphate concentrations. (DHS(red))(2)(*+) reacted with O(2)(*-) radical with a bimolecular rate constant of 2.7 +/- 0.1 x 10(9) M(-1) s(-1) at pH 7. From the same reaction, the positive charge on (DHS(red))(2)(*+) was confirmed by the kinetic salt effect. HPLC analysis of the products formed in the reaction of (DHS(red))(2)(*+) with O(2)(*-) radicals showed formation of the selenoxide, DHS(ox). In order to know if a similar mechanism operated during the reduction of DHS(ox), its reactions with e(aq)(-) were studied at pH 7. The rate constant for this reaction was determined as 5.6 +/- 0.9 x 10(9) M(-1) s(-1), and no transient absorption could be observed in the wavelength region from 280 to 700 nm. It is proposed that the radical anion (DHS(ox))(*-) formed by a one-electron reduction would get protonated to form a hydroxyl radical adduct, which in presence of proton donors, would undergo dehydration to form DHS(*+). Evidence for this mechanism was obtained by converting DHS(*+) to (DHS(red))(2

  19. The inner zone electron model AE-5

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Vette, J. I.

    1972-01-01

    A description is given of the work performed in the development of the inner radiation zone electron model, AE-5. A complete description of the omnidirectional flux model is given for energy thresholds E sub T in the range 4.0 E sub T/(MeV) 0.04 and for L values in the range 2.8 L 1.2 for an epoch of October 1967. Confidence codes for certain regions of B-L space and certain energies are given based on data coverage and the assumptions made in the analysis. The electron model programs that can be supplied to a user are referred to. One of these, a program for accessing the model flux at arbitrary points in B-L space and arbitrary energies, includes the latest outer zone electron model and proton model. The model AE-5, is based on data from five satellites, OGO 1, OGO 3, 1963-38C, OV3-3, and Explorer 26, spanning the period December 1964 to December 1967.

  20. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach

    NASA Astrophysics Data System (ADS)

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.

    2016-05-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  1. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach.

    PubMed

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W

    2016-05-06

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  2. Cooperative Electronic Mail: Effective Communication Technology for Introductory Chemistry

    NASA Astrophysics Data System (ADS)

    Pence, Laura E.

    1999-05-01

    One drawback to using cooperative learning in the classroom is that it takes up class time and reduces the amount of content that can be covered during a semester. Cooperative electronic mail is an excellent alternate method of using cooperative learning that shifts the medium of interaction to the computer and encourages students to learn to communicate effectively through technology. In this project, three types of exercises were assigned, one prior to each exam. These three assignments were (i) an open-ended question, (ii) a traditional cooperative activity done electronically, and (iii) an exercise to allow students to write exam questions for each other. The average participation rate in the exercises was 90% over four semesters, which indicated that the project was an effective incentive to get students to use email regularly. The evaluations of the project were also extremely positive. One surprising result of the assessment was that female students gave even more favorable responses than men, suggesting that this project was an excellent way to encourage women to use computer technology.

  3. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  4. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  5. Electron Cloud Effects in Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furman, M.A.

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  6. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitterer, M.; Stancari, G.; Valishev, A.

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  7. Southwest Electronic One-Stop Shopping (EOSS) : field operational test : final evaluation report

    DOT National Transportation Integrated Search

    1999-06-01

    This report presents an evaluation of the Southwest Electronic One-Stop Shopping System (EOSS) Operational Test. The system consisted of a PC-based software application that enabled interstate carriers to identify required commercial vehicle credenti...

  8. Second-order relativistic corrections for the S(L=0) states in one- and two-electron atomic systems

    NASA Astrophysics Data System (ADS)

    Frolov, A. M.; Mitelut, C. C.; Zhong, Z.

    2005-01-01

    An analytical approach is developed to compute the first- (similar to alpha(2)) and second-order (similar to alpha(4)) relativistic corrections in one- and two-electron atomic systems. The approach is based on the reduction of all operators to divergent (singular) and nondivergent (regular) parts. Then, we show that all the divergent parts from the differentmatrix elements cancel each other. The remaining expression contains only regular operators and its expectation value can be easily computed. Analysis of the S(L = 0) states in such systems is of specific interest since the corresponding operators for these states contain a large number of singularities. For one-electron systems the computed relativistic corrections coincide exactly with the appropriate result that follows from the Taylor expansion of the relativistic (i.e., Dirac) energy. We also discuss an alternative approach that allows one to cancel all singularities by using the so-called operator-compensation technique. This second approach is found to be very effective in applications of more complex systems, such as helium-like atoms and ions, H-2(+)-like ions, and some exotic three-body systems.

  9. Formation of 8-oxo-7,8-dihydroguanine-radicals in γ-irradiated DNA by multiple one-electron oxidations

    PubMed Central

    Shukla, Lata I.; Adhikary, Amitava; Pazdro, Robert; Becker, David; Sevilla, Michael D.

    2004-01-01

    Electron spin resonance (ESR) studies of radicals formed by radiation-induced multiple one-electron oxidations of guanine moieties in DNA are reported in this work. Annealing of gamma-irradiated DNA from 77 to 235 K results in the hydration of one electron oxidized guanine (G•+) to form the 8-hydroxy-7,8-dihydroguanin-7-yl-radical (•GOH) having one β-proton coupling of 17–28 G and an anisotropic nitrogen coupling, A‖, of ∼20 G, A⊥ = 0 with g‖ = 2.0026 and g⊥ = 2.0037. Further annealing to 258 K results in the formation of a sharp singlet at g = 2.0048 with line-width of 5.3 G that is identified as the 8-oxo-7,8-dihydroguanine one-electron-oxidized radical (8-oxo-G•+). This species is formed via two one-electron oxidations of •GOH. These two one-electron oxidation steps leading to the formation of 8-oxo-G•+ from •GOH in DNA, are in accordance with the expected ease of oxidation of •GOH and 8-oxo-G. The incorporation of oxygen from water in G•+ leading to •GOH and to 8-oxo-G•+ is verified by ESR studies employing 17O isotopically enriched water, which provide unambiguous evidence for the formation of both radicals. ESR analysis of irradiated-DNA in the presence of the electron scavenger, Tl3+, demonstrates that the cationic pathway leads to the formation of the 8-oxo-G•+. In irradiated DNA–Tl3+ samples, Tl3+ captures electrons. Tl2+ thus produced is a strong oxidant (2.2 V), which is metastable at 77 K and is observed to increase the formation of G•+ and subsequently of 8-oxo-G•+ upon annealing. We find that in the absence of the electron scavenger the yield of 8-oxo-G•+ is substantially reduced as a result of electron recombinations with G•+ and possible reaction with •GOH. PMID:15601999

  10. Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy.

    PubMed

    Ievlev, Anton V; Jesse, Stephen; Cochell, Thomas J; Unocic, Raymond R; Protopopescu, Vladimir A; Kalinin, Sergei V

    2015-12-22

    Recent advances in liquid cell (scanning) transmission electron microscopy (S)TEM has enabled in situ nanoscale investigations of controlled nanocrystal growth mechanisms. Here, we experimentally and quantitatively investigated the nucleation and growth mechanisms of Pt nanostructures from an aqueous solution of K2PtCl6. Averaged statistical, network, and local approaches have been used for the data analysis and the description of both collective particles dynamics and local growth features. In particular, interaction between neighboring particles has been revealed and attributed to reduction of the platinum concentration in the vicinity of the particle boundary. The local approach for solving the inverse problem showed that particles dynamics can be simulated by a stationary diffusional model. The obtained results are important for understanding nanocrystal formation and growth processes and for optimization of synthesis conditions.

  11. Using seemingly unnecessary illustrations to improve the diagnostic usefulness of descriptions in taxonomy–a case study on Perochaeta orientalis (Diptera, Sepsidae)

    PubMed Central

    Ang, Yuchen; Wong, Ling Jing; Meier, Rudolf

    2013-01-01

    Abstract Many species descriptions, especially older ones, consist mostly of text and have few illustrations. Only the most conspicuous morphological features needed for species diagnosis and delimitation at the time of description are illustrated. Such descriptions can quickly become inadequate when new species or characters are discovered. We propose that descriptions should become more data-rich by presenting a large amount of images and illustrations to cover as much morphology as possible; these descriptions are more likely to remain adequate over time because their large amounts of visual data could capture character systems that may become important in the future. Such an approach can now be quickly and easily achieved given that high-quality digital photography is readily available. Here, we re-describe the sepsid fly Perochaeta orientalis (de Meijere 1913) (Diptera, Sepsidae) which has suffered from inadequate descriptions in the past, and use photomicrography, scanning electron microscopy and videography to document its external morphology and mating behaviour. All images and videos are embedded within the electronic publication. We discuss briefly benefits and problems with our approach. PMID:24363567

  12. Poincaré analysis of wave motion in ultrarelativistic electron-ion plasmas.

    PubMed

    Lehmann, G; Spatschek, K H

    2011-03-01

    Based on a relativistic Maxwell-fluid description, the existence of ultrarelativistic laser-induced periodic waves in an electron-ion plasma is investigated. Within a one-dimensional propagation geometry nonlinear coupling of the electromagnetic and electrostatic components occurs that makes the fourth-order problem nonintegrable. A Hamiltonian description is derived, and the manifolds of periodic solutions are studied by Poincaré section plots. The influence of ion motion is investigated in different intensity regimes. For ultrarelativistic laser intensities the phase-space structures change significantly compared to the weakly relativistic case. Ion motion becomes very important such that finally electron-ion plasmas in the far-ultrarelativistic regime behave similarly to electron-positron plasmas. The characteristic new types of periodic solutions of the system are identified and discussed.

  13. Corpus-Based Approaches to Language Description for Specialized Academic Writing

    ERIC Educational Resources Information Center

    Flowerdew, John

    2017-01-01

    Language description is a fundamental requirement for second language (L2) syllabus design. The greatest advances in language description in recent decades have been done with the help of electronic corpora. Such language description is the theme of this article. The article first introduces some basic concepts and principles in corpus research.…

  14. Electron-phonon effects in graphene and an armchair (10,10) single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Woods, Lilia Milcheva Rapatinska

    New effects due to the electron-phonon interaction in some low-dimensional tight-binding systems are discussed. A sheet of graphite (two-dimensional) and an armchair single wall carbon nanotube (SWNT) (quasi-one dimensional) are taken as examples. The geometrical structure and the linear dispersion of the energy with respect to the electron wave vector are expected to play a significant role. For the ordinary electron-phonon coupling which includes modulated hopping and linear electron-phonon interaction the matrix elements for both systems are derived in the context of a two parameter model for the phonon vibrational spectrum. It is found that they (for both structures) strongly depend on the geometry, display a deformation type of potential and are reduced by a factor of (1 - R), where R depends uniquely on the introduced phonon parameters. Next a new type of interaction is derived; it arises from the phonon modulation of the electron-electron interaction. After writing the matrix elements for the new Hamiltonian, the problem is considered in the context of many body physics. There are two contributions. One of them is the random phase approximation with one phonon line. The electron self-energy for it is calculated. It is shown that one might expect that this is not a large effect. Analytical expressions are obtained for the armchair single wall carbon nanotube. The exchange interaction in the one-phonon approximation is another term that arises and is also considered. One is able to write four new Feynman diagrams and derive an expression for -ImSk⃗ . The contribution from this type of coupling could be large and comparable to the one from the modulated hopping. These results are supported by numerical estimates of some characteristics of graphene and SWNT. The values of the electron-phonon coupling constant, lambda, and the electron lifetime, tau, are compared between the traditional electron-phonon interaction and the phonon modulated electron-electron

  15. One size fits all electronics for insole-based activity monitoring.

    PubMed

    Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward

    2017-07-01

    Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.

  16. Description of quasiparticle and satellite properties via cumulant expansions of the retarded one-particle Green's function

    DOE PAGES

    Mayers, Matthew Z.; Hybertsen, Mark S.; Reichman, David R.

    2016-08-22

    A cumulant-based GW approximation for the retarded one-particle Green's function is proposed, motivated by an exact relation between the improper Dyson self-energy and the cumulant generating function. We explore qualitative aspects of this method within a simple one-electron independent phonon model, where it is seen that the method preserves the energy moment of the spectral weight while also reproducing the exact Green's function in the weak-coupling limit. For the three-dimensional electron gas, this method predicts multiple satellites at the bottom of the band, albeit with inaccurate peak spacing. But, its quasiparticle properties and correlation energies are more accurate than bothmore » previous cumulant methods and standard G0W0. These results point to features that may be exploited within the framework of cumulant-based methods and suggest promising directions for future exploration and improvements of cumulant-based GW approaches.« less

  17. Radiation effects on electronic parts

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1971-01-01

    A search of literature concerning the long term effects of nuclear radiation on electronic parts was conducted to determine the effects of radiation fields encountered on deep space missions to parts used in the Pioneer Spacecraft. Topics discussed include: the various types of radiation the spacecraft will encounter, effects of radiation on electronic parts, and estimates of the damage thresholds for transistors and integrated circuits used on the Pioneer Spacecraft.

  18. Effects of magnetic field on electron-electron intersubband scattering rates in quantum wells.

    NASA Astrophysics Data System (ADS)

    Kempa, K.; Zhou, Y.; Engelbrecht, J.; Bakshi, P.

    2001-03-01

    Electron-electron scattering dominates the physics of carrier relaxation in quantum nano-structures used as active regions of THz radiation sources. This is the limiting mechanism in achieving population inversion, and reducing its deleterious effects could clear the way to a THz laser. We study here the inter-subband relaxation processes due to the electron-electron scattering in quantum well structures, in a magnetic field. We obtain the scattering rate from the imaginary part of the electron self-energy in the random phase approximation, extending our earlier studies [1] to nonzero magnetic fields. We find that the scattering rate is peaked at two possible sets of arrangements of the Landau levels (LL) of the two subbands of interest. The first set occurs when the LL of both subbands align, and the other when the LL misalign, so that the LL of one subband lie exactly in the middle between those of the other subband. Experiments on various quantum cascade structures show that the misaligned set of transitions is completely suppressed. >From our calculations this implies that there is no population inversion in those structures. Work supported by US Army Research Office. [1] K. Kempa, P. Bakshi, J. R. Engelbrecht, and Y. Zhou, Phys. Rev. B61, 11083 (2000).

  19. Electronic Revolution on Main Street.

    ERIC Educational Resources Information Center

    Schwartz, Gail Garfield

    1986-01-01

    The electronics revolution is changing way work is done and description of available jobs, shifting some jobs from office to home, and offering new communication services. Technology's impact on central business districts (CBDs) will depend on broad economic forces, but its effects on CBDs as business locations will be conditioned by local real…

  20. Reduced-Density-Matrix Description of Decoherence and Relaxation Processes for Electron-Spin Systems

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    2017-04-01

    Electron-spin systems are investigated using a reduced-density-matrix description. Applications of interest include trapped atomic systems in optical lattices, semiconductor quantum dots, and vacancy defect centers in solids. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are self-consistently developed. The general non-perturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. Particular attention is given to decoherence and relaxation processes, as well as spectral-line broadening phenomena, that are induced by interactions with photons, phonons, nuclear spins, and external electric and magnetic fields. These processes are treated either as coherent interactions or as environmental interactions. The environmental interactions are incorporated by means of the general expressions derived for the time-domain and frequency-domain Liouville-space self-energy operators, for which the tetradic-matrix elements are explicitly evaluated in the diagonal-resolvent, lowest-order, and Markov (short-memory time) approximations. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  1. Two-electron Reduction versus One-electron Oxidation of the Type 3 Pair in the Multicopper Oxidases

    PubMed Central

    Kjaergaard, Christian H.; Jones, Stephen M.; Gounel, Sébastien; Mano, Nicolas; Solomon, Edward I.

    2015-01-01

    Multicopper Oxidases (MCOs) utilize an electron shuttling Type 1 Cu (T1) site in conjunction with a mononuclear Type 2 (T2) and a binuclear Type 3 (T3) site, arranged in a trinuclear copper cluster (TNC), to reduce O2 to H2O. Reduction of O2 occurs with limited overpotential indicating that all the coppers in the active site can be reduced via high-potential electron donors. Two forms of the resting enzyme have been observed in MCOs: the Alternative Resting form (AR), where only one of the three TNC Cu’s is oxidized, and the Resting Oxidized form (RO), where all three TNC Cu’s are oxidized. In contrast to the AR form, we show that in the RO form of a high-potential MCO, the binuclear T3 Cu(II) site can be reduced via the 700 mV T1 Cu. Systematic spectroscopic evaluation reveals that this proceeds by a two-electron process, where delivery of the first electron, forming a high energy, meta-stable half reduced T3 state, is followed by the rapid delivery of a second energetically favorable electron to fully reduce the T3 site. Alternatively, when this fully reduced binuclear T3 site is oxidized via the T1 Cu, a different thermodynamically favored half oxidized T3 form, i.e. the AR site, is generated. This behavior is evaluated by DFT calculations, which reveal that the protein backbone plays a significant role in controlling the environment of the active site coppers. This allows for the formation of the meta-stable, half reduced state and thus the complete reductive activation of the enzyme for catalysis. PMID:26075678

  2. The Effects of Accelerator Frequency and Electron Beam Focusing in Free Electron Lasers

    DTIC Science & Technology

    2012-12-01

    relative to one another. This freezing effect is a result of relativistic time dilation; in the lab frame, the relativistic electron bunch has a slower...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...is five months old at the time of this writing, and his smiles and hugs were a much needed treat when I returned home after long days of classes

  3. Long-term neuropsychological effects of opioid use in children: a descriptive literature review.

    PubMed

    Jain, Gaurav; Mahendra, Vijaita; Singhal, Sarita; Dzara, Kristina; Pilla, Trinadha R; Manworren, Renee; Kaye, Alan D

    2014-01-01

    Use of opioids in the management of pain and its consequences in children presents a substantial challenge. A significant concern in pediatric pain management is the long-term neuropsychological consequences of opioids. The authors aim to provide a descriptive review of the current literature surrounding the neuropsychological impact of opioid use in children, along with possible extrapolations from their use in adults and animal models. Systematic review of published literature. Various universities in the United States. The electronic review for papers published between January 1992 and December 2012 was conducted using Medline/Pubmed, PsychInfo, CINAHL, the Cochrane Library database, and Google Scholar. Findings assessing pediatric pain patients treated with opioids demonstrated no significant differences in intelligence, behavior, vocabulary, or motor skills. One study reported a decrease in a visuo-constructional ability, which measured higher order executive function. Studies from prenatal illicit opioid exposure found poorer performance on measures of language, verbal ability, mathematics, reading, impulse control, and school readiness skills. The literature from adult prescribed opioid users has mixed results. Some showed impairment in the neuropsychological domains of memory, decision-making, attention, concentration, information processing, psychomotor speed, visual special skills, and hand-eye coordination, while others found no differences or revealed improved perceptual-cognitive status, possibly due to the removal of pain as a stressor. Very few studies looked into the long term neuropsychological and cognitive effects of the opioids in pediatric population. In an attempt to extrapolate from other groups, this review also included literature from adult patients, prenatal opioid exposure, and animal studies. Opioid medications have the potential to produce long-lasting neuropsychological side effects. However, given the negative consequences of

  4. Jupiter radiation belt electrons and their effects on sensitive electronics

    NASA Technical Reports Server (NTRS)

    Divita, E. L.

    1974-01-01

    Data on the electron environment trapped at Jupiter, tests performed to simulate the effects of electrons on Mariner, Jupiter-Saturn 1977 sensitive parts, and test results from those simulations, are summarized.

  5. Activated aging dynamics and effective trap model description in the random energy model

    NASA Astrophysics Data System (ADS)

    Baity-Jesi, M.; Biroli, G.; Cammarota, C.

    2018-01-01

    We study the out-of-equilibrium aging dynamics of the random energy model (REM) ruled by a single spin-flip Metropolis dynamics. We focus on the dynamical evolution taking place on time-scales diverging with the system size. Our aim is to show to what extent the activated dynamics displayed by the REM can be described in terms of an effective trap model. We identify two time regimes: the first one corresponds to the process of escaping from a basin in the energy landscape and to the subsequent exploration of high energy configurations, whereas the second one corresponds to the evolution from a deep basin to the other. By combining numerical simulations with analytical arguments we show why the trap model description does not hold in the former but becomes exact in the second.

  6. Triboelectric effect: A new perspective on electron transfer process

    NASA Astrophysics Data System (ADS)

    Pan, Shuaihang; Zhang, Zhinan

    2017-10-01

    As interest in the triboelectric effect increases in line with the development of tribo-electrification related devices, the mechanisms involved in this phenomenon require more systematic review from the dual perspectives of developed classical insights and emerging quantum understanding. In this paper, the clear energy changing and transferring process of electrons have been proposed from the quantum point of view as the trigger for the charging initiation process in the triboelectric effect, and the phonon modes on the friction surfaces are believed to hold great importance as one of the main driving forces. Compatible with Maxwell Displacement Current theory, the complete consideration for charging steady state, i.e., the competition mechanisms between the breakdown process and the continuously charging process, and the balance mechanisms of phonon-electron interaction, built voltage, and induced polarization, are illustrated. In brief, the proposed theory emphasizes the fundamental role of electron transferring in tribo-electrical fields. By comparing certain experimental results from the previous studies, the theory is justified.

  7. Description of a Mobile-based Electronic Informed Consent System Development.

    PubMed

    Hwang, Min-A; Kwak, In Ja

    2015-01-01

    Seoul National University Hospital constructed and implemented a computer-based informed consent system in December 2011. As of 2013, 30% of the informed consents were still filled out manually on paper. Patients and medical staff continuously suggested the implementation of a system for electronic informed consent using portable devices. Therefore, a mobile-based system for electronic informed consent was developed in 2013 to prevent the issues that arise with computer-based systems and paper informed consent. The rate of filling out electronic informed consent increased from 69% to 95% following the implementation of the mobile-based electronic informed consent. This construction of a mobile-based electronic informed consent system would be a good reference point for the development of a mobile-based Electronic Medical Record and for various mobile system environments in medical institutions.

  8. Electronic Structure of Semiconductor Interfaces.

    DTIC Science & Technology

    1984-11-01

    Workshop on Effective One-Electron Potentials In Real Materials, Ossining , New York, Mar. 21-22, 1980 Member, Organizing Committee, Annual Conferences on...Workshop on Effective One-Electron Potentials in Real Materials, Ossining , New York, Mar. 21-22, 1980 (Invited Paper) Electronic Structure of

  9. Molecules for organic electronics studied one by one.

    PubMed

    Meyer, Jörg; Wadewitz, Anja; Lokamani; Toher, Cormac; Gresser, Roland; Leo, Karl; Riede, Moritz; Moresco, Francesca; Cuniberti, Gianaurelio

    2011-08-28

    The electronic and geometrical structure of single difluoro-bora-1,3,5,7-tetraphenyl-aza-dipyrromethene (aza-BODIPY) molecules adsorbed on the Au(111) surface is investigated by low temperature scanning tunneling microscopy and spectroscopy in conjunction with ab initio density functional theory simulations of the density of states and of the interaction with the substrate. Our DFT calculations indicate that the aza-bodipy molecule forms a chemical bond with the Au(111) substrate, with distortion of the molecular geometry and significant charge transfer between the molecule and the substrate. Nevertheless, most likely due to the low corrugation of the Au(111) surface, diffusion of the molecule is observed for applied bias in excess of 1 V.

  10. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced

  11. Notes on Barkas-Andersen effect

    NASA Astrophysics Data System (ADS)

    Sigmund, Peter; Schinner, Andreas

    2014-10-01

    Stimulated by recent statements in the literature on electronic stopping of heavy ions in matter, we try to clarify some central theoretical aspects of the Barkas-Andersen effect, about which there does not seem to be unanimous agreement in the community. We address the role of inner versus outer target shells, of projectile screening by bound electrons, the interference between Lindhard's description and perturbation theory, as well as the equivalence between a single-electron versus Fermi-gas description of the effect.

  12. Electron-Spin Filters Based on the Rashba Effect

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.

    2004-01-01

    Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric

  13. Optical vs. electronic enhancement of remote sensing imagery

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Katibah, E. F.

    1976-01-01

    Basic aspects of remote sensing are considered and a description is provided of the methods which are employed in connection with the optical or electronic enhancement of remote sensing imagery. The advantages and limitations of various image enhancement methods and techniques are evaluated. It is pointed out that optical enhancement methods and techniques are currently superior to electronic ones with respect to spatial resolution and equipment cost considerations. Advantages of electronic procedures, on the other hand, are related to a greater flexibility regarding the presentation of the information as an aid for the interpretation by the image analyst.

  14. Effect of initial phase on error in electron energy obtained using paraxial approximation for a focused laser pulse in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kunwar Pal, E-mail: k-psingh@yahoo.com; Department of Physics, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh 244236; Arya, Rashmi

    2015-09-14

    We have investigated the effect of initial phase on error in electron energy obtained using paraxial approximation to study electron acceleration by a focused laser pulse in vacuum using a three dimensional test-particle simulation code. The error is obtained by comparing the energy of the electron for paraxial approximation and seventh-order correction description of the fields of Gaussian laser. The paraxial approximation predicts wrong laser divergence and wrong electron escape time from the pulse which leads to prediction of higher energy. The error shows strong phase dependence for the electrons lying along the axis of the laser for linearly polarizedmore » laser pulse. The relative error may be significant for some specific values of initial phase even at moderate values of laser spot sizes. The error does not show initial phase dependence for a circularly laser pulse.« less

  15. Electronic inhomogeneity in a Kondo lattice

    PubMed Central

    Bauer, E. D.; Yang, Yi-feng; Capan, C.; Urbano, R. R.; Miclea, C. F.; Sakai, H.; Ronning, F.; Graf, M. J.; Balatsky, A. V.; Movshovich, R.; Bianchi, A. D.; Reyes, A. P.; Kuhns, P. L.; Thompson, J. D.; Fisk, Z.

    2011-01-01

    Inhomogeneous electronic states resulting from entangled spin, charge, and lattice degrees of freedom are hallmarks of strongly correlated electron materials; such behavior has been observed in many classes of d-electron materials, including the high-Tc copper-oxide superconductors, manganites, and most recently the iron–pnictide superconductors. The complexity generated by competing phases in these materials constitutes a considerable theoretical challenge—one that still defies a complete description. Here, we report a manifestation of electronic inhomogeneity in a strongly correlated f-electron system, using CeCoIn5 as an example. A thermodynamic analysis of its superconductivity, combined with nuclear quadrupole resonance measurements, shows that nonmagnetic impurities (Y, La, Yb, Th, Hg, and Sn) locally suppress unconventional superconductivity, generating an inhomogeneous electronic “Swiss cheese” due to disrupted periodicity of the Kondo lattice. Our analysis may be generalized to include related systems, suggesting that electronic inhomogeneity should be considered broadly in Kondo lattice materials.

  16. Transmission effects in unfolding electronic-vibrational electron-molecule energy-loss spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shiyang; Khakoo, Murtadha A.; Johnson, Paul V.

    2006-03-15

    The results of an investigation concerning the sensitivity of conventional unfolding methods applied to electronic-vibrational electron-energy-loss spectra to the transmission efficiency of electron spectrometers are presented. This investigation was made in an effort to understand differences in the differential cross sections for excitation of low-lying electronic states determined experimentally by various groups using electronic-vibrational energy-loss spectra of N{sub 2}. In these experiments, very similar spectral unfolding methods were used, which relied on similar Franck-Condon factors. However, the overall analyses of the electron scattering spectra (by the individual groups) resulted in large differences among the differential cross sections determined from thesemore » energy-loss spectra. The transmission response of the experimental apparatus to different-energy scattered electrons has often been discussed as a key factor that caused these disagreements. The present investigation shows in contrast that the effect of transmission is smaller than that required to independently explain such differences, implying that other systematic effects are responsible for the existing differences between measurements.« less

  17. Coexistence of perfect spin filtering for entangled electron pairs and high magnetic storage efficiency in one setup.

    PubMed

    Ji, T T; Bu, N; Chen, F J; Tao, Y C; Wang, J

    2016-04-14

    For Entangled electron pairs superconducting spintronics, there exist two drawbacks in existing proposals of generating entangled electron pairs. One is that the two kinds of different spin entangled electron pairs mix with each other. And the other is a low efficiency of entanglement production. Herein, we report the spin entanglement state of the ferromagnetic insulator (FI)/s-wave superconductor/FI structure on a narrow quantum spin Hall insulator strip. It is shown that not only the high production of entangled electron pairs in wider energy range, but also the perfect spin filtering of entangled electron pairs in the context of no highly spin-polarized electrons, can be obtained. Moreover, the currents for the left and right leads in the antiferromagnetic alignment both can be zero, indicating 100% tunnelling magnetoresistance with highly magnetic storage efficiency. Therefore, the spin filtering for entangled electron pairs and magnetic storage with high efficiencies coexist in one setup. The results may be experimentally demonstrated by measuring the tunnelling conductance and the noise power.

  18. One electron oxidation of 3-methylcholanthrene: A chemical model for its mechanism of carcinogenesis

    NASA Astrophysics Data System (ADS)

    Lehner, Andreas F.; Horn, Jamie; Flesher, James W.

    2017-06-01

    One electron transfer oxidation has long been proposed as a route to the ultimate electrophilic and carcinogenic metabolites of both methylated and non-methylated polycyclic aromatic hydrocarbons (PAH). The carcinogenic hydrocarbon 3-methylcholanthrene (3-MC) has a methyl-analogous function at its meso-anthracenic center in the form of a dimethylene bridge, and treatment of this compound with the one electron transfer oxidizing reagent ferric ferricyanide, FeIII(FeIII(CN)6), in mixed aqueous-organic media generated multiple oxygenated species, many of which duplicate those found in mammalian metabolism including known carcinogens 1-hydroxy-3MC and 1-keto-3MC. These results are in agreement with a Unified Theory for PAH Carcinogenicity which predicts in vivo generation of a proximate benzylic alcohol metabolite from the 3-MC procarcinogen and conjugation with a moiety such as sulfate intended for rapid urinary excretion. The sulfate instead acts as a leaving group and generates an electrophilic carbocation capable of reacting with sensitive nucleophiles such as DNA in cellular nuclei. The products of one electron transfer oxidation align well with predictions of the Unified Theory since in many cases these products provide substrates or precursors for conjugation reactions.

  19. Low-temperature electronic transport in one-dimensional hybrid systems: Metal cluster embedded carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soldano, Caterina

    range of the applied field, confirming the presence of weak localization in the system. A small but distinct Rashba spin-orbit scattering effect in the magneto-conductance in the low-field regime (|B|<.5T) is found and attributed to the surface decoration. Electronic and magnetotransport measurements independently confirm the 1D nature of the transport in the system. "Zero-field" measurements were performed on magnetic cluster-embedded MWNT-based devices (FM-MWNT). Temperature dependence of the conductance reveals a Luttinger liquid type of behavior in the range of investigated temperatures but no conductance suppression at lower temperatures, as seen platinum-decorated devices. Direct differential conductance measurements for discrete applied magnetic field show the appearance of random fluctuations, which amplitude is field-dependent. The properties of the FM-MWNT were found to change permanently under the application of a magnetic field, indicating that the charge transport is sensitive to the relative magnetic orientations (random or aligned) of the nanoclusters. Measurements and relative analysis are hence presented in a chronological order, as the investigation was performed, which brings out the difference between charge transport in a Luttinger liquid under the influence of "random" and "ferromagnetically aligned" impurities. The present thesis is organized as follows: Chapter 1 presents a general overview on carbon nanotubes; various transport mechanisms and related issues are also introduced. Chapter 2 presents a detailed description of alumina template grown multi wall nanotubes together with the high-bias treatment (HBT), a novel in-situ technique to tune the device resistance. Outcome of this process is analyzed in terms of scanning electron microscopy. Chapter 3 describes the experimental set-up and various measurement techniques used in this project. The last two chapters present a detailed characterization of the electronic and magnetotransport in

  20. Four-electron model for singlet and triplet excitation energy transfers with inclusion of coherence memory, inelastic tunneling and nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori

    2016-08-01

    A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.

  1. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    NASA Astrophysics Data System (ADS)

    Schamel, Hans

    2004-03-01

    ). In cosmology referring to the pancake model of Zel'dovich and the adhesion model of Gurbatov and Saichev, both assuming a clumping of matter at the intersection points of fluid particle trajectories (i.e. at the caustics), the foam-like large-scale structure of our Universe observed recently by Chandra X-ray observatory may be explained by the 3D convection of weakly interacting dark matter. Recent developments in plasma and nanotechnology-the miniaturization and fabrication of nanoelectronic devices being one example-have reinforced the interest in the quasi-ballistic electron transport in diodes and triodes, a field which turns out to be best treated by the Lagrangian fluid description. It is shown that the well-known space-charge-limited flow given by Child-Langmuir turns out to be incorrect in cases of finite electron injection velocities at the emitting electrode. In that case it is an intrinsic bifurcation scenario which is responsible for current limitation rather than electron reflection at the virtual cathode as intuitively assumed by Langmuir. The inclusion of a Drude friction term in the electron momentum equation can be handled solely by the Lagrangian fluid description. Exploiting the formula in case of field emission it is possible to bridge ballistic and drift-dominated transport. Furthermore, the transient processes in the electron transport triggered by the switching of the anode potential are shown to be perfectly accounted for by means of the Lagrangian fluid description. Finally, by use of the Lagrangian ion fluid equations in case of a two component, current driven plasma we derive a system of two coupled scalar wave equations which involve the specific volume of ions and electrons, respectively. It has a small amplitude strange soliton solution with unusual scaling properties. In case of charge neutrality the existence of two types of collapses are predicted, one being associated with a density excavation, the other one with a density clumping

  2. Signatures of the atomic nucleus in laser-assisted single ionization of one-electron atoms

    NASA Astrophysics Data System (ADS)

    Ajana, Imane; Khalil, Driss; Makhoute, Abdelkader

    2018-03-01

    The dynamics of the electron-impact single ionization of hydrogenic targets in the presence of a laser field (e, 2e) has been studied for different residual ion charges Z = 1, 2, 3 and 4. The state of fast electron in the laser field is described by the Volkov state, while the dressed state of the ejected slow electron and atomic target is treated perturbatively to the first-order perturbation theory. We calculate the triple differential cross section in the Ehrhardt asymmetric coplanar geometry. We have compared and analyzed the triple differential cross sections from one-electron atoms by varying the charge state of the residual ion, and evaluating the interplay between the laser influence and the role of scattering from the residual ion.

  3. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch

    2015-06-14

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

  4. Electronic quantum confinement in cylindrical potential well

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2016-04-01

    The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limiting cases of the ratio of the cylinder length H and its radius R0 have been considered; when the cylinder length H significantly exceeds its radius R0 and when the cylinder radius is much greater than its length. The cylindrical quantum confinement effects on the momentum distribution of electrons in these potential wells have been analyzed. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested where the quantum confinement can be manifested. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  5. Vlasov-Maxwell and Vlasov-Poisson equations as models of a one-dimensional electron plasma

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Cooper, J.

    1983-01-01

    The Vlasov-Maxwell and Vlasov-Poisson systems of equations for a one-dimensional electron plasma are defined and discussed. A method for transforming a solution of one system which is periodic over a bounded or unbounded spatial interval to a similar solution of the other is constructed.

  6. Magnetic-Field Control Of Tunnel-Coupling In Strongly Confined One-Dimensional Electron Systems

    NASA Astrophysics Data System (ADS)

    Fischer, S. F.; Apetrii, G.; Kunze, U.; Schuh, D.; Abstreiter, G.

    2007-04-01

    One-dimensional (1D) ballistic electron transport is studied through stacked 1D quantum conductors separated by a thin tunneling barrier. The 1D electron systems of large 1D subband spacings (more than 10 meV) allow single mode operation. Degeneracies of 1D subbands of equal lateral mode index are lifted by the formation of symmetric and antisymmetric states and are depicted by anti-crossings of transconductance maxima. We observe a mode-dependent turnover from level anti-crossings to crossings in longitudinal magnetic fields.

  7. Microscopic description of production cross sections including deexcitation effects

    NASA Astrophysics Data System (ADS)

    Sekizawa, Kazuyuki

    2017-07-01

    Background: At the forefront of the nuclear science, production of new neutron-rich isotopes is continuously pursued at accelerator laboratories all over the world. To explore the currently unknown territories in the nuclear chart far away from the stability, reliable theoretical predictions are inevitable. Purpose: To provide a reliable prediction of production cross sections taking into account secondary deexcitation processes, both particle evaporation and fission, a new method called TDHF+GEMINI is proposed, which combines the microscopic time-dependent Hartree-Fock (TDHF) theory with a sophisticated statistical compound-nucleus deexcitation model, GEMINI++. Methods: Low-energy heavy ion reactions are described based on three-dimensional Skyrme-TDHF calculations. Using the particle-number projection method, production probabilities, total angular momenta, and excitation energies of primary reaction products are extracted from the TDHF wave function after collision. Production cross sections for secondary reaction products are evaluated employing GEMINI++. Results are compared with available experimental data and widely used grazing calculations. Results: The method is applied to describe cross sections for multinucleon transfer processes in 40Ca+124Sn (Ec .m .≃128.54 MeV ), 48Ca+124Sn (Ec .m .≃125.44 MeV ), 40Ca+208Pb (Ec .m .≃208.84 MeV ), 58Ni+208Pb (Ec .m .≃256.79 MeV ), 64Ni+238U (Ec .m .≃307.35 MeV ), and 136Xe+198Pt (Ec .m .≃644.98 MeV ) reactions at energies close to the Coulomb barrier. It is shown that the inclusion of secondary deexcitation processes, which are dominated by neutron evaporation in the present systems, substantially improves agreement with the experimental data. The magnitude of the evaporation effects is very similar to the one observed in grazing calculations. TDHF+GEMINI provides better description of the absolute value of the cross sections for channels involving transfer of more than one proton, compared to the grazing

  8. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.

    2016-08-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  9. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    PubMed Central

    Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik

    2017-01-01

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280

  10. Probability Theory Plus Noise: Descriptive Estimation and Inferential Judgment.

    PubMed

    Costello, Fintan; Watts, Paul

    2018-01-01

    We describe a computational model of two central aspects of people's probabilistic reasoning: descriptive probability estimation and inferential probability judgment. This model assumes that people's reasoning follows standard frequentist probability theory, but it is subject to random noise. This random noise has a regressive effect in descriptive probability estimation, moving probability estimates away from normative probabilities and toward the center of the probability scale. This random noise has an anti-regressive effect in inferential judgement, however. These regressive and anti-regressive effects explain various reliable and systematic biases seen in people's descriptive probability estimation and inferential probability judgment. This model predicts that these contrary effects will tend to cancel out in tasks that involve both descriptive estimation and inferential judgement, leading to unbiased responses in those tasks. We test this model by applying it to one such task, described by Gallistel et al. ). Participants' median responses in this task were unbiased, agreeing with normative probability theory over the full range of responses. Our model captures the pattern of unbiased responses in this task, while simultaneously explaining systematic biases away from normatively correct probabilities seen in other tasks. Copyright © 2018 Cognitive Science Society, Inc.

  11. Polymers for electronics and spintronics.

    PubMed

    Bujak, Piotr; Kulszewicz-Bajer, Irena; Zagorska, Malgorzata; Maurel, Vincent; Wielgus, Ireneusz; Pron, Adam

    2013-12-07

    This critical review is devoted to semiconducting and high spin polymers which are of great scientific interest in view of further development of the organic electronics and the emerging organic spintronic fields. Diversified synthetic strategies are discussed in detail leading to high molecular mass compounds showing appropriate redox (ionization potential (IP), electron affinity (EA)), electronic (charge carrier mobility, conductivity), optoelectronic (electroluminescence, photoconductivity) and magnetic (magnetization, ferromagnetic spin interactions) properties and used as active components of devices such as n- and p-channel field effect transistors, ambipolar light emitting transistors, light emitting diodes, photovoltaic cells, photodiodes, magnetic photoswitches, etc. Solution processing procedures developed with the goal of depositing highly ordered and oriented films of these polymers are also described. This is completed by the description of principal methods that are used for characterizing these macromolecular compounds both in solution and in the solid state. These involve various spectroscopic methods (UV-vis-NIR, UPS, pulse EPR), electrochemistry and spectroelectrochemistry, magnetic measurements (SQUID), and structural and morphological investigations (X-ray diffraction, STM, AFM). Finally, four classes of polymers are discussed in detail with special emphasis on the results obtained in the past three years: (i) high IP, (ii) high |EA|, (iii) low band gap and (iv) high spin ones.

  12. HZETRN: Description of a free-space ion and nucleon transport and shielding computer program

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Cucinotta, Francis A.; Shinn, Judy L.; Badhwar, Gautam D.; Silberberg, R.; Tsao, C. H.; Townsend, Lawrence W.; Tripathi, Ram K.

    1995-01-01

    The high-charge-and energy (HZE) transport computer program HZETRN is developed to address the problems of free-space radiation transport and shielding. The HZETRN program is intended specifically for the design engineer who is interested in obtaining fast and accurate dosimetric information for the design and construction of space modules and devices. The program is based on a one-dimensional space-marching formulation of the Boltzmann transport equation with a straight-ahead approximation. The effect of the long-range Coulomb force and electron interaction is treated as a continuous slowing-down process. Atomic (electronic) stopping power coefficients with energies above a few A MeV are calculated by using Bethe's theory including Bragg's rule, Ziegler's shell corrections, and effective charge. Nuclear absorption cross sections are obtained from fits to quantum calculations and total cross sections are obtained with a Ramsauer formalism. Nuclear fragmentation cross sections are calculated with a semiempirical abrasion-ablation fragmentation model. The relation of the final computer code to the Boltzmann equation is discussed in the context of simplifying assumptions. A detailed description of the flow of the computer code, input requirements, sample output, and compatibility requirements for non-VAX platforms are provided.

  13. One-Port Electronic Detection Strategies for Improving Sensitivity in Piezoelectric Resonant Sensor Measurements

    PubMed Central

    Hu, Zhongxu; Hedley, John; Keegan, Neil; Spoors, Julia; Gallacher, Barry; McNeil, Calum

    2016-01-01

    This paper describes a one-port mechanical resonance detection scheme utilized on a piezoelectric thin film driven silicon circular diaphragm resonator and discusses the limitations to such an approach in degenerate mode mass detection sensors. The sensor utilizes degenerated vibration modes of a radial symmetrical microstructure thereby providing both a sense and reference mode allowing for minimization of environmental effects on performance. The circular diaphragm resonator was fabricated with thickness of 4.5 µm and diameter of 140 µm. A PZT thin film of 0.75 µm was patterned on the top surface for the purposes of excitation and vibration sensing. The device showed a resonant frequency of 5.8 MHz for the (1, 1) mode. An electronic interface circuit was designed to cancel out the large static and parasitic capacitance allowing for electrical detection of the mechanical vibration thereby enabling the frequency split between the sense and reference mode to be measured accurately. The extracted motional current, proportional to the vibration velocity, was fed back to the drive to effectively increase the Q factor, and therefore device sensitivity, by more than a factor of 8. A software phase-locked loop was implemented to automatically track the resonant frequencies to allow for faster and accurate resonance detection. Results showed that by utilizing the absolute mode frequencies as an indication of sensor temperature, the variation in sensor temperature due to the heating from the drive electronics was accounted for and led to an ultimate measurement sensitivity of 2.3 Hz. PMID:27792154

  14. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant: A First Application of a One-Electron Quantum Cyclotron

    ScienceCinema

    Gabrielse, Gerald

    2018-05-22

    Remarkably, the famous UW measurement of the electron magnetic moment has stood since 1987. With QED theory, this measurement has determined the accepted value of the fine structure constant. This colloquium is about a new Harvard measurement of these fundamental constants. The new measurement has an uncertainty that is about six times smaller, and it shifts the values by 1.7 standard deviations. One electron suspended in a Penning trap is used for the new measurement, like in the old measurement. What is different is that the lowest quantum levels of the spin and cyclotron motion are resolved, and the cyclotron as well as spin frequencies are determined using quantum jump spectroscopy. In addition, a 0.1 mK Penning trap that is also a cylindrical microwave cavity is used to control the radiation field, to suppress spontaneous emission by more than a factor of 100, to control cavity shifts, and to eliminate the blackbody photons that otherwise stimulate excitations from the cyclotron ground state. Finally, great signal-to-noise for one-quantum transitions is obtained using electronic feedback to realize the first one-particle self-excited oscillator. The new methods may also allow a million times improved measurement of the 500 times small antiproton magnetic moment.

  15. Compensating for Effects of Humidity on Electronic Noses

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ryan, Margaret A.; Manatt, Kenneth; Zhou, Hanying; Manfreda, Allison

    2004-01-01

    A method of compensating for the effects of humidity on the readouts of electronic noses has been devised and tested. The method is especially appropriate for use in environments in which humidity is not or cannot be controlled for example, in the vicinity of a chemical spill, which can be accompanied by large local changes in humidity. Heretofore, it has been common practice to treat water vapor as merely another analyte, the concentration of which is determined, along with that of the other analytes, in a computational process based on deconvolution. This practice works well, but leaves room for improvement: changes in humidity can give rise to large changes in electronic-nose responses. If corrections for humidity are not made, the large humidity-induced responses may swamp smaller responses associated with low concentrations of analytes. The present method offers an improvement. The underlying concept is simple: One augments an electronic nose with a separate humidity and a separate temperature sensor. The outputs of the humidity and temperature sensors are used to generate values that are subtracted from the readings of the other sensors in an electronic nose to correct for the temperature-dependent contributions of humidity to those readings. Hence, in principle, what remains after corrections are the contributions of the analytes only. Laboratory experiments on a first-generation electronic nose have shown that this method is effective and improves the success rate of identification of analyte/ water mixtures. Work on a second-generation device was in progress at the time of reporting the information for this article.

  16. Infrared/visible/ultraviolet spectroscopic detection of one-electron- and two-electron-reduction products of fac-CIR(CO)/sub 3/(4bzpy)/sub 2/ (4bzpy = 4-benzoylpyridine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, C.F.; Wrighton, M.S.

    1988-11-16

    The results of a spectrochemical investigation of (fac-ClRe(CO)/sub 3/(4bzpy)/sub 2/) (4bzpy = 4-benzoylpyridine) concerning the nature of the products from one- and two-electron reduction of the complex are reported. The ir and uv/visible spectra of the one- and two-electron reduction products are compared. The spectral and electrochemical data obtained are uniformly consistent with the conclusion that the reduced metal complex has the electron(s) localized on the 4bzpy ligand(s). 14 refs., 2 figs., 1 tab.

  17. Boundary condition determined wave functions for the ground states of one- and two-electron homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Patil, S. H.; Tang, K. T.; Toennies, J. P.

    1999-10-01

    Simple analytical wave functions satisfying appropriate boundary conditions are constructed for the ground states of one-and two-electron homonuclear molecules. Both the asymptotic condition when one electron is far away and the cusp condition when the electron coalesces with a nucleus are satisfied by the proposed wave function. For H2+, the resulting wave function is almost identical to the Guillemin-Zener wave function which is known to give very good energies. For the two electron systems H2 and He2++, the additional electron-electron cusp condition is rigorously accounted for by a simple analytic correlation function which has the correct behavior not only for r12→0 and r12→∞ but also for R→0 and R→∞, where r12 is the interelectronic distance and R, the internuclear distance. Energies obtained from these simple wave functions agree within 2×10-3 a.u. with the results of the most sophisticated variational calculations for all R and for all systems studied. This demonstrates that rather simple physical considerations can be used to derive very accurate wave functions for simple molecules thereby avoiding laborious numerical variational calculations.

  18. Electron-phonon coupling from finite differences

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  19. From quantum to classical modeling of radiation reaction: A focus on stochasticity effects

    NASA Astrophysics Data System (ADS)

    Niel, F.; Riconda, C.; Amiranoff, F.; Duclous, R.; Grech, M.

    2018-04-01

    Radiation reaction in the interaction of ultrarelativistic electrons with a strong external electromagnetic field is investigated using a kinetic approach in the nonlinear moderately quantum regime. Three complementary descriptions are discussed considering arbitrary geometries of interaction: a deterministic one relying on the quantum-corrected radiation reaction force in the Landau and Lifschitz (LL) form, a linear Boltzmann equation for the electron distribution function, and a Fokker-Planck (FP) expansion in the limit where the emitted photon energies are small with respect to that of the emitting electrons. The latter description is equivalent to a stochastic differential equation where the effect of the radiation reaction appears in the form of the deterministic term corresponding to the quantum-corrected LL friction force, and by a diffusion term accounting for the stochastic nature of photon emission. By studying the evolution of the energy moments of the electron distribution function with the three models, we are able to show that all three descriptions provide similar predictions on the temporal evolution of the average energy of an electron population in various physical situations of interest, even for large values of the quantum parameter χ . The FP and full linear Boltzmann descriptions also allow us to correctly describe the evolution of the energy variance (second-order moment) of the distribution function, while higher-order moments are in general correctly captured with the full linear Boltzmann description only. A general criterion for the limit of validity of each description is proposed, as well as a numerical scheme for the inclusion of the FP description in particle-in-cell codes. This work, not limited to the configuration of a monoenergetic electron beam colliding with a laser pulse, allows further insight into the relative importance of various effects of radiation reaction and in particular of the discrete and stochastic nature of high

  20. Equivalent circuit-level model of quantum cascade lasers with integrated hot-electron and hot-phonon effects

    NASA Astrophysics Data System (ADS)

    Yousefvand, H. R.

    2017-12-01

    We report a study of the effects of hot-electron and hot-phonon dynamics on the output characteristics of quantum cascade lasers (QCLs) using an equivalent circuit-level model. The model is developed from the energy balance equation to adopt the electron temperature in the active region levels, the heat transfer equation to include the lattice temperature, the nonequilibrium phonon rate to account for the hot phonon dynamics and simplified two-level rate equations to incorporate the carrier and photon dynamics in the active region. This technique simplifies the description of the electron-phonon interaction in QCLs far from the equilibrium condition. Using the presented model, the steady and transient responses of the QCLs for a wide range of sink temperatures (80 to 320 K) are investigated and analysed. The model enables us to explain the operating characteristics found in QCLs. This predictive model is expected to be applicable to all QCL material systems operating in pulsed and cw regimes.

  1. The Effect of Descriptive Norms on Pregaming Frequency: Tests of Five Moderators.

    PubMed

    Merrill, Jennifer E; Kenney, Shannon R; Carey, Kate B

    2016-07-02

    Pregaming is highly prevalent on college campuses and associated with heightened levels of intoxication and risk of alcohol consequences. However, research examining the correlates of pregaming behavior is limited. Descriptive norms (i.e., perceptions about the prevalence or frequency of a behavior) are reliable and comparatively strong predictors of general drinking behavior, with recent evidence indicating that they are also associated with pregaming. We tested the hypothesis that higher descriptive norms for pregaming frequency would be associated with personal pregaming frequency. We also tested whether this effect would be stronger in the context of several theory-based moderators: female gender, higher injunctive norms (i.e., perceptions of others' attitudes toward a particular behavior), a more positive attitude toward pregaming, a stronger sense of identification with the drinking habits of other students, and stronger social comparison tendencies. College student drinkers (N = 198, 63% female) participated in an online survey assessing frequency of pregaming, descriptive norms, and hypothesized moderators. A multiple regression model revealed that higher descriptive norms, a more positive attitude toward pregaming, and stronger peer identification were significantly associated with greater pregaming frequency among drinkers. However, no moderators of the association between descriptive norms and pregaming frequency were observed. Descriptive norms are robust predictors of pregaming behavior, for both genders and across levels of several potential moderators. Future research seeking to understand pregaming behavior should consider descriptive norms, as well as personal attitudes and identification with student peers, as targets of interventions designed to reduce pregaming.

  2. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors.

    PubMed

    Ge, Feng; Liu, Zhen; Lee, Seon Baek; Wang, Xiaohong; Zhang, Guobing; Lu, Hongbo; Cho, Kilwon; Qiu, Longzhen

    2018-06-27

    One-step deposition of bi-functional semiconductor-dielectric layers for organic field-effect transistors (OFETs) is an effective way to simplify the device fabrication. However, the proposed method has rarely been reported in large-area flexible organic electronics. Herein, we demonstrate wafer-scale OFETs by bar coating the semiconducting and insulating polymer blend solution in one-step. The semiconducting polymer poly(3-hexylthiophene) (P3HT) segregates on top of the blend film, whereas dielectric polymethyl methacrylate (PMMA) acts as the bottom layer, which is achieved by a vertical phase separation structure. The morphology of blend film can be controlled by varying the concentration of P3HT and PMMA solutions. The wafer-scale one-step OFETs, with a continuous ultrathin P3HT film of 2.7 nm, exhibit high electrical reproducibility and uniformity. The one-step OFETs extend to substrate-free arrays that can be attached everywhere on varying substrates. In addition, because of the well-ordered molecular arrangement, the moderate charge transport pathway is formed, which resulted in stable OFETs under various organic solvent vapors and lights of different wavelengths. The results demonstrate that the one-step OFETs have promising potential in the field of large-area organic wearable electronics.

  3. Disruption or innovation? A qualitative descriptive study on the use of electronic patient-physician communication in patients with advanced cancer.

    PubMed

    Voruganti, Teja; Husain, Amna; Grunfeld, Eva; Webster, Fiona

    2018-03-04

    In the advanced cancer context, care coordination is often inadequate, leading to suboptimal continuity of care. We evaluated an electronic web-based tool which assembles the patient, their caregivers, and their healthcare providers in a virtual space for team-based communication. We sought to understand participant perceptions on electronic communication in general and the added value of the new tool in particular. We conducted a qualitative descriptive study with participants (patients, caregivers, cancer physicians) who participated in a 3-month pilot trial evaluating the tool. Interviews were thematically analyzed and the perspectives from patients, caregivers, and cancer physicians were triangulated. Interviews from six patients, five of their caregivers, and seven cancer physicians conducted alongside monthly outcome assessments were analyzed. We identified five themes relating participants' perspectives on electronic communication to their experience of care: (1) apparent gaps in care, (2) uncertainty in defining the circle of care, (3) relational aspects of communication, (4) incongruence between technology and social norms of patient-physician communication, and (5) appreciation but apprehension about the team-based communication tool for improving the experience of care. The potential of tools for electronic communication to bring together a team of healthcare providers with the patient and caregivers is significant but may pose new challenges to existing team structure and interpersonal dynamics. Patients and physicians were worried about the impact that electronic communication may have on the patient-physician relationship. Implementation approaches, which build on the relationship and integrate the team as a whole, could positively position electronic communication to enhance the team-based care.

  4. Twelve Tips for Effective Electronic Presentation.

    ERIC Educational Resources Information Center

    Crosby, Joy

    1994-01-01

    Offers 12 tips for effective electronic presentation. This article is intended for readers who may be considering using electronic presentation for the first time. Offers reasons for its popularity and occasions when it may be used. The tips offer assistance in the design and presentation of electronic material. (LZ)

  5. Effect of electron irradiation dose on the performance of avalanche photodiode electron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Wilde, Markus; Fukutani, Katsuyuki

    2009-01-01

    Avalanche photodiodes (APDs) are efficient detectors for electrons with energies below 100 keV. The damaging effects of 8 keV electron beam irradiation on the dark current and the output signal of the APD detector were investigated in this study. The APD dark current increases after electron doses exceeding 1.4x10{sup 13} cm{sup -2}. Preirradiation by high doses of 8 keV electrons further causes a deformation of the pulse height distribution of the APD output in the subsequent detection of low-flux electrons. This effect is particularly prominent when the energy of the detected electrons is lower than that of the damaging electrons.more » By comparing the experimental data with results of a simulation based on an electron trapping model, we conclude that the degradation of the APD performance is attributable to an enhancement of secondary-electron trapping at irradiation induced defects.« less

  6. Cost-effectiveness of electronic training in domestic violence risk assessment: ODARA 101.

    PubMed

    Hilton, N Zoe; Ham, Elke

    2015-03-01

    The need for domestic violence training has increased with the development of evidence-based risk assessment tools, which must be scored correctly for valid application. Emerging research indicates that training in domestic violence risk assessment can increase scoring accuracy, but despite the increasing popularity of electronic training, it is not yet known whether it can be an effective method of risk assessment training. In the present study, 87 assessors from various professions had training in the Ontario Domestic Assault Risk Assessment either face-to-face or using an electronic training program. The two conditions were equally effective, as measured by performance on a post-training skill acquisition test. Completion rates were 100% for face-to-face and 86% for electronic training, an improvement over a previously evaluated manual-only condition. The estimated per-trainee cost of electronic training was one third that of face-to-face training and expected to decrease. More rigorous evaluations of electronic training for risk assessment are recommended. © The Author(s) 2014.

  7. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we

  8. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  9. Impact of numerical relativity information on effective-one-body waveform models

    NASA Astrophysics Data System (ADS)

    Nagar, Alessandro; Riemenschneider, Gunnar; Pratten, Geraint

    2017-10-01

    We present a comprehensive comparison of the spin-aligned effective-one-body (EOB) waveform model of Nagar et al. [Phys. Rev. D 93, 044046 (2016), 10.1103/PhysRevD.93.044046], informed using 39 numerical-relativity (NR) data sets, against a set of 149 ℓ=m =2 NR waveforms freely available through the Simulating Extreme Spacetimes (SXS) catalog. We find that, without further calibration, these EOBNR waveforms have unfaithfulness—at design Advanced-LIGO sensitivity and evaluated with total mass M varying as 10 M⊙≤M ≤200 M⊙ —always below 1% against all NR waveforms except for three outliers, that still never exceed the 3% level; with a minimal retuning of the (effective) next-to-next-to-next-to-leading-order spin-orbit coupling parameter for the non-equal-mass and non-equal-spin sector, that only needs three more NR waveforms, one is left with another two (though different) outliers, with maximal unfaithfulness of up to only 2% for a total mass of 200 M⊙. We show this is the effect of slight inaccuracies in the phenomenological description of the postmerger waveform of Del Pozzo and Nagar [Phys. Rev. D 95, 124034 (2017), 10.1103/PhysRevD.95.124034] that was constructed by interpolating over only 40 NR simulations. We argue that this can be easily fixed by using either an alternative ringdown description (e.g., the superposition of quasi-normal-modes) or an improved version of the phenomenological representation. By analyzing a NR waveform with a mass ratio 8 and dimensionless spins +0.85 obtained with the bam code, we conclude that the model would benefit from NR simulations specifically targeted at improving the postmerger-ringdown phenomenological fits for mass ratios ≳8 and spins ≳0.8 . We finally show that some of the longest SXS q =7 waveforms suffer from systematic uncertainties in the postmerger-ringdown part that are interpreted as due to unphysical drifts of the center of mass: thus some care should be applied when these waveforms are used

  10. Differentiation of four Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different measurement techniques.

    PubMed

    Söderström, C; Rudnitskaya, A; Legin, A; Krantz-Rülcker, C

    2005-09-29

    Two electronic tongues based on different measurement techniques were applied to the discrimination of four molds and one yeast. Chosen microorganisms were different species of Aspergillus and yeast specie Zygosaccharomyces bailii, which are known as food contaminants. The electronic tongue developed in Linköping University was based on voltammetry. Four working electrodes made of noble metals were used in a standard three-electrode configuration in this case. The St. Petersburg electronic tongue consisted of 27 potentiometric chemical sensors with enhanced cross-sensitivity. Sensors with chalcogenide glass and plasticized PVC membranes were used. Two sets of samples were measured using both electronic tongues. Firstly, broths were measured in which either one of the molds or the yeast grew until late logarithmic phase or border of the stationary phase. Broths inoculated by either one of molds or the yeast was measured at five different times during microorganism growth. Data were evaluated using principal component analysis (PCA), partial least square regression (PLS) and linear discriminant analysis (LDA). It was found that both measurement techniques could differentiate between fungi species. Merged data from both electronic tongues improved differentiation of the samples in selected cases.

  11. Electrons in strong electromagnetic fields: spin effects and radiation reaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Wen, Meng; Keitel, Christoph H.

    2017-05-01

    expected to set in. We incorporate radiation reaction classically via the Landau-Lifshitz equation and demonstrate that although radiation reaction effects can have a significant effect on the electron trajectory, the Frenkel model and the classical Foldy-Wouthuysen model remain distinguishable also if radiation reaction effects are taken into account. Our calculations are also suitable to verify the Landau-Lifshitz equation for the radiation reaction of electrons and other spin one-half particles. 1. Thomas, L. H., "I. The kinematics of an electron with an axis," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 3(13), 1-22 (1927). 2. Bargmann, V., Michel, L., and Telegdi, V. L., "Precession of the polarization of particles moving in a homogeneous electromagnetic field," Phys. Rev. Lett. 2(10), 435-436 (1959). 3. Frenkel, J., "Die Elektrodynamik des rotierenden Elektrons," Z. Phys. 37(4-5), 243-262 (1926). 4. Frenkel, J., "Spinning electrons," Nature (London) 117(2949), 653-654 (1926). 5. Silenko, A. J., "Foldy-Wouthyusen transformation and semiclassical limit for relativistic particles in strong external fields," Phys. Rev. A 77(1), 012116 (2008). 6. Wen, M., Bauke, H., and Keitel, C. H., "Identifying the Stern-Gerlach force of classical electron dynamics," Sci. Rep. 6, 31624 (2016). 7. Wen, M., Keitel, C. H., and Bauke, H., "Spin one-half particles in strong electromagnetic fields: spin effects and radiation reaction," arXiv:1610.08951 (2016).

  12. π vs σ-Radical States of One-Electron Oxidized DNA/RNA Bases: A Density Functional Theory Study

    PubMed Central

    Kumar, Anil; Sevilla, Michael D.

    2013-01-01

    As a result of their inherent planarity, DNA base radicals generated by one electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals there are a number of nucleobase analogs such as one-electron oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogs. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one electron oxidized bases of thymine, T(N3-H)•, and uracil, U(N3-H)• are very close in energy, i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one electron oxidized radicals of cytosine, C•+, C(N4-H)•, adenine, A•+, A(N6-H)•, and guanine, G•+, G(N2-H)•, G(N1-H)• the π-radicals are ca. 16 to 41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)• with three discrete water molecules in the gas phase, is found to form a three-electron σ bond between N3 atom of uracil and O atom of a water molecule but on inclusion of full solvation and discrete hydration the π-radical remains most stable.. PMID:24000793

  13. π- vs σ-radical states of one-electron-oxidized DNA/RNA bases: a density functional theory study.

    PubMed

    Kumar, Anil; Sevilla, Michael D

    2013-10-03

    As a result of their inherent planarity, DNA base radicals generated by one-electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals, there are a number of nucleobase analogues such as one-electron-oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogues. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one-electron-oxidized bases of thymine, T(N3-H)(•), and uracil, U(N3-H)(•), are very close in energy; i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one-electron-oxidized radicals of cytosine, C(•+), C(N4-H)(•), adenine, A(•+), A(N6-H)(•), and guanine, G(•+), G(N2-H)(•), G(N1-H)(•), the π-radicals are ca. 16-41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)(•) with three discrete water molecules in the gas phase is found to form a three-electron σ bond between the N3 atom of uracil and the O atom of a water molecule, but on inclusion of full solvation and discrete hydration, the π-radical remains most stable.

  14. Electron Technology: ELTE 2016

    NASA Astrophysics Data System (ADS)

    Pisarkiewicz, Tadeusz; Kucewicz, Wojciech

    2016-12-01

    In this paper we present a review of research results and technical accomplishments presented by researchers from technical universities, governmental institutes and research companies during the XIIth Scientific Conference Electron Technology, ELTE 2016. This review is based on materials presented at four topical conference sessions: Microelectronics and Nanoelectronics, Photonics, Materials and Technologies, and Microsystems and also on materials presented by invited speakers at two dedicated sessions. Oral sessions were accompanied by the poster sessions. In effect about 50 papers gathered in this volume reflect the topics discussed at the Conference. A short description of technological and measurement possibilities in the laboratories of Academic Centre for Materials and Nanotechnology and also in the Department of Electronics of the Faculty of Computer Science, Electronics and Telecommunications AGH UST are given.

  15. Universality of Electron Distributions in Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Śmiałkowski, Andrzej; Giller, Maria

    2018-02-01

    Based on extensive air shower simulations, it is shown that electron distributions with respect to two angles determining the electron direction at a given shower age, for a fixed electron energy and lateral distance, are universal. This means that the distributions do not depend on the primary particle energy or mass (thus, neither on the interaction model), shower zenith angle, or shower to shower fluctuations, if they are taken at the same shower age. Together with previous work showing the universality of the distributions of the electron energy, lateral distance (integrated over angles), and angle (integrated over lateral distance) for fixed electron energy, this paper completes a full universal description of the electron states at various shower ages. Analytical parametrizations of the full electron states are given. It is also shown that some distributions can be described by a number of variables smaller than five, with the new ones being products of old ones raised to some power. The accuracy of the present parametrization is sufficiently good to apply to showers with a primary energy uncertainty of 14% (as is the case at the Pierre Auger Observatory). The shower fluctuations in the chosen bins of the multidimensional variable space are about 6%, determining the minimum uncertainty needed for the parametrization of the universal distributions. An analytical way of estimating the effect of the geomagnetic field is given. Thanks to the universality of the electron distribution in any shower, a new method of shower reconstruction can be worked out from the data from observatories using the fluorescence technique. The light fluxes (both fluorescence and Cherenkov) for any shower age can be exactly predicted for a shower with any primary energy and shower maximum depth, so that the two quantities can be obtained by best fitting the predictions to the measurements.

  16. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  17. Multimedia content description framework

    NASA Technical Reports Server (NTRS)

    Bergman, Lawrence David (Inventor); Mohan, Rakesh (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor); Kim, Michelle Yoonk Yung (Inventor)

    2003-01-01

    A framework is provided for describing multimedia content and a system in which a plurality of multimedia storage devices employing the content description methods of the present invention can interoperate. In accordance with one form of the present invention, the content description framework is a description scheme (DS) for describing streams or aggregations of multimedia objects, which may comprise audio, images, video, text, time series, and various other modalities. This description scheme can accommodate an essentially limitless number of descriptors in terms of features, semantics or metadata, and facilitate content-based search, index, and retrieval, among other capabilities, for both streamed or aggregated multimedia objects.

  18. Applications of one-dimensional structured nanomaterials as biosensors and transparent electronics

    NASA Astrophysics Data System (ADS)

    Ishikawa, Fumiaki

    This dissertation presents applications of one-dimensional structured nanomaterials, carbon nanotubes and In2O3 nanowires, for biosensors and transparent electronics. Chapter 1 gives the motivation to study applications of one-dimensional structured nanomaterials, and also brief introduction to structure, synthesis, and electronic properties of carbon nanotubes and In2O3 nanowires. In Chapter 2, introduction and motivation of biosensors using nanotubes/nanowires is given, followed by an overview on important background knowledge and concepts in biosensing. In Chapter 3, application of carbon nanotube biosensors toward brown tide algae detection is presented. Our devices successfully detected a brown tide marker selectively with real-time response. In Chapter 4, we demonstrate that In2O3 nanowire biosensors coupled with an antibody mimic protein (Fibronectin, Fn) can be used to detect nucleocapsid (N) protein, a biomarker for severe acute respiratory syndrome (SARS), at concentrations to below the sub-nanomolar range. In Chapter 5, we develop an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. In Chapter 6, we investigate the effect of nanotube density on the biosensor performance, and proved that it plays an important role through systematic studies. In Chapter 7, I propose a future direction of nanobiosensors research, and show preliminary results along the proposed direction. I first present a concept of an ideal bioassay system with a list of requirements for the system, and propose the strategy of multi-integration to establish a system based on nanobiosensors that satisfies all of the requirements. In Chapter 8, we demonstrate high performance fully transparent transistors based on transfer printed aligned carbon nanotubes on both rigid and flexible substrates. We achieved device mobility as high as 1,300 cm 2V-1s-1 on glass substrates, which is the highest among

  19. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, L.-Y.; Starace, Anthony F.

    2007-10-15

    We analyze carrier-envelope phase (CEP) effects on electron wave-packet momentum and energy spectra produced by one or two few-cycle attosecond xuv pulses. The few-cycle attosecond pulses are assumed to have arbitrary phases. We predict CEP effects on ionized electron wave-packet momentum distributions produced by attosecond pulses having durations comparable to those obtained by Sansone et al. [Science 314, 443 (2006)]. The onset of significant CEP effects is predicted to occur for attosecond pulse field strengths close to those possible with current experimental capabilities. Our results are based on single-active-electron solutions of the three-dimensional, time-dependent Schroedinger equation including atomic potentials appropriatemore » for the H and He atoms.« less

  20. Orbital-dependent electron correlation effects in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Yi, Ming

    The iron chalcogenide superconductors constitute arguably one of the most intriguing families of the iron-based high temperature superconductors given their ability to superconduct at comparable temperatures as the iron pnictides, despite the lack of similarities in their magnetic structures and Fermi surface topologies. In particular, the lack of hole Fermi pockets at the Brillouin zone center posts a challenge to the previous proposal of spin fluctuation mediated pairing via Fermi surface nesting. In this talk, using angle-resolved photoemission spectroscopy measurements, I will present evidence that show that instead of Fermi surface topology, strong electron correlation observed in electron bandwidth is an important ingredient for superconductivity in the iron chalcogenides. Specifically, I will show i) there exists universal strong orbital-selective renormalization effects and proximity to an orbital-selective Mott phase in Fe1+yTe1-xSex, AxFe2-ySe2, and monolayer FeSe film on SrTiO3, and ii) in RbxFe2(Se1-zSz)2 , where sulfur substitution for selenium continuously suppresses superconductivity down to zero, little change occurs in the Fermi surface topology while a substantial reduction of electron correlation is observed in an expansion of the overall bandwidth, implying that electron correlation is one of the key tuning parameters for superconductivity in these materials.

  1. Zero point motion effect on the electronic properties of diamond, trans-polyacetylene and polyethylene

    NASA Astrophysics Data System (ADS)

    Cannuccia, E.; Marini, A.

    2012-09-01

    It has been recently shown, using ab-initio methods, that bulk diamond is characterized by a large band-gap renormalization (˜0.6 eV) induced by the electron-phonon interaction. In this work we show that in polymers, compared to bulk materials, the larger amplitude of the atomic vibrations makes the real excitations of the system be composed by entangled electron-phonon states. We prove that these states carry only a fraction of the electronic charge, thus leading, inevitably, to the failure of the electronic picture. The present results cast doubts on the accuracy of purely electronic calculations. They also lead to a critical revision of the state-of-the-art description of carbon-based nanostructures, opening a wealth of potential implications.

  2. The Effect of Descriptive Norms on Pregaming Frequency: Tests of Five Moderators

    PubMed Central

    Merrill, Jennifer E.; Kenney, Shannon R.; Carey, Kate B.

    2016-01-01

    Background Pregaming is highly prevalent on college campuses and associated with heightened levels of intoxication and risk of alcohol consequences. However, research examining the correlates of pregaming behavior is limited. Descriptive norms (i.e., perceptions about the prevalence or frequency of a behavior) are reliable and comparatively strong predictors of general drinking behavior, with recent evidence indicating that they are also associated with pregaming. Objectives We tested the hypothesis that higher descriptive norms for pregaming frequency would be associated with personal pregaming frequency. We also tested whether this effect would be stronger in the context of several theory-based moderators: female gender, higher injunctive norms (i.e., perceptions of others' attitudes toward a particular behavior), a more positive attitude toward pregaming, a stronger sense of identification with the drinking habits of other students, and stronger social comparison tendencies. Methods College student drinkers (N=198, 63% female) participated in an online survey assessing frequency of pregaming, descriptive norms, and hypothesized moderators. Results A multiple regression model revealed that higher descriptive norms, a more positive attitude toward pregaming, and stronger peer identification were significantly associated with greater pregaming frequency among drinkers. However, no moderators of the association between descriptive norms and pregaming frequency were observed. Conclusions/Importance Descriptive norms are robust predictors of pregaming behavior, for both genders and across levels of several potential moderators. Future research seeking to understand pregaming behavior should consider descriptive norms, as well as personal attitudes and identification with student peers, as targets of interventions designed to reduce pregaming. PMID:27070494

  3. Magnetic effects in the paraxial regime of elastic electron scattering

    NASA Astrophysics Data System (ADS)

    Edström, Alexander; Lubk, Axel; Rusz, Ján

    2016-11-01

    Motivated by a recent claim [Phys. Rev. Lett. 116, 127203 (2016), 10.1103/PhysRevLett.116.127203] that electron vortex beams can be used to image magnetism at the nanoscale in elastic scattering experiments, using transmission electron microscopy, a comprehensive computational study is performed to study magnetic effects in the paraxial regime of elastic electron scattering in magnetic solids. Magnetic interactions from electron vortex beams, spin polarized electron beams, and beams with phase aberrations are considered, as they pass through ferromagnetic FePt or antiferromagnetic LaMnAsO. The magnetic signals are obtained by comparing the intensity over a disk in the diffraction plane for beams with opposite angular momentum or aberrations. The strongest magnetic signals are obtained from vortex beams with large orbital angular momentum, where relative magnetic signals above 10-3 are indicated for 10 ℏ orbital angular momentum, meaning that relative signals of one percent could be expected with the even larger orbital angular momenta, which have been produced in experimental setups. All results indicate that beams with low acceleration voltage and small convergence angles yield stronger magnetic signals, which is unfortunately problematic for the possibility of high spatial resolution imaging. Nevertheless, under atomic resolution conditions, relative magnetic signals in the order of 10-4 are demonstrated, corresponding to an increase with one order of magnitude compared to previous work.

  4. Effective atomic numbers and electron density of dosimetric material

    PubMed Central

    Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.

    2009-01-01

    A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566

  5. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR CLEANING: DESCRIPTIVE QUESTIONNAIRES (UA-D-17.0)

    EPA Science Inventory

    The purpose of this SOP is to define the steps involved in cleaning the electronic data generated from data entry of the Descriptive Questionnaire. It applies to electronic data corresponding to the Descriptive Questionnaire that was scanned and verified by the Data Staff during...

  6. Influence of the parent cation on the thermalization of subexcitation electrons in solid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulet, T.; Jay-Gerin, J.; Patau, J.

    1990-09-06

    The authors report the results of their Monte Carlo simulations of the thermalization, recombination, and dissociative attachment of subexcitation electrons in solid water. A particular emphasis is placed on the description of the electrons motion in the Coulomb field of its parent cation (H{sub 2}O{sup +}) and on the effect of this positive charge on the fate of the electron. In comparing the results obtained with and without the parent cation they find on the one hand, that the dissociative attachment probability and the electron thermalization distances and times remain practically unaffected by the presence of H{sub 2}O{sup +}. Onmore » the other hand, they find that a certain proportion of subexcitation electrons can be captured, before they thermalize, by a process of dissociative recombination which yields various species such as O, H, OH, and H{sub 2}. The variation of this proportion and of the average thermalization distances and times with the energy of the subexcitation electrons is investigated.« less

  7. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.

    PubMed

    Chwiej, T; Szafran, B

    2013-04-17

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.

  8. Fast-particle energy loss to a quasi-one dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.; Zielinski, P.

    2000-03-01

    A theoretical investigation has been made of the fast-particle energy-loss to a quasi-one-dimensional electron gas (Q1DEG) within the framework of the random-phase-approximation (RPA). For this purpose, we use an exact analytical expression for the inverse dielectric function, which knows no bound as regards the subband occupancy, and the parabolic potential well to characterize the lateral confinement. Three geometries are considered: the fast-particle moving parallel to, being specularly reflected from, and shooting through the Q1DEG. The illustrative numerical examples in all the three geometries lead us to infer that the dominant contribution to the loss peaks comes from the intra- and inter-subband collective excitations.^1 We argue that the high resolution electron energy loss spectroscopy (HREELS) could prove to be a potential alternative of the existing optical (Raman or FIR) spectroscopies.^2 ^1 M.S. Kushwaha and P. Zielinski, Solid State Commun. 112, 605(1999). ^2 M.S. Kushwaha and P. Zielinski, Unpublished.

  9. Many-electron effects in the optical properties of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Spataru, Catalin D.; Ismail-Beigi, Sohrab; Capaz, Rodrigo B.; Louie, Steven G.

    2005-03-01

    Recent optical measurements on single-wall carbon nanotubes (SWCNT) showed anomalous behaviors that are indicative of strong many-electron effects. To understand these data, we performed ab initio calculation of self-energy and electron-hole interaction (excitonic) effects on the optical spectra of several SWCNTs. We employed a many-electron Green's function approach that determines both the quasiparticle and optical excitations from first principles. We found important many-electron effects that explain many of the puzzling experimental findings in the optical spectrum of these quasi-one dimensional systems, and are in excellent quantitative agreement with measurements. We have also calculated the radiative lifetime of the bright excitons in these tubes. Taking into account temperature effects and the existence of dark excitons, our results explain the radiative lifetime of excited nanotubes measured in time- resolved fluorescence experiments. This work was supported by the NSF under Grant No. DMR04-39768, and the U.S. DOE under Contract No. DE-AC03-76SF00098. Computational resources have been provided by NERSC and NPACI. RBC acknowledges financial support from the Guggenheim Foundation and Brazilian funding agencies CNPq, CAPES, FAPERJ, Instituto de Nanociências, FUJB-UFRJ and PRONEX-MCT.

  10. Towards a formal definition of static and dynamic electronic correlations.

    PubMed

    Benavides-Riveros, Carlos L; Lathiotakis, Nektarios N; Marques, Miguel A L

    2017-05-24

    Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress in the N-representability problem of the one-body density matrix for pure states, we propose a method to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.

  11. Self-Attractive Hartree Decomposition: Partitioning Electron Density into Smooth Localized Fragments.

    PubMed

    Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy

    2018-01-09

    Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.

  12. The Investigation of The Relationship Electronic Energy ˜ 1/ (Internuclear Distance) Regarding The Vibrational Electronic States of Hydrogen Molecule

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Yarman, Faruk; Ozaydin, Fatih

    2003-05-01

    The first author has previously shown the following [1]: Theorem 1: In a ``real" atomic or molecular wave-like description (i.e. a description embodying potential energy terms, in only Coulombian form), if different masses involved by the object are all over multiplied by the arbitrary number C, then the size of space R in which this object is installed, shrinks as much, and the total energy E of the object, is increased as much. We shall call M, the characteristic mass, a compound mass carrying the labour delineated by the internal motion of the object in hand. Since this is a mass, multiplying all of the different particles masses taking place in the object by C, makes it that M too is multiplied by C. This leads Theorem 2, as well as Theorem 3. Theorem 2: For any real wave like object, the product EMR^2 remains invariant, were M multiplied by the arbitrary number C. Theorem 3: The quantity EMR^2 is strapped to h^2. Thus, EMR^2 ˜ h^2 (1). Herein, we consider the cast EMR^2 , along the Born and Oppenheimer (B and O) Approximation [2], applied to the Schrodinger description of a diatomic molecule. It is known that, through the B and O Approximation, the nuclei motion of a diatomic molecule on the one hand, and the electronic motion associated with it on the other hand, can be handled through separate descriptions. In this work we are interested in only the electronic motion, for which the Schrodinger equation embodies only one mass, that of the electron mass; furthermore the overall potential energy input to this equation is made of just Coulomb potential energy terms, which makes that the description of concern is a real one. Thus Eq.(1), for the electronic motion of the bond in consideration, becomes 8π^2Emg_(in)R=n_in_jh^2 (2) ; m is the electron mass (here playing the role of the characteristic mass); E is the magnitude of the electronic energy of the molecule in hand, at the given state, and R the internuclear distance of the molecule at this state; ni and

  13. Kinetic description of electron beams in the solar chromosphere

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Mauas, Pablo J.

    1992-01-01

    We formulate the relativistic Fokker-Plank equation for a beam of accelerated electrons interacting with a partially ionized plasma. In our derivation we conserved those terms contributing to velocity diffusion and found that this effect cannot be neglected a priori. We compute the terms accounting for elastic and inelastic collisions with neutral hydrogen and helium. Collisions with neutral hydrogen are found to be dominant throughout the chromosphere, except at the uppermost layers close to the transition region. As an application, we compute the loss of energy and momentum for a power-law beam impinging on the solar chromosphere, for a particular case in which the Fokker-Planck equation can be integrated analytically. We find that most of the beam energy is deposited in a relatively thin region of the chromosphere, a result which is largely insensitive to the theoretical method employed to compute the energy deposition rate.

  14. Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuga, H., E-mail: nuga@p-grp.nucleng.kyoto-u.ac.jp; Fukuyama, A.; Yagi, M.

    2016-06-15

    To study runaway electron generation in disruptions, we have extended the three-dimensional (two-dimensional in momentum space; one-dimensional in the radial direction) Fokker-Planck code, which describes the evolution of the relativistic momentum distribution function of electrons and the induced toroidal electric field in a self-consistent manner. A particular focus is placed on the hot-tail effect in two-dimensional momentum space. The effect appears if the drop of the background plasma temperature is sufficiently rapid compared with the electron-electron slowing down time for a few times of the pre-quench thermal velocity. It contributes to not only the enhancement of the primary runaway electronmore » generation but also the broadening of the runaway electron distribution in the pitch angle direction. If the thermal energy loss during the major disruption is assumed to be isotropic, there are hot-tail electrons that have sufficiently large perpendicular momentum, and the runaway electron distribution becomes broader in the pitch angle direction. In addition, the pitch angle scattering also yields the broadening. Since the electric field is reduced due to the burst of runaway electron generation, the time required for accelerating electrons to the runaway region becomes longer. The longer acceleration period makes the pitch-angle scattering more effective.« less

  15. Correlation between resistance-change effect in transition-metal oxides and secondary-electron contrast of scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.; Yoda, T.; Kishida, S.

    2011-09-01

    Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory by providing a wide area filled with filaments, which can be regarded as one filament with large radius. The writing area on a nickel-oxide (NiO) film formed by conductive atomic-force microscopy was observed by scanning electron microscope, and a correlation between the contrast in a secondary-electron image (SEI) and the resistance written by C-AFM was revealed. In addition, the dependence of the SEI contrast on the beam accelerating voltage (Vaccel) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effects of electron irradiation and vacuum annealing on the C-AFM writing area, it was shown that the resistance-change effect is caused by exchange of oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low-resistance and high-resistance areas are, respectively, p-type Ni1+δO (δ < 0) and insulating (stoichiometric) or n-type Ni1+δO (δ ≥ 0).

  16. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition.

    PubMed

    Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A

    2013-03-15

    We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

  17. First principles studies of electron tunneling in proteins

    PubMed Central

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  18. Assurance Against Radiation Effects on Electronics

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2004-01-01

    Contents include the following: The Space Radiation Environment. The Effects on Electronics. The Environment in Action. NASA Approaches to Commercial Electronics: the mission mix, flight projects, and proactive research. Final Thoughts: atomic interactions, direct ionization, interaction with nucleus.

  19. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiationmore » testing of carbon nanotube field effect transistor will be discussed.« less

  20. Electronic Transport Properties of One Dimensional Zno Nanowires Studied Using Maximally-Localized Wannier Functions

    NASA Astrophysics Data System (ADS)

    Sun, Xu; Gu, Yousong; Wang, Xueqiang

    2012-08-01

    One dimensional ZnO NWs with different diameters and lengths have been investigated using density functional theory (DFT) and Maximally Localized Wannier Functions (MLWFs). It is found that ZnO NWs are direct band gap semiconductors and there exist a turn on voltage for observable current. ZnO nanowires with different diameters and lengths show distinctive turn-on voltage thresholds in I-V characteristics curves. The diameters of ZnO NWs are greatly influent the transport properties of ZnO NWs. For the ZnO NW with large diameter that has more states and higher transmission coefficients leads to narrow band gap and low turn on voltage. In the case of thinner diameters, the length of ZnO NW can effects the electron tunneling and longer supercell lead to higher turn on voltage.

  1. Effect of spin-orbit and on-site Coulomb interactions on the electronic structure and lattice dynamics of uranium monocarbide

    NASA Astrophysics Data System (ADS)

    Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.

    2016-08-01

    Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.

  2. Two in one: making electron and ion measurements using a single MCP in future top hat instruments.

    NASA Astrophysics Data System (ADS)

    Bedington, Robert; Saito, Yoshifumi

    To allow for the reduced use of spacecraft resources in future missions, we are developing techniques to enable both electrons and ions to be measured in a single top hat instrument. Top hat energy analyser instruments typically analyse charged particles from a few eV to a few tens keV. They consist of an electrostatic, energy-analyser section and a detector. MCPs (micro-channel plates) are the most commonly used detectors, because of their high sensitivity and strong heritage in space instrumentation. To detect the lowest energies of charged particles, a pre-accelerating bias potential is applied to the front surface of the MCP, however this voltage cannot be altered quickly without drastically affecting the detector response. Any instrument that detects both electrons and ions, will therefore typically use two detectors (with fixed voltages)—one for electrons, one for ions, and will often use two separate energy analysers. Significant resource savings are available however if just a single MCP can be used. This can be achieved by having incoming ions (and optionally incoming electrons also) impact a secondary electron emitting material, and thus release secondary electrons to be detected by a positively biased (electron-detecting) MCP. Unlike MCPs, the electrostatic, energy-analyser sections are able to have their voltages cycled extremely rapidly, so that they can be made to sample electrons and then ions in quick succession with minimal design changes required. Two secondary electron conversion methods are being investigated: ultra-thin carbon foils, and dynodes. Using carbon foils in front of the MCPs, incoming ions can be detected by the secondary electrons they release, while incoming electrons pass straight through them. Using dynodes all incoming particles can be converted to secondary electrons before detection. The challenges include finding materials with uniform electron emission responses for the desired energies and particles, managing electric

  3. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Rafael B., E-mail: rafaelbna@gmail.com; Almeida, J. S. de, E-mail: jailton-almeida@hotmail.com; Ferreira da Silva, A.

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However,more » the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.« less

  4. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide

  5. Phonon-induced localization of electron states in quasi-one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Xiong, Ye

    2007-02-01

    It is shown that hot phonons with random phases can cause localization of electron states in quasi-one-dimensional systems. Owing to the nature of long-range correlation of the disorder induced by phonons, only the states at edges of one-dimensional (1D) subbands are localized, and the states inside the 1D subbands are still extended. As a result, the conductance exhibits gradual quantum steps in varying the gate potential. By increasing the temperature the degree of localization increases. In the localization regime the distribution of Lyapunov exponent (LE) is Gaussian and the relation of the mean-value and standard variance of LE to the system size obeys the single-parameter hypothesis. The mean value of LE can be used as an order parameter to distinguish the local and extended states.

  6. Observation of two-center interference effects for electron impact ionization of N2

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari; Nur Ozer, Zehra; Dogan, Mevlut; Ning, Chuangang; Colgan, James; Madison, Don

    2015-08-01

    In 1966, Cohen and Fano (1966 Phys. Rev. 150 30) suggested that one should be able to observe the equivalent of Young’s double slit interference if the double slits were replaced by a diatomic molecule. This suggestion inspired many experimental and theoretical studies searching for double slit interference effects both for photon and particle ionization of diatomic molecules. These effects turned out to be so small for particle ionization that this work proceeded slowly and evidence for interference effects were only found by looking at cross section ratios. Most of the early particle work concentrated on double differential cross sections for heavy particle scattering and the first evidence for two-center interference for electron-impact triple differential cross section (TDCS) did not appear until 2006 for ionization of H2. Subsequent work has now firmly established that two-center interference effects can be seen in the TDCS for electron-impact ionization of H2. However, in spite of several experimental and theoretical studies, similar effects have not been found for electron-impact ionization of N2. Here we report the first evidence for two-center interference for electron-impact ionization of N2.

  7. Effects of electronic billboards on driver distraction.

    PubMed

    Dukic, Tania; Ahlstrom, Christer; Patten, Christopher; Kettwich, Carmen; Kircher, Katja

    2013-01-01

    There is an increase in electronic advertising billboards along major roads, which may cause driver distraction due to the highly conspicuous design of the electronic billboards. Yet limited research on the impact of electronic billboards on driving performance and driver behavior is available. The Swedish Transport Administration recently approved the installation of 12 electronic billboards for a trial period along a 3-lane motorway with heavy traffic running through central Stockholm, Sweden. The aim of this study was to evaluate the effect of these electronic billboards on visual behavior and driving performance. A total of 41 drivers were recruited to drive an instrumented vehicle passing 4 of the electronic billboards during day and night conditions. A driver was considered visually distracted when looking at a billboard continuously for more than 2 s or if the driver looked away from the road for a high percentage of time. Dependent variables were eye-tracking measures and driving performance measures. The visual behavior data showed that drivers had a significantly longer dwell time, a greater number of fixations, and longer maximum fixation duration when driving past an electronic billboard compared to other signs on the same road stretches. No differences were found for the factors day/night, and no effect was found for the driving behavior data. Electronic billboards have an effect on gaze behavior by attracting more and longer glances than regular traffic signs. Whether the electronic billboards attract too much attention and constitute a traffic safety hazard cannot be answered conclusively based on the present data.

  8. Spin entanglement in elastic electron scattering from quasi-one electron atoms

    NASA Astrophysics Data System (ADS)

    Fonseca Dos Santos, Samantha; Bartschat, Klaus

    2017-04-01

    We have extended our work on e-Li collisions to investigate low-energy elastic electron collisions with atomic hydrogen and other alkali targets (Na,K,Rb). These systems have been suggested for the possibility of continuously varying the degree of entanglement between the elastically scattered projectile and the valence electron. In order to estimate how well such a scheme may work in practice, we carried out overview calculations for energies between 0 and 10 eV and the full range of scattering angles 0° -180° . In addition to the relative exchange asymmetry parameter that characterizes the entanglement, we present the differential cross section in order to estimate whether the count rates in the most interesting energy-angle regimes are sufficient to make such experiments feasible in practice. Work supported by the NSF under PHY-1403245.

  9. Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.

    PubMed

    Yu, T; Wu, M W

    2015-07-01

    The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.

  10. Electron Damage Effects on Carbon Nanotube Thin Films

    DTIC Science & Technology

    2013-03-01

    ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS THESIS Jeremy S. Best, Captain, USMC AFIT-ENP-13-M-37 DEPARTMENT OF THE AIR FORCE AIR...Government and is not subject to copyright protection in the United States. AFIT-ENP-13-M-37 ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS...M-37 ELECTRON DAMAGE EFFECTS ON CARBON NANOTUBE THIN FILMS Jeremy S. Best, BS Aerospace Engineering Captain, USMC Approved: Dr. John McClory

  11. Self-Assembly of Electron Donor-Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing

    2016-05-11

    In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.

  12. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions

    NASA Astrophysics Data System (ADS)

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-01

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  13. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions.

    PubMed

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-04

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  14. a Time-Dependent Many-Electron Approach to Atomic and Molecular Interactions

    NASA Astrophysics Data System (ADS)

    Runge, Keith

    A new methodology is developed for the description of electronic rearrangement in atomic and molecular collisions. Using the eikonal representation of the total wavefunction, time -dependent equations are derived for the electronic densities within the time-dependent Hartree-Fock approximation. An averaged effective potential which ensures time reversal invariance is used to describe the effect of the fast electronic transitions on the slower nuclear motions. Electron translation factors (ETF) are introduced to eliminate spurious asymptotic couplings, and a local ETF is incorporated into a basis of traveling atomic orbitals. A reference density is used to describe local electronic relaxation and to account for the time propagation of fast and slow motions, and is shown to lead to an efficient integration scheme. Expressions for time-dependent electronic populations and polarization parameters are given. Electronic integrals over Gaussians including ETFs are derived to extend electronic state calculations to dynamical phenomena. Results of the method are in good agreement with experimental data for charge transfer integral cross sections over a projectile energy range of three orders of magnitude in the proton-Hydrogen atom system. The more demanding calculations of integral alignment, state-to-state integral cross sections, and differential cross sections are found to agree well with experimental data provided care is taken to include ETFs in the calculation of electronic integrals and to choose the appropriate effective potential. The method is found to be in good agreement with experimental data for the calculation of charge transfer integral cross sections and state-to-state integral cross sections in the one-electron heteronuclear Helium(2+)-Hydrogen atom system and in the two-electron system, Hydrogen atom-Hydrogen atom. Time-dependent electronic populations are seen to oscillate rapidly in the midst of collision event. In particular, multiple exchanges of the

  15. The effects of verbal descriptions on performance in lineups and showups.

    PubMed

    Wilson, Brent M; Seale-Carlisle, Travis M; Mickes, Laura

    2018-01-01

    Verbally describing a face has been found to impair subsequent recognition of that face from a photo lineup, a phenomenon known as the verbal overshadowing effect (Schooler & Engstler-Schooler, 1990). Recently, a large direct replication study successfully reproduced that original finding (Alogna et al., 2014). However, in both the original study and the replication studies, memory was tested using only target-present lineups (i.e., lineups containing the previously seen target face), making it possible to compute the correct identification rate (correct ID rate; i.e., the hit rate) but not the false identification rate (false ID rate; i.e., the false alarm rate). Thus, the lower correct ID rate for the verbal condition could reflect either reduced discriminability or a conservative criterion shift relative to the control condition. In four verbal overshadowing experiments reported here, we measured both correct ID rates and false ID rates using photo lineups (Experiments 1 and 2) or single-photo showups (Experiments 3 and 4). The experimental manipulation (verbally describing the face or not) occurred either immediately after encoding (Experiments 1 and 3) or 20-min after encoding (Experiments 2 and 4). In the immediate condition, discriminability did not differ between groups, but in the delayed condition, discriminability was lower in the verbal description group (i.e., a verbal overshadowing effect was observed). A fifth experiment found that the effect of the immediate-versus-delayed manipulation may be attributable to a change in the content of verbal descriptions, with the ratio of diagnostic to generic facial features in the descriptions decreasing as delay increases. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Microprocessor Design Using Hardware Description Language

    ERIC Educational Resources Information Center

    Mita, Rosario; Palumbo, Gaetano

    2008-01-01

    The following paper has been conceived to deal with the contents of some lectures aimed at enhancing courses on digital electronic, microelectronic or VLSI systems. Those lectures show how to use a hardware description language (HDL), such as the VHDL, to specify, design and verify a custom microprocessor. The general goal of this work is to teach…

  17. 32 CFR 806.8 - Description of requested record.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Description of requested record. 806.8 Section 806.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION... databases, word processing, and electronic mail files. ...

  18. 32 CFR 806.8 - Description of requested record.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Description of requested record. 806.8 Section 806.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION... databases, word processing, and electronic mail files. ...

  19. 32 CFR 806.8 - Description of requested record.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Description of requested record. 806.8 Section 806.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION... databases, word processing, and electronic mail files. ...

  20. 32 CFR 806.8 - Description of requested record.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Description of requested record. 806.8 Section 806.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION... databases, word processing, and electronic mail files. ...

  1. 32 CFR 806.8 - Description of requested record.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Description of requested record. 806.8 Section 806.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION... databases, word processing, and electronic mail files. ...

  2. Nonequilibrium Transport and the Bernoulli Effect of Electrons in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.

    2013-02-01

    Nonequilibrium transport of charged carriers in a two-dimensional electron gas is summarized from an experimental point of view. The transport regime in which the electron-electron interactions are enhanced at high bias leads to a range of striking effects in a two-dimensional electron gas. This regime of transport is quite different than the ballistic transport in which particles propagate coherently with no intercarrier energy transfer and the diffusive transport in which the momentum of the electron system is lost with the involvement of the phonons. Quite a few hydrodynamic phenomena observed in classical gasses have the electrical analogs in the current flow. When intercarrier scattering events dominate the transport, the momentum sharing via narrow angle scattering among the hot and cold electrons lead to negative resistance and electron pumping which can be viewed as the analog of the Bernoulli-Venturi effect observed classical gasses. The recent experimental findings and the background work in the field are reviewed.

  3. Modelling relativistic effects in momentum-resolved electron energy loss spectroscopy of graphene

    NASA Astrophysics Data System (ADS)

    Lyon, K.; Mowbray, D. J.; Miskovic, Z. L.

    2018-02-01

    We present an analytical model for the electron energy loss through a two-dimensional (2D) layer of graphene, fully taking into account relativistic effects. Using two different models for graphene's 2D conductivity, one a two-fluid hydrodynamic model with an added correction to account for the inter-band electron transitions near the Dirac point in undoped graphene, the other derived from ab initio plane-wave time-dependent density functional theory in the frequency domain (PW-TDDFT-ω) calculations applied on a graphene superlattice, we derive various different expressions for the probability density of energy and momentum transfer from the incident electron to graphene. To further compare with electron energy loss spectroscopy (EELS) experiments that use setups like scanning Transmission Electron Microscopy, we integrated our energy loss functions over a range of wavenumbers, and compared how the choice of range directly affects the shape, position, and relative heights of graphene's π → π* and σ → σ* transition peaks. Comparisons were made with experimental EELS data under different model inputs, revealing again the strong effect that the choice of wavenumber range has on the energy loss.

  4. Heavy ion beam-ionosphere interactions - Electron acceleration

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.

    1985-01-01

    Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.

  5. Berry phase effect on electronic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Di; Chang, Ming-Che; Niu, Qian

    2010-01-01

    Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A commonmore » thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.« less

  6. Effects of the electron-hole pair in Auger and X-ray photoemission spectroscopy from surfaces of Fe-Si

    NASA Astrophysics Data System (ADS)

    Gervasoni, J. L.; Jenko, M.; Poniku, B.; Belič, I.; Juan, A.

    2015-07-01

    In this work, we investigate in detail the effects due to the interaction between an electron and a stationary positive ion (or atomic hole) in the neighborhood of a surface of Fe-Si, having a strong plasmon peak in their electron energy loss spectra, when it is excited with synchrotron radiation. We take into account the effects due to the sudden creation of an electron and the residual holes, one in the case of X-ray photoemission spectroscopy (XPS) and two in the case of Auger electron spectroscopy (AES). We use a semi classical dielectric formulation for the photoelectron trajectory, and we estimated the parameter rs, the radius of the sphere occupied by one electron in the solid, which is critical in order to define the electron density of the alloy. With the cited formulation, we have obtained a detailed behavior of the different contributions of the collective excitations in both processes.

  7. Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.

    2015-05-19

    Reduction of U(VI) to U(IV) on mineral surfaces has been considered as a one-step two electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one electron reduction to U(V) without further progression to U(IV). We investigated the mechanisms of uranium reduction by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4 . The one electron reduction of U(VI) was first confirmed using the cyclic voltammetry method. Formation of nano-size uranium precipitates on the surface of magnetite at reducing potentials and dissolution of the solids at oxidizing potentials were observedmore » by in situ electrochemical AFM. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from 0.1 ~ 0.9 V (vs. Ag/AgCl) showed the presence of only U(V) and U(VI). The highest amount of U(V) relative to U(VI) was prepared at 0.7 V, where the longest average U–Oaxial distance of 2.05 ± 0.01 Å was evident in the same sample revealed by EXAFS analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of 0.9 V, which favors the one-electron reduction mechanism. U(V) did not disproportionate but stabilized on magnetite through precipitation of mixed-valence state U(VI)/U(V) solids.« less

  8. Solvent effects on the vibronic one-photon absorption profiles of dioxaborine heterocycles

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Hua; Halik, Marcus; Wang, Chuan-Kui; Marder, Seth R.; Luo, Yi

    2005-11-01

    The vibronic profiles of one-photon absorption spectra of dioxaborine heterocycles in gas phase and solution have been calculated at the Hartree-Fock and density-functional-theory levels. The polarizable continuum model has been applied to simulate the solvent effect, while the linear coupling model is used to compute the Franck-Condon and Herzberg-Teller contributions. It is found that a good agreement between theory and experiment can be achieved when the solvent effect and electron correlation are taken into account simultaneously. For the first excited charge-transfer state, the maximum of its Herzberg-Teller profile is blueshifted from that of the Franck-Condon profile. The shifted energy is found to be around 0.2eV, which agrees well with the measured energy difference between two- and one-photon absorptions of the first excited state.

  9. Electron-neutrino scattering off nuclei from two different theoretical perspectives

    NASA Astrophysics Data System (ADS)

    Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N.

    2016-07-01

    We analyze charged-current electron-neutrino cross sections on carbon. We consider two different theoretical approaches, on one hand the continuum random phase approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach, we compare the sum of quasielastic, multinucleon emission, coherent, and incoherent one-pion production cross sections (folded with the electron-neutrino T2K flux) with the charged-current inclusive electron-neutrino differential cross sections on carbon measured by T2K. We find a good agreement with the data. The multinucleon component is needed in order to reproduce the T2K electron-neutrino inclusive cross sections.

  10. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    NASA Astrophysics Data System (ADS)

    Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat

    2015-08-01

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.

  11. Effect of chromium doping on the correlated electronic structure of V2O3

    NASA Astrophysics Data System (ADS)

    Grieger, Daniel; Lechermann, Frank

    2014-09-01

    The archetypical strongly correlated Mott-phenomena compound V2O3 is known to show a paramagnetic metal-insulator transition driven by doping with chromium atoms and/or (negative) pressure. Via charge self-consistent density-functional theory+dynamical mean-field theory calculations we demonstrate that these two routes cannot be understood as equivalent. An explicit description of Cr-doped V2O3 by means of supercell calculations and the virtual crystal approximation is performed. Introducing chromium's additional electron to the system is shown to modify the overall many-body electronic structure substantially. Chromium doping increases electronic correlations which in addition induce charge transfers between Cr and the remaining V ions. Thereby the transition-metal orbital polarization is increased by the electron doping, in close agreement with experimental findings.

  12. One-electron densities of freely rotating Wigner molecules

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy

    2017-12-01

    A formalism enabling computation of the one-particle density of a freely rotating assembly of identical particles that vibrate about their equilibrium positions with amplitudes much smaller than their average distances is presented. It produces densities as finite sums of products of angular and radial functions, the length of the expansion being determined by the interplay between the point-group and permutational symmetries of the system in question. Obtaining from a convolution of the rotational and bosonic components of the parent wavefunction, the angular functions are state-dependent. On the other hand, the radial functions are Gaussians with maxima located at the equilibrium lengths of the position vectors of individual particles and exponents depending on the scalar products of these vectors and the eigenvectors of the corresponding Hessian as well as the respective eigenvalues. Although the new formalism is particularly useful for studies of the Wigner molecules formed by electrons subject to weak confining potentials, it is readily adaptable to species (such as ´balliums’ and Coulomb crystals) composed of identical particles with arbitrary spin statistics and permutational symmetry. Several examples of applications of the present approach to the harmonium atoms within the strong-correlation regime are given.

  13. Hand disinfection in a neonatal intensive care unit: continuous electronic monitoring over a one-year period.

    PubMed

    Helder, Onno K; van Goudoever, Johannes B; Hop, Wim C J; Brug, Johannes; Kornelisse, René F

    2012-10-08

    Good hand hygiene compliance is essential to prevent nosocomial infections in healthcare settings. Direct observation of hand hygiene compliance is the gold standard but is time consuming. An electronic dispenser with built-in wireless recording equipment allows continuous monitoring of its usage. The purpose of this study was to monitor the use of alcohol-based hand rub dispensers with a built-in electronic counter in a neonatal intensive care unit (NICU) setting and to determine compliance with hand hygiene protocols by direct observation. A one-year observational study was conducted at a 27 bed level III NICU at a university hospital. All healthcare workers employed at the NICU participated in the study. The use of bedside dispensers was continuously monitored and compliance with hand hygiene was determined by random direct observations. A total of 258,436 hand disinfection events were recorded; i.e. a median (interquartile range) of 697 (559-840) per day. The median (interquartile range) number of hand disinfection events performed per healthcare worker during the day, evening, and night shifts was 13.5 (10.8 - 16.7), 19.8 (16.3 - 24.1), and 16.6 (14.2 - 19.3), respectively. In 65.8% of the 1,168 observations of patient contacts requiring hand hygiene, healthcare workers fully complied with the protocol. We conclude that the electronic devices provide useful information on frequency, time, and location of its use, and also reveal trends in hand disinfection events over time. Direct observations offer essential data on compliance with the hand hygiene protocol. In future research, data generated by the electronic devices can be supplementary used to evaluate the effectiveness of hand hygiene promotion campaigns.

  14. A systematic review of the cost and cost-effectiveness of electronic discharge communications

    PubMed Central

    Sevick, Laura K; Esmail, Rosmin; Tang, Karen; Lorenzetti, Diane L; Ronksley, Paul; James, Matthew; Santana, Maria; Ghali, William A; Clement, Fiona

    2017-01-01

    Background The transition between acute care and community care can be a vulnerable period in a patients’ treatment due to the potential for postdischarge adverse events. The vulnerability of this period has been attributed to factors related to the miscommunication between hospital-based and community-based physicians. Electronic discharge communication has been proposed as one solution to bridge this communication gap. Prior to widespread implementation of these tools, the costs and benefits should be considered. Objective To establish the cost and cost-effectiveness of electronic discharge communications compared with traditional discharge systems for individuals who have completed care with one provider and are transitioning care to a new provider. Methods We conducted a systematic review of the published literature, using best practices, to identify economic evaluations/cost analyses of electronic discharge communication tools. Inclusion criteria were: (1) economic analysis and (2) electronic discharge communication tool as the intervention. Quality of each article was assessed, and data were summarised using a component-based analysis. Results One thousand unique abstracts were identified, and 57 full-text articles were assessed for eligibility. Four studies met final inclusion criteria. These studies varied in their primary objectives, methodology, costs reported and outcomes. All of the studies were of low to good quality. Three of the studies reported a cost-effectiveness measure ranging from an incremental daily cost of decreasing average discharge note completion by 1 day of $0.331 (2003 Canadian), a cost per page per discharge letter of €9.51 and a dynamic net present value of €31.1 million for a 5-year implementation of the intervention. None of the identified studies considered clinically meaningful patient or quality outcomes. Discussion Economic analyses of electronic discharge communications are scarcely reported, and with inconsistent

  15. A systematic review of the cost and cost-effectiveness of electronic discharge communications.

    PubMed

    Sevick, Laura K; Esmail, Rosmin; Tang, Karen; Lorenzetti, Diane L; Ronksley, Paul; James, Matthew; Santana, Maria; Ghali, William A; Clement, Fiona

    2017-07-02

    The transition between acute care and community care can be a vulnerable period in a patients' treatment due to the potential for postdischarge adverse events. The vulnerability of this period has been attributed to factors related to the miscommunication between hospital-based and community-based physicians. Electronic discharge communication has been proposed as one solution to bridge this communication gap. Prior to widespread implementation of these tools, the costs and benefits should be considered. To establish the cost and cost-effectiveness of electronic discharge communications compared with traditional discharge systems for individuals who have completed care with one provider and are transitioning care to a new provider. We conducted a systematic review of the published literature, using best practices, to identify economic evaluations/cost analyses of electronic discharge communication tools. Inclusion criteria were: (1) economic analysis and (2) electronic discharge communication tool as the intervention. Quality of each article was assessed, and data were summarised using a component-based analysis. One thousand unique abstracts were identified, and 57 full-text articles were assessed for eligibility. Four studies met final inclusion criteria. These studies varied in their primary objectives, methodology, costs reported and outcomes. All of the studies were of low to good quality. Three of the studies reported a cost-effectiveness measure ranging from an incremental daily cost of decreasing average discharge note completion by 1 day of $0.331 (2003 Canadian), a cost per page per discharge letter of €9.51 and a dynamic net present value of €31.1 million for a 5-year implementation of the intervention. None of the identified studies considered clinically meaningful patient or quality outcomes. Economic analyses of electronic discharge communications are scarcely reported, and with inconsistent methodology and outcomes. Further studies are needed

  16. Dirac electrons in quantum rings

    NASA Astrophysics Data System (ADS)

    Gioia, L.; Zülicke, U.; Governale, M.; Winkler, R.

    2018-05-01

    We consider quantum rings realized in materials where the dynamics of charge carriers mimics that of two-dimensional (2D) Dirac electrons. A general theoretical description of the ring-subband structure is developed that applies to a range of currently available 2D systems, including graphene, transition-metal dichalcogenides, and narrow-gap semiconductor quantum wells. We employ the scattering-matrix approach to calculate the electronic two-terminal conductance through the ring and investigate how it is affected by Dirac-electron interference. The interplay of pseudospin chirality and hard-wall confinement is found to distinctly affect the geometric phase that is experimentally accessible in mesoscopic-conductance measurements. We derive an effective Hamiltonian for the azimuthal motion of charge carriers in the ring that yields deeper insight into the physical origin of the observed transport effects, including the unique behavior exhibited by the lowest ring subband in the normal and topological (i.e., band-inverted) regimes. Our paper provides a unified approach to characterizing confined Dirac electrons, which can be used to explore the design of valley- and spintronic devices based on quantum interference and the confinement-tunable geometric phase.

  17. Electrodes mitigating effects of defects in organic electronic devices

    DOEpatents

    Heller, Christian Maria Anton [Albany, NY

    2008-05-06

    A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.

  18. Electronic cigarettes: human health effects.

    PubMed

    Callahan-Lyon, Priscilla

    2014-05-01

    With the rapid increase in use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes (e-cigarettes), users and non-users are exposed to the aerosol and product constituents. This is a review of published data on the human health effects of exposure to e-cigarettes and their components. Literature searches were conducted through September 2013 using multiple electronic databases. Forty-four articles are included in this analysis. E-cigarette aerosols may contain propylene glycol, glycerol, flavourings, other chemicals and, usually, nicotine. Aerosolised propylene glycol and glycerol produce mouth and throat irritation and dry cough. No data on the effects of flavouring inhalation were identified. Data on short-term health effects are limited and there are no adequate data on long-term effects. Aerosol exposure may be associated with respiratory function impairment, and serum cotinine levels are similar to those in traditional cigarette smokers. The high nicotine concentrations of some products increase exposure risks for non-users, particularly children. The dangers of secondhand and thirdhand aerosol exposure have not been thoroughly evaluated. Scientific evidence regarding the human health effects of e-cigarettes is limited. While e-cigarette aerosol may contain fewer toxicants than cigarette smoke, studies evaluating whether e-cigarettes are less harmful than cigarettes are inconclusive. Some evidence suggests that e-cigarette use may facilitate smoking cessation, but definitive data are lacking. No e-cigarette has been approved by FDA as a cessation aid. Environmental concerns and issues regarding non-user exposure exist. The health impact of e-cigarettes, for users and the public, cannot be determined with currently available data.

  19. Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks.

    PubMed

    Paukku, Y; Hill, G

    2011-05-12

    Electron affinities, ionization potentials, and redox potentials for DNA bases, base pairs, and N-methylated derivatives are computed at the DFT/M06-2X/6-31++G(d,p) level of theory. Redox properties of a guanine-guanine stack model are explored as well. Reduction and oxidation potentials are in good agreement with the experimental ones. Electron affinities of base pairs were found to be negative. Methylation of canonical bases affects the ionization potentials the most. Base pair formation and base stacking lower ionization potentials by 0.3 eV. Pairing of guanine with the 5-methylcytosine does not seem to influence the redox properties of this base pair much.

  20. One-electron oxidation of electronically diverse manganese(III) and nickel(II) salen complexes: transition from localized to delocalized mixed-valence ligand radicals.

    PubMed

    Kurahashi, Takuya; Fujii, Hiroshi

    2011-06-01

    Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society

  1. Descriptive statistics.

    PubMed

    Nick, Todd G

    2007-01-01

    Statistics is defined by the Medical Subject Headings (MeSH) thesaurus as the science and art of collecting, summarizing, and analyzing data that are subject to random variation. The two broad categories of summarizing and analyzing data are referred to as descriptive and inferential statistics. This chapter considers the science and art of summarizing data where descriptive statistics and graphics are used to display data. In this chapter, we discuss the fundamentals of descriptive statistics, including describing qualitative and quantitative variables. For describing quantitative variables, measures of location and spread, for example the standard deviation, are presented along with graphical presentations. We also discuss distributions of statistics, for example the variance, as well as the use of transformations. The concepts in this chapter are useful for uncovering patterns within the data and for effectively presenting the results of a project.

  2. Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale

    DOE PAGES

    Manfrinato, Vitor R.; Stein, Aaron; Zhang, Lihua; ...

    2017-04-18

    Patterning materials efficiently at the smallest length scales has been a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) andmore » the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.« less

  3. Demonstration Advanced Avionics System (DAAS) function description

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1982-01-01

    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.

  4. Electrochemical and Spectroscopic Evidence on the One-Electron Reduction of U(VI) to U(V) on Magnetite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.

    2015-05-19

    Reduction of U(VI) to U(VI) on mineral surfaces is often considered a one-step two-electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies Indicates U(VI) can undergo a one-electron reduction to U(V) without further progression to U(VI),. We investigated reduction pathways of uranium by reducing U(VI) electrochemically on a, magnetite electrode at,pH 3.4. Cyclic voltammetry confirms the one-electron reduction of U(VI) . Formation of nanosize uranium precipitates on the magnetite surface at reducing potentials and dissolution of the solids at oxidizing potentials are observed by in situ electrochemical atomic force microscopy. XPS, analysis Of the magnetitemore » electrodes polarized in uranium solutions at voltages - from -0.1 to -0.9 V (E-U(VI)/U(V)(0)= -0.135 V vs Ag/AgCl) show the presence of, only U(V) and U(VI). The sample with the highest U(V)/U(VI) ratio was prepared at -0.7 V, where the longest average U-O-axial distance of 2.05 + 0.01 A was evident in the same sample revealed by extended X-ray absorption fine structure analysis. The results demonstrate that the electrochemical reduction of U(VI) On magnetite only yields,U(V), even at a potential of -0.9 V, which favors the one-electron reduction mechanism, U(V) does not disproportionate but stabilizes on magnetite through precipitation Of mixed-valence state -U(V)/U(VI) solids.« less

  5. Proton Partial Breast Irradiation: Detailed Description of Acute Clinico-Radiologic Effects

    PubMed Central

    Ovalle, Valentina; Shaitelman, Simona; Hoffman, Karen; Amos, Richard; Perkins, George; Tereffe, Welela; Smith, Benjamin D.; Stauder, Michael; Woodward, Wendy

    2018-01-01

    Introduction: Accelerated partial breast irradiation (APBI) with protons results in a very different acute effect profile than standard whole breast irradiation. We reviewed our initial experience with proton APBI and felt that a detailed description of these effects were needed to permit a common tool to compare experience with this developing technology. Methods: Sixty sequential patients treated with proton APBI on a prospective protocol were evaluated and 43 patients with a minimum six-month follow-up underwent detailed photographic and radiologic analysis. The tumorectomy cavity plus an additional 1.5 cm clinical target volume (CTV) was treated with two or three passively-scattered proton beams to a dose of 34 Gy in 10 fractions in one week. Photographs were taken at the end of radiation, at two weeks, six weeks, and every six months thereafter. Mammography was obtained at six months after radiation and annually thereafter. All visual changes were categorized using the smallest meaningful gradations in findings and are demonstrated herein. All treatment-related mammographic findings are reported. Findings: Visual and mammographic findings showed a clear time-dependent relationship and significant variation between individuals. Peak skin reaction occurred at two to six weeks after completion of therapy. At two weeks most patients had either no visible effects and patchy erythema involving <50% of the treated skin (60%). At six weeks most patients had either patchy erythema involving <50% of the overlying skin (33%) or patchy erythema involving >50% of the treated skin (28%). Only one patient developed any moist desquamation. At six months most patients had no visible skin changes (57%) or a small, circular area of mild hyperpigmentation (33%). Mammographic changes seen at six months were regional skin thickening (40%), residual seroma (14%), localized retraction (26%), and fat necrosis (2%). A subcategorized variant on the CTCAE 4.0 was developed to foster

  6. Effectiveness of electronic guideline-based implementation systems in ambulatory care settings - a systematic review

    PubMed Central

    2009-01-01

    Background Electronic guideline-based decision support systems have been suggested to successfully deliver the knowledge embedded in clinical practice guidelines. A number of studies have already shown positive findings for decision support systems such as drug-dosing systems and computer-generated reminder systems for preventive care services. Methods A systematic literature search (1990 to December 2008) of the English literature indexed in the Medline database, Embase, the Cochrane Central Register of Controlled Trials, and CRD (DARE, HTA and NHS EED databases) was conducted to identify evaluation studies of electronic multi-step guideline implementation systems in ambulatory care settings. Important inclusion criterions were the multidimensionality of the guideline (the guideline needed to consist of several aspects or steps) and real-time interaction with the system during consultation. Clinical decision support systems such as one-time reminders for preventive care for which positive findings were shown in earlier reviews were excluded. Two comparisons were considered: electronic multidimensional guidelines versus usual care (comparison one) and electronic multidimensional guidelines versus other guideline implementation methods (comparison two). Results Twenty-seven publications were selected for analysis in this systematic review. Most designs were cluster randomized controlled trials investigating process outcomes more than patient outcomes. With success defined as at least 50% of the outcome variables being significant, none of the studies were successful in improving patient outcomes. Only seven of seventeen studies that investigated process outcomes showed improvements in process of care variables compared with the usual care group (comparison one). No incremental effect of the electronic implementation over the distribution of paper versions of the guideline was found, neither for the patient outcomes nor for the process outcomes (comparison two

  7. Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature

    NASA Astrophysics Data System (ADS)

    Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.

    2018-01-01

    Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

  8. Spin localization, magnetic ordering, and electronic properties of strongly correlated Ln2O3 sesquioxides (Ln=La, Ce, Pr, Nd)

    NASA Astrophysics Data System (ADS)

    El-Kelany, Kh. E.; Ravoux, C.; Desmarais, J. K.; Cortona, P.; Pan, Y.; Tse, J. S.; Erba, A.

    2018-06-01

    Lanthanide sesquioxides are strongly correlated materials characterized by highly localized unpaired electrons in the f band. Theoretical descriptions based on standard density functional theory (DFT) formulations are known to be unable to correctly describe their peculiar electronic and magnetic features. In this study, electronic and magnetic properties of the first four lanthanide sesquioxides in the series are characterized through a reliable description of spin localization as ensured by hybrid functionals of the DFT, which include a fraction of nonlocal Fock exchange. Because of the high localization of the f electrons, multiple metastable electronic configurations are possible for their ground state depending on the specific partial occupation of the f orbitals: the most stable configuration is here found and characterized for all systems. Magnetic ordering is explicitly investigated, and the higher stability of an antiferromagnetic configuration with respect to the ferromagnetic one is predicted. The critical role of the fraction of exchange on the description of their electronic properties (notably, on spin localization and on the electronic band gap) is addressed. In particular, a recently proposed theoretical approach based on a self-consistent definition—through the material dielectric response—of the optimal fraction of exchange in hybrid functionals is applied to these strongly correlated materials.

  9. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR CLEANING: DESCRIPTIVE QUESTIONNAIRE (UA-D-17.0)

    EPA Science Inventory

    The purpose of this SOP is to define the steps involved in cleaning the electronic data generated from data entry of the Descriptive Questionnaire. It applies to electronic data corresponding to the Descriptive Questionnaire that was scanned and verified by the data staff during...

  10. Substrate Effects for Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    A substrate for future atomic chain electronics, where adatoms are placed at designated positions and form atomically precise device components, is studied theoretically. The substrate has to serve as a two-dimensional template for adatom mounting with a reasonable confinement barrier and also provide electronic isolation, preventing unwanted coupling between independent adatom structures. For excellent structural stability, we demand chemical bonding between the adatoms and substrate atoms, but then good electronic isolation may not be guaranteed. Conditions are clarified for good isolation. Because of the chemical bonding, fundamental adatom properties are strongly influenced: a chain with group IV adatoms having two chemical bonds, or a chain with group III adatoms having one chemical bond is semiconducting. Charge transfer from or to the substrate atoms brings about unintentional doping, and the electronic properties have to be considered for the entire combination of the adatom and substrate systems even if the adatom modes are well localized at the surface.

  11. A Multi Water Bag model of drift kinetic electron plasmaa

    NASA Astrophysics Data System (ADS)

    Morel, Pierre; Ghiro, Florent Dreydemy; Berionni, Vincent; Coulette, David; Besse, Nicolas; Gürcan, Özgür D.

    2014-08-01

    A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010); J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)].

  12. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  13. A room with a viewpoint revisited: descriptive norms and hotel guests' towel reuse behavior.

    PubMed

    Bohner, Gerd; Schlüter, Lena E

    2014-01-01

    Field experiments on descriptive norms as a means to increase hotel guests' towel reuse [1] were replicated and extended. In two hotels in Germany (Study 1: N = 724; Study 2: N = 204), descriptive norm messages suggesting that 75% of guests had reused their towels, or a standard message appealing to environmental concerns, were placed in guests' bathrooms. Descriptive norm messages varied in terms of proximity of the reference group ("hotel guests" vs. "guests in this room") and temporal proximity (currently vs. two years previous). Reuse of towels was unobtrusively recorded. Results showed that reuse rates were high overall and that both standard and descriptive norm messages increased reuse rates compared to a no-message baseline. However, descriptive norm messages were not more effective than the standard message, and effects of proximity were inconsistent across studies. Discussion addresses cultural and conceptual issues in comparing the present findings with previous ones.

  14. Self-Consistent Superthermal Electron Effects on Plasmaspheric Refilling

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.; Moore, T. E.; Guiter, S. M.

    1997-01-01

    The effects of self-consistently including superthermal electrons in the definition of the ambipolar electric field are investigated for the case of plasmaspheric refilling after a geomagnetic storm. By using the total electron population in the hydrodynamic equations, a method for incorporating superthermal electron parameters in the electric field and electron temperature calculation is developed. Also, the ambipolar electric field is included in the kinetic equation for the superthermal electrons through a change of variables using the total energy and the first adiabatic invariant. Calculations based on these changes are performed by coupling time-dependent models of the thermal plasma and superthermal electrons. Results from this treatment of the electric field and the self-consistent development of the solution are discussed in detail. Specifically, there is a decreased thermal electron density in the plasmasphere during the first few minutes of refilling, a slightly accelerated proton shock front, and a decreased superthermal electron flux due to the deceleration by the electric field. The timescales of plasmaspheric refilling are discussed and determined to be somewhat shorter than previously calculated for the thermal plasma and superthermal electron population due to the effects of the field-aligned potential.

  15. Collective effects in the Thomson back-scattering between a laser pulse and a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Bacci, A.; Maroli, C.; Petrillo, V.; Serafini, L.

    2006-08-01

    Collective effects in the radiation emission via Thomson back-scattering of an intense optical laser pulse by high brightness electron beams are analyzed. The micro-bunching of the electron beam on the scale of the wavelength of the emitted radiation and the consequent free-electron-laser instability may significantly enhance the number of photons emitted. Scaling-laws of the radiation properties, both in the collective and incoherent spontaneous regimes versus laser and electron beam parameters are discussed in the framework of the one-dimensional model.

  16. Electronic tools to support medication reconciliation: a systematic review.

    PubMed

    Marien, Sophie; Krug, Bruno; Spinewine, Anne

    2017-01-01

    Medication reconciliation (MedRec) is essential for reducing patient harm caused by medication discrepancies across care transitions. Electronic support has been described as a promising approach to moving MedRec forward. We systematically reviewed the evidence about electronic tools that support MedRec, by (a) identifying tools; (b) summarizing their characteristics with regard to context, tool, implementation, and evaluation; and (c) summarizing key messages for successful development and implementation. We searched PubMed, the Cumulative Index to Nursing and Allied Health Literature, Embase, PsycINFO, and the Cochrane Library, and identified additional reports from reference lists, reviews, and patent databases. Reports were included if the electronic tool supported medication history taking and the identification and resolution of medication discrepancies. Two researchers independently selected studies, evaluated the quality of reporting, and extracted data. Eighteen reports relative to 11 tools were included. There were eight quality improvement projects, five observational effectiveness studies, three randomized controlled trials (RCTs) or RCT protocols (ie, descriptions of RCTs in progress), and two patents. All tools were developed in academic environments in North America. Most used electronic data from multiple sources and partially implemented functionalities considered to be important. Relevant information on functionalities and implementation features was frequently missing. Evaluations mainly focused on usability, adherence, and user satisfaction. One RCT evaluated the effect on potential adverse drug events. Successful implementation of electronic tools to support MedRec requires favorable context, properly designed tools, and attention to implementation features. Future research is needed to evaluate the effect of these tools on the quality and safety of healthcare. © The Author 2016. Published by Oxford University Press on behalf of the American

  17. An inconclusive study comparing the effect of concrete and abstract descriptions of belief-inconsistent information.

    PubMed

    Collins, Katherine A; Clément, Richard

    2018-01-01

    Linguistic bias is the differential use of linguistic abstraction (as defined by the Linguistic Category Model) to describe the same behaviour for members of different groups. Essentially, it is the tendency to use concrete language for belief-inconsistent behaviours and abstract language for belief-consistent behaviours. Having found that linguistic bias is produced without intention or awareness in many contexts, researchers argue that linguistic bias reflects, reinforces, and transmits pre-existing beliefs, thus playing a role in belief maintenance. Based on the Linguistic Category Model, this assumes that concrete descriptions reduce the impact of belief-inconsistent behaviours while abstract descriptions maximize the impact of belief-consistent behaviours. However, a key study by Geschke, Sassenberg, Ruhrmann, and Sommer [2007] found that concrete descriptions of belief-inconsistent behaviours actually had a greater impact than abstract descriptions, a finding that does not fit easily within the linguistic bias paradigm. Abstract descriptions (e.g. the elderly woman is athletic) are, by definition, more open to interpretation than concrete descriptions (e.g. the elderly woman works out regularly). It is thus possible that abstract descriptions are (1) perceived as having less evidentiary strength than concrete descriptions, and (2) understood in context (i.e. athletic for an elderly woman). In this study, the design of Geschke et al. [2007] was modified to address this possibility. We expected that the differences in the impact of concrete and abstract descriptions would be reduced or reversed, but instead we found that differences were largely absent. This study did not support the findings of Geschke et al. [2007] or the linguistic bias paradigm. We encourage further attempts to understand the strong effect of concrete descriptions for belief-inconsistent behaviour.

  18. Electronic cigarettes: human health effects

    PubMed Central

    Callahan-Lyon, Priscilla

    2014-01-01

    Objective With the rapid increase in use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes (e-cigarettes), users and non-users are exposed to the aerosol and product constituents. This is a review of published data on the human health effects of exposure to e-cigarettes and their components. Methods Literature searches were conducted through September 2013 using multiple electronic databases. Results Forty-four articles are included in this analysis. E-cigarette aerosols may contain propylene glycol, glycerol, flavourings, other chemicals and, usually, nicotine. Aerosolised propylene glycol and glycerol produce mouth and throat irritation and dry cough. No data on the effects of flavouring inhalation were identified. Data on short-term health effects are limited and there are no adequate data on long-term effects. Aerosol exposure may be associated with respiratory function impairment, and serum cotinine levels are similar to those in traditional cigarette smokers. The high nicotine concentrations of some products increase exposure risks for non-users, particularly children. The dangers of secondhand and thirdhand aerosol exposure have not been thoroughly evaluated. Conclusions Scientific evidence regarding the human health effects of e-cigarettes is limited. While e-cigarette aerosol may contain fewer toxicants than cigarette smoke, studies evaluating whether e-cigarettes are less harmful than cigarettes are inconclusive. Some evidence suggests that e-cigarette use may facilitate smoking cessation, but definitive data are lacking. No e-cigarette has been approved by FDA as a cessation aid. Environmental concerns and issues regarding non-user exposure exist. The health impact of e-cigarettes, for users and the public, cannot be determined with currently available data. PMID:24732161

  19. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    DOE PAGES

    Zhang, Lipeng; Xu, Haixuan; Kent, Paul R. C.; ...

    2016-05-06

    The emergence of two-dimensional metallic states at the LaAlO 3/SrTiO 3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that formore » nanowire heterostructure geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. Furthermore, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.« less

  20. A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics.

    PubMed

    Lima, Leandro R F; Hernández, Alexis R; Pinheiro, Felipe A; Lewenkopf, Caio

    2016-12-21

    Based on the investigation of the multi-terminal conductance of a system composed of two graphene nanoribbons, in which one is on top of the other and rotated by [Formula: see text], we propose a setup for a 50/50 electronic beam splitter that neither requires large magnetic fields nor ultra low temperatures. Our findings are based on an atomistic tight-binding description of the system and on the Green function method to compute the Landauer conductance. We demonstrate that this system acts as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the doping (Fermi energy). We show that this device is robust against thermal fluctuations and long range disorder, as zigzag valley chiral states of the nanoribbons are protected against backscattering. We suggest that the proposed device can be applied as the fundamental element of the Hong-Ou-Mandel interferometer, as well as a building block of many devices in electron optics.

  1. Incident-beam effects in electron-stimulated Auger-electron diffraction

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Cao, Jianming

    1991-04-01

    We have examined incident-beam effects in electron-stimulated Auger-electron diffraction (AED) on a cleaved GaAs(110) surface. The results indicate that incident-beam diffraction is significant in an AED experiment, and that the dissipative nature of the incident beam in contributing to the Auger process must be accounted for. We have developed a qualitative model that describes the trend of the polar-angle dependence of the Auger intensity for both the incident and exit beams. In calculating the diffraction features, we used a zeroth-order approximation to simulate the dissipation of the incident beam, which is found to adequately describe the experimental data.

  2. Stockholder projector analysis: A Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors

    NASA Astrophysics Data System (ADS)

    Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel

    2012-01-01

    A previously introduced partitioning of the molecular one-electron density matrix over atoms and bonds [D. Vanfleteren et al., J. Chem. Phys. 133, 231103 (2010)] is investigated in detail. Orthogonal projection operators are used to define atomic subspaces, as in Natural Population Analysis. The orthogonal projection operators are constructed with a recursive scheme. These operators are chemically relevant and obey a stockholder principle, familiar from the Hirshfeld-I partitioning of the electron density. The stockholder principle is extended to density matrices, where the orthogonal projectors are considered to be atomic fractions of the summed contributions. All calculations are performed as matrix manipulations in one-electron Hilbert space. Mathematical proofs and numerical evidence concerning this recursive scheme are provided in the present paper. The advantages associated with the use of these stockholder projection operators are examined with respect to covalent bond orders, bond polarization, and transferability.

  3. Visualizing changes in electron distribution in coupled chains of cytochrome bc(1) by modifying barrier for electron transfer between the FeS cluster and heme c(1).

    PubMed

    Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur

    2010-02-01

    Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites

  4. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2

  5. Reading Electronic and Printed Books with and without Adult Instruction: Effects on Emergent Reading

    ERIC Educational Resources Information Center

    Segal-Drori, Ora; Korat, Ofra; Shamir, Adina; Klein, Pnina S.

    2010-01-01

    The effects of electronic book (e-book) and printed book reading on children's emergent reading with and without adult instruction were investigated. One hundred twenty-eight 5- to 6-year-old kindergarten children from low SES families were randomly assigned to one of four groups (32 children each): (1) independently reading the e-book (EB); (2)…

  6. Effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties

    DOE PAGES

    Lopez-Bezanilla, Alejandro

    2016-01-20

    By means of a multi-scale first-principles approach, a description of the local electronic structure of 2D and narrow phosphorene sheets with various types of modifications is presented. Firtly, a rational argument based on the geometry of the pristine and modified P network, and supported by the Wannier functions formalism is introduced to describe a hybridization model of the P atomic orbitals. Ab initio calculations show that non-isoelectronic foreign atoms form quasi-bound states at varying energy levels and create different polarization states depending on the number of valence electrons between P and the doping atom. The quantum transport properties of modifiedmore » phosphorene ribbons are further described with great accuracy. The distortions on the electronic bands induced by the external species lead to strong backscattering effects on the propagating charge carriers. Depending on the energy of the charge carrier and the type of doping, the conduction may range from the diffusive to the localized regime. Interstitial defects at vacant sites lead to homogeneous transport fingerprints across different types of doping atoms. We suggest that the relatively low values of charge mobility reported in experimental measurements may have its origin in the presence of defects.« less

  7. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

    PubMed Central

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors. PMID:27997930

  8. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators.

    PubMed

    Tlelo-Cuautle, Esteban; Quintas-Valles, Antonio de Jesus; de la Fraga, Luis Gerardo; Rangel-Magdaleno, Jose de Jesus

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors.

  9. Dezhurov works with electronic equipment in Zvezda during Expedition Three

    NASA Image and Video Library

    2001-08-01

    ISS003-E-5486 (August 2001) --- Cosmonaut Vladimir Dezhurov of Rosaviakosmos, Expedition Three flight engineer, works on electronic equipment behind a panel in the Zvezda Service Module. Please note: The date identifiers on some frames are not accurate due to a technical problem with one of the Expedition Three cameras. When a specific date is given in the text or description portion, it is correct.

  10. Dezhurov works with electronic equipment in Zvezda during Expedition Three

    NASA Image and Video Library

    2001-08-01

    ISS003-E-5489 (August 2001) --- Cosmonaut Vladimir Dezhurov of Rosaviakosmos, Expedition Three flight engineer, works on electronic equipment behind a panel in the Zvezda Service Module. Please note: The date identifiers on some frames are not accurate due to a technical problem with one of the Expedition Three cameras. When a specific date is given in the text or description portion, it is correct.

  11. Tutorial: Radiation Effects in Electronic Systems

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2017-01-01

    This tutorial presentation will give an overview of radiation effects in electrical, electronic, and electromechanical (EEE) components as it applies to civilian space systems of varying size and complexity. The natural space environment presents many unique threats to electronic systems regardless of where the systems operate from low-Earth orbit to interplanetary space. The presentation will cover several topics, including: an overview and introduction to the applicable space radiation environments common to a broad range of mission designs; definitions and impacts of effects due to impinging particles in the space environment e.g., total ionizing dose (TID), total non-ionizing dose (TNID), and single-event effects (SEE); and, testing for and evaluation of TID, TNID, and SEE in EEE components.

  12. Rime and graupel: Description and characterization as revealed by low-temperature scanning electron microscopy

    USGS Publications Warehouse

    Rango, A.; Foster, J.; Josberger, E.G.; Erbe, E.F.; Pooley, C.; Wergin, W.P.

    2003-01-01

    Snow crystals, which form by vapor deposition, occasionally come in contact with supercooled cloud droplets during their formation and descent. When this occurs, the droplets adhere and freeze to the snow crystals in a process known as accretion. During the early stages of accretion, discrete snow crystals exhibiting frozen cloud droplets are referred to as rime. If this process continues, the snow crystal may become completely engulfed in frozen cloud droplets. The resulting particle is known as graupel. Light microscopic investigations have studied rime and graupel for nearly 100 years. However, the limiting resolution and depth of field associated with the light microscope have prevented detailed descriptions of the microscopic cloud droplets and the three-dimensional topography of the rime and graupel particles. This study uses low-temperature scanning electron microscopy to characterize the frozen precipitates that are commonly known as rime and graupel. Rime, consisting of frozen cloud droplets, is observed on all types of snow crystals including needles, columns, plates, and dendrites. The droplets, which vary in size from 10 to 100 μm, frequently accumulate along one face of a single snow crystal, but are found more randomly distributed on aggregations consisting of two or more snow crystals (snowflakes). The early stages of riming are characterized by the presence of frozen cloud droplets that appear as a layer of flattened hemispheres on the surface of the snow crystal. As this process continues, the cloud droplets appear more sinuous and elongate as they contact and freeze to the rimed crystals. The advanced stages of this process result in graupel, a particle 1 to 3 mm across, composed of hundreds of frozen cloud droplets interspersed with considerable air spaces; the original snow crystal is no longer discernible. This study increases our knowledge about the process and characteristics of riming and suggests that the initial appearance of the

  13. Toward a muon-specific electronic structure theory: effective electronic Hartree-Fock equations for muonic molecules.

    PubMed

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    2018-02-07

    An effective set of Hartree-Fock (HF) equations are derived for electrons of muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator, which are completely equivalent to the usual two-component HF equations used to derive stationary states of the muonic molecules. In these effective equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and the electrons effectively and is optimized during the self-consistent field cycles. While in the two-component HF equations a muon is treated as a quantum particle, in the effective HF equations it is absorbed into the effective potential and practically transformed into an effective potential field experienced by electrons. The explicit form of the effective potential depends on the nature of muon's vibrations and is derivable from the basis set used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in a series of muonic molecules containing all atoms from the second and third rows of the Periodic Table. To solve the algebraic version of the equations muon-specific Gaussian basis sets are designed for both muon and surrounding electrons and it is demonstrated that the optimized exponents are quite distinct from those derived for the hydrogen isotopes. The developed effective HF theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure theory that incorporates various types of quantum correlations into the muonic systems beyond the HF equations.

  14. A Room with a Viewpoint Revisited: Descriptive Norms and Hotel Guests' Towel Reuse Behavior

    PubMed Central

    Bohner, Gerd; Schlüter, Lena E.

    2014-01-01

    Field experiments on descriptive norms as a means to increase hotel guests' towel reuse [1] were replicated and extended. In two hotels in Germany (Study 1: N = 724; Study 2: N = 204), descriptive norm messages suggesting that 75% of guests had reused their towels, or a standard message appealing to environmental concerns, were placed in guests' bathrooms. Descriptive norm messages varied in terms of proximity of the reference group (“hotel guests” vs. “guests in this room”) and temporal proximity (currently vs. two years previous). Reuse of towels was unobtrusively recorded. Results showed that reuse rates were high overall and that both standard and descriptive norm messages increased reuse rates compared to a no-message baseline. However, descriptive norm messages were not more effective than the standard message, and effects of proximity were inconsistent across studies. Discussion addresses cultural and conceptual issues in comparing the present findings with previous ones. PMID:25084348

  15. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Lai, Ying-Chih; Zi, Yunlong; Wu, Changsheng; Wen, Zhen; Hu, Chenguo; Wang, Zhong Lin

    2016-11-22

    Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.

  16. Local description of a polyenic radical cation

    NASA Astrophysics Data System (ADS)

    Karafiloglou, P.; Kapsomenos, G.

    1995-06-01

    The various local electronic events occurring in a radical cation of a linear polyene with even number of centers are investigated by means of the calculation of the expectation values of second quantized density operators, in the framework of the general poly-electron population analysis. Two series of calculations in two limit geometries (a strong alternant and a polaron-like one) are performed by using as analysers both natural AOs in ab initio correlated wave functions, as well as the model orthogonal AOs in PPP + full CI ones. The probabilities of finding simultaneously the positive charge (+) and the radical center (·) follows, in accord with basic chemical intuition, an oscillating (even-odd) law, even at distant AO positions. The probability of having a transmission of the (+) charge through the π-bonds (when the (·) is located in one extremity of the polyene) is greater than this of the transmission of the (·). Comparing the radical cation with the parent polyene, it is shown that oxidation creates an important trend of single-double bond inversion even in strongly alternant geometry; this effect is more pronounced in bonds of the middle. The examination of various CDW structures shows that some of them can have small or negligible contributions; this counterintuitive and cooperative effect is rationalized by means of Moffitt's theorem. All the above effects are not the consequence of the polaron-like geometry, but are controlled from the topology of n-centers linearly disposed and involving ( n-1) electrons.

  17. Nonequilibrium electronic transport in a one-dimensional Mott insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich-Meisner, F.; Gonzalez, Ivan; Al-Hassanieh, K. A.

    2010-01-01

    We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state elec- tronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of themore » model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy.« less

  18. DLTS analysis of radiation-induced defects in one-MeV electron irradiated germanium and Alsub0.17Gasub0.83As solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. B.; Choi, C. G.; Loo, R. Y.

    1985-01-01

    The radiation-induced deep-level defects in one-MeV electron-irradiated germanium and AlxGal-xAs solar cell materials using the deep-level transient spectroscopy (DLTS) and C-V techniques were investigated. Defect and recombination parameters such as defect density and energy levels, capture cross sections and lifetimes for both electron and hole traps were determined. The germanium and AlGaAs p/n junction cells were irradiated by one-MeV electrons. The DLTS, I-V, and C-V measurements were performed on these cells. The results are summarized as follows: (1) for the irradiated germanium samples, the dominant electron trap was due to the E sub - 0.24 eV level with density around 4x10 to the 14th power 1/cu cm, independent of electron fluence, its origin is attributed to the vacancy-donor complex defect formed during the electron irradiation; (2) in the one-MeV electron irradiated Al0.17Ga0.83 as sample, two dominant electron traps with energies of Ec-0.19 and -0.29 eV were observed, the density for both electron traps remained nearly constant, independent of electron fluence. It is shown that one-MeV electron irradiation creates very few or no new deep-level traps in both the germanium and AlxGa1-xAs cells, and are suitable for fabricating the radiation-hard high efficiency multijunction solar cells for space applications.

  19. Determining the level of awareness of the physicians in using the variety of electronic information resources and the effecting factors.

    PubMed

    Papi, Ahmad; Ghazavi, Roghayeh; Moradi, Salimeh

    2015-01-01

    Understanding of the medical society's from the types of information resources for quick and easy access to information is an imperative task in medical researches and management of the treatment. The present study was aimed to determine the level of awareness of the physicians in using various electronic information resources and the factors affecting it. This study was a descriptive survey. The data collection tool was a researcher-made questionnaire. The study population included all the physicians and specialty physicians of the teaching hospitals affiliated to Isfahan University of Medical Sciences and numbered 350. The sample size based on Morgan's formula was set at 180. The content validity of the tool was confirmed by the library and information professionals and the reliability was 95%. Descriptive statistics were used including the SPSS software version 19. On reviewing the need of the physicians to obtain the information on several occasions, the need for information in conducting the researches was reported by the maximum number of physicians (91.9%) and the usage of information resources, especially the electronic resources, formed 65.4% as the highest rate with regard to meeting the information needs of the physicians. Among the electronic information databases, the maximum awareness was related to Medline with 86.5%. Among the various electronic information resources, the highest awareness (43.3%) was related to the E-journals. The highest usage (36%) was also from the same source. The studied physicians considered the most effective deterrent in the use of electronic information resources as being too busy and lack of time. Despite the importance of electronic information resources for the physician's community, there was no comprehensive knowledge of these resources. This can lead to less usage of these resources. Therefore, careful planning is necessary in the hospital libraries in order to introduce the facilities and full capabilities of the

  20. What correlation effects are covered by density functional theory?

    NASA Astrophysics Data System (ADS)

    He, Yuan; Grafenstein, Jurgen; Kraka, Elfi; Cremer, Dieter

    The electron density distribution rho(r) generated by a DFT calculation was systematically studied by comparison with a series of reference densities obtained by wavefunction theory (WFT) methods that cover typical electron correlation effects. As a sensitive indicator for correlation effects the dipole moment of the CO molecule was used. The analysis reveals that typical LDA and GGA exchange functionals already simulate effects that are actually reminiscent of pair and three-electron correlation effects covered by MP2, MP4, and CCSD(T) in WFT. Correlation functionals contract the density towards the bond and the valence region thus taking negative charge out of the van der Waals region. It is shown that these improvements are relevant for the description of van der Waals interactions. Similar to certain correlated single-determinant WFT methods, BLYP and other GGA functionals underestimate ionic terms needed for a correct description of polar bonds. This is compensated for in hybrid functionals by mixing in HF exchange. The balanced mixing of local and non-local exchange and correlation effects leads to the correct description of polar bonds as in the B3LYP description of the CO molecule. The density obtained with B3LYP is closer to CCSD and CCSD(T) than to MP2 or MP4, which indicates that the B3LYP hybrid functional mimics those pair and three-electron correlation effects, which in WFT are only covered by coupled cluster methods.

  1. Effectiveness of a controlled drinking self-help manual: one-year follow-up results.

    PubMed

    Heather, N; Robertson, I; MacPherson, B; Allsop, S; Fulton, A

    1987-11-01

    Following the description of six-month follow-up results by Heather et al. (1986), this article reports one-year follow-up for a cohort of media-recruited problem drinkers sent either a controlled drinking self-help manual or a general advice and information booklet. Among those remaining in the sample, mean reduction in drinking at six months had been retained at the one-year point. This stability of reduced consumption included respondents showing evidence of late dependence or high consumption at initial assessment. When respondents who had received other forms of treatment had been excluded, the results confirmed the superior effectiveness of the self-help manual in enabling problem drinkers to reduce consumption. Evidence for a superior outcome among respondents interviewed by telephone, rather than contacted solely by post, was again observed. Some limited evidence is presented as to the reliability and validity of self-reports of consumption in the main sample.

  2. Communication: Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors

    NASA Astrophysics Data System (ADS)

    Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel

    2010-12-01

    A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.

  3. Counterion effects on the ultrafast dynamics of charge-transfer-to-solvent electrons.

    PubMed

    Rivas, N; Moriena, G; Domenianni, L; Hodak, J H; Marceca, E

    2017-12-06

    We performed femtosecond transient absorption (TA) experiments to monitor the solvation dynamics of charge-transfer-to-solvent (CTTS) electrons originating from UV photoexcitation of ammoniated iodide in close proximity to the counterions. Solutions of KI were prepared in liquid ammonia and TA experiments were carried out at different temperatures and densities, along the liquid-gas coexistence curve of the fluid. The results complement previous femtosecond TA work by P. Vöhringer's group in neat ammonia via multiphoton ionization. The dynamics of CTTS-detached electrons in ammonia was found to be strongly affected by ion pairing. Geminate recombination time constants as well as escape probabilities were determined from the measured temporal profiles and analysed as a function of the medium density. A fast unresolved (τ < 250 fs) increase of absorption related to the creation/thermalization of solvated electron species was followed by two decay components: one with a characteristic time around 10 ps, and a slower one that remains active for hundreds of picoseconds. While the first process is attributed to an early recombination of (I, e - ) pairs, the second decay and its asymptote reflects the effect of the K + counterion on the geminate recombination dynamics, rate and yield. The cation basically acts as an electron anchor that restricts the ejection distance, leading to solvent-separated counterion-electron species. The formation of (K + , NH 3 , e - ) pairs close to the parent iodine atom brings the electron escape probability to very low values. Transient spectra of the electron species have also been estimated as a function of time by probing the temporal profiles at different wavelengths.

  4. Nitric Oxide Reduction to Ammonia by TiO 2 Electrons in Colloid Solution via Consecutive One-Electron Transfer Steps

    DOE PAGES

    Goldstein, Sara; Behar, David; Rajh, Tijana; ...

    2015-03-02

    The reaction mechanism of nitric oxide (NO) reduction by excess electrons on TiO 2 nanoparticles (e TiO2–) has been studied under anaerobic conditions. TiO 2 was loaded with 10–130 electrons per particle using γ-irradiation of acidic TiO 2 colloid solutions containing 2-propanol. The study is based on time-resolved kinetics and reactants and products analysis. The reduction of NO by e TiO2– is interpreted in terms of competition between a reaction path leading to formation of NH 3 and a path leading to N 2O and N 2. The proposed mechanism involves consecutive one-electron transfers of NO, and its reduction intermediatesmore » HNO, NH 2O•, and NH 2OH. The results show that e TiO2– does not reduce N 2O and N 2. Second-order rate constants of e TiO2– reactions with NO (740 ± 30 M –1 s –1) and NH 2OH (270 ± 30 M –1 s –1) have been determined employing the rapid-mixing stopped-flow technique and that with HNO (>1.3 × 10 6 M –1 s –1) was derived from fitting the kinetic traces to the suggested reaction mechanism, which is discussed in detail.« less

  5. The one-electron oxidation of a dithiolate molecule: the importance of chemical intuition.

    PubMed

    Bushnell, Eric A C; Burns, Thomas D; Boyd, Russell J

    2014-05-14

    A series of nine commonly used density functional methods were assessed to accurately predict the oxidation potential of the (C2H2S2(-2)/C2H2S2(•-)) redox couple. It was found that due to their greater tendency for charge delocalization the GGA functionals predict a structure where the radical electron is delocalized within the alkene backbone of C2H2S2(•-), whereas the hybrid functionals and the reference QCISD/cc-pVTZ predict that the radical electron remains localized on the sulfurs. However, chemical intuition suggests that the results obtained with the GGA functionals should be correct. Indeed, with the use of the geometries obtained at the HCTH/6-311++G(3df,3pd) level of theory both the QCISD and hybrid DFT methods yield a molecule with a delocalized electron. Notably, this new molecule lies at least 53 kJ mol(-1) lower in energy than the previously optimized one that had a localized radical. Using these new structures the calculated oxidation potential was found to be 2.71-2.97 V for the nine DFT functionals tested. The M06-L functional provided the best agreement with the QCISD/cc-pVTZ reference oxidation potential of 3.28 V.

  6. [Clinical Psychology in Primary Care: A Descriptive Study of One Year of Operation].

    PubMed

    Sánchez-Reales, S; Tornero-Gómez, M J; Martín-Oviedo, P; Redondo-Jiménez, M; del-Arco-Jódar, R

    2015-01-01

    Our aim is to present the first year of operation of a Clinical Psychology service in a Primary Care setting. A descriptive study was performed by analysing the requests and the care intervention of the Psychology Service, in collaboration with 36 general practitioners (33% of the staff), belonging to 6 health centres. Within the one year period, 171 outpatients from 15 years and older were referred with mild psychological disorders (> 61 in the global assessment functioning scale, APA, 2002). A total of 111 outpatients received psychological care. The main diagnoses were adaptation disorder, affective disorder, and anxiety. More than half (54.82%) of them achieved a full recovery. After a year follow up, a drop of 25.19% was observed in medicines use. The Primary Care Psychology team is a halfway unit between Primary Care practitioners and specialised units in order to deal with mild mental symptomatology which otherwise could be undertreated. It represents an important support for practitioners. Secondly, the early intervention can prevent mental problems becoming chronic, as shown by the drop in medication use. In spite of the not very high agreement between the practitioner's diagnoses and those made by the Psychology unit, it has set up an important means of communication and with direct and immediate interdisciplinary action. This should eventually lead to savings in economic resources and human suffering. Copyright © 2014. Publicado por Elsevier España, S.L.U.

  7. Electronic Transmutation (ET): Chemically Turning One Element into Another.

    PubMed

    Zhang, Xinxing; Lundell, Katie A; Olson, Jared K; Bowen, Kit H; Boldyrev, Alexander I

    2018-03-08

    The concept of electronic transmutation (ET) depicts the processes that by acquiring an extra electron, an element with the atomic number Z begins to have properties that were known to only belong to its neighboring element with the atomic number Z+1. Based on ET, signature compounds and chemical bonds that are composed of certain elements can now be designed and formed by other electronically transmutated elements. This Minireview summarizes the recent developments and applications of ET on both the theoretical and experimental fronts. Examples on the ET of Group 13 elements into Group 14 elements, Group 14 elements into Group 15 elements, and Group 15 elements into Group 16 elements are discussed. Compounds and chemical bonding composed of carbon, silicon, germanium, phosphorous, oxygen and sulfur now have analogues using transmutated boron, aluminum, gallium, silicon, nitrogen, and phosphorous. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remsing, Richard C.; Duignan, Timothy T.; Baer, Marcel D.

    Understanding the nature of ionic hydration at a fundamental level has eluded scientists despite intense interest for nearly a century. In particular, the microscopic origins of the asymmetry of ion solvation thermodynamics with respect to the sign of the ionic charge remains a mystery. Here, we determine the response of accurate quantum mechanical water models to strong nanoscale solvation forces arising from excluded volumes and ionic electrostatic fields. This is compared to the predictions of two important limiting classes of classical models of water with fixed point changes, differing in their treatment of "lone-pair" electrons. Using the quantum water modelmore » as our standard of accuracy, we find that a single fixed classical treatment of lone pair electrons cannot accurately describe solvation of both apolar and cationic solutes, underlining the need for a more flexible description of local electronic effects in solvation processes. However, we explicitly show that all water models studied respond to weak long-ranged electrostatic perturbations in a manner that follows macroscopic dielectric continuum models, as would be expected. We emphasize the importance of these findings in the context of realistic ion models, using density functional theory and empirical models, and discuss the implications of our results for quantitatively accurate reduced descriptions of solvation in dielectric media.« less

  9. A description of electron heating with an electrostatic potential jump in a parallel, collisionless, fire hose shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1988-01-01

    The electron heating required if protons scatter elastically in a parallel, collisionless shock is calculated. Near-elastic proton scattering off large amplitude background magnetic field fluctuations might be expected if the waves responsible for the shock dissipation are generated by the fire hose instability. The effects of an electrostatic potential jump in the shock layer are included by assuming that the energy lost by protons in traversing the potential jump is converted into electron thermal pressure. It is found that the electron temperature increase is a strong function of the potential jump. Comparison is made to the parallel shock plasma simulation of Quest (1987).

  10. The Audio Description as a Physics Teaching Tool

    ERIC Educational Resources Information Center

    Cozendey, Sabrina; Costa, Maria da Piedade

    2016-01-01

    This study analyses the use of audio description in teaching physics concepts, aiming to determine the variables that influence the understanding of the concept. One education resource was audio described. For make the audio description the screen was freezing. The video with and without audio description should be presented to students, so that…

  11. Selection, procurement and description of Salem Limestone samples used to study the effects of acid rain

    NASA Astrophysics Data System (ADS)

    Ross, M.; Knab, L.

    1984-07-01

    The selection, procurement, and description of the Salem Limestone to be used in field exposure tests to assess the effects of acid rain on building stone are described. The rationale for choosing Salem Limestone is given and a brief geological description of the stone is provided. Preparation of the stone samples for field exposure, including cutting, surface finishing and labelling is presented.

  12. Electron transfer from a carbon nanotube into vacuum under high electric fields

    NASA Astrophysics Data System (ADS)

    Filip, L. D.; Smith, R. C.; Carey, J. D.; Silva, S. R. P.

    2009-05-01

    The transfer of an electron from a carbon nanotube (CNT) tip into vacuum under a high electric field is considered beyond the usual one-dimensional semi-classical approach. A model of the potential energy outside the CNT cap is proposed in order to show the importance of the intrinsic CNT parameters such as radius, length and vacuum barrier height. This model also takes into account set-up parameters such as the shape of the anode and the anode-to-cathode distance, which are generically portable to any modelling study of electron emission from a tip emitter. Results obtained within our model compare well to experimental data. Moreover, in contrast to the usual one-dimensional Wentzel-Kramers-Brillouin description, our model retains the ability to explain non-standard features of the process of electron field emission from CNTs that arise as a result of the quantum behaviour of electrons on the surface of the CNT.

  13. One and two-phonon processes of the spin-flip relaxation in quantum dots: Spin-phonon coupling mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Wu; Li, Shu-Shen

    2012-07-01

    We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.

  14. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosnovsky, Denis V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru; Novosibirsk State University, Pirogova 2, 630090, Novosibirsk

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals andmore » radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine

  15. Description of textures by a structural analysis.

    PubMed

    Tomita, F; Shirai, Y; Tsuji, S

    1982-02-01

    A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.

  16. Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron

    PubMed Central

    Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco

    2016-01-01

    The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor. PMID:27966598

  17. Dezhurov holds a GTS electronics unit in Zvezda during Expedition Three

    NASA Image and Video Library

    2001-08-01

    ISS003-E-5477 (August 2001) --- Cosmonaut Vladimir Dezhurov of Rosaviakosmos, Expedition Three flight engineer, holds a Global Time System (GTS) electronics unit in the Zvezda Service Module. Please note: The date identifiers on some frames are not accurate due to a technical problem with one of the Expedition Three cameras. When a specific date is given in the text or description portion, it is correct.

  18. Calculation of the electron wave function in a graded-channel double-heterojunction modulation-doped field-effect transistor

    NASA Technical Reports Server (NTRS)

    Mui, D. S. L.; Patil, M. B.; Morkoc, H.

    1989-01-01

    Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.

  19. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.

    2016-05-15

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperaturemore » and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.« less

  20. "Who Doesn't?"--The Impact of Descriptive Norms on Corruption.

    PubMed

    Köbis, Nils C; van Prooijen, Jan-Willem; Righetti, Francesca; Van Lange, Paul A M

    2015-01-01

    Corruption poses one of the major societal challenges of our time. Considerable advances have been made in understanding corruption on a macro level, yet the psychological antecedents of corrupt behavior remain largely unknown. In order to explain why some people engage in corruption while others do not, we explored the impact of descriptive social norms on corrupt behavior by using a novel behavioral measure of corruption. We conducted three studies to test whether perceived descriptive norms of corruption (i.e. the belief about the prevalence of corruption in a specific context) influence corrupt behavior. The results indicated that descriptive norms highly correlate with corrupt behavior--both when measured before (Study 1) or after (Study 2) the behavioral measure of corruption. Finally, we adopted an experimental design to investigate the causal effect of descriptive norms on corruption (Study 3). Corrupt behavior in the corruption game significantly drops when participants receive short anti-corruption descriptive norm primes prior to the game. These findings indicate that perceived descriptive norms can impact corrupt behavior and, possibly, could offer an explanation for inter-personal and inter-cultural variation in corrupt behavior in the real world. We discuss implications of these findings and draw avenues for future research.

  1. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    NASA Astrophysics Data System (ADS)

    Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.

    2016-12-01

    The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The 'effective one-band' approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott's atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.

  2. Strategies Nurse Managers Used to Offset Challenges during Electronic Medical Records Implementation: A Case Study

    ERIC Educational Resources Information Center

    Easterling, Latasha

    2015-01-01

    The purpose of this qualitative, descriptive case study was to discover successful approaches used, by nurse managers, to reduce barriers during the implementation of electronic medical record system in one hospital. Fourteen nurse managers were interviewed from an academic health science center in Mississippi. A pilot study was conducted to…

  3. Multilevel model of polycrystalline materials: grain boundary sliding description

    NASA Astrophysics Data System (ADS)

    Sharifullina, E.; Shveykin, A.; Trusov, P.

    2017-12-01

    Material behavior description in a wide range of thermomechanical effects is one of the topical areas in mathematical modeling. Inclusion of grain boundary sliding as an important mechanism of polycrystalline material deformation at elevated temperatures and predominant deformation mechanism of metals and alloys in structural superplasticity allows to simulate various deformation regimes and their transitions (including superplasticity regime with switch-on and switch-off regimes). The paper is devoted to description of grain boundary sliding in structure of two-level model, based on crystal plasticity, and relations for determination the contribution of this mechanism to inelastic deformation. Some results are presented concerning computational experiments of polycrystalline representative volume deformation using developed model.

  4. One-electron-mediated rearrangements of 2,3-disiladicarbene.

    PubMed

    Mondal, Kartik Chandra; Samuel, Prinson P; Roesky, Herbert W; Aysin, Rinat R; Leites, Larissa A; Neudeck, Sven; Lübben, Jens; Dittrich, Birger; Holzmann, Nicole; Hermann, Markus; Frenking, Gernot

    2014-06-25

    A disiladicarbene, (Cy-cAAC)2Si2 (2), was synthesized by reduction of Cy-cAAC:SiCl4 adduct with KC8. The dark-colored compound 2 is stable at room temperature for a year under an inert atmosphere. Moreover, it is stable up to 190 °C and also can be characterized by electron ionization mass spectrometry. Theoretical and Raman studies reveal the existence of a Si═Si double bond with a partial double bond between each carbene carbon atom and silicon atom. Cyclic voltammetry suggests that 2 can quasi-reversibly accept an electron to produce a very reactive radical anion, 2(•-), as an intermediate species. Thus, reduction of 2 with potassium metal at room temperature led to the isolation of an isomeric neutral rearranged product and an anionic dimer of a potassium salt via the formation of 2(•-).

  5. Finite-nuclear-size contribution to the g factor of a bound electron: Higher-order effects

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.; Ivanov, Vladimir G.

    2018-02-01

    A precision comparison of theory and experiments on the g factor of an electron bound in a hydrogenlike ion with a spinless nucleus requires a detailed account of finite-nuclear-size contributions. While the relativistic corrections to the leading finite-size contribution are known, the higher-order effects need an additional consideration. Two results are presented in the paper. One is on the anomalous-magnetic-moment correction to the finite-size effects and the other is due to higher-order effects in Z α m RN . We also present here a method to relate the contributions to the g factor of a bound electron in a hydrogenlike atom to its energy within a nonrelativistic approach.

  6. Innovative technologies in course Electrical engineering and electronics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. V.; Kiselev, V. I.; Kulikova, E. A.

    2017-11-01

    Department of Electrical Engineering and Nondestructive Testing, NRU “MPEI”, has been working on development Electronic Learning Resources (ELRs) in course Electrical Engineering and Electronics for several years. This work have been focused on education intensification and effectiveness while training bachelors in nonelectrical specializations including students from Thermal and Atomic Power Engineering Institute. The developed ELRs are united in a tutorial module consisting of three parts (Electrical Circuits, Electrical Machines, Basics of Electronics): electronic textbook and workbook (ETW); virtual laboratory sessions (VLS); training sessions (ETS); personal tasks (PT); testing system that contains electronic tests in all course subjects and built-in verification of a student’s work results in ETW, VLS, ETS, PT. The report presents samples of different ELRs in html format and MathCAD, MatLAB Simulink applications, copyrighted programs in Java2, Delphi, VB6, C++. The report also contains the experience description, advantages and disadvantages of the new technologies. It is mentioned that ELRs provide new opportunities in course studying.

  7. Hydrodynamic description of spin Calogero-Sutherland model

    NASA Astrophysics Data System (ADS)

    Abanov, Alexander; Kulkarni, Manas; Franchini, Fabio

    2009-03-01

    We study a non-linear collective field theory for an integrable spin-Calogero-Sutherland model. The hydrodynamic description of this SU(2) model in terms of charge density, charge velocity and spin currents is used to study non-perturbative solutions (solitons) and examine their correspondence with known quantum numbers of elementary excitations [1]. A conventional linear bosonization or harmonic approximation is not sufficient to describe, for example, the physics of spin-charge (non)separation. Therefore, we need this new collective bosonic field description that captures the effects of the band curvature. In the strong coupling limit [2] this model reduces to integrable SU(2) Haldane-Shastry model. We study a non-linear coupling of left and right spin currents which form a Kac-Moody algebra. Our quantum hydrodynamic description for the spin case is an extension for the one found in the spinless version in [3].[3pt] [1] Y. Kato,T. Yamamoto, and M. Arikawa, J. Phys. Soc. Jpn. 66, 1954-1961 (1997).[0pt] [2] A. Polychronakos, Phys Rev Lett. 70,2329-2331(1993).[0pt] [3] A.G.Abanov and P.B. Wiegmann, Phys Rev Lett 95, 076402(2005)

  8. An adaptive maneuvering logic computer program for the simulation of one-to-one air-to-air combat. Volume 2: Program description

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Owens, A. J.

    1975-01-01

    A detailed description is presented of the computer programs in order to provide an understanding of the mathematical and geometrical relationships as implemented in the programs. The individual sbbroutines and their underlying mathematical relationships are described, and the required input data and the output provided by the program are explained. The relationship of the adaptive maneuvering logic program with the program to drive the differential maneuvering simulator is discussed.

  9. Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L'vov, Victor A.; Taras Shevchenko National University, Kyiv 01601; Kosogor, Anna, E-mail: annakosogor@gmail.com

    2016-01-07

    A simple thermodynamic theory is proposed for the quantitative description of giant magnetocaloric effect observed in metamagnetic shape memory alloys. Both the conventional magnetocaloric effect at the Curie temperature and the inverse magnetocaloric effect at the transition from the ferromagnetic austenite to a weakly magnetic martensite are considered. These effects are evaluated from the Landau-type free energy expression involving exchange interactions in a system of a two magnetic sublattices. The findings of the thermodynamic theory agree with first-principles calculations and experimental results from Ni-Mn-In-Co and Ni-Mn-Sn alloys, respectively.

  10. The thermodynamical foundation of electronic conduction in solids

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    2018-03-01

    In elementary textbooks, the microscopic justification of Ohm’s local law in a solid medium starts with Drude’s classical model of electron transport and next discusses the quantum-dynamical and statistical amendments. In this paper, emphasis is laid instead upon the thermodynamical background motivated by the Joule-Lenz heating effect accompanying conduction and the fact that the conduction electrons are thermalized at the lattice temperature. Both metals and n-type semiconductors are considered; but conduction under a magnetic field is not. Proficiency in second-year thermodynamics and vector analysis is required from an undergraduate university student in physics so that the content of the paper can be taught to third-year students. The necessary elements of quantum mechanics are posited in this paper without detailed justification. We start with the equilibrium-thermodynamic notion of the chemical potential of the electron gas, the value of which distinguishes metals from semiconductors. Then we turn to the usage of the electrochemical potential in the description of near-equilibrium electron transport. The response of charge carriers to the electrochemical gradient involves the mobility, which is the reciprocal of the coefficient of the effective friction force opposing the carrier drift. Drude’s calculation of mobility is restated with the dynamical requirements of quantum physics. Where the carrier density is inhomogeneous, there appears diffusion, the coefficient of which is thermodynamically related to the mobility. Next, it is remarked that the release of heat was ignored in Drude’s original model. In this paper, the flow of Joule heat is handled thermodynamically within an energy balance where the voltage generator, the conduction electrons and the host lattice are involved in an explicit way. The notion of dissipation is introduced as the rate of entropy creation in a steady state. The body of the paper is restricted to the case of one

  11. The Longitudinal Associations between Perceived Descriptive Peer Norms and Eating and Drinking Behavior: An Initial Examination in Young Adults

    PubMed Central

    Jones, Andrew; Robinson, Eric

    2017-01-01

    Experimental and cross-sectional studies indicate that perceptions of the eating and drinking behavior of one's peers (perceived descriptive peer norms) are associated with the types, frequency and quantity of food, and beverages a person chooses to consume. At present, we know very little about the longitudinal association between perceived descriptive peer norms and future eating or drinking behavior. In this study, we examined whether perceived descriptive peer norms for different food/beverage types predicted frequency of consumption of food/beverages in university students. Three hundred and forty participants completed measures at baseline and follow-up for frequency of consumption of cakes/pastries, sugar containing beverages, and alcoholic beverages, as well as measures of perceived descriptive peer norms at both time points. Perceived descriptive peer norms predicted consumption of pastries/cakes at follow up when controlling for changes in these perceptions over time; believing that one's peers frequently consumed cakes/pastries was associated with an increased frequency of consumption over time, although the magnitude of this effect was small. There was no significant association between perceived descriptive peer norms and changes in frequency of consumption of sugar containing beverages or alcohol over time. In the present longitudinal study of young adults, beliefs about how often one's peers eat or drink specific food and beverages types had limited effect on future eating and drinking behavior. PMID:28167922

  12. Electronic structure of the chiral helimagnet and 3d-intercalated transition metal dichalcogenide Cr 1/3NbS 2

    DOE PAGES

    Sirca, N.; Mo, S. -K.; Bondino, F.; ...

    2016-08-18

    The electronic structure of the chiral helimagnet Cr 1/3NbS 2 has been studied with core level and angle-resolved photoemission spectroscopy (ARPES). Intercalated Cr atoms are found to be effective in donating electrons to the NbS 2 layers but also cause significant modifications of the electronic structure of the host NbS 2 material. Specifically, the data provide evidence that a description of the electronic structure of Cr 1/3NbS 2 on the basis of a simple rigid band picture is untenable. The data also reveal substantial inconsistencies with the predictions of standard density functional theory. In conclusion, the relevance of these resultsmore » to the attainment of a correct description of the electronic structure of chiral helimagnets, magnetic thin films/multilayers, and transition metal dichalcogenides intercalated with 3d magnetic elements is discussed.« less

  13. Test-electron analysis of the magnetic reconnection topology

    NASA Astrophysics Data System (ADS)

    Borgogno, D.; Perona, A.; Grasso, D.

    2017-12-01

    Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.

  14. A Multi-User Model for Effectively Communicating Research Through Electronic Media

    NASA Astrophysics Data System (ADS)

    Hinds, J. J.; Fairley, J. P.

    2003-12-01

    Electronic media have demonstrated potential for data exchange, dissemination of results to other scientists, communication with community interest groups, and education of the general public regarding scientific advances. Few researchers, however, receive training in the skills required to capture the attention of the broad spectrum of Internet users. Because different people assimilate information in different ways, effective communication is best accomplished using an appropriate mix of photographs, graphics, tables, and text. In addition, effective web page design requires a clear, consistent organizational structure, easily-navigated layout, and attention to details such as page printability, downloading time, and minimal page scrolling. One of the strengths of electronic media is that the user can chose an appropriate level of involvement for his or her interest. In designing a web page for the multidisciplinary NSF/EPSCoR "Biocomplexity in Extreme Environments" project, we divided potential users into three categories based on our perception of the level of detail they required: 1) project participants, 2) non-participants with technical backgrounds, and 3) the general public. By understanding the needs and expectations of potential viewers, it was possible to present each group with an appropriate balance of visual and textural elements. For example, project participants are often most interested in raw data, which can be effectively presented in tabular format. Non-participants with technical backgrounds are more interested in analyzed data, while a project overview, presented through photographs and graphics with minimal text, will be most effective for communicating with the general public. The completed web page illustrates one solution for effectively communicating with a diverse audience, and provides examples for meeting many of the challenges of web page design.

  15. MEIC electron cooling program

    DOE PAGES

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 10 34 cm -2s -1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); themore » other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  16. Quadrupolar Kondo effect in uranium heavy-electron materials?

    NASA Technical Reports Server (NTRS)

    Cox, D. L.

    1987-01-01

    The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.

  17. Effectiveness of early identification and electronic interventions for teens with risk factors for the development of heart disease and diabetes.

    PubMed

    Webber, Pam; Marsh, Wallace; Jung, Lorena; Gardiner, Mary; James, Jasmine; McMullan, Pam

    2016-01-01

    Serum risk factors for the development of heart disease and diabetes are not routinely evaluated in teens. The intent of this study was to determine the prevalence of these risk factors in teens and evaluate the effectiveness of a two-part electronic education program (recurring electronic lifestyle education program [REEP]) on reducing risks. Teens (n = 170) were recruited from one urban and one rural high school in the mid-Atlantic in 2014. Following baseline data collection in February, REEP was initiated and data collection repeated at 12 weeks. Data were analyzed and students sent a report with results and recommendations. One or more serum and/or physical risk factors were found in the majority of students with low vitamin D and elevated body mass index (BMI) being the most common. Correlations existed between elevated BMI and elevated diastolic blood pressure, low vitamin D, and low high-density lipoprotein. All but one risk factor (BMI) improved at 12 weeks. The majority of teens had one or more physical and/or serum risk factors. Using multiple electronic methods to deliver healthy lifestyle recommendations helps lower these risks. Also, Blackboard, an electronic learning platform, was found to be an effective data management and communication center. ©2015 American Association of Nurse Practitioners.

  18. Physics in one dimension

    NASA Astrophysics Data System (ADS)

    van Houselt, A.; Schäfer, J.; Zandvliet, H. J. W.; Claessen, R.

    2013-01-01

    With modern microelectronics moving towards smaller and smaller length scales on the (sub-) nm scale, quantum effects (apart from band structure and band gaps) have begun to play an increasingly important role. This especially concerns dimensional confinement to 2D (high electron mobility transistors and integer/fractional quantum Hall effect physics, graphene and topological insulators) and 1D (with electrical connections eventually reaching the quantum limit). Recent developments in the above-mentioned areas have revealed that the properties of electron systems become increasingly exotic as one progresses from the 3D case into lower dimensions. As compared to 2D electron systems, much less experimental progress has been achieved in the field of 1D electron systems. The main reason for the lack of experimental results in this field is related to the difficulty of realizing 1D electron systems. Atom chains created in quantum mechanical break junction set-ups are too short to exhibit the typically 1D signatures. As an alternative, atomic chains can be produced on crystal surfaces, either via assembling them one-by-one using a scanning tunnelling microscope or via self-assembly. The drawback of the latter systems is that the atomic chains are not truly 1D since they are coupled to the underlying crystal and sometimes even to the neighbouring chains. In retrospect, this coupling turns out to be an absolute necessity in the experiment since true 1D systems are disordered at any non-zero temperature [1]. The coupling to the crystal and/or neighbouring chains shifts the phase transition, for example, a Peierls instability, to a non-zero temperature and thus allows experiments to be performed in the ordered state. Here, we want to emphasize that the electronic properties of the 1D electron system are fundamentally different from its 2D and 3D counterparts. The Fermi liquid theory, which is applicable to 2D and 3D electron systems, breaks down spectacularly in the 1D case

  19. Accurate atomistic first-principles calculations of electronic stopping

    DOE PAGES

    Schleife, André; Kanai, Yosuke; Correa, Alfredo A.

    2015-01-20

    In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less

  20. The Effects of Electronic Communication on American Sign Language

    ERIC Educational Resources Information Center

    Schneider, Erin; Kozak, L. Viola; Santiago, Roberto; Stephen, Anika

    2012-01-01

    Technological and language innovation often flow in concert with one another. Casual observation by researchers has shown that electronic communication memes, in the form of abbreviations, have found their way into spoken English. This study focuses on the current use of electronic modes of communication, such as cell smartphones, and e-mail, and…

  1. Orbital order and effective mass enhancement in t2 g two-dimensional electron gases

    NASA Astrophysics Data System (ADS)

    Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan

    2015-03-01

    It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.

  2. The effect of beamwidth on the analysis of electron-beam-induced current line scans

    NASA Astrophysics Data System (ADS)

    Luke, Keung L.

    1995-04-01

    A real electron beam has finite width, which has been almost universally ignored in electron-beam-induced current (EBIC) theories. Obvious examples are point-source-based EBIC analyses, which neglect both the finite volume of electron-hole carriers generated by an energetic electron beam of negligible width and the beamwidth when it is no longer negligible. Gaussian source-based analyses are more realistic but the beamwidth has not been included, partly because the generation volume is much larger than the beamwidth, but this is not always the case. In this article Donolato's Gaussian source-based EBIC equation is generalized to include the beamwidth of a Gaussian beam. This generalized equation is then used to study three problems: (1) the effect of beamwidth on EBIC line scans and on effective diffusion lengths and the results are applied to the analysis of the EBIC data of Dixon, Williams, Das, and Webb; (2) unresolved questions raised by others concerning the applicability of the Watanabe-Actor-Gatos method to real EBIC data to evaluate surface recombination velocity; (3) the effect of beamwidth on the methods proposed recently by the author to determine the surface recombination velocity and to discriminate between the Everhart-Hoff and Kanaya-Okayama ranges which is the correct one to use for analyzing EBIC line scans.

  3. Electron-acoustic solitary waves in dense quantum electron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, A. P.; Shukla, P. K.; Bhowmik, C.

    2007-08-15

    A quantum hydrodynamic (QHD) model is used to investigate the propagation characteristics of nonlinear electron-acoustic solitary waves (EASWs) in a dense quantum plasma whose constituents are two groups of electrons: one inertial cold electrons and other inertialess hot electrons, and the stationary ions which form the neutralizing background. By using the standard reductive perturbation technique, a Kadomtsev-Petviashvili (KP) equation, which governs the dynamics of EASWs, is derived in both spherical and cylindrical geometry. The effects of cold electrons and the density correlations due to quantum fluctuations on the profiles of the amplitudes and widths of the solitary structures are examinedmore » numerically. The nondimensional parameter {delta}=n{sub c0}/n{sub h0}, which is the equilibrium density ratio of the cold to hot electron component, is shown to play a vital role in the formation of both bright and dark solitons. It is also found that the angular dependence of the physical quantities and the presence of cold electrons in a quantum plasma lead to the coexistence of some new interesting novel solitary structures quite distinctive from the classical ones.« less

  4. Predicting Reduction Rates of Energetic Nitroaromatic Compounds Using Calculated One-Electron Reduction Potentials

    DOE PAGES

    Salter-Blanc, Alexandra; Bylaska, Eric J.; Johnston, Hayley; ...

    2015-02-11

    The evaluation of new energetic nitroaromatic compounds (NACs) for use in green munitions formulations requires models that can predict their environmental fate. The susceptibility of energetic NACs to nitro reduction might be predicted from correlations between rate constants (k) for this reaction and one-electron reduction potentials (E1NAC) / 0.059 V, but the mechanistic implications of such correlations are inconsistent with evidence from other methods. To address this inconsistency, we have reevaluated existing kinetic data using a (non-linear) free-energy relationship (FER) based on the Marcus theory of outer-sphere electron transfer. For most reductants, the results are inconsistent with rate limitation bymore » an initial, outer-sphere electron transfer, suggesting that the strong correlation between k and E1NAC is justified only as an empirical model. This empirical correlation was used to calibrate a new quantitative structure-activity relationship (QSAR) using previously reported values of k for non-energetic NAC reduction by Fe(II) porphyrin and newly reported values of E1NAC determined using density functional theory at the B3LYP/6-311++G(2d,2p) level with the COSMO solvation model. The QSAR was then validated for energetic NACs using newly measured kinetic data for 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (DNAN). The data show close agreement with the QSAR, supporting its applicability to energetic NACs.« less

  5. Karpman-Washimi magnetization with electron-exchange effects in quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jamil, M.; Rasheed, A.

    2015-07-15

    The influence of quantum electron-exchange on the Karpman-Washimi ponderomotive magnetization is investigated in quantum plasmas. The ponderomotive magnetization and the total radiation power due to the non-stationary Karpman-Washimi interaction related to the time-varying field intensity are obtained as functions of the de Broglie wave length, Debye length, and electron-exchange parameter. The result shows that the electron-exchange effect enhances the cyclotron frequency due to the ponderomotive interactions in quantum plasmas. It is also shown that the electron-exchange effect on the Karpman-Washimi magnetization increases with increasing wave number. In addition, the Karpman-Washimi magnetization and the total radiation power increase with an increasemore » in the ratio of the Debye length to the de Broglie wave length. In streaming quantum plasmas, it is shown that the electron-exchange effect enhances the ponderomotive magnetization below the resonant wave number and, however, suppresses the ponderomotive magnetization above the resonant wave number. The variation of the Karpman-Washimi magnetization and the radiation power due to the variation of the electron-exchange effect and plasma parameters is also discussed.« less

  6. Confinement time exceeding one second for a toroidal electron plasma.

    PubMed

    Marler, J P; Stoneking, M R

    2008-04-18

    Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.

  7. Acute effects of using an electronic nicotine-delivery device (electronic cigarette) on myocardial function: comparison with the effects of regular cigarettes.

    PubMed

    Farsalinos, Konstantinos E; Tsiapras, Dimitris; Kyrzopoulos, Stamatis; Savvopoulou, Maria; Voudris, Vassilis

    2014-06-23

    Electronic cigarettes have been developed and marketed in recent years as smoking substitutes. However, no studies have evaluated their effects on the cardiovascular system. The purpose of this study was to examine the immediate effects of electronic cigarette use on left ventricular (LV) function, compared to the well-documented acute adverse effects of smoking. Echocardiographic examinations were performed in 36 healthy heavy smokers (SM, age 36 ± 5 years) before and after smoking 1 cigarette and in 40 electronic cigarette users (ECIG, age 35 ± 5 years) before and after using the device with "medium-strength" nicotine concentration (11 mg/ml) for 7 minutes. Mitral flow diastolic velocities (E, A), their ratio (E/A), deceleration time (DT), isovolumetric relaxation time (IVRT) and corrected-to-heart rate IVRT (IVRTc) were measured. Mitral annulus systolic (Sm), and diastolic (Em, Am) velocities were estimated. Myocardial performance index was calculated from Doppler flow (MPI) and tissue Doppler (MPIt). Longitudinal deformation measurements of global strain (GS), systolic (SRs) and diastolic (SRe, SRa) strain rate were also performed. Baseline measurements were similar in both groups. In SM, IVRT and IVRTc were prolonged, Em and SRe were decreased, and both MPI and MPIt were elevated after smoking. In ECIG, no differences were observed after device use. Comparing after-use measurements, ECIG had higher Em (P = 0.032) and SRe (P = 0.022), and lower IVRTc (P = 0.011), MPI (P = 0.001) and MPIt (P = 0.019). The observed differences were significant even after adjusting for changes in heart rate and blood pressure. Although acute smoking causes a delay in myocardial relaxation, electronic cigarette use has no immediate effects. Electronic cigarettes' role in tobacco harm reduction should be studied intensively in order to determine whether switching to electronic cigarette use may have long-term beneficial effects on smokers' health

  8. Ubiquitous Versus One-to-One

    ERIC Educational Resources Information Center

    McAnear, Anita

    2006-01-01

    When we planned the editorial calendar with the topic ubiquitous computing, we were thinking of ubiquitous computing as the one-to-one ratio of computers to students and teachers and 24/7 access to electronic resources. At the time, we were aware that ubiquitous computing in the computer science field had more to do with wearable computers. Our…

  9. Configuration interaction singles natural orbitals: An orbital basis for an efficient and size intensive multireference description of electronic excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Yinan; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu; Hohenstein, Edward G.

    2015-01-14

    Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCFmore » in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.« less

  10. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  11. Review of the Theoretical Description of Time-Resolved Angle-Resolved Photoemission Spectroscopy in Electron-Phonon Mediated Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemper, A. F.; Sentef, M. A.; Moritz, B.

    Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less

  12. Review of the Theoretical Description of Time-Resolved Angle-Resolved Photoemission Spectroscopy in Electron-Phonon Mediated Superconductors

    DOE PAGES

    Kemper, A. F.; Sentef, M. A.; Moritz, B.; ...

    2017-07-13

    Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less

  13. Electron-electron interaction and spin-orbit coupling in InAs/AlSb heterostructures with a two-dimensional electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilenko, V. I.; Krishtopenko, S. S., E-mail: ds_a-teens@mail.ru; Goiran, M.

    2011-01-15

    The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensionalmore » electrons is demonstrated.« less

  14. Characteristics and transport effects of the electron drift instability in Hall-effect thrusters

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Baalrud, S. D.; Chabert, P.

    2017-02-01

    The large electron {E}× {B} drift (relative to the ions) in the azimuthal direction of Hall-effect thrusters is well known to excite a strong instability. In a recent paper (Lafleur et al 2016 Phys. Plasmas 23 053503) we demonstrated that this instability leads to an enhanced electron-ion friction force that increases the electron cross-field mobility to levels similar to those seen experimentally. Here we extend this work by considering in detail the onset criteria for the formation of this instability (both in xenon, and other propellants of interest), and identify a number of important characteristics that it displays within Hall-effect thrusters (HETs): including the appearance of an additional non-dimensionalized scaling parameter (the instability growth-to-convection ratio), which controls the instability evolution and amplitude. We also investigate the effect that the instability has on electron and ion heating in HETs, and show that it leads to an ion rotation in the azimuthal direction that is in agreement with that seen experimentally.

  15. Electronic effects in high-energy radiation damage in tungsten

    DOE PAGES

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; ...

    2015-03-13

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in themore » molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.« less

  16. USBeSafe: Applying One Class SVM for Effective USB Event Anomaly Detection

    DTIC Science & Technology

    2016-04-25

    Directory and File Descriptions . . . . . . . . . . . . . . . . . 64 Bibliography 69 xv List of Figures 2.1 USB Descriptor Hierarchy...countless. One study performed in 2011 found that, in only the two year span prior, 50% of orga- nizations, both public and private, had sensitive...host machine. While ex - isting solutions to the rogue-TD attack paradigm require much in the way of access control maintenance and certificate management

  17. Effective electronic-only Kohn–Sham equations for the muonic molecules

    NASA Astrophysics Data System (ADS)

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    A set of effective electronic-only Kohn-Sham (EKS) equations are derived for the muonic molecules (containing a positively charged muon), which are completely equivalent to the coupled electronic-muonic Kohn-Sham equations derived previously within the framework of the Nuclear-Electronic Orbital density functional theory (NEO-DFT). The EKS equations contain effective non-coulombic external potentials depending on parameters describing muon vibration, which are optimized during the solution of the EKS equations making muon KS orbital reproducible. It is demonstrated that the EKS equations are derivable from a certain class of effective electronic Hamiltonians through applying the usual Hohenberg-Kohn theorems revealing a duality between the NEO-DFT and the effective electronic-only DFT methodologies. The EKS equations are computationally applied to a small set of muoniated organic radicals and it is demonstrated that a mean effective potential maybe derived for this class of muonic species while an electronic basis set is also designed for the muon. These computational ingredients are then applied to muoniated ferrocenyl radicals, which had been previously detected experimentally through adding muonium atom to ferrocene. In line with previous computational studies, from the six possible species the staggered conformer, where the muon is attached to the exo position of the cyclopentadienyl ring, is deduced to be the most stable ferrocenyl radical.

  18. Effective electronic-only Kohn-Sham equations for the muonic molecules.

    PubMed

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    2018-03-28

    A set of effective electronic-only Kohn-Sham (EKS) equations are derived for the muonic molecules (containing a positively charged muon), which are completely equivalent to the coupled electronic-muonic Kohn-Sham equations derived previously within the framework of the nuclear-electronic orbital density functional theory (NEO-DFT). The EKS equations contain effective non-coulombic external potentials depending on parameters describing the muon's vibration, which are optimized during the solution of the EKS equations making the muon's KS orbital reproducible. It is demonstrated that the EKS equations are derivable from a certain class of effective electronic Hamiltonians through applying the usual Hohenberg-Kohn theorems revealing a "duality" between the NEO-DFT and the effective electronic-only DFT methodologies. The EKS equations are computationally applied to a small set of muoniated organic radicals and it is demonstrated that a mean effective potential may be derived for this class of muonic species while an electronic basis set is also designed for the muon. These computational ingredients are then applied to muoniated ferrocenyl radicals, which had been previously detected experimentally through adding a muonium atom to ferrocene. In line with previous computational studies, from the six possible species, the staggered conformer, where the muon is attached to the exo position of the cyclopentadienyl ring, is deduced to be the most stable ferrocenyl radical.

  19. The current literature regarding the cardiovascular effects of electronic cigarettes.

    PubMed

    Nelluri, Bhargava; Murphy, Katie; Mookadam, Farouk; Mookadam, Martina

    2016-03-01

    Smoking is the leading cause of preventable morbidity and mortality globally. Electronic cigarettes are marketed both as nicotine substitutes and recreational devices. The popularity of electronic cigarettes has superseded other forms of nicotine replacement therapy. They are also popular in 'never smokers'. This review summarizes the available data regarding the cardiovascular effects of electronic cigarettes. The existing literature is limited and short term with a lack of high-quality studies and adequate follow-up. The available literature suggests that electronic cigarettes have sympathomimetic effects related to nicotine exposure, however, electronic cigarettes also contain other chemicals that require further investigation. Sparse data suggest vascular injury may be another concern. Further research is needed before broad recommendations can be made.

  20. Perpendicular dynamics of runaway electrons in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Gomez, I.; Martin-Solis, J. R.; Sanchez, R.

    2012-10-15

    In this paper, it will be shown that the runaway phenomenon in tokamak plasmas cannot be reduced to a one-dimensional problem, based on the competence between electric field acceleration and collisional friction losses in the parallel direction. A Langevin approach, including collisional diffusion in velocity space, will be used to analyze the two-dimensional runaway electron dynamics. An investigation of the runaway probability in velocity space will yield a criterion for runaway, which will be shown to be consistent with the results provided by the more simple test particle description of the runaway dynamics [Fuchs et al., Phys. Fluids 29, 2931more » (1986)]. Electron perpendicular collisional scattering will be found to play an important role, relaxing the conditions for runaway. Moreover, electron pitch angle scattering perpendicularly broadens the runaway distribution function, increasing the electron population in the runaway plateau region in comparison with what it should be expected from electron acceleration in the parallel direction only. The perpendicular broadening of the runaway distribution function, its dependence on the plasma parameters, and the resulting enhancement of the runaway production rate will be discussed.« less

  1. A connection between domain-averaged Fermi hole orbitals and electron number distribution functions in real space.

    PubMed

    Francisco, E; Martín Pendás, A; Blanco, M A

    2009-09-28

    We show in this article how for single-determinant wave functions the one-electron functions derived from the diagonalization of the Fermi hole, averaged over an arbitrary domain Omega of real space, and expressed in terms of the occupied canonical orbitals, describe coarse-grained statistically independent electrons. With these domain-averaged Fermi hole (DAFH) orbitals, the full electron number distribution function (EDF) is given by a simple product of one-electron events. This useful property follows from the simultaneous orthogonality of the DAFH orbitals in Omega, Omega(')=R(3)-Omega, and R(3). We also show how the interfragment (shared electron) delocalization index, delta(Omega,Omega(')), transforms into a sum of one-electron DAFH contributions. Description of chemical bonding in terms of DAFH orbitals provides a vivid picture relating bonding and delocalization in real space. DAFH and EDF analyses are performed on several test systems to illustrate the close relationship between both concepts. Finally, these analyses clearly prove how DAFH orbitals well localized in Omega or Omega(') can be simply ignored in computing the EDFs and/or delta(Omega,Omega(')), and thus do not contribute to the chemical bonding between the two fragments.

  2. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    PubMed Central

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  3. One-to-One Chromebooks: Instructional Tool Implementation and the Effects on Student Engagement

    ERIC Educational Resources Information Center

    Haselhorst, Crystal

    2017-01-01

    The purpose of this study was to determine if one-to-one Chromebook use has an effect on student engagement and how one-to-one Chromebooks are used as an instructional tool. Specifically, what are the perceptions of middle school administrators and middle school core content-area teachers on one-to-one Chromebook use as an instructional tool and…

  4. Electrical control of spin dynamics in finite one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Pertsova, A.; Stamenova, M.; Sanvito, S.

    2011-10-01

    We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating spin impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in the spirit of the s-d model, where the itinerant electrons are described by a tight-binding model while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin oscillations. We systematically study the effect of an electrostatic gate bias Vg on the interconnecting channel and we map out the long-range dynamical spin transfer as a function of Vg. We identify regions of Vg giving rise to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure of the channel.

  5. Towards Efficient and Accurate Description of Many-Electron Problems: Developments of Static and Time-Dependent Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi

    Understanding electronic behavior in molecular and nano-scale systems is fundamental to the development and design of novel technologies and materials for application in a variety of scientific contexts from fundamental research to energy conversion. This dissertation aims to provide insights into this goal by developing novel methods and applications of first-principle electronic structure theory. Specifically, we will present new methods and applications of excited state multi-electron dynamics based on the real-time (RT) time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) formalism, and new development of the multi-configuration self-consist field theory (MCSCF) for modeling ground-state electronic structure. The RT-TDHF/TDDFT based developments and applications can be categorized into three broad and coherently integrated research areas: (1) modeling of the interaction between moleculars and external electromagnetic perturbations. In this part we will first prove both analytically and numerically the gauge invariance of the TDHF/TDDFT formalisms, then we will present a novel, efficient method for calculating molecular nonlinear optical properties, and last we will study quantum coherent plasmon in metal namowires using RT-TDDFT; (2) modeling of excited-state charge transfer in molecules. In this part, we will investigate the mechanisms of bridge-mediated electron transfer, and then we will introduce a newly developed non-equilibrium quantum/continuum embedding method for studying charge transfer dynamics in solution; (3) developments of first-principles spin-dependent many-electron dynamics. In this part, we will present an ab initio non-relativistic spin dynamics method based on the two-component generalized Hartree-Fock approach, and then we will generalized it to the two-component TDDFT framework and combine it with the Ehrenfest molecular dynamics approach for modeling the interaction between electron spins and nuclear

  6. Electron spin resonance in YbRh2Si2: local-moment, unlike-spin and quasiparticle descriptions.

    PubMed

    Huber, D L

    2012-06-06

    Electron spin resonance (ESR) in the Kondo lattice compound YbRh(2)Si(2) has stimulated discussion as to whether the low-field resonance outside the Fermi liquid regime in this material is more appropriately characterized as a local-moment phenomenon or one that requires a Landau quasiparticle interpretation. In earlier work, we outlined a collective mode approach to the ESR that involves only the local 4f moments. In this paper, we extend the collective mode approach to a situation where there are two subsystems of unlike spins: the pseudospins of the ground multiplet of the Yb ions and the spins of the itinerant conduction electrons. We assume a weakly anisotropic exchange interaction between the two subsystems. With suitable approximations our expression for the g-factor also reproduces that found in recent unlike-spin quasiparticle calculations. It is pointed out that the success of the local-moment approach in describing the resonance is due to the fact that the susceptibility of the Yb subsystem dominates that of the conduction electrons with the consequence that the relative shift in the resonance frequency predicted by the unlike-spin models (and absent in the local-moment models) is ≪ 1. The connection with theoretical studies of a two-component model with like spins is also discussed.

  7. Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hall, James P.; Poynton, Fergus E.; Keane, Páraic M.; Gurung, Sarah P.; Brazier, John A.; Cardin, David J.; Winter, Graeme; Gunnlaugsson, Thorfinnur; Sazanovich, Igor V.; Towrie, Michael; Cardin, Christine J.; Kelly, John M.; Quinn, Susan J.

    2015-12-01

    To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

  8. Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy.

    PubMed

    Hall, James P; Poynton, Fergus E; Keane, Páraic M; Gurung, Sarah P; Brazier, John A; Cardin, David J; Winter, Graeme; Gunnlaugsson, Thorfinnur; Sazanovich, Igor V; Towrie, Michael; Cardin, Christine J; Kelly, John M; Quinn, Susan J

    2015-12-01

    To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

  9. Theoretical Modeling of Electromagnetic Field from Electron Bunches in Periodic Wire Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuchurka, S.; Benediktovitch, A.; Galyamin, S. N.

    The interaction of relativistic electrons with periodic conducting structures results in radiation via a number of mechanisms. In case of crystals one obtains parametric X-ray radiation, its frequency is determined by the distance between crystallographic planes and the direction of electron beam. If instead of a crystal one considers a periodic structure of metallic wires with the spacing of the order of mm, it is plausible to expect the emission of radiation of a similar nature (“diffraction response”) at THz frequencies. Additionally, a “long-wave” radiation will occur in this case with wavelengths much larger then structure periods. In this contribution,more » we present different theoretical approaches for describing the electromagnetic radiation field from prolonged electron bunch propagated in the lattice of metallic wires. The validity of these analytical descriptions is checked by numerical simulations. We discuss the possible applications of aforementioned structure as sources of coherent THz radiation.« less

  10. The Effect of Progressive Sentence Development Activities on 5th Graders' Description Skills

    ERIC Educational Resources Information Center

    Hamzadayi, Ergun

    2015-01-01

    The aim of this study was to examine the effect of progressive sentence development activities on 5th graders' description skills. The study was conducted based on the pretest-posttest quasi-experimental model with a control group. A total of 58 students participated in the study; 29 in the control group, and 29 in the experimental group. The…

  11. Effects of the electron-phonon coupling activation in collision cascades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, here we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage.

  12. Effects of the electron-phonon coupling activation in collision cascades

    DOE PAGES

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2017-04-20

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, here we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage.

  13. Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Virk, Naunidh; Autès, Gabriel; Yazyev, Oleg V.

    2018-04-01

    We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3 . Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2 π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.

  14. Unravelling electronic and structural requisites of triplet-triplet energy transfer by advanced electron paramagnetic resonance and density functional theory

    NASA Astrophysics Data System (ADS)

    Di Valentin, M.; Salvadori, E.; Barone, V.; Carbonera, D.

    2013-10-01

    Advanced electron paramagnetic resonance (EPR) techniques, in combination with Density Functional theory (DFT), have been applied to the comparative study of carotenoid triplet states in two major photosynthetic antenna complexes, the Peridinin-chlorophyll a-protein of dinoflagellates and the light-harvesting complex II of higher plants. Carotenoid triplet states are populated by triplet-triplet energy transfer (TTET) from chlorophyll molecules to photoprotect the system from singlet oxygen formation under light-stress conditions. The TTET process is strongly dependent on the relative arrangement and on the electronic properties of the triplet states involved. The proposed spectroscopic approach exploits the concept of spin conservation during TTET, which leads to recognisable spin polarisation effects in the time-resolved and field-swept echo-detected EPR spectra. The electron spin polarisation produced at the carotenoid acceptor site depends on the initial polarisation of the chlorophyll donor and on the relative geometrical arrangement of the donor-acceptor zero-field splitting axes. We have demonstrated that a proper analysis of the spectra in the framework of spin angular momentum conservation allows to derive the pathways of TTET and to gain insight into the structural requirements of this mechanism for those antenna complexes, whose X-ray structure is available. We have further proved that this method, developed for natural antenna complexes of known X-ray structure, can be extended to systems lacking structural information in order to derive the relative arrangement of the partners in the energy transfer process. The structural requirements for efficient TTET, obtained from time-resolved and pulse EPR, have been complemented by a detailed description of the electronic structure of the carotenoid triplet state, provided by pulse Electron-Nuclear DOuble Resonance (ENDOR) experiments. Triplet-state hyperfine couplings of the α- and β-protons of the

  15. Effect of N-substituents on redox, optical, and electronic properties of naphthalene bisimides used for field-effect transistors fabrication.

    PubMed

    Gawrys, Pawel; Djurado, David; Rimarcík, Ján; Kornet, Aleksandra; Boudinet, Damien; Verilhac, Jean-Marie; Lukes, Vladimír; Wielgus, Ireneusz; Zagorska, Malgorzata; Pron, Adam

    2010-02-11

    Three groups of naphthalene bisimides were synthesized and comparatively studied, namely, alkyl bisimides, alkylaryl ones, and novel bisimides containing the alkylthienyl moiety in the N-substituent. The experimental absorption spectra measured in CHCl(3) exhibit one intensive absorption band that is uniformly detected in the spectral range of 340 to 400 nm for all studied molecules. This band consists of three or four vibronic peaks. The introduction of an alkylthienyl group results in the appearance of an additional band (in the spectral range from 282 to 326 nm, depending on the position of the substituent) that can be ascribed to the pi-pi* transition in the thienyl chromophore. The minimal substituent effect on the lowest electronic transitions was explained using the quantum chemical calculations based on the time-dependent density functional theory. The investigation of the shapes of frontier orbitals have also shown that the oxidation of bisimides containing thiophene moiety is primary connected with the electron abstraction from the thienyl ring. To the contrary, the addition of an electron in the reduction process leads to an increase in the electron density in the central bisimide core. As shown by the electrochemical measurements, the onset of the first reduction potential (so-called "electrochemically determined LUMO level") is sensitive toward the type of the substituent being shifted from about -3.72 eV for bisimides with alkyl substituents to about -3.83 eV for alkylaryl ones and to about -3.94 eV for bisimides with thienyl groups. The presence of the thienyl ring also lowers the energy difference between the HOMO and LUMO orbitals. These experimental data can be well correlated with the DFT calculations in terms of HOMO/LUMO shapes and energies. Taking into account the low position of their LUMO level and their highly ordered supramolecular organization, the new bisimides are good candidates for the use in n-channel field effect transistors

  16. Description of Streptococcus pneumoniae Infections in Burn Patients

    DTIC Science & Technology

    2010-01-01

    Description of Streptococcus pneumoniae infections in burn patients§ Jessie S. Glasser a, Michael L. Landruma,b,c, Kevin K. Chung a,d, Duane R...Staphylococcus aureus. Although Streptococcus pneumoniae infections are common in the community and can cause nosocomial infections , the incidence and...risk factors for pneu- mococcal infections in burn patients is unclear. Methods: We performed an electronic retrospective chart review to collect rates

  17. Effects of a Training Package to Improve the Accuracy of Descriptive Analysis Data Recording

    ERIC Educational Resources Information Center

    Mayer, Kimberly L.; DiGennaro Reed, Florence D.

    2013-01-01

    Functional behavior assessment is an important precursor to developing interventions to address a problem behavior. Descriptive analysis, a type of functional behavior assessment, is effective in informing intervention design only if the gathered data accurately capture relevant events and behaviors. We investigated a training procedure to improve…

  18. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  19. Bias effects on the electronic spectrum of a molecular bridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Heidi; Prociuk, Alexander; Dunietz, Barry D

    2011-01-01

    In this paper the effect of bias and geometric symmetry breaking on the electronic spectrum of a model molecular system is studied. Geometric symmetry breaking can either enhance the dissipative effect of the bias, where spectral peaks are disabled, or enable new excitations that are absent under zero bias conditions. The spectralanalysis is performed on a simple model system by solving for the electronic response to an instantaneously impulsive perturbation in the dipole approximation. The dynamical response is extracted from the electronic equations of motion as expressed by the Keldysh formalism. This expression provides for the accurate treatment of themore » electronic structure of a bulk-coupled system at the chosen model Hamiltonian electronic structure level.« less

  20. Descriptive drinking norms in Native American and non-Hispanic White college students.

    PubMed

    Hagler, Kylee J; Pearson, Matthew R; Venner, Kamilla L; Greenfield, Brenna L

    2017-09-01

    College students tend to overestimate how much their peers drink, which is associated with higher personal alcohol use. However, research has not yet examined if this phenomenon holds true among Native American (NA) college students. This study examined associations between descriptive norms and alcohol use/consequences in a sample of NA and non-Hispanic White (NHW) college students. NA (n=147, 78.6% female) and NHW (n=246, 67.8% female) undergraduates completed an online survey. NAs NHWs showed similar descriptive norms such that the "typical college student," "typical NA student," and "typical NHW student" were perceived to drink more than "best friends." "Best friends" descriptive norms (i.e., estimations of how many drinks per week were consumed by participants' best friends) were the most robust predictors of alcohol use/consequences. Effect size estimates of the associations between drinking norms and participants' alcohol use were consistently positive and ranged from r=0.25 to r=0.51 across the four reference groups. Negative binomial hurdle models revealed that all descriptive norms tended to predict drinking, and "best friends" drinking norms predicted alcohol consequences. Apart from one interaction effect, likely due to familywise error rate, these associations were not qualified by interactions with racial/ethnic group. We found similar patterns between NAs and NHWs both in the pattern of descriptive norms across reference groups and in the strength of associations between descriptive norms and alcohol use/consequences. Although these results suggest that descriptive norms operate similarly among NAs as other college students, additional research is needed to identify whether other norms (e.g., injunctive norms) operate similarly across NA and NHW students. Copyright © 2017. Published by Elsevier Ltd.

  1. The low-lying electronic excitations in long polyenes: A PPP-MRD-CI study

    NASA Astrophysics Data System (ADS)

    Tavan, Paul; Schulten, Klaus

    1986-12-01

    A correct description of the electronic excitations in polyenes demands that electron correlation is accounted for correctly. Very large expansions are necessary including many-electron configurations with at least one, two, three, and four electrons promoted from the Hartree-Fock ground state. The enormous size of such expansions had prohibited accurate computations of the spectra for polyenes with more than ten π electrons. We present a multireference double excitation configuration interaction method (MRD-CI) which allows such computations for polyenes with up to 16 π electrons. We employ a Pariser-Parr-Pople (PPP) model Hamiltonian. For short polyenes with up to ten π electrons our calculations reproduce the excitation energies resulting from full-CI calculations. We extend our calculations to study the low-lying electronic excitations of the longer polyenes, in particular, the gap between the first optically forbidden and the first optically allowed excited singlet state. The size of this gap is shown to depend strongly on the degree of bond alternation and on the dielectric shielding of the Coulomb repulsion between the π electrons.

  2. Smooth Scaling of Valence Electronic Properties in Fullerenes: From One Carbon Atom, to C60, to Graphene

    DTIC Science & Technology

    2012-09-18

    Smooth scaling of valence electronic properties in fullerenes: from one carbon atom , to C60, to graphene Greyson R. Lewis,1 William E. Bunting,1...pacitance scaling lines of the fullerenes. Lastly, it is found that points representing the carbon atom and the graphene limit lie on scaling lines for...icosahedral fullerenes, so their quantum capacitances and their detachment energies scale smoothly from one C atom , through C60, to graphene. I

  3. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  4. Electrical and electronic waste: a global environmental problem.

    PubMed

    Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya

    2007-08-01

    The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.

  5. Finite Gyroradius Effects in the Electron Outflow of Asymmetric Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Norgren, C.; Graham, D. B.; Khotyaintsev, Yu. V.; Andre, M.; Vaivads, A.; Chen, Li-Jen; Lindqvist, P.-A.; Marklund, G. T.; Ergun, R. E.; Magnes, W.; hide

    2016-01-01

    We present observations of asymmetric magnetic reconnection showing evidence of electron demagnetization in the electron outflow. The observations were made at the magnetopause by the four Magnetospheric Multiscale (MMS) spacecraft, separated by approximately 15 km. The reconnecting current sheet has negligible guide field, and all four spacecraft likely pass close to the electron diffusion region just south of the X line. In the electron outflow near the X line, all four spacecraft observe highly structured electron distributions in a region comparable to a few electron gyroradii. The distributions consist of a core with T(sub parallel) greater than T(sub perpendicular) and a nongyrotropic crescent perpendicular to the magnetic field. The crescents are associated with finite gyroradius effects of partly demagnetized electrons. These observations clearly demonstrate the manifestation of finite gyroradius effects in an electron-scale reconnection current sheet.

  6. The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew, Daniel; Hager, Lowell; Manoj, Kelath Murali, E-mail: muralimanoj@vit.ac.in

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Azide is a well known heme-enzyme active site ligand and inhibitor. Black-Right-Pointing-Pointer Herein, azide is reported to enhance a set of heme-enzyme mediated reactions. Black-Right-Pointing-Pointer This effect is disconnected from native enzyme-azide binding. Black-Right-Pointing-Pointer Azide could enhance heme-enzyme reactions via a newly proposed mechanism. Black-Right-Pointing-Pointer Azide contained in reagents could impact reaction outcomes in redox biochemistry. -- Abstract: Azide is a well-known inhibitor of heme-enzymes. Herein, we report the counter-intuitive observation that at some concentration regimes, incorporation of azide in the reaction medium enhances chloroperoxidase (CPO, a heme-enzyme) mediated one-electron abstractions from several substrates. A diffusible azidyl radicalmore » based mechanism is proposed for explaining the phenomenon. Further, it is projected that the finding could have significant impact on routine in situ or in vitro biochemistry studies involving heme-enzyme systems and azide.« less

  7. Wavelets in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Modisette, Jason Perry

    1997-09-01

    Ab initio calculations of the electronic structure of bulk materials and large clusters are not possible on today's computers using current techniques. The storage and diagonalization of the Hamiltonian matrix are the limiting factors in both memory and execution time. The scaling of both quantities with problem size can be reduced by using approximate diagonalization or direct minimization of the total energy with respect to the density matrix in conjunction with a localized basis. Wavelet basis members are much more localized than conventional bases such as Gaussians or numerical atomic orbitals. This localization leads to sparse matrices of the operators that arise in SCF multi-electron calculations. We have investigated the construction of the one-electron Hamiltonian, and also the effective one- electron Hamiltonians that appear in density-functional and Hartree-Fock theories. We develop efficient methods for the generation of the kinetic energy and potential matrices, the Hartree and exchange potentials, and the local exchange-correlation potential of the LDA. Test calculations are performed on one-electron problems with a variety of potentials in one and three dimensions.

  8. One of several 'toys' for smoking: young adult experiences with electronic cigarettes in New York City.

    PubMed

    McDonald, Emily Anne; Ling, Pamela M

    2015-11-01

    This qualitative research explores the use of electronic cigarettes and other similar 'vapor' delivery devices among young adults in New York City. We employed 17 focus groups followed by 12 semistructured interviews to understand the beliefs, opinions and practices related to the use of electronic cigarettes among young adult smokers (N=87). Participants were mainly daily (52%) and non-daily (41%) smokers. While experimentation with electronic cigarette devices was frequently reported, participants related an overall lack of information about the devices and what they did know often reflected messages in e-cigarette marketing campaigns. Participants also used their own bodily sensations as a way to gauge potential risks and benefits of the products. Finally, young adults, steeped in a culture of personal technologies, perceived e-cigarettes as one more 'toy' among other technologies integrated into their everyday lives. E-cigarettes were also frequently used with other tobacco products, including conventional cigarettes. Our research indicates that public health campaigns may be needed to counter current industry marketing and inform the public that electronic cigarettes are currently unregulated, understudied and contain toxicants and carcinogens. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Synthesis of 3,4-dihydro-1,8-naphthyridin-2(1H)-ones via microwave-activated inverse electron-demand Diels-Alder reactions.

    PubMed

    Fadel, Salah; Hajbi, Youssef; Khouili, Mostafa; Lazar, Said; Suzenet, Franck; Guillaumet, Gérald

    2014-01-01

    Substituted 3,4-dihydro-1,8-naphthyridin-2(1H)-ones have been synthesized with the inverse electron-demand Diels-Alder reaction from 1,2,4-triazines bearing an acylamino group with a terminal alkyne side chain. Alkynes were first subjected to the Sonogashira cross-coupling reaction with aryl halides, the product of which then underwent an intramolecular inverse electron-demand Diels-Alder reaction to yield 5-aryl-3,4-dihydro-1,8-naphthyridin-2(1H)-ones by an efficient synthetic route.

  10. Emotional Effect of the Loss of One or Both Fetuses in a Monochorionic Twin Pregnancy.

    PubMed

    Druguet, Mònica; Nuño, Laura; Rodó, Carlota; Arévalo, Silvia; Carreras, Elena; Gómez-Benito, Juana

    2018-03-01

    To examine the psychological effect on women of the loss of one or both fetuses during a monochorionic twin pregnancy and to identify associated protective and risk factors. Descriptive, cross-sectional, correlational study. Maternity unit of the Vall d'Hebron University Hospital in Barcelona, Spain. Twenty-eight White Spanish women who lost one or both fetuses during a monochorionic twin pregnancy. In an individual interview with each participant, we collected sociodemographic information, psychiatric history, and clinical data regarding the pregnancy. Participants also completed the following questionnaires: Spanish Short Version of the Perinatal Grief Scale, Impact of Event Scale-Revised, Beck Depression Inventory, and the State-Trait Anxiety Inventory. Greater levels of grief after fetal loss during a monochorionic twin pregnancy were associated with increased symptoms of depression, anxiety, and posttraumatic stress. The intensity of grief did not depend on the number of weeks of pregnancy at which the loss occurred, a history of miscarriage, the survival of one of the twins, the presence of living children, or any of the sociodemographic variables considered. Fetal loss in a monochorionic twin pregnancy has a considerable emotional effect and leaves the mother vulnerable to psychological problems. The survival of one of the twins or the presence of living children is no guarantee that the grieving mother's mental health will be less affected. Copyright © 2018 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  11. Electronic Mail Is One High-Tech Management Tool that Really Delivers.

    ERIC Educational Resources Information Center

    Parker, Donald C.

    1987-01-01

    Describes an electronic mail system used by the Horseheads (New York) Central School Distict's eight schools and central office that saves time and enhances productivity. This software calls up information from the district's computer network and sends it to other users' special files--electronic "mailboxes" set aside for messages and…

  12. Module One: Electrical Current; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The student is introduced in this module to some fundamental concepts of electricity. The module is divided into five lessons: electricity and the electron, electron movement, current flow, measurement of current, and the ammeter. Each lesson consists of an overview, a list of study resources, lesson narratives, programed materials, and lesson…

  13. Electronics for Piezoelectric Smart Structures

    NASA Technical Reports Server (NTRS)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  14. Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Silkin, V. M.; Krasovskii, E. E.

    2016-01-01

    Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy (EELS) in terms of the "energy-loss functions." Our approach encompasses the dipole and impact scattering as specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive exceptions are rationalized.

  15. Absence of spontaneous magnetic order of lattice spins coupled to itinerant interacting electrons in one and two dimensions.

    PubMed

    Loss, Daniel; Pedrocchi, Fabio L; Leggett, Anthony J

    2011-09-02

    We extend the Mermin-Wagner theorem to a system of lattice spins which are spin coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically.

  16. Electronic structure of stoichiometric and reduced ZnO from periodic relativistic all electron hybrid density functional calculations using numeric atom-centered orbitals.

    PubMed

    Viñes, Francesc; Illas, Francesc

    2017-03-30

    The atomic and electronic structure of stoichiometric and reduced ZnO wurtzite has been studied using a periodic relativistic all electron hybrid density functional (PBE0) approach and numeric atom-centered orbital basis set with quality equivalent to aug-cc-pVDZ. To assess the importance of relativistic effects, calculations were carried out without and with explicit inclusion of relativistic effects through the zero order regular approximation. The calculated band gap is ∼0.2 eV smaller than experiment, close to previous PBE0 results including relativistic calculation through the pseudopotential and ∼0.25 eV smaller than equivalent nonrelativistic all electron PBE0 calculations indicating possible sources of error in nonrelativistic all electron density functional calculations for systems containing elements with relatively high atomic number. The oxygen vacancy formation energy converges rather fast with the supercell size, the predicted value agrees with previously hybrid density functional calculations and analysis of the electronic structure evidences the presence of localized electrons at the vacancy site with a concomitant well localized peak in the density of states ∼0.5 eV above the top of the valence band and a significant relaxation of the Zn atoms near to the oxygen vacancy. Finally, present work shows that accurate results can be obtained in systems involving large supercells containing up to ∼450 atoms using a numeric atomic-centered orbital basis set within a full all electron description including scalar relativistic effects at an affordable cost. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Self Understanding: Quality Education Program Study. Booklet 1 (Description) and Booklet 1-A (Needs Assessment).

    ERIC Educational Resources Information Center

    Bucks County Public Schools, Doylestown, PA.

    Categories of effective and ineffective behavior in regard to Goal One of the Quality Education Program (regarding student self-esteem and understanding) are listed. Both the rationales for areas of effective student behavior and the categories of teacher strategies are also included. (See TM 001 375 for project description.) (MS)

  18. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  19. Effect of strain on the electronic structure of graphene

    NASA Astrophysics Data System (ADS)

    Martinez, Edgar; Cifuentes, Eduardo; de Coss, Romeo

    2008-03-01

    Graphene has been attracting interest due to its remarkable physical properties resulting from an electron spectrum resembling relativistic dynamics (Dirac fermions). Thus, is desirable to know methods for controling the charge carriers in graphene. In this work, we propose that the electronic properties of graphene can be modulated via isotropic and uniaxial strain. We have studied the electronic structure of graphene under mechanical deformation by means of first principles calculations. We present results for the charge distribution, electronic density of states, and band structure. We focus the analysis on the behavior of the Dirac cones and the number of the charge carriers as a function of strain. We find that an isotropic tensile strain increases the effective mass of carriers and an isotropic compression strain decrease it. Uniaxial tensile strain induce a similar behavior, as strain increase effective mass increase. Thus, our results show that strain allows controllable tuning of the graphene electronic properties. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.

  20. Transferring results of occupational safety and health cost-effectiveness studies from one country to another - a case study.

    PubMed

    Verbeek, Jos; Pulliainen, Marjo; Kankaanpää, Eila; Taimela, Simo

    2010-06-01

    There are a limited number of studies about the cost-effectiveness of occupational health and safety (OSH) interventions. Applying the results of a cost-effectiveness study from one country to another is hampered by differences in the organization of healthcare and social security. In order to find out how these problems can be overcome, we transferred the results of a Dutch occupational cost-effectiveness study to the Finnish situation and vice-versa. We recalculated incremental cost-effectiveness ratios (ICER) for the target country based on resource use in the original study and the associated costs in the target country. We also allocated the costs to the employer, the employee, and tax-payers. We found that the ICER did not differ very much from those in the original studies. However, the different healthcare funding structure led to a more unfavorable ICER for employers in the Netherlands. Both interventions represented a cost saving for tax-payers and employees. Employers had to invest euro10-54 to avert one day of sick leave. We conclude that results of cost-effectiveness studies can be transferred from one country to another, but many adjustments are needed. An extensive description of the intervention, a detailed list of resource use, allocation of costs to various parties, and detailed knowledge of the healthcare systems in the original studies are necessary to enable calculations.

  1. WEIBEL, TWO-STREAM, FILAMENTATION, OBLIQUE, BELL, BUNEMAN...WHICH ONE GROWS FASTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2009-07-10

    Many competing linear instabilities are likely to occur in astrophysical settings, and it is important to assess which one grows faster for a given situation. An analytical model including the main beam plasma instabilities is developed. The full three-dimensional dielectric tensor is thus explained for a cold relativistic electron beam passing through a cold plasma, accounting for a guiding magnetic field, a return electronic current, and moving protons. Considering any orientations of the wave vector allows to retrieve the most unstable mode for any parameters set. An unified description of the filamentation (Weibel), two-stream, Buneman, Bell instabilities (and more) ismore » thus provided, allowing for the exact determination of their hierarchy in terms of the system parameters. For relevance to both real situations and PIC simulations, the electron-to-proton mass ratio is treated as a parameter, and numerical calculations are conducted with two different values, namely 1/1836 and 1/100. In the system parameter phase space, the shape of the domains governed by each kind of instability is far from being trivial. For low-density beams, the ultra-magnetized regime tends to be governed by either the two-stream or the Buneman instabilities. For beam densities equaling the plasma one, up to four kinds of modes are likely to play a role, depending of the beam Lorentz factor. In some regions of the system parameters phase space, the dominant mode may vary with the electron-to-proton mass ratio. Application is made to solar flares, intergalactic streams, and relativistic shocks physics.« less

  2. Why do multi-attribute utility instruments produce different utilities: the relative importance of the descriptive systems, scale and 'micro-utility' effects.

    PubMed

    Richardson, Jeff; Iezzi, Angelo; Khan, Munir A

    2015-08-01

    Health state utilities measured by the major multi-attribute utility instruments differ. Understanding the reasons for this is important for the choice of instrument and for research designed to reconcile these differences. This paper investigates these reasons by explaining pairwise differences between utilities derived from six multi-attribute utility instruments in terms of (1) their implicit measurement scales; (2) the structure of their descriptive systems; and (3) 'micro-utility effects', scale-adjusted differences attributable to their utility formula. The EQ-5D-5L, SF-6D, HUI 3, 15D and AQoL-8D were administered to 8,019 individuals. Utilities and unweighted values were calculated using each instrument. Scale effects were determined by the linear relationship between utilities, the effect of the descriptive system by comparison of scale-adjusted values and 'micro-utility effects' by the unexplained difference between utilities and values. Overall, 66 % of the differences between utilities was attributable to the descriptive systems, 30.3 % to scale effects and 3.7 % to micro-utility effects. Results imply that the revision of utility algorithms will not reconcile differences between instruments. The dominating importance of the descriptive system highlights the need for researchers to select the instrument most capable of describing the health states relevant for a study. Reconciliation of inconsistent utilities produced by different instruments must focus primarily upon the content of the descriptive system. Utility weights primarily determine the measurement scale. Other differences, attributable to utility formula, are comparatively unimportant.

  3. Synthesis of 3,4-dihydro-1,8-naphthyridin-2(1H)-ones via microwave-activated inverse electron-demand Diels–Alder reactions

    PubMed Central

    Fadel, Salah; Hajbi, Youssef; Khouili, Mostafa; Lazar, Said

    2014-01-01

    Summary Substituted 3,4-dihydro-1,8-naphthyridin-2(1H)-ones have been synthesized with the inverse electron-demand Diels–Alder reaction from 1,2,4-triazines bearing an acylamino group with a terminal alkyne side chain. Alkynes were first subjected to the Sonogashira cross-coupling reaction with aryl halides, the product of which then underwent an intramolecular inverse electron-demand Diels–Alder reaction to yield 5-aryl-3,4-dihydro-1,8-naphthyridin-2(1H)-ones by an efficient synthetic route. PMID:24605148

  4. Hierarchical on-surface synthesis and electronic structure of carbonyl-functionalized one- and two-dimensional covalent nanoarchitectures

    NASA Astrophysics Data System (ADS)

    Steiner, Christian; Gebhardt, Julian; Ammon, Maximilian; Yang, Zechao; Heidenreich, Alexander; Hammer, Natalie; Görling, Andreas; Kivala, Milan; Maier, Sabine

    2017-03-01

    The fabrication of nanostructures in a bottom-up approach from specific molecular precursors offers the opportunity to create tailored materials for applications in nanoelectronics. However, the formation of defect-free two-dimensional (2D) covalent networks remains a challenge, which makes it difficult to unveil their electronic structure. Here we report on the hierarchical on-surface synthesis of nearly defect-free 2D covalent architectures with carbonyl-functionalized pores on Au(111), which is investigated by low-temperature scanning tunnelling microscopy in combination with density functional theory calculations. The carbonyl-bridged triphenylamine precursors form six-membered macrocycles and one-dimensional (1D) chains as intermediates in an Ullmann-type coupling reaction that are subsequently interlinked to 2D networks. The electronic band gap is narrowed when going from the monomer to 1D and 2D surface-confined π-conjugated organic polymers comprising the same building block. The significant drop of the electronic gap from the monomer to the polymer confirms an efficient conjugation along the triphenylamine units within the nanostructures.

  5. Low-energy electron-phonon effective action from symmetry analysis

    NASA Astrophysics Data System (ADS)

    Cabra, D. C.; Grandi, N. E.; Silva, G. A.; Sturla, M. B.

    2013-07-01

    Based on a detailed symmetry analysis, we state the general rules to build up the effective low-energy field theory describing a system of electrons weakly interacting with the lattice degrees of freedom. The basic elements in our construction are what we call the “memory tensors,” which keep track of the microscopic discrete symmetries into the coarse-grained action. The present approach can be applied to lattice systems in arbitrary dimensions and in a systematic way to any desired order in derivatives. We apply the method to the honeycomb lattice and reobtain the by-now well-known effective action of Dirac fermions coupled to fictitious gauge fields. As a second example, we derive the effective action for electrons in the kagome lattice, where our approach allows us to obtain in a simple way the low-energy electron-phonon coupling terms.

  6. The relationship between symbolic interactionism and interpretive description.

    PubMed

    Oliver, Carolyn

    2012-03-01

    In this article I explore the relationship between symbolic interactionist theory and interpretive description methodology. The two are highly compatible, making symbolic interactionism an excellent theoretical framework for interpretive description studies. The pragmatism underlying interpretive description supports locating the methodology within this cross-disciplinary theory to make it more attractive to nonnursing researchers and expand its potential to address practice problems across the applied disciplines. The theory and method are so compatible that symbolic interactionism appears to be part of interpretive description's epistemological foundations. Interpretive description's theoretical roots have, to date, been identified only very generally in interpretivism and the philosophy of nursing. A more detailed examination of its symbolic interactionist heritage furthers the contextualization or forestructuring of the methodology to meet one of its own requirements for credibility.

  7. Effects of Electronic Nicotine Delivery System on Larynx: Experimental Study.

    PubMed

    Salturk, Ziya; Çakır, Çağlar; Sünnetçi, Gürcan; Atar, Yavuz; Kumral, Tolgar Lütfi; Yıldırım, Güven; Berkiten, Güler; Uyar, Yavuz

    2015-09-01

    We aimed to assess the effects of electronic nicotine delivery system (ENDS) or also termed electronic cigarette vapor on the laryngeal mucosa of rats. Sixteen female Wistar albino rats were divided into two groups. The study group was exposed to ENDS vapor for 1 hour/day for 4 weeks. The control group was not subjected to any chemical or physical stimulus. The vocal folds of the study and control group rats were evaluated histopathologically by hematoxylin and eosin staining and immunohistochemically by Ki67 staining. Epithelial distribution, inflammation, hyperplasia, and metaplasia were evaluated. Epithelial distribution and inflammation did not differ between the two groups. Two cases of hyperplasia were detected in the study group but there was no hyperplasia in the control group. Four cases of metaplasia were detected in the study group and one case in the control group. Statistical analysis revealed no significant difference between the study and control groups (P = 0.131 and 0.106, respectively). Exposure to ENDS for 4 weeks caused hyperplasia and metaplasia of the laryngeal mucosa of rats but this was not significant statistically. These results implemented that further studies with larger cohort and longer duration are required to evaluate long-term effects. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. The Compact Ignition Tokamak and electron cyclotron heating: Description of need; assessment of prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignat, D.W.; Cohn, D.R.; Woskov, P.P.

    1989-01-01

    The CIT will benefit from auxiliary heating of 10 to 40 MW. The schedules of both the CIT construction project and the operating plan contain adequate time to develop and implement ECH systems based on the gyrotron and the induction free electron laser (IFEL). Each approach has advantages and is the object of R and D at the level of many millions of dollars per year. While the gyrotron is further advanced in terms of power and pulse length achieved, rapid progress is scheduled for the IFEL, including experiments on tokamaks. Plans of CIT, gyrotron, and IFEL make 1992 anmore » appropriate time frame to commit to one or both systems. 12 refs., 8 figs., 2 tabs.« less

  9. The Moderating Role of Close versus Distal Peer Injunctive Norms and Interdependent Self-Construal in the Effects of Descriptive Norms on College Drinking.

    PubMed

    Yang, Bo

    2018-06-01

    Based on the theory of normative social behavior (Rimal & Real, 2005), this study examined the effects of descriptive norms, close versus distal peer injunctive norms, and interdependent self-construal on college students' intentions to consume alcohol. Results of a cross-sectional study conducted among U.S. college students (N = 581) found that descriptive norms, close, and distal peer injunctive norms had independent effects on college students' intentions to consume alcohol. Furthermore, close peer injunctive norms moderated the effects of descriptive norms on college students' intentions to consume alcohol and the interaction showed different patterns among students with a strong and weak interdependent self-construal. High levels of close peer injunctive norms weakened the relationship between descriptive norms and intentions to consume alcohol among students with a strong interdependent self-construal but strengthened the relationship between descriptive norms and intentions to consume alcohol among students with a weak interdependent self-construal. Implications of the findings for norms-based research and college drinking interventions are discussed.

  10. Viral Etiology of Encephalitis in Children in Southern Vietnam: Results of a One-Year Prospective Descriptive Study

    PubMed Central

    Tan, Le Van; Qui, Phan Tu; Ha, Do Quang; Hue, Nguyen Bach; Bao, Lam Quoi; Cam, Bach Van; Khanh, Truong Huu; Hien, Tran Tinh; Vinh Chau, Nguyen Van; Tram, Tran Tan; Hien, Vo Minh; Nga, Tran Vu Thieu; Schultsz, Constance; Farrar, Jeremy; van Doorn, H. Rogier; de Jong, Menno D.

    2010-01-01

    Background Acute encephalitis is an important and severe disease in children in Vietnam. However, little is known about the etiology while such knowledge is essential for optimal prevention and treatment. To identify viral causes of encephalitis, in 2004 we conducted a one-year descriptive study at Children's Hospital Number One, a referral hospital for children in southern Vietnam including Ho Chi Minh City. Methodology/Principal Findings Children less than 16 years of age presenting with acute encephalitis of presumed viral etiology were enrolled. Diagnostic efforts included viral culture, serology and real time (RT)-PCRs. A confirmed or probable viral causative agent was established in 41% of 194 enrolled patients. The most commonly diagnosed causative agent was Japanese encephalitis virus (n = 50, 26%), followed by enteroviruses (n = 18, 9.3%), dengue virus (n = 9, 4.6%), herpes simplex virus (n = 1), cytomegalovirus (n = 1) and influenza A virus (n = 1). Fifty-seven (29%) children died acutely. Fatal outcome was independently associated with patient age and Glasgow Coma Scale (GCS) on admission. Conclusions/Significance Acute encephalitis in children in southern Vietnam is associated with high mortality. Although the etiology remains unknown in a majority of the patients, the result from the present study may be useful for future design of treatment and prevention strategies of the disease. The recognition of GCS and age as predictive factors may be helpful for clinicians in managing the patient. PMID:21049060

  11. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    PubMed

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  12. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    NASA Astrophysics Data System (ADS)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  13. Nanodosimetry of (125)I Auger electrons.

    PubMed

    Bantsar, Aliaksandr; Pszona, Stanislaw

    2012-12-01

    The nanodosimetric description of the radiation action of Auger electrons on nitrogen targets of nanometric size is presented. Experimental microdosimetry at nanometer scale for Auger electrons has been accomplished with the set-up called Jet Counter. This consists of a pulse-operated valve which injects an expanding nitrogen jet into an interaction chamber where a gaseous sensitive volume of cylindrical shape is created. The ionization cluster size distributions (ICSD) created by Auger electrons emitted by (125)I while crossing a nanometer-sized volume have been measured. The ICSD for the sensitive volumes corresponding to 3 and 12 nm in diameter (in unit density 1 g/cm(3)) irradiated by electrons emitted by a (125)I source were collected and compared with the corresponding Monte Carlo (MC) simulation. The preliminary results of the experiments with Auger electrons of (125)I interacting with a nitrogen jet having nanometric size comparable to a deoxyribonucleic acid (DNA) and nucleosome, showing the discrete spectrum of ICSD with extended cluster size, are described. The presented paper describes for the first time the nanodosimetric experiments with Auger electrons emitted by (125)I. A set of the new descriptors of the radiation quality describing the radiation effect at nanometer level is proposed. The ICSD were determined for the first time for an Auger emitter of (125)I.

  14. The effect of sibutramine, a serotonin-norepinephrine reuptake inhibitor, on platelets and fibrin networks of male Sprague-Dawley rats: a descriptive study.

    PubMed

    van der Schoor, Ciska; Oberholzer, Hester Magdalena; Bester, Megan Jean; van Rooy, Mia-Jeanne

    2014-12-01

    Sibutramine is used in the treatment of obesity due to its ability to influence feelings of hunger and satiety by inhibiting the re-uptake of serotonin and noradrenalin in the central nervous system (CNS). Sibutramine use has been associated with numerous adverse events in particular cardiovascular complications possibly due to the formation of thrombi. This ultrastructural descriptive study investigated the effect of sibutramine on blood coagulation, specifically the effect on morphology of platelets and fibrin networks using scanning electron microscopy. Male Sprague-Dawley rats treated with either a recommended therapeutic dose [low dosage 1.32 mg/kg] or a toxicological higher dose [high dosage 13.2 mg/kg] of sibutramine for 28 days were used and compared to control animals. Blood samples were collected and plasma smears were prepared for platelet evaluation. Following the addition of thrombin to the plasma samples, the morphology of the fibrin clots was evaluated. Platelet evaluation by scanning electron microscopy revealed morphology typical of a prothrombotic state with a characteristic excessive platelet activation in both low-dose (LD) and high-dose (HD) rats. The fibrin clots of sibutramine-treated rats, LD and HD revealed fused thick fibers with thin fibers forming a net-like structure over the thick fibers which differ considerably from the organized structure of the control animals. It can be concluded that sibutramine alters the ultrastructure of platelets and fibrin networks creating a prothrombotic state.

  15. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  16. Electron kinetics in capacitively coupled plasmas modulated by electron injection

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Peng, Yanli; Innocenti, Maria Elena; Jiang, Wei; Wang, Hong-yu; Lapenta, Giovanni

    2017-09-01

    The controlling effect of an electron injection on the electron energy distribution function (EEDF) and on the energetic electron flux, in a capacitive radio-frequency argon plasma, is studied using a one-dimensional particle-in-cell/Monte Carlo collisions model. The input power of the electron beam is as small as several tens of Watts with laboratory achievable emission currents and energies. With the electron injection, the electron temperature decreases but with a significant high energy tail. The electron density, electron temperature in the sheath, and electron heating rate increase with the increasing emission energy. This is attributed to the extra heating of the energetic electrons in the EEDF tail. The non-equilibrium EEDF is obtained for strong non-local distributions of the electric field, electron heating rate, excitation, and ionization rate, indicating the discharge has transited from a volume heating (α-mode dominated) into a sheath heating (γ-mode dominated) type. In addition, the electron injection not only modifies the self-bias voltage, but also enhances the electron flux that can reach the electrodes. Moreover, the relative population of energetic electrons significantly increases with the electron injection compared to that without the electron injection, relevant for modifying the gas and surface chemistry reactions.

  17. One of several ‘toys’ for smoking: young adult experiences with electronic cigarettes in New York City

    PubMed Central

    McDonald, Emily Anne; Ling, Pamela M.

    2015-01-01

    Objective This qualitative research explores the use of electronic cigarettes and other similar ‘vapor’ delivery devices among young adults in New York City. Methods We employed 17 focus groups followed by 12 semistructured interviews to understand the beliefs, opinions and practices related to the use of electronic cigarettes among young adult smokers (N=87). Results Participants were mainly daily (52%) and non-daily (41%) smokers. While experimentation with electronic cigarette devices was frequently reported, participants related an overall lack of information about the devices and what they did know often reflected messages in e-cigarette marketing campaigns. Participants also used their own bodily sensations as a way to gauge potential risks and benefits of the products. Finally, young adults, steeped in a culture of personal technologies, perceived e-cigarettes as one more ‘toy’ among other technologies integrated into their everyday lives. Discussion E-cigarettes were also frequently used with other tobacco products, including conventional cigarettes. Our research indicates that public health campaigns may be needed to counter current industry marketing and inform the public that electronic cigarettes are currently unregulated, understudied and contain toxicants and carcinogens. PMID:25564287

  18. Electron screening and its effects on big-bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Biao; Bertulani, C. A.; Balantekin, A. B.

    We study the effects of electron screening on nuclear reaction rates occurring during the big-bang nucleosynthesis epoch. The sensitivity of the predicted elemental abundances on electron screening is studied in detail. It is shown that electron screening does not produce noticeable results in the abundances unless the traditional Debye-Hueckel model for the treatment of electron screening in stellar environments is enhanced by several orders of magnitude. This work rules out electron screening as a relevant ingredient to big-bang nucleosynthesis, confirming a previous study [see Itoh et al., Astrophys. J. 488, 507 (1997)] and ruling out exotic possibilities for the treatmentmore » of screening beyond the mean-field theoretical approach.« less

  19. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    DOE PAGES

    Schmied, Roland; Fowlkes, Jason Davidson; Winkler, Robert; ...

    2015-02-16

    In this study, we explore lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me 3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. In addition, it is demonstrated that intermediate energies lead tomore » even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.« less

  20. Low-Energy Electrons Emitted in Ion Collisions with Thin Foils

    NASA Astrophysics Data System (ADS)

    Kraemer, Michael; Kozhuharov, Christophor; Durante, Marco; Hagmann, Siegbert; Kraft, Gerhard; Lineva, Natallia

    The realistic description of radiation damage after charged particle passage is an ongoing issue for both radiotherapy as well as space applications. In both areas of applied radiological science, living as well as nonliving matter is exposed to ionizing radiation, and it is of vital interest to predict the responses of structures like cells, detectors or electronic devices. In ion beam radiotherapy, for example, the Local Effect Model (LEM) is being used to calculate radiobiological effects with so far unprecedented versatility. This has been shown in the GSI radiotherapy pilot project and consequently this model has become the "industry standard" for treatment planning in subsequent commercial ion radiotherapy sites. The model has also been extended to nonliving matter, i.e. to describe the response of solid state detectors such as TLDs and films. A prerequisite for this model (and possibly similar ones) is the proper description of microscopic track structure and energy deposition. In particular, the area at a very low distance (¡20 nm) from the ion path needs special attention due to the locally very high dose and the rather limited experimental evidence for the shape of the dose distribution. The dose distribution at low distances is inevitably associated with the creation and transport of low-energy (sub-keV) electrons. While some data, elementary cross sections as well as dose distributions, exist for gaseous media, i.e. under single collision conditions, experimental data for the condensed phase are scarce. We have, therefore, launched a project aimed at systematic research of the energy and angular distributions of low-energy (sub-keV) electrons emitted from solids. These investigations com-prise creation as well as transport of low-energy electrons under multiple collision conditions and hence require accounting for the properties of the target, both bulk and surface, i.e. for the inherent inhomogeneity of the thickness and for the surface roughness. To

  1. Splitting of electrons and violation of the Luttinger sum rule

    NASA Astrophysics Data System (ADS)

    Quinn, Eoin

    2018-03-01

    We obtain a controlled description of a strongly correlated regime of electronic behavior. We begin by arguing that there are two ways to characterize the electronic degree of freedom, either by the canonical fermion algebra or the graded Lie algebra su (2 |2 ) . The first underlies the Fermi liquid description of correlated matter, and we identify a regime governed by the latter. We exploit an exceptional central extension of su (2 |2 ) to employ a perturbative scheme recently developed by Shastry and obtain a series of successive approximations for the electronic Green's function. We then focus on the leading approximation, which reveals a splitting in two of the electronic dispersion. The Luttinger sum rule is violated, and a Mott metal-insulator transition is exhibited. We offer a perspective.

  2. N-representability-driven reconstruction of the two-electron reduced-density matrix for a real-time time-dependent electronic structure method

    NASA Astrophysics Data System (ADS)

    Jeffcoat, David B.; DePrince, A. Eugene

    2014-12-01

    Propagating the equations of motion (EOM) for the one-electron reduced-density matrix (1-RDM) requires knowledge of the corresponding two-electron RDM (2-RDM). We show that the indeterminacy of this expression can be removed through a constrained optimization that resembles the variational optimization of the ground-state 2-RDM subject to a set of known N-representability conditions. Electronic excitation energies can then be obtained by propagating the EOM for the 1-RDM and following the dipole moment after the system interacts with an oscillating external electric field. For simple systems with well-separated excited states whose symmetry differs from that of the ground state, excitation energies obtained from this method are comparable to those obtained from full configuration interaction computations. Although the optimized 2-RDM satisfies necessary N-representability conditions, the procedure cannot guarantee a unique mapping from the 1-RDM to the 2-RDM. This deficiency is evident in the mean-field-quality description of transitions to states of the same symmetry as the ground state, as well as in the inability of the method to describe Rabi oscillations.

  3. The Effect of Precipitating Electrons and Ions on Ionospheric Conductance and Inner Magnetospheric Electric Fields 142106

    NASA Astrophysics Data System (ADS)

    Chen, M.; Lemon, C.; Hecht, J. H.; Evans, J. S.; Boyd, A. J.

    2016-12-01

    We investigate how scattering of electrons by waves and of ions by field-line curvature in the inner magnetosphere affect precipitating energy flux distributions and how the precipitating particles modify the ionospheric conductivity and electric potentials during magnetic storms. We examine how particle precipitation in the evening sector affects the development of the Sub-Auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector as well as the electric field in the morning sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating particle distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are employed. Our description for the rate of ion scattering is more simplistic. We assume that the ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. We compare simulated trapped and precipitating electron/ion flux distributions with measurements from Van Allen Probes/MagEIS, POES and DMSP, respectively, to validate the particle loss models. DMSP observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons and ions on the SAPS and the inner magnetospheric electric field through the data-model comparisons.

  4. Neural evidence for description dependent reward processing in the framing effect.

    PubMed

    Yu, Rongjun; Zhang, Ping

    2014-01-01

    Human decision making can be influenced by emotionally valenced contexts, known as the framing effect. We used event-related brain potentials to investigate how framing influences the encoding of reward. We found that the feedback related negativity (FRN), which indexes the "worse than expected" negative prediction error in the anterior cingulate cortex (ACC), was more negative for the negative frame than for the positive frame in the win domain. Consistent with previous findings that the FRN is not sensitive to "better than expected" positive prediction error, the FRN did not differentiate the positive and negative frame in the loss domain. Our results provide neural evidence that the description invariance principle which states that reward representation and decision making are not influenced by how options are presented is violated in the framing effect.

  5. Electron beam irradiation effects on ethylene-tetrafluoroethylene copolymer films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Saidi, Hamdani; Dahlan, Khairul Zaman M.

    2003-12-01

    The effects of electron beam irradiation on ethylene-tetrafluoroethylene copolymer (ETFE) films were studied. Samples were irradiated in air at room temperature by a universal electron beam accelerator for doses ranging from 100 to 1200 kGy. Irradiated samples were investigated with respect to their chemical structure, thermal characteristics, crystallinity and mechanical properties using FTIR, differential scanning calorimeter (DSC) and universal mechanical tester. The interaction of electron irradiation with ETFE films was found to induce dose-dependent changes in all the investigated properties. A mechanism for electron-induced reactions is proposed to explain the structure-property behaviour of irradiated ETFE films.

  6. Conferring in the CAFÉ: One-to-One Reading Conferences in Two First Grade Classrooms

    ERIC Educational Resources Information Center

    Pletcher, Bethanie; Christensen, Rosalynn

    2017-01-01

    The purpose of this qualitative descriptive case study was to explore the teacher/student reading conferences in two first grade teachers' classrooms in one primary school. Sixteen one-to-one reading conferences were recorded and transcribed over a two-month period and coded for content as related to the CAFÉ (Boushey & Moser, 2009) model of…

  7. Space Radiation Effects on Electronics: Simple Concepts and New Challenges

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2004-01-01

    This viewgraph presentation covers the following topics: 1) The Space Radiation Environment; 2) The Effects on Electronics; 3) The Environment in Action; 4) NASA Approaches to Commercial Electronics; 5) Final Thoughts.

  8. [Perceptions on electronic prescribing by primary care physicians in madrid healthcare service].

    PubMed

    Villímar Rodríguez, A I; Gangoso Fermoso, A B; Calvo Pita, C; Ariza Cardiel, G

    To investigate the opinion of Primary Care physicians regarding electronic prescribing. Descriptive study by means of a questionnaire sent to 527 primary care physicians. June 2014. The questionnaire included closed questions about interest shown, satisfaction, benefits, weaknesses, and barriers, and one open question about difficulties, all of them referred to electronic prescribing. Satisfaction was measured using 1-10 scale, and benefits, weaknesses, and barriers were evaluated by a 5-ítems Likert scale. Interest was measured using both methods. The questionnaire was sent by e-mail for on line response through Google Drive® tool. A descriptive statistical analysis was performed. The response rate was 47% (248/527). Interest shown was 8.7 (95% CI; 8.5-8.9) and satisfaction was 7.9 (95% CI; 7.8-8). The great majority 87.9% (95% CI; 83.8-92%) of respondents used electronic prescribing where possible. Most reported benefits were: 73.4% (95% CI; 67.8-78.9%) of respondents considered that electronic prescribing facilitated medication review, and 59.3% (95% CI; 53.1-65.4) of them felt that it reduced bureaucratic burden. Among the observed weaknesses, they highlighted the following: 87.9% (95% CI; 83.8-92%) of respondents believed specialist care physicians should also be able to use electronic prescribing. Concerning to barriers: 30.2% (95% CI; 24.5-36%) of respondents think that entering a patient into the electronic prescribing system takes too much time, and 4% (95% CI; 1.6-6.5%) of them perceived the application as difficult to use. Physicians showed a notable interest in using electronic prescribing and high satisfaction with the application performance. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Right Brain: The E-lephant in the room: One resident's challenge in transitioning to modern electronic medicine.

    PubMed

    Strowd, Roy E

    2014-09-23

    The electronic medical record (EMR) is changing the landscape of medical practice in the modern age. Increasing emphasis on quality metric reporting, data-driven documentation, and timely coding and billing are pressuring institutions across the country to adopt the latest EMR technology. The impact of these systems on the patient-physician relationship is profound. One year following the latest EMR transition, one resident reviews his experience and provides a personal perspective on the impact the EMR on patient-physician communication. © 2014 American Academy of Neurology.

  10. The Effect of Electron Beam Irradiation in Environmental Scanning Transmission Electron Microscopy of Whole Cells in Liquid.

    PubMed

    Hermannsdörfer, Justus; Tinnemann, Verena; Peckys, Diana B; de Jonge, Niels

    2016-06-01

    Whole cells can be studied in their native liquid environment using electron microscopy, and unique information about the locations and stoichiometry of individual membrane proteins can be obtained from many cells thus taking cell heterogeneity into account. Of key importance for the further development of this microscopy technology is knowledge about the effect of electron beam radiation on the samples under investigation. We used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to examine the effect of radiation for whole fixed COS7 fibroblasts in liquid. The main observation was the localization of nanoparticle labels attached to epidermal growth factor receptors (EGFRs). It was found that the relative distances between the labels remained mostly unchanged (<1.5%) for electron doses ranging from the undamaged native state at 10 e-/Å2 toward 103 e-/Å2. This dose range was sufficient to determine the EGFR locations with nanometer resolution and to distinguish between monomers and dimers. Various different forms of radiation damage became visible at higher doses, including severe dislocation, and the dissolution of labels.

  11. Dissociation kinetics of metal clusters on multiple electronic states including electronic level statistics into the vibronic soup

    NASA Astrophysics Data System (ADS)

    Shvartsburg, Alexandre A.; Siu, K. W. Michael

    2001-06-01

    Modeling the delayed dissociation of clusters had been over the last decade a frontline development area in chemical physics. It is of fundamental interest how statistical kinetics methods previously validated for regular molecules and atomic nuclei may apply to clusters, as this would help to understand the transferability of statistical models for disintegration of complex systems across various classes of physical objects. From a practical perspective, accurate simulation of unimolecular decomposition is critical for the extraction of true thermochemical values from measurements on the decay of energized clusters. Metal clusters are particularly challenging because of the multitude of low-lying electronic states that are coupled to vibrations. This has previously been accounted for assuming the average electronic structure of a conducting cluster approximated by the levels of electron in a cavity. While this provides a reasonable time-averaged description, it ignores the distribution of instantaneous electronic structures in a "boiling" cluster around that average. Here we set up a new treatment that incorporates the statistical distribution of electronic levels around the average picture using random matrix theory. This approach faithfully reflects the completely chaotic "vibronic soup" nature of hot metal clusters. We found that the consideration of electronic level statistics significantly promotes electronic excitation and thus increases the magnitude of its effect. As this excitation always depresses the decay rates, the inclusion of level statistics results in slower dissociation of metal clusters.

  12. Using Theoretical Descriptions in Structure Activity Relations. 3. Electronic Descriptors

    DTIC Science & Technology

    1988-08-01

    Activity Relationships (QSAR) have been used successfully in the past to develop predictive equations for several biological and physical properties...Linear Free Energy Relationships (,FF.3) and is based on work by Hammet in which he derived electronic descriptors for the dissociation of substituted...structure of a compound and its activity in a system. Several different structural descriptors have been used in QSAR equations . These range from

  13. The Effective-One-Body Approach to the General Relativistic Two Body Problem

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Nagar, Alessandro

    The two-body problem in General Relativity has been the subject of many analytical investigations. After reviewing some of the methods used to tackle this problem (and, more generally, the N-body problem), we focus on a new, recently introduced approach to the motion and radiation of (comparable mass) binary systems: the Effective One Body (EOB) formalism. We review the basic elements of this formalism, and discuss some of its recent developments. Several recent comparisons between EOB predictions and Numerical Relativity (NR) simulations have shown the aptitude of the EOB formalism to provide accurate descriptions of the dynamics and radiation of various binary systems (comprising black holes or neutron stars) in regimes that are inaccessible to other analytical approaches (such as the last orbits and the merger of comparable mass black holes). In synergy with NR simulations, post-Newtonian (PN) theory and Gravitational Self-Force (GSF) computations, the EOB formalism is likely to provide an efficient way of computing the very many accurate template waveforms that are needed for Gravitational Wave (GW) data analysis purposes.

  14. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat. Volume 1: General description

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Fogel, L. J.; Phelps, J. P.

    1975-01-01

    A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.

  15. One-dimensional nanostructures for novel biosensor and transparent electronics applications

    NASA Astrophysics Data System (ADS)

    Chang, Hsiao-Kang

    This dissertation presents one-dimensional nanostructures for novel biosensors and transparent electronics applications. In chapter 1, background information regarding nanomaterials studied in this dissertation is described. In chapter 2, I describe the first application of antibody mimic proteins (AMPs) in the field of nanobiosensors. In2O3 nanowire based biosensors have been configured with an AMP (Fibronectin, Fn) to detect nucleocapsid (N) protein, a biomarker for severe acute respiratory syndrome (SARS). Using these devices, N protein was detected at sub-nanomolar concentration in the presence of 44 microM bovine serum albumin as a background. Furthermore, the binding constant of the AMP to Fn was determined from the concentration dependence of the response of our biosensors. In chapter 3, I demonstrate an In2O3 nanowire-based biosensing system that is capable of performing rapid, label-free, electrical detection of cancer biomarkers directly from human whole blood collected by a finger prick. Detection of multiple cancer biomarkers with high reliability at clinically meaningful concentrations from whole blood collected by a finger prick using this sensing system is demonstrated. In chapter 4, I introduce a top-down nanobiosensor based on polysilicon nanoribbon with enhanced yield and device uniformity. The polysilicon nanoribbon devices can be fabricated by conventional photolithography with only easily available materials and equipments required, thus results in great time and cost efficiency as well as scalability. The devices show great response to pH changes with a wide dynamic range and high sensitivity. Biomarker detection is also demonstrated with clinically relevant sensitivity. Such results suggest that polysilicon nanoribbon devices exhibit great potential toward a highly efficient, reliable and sensitive biosensing platform. In chapter 5, I demonstrate the first printed nanobiosensor application based on separated semiconducting single

  16. Effect of electronic excitation on high-temperature flows behind strong shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Istomin, V. A.; Kustova, E. V.

    2014-12-09

    In the present paper, a strongly non-equilibrium one-dimensional steady-state flow behind the plane shock wave is studied. We consider a high-temperature chemically reacting five-component ionized mixture of nitrogen species (N{sub 2}/N{sub 2}{sup 2}/N/N{sup +}/e{sup −}) taking into account electronic degrees of freedom in N and N{sup +} (170 and 625 electronic energy levels respectively), and electronic-rotational-vibrational modes in N{sub 2} and N{sub 2}{sup +} (5 and 7 electronic terms). Non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer are included to the kinetic scheme. The system of governing equations is written under the assumption that translation and internal energy relaxation ismore » fast whereas chemical reactions and ionization proceed on the macroscopic gas-dynamics time-scale. The developed model is applied to simulate the flow behind a plane shock wave under initial conditions characteristic for the spacecraft re-entry from an interplanetary flight (Hermes and Fire II experiments). Fluid-dynamic parameters behind the shock wave as well as transport coefficients and the heat flux are calculated for the (N{sub 2}/N{sub 2}{sup +}/N/N{sup +}/e{sup −}) mixture. The effect of electronic excitation on kinetics, dynamics and heat transfer is analyzed. Whereas the contribution of electronic degrees of freedom to the flow macroparameters is negligible, their influence on the heat flux is found to be important under conditions of Hermes re-entry.« less

  17. Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields

    NASA Astrophysics Data System (ADS)

    McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.

    2017-12-01

    The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.

  18. The Effects of Liking Norms and Descriptive Norms on Vegetable Consumption: A Randomized Experiment

    PubMed Central

    Thomas, Jason M.; Liu, Jinyu; Robinson, Eric L.; Aveyard, Paul; Herman, C. Peter; Higgs, Suzanne

    2016-01-01

    There is evidence that social norm messages can be used to promote the selection of fruit and vegetables in low habitual consumers of these foods but it is unclear whether this effect is sustained over time. It is also unclear whether information about others' liking for a food (liking norm) could have the same effect. Using a 2 × 5 × 2 experimental design we investigated the effects of exposure to various messages on later intake from a food buffet and whether any effects were sustained 24 h after exposure in both low and high consumers of vegetables. There were three factors: delay (immediate food selection vs. food selection 24 h after exposure), message type (liking norm, descriptive norm, health message, vegetable variety condition, and neutral control message), and habitual consumption (low vs. high). The buffet consisted of three raw vegetables, three energy-dense foods, and two dips. For vegetables and non-vegetables there were no main effects of message type, nor any main effect of delay. There was a significant message × habitual vegetable consumption interaction for vegetable consumption; however, follow up tests did not yield any significant effects. Examining each food individually, there were no main effects of message type, nor any main effect of delay, for any of the foods; however, there was a message × habitual vegetable consumption interaction for broccoli. Consumption of broccoli in the health message and descriptive norm conditions did not differ from the control neutral condition. However, habitually low consumers of vegetables increased their consumption of broccoli in the vegetable variety and liking norm conditions relative to habitual low vegetable consumers in the neutral control condition (p < 0.05). Further, investigation of the effects of the liking norm and vegetable variety condition on vegetable intake is warranted. This trial is listed as NCT02618174 at clinicaltrials.gov. PMID:27065913

  19. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy

    PubMed Central

    Amino, T.; Arakawa, K.; Mori, H.

    2016-01-01

    The dynamic behaviour of atomic-size disarrangements of atoms—point defects (self-interstitial atoms (SIAs) and vacancies)—often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and exhaustive kinetic Monte Carlo simulations, we determine the dynamics of the rapidly migrating SIAs from the formation process of the nanoscale SIA clusters in tungsten as a typical body-centred cubic (BCC) structure metal under the constant-rate production of both types of point defects with high-energy electron irradiation, which must reflect the dynamics of individual SIAs. We reveal that the migration dimension of SIAs is not three-dimensional (3D) but one-dimensional (1D). This result overturns the long-standing and well-accepted view of SIAs in BCC metals and supports recent results obtained by ab-initio simulations. The SIA dynamics clarified here will be one of the key factors to accurately predict the lifetimes of nuclear fission and fusion materials. PMID:27185352

  20. The Electron Diffusion Region: Forces and Currents

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2008-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertia1 effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.

  1. The Electron Diffusion Region: Forces and Currents

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertial effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.

  2. Electronic case report forms and electronic data capture within clinical trials and pharmacoepidemiology

    PubMed Central

    Flynn, Robert W. V.; Grieve, Kerr; Doney, Alexander; Mackenzie, Isla; MacDonald, Thomas M.; Rogers, Amy

    2017-01-01

    Aims Researchers in clinical and pharmacoepidemiology fields have adopted information technology (IT) and electronic data capture, but these remain underused despite the benefits. This review discusses electronic case report forms and electronic data capture, specifically within pharmacoepidemiology and clinical research. Methods The review used PubMed and the Institute of Electrical and Electronic Engineers library. Search terms used were agreed by the authors and documented. PubMed is medical and health based, whereas Institute of Electrical and Electronic Engineers is technology based. The review focuses on electronic case report forms and electronic data capture, but briefly considers other relevant topics; consent, ethics and security. Results There were 1126 papers found using the search terms. Manual filtering and reviewing of abstracts further condensed this number to 136 relevant manuscripts. The papers were further categorized: 17 contained study data; 40 observational data; 27 anecdotal data; 47 covering methodology or design of systems; one case study; one literature review; two feasibility studies; and one cost analysis. Conclusion Electronic case report forms, electronic data capture and IT in general are viewed with enthusiasm and are seen as a cost‐effective means of improving research efficiency, educating participants and improving trial recruitment, provided concerns about how data will be protected from misuse can be addressed. Clear operational guidelines and best practises are key for healthcare providers, and researchers adopting IT, and further work is needed on improving integration of new technologies with current systems. A robust method of evaluation for technical innovation is required. PMID:28276585

  3. The Effects of Active Exercise versus Passive Electronic Muscle Stimulation on Self-Concept, Anxiety, and Depression.

    ERIC Educational Resources Information Center

    Boyll, Jeffery R.

    Although positive physiological and psychological changes may occur as a result of exercise, many people do not exercise regularly. Either different methods to ensure exercise adherence must be examined or new ways of acquiring the desired changes must be found. The effectiveness of one alternative method, electronic muscle stimulation, was…

  4. Solvation effect on isomer stability and electronic structures of protonated serotonin

    NASA Astrophysics Data System (ADS)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    Microsolvation effect on geometry and transition energies of protonated serotonin has been investigated by MP2 and CC2 quantum chemical methods. Also, conductor-like screening model, implemented recently in the MP2 and ADC(2) methods, was examined to address the bulk water environment's effect on the isomer stability and electronic transition energies of protonated serotonin. It has been predicted that the dipole moment of gas phase isomers plays the main role on the isomer stabilization in water solution and electronic transition shifts. Also, both red- and blue-shift effects have been predicted to take place on electronic transition energies, upon hydration.

  5. Barriers and facilitators to the implementation of an evidence-based electronic minimum dataset for nursing team leader handover: A descriptive survey.

    PubMed

    Spooner, Amy J; Aitken, Leanne M; Chaboyer, Wendy

    2017-11-15

    There is widespread use of clinical information systems in intensive care units however, the evidence to support electronic handover is limited. The study aim was to assess the barriers and facilitators to use of an electronic minimum dataset for nursing team leader shift-to-shift handover in the intensive care unit prior to its implementation. The study was conducted in a 21-bed medical/surgical intensive care unit, specialising in cardiothoracic surgery at a tertiary referral hospital, in Queensland, Australia. An established tool was modified to the intensive care nursing handover context and a survey of all 63 nursing team leaders was undertaken. Survey statements were rated using a 6-point Likert scale with selections from 'strongly disagree' to 'strongly agree', and open-ended questions. Descriptive statistics were used to summarise results. A total of 39 team leaders responded to the survey (62%). Team leaders used general intensive care work unit guidelines to inform practice however they were less familiar with the intensive care handover work unit guideline. Barriers to minimum dataset uptake included: a tool that was not user friendly, time consuming and contained too much information. Facilitators to minimum dataset adoption included: a tool that was user friendly, saved time and contained relevant information. Identifying the complexities of a healthcare setting prior to the implementation of an intervention assists researchers and clinicians to integrate new knowledge into healthcare settings. Barriers and facilitators to knowledge use focused on usability, content and efficiency of the electronic minimum dataset and can be used to inform tailored strategies to optimise team leaders' adoption of a minimum dataset for handover. Copyright © 2017 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  6. “Who Doesn’t?”—The Impact of Descriptive Norms on Corruption

    PubMed Central

    Köbis, Nils C.; van Prooijen, Jan-Willem; Righetti, Francesca; Van Lange, Paul A. M.

    2015-01-01

    Corruption poses one of the major societal challenges of our time. Considerable advances have been made in understanding corruption on a macro level, yet the psychological antecedents of corrupt behavior remain largely unknown. In order to explain why some people engage in corruption while others do not, we explored the impact of descriptive social norms on corrupt behavior by using a novel behavioral measure of corruption. We conducted three studies to test whether perceived descriptive norms of corruption (i.e. the belief about the prevalence of corruption in a specific context) influence corrupt behavior. The results indicated that descriptive norms highly correlate with corrupt behavior—both when measured before (Study 1) or after (Study 2) the behavioral measure of corruption. Finally, we adopted an experimental design to investigate the causal effect of descriptive norms on corruption (Study 3). Corrupt behavior in the corruption game significantly drops when participants receive short anti-corruption descriptive norm primes prior to the game. These findings indicate that perceived descriptive norms can impact corrupt behavior and, possibly, could offer an explanation for inter-personal and inter-cultural variation in corrupt behavior in the real world. We discuss implications of these findings and draw avenues for future research. PMID:26121127

  7. Description of the PMAD DC test bed architecture and integration sequence

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.

    1991-01-01

    NASA-LEWIS is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power systems, the SSF EPS will grow and be maintained on orbit and must be flexible to meet challenging user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. A description is provided of the Power Management and Distribution DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.

  8. The equation-of-motion coupled cluster method for triple electron attached states

    NASA Astrophysics Data System (ADS)

    Musiał, Monika; Olszówka, Marta; Lyakh, Dmitry I.; Bartlett, Rodney J.

    2012-11-01

    The initial implementation of the triple electron attachment (TEA) equation-of-motion (EOM) coupled cluster (CC) method is presented, aiming at the description of electronic states with three open shell electrons outside a suitably chosen closed shell vacuum. In particular, such an approach can be used for describing dissociation of chemical bonds predominantly formed by three valence electrons, for example, in LiC and NaC molecules. Both ground and excited states are considered while rigorously maintaining the correct spin value. The preliminary results show a correct asymptotic behavior of the dissociation curves. At the same time, we emphasize that a chemically accurate description will require an extension of the minimal TEA-EOM-CC model introduced here, analogous to those already used in the double ionization potential and double electron attachment methods.

  9. Electronic structure and magneto-optical effects in CeSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liechtenstein, A.I.; Antropov, V.P.; Harmon, B.N.

    1994-04-15

    The electronic structure and magneto-optical spectra of CeSb have been calculated using the self-consistent local-density approximation with explicit on-site Coulomb parameters for the correlated [ital f] state of cerium. The essential electronic structure of cerium antimonide consists of one occupied [ital f] band, predominantly with orbital [ital m]=[minus]3 character and spin [sigma]=1 located 2 eV below the Fermi level and interacting with broad Sb [ital p] bands crossing [ital E][sub [ital F

  10. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    PubMed Central

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-01-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form. PMID:28338055

  11. Bioelectronic Learning: The Effects of Electronic Media on a Developing Brain.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1997-01-01

    Considers the effects of electronic media on the developing brains of children. Topics include the attentional demands of electronic media; commercial sponsorship; brain development, including memory systems and response systems; and what a developing mind can bring to the electronic media. (LRW)

  12. DNA-based nanobiostructured devices: The role of quasiperiodicity and correlation effects

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Fulco, U. L.; Freire, V. N.; Caetano, E. W. S.; Lyra, M. L.; de Moura, F. A. B. F.

    2014-02-01

    The purpose of this review is to present a comprehensive and up-to-date account of the main physical properties of DNA-based nanobiostructured devices, stressing the role played by their quasi-periodicity arrangement and correlation effects. Although the DNA-like molecule is usually described as a short-ranged correlated random ladder, artificial segments can be grown following quasiperiodic sequences as, for instance, the Fibonacci and Rudin-Shapiro ones. They have interesting properties like a complex fractal spectra of energy, which can be considered as their indelible mark, and collective properties that are not shared by their constituents. These collective properties are due to the presence of long-range correlations, which are expected to be reflected somehow in their various spectra (electronic transmission, density of states, etc.) defining another description of disorder. Although long-range correlations are responsible for the effective electronic transport at specific resonant energies of finite DNA segments, much of the anomalous spread of an initially localized electron wave-packet can be accounted by short-range pair correlations, suggesting that an approach based on the inclusion of further short-range correlations on the nucleotide distribution leads to an adequate description of the electronic properties of DNA segments. The introduction of defects may generate states within the gap, and substantially improves the conductance, specially of finite branches. They usually become exponentially localized for any amount of disorder, and have the property to tailor the electronic transport properties of DNA-based nanoelectronic devices. In particular, symmetric and antisymmetric correlations have quite distinct influence on the nature of the electronic states, and a diluted distribution of defects lead to an anomalous diffusion of the electronic wave-packet. Nonlinear contributions, arising from the coupling between electrons and the molecular vibrations

  13. Effective and absolute cross sections for low-energy (1-30 eV) electron interactions with condensed biomolecules

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Sanche, Léon

    2018-06-01

    Ionizing radiation is intensively used for therapeutic [e.g., radiotherapy, brachytherapy, and targeted radionuclide therapy (TRT)], as well as for diagnostic medical imaging purposes. In these applications, the radiation dose given to the patient should be known and controlled. In conventional cancer treatments, absorbed dose calculations rely essentially on scattering cross sections (CSs) of the primary high-energy radiation. In more sophisticated treatments, such as combined radio- and chemo-therapy, a description of the details of energy deposits at the micro- and nano-scopic level is preferred to relate dose to radiobiological effectiveness or to evaluate doses at the biomolecular level, when radiopharmaceuticals emitting short-range radiation are delivered to critical molecular components of cancer cells (e.g., TRT). These highly radiotoxic compounds emit large densities of low-energy electrons (LEEs). More generally, LEE (0-30 eV) are emitted in large numbers by any type of high-energy radiation; i.e., about 30 000 per MeV of deposited primary energy. Thus, to optimize the effectiveness of several types of radiation treatments, the energy deposited by LEEs must be known at the level of the cell, nucleus, chromosome, or DNA. Such local doses can be evaluated by Monte Carlo (MC) calculations, which account event-by-event, for the slowing down of all generations of particles. In particular, these codes require as input parameters absolute LEE CSs for elastic scattering, energy losses, and direct damage to vital cellular molecules, particularly DNA, the main target of radiation therapy. In the last decade, such CSs have emerged in the literature. Furthermore, a method was developed to transform relative yields of damages into absolute CSs by measuring specific parameters in the experiments. In this review article, we first present a general description of dose calculations in biological media via MC simulation and give an overview of the CSs available from

  14. Electronic structure and spectra of the RbHe van der Waals system including spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, Jamila; Bejaoui, Mohamed; Berriche, Hamid

    2017-12-01

    The potential energy interaction, the spectroscopic properties and dipole functions of the RbHe van der Waals dimer have been investigated. We used a one-electron pseudopotential approach and large Gaussian basis sets to represent the two atoms Rb and He. The Rb+ core and the electron-He interactions were replaced by semi-local pseudopotentials and a core-core interaction is included. Therefore, the number of active electrons of RbHe is reduced to only one electron. Consequently, the potential energy curves and dipole moments for many electronic states dissociating into Rb(5s,5p,4d,6s,6p,5d,7s)+He are performed at the SCF level. In addition, the spin-orbit coupling is included in the calculation. The Rb+He interaction, in its ground state, is taken from accurate CCSD (T) calculations and fitted to an analytical expression for a better description of the potential in all internuclear ranges. The spectroscopic properties of the RbHe electronic states are extracted. The comparison of these constants has shown a very good agreement for the ground state as well as for the lower excited states when compared with existing theoretical and experimental studies.

  15. Neural evidence for description dependent reward processing in the framing effect

    PubMed Central

    Yu, Rongjun; Zhang, Ping

    2014-01-01

    Human decision making can be influenced by emotionally valenced contexts, known as the framing effect. We used event-related brain potentials to investigate how framing influences the encoding of reward. We found that the feedback related negativity (FRN), which indexes the “worse than expected” negative prediction error in the anterior cingulate cortex (ACC), was more negative for the negative frame than for the positive frame in the win domain. Consistent with previous findings that the FRN is not sensitive to “better than expected” positive prediction error, the FRN did not differentiate the positive and negative frame in the loss domain. Our results provide neural evidence that the description invariance principle which states that reward representation and decision making are not influenced by how options are presented is violated in the framing effect. PMID:24733998

  16. Effects of Electronic-State-Dependent Solute Polarizability: Application to Solute-Pump/Solvent-Probe Spectra.

    PubMed

    Sun, Xiang; Ladanyi, Branka M; Stratt, Richard M

    2015-07-23

    Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution's dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute-solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute's own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute's own rotational dynamics.

  17. Scanning ultrafast electron microscopy.

    PubMed

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  18. Scanning ultrafast electron microscopy

    PubMed Central

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  19. Low energy electron catalyst: the electronic origin of catalytic strategies.

    PubMed

    Davis, Daly; Sajeev, Y

    2016-10-12

    Using a low energy electron (LEE) as a catalyst, the electronic origin of the catalytic strategies corresponding to substrate selectivity, reaction specificity and reaction rate enhancement is investigated for a reversible unimolecular elementary reaction. An electronic energy complementarity between the catalyst and the substrate molecule is the origin of substrate selectivity and reaction specificity. The electronic energy complementarity is induced by tuning the electronic energy of the catalyst. The energy complementarity maximizes the binding forces between the catalyst and the molecule. Consequently, a new electronically metastable high-energy reactant state and a corresponding new low barrier reaction path are resonantly created for a specific reaction of the substrate through the formation of a catalyst-substrate transient adduct. The LEE catalysis also reveals a fundamental structure-energy correspondence in the formation of the catalyst-substrate transient adduct. Since the energy complementarities corresponding to the substrate molecules of the forward and the backward steps of the reversible reactions are not the same due to their structural differences, the LEE catalyst exhibits a unique one-way catalytic strategy, i.e., the LEE catalyst favors the reversible reaction more effectively in one direction. A characteristic stronger binding of the catalyst to the transition state of the reaction than in the initial reactant state and the final product state is the molecular origin of barrier lowering.

  20. On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Hui; Ji, Yun; Liu, Wei

    2014-02-17

    In this work, the origin of electron blocking effect of n-type Al{sub 0.25}Ga{sub 0.75}N electron blocking layer (EBL) for c+ InGaN/GaN light-emitting diodes has been investigated through dual-wavelength emission method. It is found that the strong polarization induced electric field within the n-EBL reduces the thermal velocity and correspondingly the mean free path of the hot electrons. As a result, the electron capture efficiency of the multiple quantum wells is enhanced, which significantly reduces the electron overflow from the active region and increases the radiative recombination rate with holes.