Science.gov

Sample records for efficiency absorption chiller

  1. Triple-effect absorption chiller cycles

    SciTech Connect

    DeVault, R.C.; Grossman, G.

    1992-06-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the ``triple effect.`` A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  2. Triple-effect absorption chiller cycles

    SciTech Connect

    DeVault, R.C. ); Grossman, G. )

    1992-01-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the triple effect.'' A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  3. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  4. The rediscovery of absorption chillers

    SciTech Connect

    Katzel, J.

    1992-04-23

    Absorption chillers are back - and for two very good reasons: they are environmentally sound and, in many cases, economically attractive. One factor fueling this resurgence is the outlook for natural gas, the energy source of most absorption systems. Deregulation has spurred exploration, and forecasts indicate an abundant supply and relatively low prices through 2050. Threats of global warming and depletion of the ozone layer also are forces driving the absorption chiller market. Being a good corporate citizen today means minimizing or eliminating the use of chlorofluorocarbons (CFCs), the basis of many refrigerants used in mechanical chillers. Even as chemical and chiller manufacturers alike work to develop substitute refrigerants, the perfect alternative has yet to be found. Absorption units are free of these problems, a benefit that appeals to many people.

  5. Absorption chillers: Technology for the future

    SciTech Connect

    Garland, P.W.; Garland, R.W.

    1997-12-31

    In an era of heightened awareness of energy efficiency and the associated environmental impacts, many industries worldwide are exploring ``environmentally friendly`` technologies that provide equivalent or improved performance while reducing or eliminating harmful side-effects. The refrigeration and air-conditioning industry, due to its reliance on CFCs and HCFCs, has invested in research in alternatives to the industry standard vapor compression machines. One alternative technology with great promise is chemical absorption. Absorption chillers offer comparable refrigeration output with reduced SO{sub 2}, CO{sub 2}, and NO{sub x} emissions. Absorption chillers do not use CFCs or HCFCs, refrigerants that contribute to ozone depletion and global warming. Additionally, gas-fired absorption chillers can save significant amounts in energy costs when used in combination with a vapor compression chiller in a hybrid system. The hybrid system can take advantage of the comparatively low price of natural gas (per unit ton) and rely on the high performance of vapor compression when electricity prices are lower. The purpose of this article is to provide an introduction for those new to absorption technology as well as a discussion of selected high efficiency cycles, a discussion on the technology of coupling absorption with vapor compression systems to form a hybrid system, and the environmental impacts of absorption.

  6. Purge needs in absorption chillers

    SciTech Connect

    Murray, J.G. )

    1993-10-01

    Absorption chillers are regaining a significant share of large tonnage chiller sales, such as they had 20 years ago. Gas-fired chillers are now available that have a base energy (ultimate fuel usage) consumption rate per ton comparable to that in electric units. Effective purging in an absorption chiller is an absolute necessity to achieve the low chilled water temperature needed for dehumidification and to fully benefit from the energy savings offered by double-effect cycles. Although the purge system is usually not shown on the typical cycle schematic, its proper functioning is a key requirement for satisfactory machine operation. This article discusses the effect of noncondensible (N/C) gases on the absorption cooling process and the basics of purge systems. In addition, the article discusses the rationale for the important design step of selecting the location of the N/C probe, and discusses purge systems applicable to the direct-fired, double-effect machines now entering the marketplace.

  7. Real world chiller efficiency update

    SciTech Connect

    Tierney, T.M.

    1995-12-31

    The purpose of this paper is to report on selected activities currently underway or recently completed on the topic of Real World Electric Chiller Efficiency. As providers of district chilled water the value of the product is often compared by customers and perspective customers with the cost of producing chilled water in small customer owned and operated in-building chiller plants. For this comparison to be complete, all of the costs associated with owning and operating an in-building chiller plant must be considered. These costs include capital, maintenance, repair, replacement and annual energy cost. While the annual energy cost is just one of the costs associated with operating a chiller plant, it is an important component that is relatively hard to accurately identify. This paper supplies some background on recent work completed by the industry to establish the true operating efficiency of smaller (500 to 1500 ton) electric chillers for the purpose of estimating annual energy costs. Work on this topic is necessary because of documented evidence that shows that electric chillers operating in the real world under the varying loads of an air conditioning system and with the effects of typical commercial maintenance over a period of years do not perform at as low an efficiency level (kw/ton) as they were originally cataloged by the manufacturer.

  8. Absorption chillers: Part of the solution

    SciTech Connect

    Occhionero, A.J. ); Hughes, P.J. ); Reid, E.A. )

    1991-01-01

    Acid rain, ozone depletion, global warming, and implementation economics are considered as they relate to the advisability of expanding the application of absorption chillers. Introductory and background information are provided to put the discussion in the proper context. Then all four issues are discussed separately as they relate to absorption chillers. Acid rain and ozone depletion concerns, and implementation economics, are found to support the expanded use of absorption chillers. The global warming concern is found to be more of a gray area, but the areas of benefit correspond well with the conditions of greatest economic advantage. All things considered, absorption chillers are believed to be part of the environmental and economic solution. It is further believed that integrated resource planning (IRP) processes that consider electric and gas technologies on an equal footing would come to the same conclusion for many regions of the United States. 9 refs., 3 tabs.

  9. Residential solar-absorption chiller thermal dynamics

    SciTech Connect

    Guertin, J.M.; Wood, B.D.; McNeill, B.W.

    1981-03-01

    Research is reported on the transient performance of a commercial residential 3 ton lithium bromide-water absorption chiller designed for solar firing. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Tests run to ascertain computer algorithms which simulate system isolated chiller performance, revealed processes hitherto undocumented. Transient operation is simulated by three distinct algorithms associated with the three phases of chiller operation. The first phase is start up time. It was revealed during testing that the time required to reach steady state performance values, when the chiller was turned on, was a linear function of steady state water supply temperatures. The second phase is quasi steady state performance. Test facility's performance compared favorably with the manufacturer's published data. The third phase is the extra capacity produced during spin down. Spin down occurs when the hot water supply pump is turned off while the other system pumps remain operating for a few minutes, thus allowing extra chiller capacity to be realized. The computer algorithms were used to generate plots which show the operational surface of an isolated absorption chiller subjected to off design and transient operation.

  10. Absorption type water chiller fired directly by waste heat

    NASA Astrophysics Data System (ADS)

    Sauer, K. L.; Kalwar, K.

    1982-08-01

    The direct use of waste heat as heating element in a water chiller of the absorption type was studied. The chilled water is used as cooling element in the industrial process, producing the waste heat or for conditioning the workplace or further located places. The heat source is gaseous or liquid. The cooling capacity is in the range from 10 to 120 kW. After reviewing the different absorption systems, LiBr/H20 proved to be the most suitable. The process retained for experimenting was the manufacturing of synthetic materials polymer industry and was tested in two different factories. It is proved that the use of absorption type water chillers is practicable with an efficiency of 10% to 25% of the waste heat energy, but that the existing chillers need extensive conversion for obtaining economical operation when using a low temperature heating source.

  11. Parametric analysis of a double-effect steam absorption chiller

    NASA Astrophysics Data System (ADS)

    Mohammed Salih Ahmed, Mojahid Sid Ahmed; Gilani, Syed Ihtsham Ul-Haq

    2012-06-01

    The development in the field of refrigeration and cooling systems based on absorption cycles has attained its own internal dynamic in the last decade. A major obstacle for developing model is the lack of available component specifications. These specifications are commonly proprietary of the chiller's manufacturers and normally the available information is not sufficient. This work presented a double-effect parallel-flow-type steam absorption chiller model based on thermodynamic and energy equations. The chiller studied is 1250 RT (Refrigeration Tons) using lithium bromide -water as working pair. The mathematical equations that govern the operation of the steam absorption chiller are developed, and from the available design data the values of the overall heat transfer coefficient multiplied by the heat exchanger surface area and the characteristics of each component of the absorption chiller at the design point are calculated. For thermo physical and thermodynamic properties for lithium bromide-water solution, set of computationally efficient formulations are used. The model gives the required information about temperature, concentration, and flow rate at each state point of the system. The model calculates the heat load at each component as well as the performance of the system.

  12. Simulating a 4-effect absorption chiller

    SciTech Connect

    Grossman, G.; Zaltash, A.; Adcock, P.W.; DeVault, R.C.

    1995-06-01

    Absorption chillers are heat-operated refrigeration machines that operate on one of the earliest known principles of refrigeration. Current absorption chillers typically use either steam or a gas-fired burner as the energy source. All current gas-fired absorption cooling systems are based on the well known single-effect or double-effect cycles. To further improve utilization of the high temperature heat available from natural gas, a variety of triple-effect cycles have been proposed and are being developed that are capable of substantial performance improvement over equivalent double-effect cycles. This article describes a study that investigated the possibility of even further improving utilization of the high temperature heat available from natural gas combustion. During the study, performance simulation was conducted for a 4-effect lithium bromide/water cycle. From an environmental perspective, absorption chillers provide several benefits. They use absorption pairs (such as lithium bromide/water) as the working fluids, rather than chlorofluorocarbons or hydrochlorofluorocarbons, which contribute to ozone depletion and global warming.

  13. Cost reductions in absorption chillers. Final report, June 1984-May 1985

    SciTech Connect

    Leigh, R.W.

    1986-05-01

    Absorption chillers have great difficulty competing with the electric-driven compression alternative, due in part to modest operating efficiencies and largely to high first costs. This project is an assessment of the possibility of lowering the costs of absorption chillers dramatically by the use of low material intensity in the design of a new generation of these machines. Breakeven costs for absorption chillers, their heat exchangers and heat exchanger materials were established which will allow commercial success. Polymeric and metallic materials appropriate to particular components and which meet the cost goals were identified. A subset of these materials were tested and ordered by success in tolerating conditions and materials found in absorption chiller applications. Conceptual designs which indicate the practicality of the low material intensity approach were developed. The work reported here indicates that there is a high probability that this apporach will be successful.

  14. Cost reduction in absorption chillers: Phase 2

    SciTech Connect

    Leigh, R.W.

    1989-02-01

    A research program at Brookhaven National Laboratory (BNL) has addressed the possibility of dramatically lowering the first costs of absorption chillers through lowered material intensity and the use of lower cost materials, primarily in the heat exchangers which make up the bulk of the operating components of these systems. This must be done while retaining the best performance characteristics available today, a gross design point coefficient of performance (COP) of 1.3 and a net design (seasonal) average COP of 1.0 (0.90) in a directly fired, double effect unit. We have investigated several possible routes to these goals, and here report on these findings, focusing on the areas that appear most promising. The candidate technologies include the use of polymer film heat exchangers in several applications, the use of thin strips of new, corrosion resistant alloys to replace thicker, less impervious metals in applications exposed to gas flames, and copper or cupro-nickel foils in contact with system water. The use of such materials is only possible in the context of new heat exchanger and system designs, which are also discussed. To lend focus, we have concentrated on a directly fired double effect system providing capacity only. If successful, these techniques will also find wide applicability in heat pumps, cogeneration systems, solar cooling, heat recovery and chemical process heat transfer. 46 refs., 24 figs., 22 tabs.

  15. Advantages and disadvantages of using absorption chillers to lower utility bills

    SciTech Connect

    Kistler, P.

    1997-04-01

    Absorption chillers have a proven history of providing low-cost reliable cooling and should continue to do so in the future. Absorption chiller systems can provide significant energy savings for a particular application. To maximize savings, the various system arrangements should be evaluated; for example, single effect versus double effect, chiller versus chiller/heater, straight absorption chiller or the electric/absorption hybrid.

  16. Cycle Analysis using Exhaust Heat of SOFC and Turbine Combined Cycle by Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Takezawa, Shinya; Wakahara, Kenji; Araki, Takuto; Onda, Kazuo; Nagata, Susumu

    A power generating efficiency of solid oxide fuel cell (SOFC) and gas turbine combined cycle is fairly high. However, the exhaust gas temperature of the combined cycle is still high, about 300°C. So it should be recovered for energy saving, for example, by absorption chiller. The energy demand for refrigeration cooling is recently increasing year by year in Japan. Then, we propose here a cogeneration system by series connection of SOFC, gas turbine and LiBr absorption chiller to convert the exhaust heat to the cooling heat. As a result of cycle analysis of the combined system with 500kW class SOFC, the bottoming single-effect absorption chiller can produce the refrigerating capacity of about 120kW, and the double-effect absorption chiller can produce a little higher refrigerating capacity of about 130kW without any additional fuel. But the double-effect absorption chiller became more expensive and complex than the single-effect chiller.

  17. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  18. United States Department of Energy large commercial absorption chiller development program

    SciTech Connect

    Garland, P.W.; DeVault, R.C.; Zaltash, A.

    1998-11-01

    The US Department of Energy (DOE) is working with partners from the gas cooling industry to improve energy efficiency and US competitiveness by using advanced absorption technologies that eliminate the use of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), refrigerants that contribute to ozone depletion and global warming. Absorption cooling uses natural gas as the heat source, which produces much lower NO{sub x} emissions than oil- or coal-generated electricity. Gas-fired chillers also have the advantage of helping reduce peak electrical usage during summer months. To assist industry in developing advanced absorption cooling technologies, DOE sponsors the Large Commercial Chiller Development Program. The goal of the program is to improve chiller cooling efficiency by 30--50% compared with the best currently available absorption systems.

  19. Commercial absorption chiller models for evaluation of control strategies

    SciTech Connect

    Koeppel, E.A.; Klein, S.A.; Mitchell, J.W.

    1995-08-01

    A steady-state computer simulation model of a direct fired double-effect water-lithium bromide absorption chiller in the parallel-flow configuration was developed from first principles. Unknown model parameters such as heat transfer coefficients were determined by matching the model`s calculated state points and coefficient of performance (COP) against nominal full-load operating data and COPs obtained from a manufacturer`s catalog. The model compares favorably with the manufacturer`s performance ratings for varying water circuit (chilled and cooling) temperatures at full load conditions and for chiller part-load performance. The model was used (1) to investigate the effect of varying the water circuit flow rates with the chiller load and (2) to optimize chiller part-load performance with respect to the distribution and flow of the weak solution.

  20. Triple effect absorption chiller utilizing two refrigeration circuits

    SciTech Connect

    DeVault, R.C.

    1988-03-22

    This patent describes a heat absorption method for an absorption chiller. It comprises: providing a firs absorption system circuit for operation within a first temperature range, providing a second absorption system circuit for operation within a second temperature range; heat exchanging refrigerant and absorber solution; thermal communication with an external heat load. This patent describes a heat absorption apparatus for use as an absorption chiller. It includes: a first absorption system circuit for operation within a first temperature range; a second absorption system circuit for operation within a second temperature range which has a lower maximum temperature relative to the first temperature range; the first circuit having generator means, condenser means, evaporator means, and absorber means operatively connected together; the second circuit having generator means condenser means, evaporator means, and absorber means operative connected together; and the first circuit condenser means and the first circuit absorber means being in heat exchange communication with the second circuit generator means.

  1. Performance Analysis of Solution Transportation Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Kiani, Behdad; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Thermally activated advanced absorption cycles are considered promising candidates to replace CFCs, HCFCs and HFCs for residential and commercial applications. In such absorption systems, it is desirable to utilize the waste heat from industries for heating and cooling applications in commercial and residential sectors. For this purpose, it is necessary to transport energy over some distance because the waste heat source and demand are generally located apart from each other. Transportation of steam, hot water or chilled water requires high construction costs for insulation. There is an efficient method of energy transportation using absorption system called “ Solution Transportation Absorption System (STA)”. The solution is transported at an ambient temperature so that tube-insulations not required. This paper shows the simulation of the abovementioned system and the optimal result, using mathematical optimization. The optimum system with industry‧s waste heat utilization is obtained. At the end, the effect on the pollution emission and energy conservation is obtained.

  2. Global climate change: Mitigation opportunities high efficiency large chiller technology

    SciTech Connect

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  3. Water cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    A broad line of absorption chillers designed to operate with hot fluids at as low a temperature as practical while rejecting heat to a stream of water was developed. A packaging concept for solar application in which controls, pumps, valves and other system components could be factor assembled into a unitary solar module was investigated.

  4. Air cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  5. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Waste heat from co-generation systems are usually recovered by hot water or steam, those are used to drive absorption refrigerators at cooling time, and those are used for heating via heat exchangers at heating time. However waste heat from micro gas turbines are discharged in the form of exhaust gas, it is simple that exhaust gas is directly supplied to absorption chiller-heaters. In the first report we studied cooling cycle, and this second paper, we evaluated various absorption heating cycles for exhaust gas driven absorption chiller-heaters, and adopted one of these cycles for the prototype machine. Also, we experimented with the prototype for wide range condition and got the heating characteristics. Based on the experimental data, we developed a simulation model of the static characteristics, and then studied how to increase the output by limited exhaust gas.

  6. Triple effect absorption chiller utilizing two refrigeration circuits

    SciTech Connect

    De Vault, R.C.

    1988-03-22

    A heat absorption method for an absorption chiller is described comprising: (a) providing a first absorption system circuit for operation within a first temperature range; (b) providing a second absorption system circuit for operation within a second temperature range which has a lower maximum temperature than the first temperature range; (c) heat exchanging refrigerant and absorber solution from the first circuit condenser and absorber with absorption solution from the generator of the second circuit; and (d) the evaporator of the first circuit and the evaporator of the second circuit both being disposed in thermal communication with an external heat load to withdraw heat from the heat load.

  7. System Analysis on Absorption Chiller Utilizing Intermediate Wasted Heat

    NASA Astrophysics Data System (ADS)

    Yamada, Miki; Suzuki, Hiroshi; Usui, Hiromoto

    A system analysis has been performed for the multi-effect absorption chiller (MEAC) applied as a bottoming system of 30kW class hybrid system including micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system. In this paper, an intermediate wasted heat utilization (IWHU) system is suggested for lifting up the energy efficiency of the whole system and coefficient of performance (COP) of MEAC. From the results, the suggested IWHU system was found to show the very high energy efficiency compared with a terminal wasted heat utilization (TWHU) system that uses only the heat exhausted from the terminal of MGT/SOFC system. When TWHU system is applied for MEAC, the utilized heat from the MGT/SOFC system is found to remain low because the temperature difference between the high temperature generator and the wasted heat becomes small. Then, the energy efficiency does not become high in spite of high COP of MEAC. On the other hand, the IWHU system could increase the utilized heat for MEAC as performs effectively. The exergy efficiency of IWHU system is also revealed to be higher than that of a direct gas burning system of MEAC, because the wasted heat is effectively utilized in the IWHU system.

  8. Cycle Simulation of HotWater Fired Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Esaki, Shuji; Iramina, Kazuyasu; Kobayashi, Takahiro; Ohnou, Masayuki; Kaneko, Toshiyuki; Soga, Takashi

    The design limits were examined to determine the lowest temperature for hot water that can be used as a heat source to drive a hot water fired absorption chiller. Advantage was taken of the fact that the cycle calculation method using the minimum temperature difference is quite effective. This minimum temperature difference was the lower of the two temperature differences used to get the logarithmic mean temperature difference that need to design the evaporator, absorber, condenser and generator in an absorption refrigerator. This report proposes a new solution algorithm employing this minimum temperature difference to make a cycle simulation of the hot water fired absorption chiller. It shows the lowest usable temperature for hot water and makes clear the chilled water and cooling water temperature conditions that can provide the lowest temperature.

  9. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  10. Performance of a double-effect absorption chiller driven by ICPC solar collectors

    SciTech Connect

    Bergquam, J.B.; Duff, W.S.; Brezner, J.M.; Henkel, E.T.; Winston, R.; O'Gallagher, J.; Sethi, P.

    1999-07-01

    This paper presents experimental data and analytical results describing the performance of a 70 kW (20 ton), water-fired, double-effect absorption chiller. The chiller is driven by a 106 m{sup 2} array of integrated compound parabolic concentrator (ICPC) solar collectors. For this project, an existing gas-fired chiller was modified to operate on hot water. The water was heated by an array of 336 evacuated ICPC tubes. Each tube has an effective area of 0.317 m{sup 2}. The chiller and collector array are part of a complete solar HVAC system that provides air conditioning and space heating for a 743 m{sup 2} (8,000 ft{sup 2}) commercial building in Sacramento, CA. The other components of the HVAC system are a high temperature storage tank, a cooling tower, a gas-fired back-up boiler and five 14 kW (4 ton) cooling/heating fan coil units. The experimental data are used to determine; (1) the efficiency of the collectors; (2) the coefficient of performance of the chiller; and (3) the overall energy balance on the system. Computer models have also been developed to predict the performance and to optimize the design and operating characteristics of the HVAC system.

  11. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  12. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    NASA Astrophysics Data System (ADS)

    Borst, R. R.; Wood, B. D.

    1985-05-01

    The performance of a prototype three ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  13. Heavy absorption chillers: The Tortoise technology that can win

    SciTech Connect

    Irwin, F.E.

    1995-06-01

    Why has Absorption taken over 200 years to become a viable technology and secondarily what is the long term potential for heavy absorption technology? A third interesting question may be as some knowledgeable people in the North America industry have professed, is there a Window of Opportunity which was presented by the electric vapor compressor refrigerant issue which will be the last chance for absorption? Of course we know that absorption is not a new technology in 1994. It is however being rediscovered in many parts of the world by specifiers and engineers who are otherwise totally familiar with HVAC systems technology. As has been well documented in Japan, absorption heavy systems have been dominant for some time to the point that over 90% of the new units installed in the heavy systems category are absorption. Further by now 50% of the installed heavy systems tonnage in the country are absorption chillers. It did not take the electric vapor compressor refrigerant issue to make this huge market for absorption and there aren`t too many people in the HVAC business in Japan that view absorption as the {open_quotes}Tortoise technology.{close_quotes} If we only understood what the drivers were in Japan to create this absorption market then perhaps we could understand and possibly predict the long term potential for the technology in other markets of the world. We could actually go to work and look for markets that mirror the prevailing conditions in Japan. There will be those amongst us who will tell you that Japan is a unique market in almost every product category and most certainly with respect to heavy chiller systems.

  14. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    NASA Astrophysics Data System (ADS)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  15. Transient effects on the performance of a residential solar absorption chiller

    SciTech Connect

    Guertin, J.M.; Wood, B.D.

    1980-01-01

    The transient performance of a commercial residential 3 ton lithium-bromide/water absorption chiller is studied. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Isolation of the absorption chiller from system effects showed time to steady state performance to be a linear function of steady state water supply temperatures. These findings summarized in computer algorithms were used to map the integrated performance of a 3 ton absorption chiller.

  16. Lithium bromide absorption chiller passes gas conditioning field test

    SciTech Connect

    Lane, M.J.; Huey, M.A.

    1995-07-31

    A lithium bromide absorption chiller has been successfully used to provide refrigeration for field conditioning of natural gas. The intent of the study was to identify a process that could provide a moderate level of refrigeration necessary to meet the quality restrictions required by natural-gas transmission companies, minimize the initial investment risk, and reduce operating expenses. The technology in the test proved comparatively less expensive to operate than a propane refrigeration plant. Volatile product prices and changes in natural-gas transmission requirements have created the need for an alternative to conventional methods of natural-gas processing. The paper describes the problems with the accumulation of condensed liquids in pipelines, gas conditioning, the lithium bromide absorption cycle, economics, performance, and operating and maintenance costs.

  17. QuikChill software for efficient chiller upgrade assessment

    SciTech Connect

    Rose, R.J.; Anderson, D.

    1998-07-01

    Chiller upgrades, required by recent CFC legislation, have not occurred in most large US facilities. Opportunities for compliance via efficient, correctly-sized chillers is significant, but there is little industry infrastructure encouraging downsizing and maximum efficiency, nor are changeouts approached as investments. Upgrade performance analysis is either too simplistic (missing integration and downsizing opportunities) or too difficult, detailed, and expensive. A niche exists for dedicated tools that can be used for both early screening and more detailed final design analysis, including downsizing, system integration, and staging. QuickChill, a chiller upgrade analysis software tool, as developed by EPA's ENERGY STAR Buildings Program to address these issues. It performs economic and energy analyses of potential centrifugal chiller upgrades using minimal information, and performs more accurate calculations as the quality and detail or inputs are increased. QuikChill assesses the consolidation of existing chillers, integration/staging of new chillers, and refrigerant conversion retrofits. QuikChill was designed for facility managers and consulting engineers facing CFC phaseouts. Rather than require time-consuming, detailed building shell and operational inputs, QuikChill estimates loads using DOE2-generated curves which plot the relationship between cooling load and outdoor temperature. Surprisingly, these curves reasonably predict annual cooling system operating requirements when used with local hourly temperatures and the peak load met by the existing system. Hourly temperature data is available for over 240 locations and users can easily supply peak information. QuikChill's combination of simplified inputs, investment-orientation, and unique approach to hourly cooling load estimation help fill an analytical void for the post-CFC chiller industry.

  18. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  19. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  20. Absorption chiller optimization and integration for cogeneration and engine-chiller systems. Phase 1 - design. Topical report, April 1985-July 1986

    SciTech Connect

    Kubasco, A.J.

    1986-07-01

    A market study indicates a significant market potential for small commercial cogeneration (50-500 kW) over the next 20 years. The potential exists for 1500 installations per year, 80% of those would be a system composed of Engine-Generator and Heat Recovery Unit with the remainder requiring the addition of an Absorption Chiller. A preliminary design for an advanced Heat Recovery Unit (HRU) was completed. The unit incorporates the capability of supplementary firing of the exhaust gas from the new generation of natural gas fired lean burn reciprocating engines being developed for cogeneration applications. This gives the Heat Recovery Unit greater flexibility in following the thermal load requirements of the building. An applications and design criteria analysis indicated that this was a significant feature for the HRU as it can replace a standard auxiliary boiler thus affording significant savings to the building owner. A design for an advanced absorption chiller was reached which is 15% lower in cost yet 9% more efficient than current off-the-shelf units. A packaged cogeneration system cost and design analysis indicates that a nominal 254 kW cogeneration system incorporating advanced components and packaging concepts can achieve a selling price of less than $880/kW and $700/kW with and without an absorption chiller.

  1. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  2. Investigation of the part-load performance of an absorption chiller

    SciTech Connect

    Radermacher, R.; Didion, D.A.; Klein, S.A.

    1983-01-01

    An experimental investigation designed to determine the part-load performance of an ammonia-water absorption water chiller is described. The steady-state and cyclic performance of the chiller were measured under controlled conditions in an environmental chamber. Two valves were installed in the chiller to separate high- and low-pressure regions during off times, and insulation was applied to the chiller components. By these measures, losses due to cyclic operation were reduced by over 50%, resulting in a 6% to 7% increase in the calculated seasonal performance factor for typical northern and southern climates in the United States. The use of the valves eliminated the need of the ''spindown'' period, thereby reducing the consumption of parasitic electrical energy.

  3. Enhanced heat transfer tubes for film absorbers of absorption chiller/heater

    SciTech Connect

    Sasaki, Naoe; Nosetani, Tadashi; Furukawa, Masahiro; Kaneko, Toshiyuki

    1995-12-31

    Absorption chiller/heaters using non-CFC refrigerants are attracting attention as environmentally friendly energy systems. As the refrigerant/absorbent pair, the water/lithium bromide aqueous solution pair is preferably used for most absorption chiller/heaters in Japan. Absorption chiller/heaters, mainly used as water chillers and air-conditioners, are commercially available at least for unit cooling capacities above 60 kW. In absorption chiller/heaters, the absorber must be made compact, because the absorber has the largest heat transfer area of the four primary heat exchangers in the system: the evaporator, absorber, regenerator and condenser. Although a great amount of information is available on the evaporator and condenser, the same type of information concerning the absorber is lacking. This paper introduces two kinds of double fluted tubes called Arm tubs and Floral tubes for film absorbers. Arm tubes are manufactured using a two-pass drawbench process, while Floral tubes are made using a single pass drawbench process. The experiments using a lithium bromide aqueous solution with the addition of 250 ppm n-octyl alcohol as the surfactant showed that Arm tubes and Floral tubes had about 40% higher heat transfer performance than plain tubes. Therefore, Floral tubes are expected to realize a high performance at low cost. Furthermore, the optimization of the number of grooves on the outside of the tubes is also described here.

  4. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOEpatents

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  5. LiCl dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    SciTech Connect

    Ko, S.M.

    1980-06-03

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system. 4 figs.

  6. Enhanced Heat Transfer Tubes for Absorber of Absorption Chiller/Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Sasaki, Naoe; Kaneko, Toshiyuki; Nosetani, Tadashi

    For the purpose of development of high performance absorption chiller/heater utilizing lithium bromide aqueous solution as working fluid, it is the most effective to improve the performance of absorber with the largest heat transfer area of the four heat exchangers. This paper introduces two kinds of double fluted tubes for the absorber of absorption chiller/heater. Arm tube and floral tube have about 40% higter heat transfer performance than the plain tube conventionally used in absorber. The former is manufactured by double drawbench process, while the latter by single drawbench process. Therefore, floral tube is expected to realize both high heat transfer perfoemance and low cost.

  7. SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER

    SciTech Connect

    Randy C. Gee

    2004-11-15

    This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

  8. Institutional project summary University of Redlands direct fired gas absorption chiller system

    SciTech Connect

    Tanner, G.R.

    1996-05-01

    The University of Redlands, located in the California Inland Empire City of Redlands supplies six campus building with chilled and hot water for cooling and space heating from a centrally located Mechanical Center. The University was interested in lowering chilled water production costs and eliminating Ozone depleting chloroflourocarbon (CFC) refrigerants in addition to adding chiller capacity for future building to be added to the central plant piping {open_quotes}loop{close_quotes}. After initially providing a feasibility study of chiller addition alternatives and annual hourly load models, GRT & Associates, Inc. (GRT) provided design engineering for the installation of a 500 Ton direct gas fired absorption chiller addition to the University of Redland`s mechanical center. Based on the feasibility study and energy consumption tests done after the new absorption chiller was added, the university estimates annual energy cost saving versus the existing electric chiller is approximately $65,000 per year. Using actual construction costs, the simple before tax payback period for the project is six years.

  9. Cycle simulation of the low-temperature triple-effect absorption chiller with vapor compression unit

    SciTech Connect

    Kim, J.S.; Lee, H.

    1999-07-01

    The construction of a triple-effect absorption chiller machine using the lithium bromide-water solution as a working fluid is strongly limited by corrosion problems caused by the high generator temperature. In this work, three new cycles having the additional vapor compression units were suggested in order to lower the generator temperature of a triple-effect absorption chiller. Each new cycle has one compressor located at the different position which was used to elevate the pressure of the refrigerant vapor. Computer simulations were carried out in order to examine both the basic triple-effect cycle and three new cycles. All types of triple-effect absorption chiller cycles were found to be able to lower the temperature of high-temperature generator to the more favorable operation range. The COPs of three cycles calculated by considering the additional compressor works showed a small level of decrease or increase compared with that of the basic triple-effect cycle. Consequently, a low-temperature triple-effect absorption chiller can be possibly constructed by adapting one of three new cycles. A great advantage of these new cycles over the basic one is that the conventionally used lithium bromide-water solution can be successfully used as a working fluid without the danger of corrosion.

  10. Operation of a low temperature absorption chiller at rating point and at reduced evaporator temperature

    NASA Astrophysics Data System (ADS)

    Best, R.; Biermann, W.; Reimann, R. C.

    1985-01-01

    The returned fifteen ton Solar Absorption Machine (SAM) 015 chiller was given a cursory visual inspection, some obvious problems were remedied, and then it was placed on a test stand to get a measure of dirty performance. It was then given a standard acid clean, the water side of the tubes was brushed clean, and then the machine was retested. The before and after cleaning data were compared to equivalent data taken before the machine was shipped. The second part of the work statement was to experimentally demonstrate the technical feasibility of operating the chiller at evaporator temperatures below 0(0)C (32(0)F) and identify any operational problems.

  11. Static Characteristics of Absorption Chiller-Heater Supplying Cold and Hot Water Simultaneously

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Irie, Tomoyoshi

    Absorption chiller-heaters which can supply both chilled water and hot water at the same time, are used for cooling and heating air conditioning systems. In this paper, we classified absorption cold and hot water generating cycles and control methods, studied these absorption cycles by cycle simulation. In economizer cycle, condensed refrigerant which heats hot water is transported to cooling cycle and used effectively for cooling chilled water, Concerning with transported condensed refrigerant, there are two methods, all condensed refrigerant or required refrigerant for cooling are transported to cooling cycle, and required refrigerant method is better for energy saving. Adding improvement of solution control to this economizer cycle, simultaneous cold and hot water supplying chiller-heaters have good characteristics of energy saving in the all region.

  12. Hybrid solar receiver as a source of high-temperature medium for an absorption chiller supply

    NASA Astrophysics Data System (ADS)

    Przenzak, Estera; Filipowicz, Mariusz

    2016-03-01

    This article discusses the problems related with the cold production, i.e. energy efficiency of the process. The idea of solar cooling systems has been presented as the solution of the problem of big electricity demand. The paper discusses the principle of the operation of absorption chillers. Disadvantages and advantages of the solar cooling systems were discussed. The installation for manufacturing high-temperature heat based on solar collectors and concentrator of solar radiation constructed in AGH in Cracow has been presented. This installation is a first stage of projected, complete solar cooling system. The special attention is paid to the dedicated solar high-temperature heat receiver as a most important element of the system. The achieved values of temperature, power and efficiency depending on the working medium flow has been presented and discussed. The intensity of solar radiation during the measurements has been taken into account. Two versions of heat receiver were investigated: non-insulated and insulated with mineral wool. The obtained efficiency of the heat receiver (less than 30%) is not satisfactory but possibility of improvements exist.

  13. Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network

    SciTech Connect

    Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F.

    1998-10-01

    The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

  14. Triple effect absorption chiller utilizing two refrigeration circuits

    DOEpatents

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  15. Design and Economic Potential of an Integrated High-Temperature Fuel Cell and Absorption Chiller Combined Cooling, Heat, and Power System

    NASA Astrophysics Data System (ADS)

    Hosford, Kyle S.

    Clean distributed generation power plants can provide a much needed balance to our energy infrastructure in the future. A high-temperature fuel cell and an absorption chiller can be integrated to create an ideal combined cooling, heat, and power system that is efficient, quiet, fuel flexible, scalable, and environmentally friendly. With few real-world installations of this type, research remains to identify the best integration and operating strategy and to evaluate the economic viability and market potential of this system. This thesis informs and documents the design of a high-temperature fuel cell and absorption chiller demonstration system at a generic office building on the University of California, Irvine (UCI) campus. This work details the extension of prior theoretical work to a financially-viable power purchase agreement (PPA) with regard to system design, equipment sizing, and operating strategy. This work also addresses the metering and monitoring for the system showcase and research and details the development of a MATLAB code to evaluate the economics associated with different equipment selections, building loads, and economic parameters. The series configuration of a high-temperature fuel cell, heat recovery unit, and absorption chiller with chiller exhaust recirculation was identified as the optimal system design for the installation in terms of efficiency, controls, ducting, and cost. The initial economic results show that high-temperature fuel cell and absorption chiller systems are already economically competitive with utility-purchased generation, and a brief case study of a southern California hospital shows that the systems are scalable and viable for larger stationary power applications.

  16. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Micro gas turbines are expected as engines for the distributed co-generation systems, performing power generation and heat recovery. Waste heat from micro gas turbines are discharged in the form of exhaust gas, and it is simple that exhaust gas is directly supplied to an absorption refrigerator. In this paper, we evaluated various single-double effect absorption cycles for exhaust gas driven absorption refrigerators, and clarified that the difference of performance among these cycles are little. We adopted one of these cycles for the prototype machine, and experimented with it to get the partial load characteristics and the effect of cooling water temperature on the performance. Based on the experimental data, we developed as imulation model of the static characteristics, and studied the direction of improvement.

  17. Stability Analysis of Absorption Chiller-Heaters by Applying Transfer Function

    NASA Astrophysics Data System (ADS)

    Fujii, Tatsuo; Miyake, Satoshi; Oka, Masahiro; Mori, Kiyoyuki

    A transfer function approach is found to be a practical method for ensuring stable operation of absorption chiller-heaters. The transfer function model is based on a solution-circuit of the machine, which dominates the stability of the operation. This model includes a solution pump, a generator with an overflow weir, and a float valve. We found that the solution-circuit system is designed with the cascade control, which makes the system stable. In this construction, the float valve actuates a primary control loop, and the overflow weir actuates a secondary loop. The effects of the characteristic of the solution pump and the overflow weir are estimated by the degree of the stabilities, which are the gain margin and the phase margin. We found that the characteristic of the solution pump strongly effects the stability by enhancing the effect of the cascade control and improving the stability. So it is essential for a better stability analysis model. According to these results, the established model is useful for quantitatively predicting the stabilities of a chiller-heater in operation, and simultaneously reducing its size and improving the stability of operation. We conclude that the methodology based on transfer function can provide compact and reliable absorption chiller-heaters.

  18. The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone

    SciTech Connect

    Tsilingiris, P.T. )

    1992-07-01

    The possibility of using solar ponds as low-cost solar collectors combined with commercial absorption chillers in large scale solar cooling design is investigated. The analysis is based on the combination of a steady-state solar pond mathematical model with the operational characteristics of a commercial absorption chiller, assuming condenser heat rejection in the upper convecting zone (U.C.Z.). The numerical solution of the nonlinear equations involved leads to results which relate the chiller capacity with pond design and environmental parameters, which are also employed for the investigation of the optimum pond size for a minimum capital cost. The derived cost per cooling kW for a 350 kW chiller ranges from about 300 to 500 $/kW cooling. This is almost an order of magnitude lower than using a solar collector field of evacuated tube type.

  19. Design improvements in LiBr absorption chillers for solar applications

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Bourne, J. R.; Ben-Dror, J.; Kimchi, Y.; Vardi, I.

    1981-02-01

    The present article describes a theoretical evaluation of two design improvements made in a lithium bromide absorption chiller which contribute substantially to its performance in solar application. One is the addition of a solution preheater which allows for a considerable reduction in generator size and cost, and improves performance at part load. The other is the addition of an auxiliary generator which enables the chiller to operate at nominal capacity or higher at all times, while utilizing to a maximum the solar radiation available at the time, however small. This is an effective solution to the problem of backup required in all solar-powered systems. The evaluation has been performed by computer simulation and results are presented for the performance of the unit with different configurations of the above systems. The results indicate the limitations on the part of the load to be supplied by the preheater. They point toward the advantage of using an auxiliary generator in a separate shell from the solar-powered generator and with a separate condenser. Operating curves for the chiller with the design improvements are given.

  20. Cost benefit analysis and energy savings of using compression and absorption chillers for air conditioners in hot and humid climates

    NASA Astrophysics Data System (ADS)

    Shekarchian, M.; Moghavvemi, M.; Motasemi, F.; Mahlia, T. M. I.

    2012-06-01

    The electricity consumption growth has increased steadily in the recent decade which is a great concern for the environment. Increasing the number of high-rise air-conditioned buildings and the rapid use of electrical appliances in residential and commercial sectors are two important factors for high electricity consumption. This paper investigates the annual energy required for cooling per unit area and the total energy cost per unit area for each type of air conditioning systems in hot and humid climates. The effects of changing the coefficient of performance (COP) of absorption chillers on cost saving was also investigated in this study. The results showed that using absorption chillers for cooling will increase the amount of energy consumption per unit area; however the energy cost per unit area will decrease. In addition this research indicates that for each 0.1 increment in COP of absorption chillers, there is about 500 USD/m2 saved cost.

  1. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    SciTech Connect

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

    1996-04-01

    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  2. Chapter 14: Chiller Evaluation Protocol

    SciTech Connect

    Tiessen, A.

    2014-09-01

    This protocol defines a chiller measure as a project that directly impacts equipment within the boundary of a chiller plant. A chiller plant encompasses a chiller--or multiple chillers--and associated auxiliary equipment. This protocol primarily covers electric-driven chillers and chiller plants. It does not include thermal energy storage and absorption chillers fired by natural gas or steam, although a similar methodology may be applicable to these chilled water system components. Chillers provide mechanical cooling for commercial, institutional, multiunit residential, and industrial facilities. Cooling may be required for facility heating, ventilation, and air conditioning systems or for process cooling loads (e.g., data centers, manufacturing process cooling). The vapor compression cycle, or refrigeration cycle, cools water in the chilled water loop by absorbing heat and rejecting it to either a condensing water loop (water cooled chillers) or to the ambient air (air-cooled chillers).

  3. Thermal energy storage chiller management

    SciTech Connect

    Williams, C.D.

    1996-11-01

    This paper addresses chiller applications that are designed to get the maximum benefit form a chiller plant every day of the year. It treats all chillers as variable-capacity devices and applies them in thermal storage system configurations that efficiently take advantage of that capability. It also recognizes that a chiller operating temperature differential is always a variable to which a chiller must always adjust. All the applications addressed vary the flow and in some situations the operating temperature differential to maximize or optimize each chiller`s capacity. It is done in such a manner that the safety and reliability of the chiller are improved rather than jeopardized.

  4. Modeling of Liquid Film along Absorber Cylinders in an Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Yamanaka, Tomofumi; Nagamoto, Wataru; Sugiyama, Takahide

    A two-dimensional liquid film model of LiBr solution falling along absorber cylinders has been studied to obtain boundary conditions for computing vapor flow in the absorber-evaporator of an absorption chiller. The model was established based on the assumptions that LiBr concentration and temperature profiles in the liquid film obey the third order polynomial expressions. It was indicated that mass flux and absorbed heat on the liquid surface can be calculated with simple numerical computations on the present analytical model. The overall heat transfer coefficient and total absorbed mass per second calculated with the present liquid film model was compared with experimental data for validation. The results calculated with the present model showed good agreement with the experimental data. Then, it was concluded the present model was useful enough for determining surface conditions on the LiBr liquid film around absorber cylinders.

  5. Boiling Heat Transfer in High Temperature Generator of Absorption Chiller/Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Enomoto, Eiichi; Sekoguchi, Kotohiko

    The heat transfer performance of forced convective boiling was tested using a high temperature generator of absorption chiller/heater, the rear furnace wall of which was composed of two different surfaces; i. e., plain and sprayed heated surfaces. These two surfaces were bisymmetrically set. Wall surface temperatures of both the fire and fluid sides were measured at three locations along the upward flow direction in each heated surface for determining the heat flux and heat transfer coefficient. Nickel-chromium and alumina were employed as the spray materials. The test results show that the sprayed surface can yield a marked elevation in the heat transfer performance due to boiling on the plain surface. Therefore the level of heated surface temperature is largely reduced by means of the spraying surface treatment. This implies that the spraying would much improve a corrosive condition of the heated surface.

  6. Two-phase Flow Patterns in High Temperature Generator of Absorption Chiller / Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kanuma, Hitoshi; Sekoguchi, Kotohiko; Takeishi, Masayuki

    There is a lack of information about vapor-liquid two-phase flow patterns determined using void signals in high temperature generator of absorption chiller/heater. Sensing void fraction has been hampered because lithium bromide aqueous solution of strong alkalinity is employed as working fluid at high temperature and high level of vacuum. New void sensor applicable to such difficult conditions was developed. The void Fractions at 48 locations in a high temperature generator were measured simultaneously in both cooling and heating operations. Analysis of void signals detected reveals that the most violent boiling occurs at the upper part of rear plate of combustion chamber and the first line of vertical tubes located in the flue. The flow patterns are strongly affected by the system pressure difference between the cooling and heating operations: there appear bubbly, slug and froth flows in the cooling operation, but only bubbly flow in the heating operation.

  7. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    NASA Astrophysics Data System (ADS)

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  8. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    SciTech Connect

    Urata, Tatsuo

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  9. Economic analysis of solar assisted absorption chiller for a commercial building

    NASA Astrophysics Data System (ADS)

    Antonyraj, Gnananesan

    Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.

  10. Boiling Heat Transfer in High Temperature Generator of Absorption Chiller/Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Enomoto, Eiichi; Sekoguchi, Kotohiko

    Heat transfer performance of forced convective boiling in high temperature generator was experimentally studied using an actual absorption chiller/heater. Measurements were made at six locations, three different levels on a couple of laterally separated lines, for the fluid rising along the rear wall of the high temperature generator furnace. Fluids tested were water and lithium bromide aqueous solution. System pressures were maintained at 96 and 24 kPa, and firing rates were changed from 100 to 40 % of the full load of the machine. Through the experiments, thermodynamic states of both of the fluids were in subcooled region at the lower and middle locations and in saturated region at the upper location. It can be suggested that saturated boiling occurs at comparatively narrow area, located at the upper zone of heat transfer surface of the generator, while forced convective heat transfer and subcooled boiling appear at the remaining broad area. Enhancement of heat transfer due to saturated boiling was not pronounced for lithium bromide aqueous solution than for water.

  11. Simulation and performance analysis of a 4-effect lithium bromide-water absorption chiller

    SciTech Connect

    Grossman, G.; Zaltash, A.; DeVault, R.C.

    1995-02-01

    Performance simulation has been conducted for a 4-effect lithium bromide-water chiller, capable of substantial performance improvement over state-of-the-art double-effect cycles. The system investigated includes four condensers and four desorbers coupled together, forming an extension of the conventional double-effect cycle; based on prior analytical studies, a parallel flow system was preferred over series flow, and double-condenser coupling was employed, to further improve performance. A modular computer code for simulation of absorption systems (ABSIM) was used to investigate the performances of the cycle. The simulation was carried out to investigate the influence of some major design parameters. A coefficient of performance around 2.0 (cooling) was calculated at the design point, with a heat supply temperature of 600{degrees}F (315{degrees}C) at the solution outlet from the high temperature desorber. With some optimization of the weak (pumped) solution flowrate and of the solution split among the four desorbers, this COP may be raised above 2.2.

  12. Non-Absorbable Gas Behavior in the Absorber/Evaporator of a Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Nagamoto, Wataru; Sugiyama, Takahide

    A two-dimensional numerical study on non-absorbable gas behavior in the absorber/evaporator of an absorption chiller has been performed. In the present study, the effect of the pitch-to-diameter ratio of a cylinder bundle in the absorber was highlighted. From the results, a sudden decrease of the overall heat transfer coefficient of the absorber was observed at a certain mean concentration of non-absorbable gas for each pitch-to-diameter ratio. Such a critical concentration was also found to decrease as the pitch-to- diameter ratio increased. The sudden decrease occurs due to the sudden disappearance of recirculating region, which is formed between the absorber and the evaporator, and where most of non-absorbable gas stays when it exists. As the pitch-to-diameter ratio increases, the recirculating region becomes weak because the velocity of the high velocity region supporting the recirculating flow decreases. Then, the critical mean concentration of non-absorbable gas is found to decrease as pitch-to-ratio increases.

  13. Modeling the performance of small capacity lithium bromide-water absorption chiller operated by solar energy

    SciTech Connect

    Saman, N.F.; Sa`id, W.A.D.K.

    1996-12-31

    An analysis of the performance of a solar operated small capacity (two-ton) Lithium Bromide-Water (LiBr-H{sub 2}O) absorption system is conducted. The analysis is based on the first law of thermodynamics with lithium bromide as the absorbent and water as the refrigerant. The effect of various parameters affecting the machine coefficient of performance under various operating conditions is reported. Coefficient of performance of up to 0.8 can be obtained using flat plate solar collectors with generator temperatures in the range of 80--95 C (176--203 F). Liquid heat exchangers with effectiveness based on an NTU of the order of one would be a good design choice. The chiller can save approximately 3,456 kWh/yr per a two-ton unit, and it will reduce emissions by 19 lb of NO{sub x}, 5,870 lb of CO{sub 2}, and 16 lb of SO{sub x} per year per machine.

  14. Simulation on Vapor Flow in the Absorber/Evaporator of an Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Nagamoto, Wataru; Sugiyama, Takahide

    Two-dimensional numerical computation methodology for vapor flow in the absorber/ evaporator in an absorption chiller has been suggested and the effect of pitch ratio of cylinders in the absorber/evaporator has been discussed. Pseudo-diffusion effects of surfactants added to lithium bromide solution flowing along cylinders in the absorber were considered into liquid film model suggested in the previous study. From the results, the present model was found to agree well with experimental data in a rather wide range of the pressure in the present system. The present model effectively reduces the computational load for vapor flow in the absorber/evaporator including 176 cylinders. Near the top and bottom walls of the absorber/evaporator, the high velocity regions were observed and the recirculating regions were also found to be formed just inside of the high velocity regions. This high velocity region is intensified with pitch-to-diameter ratio decrease because the vapor flow penetrating from the back side of the absorber increases for the pressure drop increase of front side of the absorber.

  15. A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat

    SciTech Connect

    Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G.

    1996-11-01

    Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

  16. Electric chiller handbook. Final report

    SciTech Connect

    Smith, K.; Keder, J.; Tidball, R.

    1996-02-01

    Electric chillers have dominated the market for large commercial cooling systems due to their history of reliable, economical operation. This handbook provides a comprehensive guide for use in selecting chillers for commercial cooling needs. Key issues include chiller availability, rated performance, future viability of various refrigerant options, the cost-effectiveness of alternative chillers, and chilled-water system optimization. Investigators used a variety of industry data sources to develop market share information for electric and gas chiller systems and to determine applications according to building type, age, and region. Discussions with chiller manufacturers provided information on product availability, performance, and ownership cost. Using EPRI`s COMTECH software, investigators performed comprehensive cost analyses for placement of large and small chillers in three representative cities. Case studies of actual installations support these analyses. EPRI`s Electric Chiller Handbook provides a single source of current information on all major issues associated with chiller selection and application. Key issues include chiller availability and markets, rated performance, future viability of various refrigerant options, the cost-effectiveness of alternative chillers, and chilled-water system optimization. The handbook also describes available hardware, outlines the features and costs of gas-fired competitive systems, and provides methods and comparisons of life-cycle costing of various chiller system options. Analyses of chiller features and economics show that electric chillers are preferable to gas chillers in the large majority of applications, consistent with current market trends. Furthermore, today`s chillers offer a wide range of efficiencies and refrigerant options to serve cooling system needs for the 20-year lifetime of the chiller. Finally, new higher-efficiency models of electric chillers offer very attractive paybacks.

  17. Low-cost thin-film absorber/evaporator for an absorption chiller. Final report, May 1992-April 1993

    SciTech Connect

    Lowenstein, A.; Sibilia, M.

    1993-04-01

    The feasibility of making the absorber and evaporator of a small lithium-bromide absorption chiller from thin plastic films was studied. Tests were performed to measure (1) pressure limitations for a plastic thin-film heat exchanger, (2) flow pressure-drop characteristics, (3) air permeation rates across the plastic films, and (4) creep characteristics of the plastic films. Initial tests were performed on heat exchangers made of either low-density polyethylene (LDPE), high-density polyethylene (HDPE), or a LDPE/HDPE blend. While initial designs for the heat exchanger failed at internal pressures of only 5 to 6 psi, the final design could withstand pressures of 34 psi.

  18. Development of a single-family absorption chiller for use in a solar heating and cooling system. Phase III, final report. Volume II

    SciTech Connect

    Reimann, R.C.; Biermann, W.J.

    1984-10-01

    The appendices provide supporting information on: properties of a chemical system for solar fired, air-cooled absorption equipment, air-side performance of a one-inch tube, absorber plate-fin coil, listings of the programs used for simulation and data reduction, and evaluation of the Carrier 3-ton chiller in an integrated heating and cooling system. (LEW)

  19. Development of a single-family absorption chiller for use in a solar heating and cooling system, phase 3, volume 2

    NASA Astrophysics Data System (ADS)

    Reimann, R. C.; Biermann, W. J.

    1984-10-01

    Supporting information is presented on: properties of a chemical system for solar fired, air-cooled absorption equipment, air-side performance of a one-inch tube, absorber plate-fin coil, listings of the programs used for simulation and data reduction, and evaluation of the Carrier three-tone chiller in an integrated heating and cooling system.

  20. Electric chiller handbook. Final report

    SciTech Connect

    1998-02-01

    that electric chillers are preferable to gas chillers in the large majority of applications, consistent with current market trends. Furthermore, today`s chillers offer a wide range of efficiencies and refrigerant options to serve cooling system needs for the 20-year lifetime of the chiller. Finally, new higher-efficiency models of electric chillers offer very attractive paybacks.

  1. Analysis of the Solar Radiation Impact on Cooling Performance of the Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Fedorčák, Pavol; Košičanová, Danica; Nagy, Richard; Mlynár, Peter

    2014-11-01

    Absorption cooling at low power is a new technology which has not yet been applied to current conditioning elements. This paper analyzes the various elements of solar absorption cooling. Individual states were simulated in which working conditions were set for the capability of solar absorption cooling to balance heat loads in the room. The research is based on an experimental device (absorption units with a performance of 10kW) developed at the STU in Bratislava (currently inputs and outputs of cold sources are being measured). Outputs in this paper are processed so that they connect the entire scheme of the solar absorption cooling system (i.e. the relationship between the solar systems hot and cold storage and the absorption unit). To determine the size of the storage required, calculated cooling for summer months is considered by the ramp rate of the absorption unit and required flow rate of the collectors.

  2. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  3. Chiller performance evaluation report. Final report

    SciTech Connect

    Wylie, D.

    1998-12-01

    The Electric Power Research Institute (EPRI) directed ASW Engineering Management to analyze the performance of a new package chiller manufactured by VaCom, Inc. The chiller was operated for approximately 22 months using three different refrigerants (R-407C, R-22 and R-507). The objective was to identify the chiller`s energy-efficiency with each of the three refrigerants. This report presents AWS`s findings and associated backup information.

  4. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  5. Enabling the Distributed Generation Market of High Temperature Fuel Cell and Absorption Chiller Systems to Support Critical and Commercial Loads

    NASA Astrophysics Data System (ADS)

    DiMola, Ashley M.

    Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.

  6. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Imai, Yosuke; Ohashi, Toshinori; Okamoto, Hiroaki; Hihara, Eiji; Kawakami, Ryuichiro

    On conventional gas heat pump(GHP), waste heat from gas engine that uses as driving source is emitted into outside. So from the standpoint of efficient use of waste heat, it is assumed that waste heat from gas engine is used as driving source of absorption chiller, and high temperature condensate refrigerant in GHP is subcooled to middle temperature by cold source from absorption cycle, and as a result, GHP makes more efficiency. However, in equipping GHP with absorption cycle, downsizing and high-efficiency of absorption cycle is required. In this study, air-cooled subcooled adiabatic absorber is focused and physical phenomenon in it is analyzed, and finally one perception of the optimized designing is shown.

  7. Electric chiller buyer`s guide: Water-cooled centrifugal and screw chillers

    SciTech Connect

    Fryer, L.

    1995-06-01

    The phase-out of CFCs at the end of 1995 is driving increasing numbers of building owners to convert or replace their chillers with equipment that uses non-CFC refrigerants. Because chillers last for decades, the efficiency of the replacement equipment will have a lasting effect on the energy use, operating cost, and environmental impact of the over 25 percent of commercial floor space that is cooled by chillers, as well as the need for utility capacity. Each chiller is custom built, and many efficiency options are available. The lowest life cycle costs will be obtained by optimizing the cooling plant (including the cooling tower and chilled water distribution system) to match the year-round load profile of the building, not just its peak load. Careful sizing of replacement chillers can correct the oversizing that is so common, thereby reducing capital and operating costs. Significant savings may also be obtained by designing for the local climate, rather than basing chiller selection on the standard conditions assumed in most analyses. This report covers the models and features available in electric water-cooled centrifugal and screw chillers of 150 to 1,200 tons. In addition to full- and part-load efficiencies, it includes information on sizing, refrigerants, heat exchangers, adjustable-frequency drives, trade-offs between chiller efficiency and pumping power, staging of multiple chillers, maintenance, chiller testing, and utility program opportunities.

  8. Chiller-heater unit nets building 2-yr payback

    SciTech Connect

    Duffy, J.

    1983-05-09

    A 500-ton double-absorption Hitachi Paraflow chiller-heater that switches from purchased steam to natural gas will reduce a Manhattan office building's energy costs by 55% and achieve a two-year payback. The new system replaces a steam-powered, single-stage absorption chiller. By reusing heat in a second-stage generator, the Hitachi unit uses only half as many Btus per ton as a conventional chiller. (DCK)

  9. Efficient Low-Lift cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls

    SciTech Connect

    Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas

    2010-05-31

    The U.S. Department of Energy’s Building Technologies Program goal is to develop cost-effective technologies and building practices that will enable the design and construction of net-zero energy buildings by 2025. To support this goal, Pacific Northwest National Laboratory evaluated an integrated technology that through utilization of synergies between emerging heating, ventilation and air conditioning systems can significantly reduce energy consumption in buildings. This set consists of thermal storage, dedicated outdoor air system, radiant heating/cooling with a variable speed low-lift-optimized vapor compression system. The results show that the low-lift cooling system provides significant energy savings in many building types and climates locations. This market represents well over half of the entire U.S. commercial building sector. This analysis shows that significant cooling system efficiency gains can be achieved by integrating low-lift cooling technologies. The cooling energy savings for a standard-performance building range from 37% to 84% and, for a high-performance building, from -9% to 70%.

  10. Chiller Controls-related Energy Saving Opportunities in FederalFacilities

    SciTech Connect

    Webster, Tom

    2003-01-01

    Chillers are a significant component of large facility energy use. The focus of much of the development of chilled water systems in recent years has been on optimization of set point and staging controls, improvements in chiller design to increase efficiency and accommodate chlorofluorocarbon (CFC) refrigerant replacements. Other improvements have been made by upgrading controls to the latest digital technologies, improving access and monitoring via communications and sophisticated liquid crystal displays (LCD), more robust fault diagnostics and operating and maintenance information logging. Advances have also been made in how chiller plant systems are designed and operated, and in the diversity of chiller products that are available to support innovative approaches. As in many industries, these improvements have been facilitated by advances in, and lower costs for, enabling technologies, such as refrigerants, compressor design, electronics for controls and variable frequency drives (VFD). Along with the improvements in electronics one would expect that advances have also been made in the functionality of unit controls included with chillers. Originally, the primary purpose of this project was to investigate the state of practice of chiller unit controllers in terms of their energy saving capabilities. However, early in the study it was discovered that advances in this area did not include incorporation of significantly different capabilities than had existed 10-15 years ago. Thus the scope has been modified to provide an overview of some of the basic controls-related energy saving strategies that are currently available along with guideline estimates of their potential and applicability. We have minimized consideration of strategies that could be primarily implemented via design practices such as chiller selection and plant design, and those that can only be implemented by a building management system (BMS). Also, since most of the floor space of federal buildings

  11. Fault Diagnosis in HVAC Chillers

    NASA Technical Reports Server (NTRS)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  12. Federal building retrofits to non-CFC chiller

    SciTech Connect

    Manoukian, R.

    1996-04-01

    Building managers faced with the CFC issue in existing building chillers are seeking solutions that optimize energy efficiency through proper sizing and chiller operations. Will the energy savings through proper sizing and operations offset the cost of the chiller replacement or the retrofit? At the San Diego Federal Building, the existing HVAC system, which handled normal and afterhours tenant operations, was subjected to such an evaluation.

  13. Demonstration of a new ICPC design with a double-effect absorption chiller in an office building in Sacramento, California[Integrated Compound Parabolic Concentrator

    SciTech Connect

    Duff, W.S.; Winston, R.; O'Gallagher, J.J.; Henkel, T.; Muschaweck, J.; Christiansen, R.; Bergquam, J.

    1999-07-01

    In 1998 two new technologies, a new ICPC solar collector and the solar operation of a double effect chiller, have been demonstrated for the first in an office building in Sacramento, California. This paper describes the demonstration project and reports on component and system performance.

  14. Lithium bromide chiller technology in gas processing

    SciTech Connect

    Huey, M.A.; Leppin, D.

    1995-12-31

    Lithium Bromide (LiBr) Absorption Chillers have been in use for more than half a century, mainly in the commercial air conditioning industry. The Gas Research Institute and EnMark Natural Gas Company co-funded a field test to determine the viability of this commercial air conditioning technology in the gas industry. In 1991, a 10 MMCFC natural gas conditioning plant was constructed in Sherman, Texas. The plant was designed to use a standard, off-the-shelf chiller from Trane with a modified control scheme to maintain tight operating temperature parameters. The main objective was to obtain a 40 F dewpoint natural gas stream to meet pipeline sales specifications. Various testing performed over the past three years has proven that the chiller can be operated economically and on a continuous basis in an oilfield environment with minimal operation and maintenance costs. This paper will discuss how a LiBr absorption chiller operates, how the conditioning plant performed during testing, and what potential applications are available for LiBr chiller technology.

  15. The chiller`s role within a utility`s marketing strategy: Using chiller related products and services to win and retain customers. Final report

    SciTech Connect

    1998-04-01

    Commercial chillers are used in space and industrial process cooling. Approximately 3% of commercial buildings, representing 19% of all commercial floor space, are cooled by chillers. Consequently, every chiller represents significant electric (or gas) consumption. Chillers can comprise as much as 30% of a large office building`s electrical load. The selection decisions (electric versus gas, standard versus high efficiency, thermal storage or no thermal storage, etc.) for a new or replacement chiller will affect the customer`s energy consumption for twenty to thirty years. Consequently, this decision can play a major role in the customer`s relationship with the energy provider. However, even though these chiller decisions have a significant impact on the utility, today the utility has limited influence over these decisions. EPRI commissioned this study to develop understanding that will help utilities increase their influence over chiller decisions. To achieve this objective, this study looks at the customer`s behavior -- how they make chiller decisions, how the customer`s behavior and decisions are influenced today, and how these decisions might change in the future due to the impact of deregulation and changes in customer goals. The output of this project includes a list of product and service offerings that utilities and EPRI could offer to increase their influence over chiller decisions.

  16. The benefits of integrated chiller retrofits: Excerpts from case studies

    SciTech Connect

    Gartland, L.; Sartor, D.

    1998-07-01

    An integrated chiller retrofit is an effective way to turn the CFC phaseout into an opportunity for energy efficiency and money savings. The 1996 moratorium on CFC production means many chillers will soon have to be replaced or converted to use alternative refrigerants. Integrating building load reductions and system improvements with chiller replacements and/or conversions can solve building comfort and maintenance problem, increase energy efficiency, save money on utility bills, increase a building's asset value, and produce a more financially attractive project. The poll $ense program at Lawrence Berkeley National laboratory has been gathering integrated chiller retrofit case studies from its regional workshops. This paper presents some of the best examples of different aspects of integrated retrofits. Example projects include: (1) a chiller conversion, (2) a chiller replacement, (3) an effective cooling system renovation, (4) a model building load reduction scheme, (5) an illustration of integrated chiller retrofit economics, (6) a chiller sizing cautionary tale, and (7) an environmentally friendly and cost-effective retrofit. These projects enumerate retrofit measures to consider, and show how much more effective it is to widen your focus from the chiller alone to the entire building when facing the CFC phaseout.

  17. An improved absorption generator for solar-thermal powered heat pumps. Part 2: Energy and economics

    SciTech Connect

    Fineblum, S.

    1997-12-31

    Solar heated absorption chiller installations have been very expensive for their rating. To enhance collector thermal efficiency the liquid flowing within the collectors must be kept as cool as possible. However, there is also a need to operate the absorption reported earlier. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and more efficient. As noted in Part 1, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures. Therefore, a smaller, less expensive chiller is required. The reduced investment in solar arrays and absorption chillers is estimated along with a range of paybacks.

  18. Gas engine driven chiller development and economics

    SciTech Connect

    Koplow, M.D.; Searight, E.F.; Panora, R.

    1986-03-01

    The TECOGEN Division of Thermo Electron Corporation has developed a nominal 150 ton engine driven chiller system under the sponsorship of the Gas Research Institute. The system incorporates an engine directly driving a screw compressor to produce about 130 tons of cooling capacity and a single effect absorption chiller driven by hot water recovered from engine heat to produce another 30 tons of cooling capacity. An economic analysis shows that it will be possible to recover the cost premium of engine driven chiller systems in most US cities in 3 years or less with the O and M savings of these systems when this cost premium is $30 per ton. 4 references, 13 figures, 5 tables.

  19. Efficiency Enhancement of Chiller and Heat Pump Using Natural Working Fluids with Two-phase Flow Ejector

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao

    An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the absorption cycle, the performance of the cycle can be greatly improved. Until now, the performance of the absorption cycle with the ejector has not been examined sufficiently. Therefore, this paper constructs the simulation model of the absorption cycle with the ejector and investigates the characteristics of that cycle by the simulation. As a result, COP of the absorption cycle with the ejector is about 3% higher than that of the conventional absorption cycle.

  20. Development of New Air-Cooled Heat Pump Chiller 'Compact Cube'

    NASA Astrophysics Data System (ADS)

    Ookoshi, Yasushi; Ito, Takuya; Yamaguchi, Hiroshi; Kato, Yohei; Ochiai, Yasutaka; Tanaka, Kosuke; Uji, Yoshihiro; Nakayama, Hiroshi

    Further improvement of the performance is requested to air-cooled heat pump chiller from the viewpoint of the global warming prevention. Smaller unit is needed to facilitate the renewal from absorption chiller to air-cooled heat pump chiller. To meet such needs, we developed compact new air-cooled heat pump chiller with high efficiency, 'Compact cube'. The developed machine is side-flow type with U-shaped fin and tube heat exchangers. With this structure, the uniform air velocity, high packed density of the heat exchangers, and the unit miniaturization have been implemented. The refrigeration cycle with two-evaporating temperature has also been implemented. The cooling COP of this cycle is 2% higher compared with conventional one-evaporating temperature cycle because of the rise of average evaporating temperature. In a new model, a new control system, which controls both capacity of compressors and air flow rate corresponding to heat load, has been implemented. As a result, the developed machine achieved IPLV(Integrated Part load Value) to 6.2(MCHV-P1800AE) which is 29% better than the conventional unit.

  1. Theoretical and testing performance of an innovative indirect evaporative chiller

    SciTech Connect

    Jiang, Yi; Xie, Xiaoyun

    2010-12-15

    An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirect evaporative chiller can be set close to the dew point temperature of the chiller's inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14-20 C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COP{sub r,s} of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water-air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23-27 C and relative humidity of 50-70%, proved that the developed practical indirect evaporative chiller successfully

  2. An improved absorption generator for solar-thermal powered heat pumps. Part 1: Feasibility

    SciTech Connect

    Fineblum, S.

    1997-12-31

    Solar heated absorption chiller installations have been, typically, very expensive for their rating. The need to keep the liquid flowing within the collectors as cool as possible to enhance collector thermal efficiency, conflicts with the need to operate the absorption chiller at a higher temperature. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and much more efficient. In addition, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures and, therefore, a smaller chiller is required. The economic consequences of these benefits will be presented in Part 2.

  3. Nitrogen chiller acceptance test procedure

    SciTech Connect

    Kostelnik, A.J.

    1995-03-07

    This document includes the inspection and testing requirements for the Nitrogen Chiller unit. The Chiller will support the Rotary Mode core Sampling System during the summer. The Chiller cools the Nitrogen Purge Gas that is used when drilling in tank wastes to cool the drill bit.

  4. Chiller plant design rules...Have they changed?

    SciTech Connect

    Eppelheimer, D.

    1995-09-01

    Chilled water plants are often viewed as energy consumers, actually they are only energy movers. In just the simple process of chilling water, there are four discrete energy moving functions. The chilled water pumps, condenser water pumps, and cooling tower fans are all forms of transport energy. The chiller is a heat pump where energy is consumed to raise the temperature of the heat stream. Insight into improved chiller plant performance can be obtained by tracking the power consumption of these four functions. The performance of centrifugal chillers has improved dramatically in the past 25 years. Certainly some of this improvement is due to technology improvements in heat transfer and compressor efficiency. However, the lion`s share of gain in chiller efficiency is a result of chiller owners budgeting more funds to energy conservation and purchasing more efficient chillers. Since 1970, the efficiency of electric water chillers has improved by nearly 4 percent! The intent of this presentation is to review the energy cost associated with central chilled water plants and identify opportunities in design that may reduce energy costs.

  5. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  6. Energy savings potential in air conditioners and chiller systems

    DOE PAGESBeta

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  7. Evaluation of HFC-245ca for commercial use in low pressure chillers. Task 1 report: Preliminary estimates of chiller performance

    SciTech Connect

    Keuper, E.F.; Hamm, F.B.; Glamm, P.R.

    1995-04-30

    HFC-245ca has been identified as a potential replacement for both CFC-11 and HCFC-123 in centrifugal chillers based on estimates of its thermodynamic properties, even though serious concerns exist about its flammability characteristics. The overall objective of this project is to assess the commercial viability of HFC-245ca in centrifugal chillers. This first report focuses on preliminary estimates of chiller performance only, while the next report will include laboratory performance data. The chiller performance estimates are based on early correlations of thermodynamic properties and predictions of compressor efficiency, with variations in heat transfer ignored until experimental data are obtained. Conclusions from this study include the following: The theoretical efficiency of HFC-245ca in optimized three stage chiller designs is very close to that for CFC-11 and HCFC-123 chillers. HFC-245ca is not attractive as a service retrofit in CFC-11 and HCFC-123 chillers because significant compressor modifications or dramatic lowering of condenser water temperatures would be required. Hurdles which must be overcome to apply HFC-245ca in centrifugal chillers include the flammability behavior, evaluation of toxicity, unknown heat transfer characteristics, uncertain thermodynamic properties, high refrigerant cost and construction of HFC-245ca manufacturing plants. Although the flammability of HFC-245ca can probably be reduced or eliminated by blending HFC-245ca with various inert compounds, addition of these compounds will lower the chiller performance. The chiller performance will be degraded due to less attractive thermodynamic properties and lower heat transfer performance if the blend fractionates. The experimental phase of the project will improve the accuracy of our performance estimates, and the commercial viability assessment will also include the impact of flammability, toxicity, product cost and product availability.

  8. Efficiency Enhancement of Chiller and Heat Pump Using Natural Working Fluids with Two-phase Flow Ejector

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao

    An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the absorption and the compression cycle, the performance of the refrigerator can be greatly improved. Until now, many studies have been conducted with regard to the single-phase flow ejector. But, single or two component two-phase flow ejector which needs for the compression and absorption cycle has not been examined sufficiently. This paper constructs the simulation model of single and two component two-phase flow ejector and investigates the characteristics of that ejector by the simulation. Working fluids are ammonia, CO2 and ammonia-water mixture. As a result, the optimum mixing section inlet pressure exists to maximize the performance of the ejector. And the ejector performance is analyzed in detail.

  9. Blackbody absorption efficiencies for six lamp pumped Nd laser materials.

    PubMed

    Cross, P L; Barnes, N P; Skolaut, M W; Storm, M E

    1990-02-20

    Utilizing high resolution spectra, the absorption efficiency for six Nd laser materials was calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO(4), Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials. PMID:20556185

  10. Blackbody absorption efficiencies for six lamp pumped Nd laser materials

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.

  11. Efficient Low-Lift Cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls Part I: Component and Subsystem Models

    SciTech Connect

    Armstrong, Peter; Jiang, Wei; Winiarski, David W.; Katipamula, Srinivas; Norford, L. K.; Willingham, ryan

    2009-03-31

    this paper develops component and subsystem models used to evaluat4e the performance of a low-lift cooling system with an air-colled chiller optimized for variable-speed and low-pressure-ratio operation, a hydronic radient distribution system, variable-speed transport miotor controls, and peak-shifting controls.

  12. Optimum hot water temperature for absorption solar cooling

    SciTech Connect

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  13. Loop chiller plant design dramatically lowers chilled water costs

    SciTech Connect

    Hartman, T.

    1999-07-01

    Recent improvements in HVAC networking and speed control technologies, together with an improved understanding of the nature of cooling loads in buildings offer exciting opportunities for improving the energy efficiency of chiller plants. A new Loop chiller plant design has been developed that incorporates variable speed control on all plant components. Operation of this cooling plant is coordinated with the load it serves through a control network. This new approach has enormous advantages over traditional optimized plants. The two key advantages of these new Loop design chiller plants designs are: (1) Annual operating energy requirements are reduced by as much as 50% or more when compared to present state-of-the-art optimized chiller plants, and (2) A smaller sized and therefore less costly chiller plant can be designed to serve HVAC loads. The term Loop is employed to describe the technologies employed because the concept employs closed loop control by providing operational feedback from each point of use to the plant. The Loop concept also employs a single, series coupled chilled water loop for higher pumping and distribution efficiencies. This paper presents background and design theory and follows with a case study to introduce the new Loop design and operations concept. Specifics of an actual design are presented along with an explanation of how the principles can be applied economically to all new or existing chiller plant designs to achieve dramatic reductions in both construction costs and energy costs.

  14. Report on field experiment program lithium bromide absorption chiller: Field gas conditioning project, Grayson County, Texas. Topical report, May 1991-December 1994

    SciTech Connect

    Lane, M.J.; Kilbourn, R.A.; Huey, M.A.

    1995-12-01

    The primary objective of the project was to determine the applicability of using commercial absorption air conditioning technology in an oil and gas field environment to condition natural gas to meet contractual limitations. Operational and maintenance requirements were documented throughout the test period of 1992 through 1994.

  15. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  16. Development testing of a magnetic bearing centrifugal chiller

    SciTech Connect

    Benedict, S.M.; Cole, G.S.; Gottschlich, J.

    1998-07-01

    Mainstream Engineering Corporation is developing a lubrication-free centrifugal compressor for high efficiency chiller applications which relies on magnetic bearing technology to support the rotor. This paper presents experimental results of a test program to evaluate the mechanical, thermodynamic, and aerodynamic performance of a high speed, single stage, direct drive centrifugal compressor for chiller applications. The focus is on low capacity centrifugal compressors. The authors present measurements of the compressor efficiency over a wide range of compressor speeds and inlet refrigerant superheat. Measurements show that isentropic efficiencies in excess of 0.80 are attainable over a wide range of operating conditions. This paper also describes a 110 ton chiller which utilizes two such magnetic bearing centrifugal compressors, with HFC-227ea refrigerant, and a user-friendly control system.

  17. Real world energy performance a look at chiller/cooling tower performance

    SciTech Connect

    Schmitt, R.W.

    1996-12-31

    Traditional selection criteria for chillers has focused on the chiller kW/ton at full-load design conditions, with little or no attention paid to part-load or off-design conditions. This is beginning to change because part-load or off-design conditions account for approximately 98% of chiller operating hours. With a multiple chiller central plant, part-load conditions mean running one or more chillers at or near peak capacity, with the other chillers off. This usually occurs in the fall, winter and spring, or during evening and nighttime hours, when outdoor air temperatures are lower. Consequently, entering condenser water temperatures below design are available. This paper will look at the economies of taking advantage of these conditions, and spend time looking at cooling tower selections. Cooling towers are relatively inexpensive when compared to chillers, and it often makes sense to use a higher capacity tower and lower the design entering condenser water temperature to the chiller. Improved chiller efficiencies will offset the additional tower cost and fan power.

  18. Absorption-reduced waveguide structure for efficient terahertz generation

    SciTech Connect

    Pálfalvi, L.; Fülöp, J. A.; Hebling, J.

    2015-12-07

    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tilted-pulse-front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-μJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers.

  19. Absorption-reduced waveguide structure for efficient terahertz generation

    NASA Astrophysics Data System (ADS)

    Pálfalvi, L.; Fülöp, J. A.; Hebling, J.

    2015-12-01

    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tilted-pulse-front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-μJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers.

  20. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  1. Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume II: Chiller test data

    SciTech Connect

    Keuper, E.F.

    1996-03-01

    The data presented here were taken under Trane Laboratory Test Order 23127 between May and October 1995. The chiller was a 200 nominal ton three stage direct drive centrifugal chiller with two economizers. Three sets of impellers, three refrigerants and two oils were tested in the chiller according to the following matrix. Trane 22 is a mineral oil and Solest 68 is a polyolester oil. Runs 1 through 6 were to optimize the refrigerant charge using CFC-11. This was determined to be 360 lbm (163.3 Kg) and this value was used for all three refrigerants. The chiller takes a charge of six gallons of oil (22.7 liters). These data which follow are divided into Large Impeller, Medium Impeller and Small Impeller sets further subdivided by Imperial and Metric presentation. The data were taken in Imperial Units. These data are presented in four-page sets. Page 1 shows the reduced chiller test data. Page 2 shows some supporting calculations by curve fit, such as motor efficiency and motor speed. Pages 3 and 4 show the raw data as delivered by the laboratory. All following four-page sets are repetition of the form but for successive test runs.

  2. The Correlation of Coupled Heat and Mass Transfer Experimental Data for Vertical Falling Film Absorption

    SciTech Connect

    Keyhani, M; Miller, W A

    1999-11-14

    Absorption chillers are gaining global acceptance as quality comfort cooling systems. These machines are the central chilling plants and the supply for cotnfort cooling for many large commercial buildings. Virtually all absorption chillers use lithium bromide (LiBr) and water as the absorption fluids. Water is the refrigerant. Research has shown LiBr to he one of the best absorption working fluids because it has a high affinity for water, releases water vapor at relatively low temperatures, and has a boiling point much higher than that of water. The heart of the chiller is the absorber, where a process of simultaneous heat and mass transfer occurs as the refrigerant water vapor is absorbed into a falling film of aqueous LiBr. The more water vapor absorbed into the falling film, the larger the chiller's capacity for supporting comfort cooling. Improving the performance of the absorber leads directly to efficiency gains for the chiller. The design of an absorber is very empirical and requires experimental data. Yet design data and correlations are sparse in the open literature. The experimental data available to date have been derived at LiBr concentrations ranging from 0.30 to 0.60 mass fraction. No literature data are readily available for the design operating conditions of 0.62 and 0.64 mass fraction of LiBr and absorber pressures of 0.7 and 1.0 kPa.

  3. Gas-fired chiller-heaters as a central plant alternative for small office buildings

    SciTech Connect

    Thies, R.M.; Bahnfleth, W.

    1998-01-01

    Gas absorption chillers-heaters have been applied successfully in large projects where use of multiple chillers is feasible. Large facilities typically have a substantial base cooling load. If the base load is greater than 30% of the minimum capacity of the smallest chiller, chiller-heaters alone can be used as the building central plant. However, this study shows that a small office building presents part-load design difficulties that tend to favor the use of other technologies. The engineer can overcome these application problems by a variety of means, as has been illustrated. Manufacturers, too, are addressing the problems associated with low-load operation of direct-fired chiller heaters. A new generation of chiller-heaters that can unload down to 10% of design load will soon be available. If these new machines are capital-cost-competitive and perform up to expectations, the routine application of chiller-heaters in small commercial buildings may be just around the corner.

  4. Pollution prevention and stratospheric ozone layer protection through innovative procurement methods: The chiller basic ordering agreement

    SciTech Connect

    Snyder, R.E.; Coyle, J.E.; Guice, J.R. Jr.; Kale, S.H.

    1997-12-31

    The Department of Energy (DOE) and the General Services Administration (GSA) have devised an affirmative procurement vehicle to encourage replacement of chillers using chlorofluorocarbon (CFC) refrigerants harmful to the Earth`s stratospheric ozone layer. Procurement selections are based on lowest life cycle cost. Linked with a DOE-developed Equipment Specification for 100 to 2,000 ton chillers that is crafted broadly enough to address about 90% of the Federal water-cooled chiller procurements, the Basic Ordering Agreement (BOA) process significantly reduces redundant design, procurement, and other costs associated with Federal purchasing of chillers through the cutting of red tape associated with buying industrial equipment. While serving to minimize the release of ozone-depleting substances (about six million tons of CFCs) to the environment, the installation of more energy-efficient chillers also promotes environmental stewardship in that reduced energy consumption translates into reduced emissions of noxious gases from the generation of electricity. Use of the BOA to purchase chillers consistent with Federal energy efficiency standards will contribute to reductions of almost a million tons annually of nitrous oxides, sulfur dioxide, and other pollutants from power plant emissions. Reduced electricity consumption of approximately 1.5 billion kilowatt hours per year by switching to more efficient chillers equates to an annual monetary savings of $75 million.

  5. The economics of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    Analytic procedure evaluates cost of combining absorption-cycle chiller with solar-energy system in residential or commercial application. Procedure assumes that solar-energy system already exists to heat building and that cooling system must be added. Decision is whether to cool building with conventional vapor-compression-cycle chiller or to use solar-energy system to provide heat input to absorption chiller.

  6. ASHRAE's new Chiller Heat Recovery Application Guide

    SciTech Connect

    Dorgan, C.B.; Dorgan, C.E.

    2000-07-01

    The new Chiller Heat Recovery Application Guide, published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE), provides a comprehensive reference manual on the options available for chiller heat recovery. The information in the guide will assist engineers, owners, and system operators in evaluating the potential of integrating chiller heat recovery into their cooling and heating systems. The primary focus is on new construction and applications where a chiller is being replaced due to inefficiency, high operating and maintenance (O and M) costs, or elimination of refrigerants containing ozone-depleting chemicals known as CFC/HCFCs. While chiller systems for commercial buildings are the primary focus of the guide, the information and procedures also apply to industrial heat pumps. The function of this paper is to highlight key information contained in the guide, including the major benefits of chiller heat recovery, primary candidates, and application procedures. A description of the guide's general format and contents is also provided.

  7. Measurements of light absorption efficiency in InSb nanowires

    PubMed Central

    Jurgilaitis, A.; Enquist, H.; Harb, M.; Dick, K. A.; Borg, B. M.; Nüske, R.; Wernersson, L.-E.; Larsson, J.

    2013-01-01

    We report on measurements of the light absorption efficiency of InSb nanowires. The absorbed 70 fs light pulse generates carriers, which equilibrate with the lattice via electron-phonon coupling. The increase in lattice temperature is manifested as a strain that can be measured with X-ray diffraction. The diffracted X-ray signal from the excited sample was measured using a streak camera. The amount of absorbed light was deduced by comparing X-ray diffraction measurements with simulations. It was found that 3.0(6)% of the radiation incident on the sample was absorbed by the nanowires, which cover 2.5% of the sample. PMID:26913673

  8. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  9. Chiller condition monitoring using topological case-based modeling

    SciTech Connect

    Tsutsui, Hiroaki; Kamimura, Kazuyuki

    1996-11-01

    To increase energy efficiency and economy, commercial building projects now often utilize centralized, shared sources of heat such as district heating and cooling (DHC) systems. To maintain efficiency, precise monitoring and scheduling of maintenance for chillers and heat pumps is essential. Low-performance operation results in energy loss, while unnecessary maintenance is expensive and wasteful. Plant supervisors are responsible for scheduling and supervising maintenance. Modeling systems that assist in analyzing system deterioration are of great benefit for these tasks. Topological case-based modeling (TCBM) (Tsutsui et al. 1993; Tsutsui 1995) is an effective tool for chiller performance deterioration monitoring. This paper describes TCBM and its application to this task using recorded historical performance data.

  10. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Chiller NO2 penetration. 1065.376... Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a NOX measurement instrument, but you don't use an NO2-to-NO converter upstream of the chiller, you must...

  11. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Chiller NO2 penetration. 1065.376... Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a NOX measurement instrument, but you don't use an NO2-to-NO converter upstream of the chiller, you must...

  12. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Chiller NO2 penetration. 1065.376... Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a NOX measurement instrument, but you don't use an NO2-to-NO converter upstream of the chiller, you must...

  13. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Chiller NO2 penetration. 1065.376... Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a NOX measurement instrument, but you don't use an NO2-to-NO converter upstream of the chiller, you must...

  14. Truck Thermoacoustic Generator and Chiller

    SciTech Connect

    Keolian, Robert

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

  15. Study on High Efficient Absorption Refrigerator Using Multi-effect Cycle

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Irie, Tomoyoshi; Saito, Kiyoshi; Kawai, Sunao

    Double effect chillers are commonly used as cooling machines for air condition. Great efforts have been making to improve the efficiency for a long time, and now the COP is very near to the limitation of double effect cycles. Triple effect cycles are expected for the next step beyond double effect cycles, but have some problems of high temperature and high pressure in the high stage generator. High temperature of absorbent causes corrosion problem and high vapor pressure over atmospheric pressure causes the restriction of legal regulation. This paper deals with many types of triple effect cycles. The temperature and dew point of the high stage generator are analyzed, several types are selected for low dew point, and one of them is more analyzed in detail.

  16. Development of facile property calculation model for adsorption chillers based on equilibrium adsorption cycle

    NASA Astrophysics Data System (ADS)

    Yano, Masato; Hirose, Kenji; Yoshikawa, Minoru; Thermal management technology Team

    Facile property calculation model for adsorption chillers was developed based on equilibrium adsorption cycles. Adsorption chillers are one of promising systems that can use heat energy efficiently because adsorption chillers can generate cooling energy using relatively low temperature heat energy. Properties of adsorption chillers are determined by heat source temperatures, adsorption/desorption properties of adsorbent, and kinetics such as heat transfer rate and adsorption/desorption rate etc. In our model, dependence of adsorption chiller properties on heat source temperatures was represented using approximated equilibrium adsorption cycles instead of solving conventional time-dependent differential equations for temperature changes. In addition to equilibrium cycle calculations, we calculated time constants for temperature changes as functions of heat source temperatures, which represent differences between equilibrium cycles and real cycles that stemmed from kinetic adsorption processes. We found that the present approximated equilibrium model could calculate properties of adsorption chillers (driving energies, cooling energies, and COP etc.) under various driving conditions quickly and accurately within average errors of 6% compared to experimental data.

  17. Solar absorption cooling plant in Seville

    SciTech Connect

    Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe

    2010-08-15

    A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

  18. Performance evaluation of conventional chiller systems

    SciTech Connect

    Beyene, A.

    1995-06-01

    This article describes an optimization technique to reduce chiller energy usage by evaluating energy saving strategies. In most commercial buildings and industrial plants, HVAC systems are the largest energy consumers and offer the owners significant potential for savings. Chiller machines are also of interest to utility companies because they operate during cooling times that overlap peak hours of warmer climate zones, thereby contributing to peak energy demands. The key performance parameter in chiller analysis is the kW/ton of refrigeration, which is the ratio of the amount of electrical energy consumed relative to the amount of cooling energy delivers. To obtain the kW/ton refrigeration for a chiller, the electric power consumption (kW) of the compressor should be measured, or calculated if the instantaneous current and voltage are known.

  19. Alternative refrigerant performance: Field test of a nonchlorofluorocarbon chiller at Fort Leonard Wood, MO. Final report

    SciTech Connect

    Sohn, C.W.; Tomlinson, J.J.; Herring, N.C.; Boughton, B.E.

    1995-01-01

    Production of chlorofluorocarbon (CFC) refrigerants will stop permanently by the end of 1995, and air-conditioning and refrigeration (AC/R) systems will have to use alternatives to CFC. The U.S. Army`s AC/R systems have a total cooling capacity of more than 1 million tons; approximately 55 percent of these systems use CFC-based refrigerants. Chillers currently using CFC refrigerants must be replaced or converted to operate with non-CFC refrigerants. The U.S. Army Construction Engineering Research Laboratories (USACERL) and the U.S. Army Center for Public Works (USACPW) are doing research to find an efficient, alternative refrigerant for Army installations. The current project monitored the performance of a non-CFC (R-134a) centrifugal chiller at Fort Leonard Wood (FLW), MO. Performance of this chiller under field conditions was compared with the manufacturer`s published ratings. Operational characteristics of the R-134a chiller were obtained by measuring electrical energy consumption, cooling delivered to the chiller cooling loop, and heat rejected by the condenser. Results indicated an average performance of approximately 0.68 kilowatts per ton (kW/ton) for the study period. The manufacturer`s design projection was 0.73 kW/ton. The performance evaluation of the R-134a system shows that it is an efficient addition to the FLW facility.

  20. A fluorescent benzothiazole probe with efficient two-photon absorption

    NASA Astrophysics Data System (ADS)

    Echevarria, Lorenzo; Moreno, Iván; Camacho, José; Salazar, Mary Carmen; Hernández, Antonio

    2012-11-01

    In this work, we report the two-photon absorption of 2-[4-(dimethylamino)phenyl]-1,3-benzothiazole-6-carbonitrile (DBC) in DMSO solution pumping at 779 nm with a 10 ns pulse laser-Nd:YAG system. The obtained two-photon absorption cross-section in DBC (407 ± 18 GM) is considerably high. Because DBC is a novel compound and have high values of fluorescence quantum yield, this result is expected to have an impact in biomolecules detection, diagnosis and treatment of cancer. Similar structures have previously been reported to show remarkable antitumour effects.

  1. Microbial contamination in poultry chillers estimated by Monte Carlo simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of microbial contamination during poultry processing may be reduced by the operating characteristics of the chiller. The performance of air chillers and immersion chillers were compared in terms of pre-chill and post-chill contamination using Monte Carlo simulations. Three parameters were u...

  2. Russian roulette efficiency in Monte Carlo resonant absorption calculations

    PubMed

    Ghassoun; Jehouani

    2000-10-01

    The resonant absorption calculation in media containing heavy resonant nuclei is one of the most difficult problems treated in reactor physics. Deterministic techniques need many approximations to solve this kind of problem. On the other hand, the Monte Carlo method is a reliable mathematical tool for evaluating the neutron resonance escape probability. But it suffers from large statistical deviations of results and long computation times. In order to overcome this problem, we have used the Splitting and Russian Roulette technique coupled separately to the survival biasing and to the importance sampling for the energy parameter. These techniques have been used to calculate the neutron resonance absorption in infinite homogenous media containing hydrogen and uranium characterized by the dilution (ratio of the concentrations of hydrogen to uranium). The punctual neutron source energy is taken at Es = 2 MeV and Es = 676.45 eV, whereas the energy cut-off is fixed at Ec = 2.768 eV. The results show a large reduction of computation time and statistical deviation, without altering the mean resonance escape probability compared to the usual analog simulation. The Splitting and Russian Roulette coupled to the survival biasing method is found to be the best methods for studying the neutron resonant absorption, particularly for high energies. A comparison is done between the Monte Carlo and deterministic methods based on the numerical solution of the neutron slowing down equations by the iterative method results for several dilutions. PMID:11003535

  3. Implanted Silicon Resistor Layers for Efficient Terahertz Absorption

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Abrahams, J.; Allen, C. A.; Benford, D. J.; Henry, R.; Stevenson, T.; Wollack, E.; Moseley, S. H.

    2005-01-01

    Broadband absorption structures are an essential component of large format bolometer arrays for imaging GHz and THz radiation. We have measured electrical and optical properties of implanted silicon resistor layers designed to be suitable for these absorbers. Implanted resistors offer a low-film-stress, buried absorber that is robust to longterm aging, temperature, and subsequent metals processing. Such an absorber layer is readily integrated with superconducting integrated circuits and standard micromachining as demonstrated by the SCUBA II array built by ROE/NIST (1). We present a complete characterization of these layers, demonstrating frequency regimes in which different recipes will be suitable for absorbers. Single layer thin film coatings have been demonstrated as effective absorbers at certain wavelengths including semimetal (2,3), thin metal (4), and patterned metal films (5,6). Astronomical instrument examples include the SHARC II instrument is imaging the submillimeter band using passivated Bi semimetal films and the HAWC instrument for SOFIA, which employs ultrathin metal films to span 1-3 THz. Patterned metal films on spiderweb bolometers have also been proposed for broadband detection. In each case, the absorber structure matches the impedance of free space for optimal absorption in the detector configuration (typically 157 Ohms per square for high absorption with a single or 377 Ohms per square in a resonant cavity or quarter wave backshort). Resonant structures with -20% bandwidth coupled to bolometers are also under development; stacks of such structures may take advantage of instruments imaging over a wide band. Each technique may enable effective absorbers in imagers. However, thin films tend to age, degrade or change during further processing, can be difficult to reproduce, and often exhibit an intrinsic granularity that creates complicated frequency dependence at THz frequencies. Thick metal films are more robust but the requirement for

  4. Fabrication of multi-layered absorption structure for high quantum efficiency photon detectors

    SciTech Connect

    Fujii, Go; Fukuda, Daiji; Numata, Takayuki; Yoshizawa, Akio; Tsuchida, Hidemi; Fujino, Hidetoshi; Ishii, Hiroyuki; Itatani, Taro; Zama, Tatsuya; Inoue, Shuichiro

    2009-12-16

    We report on some efforts to improve a quantum efficiency of titanium-based optical superconducting transition edge sensors using the multi-layered absorption structure for maximizing photon absorption in the Ti layer. Using complex refractive index values of each film measured by a Spectroscopic Ellipsometry, we designed and optimized by a simulation code. An absorption measurement of fabricated structure was in good agreement with the design and was higher than 99% at optimized wavelength of 1550 nm.

  5. Improvement of the COP of the LiBr-Water Double-Effect Absorption Cycles

    NASA Astrophysics Data System (ADS)

    Shitara, Atsushi

    Prevention of the global warming has called for a great necessity for energy saving. This applies to the improvement of the COP of absorption chiller-heaters. We started the development of the high efficiency gas-fired double-effect absorption chiller-heater using LiBr-H2O to achieve target performance in short or middle term. To maintain marketability, the volume of the high efficiency machine has been set below the equal to the conventional machine. The absorption cycle technology for improving the COP and the element technology for downsizing the machine is necessary in this development. In this study, the former is investigated. In this report, first of all the target performance has been set at cooling COP of 1.35(on HHV), which is 0.35 higher than the COP of 1.0 for conventional machines in the market. This COP of 1.35 is practically close to the maximum limit achievable by double-effect absorption chiller-heater. Next, the design condition of each element to achieve the target performance and the effect of each mean to improve the COP are investigated. Moreover, as a result of comparing the various flows(series, parallel, reverse)to which the each mean is applied, it has been found the optimum cycle is the parallel flow.

  6. Thermodynamic modelling of a double-effect LiBr-H2O absorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Iranmanesh, A.; Mehrabian, M. A.

    2012-12-01

    The goal of this paper is to estimate the conductance of components required to achieve the approach temperatures, and gain insights into a double-effect absorption chiller using LiBr-H2O solution as the working fluid. An in-house computer program is developed to simulate the cycle. Conductance of all components is evaluated based on the approach temperatures assumed as input parameters. The effect of input data on the cycle performance and the exergetic efficiency are investigated.

  7. Light absorption efficiencies of photosynthetic pigments: the dependence on spectral types of central stars

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji

    2015-07-01

    For detecting life from reflection spectra on extrasolar planets, trace of photosynthesis is one of the indicators. However, it is not yet clear what kind of radiation environments is acceptable for photosynthesis. Light absorption in photosystems on the Earth occurs using limited photosynthetic pigments such as chlorophylls (Chls) and bacteriochlorophylls (BChls). Efficiencies of light absorption for the pigments were evaluated by calculating the specific molecular absorption spectra at the high accuracy-quantum mechanical level. We used realistic stellar radiation spectra such as F, G, K and M-type stars to investigate the efficiencies. We found that the efficiencies are increased with the temperature of stars, from M to F star. Photosynthetic pigments have two types of absorption bands, the Q y and Soret. In higher temperature stars like F star, contributions from the Soret region of the pigments are dominant for the efficiency. On the other hand, in lower temperature stars like M stars, the Q y band is crucial. Therefore, differences on the absorption intensity and the wavelength between the Q y and Soret band are the most important to characterize the photosynthetic pigments. Among photosynthetic pigments, Chls tend to be efficient in higher temperature stars, while BChls are efficient for M stars. Blueward of the 4000 Å break, the efficiencies of BChls are smaller than Chls in the higher temperature stars.

  8. A hybrid absorption-adsorption method to efficiently capture carbon

    NASA Astrophysics Data System (ADS)

    Liu, Huang; Liu, Bei; Lin, Li-Chiang; Chen, Guangjin; Wu, Yuqing; Wang, Jin; Gao, Xueteng; Lv, Yining; Pan, Yong; Zhang, Xiaoxin; Zhang, Xianren; Yang, Lanying; Sun, Changyu; Smit, Berend; Wang, Wenchuan

    2014-10-01

    Removal of carbon dioxide is an essential step in many energy-related processes. Here we report a novel slurry concept that combines specific advantages of metal-organic frameworks, ion liquids, amines and membranes by suspending zeolitic imidazolate framework-8 in glycol-2-methylimidazole solution. We show that this approach may give a more efficient technology to capture carbon dioxide compared to conventional technologies. The carbon dioxide sorption capacity of our slurry reaches 1.25 mol l-1 at 1 bar and the selectivity of carbon dioxide/hydrogen, carbon dioxide/nitrogen and carbon dioxide/methane achieves 951, 394 and 144, respectively. We demonstrate that the slurry can efficiently remove carbon dioxide from gas mixtures at normal pressure/temperature through breakthrough experiments. Most importantly, the sorption enthalpy is only -29 kJ mol-1, indicating that significantly less energy is required for sorbent regeneration. In addition, from a technological point of view, unlike solid adsorbents slurries can flow and be pumped. This allows us to use a continuous separation process with heat integration.

  9. Thermal model of solar absorption HVAC systems

    SciTech Connect

    Bergquam, J.B.; Brezner, J.M. |

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  10. Zero-ODP refrigerants for low tonnage centrifugal chiller systems

    SciTech Connect

    Gui, F.; Back, D.D.; Scaringe, R.P.; Grzyll, L.R.

    1996-12-31

    This paper investigates the use of several zero-ozone depleting potential (zero-ODP) HFC refrigerants, including HFC-134a, HFC-227ca, HFC-227ea, HFC-236cb, HFC-236fa, HFC-245cb, and HFC-254cb for centrifugal chiller applications. The authors took into account the thermodynamic properties of the refrigerant and aerodynamic characteristics of the impeller compression process in this evaluation. For a given operating temperature lift, there are significant differences in the enthalpy rise required by each refrigerant and this variation in enthalpy rise directly affects compressor size, efficiency, and performance. A comparison of the HFC refrigerant candidates with CFC-114 shows that HFC-236ea, HFC-227ca and HFC-227ea are viable alternatives for centrifugal water chillers, HFC-236ea has properties closest to CFC-114, and will result in comparable performance, but will require a slightly larger impeller and a purge system. Using HFC-227ca or HFC-227ea results in a significantly lower enthalpy rise requirement, potentially allowing single-stage compression, however, wet compression could be a problem. Single-stage compression gives an overall performance advantage over CFC-114 (operating with 3--5 C of liquid subcooling), and when considering thermodynamics and aerodynamics, as is necessary in centrifugal applications, the authors find that HFC-227ca and HFC-227ea have additional advantages over HFC-236ea and CFC-114.

  11. Multistage quantum absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N -2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  12. Multistage quantum absorption heat pumps.

    PubMed

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration. PMID:24827213

  13. Assessment and economic analysis of the MOD III Stirling-engine driven chiller system. Final report, October 1989-July 1990

    SciTech Connect

    Moryl, J.

    1990-07-01

    The Stirling engine is an inherently clean and efficient engine. With the requirements for environmentally benign emissions and high energy efficiency, the Stirling engine is an attractive alternative to both internal combustion (IC) engines and electric motors. The study evaluated a Stirling-engine-driven chiller package. Technically, the Stirling engine is a good selection as a compressor drive, with inherently low vibrations, quiet operation, long life, and low maintenance. Exhaust emissions are below the projected 1995 stringent California standards. Economically, the Stirling-engine-driven chiller is a viable alternative to both IV-engine and electric-driven chillers, trading off slightly higher installed cost against lower total operating expenses. The penetration of a small portion of the projected near-term stationary engine market opportunity will provide the volume production basis to achieve competitively priced engines.

  14. Role of metallic absorption on enhancing the light emitting efficiency by plasmonic gratings

    NASA Astrophysics Data System (ADS)

    Gou, Yuchun; Xuan, Yimin

    2013-09-01

    Due to the adoption of the metallic materials in the surface-plasmon-based light emitting diodes (SP-LEDs), strong absorption of the metal can result in the dissipation of the most photons in the form of thermal energy. In order to investigate the role of the metallic absorption in the SP-LEDs, by means of a series of computational examples of our proposed structure, the effects of several features on the absorptivity of the metal and the light extraction efficiency (LEE) of the chips have been analyzed in detail. The results indicate that the chips with combined metallic and dielectric gratings can exhibit relatively the highest LEE, whereas the absorption of the metal in the chips is very strong, and the absorptivity is several times of LEE. It is concluded that to reduce the absorption and keep high light extraction, proper structure in which the odd mode of surface plasmons can be stimulated at the desired wavelength should be used. In addition, the hexagonal gratings show relatively larger light extraction enhancement and stronger absorption than the rectangular ones.

  15. Correlation between laser absorption and radiation conversion efficiency in laser produced tin plasma

    SciTech Connect

    Matsukuma, Hiraku Hosoda, Tatsuya; Fujioka, Shinsuke; Nishimura, Hiroaki; Sunahara, Atsushi; Yanagida, Tatsuya; Tomuro, Hiroaki; Kouge, Kouichiro; Kodama, Takeshi

    2015-09-21

    The correlation between the laser absorption and the conversion efficiency (CE) for 13.5 nm extreme ultraviolet (EUV) light in a laser-produced tin plasma was investigated. The absorption rate α and the CE were measured simultaneously for a laser-pre-formed low-density tin target as a function of the time delay between the pre-pulse and the main laser pulse. A clear and positive correlation between α and CE was found with increasing delay time; however, the CE decreases rapidly at longer delay times. This result is partly attributed to a reduction in the absorption rate, but is mainly attributed to the self-absorption of EUV light in excessively long-scale plasmas.

  16. Site dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.

  17. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  18. Fort Gordon boiler/chiller. Volume I, narrative report

    SciTech Connect

    1991-03-01

    This document constitutes the Pre-Final Submittal for Contract DACA2l-84-C-0603, Energy Audits of Boiler/Chiller Plants, Ft. Gordon, Georgia. The purpose of this report is to indicate the work accomplished to date, show samples of field data collected, illustrate the methods and justifications of the approaches taken, outline the present conditions, and make recommendations for the potential energy efficiency improvements to the central heating and cooling plants of Fort Gordon. To date, the initial and detailed field work has been completed; the existing systems in the individual buildings have been reviewed and analyzed; the calculations on various ECO`s have been completed and those not eligible for ECIP funding have either been disqualified or placed under the QRIP. Preliminary project documentation has been completed.

  19. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376... after major maintenance. (b) Measurement principles. A chiller removes water, which can otherwise interfere with a NOX measurement. However, liquid water remaining in an improperly designed chiller...

  20. Development of a Low-Lift Chiller Controller and Simplified Precooling Control Algorithm - Final Report

    SciTech Connect

    Gayeski, N.; Armstrong, Peter; Alvira, M.; Gagne, J.; Katipamula, Srinivas

    2011-11-30

    KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report for that project.

  1. Re-centralized central chiller plant serves hospital

    SciTech Connect

    Seckman, T.C.

    1997-05-01

    Baptist Hospital in Nashville, Tenn., is a 759-bed complex consisting of 13 buildings. Space cooling for nine of these is provided by seven electric hermetic centrifugal chillers. Located in three buildings--Central, Kidd, and Emergency (ER), which houses the newest chiller plant--these machines have a combined chilled water generation capacity of 5,800 tons. The five oldest units use CFC-11. HCFC-123 is the refrigerant used in the ER machines. In 1995, a new phase of chiller operation was initiated when the three plants were tied together to create a re-centralized central chilled water plant. This was done when the 1,300-ton chiller was added to the ER plant. The ER plant will ultimately replace the two older plants. Linking the three together was done to provide greater reliability and operating flexibility during the years that the ER plant is incrementally enlarged and the older Central and Kidd chillers are selectively retired.

  2. Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers.

    PubMed

    Koška, Pavel; Peterka, Pavel; Aubrecht, Jan; Podrazký, Ondřej; Todorov, Filip; Becker, Martin; Baravets, Yauhen; Honzátko, Pavel; Kašík, Ivan

    2016-01-11

    Results of the first experimental demonstration of the recently proposed technique for improvement of the pump absorption in double-clad fibers by their simultaneous coiling and twisting are reported. The peak absorption (14 dB) of 3-m long hexagonal thulium-doped fiber was increased by 8 dB by its simultaneous coiling and twisting. Explanation of the effect is given by numerical modelling of the pump absorption in hexagonal and panda-type double-clad fibers. Improvement of fiber laser performance was also proved. The slope efficiency increased from 19.6% of the straight fiber to 23.9% of the coiled only fiber and 29.4% of the simultaneously coiled and twisted fiber. PMID:26832241

  3. Efficiency of Absorption of Solar Radiation By Liquids Containing Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Astafyeva, L. G.; Pustovalov, V. K.

    2016-05-01

    We present the results of a comparative analysis of the optical properties of metallic nanoparticles that allows us to select their parameters for effective applications. The optical properties of several metallic (Ni, Ti, Pt, Zn, Mo, and Pd) monodisperse nanoparticles of radii 25 nm, 50 nm, and 75 nm were theoretically studied and analyzed in the spectral range 200-2500 nm. We studied the influence of the nanoparticle parameters (type of metal, radius and concentration of the nanoparticles, etc.) and the surrounding liquid (water) on the optical absorption cross section, scattering cross section, and extinction cross section for absorption, scattering, and extinction of radiation by the nanoparticles. We have established that titanium, nickel, and to a lesser extent molybdenum nanoparticles of radii ~75 nm can be used for efficient absorption and extinction of solar radiation by heterogeneous liquids.

  4. Random Conjugated Copolymers with Panchromatic Absorption for High-Efficiency Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Jung, Jae Woong; Jo, Won Ho

    2013-03-01

    One of the most important issues for polymer solar cells (PSCs) is to develop conjugated polymers with broad light absorption, high mobility and appropriate orientation to provide effective pathways to electrode. Particularly, the broad light absorption of the polymer is important to enhance the power conversion efficiency because the limited absorption leads to low current in comparison with other inorganic-based solar cells. A fascinating approach to extend light absorption is the synthesis of copolymers composed of several chromophores. Among various building blocks, diketopyrrolo[3,4-c]pyrrole (DPP) and 6,6'-[3,3']biindolylidene-2,2'-dione (isoindigo) have attracted much interest since they are easily accessible and exhibit promising optoelectronic properties. Here, we report random conjugated copolymers consisting of DPP and isoindigo as co-electron acceptor of donor-acceptor conjugated polymer. The random copolymers exhibited not only broad light absorption but also low-lying HOMO levels. Also, the predominant face-on orientation of the copolymers is beneficial for vertical charge transport in PSCs. The combination of excellent optoelectrical properties and favorable molecular conformation makes copolymers promising candidate for active material in high performance PSCs.

  5. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption

    PubMed Central

    Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Paddubskaya, A.; Voronovich, S.; Lambin, Ph; Kaplas, T.; Svirko, Yu

    2014-01-01

    Thanks to its high electrical conductivity, a graphene plane presents a good shielding efficiency against GHz electromagnetic radiations. Several graphene planes separated by thin polymer spacers add their conductivities arithmetically, because each of them conserves the intrinsic properties of isolated graphene. Maximum absorption of radiations for frequency around 30 GHz is achieved with six separated graphene planes, which is the optimum number. This remarkable result is demonstrated experimentally from electromagnetic measurements performed in the Ka band on a series of multilayers obtained by piling 1, 2, 3 … graphene/PMMA units on a silica substrate. Theoretical calculations convincingly explain the observed absorption and transmission data in the GHz domain. It is concluded that graphene/PMMA multilayers can be used as an efficient optically transparent and flexible shielding media. PMID:25424525

  6. Efficient, Absorption-Powered Artificial Muscles Based on Carbon Nanotube Hybrid Yarns.

    PubMed

    Lima, Márcio Dias; Hussain, Mohammad W; Spinks, Geoffrey M; Naficy, Sina; Hagenasr, Daniela; Bykova, Julia S; Tolly, Derrick; Baughman, Ray H

    2015-07-01

    A new type of absorption-powered artificial muscle provides high performance without needing a temperature change. These muscles, comprising coiled carbon nanotube fibers infiltrated with silicone rubber, can contract up to 50% to generate up to 1.2 kJ kg(-1) . The drive mechanism for actuation is the rubber swelling during exposure to a nonpolar solvent. Theoretical energy efficiency conversion can be as high as 16%. PMID:25755113

  7. Application of heat in postcook meat chillers reduces Listeria.

    PubMed

    Eglezos, Sofroni; Dykes, Gary A

    2011-06-01

    Electrical air-blowing heaters were used to heat and dry out holding chillers used for postcook commercial processed meats in an attempt to control the presence of Listeria. A baseline study of the prevalence of Listeria in holding chillers in seven facilities was undertaken. Listeria was detected in four of the seven chillers, and swab samples showed Listeria prevalence ranging from 7 (7.8%) of 90 to 6 (20%) of 30, depending on the facility. Two of the facilities with established Listeria contamination (A and E) were chosen for further studies. The heating trials consisted of three individual heating interventions at each of the two facilities, with 2 weeks of postintervention sampling after each treatment. The initial Listeria prevalence in chiller A was 19 (10.6%) of 180, and treatment at 37°C for 36 h reduced prevalence to 3 (1.7%) of 180. The initial Listeria prevalence in chiller E was 7 (7.8%) of 90, and treatment at 50°C for 2 h reduced prevalence to 0 of 90. Both reductions were statistically significant at P < 0.01. The incorporation of these two simple chiller heating protocols into these facilities' good manufacturing practices has effectively reduced prevalence of Listeria in chillers. PMID:21669080

  8. Efficient energy absorption of intense ps-laser pulse into nanowire target

    NASA Astrophysics Data System (ADS)

    Habara, H.; Honda, S.; Katayama, M.; Sakagami, H.; Nagai, K.; Tanaka, K. A.

    2016-06-01

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.

  9. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. PMID:27062543

  10. Fault detection, diagnosis, and data-driven modeling in HVAC chillers

    NASA Astrophysics Data System (ADS)

    Namburu, Setu M.; Luo, Jianhui; Azam, Mohammad; Choi, Kihoon; Pattipati, Krishna R.

    2005-05-01

    Heating, Ventilation and Air Conditioning (HVAC) systems constitute the largest portion of energy consumption equipment in residential and commercial facilities. Real-time health monitoring and fault diagnosis is essential for reliable and uninterrupted operation of these systems. Existing fault detection and diagnosis (FDD) schemes for HVAC systems are only suitable for a single operating mode with small numbers of faults, and most of the schemes are systemspecific. A generic real-time FDD scheme, applicable to all possible operating conditions, can significantly reduce HVAC equipment downtime, thus improving the efficiency of building energy management systems. This paper presents a FDD methodology for faults in centrifugal chillers. The FDD scheme compares the diagnostic performance of three data-driven techniques, namely support vector machines (SVM), principal component analysis (PCA), and partial least squares (PLS). In addition, a nominal model of a chiller that can predict system response under new operating conditions is developed using PLS. We used the benchmark data on a 90-ton real centrifugal chiller test equipment, provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), to demonstrate and validate our proposed diagnostic procedure. The database consists of data from sixty four monitored variables under nominal and eight fault conditions of different severities at twenty seven operating modes.

  11. 53. Interior of launch support building, brine chiller, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Interior of launch support building, brine chiller, view towards south - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  12. Transient simulation of absorption machines

    NASA Astrophysics Data System (ADS)

    Anand, D. K.; Allen, R. W.; Kumar, B.

    A model for a water-cooled Lithium-Bromide/water absorption chiller is presented. Its transient response both during the start-up phase and during the shut-off period is predicted. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steady-state value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation.

  13. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    SciTech Connect

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; Govind, Niranjan; Yang, Chao; Saad, Yousef; Ng, Esmond

    2015-10-06

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate the density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.

  14. Transient simulation of absorption machines

    SciTech Connect

    Anand, D.K.; Allen, R.W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steadystate value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  15. Transient simulation of absorption machines

    NASA Astrophysics Data System (ADS)

    Anand, D. K.; Allen, R. W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steady-state value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  16. Tube-side fouling in water chiller-flooded evaporators

    SciTech Connect

    Haider, S.I.; Webb, R.L. . Dept. of Mechanical Engineering); Meitz, A.K. )

    1993-10-01

    This article reports on a two-part research project which analyzed chiller water samples and measured the fouling thermal resistance of evaporator tubes. In ASHRAE Research project RP-560, the objective was to determine the seasonal fouling resistances using actual field quality water under conditions typical of those experienced in field-instilled, water chiller-flooded evaporators. The research was divided into two parts. In the first part, water samples were taken from 71 chillers located in 31 cities across the US. A questionnaire was also filled out for each sampling site. These provided information on the chiller installation, chilled water system, operating profile and maintenance practices. In the second part of the research project, an experimental study was conducted to measure the fouling thermal resistance in the tubes of a water chiller-flooded evaporator operating at approximately 45 F (7 C). The fouling resistance measurements were made in a specially designed 12.6 ft (3.8 m) long test evaporator containing 16 tubes that was connected in parallel with an existing 250 ton (880 kW) R-11 chiller evaporator.

  17. Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications

    NASA Astrophysics Data System (ADS)

    Wang, Chengao; Hasselbeck, Michael P.; Li, Chia-Yeh; Sheik-Bahae, Mansoor

    2010-02-01

    The state of current research in laser cooling of semiconductors is reviewed. Emphasis is placed on the characterization of external quantum efficiency and absorption efficiency in GaAs/InGaP double heterostuctures. New experimental results will be presented that characterize device operation as a function of laser excitation power and temperature. Optimum carrier density is obtained independently and used as a screening tool for sample quality. The crucial importance of parasitic background absorption is discussed.

  18. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption

    PubMed Central

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-01-01

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications. PMID:27587001

  19. Reduced Graphene Oxide Functionalized with Cobalt Ferrite Nanocomposites for Enhanced Efficient and Lightweight Electromagnetic Wave Absorption.

    PubMed

    Ding, Yi; Liao, Qingliang; Liu, Shuo; Guo, Huijing; Sun, Yihui; Zhang, Guangjie; Zhang, Yue

    2016-01-01

    In this paper, reduced graphene oxide functionalized with cobalt ferrite nanocomposites (CoFe@rGO) as a novel type of electromagnetic wave (EW) absorbing materials was successfully prepared by a three-step chemical method including hydrothermal synthesis, annealing process and mixing with paraffin. The effect of the sample thickness and the amount of paraffin on the EW absorption properties of the composites was studied, revealing that the absorption peaks shifted toward the low frequency regions with the increasing thickness while other conditions had little or no effect. It is found that the CoFe@rGO enhanced both dielectric losses and magnetic losses and had the best EW absorption properties and the wide wavelength coverage of the hole Ku-Band when adding only 5wt% composites to paraffin. Therefore, CoFe@rGO could be used as an efficient and lightweight EW absorber. Compared with the research into traditional absorbing materials, this figures of merit are typically of the same order of magnitude, but given the lightweight nature of the material and the high level of compatibility with mass production standards, making use of CoFe@rGO as an electromagnetic absorber material shows great potential for real product applications. PMID:27587001

  20. Efficient Sub-Bandgap Light Absorption and Signal Amplification in Silicon Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin

    This thesis focuses on two areas in silicon photodetectors, the first being enhancing the sub-bandgap light absorption of IR wavelenghts in silicon, and the second being intrinsic signal amplification in silicon photodetectors. Both of these are achieved using heavily doped p-n junction devices which create localized states that relax the k-selection rule of indirect bandgap material. The probability of transitions between impurity band and the conduction/valence band would be much more efficient than the one between band-to-band transition. The waveguide-coupled epitaxial p-n photodetector was demonstrated for 1310 nm wavelength detection. Incorporated with the Franz-Keldysh effect and the quasi-confined epitaxial layer design, an absorption coefficient around 10 cm-1 has been measured and internal quantum efficiency nearly 100% at -2.5V. The absorption coefficient is calculated from the wave function of the electron and hole in p-n diode. The heavily doped impurity wave function can be formulated as a delta function, and the quasi-confined conduction band energy states, and the wave function on each level can be obtained from the Silvaco software. The calculated theoretical absorption coefficient increases with the increasing applied bias and the doping concentration, which matches the experimental results. To solve the issues of large excess noise and high operation bias for avalanche photodiodes based on impact ionization, I presented a detector using the Cycling Excitation Process (CEP) for signal amplification. This can be realized in a heavily doped and highly compensated Si p-n junction, showing ultra high gain about 3000 at very low bias (<4 V), and possessing an intrinsic, phonon-mediated regulation process to keep the device stable without any quenching device required in today's Geiger-mode avalanche detectors. The CEP can be formulated with the rate equations in conduction bands and impurity states. The gain expression, which is a function of the

  1. Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation[S

    PubMed Central

    Nguyen, Tam M.; Sawyer, Janet K.; Kelley, Kathryn L.; Davis, Matthew A.; Rudel, Lawrence L.

    2012-01-01

    The hypothesis tested in this study was that cholesterol esterification by ACAT2 would increase cholesterol absorption efficiency by providing cholesteryl ester (CE) for incorporation into chylomicrons. The assumption was that absorption would be proportional to Acat2 gene dosage. Male ACAT2+/+, ACAT2+/−, and ACAT2−/− mice were fed a diet containing 20% of energy as palm oil with 0.2% (w/w) cholesterol. Cholesterol absorption efficiency was measured by fecal dual-isotope and thoracic lymph duct cannulation (TLDC) methods using [3H]sitosterol and [14C]cholesterol tracers. Excellent agreement among individual mice was found for cholesterol absorption measured by both techniques. Cholesterol absorption efficiency in ACAT2−/− mice was 16% compared with 46–47% in ACAT2+/+ and ACAT2+/− mice. Chylomicrons from ACAT2+/+ and ACAT2+/− mice carried ∼80% of total sterol mass as CE, whereas ACAT2−/− chylomicrons carried >90% of sterol mass in the unesterified form. The total percentage of chylomicron mass as CE was reduced from 12% in the presence of ACAT2 to ∼1% in ACAT2−/− mice. Altogether, the data demonstrate that ACAT2 increases cholesterol absorption efficiency by providing CE for chylomicron transport, but one copy of the Acat2 gene, providing ∼50% of ACAT2 mRNA and enzyme activity, was as effective as two copies in promoting cholesterol absorption. PMID:22045928

  2. Performance bound for quantum absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Adesso, Gerardo; Alonso, Daniel

    2013-04-01

    An implementation of quantum absorption chillers with three qubits has been recently proposed that is ideally able to reach the Carnot performance regime. Here we study the working efficiency of such self-contained refrigerators, adopting a consistent treatment of dissipation effects. We demonstrate that the coefficient of performance at maximum cooling power is upper bounded by 3/4 of the Carnot performance. The result is independent of the details of the system and the equilibrium temperatures of the external baths. We provide design prescriptions that saturate the bound in the limit of a large difference between the operating temperatures. Our study suggests that delocalized dissipation, which must be taken into account for a proper modeling of the machine-baths interaction, is a fundamental source of irreversibility which prevents the refrigerator from approaching the Carnot performance arbitrarily closely in practice. The potential role of quantum correlations in the operation of these machines is also investigated.

  3. Absorption spectra and sunlight conversion efficiency in fullerene bonded supramolecules on nanostructured ZnO

    NASA Astrophysics Data System (ADS)

    Zakhidov, Erkin; Kokhkharov, Abdumutallib; Kuvondikov, Vakhobjon; Nematov, Sherzod; Nusretov, Rafael

    2015-10-01

    The efficiency of solar radiation conversion in a model system of artificial photosynthesis, the porphyrin-fullerene assembly, is analyzed. A study of the optical absorption spectra of the porphyrin and the fullerene molecules, as well as their assembly in organic solutions, made it possible to estimate the energy efficiency of the conversion. Numerical values of the energy efficiency, defined as the fraction of the light quantum energy converted to the chemical potential of separated charges, are calculated for low- and high-concentration solutions of such a supramolecular system. The possibility of the efficient utilization of long-wavelength solar radiation in the high-concentration porphyrin-fullerene assembly solution in toluene and benzene is shown. In the photovoltaic system consisting of such a supramolecular active element, a thin ZnO film with a nanostructured surface may be introduced as a secondary acceptor of electrons from fullerene molecules. An enhancement of the transformation of separated charges of the porphyrin-fullerene assembly into electrical current by means of the ZnO film deposited on the surface of the anode electrode in such a heterogenic photovoltaic unit is proposed.

  4. Development and analysis of micro-polygeneration systems and adsorption chillers

    NASA Astrophysics Data System (ADS)

    Gluesenkamp, Kyle

    off-grid CHP without thermally driven cooling. However, compared to on-grid separate generation, the experimental facility used 16% more primary energy. Despite high chiller performance relative to its thermodynamic limit, this result is primarily due to the electrical efficiency of the prime mover being lower than the grid. A residential trigeneration system utilizing a high temperature fuel cell is predicted to save up to 42% primary energy relative to the grid.

  5. Best Practicefor Energy Efficient Cleanrooms: Variable SpeedPumping

    SciTech Connect

    Xu, Tengfang

    2005-06-15

    Cleanroom energy benchmarking data shows that chiller plant designs and operating efficiencies varied significantly from cleanroom to cleanroom. While system optimization is critical to the overall energy efficiency of chiller plants, the operating efficiency of chilled water and condenser pumps, along with chiller efficiency and cooling tower efficiency, is a major factor in the overall system efficiency. The design and operating efficiency of water pumps directly affects energy use for such facilities. Figure 1 shows benchmarked HVAC energy end use in a semiconductor cleanroom facility. In this case, the water pumps collectively accounted for 17% of the total energy use. Figure 2 shows the electric power demand of the components in a chiller plant system. Pumps accounted for 18% of the total power demand for the whole chiller plant. It is important to design, select, operate, and control water-pumping systems to achieve high efficiency and to lower life-cycle costs for cleanrooms and their adjacent spaces.

  6. Highly efficient SO₂ absorption and its subsequent utilization by weak base/polyethylene glycol binary system.

    PubMed

    Yang, Zhen-Zhen; He, Liang-Nian; Zhao, Ya-Nan; Yu, Bing

    2013-02-01

    A binary system consisting of polyethylene glycol (PEG, proton donor)/PEG-functionalized base with suitable basicity was developed for efficient gas desulfurization (GDS) and can be regarded as an alternative approach to circumvent the energy penalty problem in the GDS process. High capacity for SO(2) capture up to 4.88 mol of SO(2)/mol of base was achieved even under low partial pressure of SO(2). Furthermore, SO(2) desorption runs smoothly under mild conditions (N(2), 25 °C) and no significant drop in SO(2) absorption was observed after five-successive absorption-desorption cycles. On the other hand, the absorbed SO(2) by PEG(150)MeIm/PEG(150), being considered as the activated form of SO(2), can be directly transformed into value-added chemicals under mild conditions, thus eliminating the energy penalty for SO(2) desorption and simultaneously realizing recycle of the absorbents. Thus, this SO(2) capture and utilization (SCU) process offers an alternative way for GDS and potentially enables the SO(2) conversion from flue gas to useful chemicals as a value-added process. PMID:23323771

  7. A high-efficiency power cycle in which hydrogen is compressed by absorption in metal hydrides.

    PubMed

    Powell, J R; Salzano, F J; Yu, W S; Milau, J S

    1976-07-23

    A high-efficiency power cycle is proposed in which molecular hydrogen gas is used as a working fluid in a regenerative closed Brayton cycle. The hydrogen gas is compressed by an absorption-desorption cycle on metal hydride (FeTiH(x)) beds. Low-temperature solar or geothermal heat (temperature about 100 degrees C) is used for the compression process, and high-temperature fossil fuel or nuclear heat (temperature about 700 degrees C) supplies the expansion work in the turbine. Typically, about 90 percent of the high-temperature heat input is converted to electricity, while about 3 kilowatts of low-temperature heat is required per kilowatt of electrical output. PMID:17745726

  8. Enzymatic digestive activity and absorption efficiency in Tagelus dombeii upon Alexandrium catenella exposure

    NASA Astrophysics Data System (ADS)

    Fernández-Reiriz, M. J.; Navarro, J. M.; Cisternas, B. A.; Babarro, J. M. F.; Labarta, U.

    2013-12-01

    We analyzed absorption efficiency (AE) and digestive enzyme activity (amylase, cellulase complex, and laminarinase) of the infaunal bivalve Tagelus dombeii originating from two geographic sites, Corral-Valdivia and Melinka-Aysén, which have different long-term paralytic shellfish poisoning (PSP) exposure rates. We report the effects of past feeding history (origin) on T. dombeii exposed to a mixed diet containing the toxic dinoflagellate Alexandrium catenella and another dinoflagellate-free control diet over a 12-day period in the laboratory. Absorption efficiency values of T. dombeii individuals that experienced PSP exposure in their habitat (Melinka-Aysén) remained unchanged during exposure to toxic food in the laboratory. In contrast, T. dombeii from a non-PSP exposure field site (Corral-Valdivia) showed a significant reduction in AE with toxic exposure time. This study established that the amylase and cellulase complexes were the most important enzymes in the digestive glands of Tagelus from both sites. The temporal evolution of enzymatic activity under toxic diet was fitted to exponential (amylase and cellulase) and to a logarithmic (laminarinase) models. In all fits, we found significant effect of origin in the model parameters. At the beginning of the experiment, higher enzymatic activity was observed for clams from Corral-Valdivia. The amylase activity decreased with time exposure for individuals from Corral and increased for individuals from Melinka. Cellulase activity did not vary over time for clams from Corral, but increased for individuals from Melinka and laminarinase activity decreased over time for individuals from Corral and remained unchanged over time for Melinka. A feeding history of exposure to the dinoflagellate A. catenella was reflected in the digestive responses of both T. dombeii populations.

  9. Innovative hybrid gas/electric chiller cogeneration

    SciTech Connect

    Nowakowski, G.

    2000-04-01

    January Progress--A kick-off meeting was held in San Diego with Alturdyne on January 21st. The proposed hybrid gas/electric chiller/cogenerator design concept was discussed in detail. The requirements and functionality of the key component, a variable speed, constant frequency motor/generator was presented. Variations of the proposed design were also discussed based on their technical feasibility, cost and market potential. The discussion is documented in a Trip Report. February Progress--After significant GRI/Alturdyne discussion regarding alternative product design concepts, the team made a decision to continue with the proposed product design, a hybrid chiller capable of also providing emergency power. The primary benefits are: (a) the flexibility and operating cost savings associated with the product's dual fuel capability and (b) the emergency power feature. A variable speed, constant frequency motor/generator would significantly increase the cost of the product while providing marginal benefit. (The variable speed, constant frequency motor generator is estimated to cost $25,000 versus $4,000 for a constant speed version). In addition, the interconnection requirements to the electric grid would significantly limit market penetration of the product. We will proceed with a motor/generator design capable of serving as the electric prime mover for the compressor as well as the generator for emergency power needs. This component design is being discussed with two motor manufacturers. The first generation motor/generator will not be a variable speed, constant frequency design. The variable speed, constant frequency capability can be an advancement that is included at a later time. The induction motor/synchronous generator starts as a wound rotor motor with a brushless exciter and control electronics to switch between induction mode and synchronous mode. The exciter is a three-phase exciter with three phase rotating diode assembly. In the induction motor mode, the

  10. Comparison of the absorption efficiency of alpha- and beta-cryptoxanthin in female Wistar rats.

    PubMed

    Breithaupt, Dietmar E; Yahia, Elhadi M; Velázquez, Francisco J Valdés

    2007-02-01

    Xanthophylls, such as lutein and zeaxanthin, have received increasing interest in recent years because of positive correlations between their consumption and the prevention of eye diseases. Numerous human intervention studies have been conducted with lutein to estimate the bioavailability from different formulations. The present study was designed to obtain basic data on the absorbance efficiency of the monohydroxylated counterparts of lutein and zeaxanthin: alpha- and beta-cryptoxanthin. A corn-oil-based diet comprising beta-cryptoxanthin from papaya purée and alpha-cryptoxanthin from green carrot leaves was fed to five female Wistar rats for 8 consecutive days at a rate of 17.3 nmol/d and 9.2 nmol/d, respectively. The identity of the xanthophylls in the supplement was ascertained by LC-(APCI)MS analyses, and xanthophylls present in liver and plasma samples were determined by HPLC/diode array detector (DAD). The beta-cryptoxanthin concentrations of rat livers in the treatment group were statistically distinguishable (P < 0.01) from those present in the livers of the control group that were fed a basic diet. Alpha-cryptoxanthin, the second xanthophyll present in the supplement, was not found in rat livers in the treatment group. Plasma samples were free of xanthophylls. This is the first report proving that beta-cryptoxanthin has a higher absorption efficiency than alpha-cryptoxanthin in rats, at least from a minimally processed oil-based xanthophyll supplement. PMID:17298702

  11. Absorption of solar radiation by alkali vapors. [for efficient high temperature energy converters

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.

    1978-01-01

    A theoretical study of the direct absorption of solar radiation by the working fluid of high temperature, high efficiency energy converters has been carried out. Alkali vapors and potassium vapor in particular were found to be very effective solar absorbers and suitable thermodynamically for practical high temperature cycles. Energy loss via reradiation from a solar boiler was shown to reduce the overall efficiency of radiation-heated energy converters, although a simple model of radiation transfer in a potassium vapor solar boiler revealed that self-trapping of the reradiation may reduce this loss considerably. A study was also made of the requirements for a radiation boiler window. It was found that for sapphire, one of the best solar transmitting materials, the severe environment in conjunction with high radiation densities will require some form of window protection. An aerodynamic shield is particularly advantageous in this capacity, separating the window from the absorbing vapor to prevent condensation and window corrosion and to reduce the radiation density at the window.

  12. Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants

    SciTech Connect

    2010-09-01

    BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

  13. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfa; Zhu, Zhihong; Liu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-08-01

    Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the use of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding medium including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of photodetectors with high efficiency and tunable spectral selectivity in the mid-infrared and THz ranges.Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the use of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding medium including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of photodetectors with high efficiency and tunable spectral selectivity in the mid-infrared and THz ranges. Electronic supplementary information (ESI) available: Spectral tuning of absorption by changing the diameter of graphene nanodisks. Perfect light absorption in the whole structure and further enhancement of absorption in the underlying absorptive layer with a back mirror. Light trapping and enhancement of

  14. 22. DETAIL OF CHILLERS 1 AND 2 (MST AIRCONDITIONING SYSTEM) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL OF CHILLERS 1 AND 2 (MST AIR-CONDITIONING SYSTEM) INTERIOR, NORTHEAST CORNER, STATION 30, SLC-3W MST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Centrifugal chillers - CFC retrofit versus replacement. Final report

    SciTech Connect

    Kistler, P.

    1997-09-01

    As of January 1, 1996, chlorofluorocarbon (CFC) refrigerants CFC-11 and CFC-12 can no longer be produced in the United States. It is estimated that as many as 60,000 or 74% of CFC chillers in service today in industrial, commercial, and institutional buildings still use the `banned` refrigerants. In addition, most of the Navy`s centrifugal chillers also use these refrigerants. In May 1994, the Naval Facilities Engineering Command dictated (NAVFAC Notice 5090) that all shore-based Navy Heating, Ventilation, Air Conditioning and Refrigeration (HVACR) equipment containing Class I Ozone Depleting Substance (ODS) be replaced or converted by December 41,2000. Equipment conversions must utilize an approved refrigerant - one with an Ozone Depleting Potential (ODP) of 0.05 or less. The decision to eliminate CFC refrigerants at Navy facilities must begin with a CFC management plan. The plan should address items such as, reducing leakage in existing CFC systems, HVAC maintenance personnel training standards, and retrofitting or replacing CFC refrigerant-using equipment. The decision to retrofit or replace CFC refrigerant chiller must involve the chiller manufacturer. Manufacturers will (often at no cost) evaluate your existing cooling system, determine the most appropriate retrofit method, and determine which option is the most economical choice.

  16. An approach for assessing the economics of sorption chillers

    SciTech Connect

    Summerer, F.; Ziegler, F.F.

    1998-10-01

    Two methods are presented to optimize sorption chillers with respect to economics. To this end, the investment that is necessary for the heat exchangers is balanced with the achievable COP. The numerical tools available today allow for an exact calculation of thermodynamic processes. However, the thermophysical property data these calculations are based on are often not reliable. Moreover, the economic data that have to be taken into account are very rough guesses in most cases. Consequently, a detailed thermodynamic calculation often is too much effort if quick economic decisions have to be made. This paper shows how, based on the main irreversibilities of the process, quite strong economic statements can be made with limited effort. For detailed engineering and optimization, however, a sound cycle calculation is required. In this respect, an economic optimization can only be performed when all relevant parameters determining the process (e.g., pump flow rates and heat exchanger areas) are varied simultaneously while keeping constant the external temperatures of heat sources and sinks. The result of this parameter variation is the chiller COP, which is dependent on the overall heat exchanger area invested in the chiller. This result can be translated into running cost vs. first cost. Consequently, an economic optimum can be found. In most cases, only chillers that perform near the optimum are economically competitive.

  17. Designing the inner surface corrugations of hollow fibers to enhance CO2 absorption efficiency.

    PubMed

    Fashandi, Hossein; Zarrebini, Mohammad; Ghodsi, Ali; Saghafi, Reza

    2016-08-15

    For the first time, a low cost strategy is introduced to enhance the efficiency of CO2 absorption using gas-liquid membrane contactors. This is implemented by designing the corrugations in the inner layer of poly(vinyl chloride) hollow fibers (PVC HFs) through changing the bore fluid composition. In fact, the number of corrugations in the HF inner layer is engineered via changing the phase separation time within the inner layer. Such that expedited phase separation leads to highly corrugated inner layer. In contrast, decelerated phase separation is responsible for reduced number of inner layer corrugations. Phase separation causes the initial polymer solution with low viscoelastic moduli to be transferred into polymer-rich domains with high viscoelastic moduli. These domains resist against stretching-induced radial forces toward the center of HF; therefore, the inner layer of HF buckles. Delayed phase separation defers formation of polymer-rich domains and hence, HF with less corrugated inner surface is expected. The phase separation within the HF inner layer is controlled through changing the rate of solvent/nonsolvent exchange. This is conducted by variation the solvent content in the bore fluid; as higher as solvent content, as slower as solvent/nonsolvent exchange. PMID:27179177

  18. Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Chen, Yuanchen; Wei, Siye; Fu, Xiaofang; Zhu, Ying; Tao, Shu

    2013-11-01

    Optical properties of particulate matter are of growing concern due to their complex effects on atmospheric visibility and local/regional climate change. In this study, mass absorption efficiency (MAE) of elemental carbon (EC) was measured for source emission samples obtained from the residential combustions of solid fuels using a thermal-optical carbon analyzer. For source samples from residential wood, crop straw, biomass pellet and coal combustions, MAE of EC measured at 650 nm, were 3.1 (2.4-3.7 as 95% Confidence Interval), 6.6 (5.5-7.6), 9.5 (6.7-12), and 7.9 (4.8-11) m2 g-1, respectively. MAE of EC for source sample from the wood combustion was significantly lower than those for the other fuels, and MAE of EC for coal briquette appeared to be different from that of raw chunk. MAE values of the investigated source emission samples were found to correlate with OC/EC ratio, and a significantly positive correlation was found between MAE and particle-bound polycyclic aromatic hydrocarbons (pPAHs), though pPAHs contributed a relatively small fraction of OC.

  19. The absorption efficiency and respiration rate of the Florida lancelet, Branchiostoma floridae.

    PubMed

    Nash, Troy R; Ruppert, Edward E; Colacino, James M

    2009-12-01

    The present study investigates some aspects of the digestive biology and physiological energetics of the Florida lancelet, Branchiostoma floridae. Florida lancelets are able to remove 47.2-56.9% of the energy from a diet of mixed algae. The respiration rate is 0.100mL O(2) (STPD) h(-1) g(-1) (wet), which estimates a metabolic rate of 0.248 J h(-1), at an average body mass of 0.125 g (wet). Published values of the chlorophyll a concentration in its natural habitat indicate that a 125 mg lancelet would need to filter 0.018-0.031 L h(-1) to remove sufficient food to support its resting metabolism. The filtration rate of lancelets has been reported as 0.138 L h(-1), indicating that the actual filtration rate is 4-7 times greater than the filtration rate needed to meet resting metabolic demands. It appears that lancelets have the potential to be raised in aquaculture, because their absorption efficiency and respiration rate are comparable to suspension-feeding invertebrates that have been successfully aquacultured. PMID:19758577

  20. Efficient Vacuum-Deposited Ternary Organic Solar Cells with Broad Absorption, Energy Transfer, and Enhanced Hole Mobility.

    PubMed

    Shim, Hyun-Sub; Moon, Chang-Ki; Kim, Jihun; Wang, Chun-Kai; Sim, Bomi; Lin, Francis; Wong, Ken-Tsung; Seo, Yongsok; Kim, Jang-Joo

    2016-01-20

    The use of multiple donors in an active layer is an effective way to boost the efficiency of organic solar cells by broadening their absorption window. Here, we report an efficient vacuum-deposited ternary organic photovoltaic (OPV) using two donors, 2-((2-(5-(4-(diphenylamino)phenyl)thieno[3,2-b]thiophen-2-yl)thiazol-5-yl)methylene)malononitrile (DTTz) for visible absorption and 2-((7-(5-(dip-tolylamino)thiophen-2-yl)benzo[c]-[1,2,5]thiadiazol-4-yl)methylene)malononitrile (DTDCTB) for near-infrared absorption, codeposited with C70 in the ternary layer. The ternary device achieved a power conversion efficiency of 8.02%, which is 23% higher than that of binary OPVs. This enhancement is the result of incorporating two donors with complementary absorption covering wavelengths of 350 to 900 nm with higher hole mobility in the ternary layer than that of binary layers consisting of one donor and C70, combined with energy transfer from the donor with lower hole mobility (DTTz) to that with higher mobility (DTDCTB). This structure fulfills all the requirements for efficient ternary OPVs. PMID:26714649

  1. Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency.

    PubMed

    Jiang, He; Chen, Changshui

    2015-04-23

    Most material properties can be traced to electronic structures. Black silicon produced from SF6 or sulfur powder via irradiation with femtosecond laser pulses displays decreased infrared absorption after annealing, with almost no corresponding change in visible light absorption. The high-intensity laser pulses destroy the original crystal structure, and the doping element changes the material performance. In this work, the structural and electronic properties of several sulfur-doped silicon systems are investigated using first principle calculations. Depending on the sulfur concentration (level of doping) and the behavior of the sulfur atoms in the silicon lattice, different states or an absence of states are exhibited, compared with the undoped system. Moreover, the visible-infrared light absorption intensities are structure specific. The results of our theoretical calculations show that the conversion efficiency of sulfur-doped silicon solar cells depends on the sulfur concentrations. Additionally, two types of defect configurations exhibit light absorption characteristics that differ from the other configurations. These two structures produce a rapid increase in the theoretical photoelectric conversion efficiency in the range of the specific chemical potential studied. By controlling the positions of the atomic sulfur and the sulfur concentration in the preparation process, an efficient photovoltaic (PV) material may be obtainable. PMID:25798659

  2. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    NASA Technical Reports Server (NTRS)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  3. ABSORPTION EFFICIENCIES OF FORSTERITE. I. DISCRETE DIPOLE APPROXIMATION EXPLORATIONS IN GRAIN SHAPE AND SIZE

    SciTech Connect

    Lindsay, Sean S.; Wooden, Diane H.; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R. E-mail: diane.h.wooden@nasa.gov E-mail: msk@astro.umd.edu E-mail: murphy@nmsu.edu

    2013-03-20

    We compute the absorption efficiency (Q{sub abs}) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 {mu}m wavelength range. Using the DDSCAT code, we compute Q{sub abs} for non-spherical polyhedral grain shapes with a{sub eff} = 0.1 {mu}m. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 {mu}m, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 {mu}m) shifts the 10 and 11 {mu}m features systematically toward longer wavelengths and relative to the 11 {mu}m feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 {mu}m spectra provides a potential means to probe the temperatures at which forsterite formed.

  4. Thickness Optimization for Petroleum Coke in Microwave Dehydrating Based on the Analysis of Dynamic Absorption Efficiency

    NASA Astrophysics Data System (ADS)

    Shang, Xiaobiao; Chen, Junruo; Peng, Jinhui; Chen, Hua; Zhang, Weifeng; Guo, Shenghui; Chen, Guo

    2015-07-01

    An analytical approach is proposed to optimize the thickness of petroleum coke for achieving maximum microwave power absorption in microwave heating based on analysis of reflection loss (RL). The microwave RL of the petroleum coke layer was studied over the moisture content range of 1%-5% at 20 °C and the petroleum coke (10% moisture content) in the temperature range of 20 to 100 °C at 2.45 GHz. The results show that RL depends sensitively on the thickness of the petroleum coke and the absorption peak shifts towards a larger thickness as the moisture content of the petroleum coke increases. There exists a matching thickness corresponding to the maximum microwave absorption, the maximum absorbing peak decreases when the thickness of petroleum coke exceeds the matching thickness. We also show that the absorption peak is found to move towards a smaller thickness region with increasing petroleum coke temperature.

  5. Development of a gas engine-driven chiller

    NASA Astrophysics Data System (ADS)

    Panora, R.; Koplow, M.; Gehret, J.; Morgan, J.

    1990-05-01

    A development of a natural gas engine-driven chiller with a nominal capacity of 150 tons and an optional engine and exhaust waste-heat recovery system totaling approximately 700,000 Btu/hr is described. The design is based on a conventional vapor-compression cycle, which uses an oil-flooded twin-screw compressor. Three program phases are presented: (1) initial development of the product and assessment of its market viability; (2) final laboratory development and field experiment of an early prototype; and (3) a nationwide field test of 7 production prototypes. The reliability and serviceability of the chiller have met expectations and have proven to be within the bounds of acceptability for this type of equipment.

  6. Development of a high temperature solar powered water chiller

    NASA Astrophysics Data System (ADS)

    English, R. A.

    1982-03-01

    The objectives of this program are: to develop a high temperature solar powered air cooled 25 ton chiller utilizing 250 to 300 F solar hot water suitable for commercial and multi-family applications; to study, design, and build a prototype Rankine powered vapor compression cycle; and to demonstrate and evaluate performance through steady state and dynamic laboratory testing. Cycle studies and preliminary turbo machine studies were completed under Phase I establishing the final conceptual approach and anticipated cost/performance. The evaluation of the working fluid thermal stability has satisfactorily shown that R-113 has excellent life potential in an oil-free steel boiler at the maximum expected temperature, 320 F, for this application. The detailed design of the turbo machine and the chiller has been completed. The turbomachine has been completed and has successfully passed its qualification tests on air. The chiller has been built in the water cooled configuration, has been installed in a test facility, instrumented and charged. A two stage boiler feed pump has been developed and successfully tested on R-113 in a separate loop.

  7. Turbocharger chiller modeling and test evaluation. Final report, March-November 1993

    SciTech Connect

    Kountz, K.J.; Wurm, J.

    1996-07-01

    The objectives of this project were: To determine the technoeconomic feasibility of a natural gas-fired turbocharger-based chiller system, arranged in a combined-fluid Rankine/Rankine cycle; To design the turbocharger chiller system for a 50 RT cooling rating point capacity, using available vehicle turbocharges and standard chiller heat exchanger technology; and To evaluate several low, medium, and high pressure refrigerants and refrigerant/lubricant pairs for their thermodynamic and thermal stability characteristics and applicability to the chiller cycle.

  8. Efficient broadband light absorption in elliptical nanohole arrays for photovoltaic application.

    PubMed

    Xia, Zihuan; Qin, Xuefei; Wu, Yonggang; Pan, Yongdong; Zhou, Jian; Zhang, Zongyi

    2015-12-15

    We propose a perpendicular elliptical silicon nanohole (PE-SiNH) array for light absorption in thin film silicon solar cells. Our analysis shows that this architecture is capable of increasing the absorption of a thin film silicon solar cell by 11.3% in comparison to that of the optimal circular SiNH array. The process of breaking the mirror symmetries is responsible for the increase of the coupled modes. The PE-SiNH structures show additional near-zero spatial Fourier components compared with the circular SiNH structure, which helps to couple more incident light into slow Bloch modes. The mode interaction between adjacent elliptical nanoholes is in favor of the coupling of the incident light into channeling modes and, therefore, enhances light absorption in the short wavelength region. PMID:26670519

  9. State-of-the-Art Review on Crystallization Control Technologies for water/LiBr Absorption Heat Pumps

    SciTech Connect

    Wang, Kai; Abdelaziz, Omar; Kisari, Padmaja; Vineyard, Edward Allan

    2011-01-01

    The key technical barrier to using water/lithium bromide (LiBr) as the working fluid in aircooled absorption chillers and absorption heat-pump systems is the risk of crystallization when the absorber temperature rises at fixed evaporating pressure. This article reviews various crystallization control technologies available to resolve this problem: chemical inhibitors, heat and mass transfer enhancement methods, thermodynamic cycle modifications, and absorption system-control strategies. Other approaches, such as boosting absorber pressure and J-tube technology, are reviewed as well. This review can help guide future efforts to develop water/LiBr air-cooled absorption chillers and absorption heatpump systems.

  10. Solar powered absorption air conditioning

    NASA Astrophysics Data System (ADS)

    Vardon, J. M.

    1980-04-01

    Artificial means of providing or removing heat from the building are discussed along with the problem of the appropriate building design and construction for a suitable heat climate inside the building. The use of a lithium bromide-water absorption chiller, powered by a hot water store heated by an array of stationary flat collectors, is analyzed. An iterative method of predicting the cooling output from a LiBr-water absorption refrigeration plant having variable heat input is described and a model allowing investigation of the performance of a solar collector and thermal storage system is developed.

  11. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures.

    PubMed

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Purezky, Alexander A; Geohegan, David B; Kim, Ki Wook; Zhang, Yong; Cao, Linyou

    2015-01-14

    Semiconductor heterostructures provide a powerful platform to engineer the dynamics of excitons for fundamental and applied interests. However, the functionality of conventional semiconductor heterostructures is often limited by inefficient charge transfer across interfaces due to the interfacial imperfection caused by lattice mismatch. Here we demonstrate that MoS(2)/WS(2) heterostructures consisting of monolayer MoS(2) and WS(2) stacked in the vertical direction can enable equally efficient interlayer exciton relaxation regardless the epitaxy and orientation of the stacking. This is manifested by a similar 2 orders of magnitude decrease of photoluminescence intensity in both epitaxial and nonepitaxial MoS(2)/WS(2) heterostructures. Both heterostructures also show similarly improved absorption beyond the simple superimposition of the absorptions of monolayer MoS(2) and WS(2). Our result indicates that 2D heterostructures bear significant implications for the development of photonic devices, in particular those requesting efficient exciton separation and strong light absorption, such as solar cells, photodetectors, modulators, and photocatalysts. It also suggests that the simple stacking of dissimilar 2D materials with random orientations is a viable strategy to fabricate complex functional 2D heterostructures, which would show similar optical functionality as the counterpart with perfect epitaxy. PMID:25469768

  12. Aging assessment of essential HVAC chillers used in nuclear power plants

    SciTech Connect

    Blahnik, D.E.; Camp, T.W.

    1996-09-01

    The Pacific Northwest Laboratory conducted a comprehensive aging assessment of chillers used in the essential safety air-conditioning systems in nuclear power plants (NPPs). The chillers used, and air-conditioning systems served, vary in design from plant to plant. The review of operating experience indicated that chillers experience aging degradation and failures. The primary aging factors of concern for chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. The evaluation of Licensee Event Reports (LERs) indicated that about 38% of the failures were primarily related to aging, 55% were partially aging related, and 7% of the failures were unassignable. About 25% of the failures were primarily caused by human, design, procedure, and other errors. The large number of errors is probably directly related to the complexity of chillers and their interfacing systems. Nearly all of the LERs were the result of entering plant Technical Specification Limiting Condition for Operation (LCO) that initiated remedial actions like plant shutdown procedures. The trend for chiller-related LERs has stabilized at about 0.13 LERs per plant year since 1988. Carefully following the vendor procedures and monitoring the equipment can help to minimize and/or eliminate most of the premature failures. Recording equipment performance can be useful for trending analysis. Periodic operation for a few hours on a weekly or monthly basis is useful to remove moisture and non-condensable gases that gradually build up inside the chiller. Chiller pressurization kits are available that will help minimize the amount of moisture and air ingress to low-pressure chillers during standby periods. The assessment of service life condition monitoring of chillers indicated there are many simple to sophisticated methods available that can help in chiller surveillance and monitoring.

  13. Efficient optical absorption enhancement in organic solar cells by using a 2-dimensional periodic light trapping structure

    SciTech Connect

    Zu, Feng-Shuo; Shi, Xiao-Bo; Liang, Jian; Xu, Mei-Feng; Wang, Zhao-Kui E-mail: zkwang@suda.edu.cn Liao, Liang-Sheng E-mail: zkwang@suda.edu.cn; Lee, Chun-Sing E-mail: zkwang@suda.edu.cn

    2014-06-16

    We have investigated the effects induced by periodic nanosphere arrays on the performance of organic solar cells (OSCs). Two-dimensional periodic arrays of polystyrene nanospheres were formed by using a colloidal lithography method together with plasma etching to trim down the size to various degrees on the substrates of OSCs. It is found that the devices prepared on such substrates can have improved light harvesting, resulting in as high as 35% enhancement in power conversion efficiency over that of the reference devices. The measured external quantum efficiency and finite-difference time-domain simulation reveal that the controlled periodic morphology of the substrate can efficiently increase light scattering in the device and thus enhance the absorption of incident light.

  14. Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources

    SciTech Connect

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko; Kilbane, Deirdre; Dunne, Padraig; O'Sullivan, Gerry; Jiang, Weihua; Endo, Akira

    2010-12-06

    We have investigated the dependence of the spectral behavior and conversion efficiencies of rare-earth plasma extreme ultraviolet sources with peak emission at 6.7 nm on laser wavelength and the initial target density. The maximum conversion efficiency was 1.3% at a laser intensity of 1.6x10{sup 12} W/cm{sup 2} at an operating wavelength of 1064 nm, when self-absorption was reduced by use of a low initial density target. Moreover, the lower-density results in a narrower spectrum and therefore improved spectral purity. It is shown to be important to use a low initial density target and/or to produce low electron density plasmas for efficient extreme ultraviolet sources when using high-Z targets.

  15. Influence of microalgal biomass on absorption efficiency of Cd, Cr, and Zn by two bivalves from San Francisco Bay

    USGS Publications Warehouse

    Lee, B.-G.; Luoma, S.N.

    1998-01-01

    The bioavailability to clams (Potamocorbula amurensis and Macoma balthica) of Cd, Cr, and Zn from suspended particulate material (SPM) collected during a phytoplankton bloom was compared to bioavailability from SPM dominated by resuspended sediments. Bioavailability was also compared among mudflat sediments amended with different levels of living benthic microalgae. Bioavailability was defined by absorption efficiencies determined using pulse-chase protocols, modified for studying natural particle assemblages. The partitioning of Cd and Zn to particles (K(d)) increased as the microalgae biomass (Chl a) increased in the particle assemblages; partitioning of Cr was less affected by the algal biomass. The clams fed particle assemblages enriched with microalgae absorbed Cd and Zn with significantly greater efficiency than did the clams fed algae-poor particles. This was partially explained by the greater occurrence of Cd and Zn in the cytosolic fraction of the particle assemblages that were microalgae enriched, as well as by the efficient absorption of cytosolic material by the clams. Among metals, Zn was most efficiently absorbed by both clams, and Cr the least. M. balthica absorbed Zn more efficiently from all types of food particles (39-82%) than did P. amurensis (13-50%). P. amurensis absorbed Cd with greater efficiency from the bloom SPM (44-48%) than did M. balthica (13-21%), but the two clams absorbed Cd similarly from benthic microalgae (26-51%). The addition of microalgae to complex natural particle assemblages clearly affected the bioavailability of associated metals, so studies using sediments (or suspended particulate material) that do not include a realistic living food component could underestimate metal bioavailability from particle ingestion.

  16. Aging assessment of essential HVAC chillers used in nuclear power plants. Phase 1, Volume 1

    SciTech Connect

    Blahnik, D.E.; Klein, R.F.

    1993-09-01

    The Pacific Northwest Laboratory conducted a Phase I aging assessment of chillers used in the essential safety air-conditioning systems of nuclear power plants. Centrifugal chillers in the 75- to 750-ton refrigeration capacity range are the predominant type used. The chillers used, and air-conditioning systems served, vary in design from plant-to-plant. It is crucial to keep chiller internals very clean and to prevent the leakage of water, air, and other contaminants into the refrigerant containment system. Periodic operation on a weekly or monthly basis is necessary to remove moisture and noncondensable gases that gradually build up inside the chiller. This is especially desirable if a chiller is required to operate only as an emergency standby unit. The primary stressors and aging mechanisms that affect chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. Aging is accelerated by moisture, non-condensable gases (e.g., air), dirt, and other contamination within the refrigerant containment system, excessive start/stop cycling, and operating below the rated capacity. Aging is also accelerated by corrosion and fouling of the condenser and evaporator tubes. The principal cause of chiller failures is lack of adequate monitoring. Lack of performing scheduled maintenance and human errors also contribute to failures.

  17. Microbiology of Broiler Carcasses and Chemistry of Chiller Water as Affected by Water Reuse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effects of treating and reusing poultry chiller water in a commercial poultry processing facility. Broiler carcasses and chiller water were obtained from a commercial processing facility which had recently installed a TOMCO Pathogen Management SystemJ to recyc...

  18. Numbers of bacteria recovered from broiler carcasses and chiller water treated with hypochlorous and carbonic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effects of treating poultry chiller water with a mixture of hypochlorous and carbonic acids. Broiler carcasses and chiller water were obtained from a commercial processing facility which had recently installed a TOMCO Pathogen Management SystemJ to recycle wat...

  19. Optimal Environmental Performance of Water-cooled Chiller System with All Variable Speed Configurations

    NASA Astrophysics Data System (ADS)

    Yu, Fu Wing; Chan, Kwok Tai

    This study investigates how the environmental performance of water-cooled chiller systems can be optimized by applying load-based speed control to all the system components. New chiller and cooling tower models were developed using a transient systems simulation program called TRNSYS 15 in order to assess the electricity and water consumption of a chiller plant operating for a building cooling load profile. The chiller model was calibrated using manufacturer's performance data and used to analyze the coefficient of performance when the design and control of chiller components are changed. The NTU-effectiveness approach was used for the cooling tower model to consider the heat transfer effectiveness at various air-to-water flow ratios and to identify the makeup water rate. Applying load-based speed control to the cooling tower fans and pumps could save an annual plant operating cost by around 15% relative to an equivalent system with constant speed configurations.

  20. Application of classification functions to chiller fault detection and diagnosis

    SciTech Connect

    Stylianou, M.

    1997-12-31

    This paper describes the application of a statistical pattern recognition algorithm (SPRA) to fault detection and diagnosis of commercial reciprocating chillers. The developed fault detection and diagnosis module has been trained to recognize five distinct conditions, namely, normal operation, refrigerant leak, restriction in the liquid refrigerant line, and restrictions in the water circuits of the evaporator and condenser. The algorithm used in the development is described, and the results of its application to an experimental test bench are discussed. Experimental results show that the SPRA provides an effective way of classifying patterns in multivariable, multiclass problems without having to explicitly use a rule-based system.

  1. Overview-absorption/Rankine solar cooling program

    NASA Astrophysics Data System (ADS)

    Wahlig, M.; Heitz, A.; Boyce, B.

    1980-03-01

    The tasks being performed in the absorption and Rankine program areas run the gamut from basic work on fluids to development of chillers and chiller components, to field and reliability testing of complete cooling systems. In the absorption program, there are six current and five essentially completed projects. In the Rankine program, there are five current projects directly supported by DOE, and three projects funded through and managed by NASA/MSFC (Manned Space Flight Center, Huntsville, Alabama). The basic features of these projects are discussed. The systems under development in five of these current projects were selected for field testing in the SOLERAS program, a joint US-Saudi Arabian enterprise. Some technical highlights of the program are presented.

  2. Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells

    SciTech Connect

    Li, Tian E-mail: dage@ece.umd.edu; Dagenais, Mario E-mail: dage@ece.umd.edu; Lu, Haofeng; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2015-02-02

    Reduced quantum dot (QD) absorption due to state filling effects and enhanced electron transport in doped QDs are demonstrated to play a key role in solar energy conversion. Reduced QD state absorption with increased n-doping is observed in the self-assembled In{sub 0.5}Ga{sub 0.5}As/GaAs QDs from high resolution below-bandgap external quantum efficiency (EQE) measurement, which is a direct consequence of the Pauli exclusion principle. We also show that besides partial filling of the quantum states, electron-doping produces negatively charged QDs that exert a repulsive Coulomb force on the mobile electrons, thus altering the electron trajectory and reducing the probability of electron capture, leading to an improved collection efficiency of photo-generated carriers, as indicated by an absolute above-bandgap EQE measurement. The resulting redistribution of the mobile electron in the planar direction is further validated by the observed photoluminescence intensity dependence on doping.

  3. Synergistic Effects of Morphological Control and Complementary Absorption in Efficient All-Small-Molecule Ternary-Blend Solar Cells.

    PubMed

    Farahat, Mahmoud E; Patra, Dhananjaya; Lee, Chih-Hao; Chu, Chih-Wei

    2015-10-14

    In this study, we combined two small-molecule donors-a diketopyrrolopyrrole-based small molecule (SMD) and a benzodithiophene-based molecule (BDT6T)-with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The power conversion efficiency of the binary SMD:PC61BM bulk heterojunction solar cell improved from 4.57 to 6.28% after adding an appropriate amount BDT6T as a guest. We attribute this 37% improvement in device performance to the complementary absorption behavior of BDT6T and SMD, as evidenced by the increase in the short circuit current. After addition of BDT6T to form the ternary blend, the crystallinity and morphology of the active layer were enhanced. For example, the features observed in the ternary active layers were finer than those in the binary blends. This means that BDT6T as a third component in the ternary blend has effective role on both the absorption and the morphology. In addition, adding BDT6T to form the ternary blend also led to an increase in the open-circuit voltage. Our findings suggest that the preparation of such simple all-small-molecule ternary blends can be an effective means of improving the efficiency of photovoltaic devices. PMID:26389528

  4. Application of calcium chloride as an additive for secondary refrigerant in the air conditioning system type chiller to minimized energy consumption

    NASA Astrophysics Data System (ADS)

    Suwono, A.; Indartono, Y. S.; Irsyad, M.; Al-Afkar, I. C.

    2015-09-01

    One way to resolve the energy problem is to increase the efficiency of energy use. Air conditioning system is one of the equipment that needs to be considered, because it is the biggest energy user in commercial building sector. Research currently developing is the use of phase change materials (PCM) as thermal energy storage (TES) in the air conditioning system to reduce energy consumption. Salt hydrates have been great potential to be developed because they have been high latent heat and thermal conductivity. This study has used a salt hydrate from calcium chloride to be tested in air conditioning systems type chiller. Thermal characteristics were examined using temperature history (T-history) test and differential scanning calorimetry (DSC). The test results showed that the thermal characteristics of the salt hydrate has been a high latent heat and in accordance with the evaporator temperature. The use of salt hydrates in air conditioning system type chiller can reduce energy consumption by 51.5%.

  5. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes

    DOEpatents

    Kanak, Brant E.; Stephenson, Michael J.

    1981-01-01

    This invention is a method for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  6. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes. [Patent application

    DOEpatents

    Kanak, B.E.; Stephenson, M.J.

    1980-01-11

    A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  7. Evaluation of chiller plant energy conservation opportunities at Fort Hood, Texas. Final report

    SciTech Connect

    Cler, G.L.; Chalifoux, A.T.; Parson, K.; Higgs, B.

    1997-06-01

    Chiller plant owning and operating costs represent substantial investments at Fort Hood, Texas. Primary objectives of this work are to evaluate the performance of major plants and associated distribution systems, and to identify relevant energy conservation opportunities (ECOs). Significant effort was expended to gather information and document the performance of plant cooling equipment. Data were obtained from site surveys, discussions with vendors and manufacturers, and reviews of previous studies. Performance was documented with field measurements. Subsequent analyses of ECOs were performed with simplified bin methods consistent with first-order conclusions and recommendations required from this work. Results for all ECOs were heavily influenced by the utility rate structure. At Fort Hood, 75 percent of annual chiller energy cost is determined by demand charges. Alternatives for chiller ECOs were also limited by the effects of recent regulations that govern the use of refrigerants. Therefore, realistic improvements that reduce chiller energy consumption necessarily involve replacement or major upgrade of most chillers. Other potential ECOs targeted reductions in chiller and pump energy by modulating speed in relation to cooling load. A select group of chillers will benefit from this technology. The higher capital costs combined with the unusually low energy charge preclude speed modulation for all other motors.

  8. US Department of Energy defense programs chlorofluorocarbon (CFC) HVAC/Chiller Retrofit Program

    SciTech Connect

    Snyder, R.E.; Coyle, J.E.

    1997-06-01

    The Department of Energy`s (DOE) Office of Defense Programs (DP) is responsible for the research, development, and testing of defense-related applications of nuclear energy and the operation and maintenance of facilities required to support these efforts along with any associated production activities. DP had been the landlord for hundreds of individual facilities located at principally 8 sites around the United States, representing about 50% of DOE`s capital assets. In 1994, DP established a CFC HVAC/Chiller Retrofit Program to facilitate the replacement and retrofit of chillers and to promote compliance with CFC environmental and energy conservation laws and regulations. Through comprehensive inventories, DP found that it owns approximately 200 old and inefficient CFC chillers, which if replaced, would greatly reduce electricity consumption and costs, and reduce exposure to potential non-compliance with refrigerant leak regulations. The major domestic chiller manufacturers indicate that they are producing at or near full capacity to meet the demands of both government and private sector customers. With estimates of approximately 63,000 chillers nationally operating with CFCs, DP is concerned that market pressure will raise prices and that shop space for future orders will become increasingly scarce. The Chiller Basic Ordering Agreement (BOA) is an integrated, Federal agency-wide approach to replacing chillers that will save money and help ensure the availability of chillers when appropriations are available. This procurement vehicle is being developed in conjunction with the General Services Administration (GSA), and is expected to be available in the late summer of 1996. Saving energy and money while protecting the stratospheric ozone layer is goal of the DP CFC HVAC/Chiller Retrofit Program.

  9. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    SciTech Connect

    Zaltash, Abdolreza

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, and Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.

  10. Simultaneous control of emission localization and two-photon absorption efficiency in dissymmetrical chromophores

    SciTech Connect

    Tretiak, Sergei

    2009-01-01

    The aim of the present work is to demonstrate that combined spectral tuning of fluorescence and two-photon absorption (TPA) properties of multipolar chromophores can be achieved by introduction of slight electronic chemical dissymmetry. In that perspective, two novel series of structurally related chromophores have been designed and studied: a first series based on rod-like quadrupolar chromophores bearing different electron-donating (D) end groups and a second series based on three-branched octupolar chromophores built from a trigonal donating moiety and bearing various acceptor (A) peripheral groups. The influence of the electronic dissymmetry is investigated by combined experimental and theoretical studies of the linear and nonlinear optical properties of dissymmetric chromophores compared to their symmetrical counterparts. In both types of systems (i.e. quadrupoles and octupoles) experiments and theory reveal that excitation is essentially delocalized and that excitation involves synchronized charge redistribution between the different D and A moieties within the multipolar structure (i.e. concerted intramolecular charge transfer). In contrast, the emission stems only from a particular dipolar subunit bearing the strongest D or A moieties due to fast excitation localization after excitation prior to emission. Hence control of emission characteristics (polarization and emission spectrum) in addition to localization can be achieved by controlled introduction of electronic dissymmetry (i.e. replacement of one of the D or A end-groups by a slightly stronger D{prime} or A{prime} units). Interestingly dissymmetrical functionalization of both quadrupolar and octupolar compounds does not lead to significant loss in TPA responses and can even be beneficial due to the spectral broadening and peak position tuning that it allows. This study thus reveals an original molecular engineering route strategy allowing major TPA enhancement in multipolar structures due to concerted

  11. Efficient color display using low-absorption in-pixel color filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2000-01-01

    A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.

  12. Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles.

    PubMed

    Kaul, Anupama B; Coles, James B; Eastwood, Michael; Green, Robert O; Bandaru, Prabhakar R

    2013-04-01

    The optical absorption efficiencies of vertically aligned multi-walled (MW)-carbon nanotube (CNT) ensembles are characterized in the 350-7000 nm wavelength range where CNT site densities > 1 × 10(11) /cm(2) are achieved directly on metallic substrates. The site density directly impacts the optical absorption characteristics, and while high-density arrays of CNTs on electrically insulating and non-metallic substrates have been commonly reported, achieving high site-densities on metals has been challenging and remains an area of active research. These absorber ensembles are ultra-thin (<10 μm) and yet they still exhibit a reflectance as low as ∼0.02%, which is 100 times lower than the reference; these characteristics make them potentially attractive for high-sensitivity and high-speed thermal detectors. In addition, the use of a plasma-enhanced chemical vapor deposition process for the synthesis of the absorbers increases the portfolio of materials that can be integrated with such absorbers due to the potential for reduced synthesis temperatures. The remarkable ruggedness of the absorbers is also demonstrated as they are exposed to high temperatures in an oxidizing ambient environment, making them well-suited for extreme thermal environments encountered in the field, potentially for solar cell applications. Finally, a phenomenological model enables the determinatiom of the extinction coefficients in these nanostructures and the results compare well with experiment. PMID:23233398

  13. Efficient tissue ablation using a laser tunable in the water absorption band at 3 microns with little collateral damage

    NASA Astrophysics Data System (ADS)

    Nierlich, Alexandra; Chuchumishev, Danail; Nagel, Elizabeth; Marinova, Kristiana; Philipov, Stanislav; Fiebig, Torsten; Buchvarov, Ivan; Richter, Claus-Peter

    2014-03-01

    Lasers can significantly advance medical diagnostics and treatment. At high power, they are typically used as cutting tools during surgery. For lasers that are used as knifes, radiation wavelengths in the far ultraviolet and in the near infrared spectral regions are favored because tissue has high contents of collagen and water. Collagen has an absorption peak around 190 nm, while water is in the near infrared around 3,000 nm. Changing the wavelength across the absorption peak will result in significant differences in laser tissue interactions. Tunable lasers in the infrared that could optimize the laser tissue interaction for ablation and/or coagulation are not available until now besides the Free Electron Laser (FEL). Here we demonstrate efficient tissue ablation using a table-top mid-IR laser tunable between 3,000 to 3,500 nm. A detailed study of the ablation has been conducted in different tissues. Little collateral thermal damage has been found at a distance above 10-20 microns from the ablated surface. Furthermore, little mechanical damage could be seen in conventional histology and by examination of birefringent activity of the samples using a pair of cross polarizing filters.

  14. Resonant vortex-core reversal in magnetic nano-spheres as robust mechanism of efficient energy absorption and emission

    PubMed Central

    Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Jae-Hyeok; Kim, Min-Kwan

    2016-01-01

    We report on novel vortex-core reversal dynamics in nano-spheres of single-vortex spin configuration as revealed by micromagnetic simulations combined with analytical derivations. When the frequency of an AC magnetic field is tuned to the frequency of the vortex-core precession around the direction of a given static field, oscillatory vortex-core reversals occur, and additionally, the frequency is found to change with both the strength of the applied AC field and the particle size. Such resonant vortex-core reversals in nano-spheres may provide a new and efficient means of energy absorption by, and emission from, magnetic nanoparticles, which system can be effectively implemented in bio-applications such as magnetic hyperthermia. PMID:27531408

  15. GAX absorption cycle design process

    SciTech Connect

    Priedeman, D.K.; Christensen, R.N.

    1999-07-01

    This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

  16. 19. INTERIOR, 'CHILLER NO. 2' (G.S.A. PHOTOCOPY, N.D.) (4 x ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR, 'CHILLER NO. 2' (G.S.A. PHOTOCOPY, N.D.) (4 x 5 NEGATIVE) - U.S. General Services Administration, Central Heating Plant, C & D Streets between Twelfth & Thirteenth Streets Southwest, Washington, District of Columbia, DC

  17. Development of a gas engine-driven chiller. Annual report, January 1988-November 1988

    SciTech Connect

    Koplow, M.; Morgan, J.

    1989-10-01

    The report covers the third and final year of activity in a program to develop a natural gas engine-driven chiller with a nominal capacity of 150 tons. During the period covered by the report the field testing of six chillers continued, and a seventh and the final field test chiller was installed and started (April 1988). Field test hours for the period totalled 17,299, bringing the total field test hours to 24,247. The reliability and serviceability of the chiller have met expectations and have proven to be within the bounds of acceptability for this type of equipment. A ton-hour weighted coefficient of performance of 1.26 was obtained for the year.

  18. In-situ gamma-PHA measurements to support unconditional release of 235-F chiller units

    SciTech Connect

    Salaymeh, S.R.

    2000-02-17

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facility Decommission Division (FDD) to conduct in-situ gamma-ray pulse height analysis measurements to support the unconditional release of 235-F chiller units. The chiller units were used to cool process water in the 235-F facility. The measurements' main goal is to confirm that there is no process-related contaminants present on the chillers. For each of the two F-area clean water chillers, the authors have acquired ten gamma-ray pulse height analysis spectra. This report will discuss the purpose of the measurements, the experimental setup, data acquisition, calculations and results, and a conclusion of the study.

  19. The role of triplet excitons in enhancing polymer solar cell efficiency: a photo-induced absorption study

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Guha, Suchi

    2009-03-01

    Inclusion of heavy metal atoms in a polymer backbone allows transitions between the singlet and triplet manifolds. Interfacial dissociation of triplet excitons constitutes a viable mechanism for enhancing photovoltaic (PV) efficiencies in polymer heterojunction-based solar cells, which are now becoming feasible options for solar panels. The PV efficiency from polymer solar cells utilizing a ladder-type poly para phenylene polymer (PhLPPP) with trace quantity of Pd atoms and a fullerene derivative (PCBM) is almost 10 times more than its counterpart (MeLPPP) with no Pd atom. Evidence is presented for the formation of a weak ground-state charge-transfer complex (CTC) in the blended films of PhLPPP and PCBM, using photo- induced absorption (PIA) spectroscopy. Such complexes are not seen in the PIA spectrum of MeLPPP: PCBM blends. Possible mechanisms for the CTC state formation as well as the significance of this to the understanding and optimization of polymer blended solar cells will be discussed.

  20. Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency

    SciTech Connect

    Varkentina, N.; Sanner, N.; Lebugle, M.; Sentis, M.; Utéza, O.

    2013-11-07

    Ablation of fused silica by a single femtosecond laser pulse of 500 fs pulse duration is investigated from the perspective of efficiency of incident photons to remove matter. We measure the reflected and transmitted fractions of the incident pulse energy as a function of fluence, allowing us to recover the evolution of absorption at the material surface. At the ablation threshold fluence, 25% of incident energy is absorbed. At high fluences, this ratio saturates around 70% due to the appearance of a self-triggered plasma mirror (or shielding) effect. By using the energy balance retrieved experimentally and measurements of the ablated volume, we show that the amount of absorbed energy is far above the bonding energy of fused silica at rest and also above the energy barrier to ablate the material under non-equilibrium thermodynamic conditions. Our results emphasize the crucial role of transient plasma properties during the laser pulse and suggest that the major part of the absorbed energy has been used to heat the plasma formed at the surface of the material. A fluence range yielding an efficient and high quality ablation is also defined, which makes the results relevant for femtosecond micromachining processes.

  1. Comparison of chiller models for use in model-based fault detection

    SciTech Connect

    Sreedharan, Priya; Haves, Philip

    2001-06-07

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Factors that are considered in evaluating a model include accuracy, training data requirements, calibration effort, generality, and computational requirements. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression chillers. Three different models were studied: the Gordon and Ng Universal Chiller model (2nd generation) and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles, and the DOE-2 chiller model, as implemented in CoolTools{trademark}, which is empirical. The models were compared in terms of their ability to reproduce the observed performance of an older, centrifugal chiller operating in a commercial office building and a newer centrifugal chiller in a laboratory. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.

  2. Characteristic of Absorption Heat Transfer using LiBr+LiI Solution

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi; Nakao, Kazushige

    LiBr-H20 absorption chiller is widely used in Japan, and many research have been made for absorption characteristic in terms of enhancing heat transfer. Another study have been performed for widening working range with higher crystallization limits, and it was reported that adding LiI salt to LiBr-H20 working fluid provide about 5 [mass%] higher crystallization limit under the condition of absorption pressure range. It is necessary to reveal absorption heat transfer performance to utilize this working fluid pair for absorption chiller. In this study absorption heat transfer characteristic was investigated for horizontal and vertical tube. As a result, it was found that heat transfer coefficient increased as mass flow rate of solution increased and mass concentration of solution decrease and that these characteristic were almost the same as LiBr solution, though this solution gave slightly less heat transfer coefficient than LiBr solution.

  3. High-resolution absorption spectroscopy of photoionized silicon plasma, a step toward measuring the efficiency of Resonant Auger Destruction

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, James; Hansen, Stephanie; Nagayama, Taisuke; Rochau, Gregory; Liedhal, Duane; Mancini, Roberto

    2013-10-01

    A remarkable opportunity to observe matter in a regime where the effects of General Relativity are significant has arisen through measurements of strongly red-shifted iron x-ray lines emitted from black hole accretion disks. A major uncertainty in the spectral formation models is the efficiency of Resonant Auger Destruction (RAD), in which fluorescent K α photons are resonantly absorbed by neighbor ions. The absorbing ion preferentially decays by Auger ionization, thus reducing the emerging K α intensity. If K α lines from L-shell ions are not observed in iron spectral emission, why are such lines observed from silicon plasma surrounding other accretion powered objects? To help answer this question, we are investigating photoionized silicon plasmas produced using intense x-rays from the Z facility. The incident spectral irradiance is determined with time-resolved absolute power measurements, multiple monochromatic gated images, and a 3-D view factor model. The charge state distribution, electron temperature, and electron density are determined using space-resolved backlit absorption spectroscopy. The measurements constrain photoionized plasma models and set the stage for future emission spectroscopy directly investigating the RAD process. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  4. Fort Gordon energy survey analysis of boiler and chiller plants, building 25910 and building 25330. Proposed energy conservation opportunities for Savannah District Corps of Engineers. Volume 1 of 3. Final report

    SciTech Connect

    1995-04-03

    Project No. 1 is all of the recommended ECO`s combined for the chilled water system in the North area, which is controlled and supplied from Building 25910. The attached project drawing shows an upgrade and general layout of equipment, showing the reuse of the existing cooling towers with new piping from them which will go through a free cooling heat exchanger. There will be pumps at each chiller that will extract the required amount of cooling water through a loop piping arrangement. Chillers 5, 6, and 7 are existing, but new higher efficiency chillers will be added in the size range of one 400 ton and two of 1,250 ton chillers. Return chilled water will either be run in a loop that will feed any of the chillers which have its new pump `on` to circulate the chilled water through it, or if no pumps are `on`, the water will circulate through the new free cooling plate heat exchanger to be located in Building 25910. Teed off of the return chilled water system there will be a pipe that feeds a chilled water storage tank which will be located behind the Plant in the woods. There will be a pump parallel with that line so that if additional pressure is needed to get the water up to the top of the storage tank, that pump will come on. The water in that pipe and water in the pipe leaving at the bottom of the chilled water storage will go back to the Plant. Both of these pipes will have flow in either direction, depending on whether the storage tank is being charged as it will be at night in the summer time, or whether it is being discharged during the peak cooling hours during the day in the summer. The existing chilled water distribution pumps will remain in operation, but the drives will now be controlled by a single variable speed drive.

  5. Thermal characteristics and mass absorption efficiency of carbonaceous aerosol measured during a post-harvest burning period

    NASA Astrophysics Data System (ADS)

    Batmunkh, T.; Kim, Y. J.; Cayetano, M. G.; Lee, K.; Kim, K.; Park, K.

    2012-12-01

    babs during LB event at 370 nm (r2=0.85) and at 950 nm (r2=0.84). Mass absorption efficiency (MAE) and absorption Angstrom exponent (AAE) of OC1, OC2, and EC have been determined empirically based on the multiple regression analysis of measured data.

  6. Cyclic steady state performance of adsorption chiller with low regeneration temperature zeolite

    SciTech Connect

    Qian, Mr. Suxin; Gluesenkamp, Kyle R; Hwang, Dr. Yunho; Radermacher, Reinhard; Chun, Mr. Ho-Hwan

    2013-10-01

    Adsorption chillers are capable of utilizing inexpensive or free low grade thermal energy such as waste heat and concentrated solar thermal energy. Recently developed low regeneration temperature working pairs allow adsorption chillers to be driven by even lower temperature sources such as engine coolant and flat plate solar collectors. In this work, synthetic zeolite/water was implemented into a 3kW adsorption chiller test facility driven by hot water at 70 C. The zeolite was coated onto two fin-and-tube heat exchangers, with heat recovery employed between the two. Cyclic steady state parametric studies were experimentally conducted to evaluate the chiller's performance, resulting in a cooling coefficient of performance (COP) ranging from 0.1 to 0.6 at different operating conditions. Its performance was compared with published values for other low regeneration temperature working pairs. The physical limitations of the synthetic zeolite revealed by parametric study results were then discussed. A novel operating control strategy was proposed based on the unique characteristics of synthetic zeolite. In addition, a physics-based COP prediction model was derived to predict the performance of the chiller under equilibrium loading, and was validated by the experiment results. This analytical expression can be used to estimate the cyclic steady state performance for future studies.

  7. Creating an automated chiller fault detection and diagnostics tool using a data fault library.

    PubMed

    Bailey, Margaret B; Kreider, Jan F

    2003-07-01

    Reliable, automated detection and diagnosis of abnormal behavior within vapor compression refrigeration cycle (VCRC) equipment is extremely desirable for equipment owners and operators. The specific type of VCRC equipment studied in this paper is a 70-ton helical rotary, air-cooled chiller. The fault detection and diagnostic (FDD) tool developed as part of this research analyzes chiller operating data and detects faults through recognizing trends or patterns existing within the data. The FDD method incorporates a neural network (NN) classifier to infer the current state given a vector of observables. Therefore the FDD method relies upon the availability of normal and fault empirical data for training purposes and therefore a fault library of empirical data is assembled. This paper presents procedures for conducting sophisticated fault experiments on chillers that simulate air-cooled condenser, refrigerant, and oil related faults. The experimental processes described here are not well documented in literature and therefore will provide the interested reader with a useful guide. In addition, the authors provide evidence, based on both thermodynamics and empirical data analysis, that chiller performance is significantly degraded during fault operation. The chiller's performance degradation is successfully detected and classified by the NN FDD classifier as discussed in the paper's final section. PMID:12858981

  8. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption

    NASA Astrophysics Data System (ADS)

    in, Sungjun; Park, Namkyoo

    2016-02-01

    We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3-7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs.

  9. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption

    PubMed Central

    In, Sungjun; Park, Namkyoo

    2016-01-01

    We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3–7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs. PMID:26902974

  10. Experimental study of negative temperatures in lithium-bromide absorption refrigerating machines

    NASA Astrophysics Data System (ADS)

    Stepanov, K. I.; Mukhin, D. G.; Alekseenko, S. V.; Volkova, O. V.

    2015-07-01

    The authors have developed a method and presented experimental data for obtaining negative temperatures of evaporation in lithium-bromide absorption chillers driven by heat recovery. It has been found that the attainable temperature of the refrigerated medium is the value of -5 °C.