Science.gov

Sample records for efficient stereoselective synthesis

  1. A concise and stereoselective synthesis of squalamine.

    PubMed

    Zhang, Dong-Hui; Cai, Feng; Zhou, Xiang-Dong; Zhou, Wei-Shan

    2003-09-01

    [reaction: see text] A short and highly stereoselective synthesis of the novel steroid squalamine (1) was accomplished in nine steps from easily available methyl chenodeoxylcholanate 2. Our synthesis featured improved dehydrogenation of 4 followed by conjugate reduction to construct the trans AB-ring system and efficient asymmetric isopropylation of aldehyde 6 to introduce the C-24R-hydroxyl group. PMID:12943401

  2. Stereoselectivity in N-Iminium Ion Cyclization: Development of an Efficient Synthesis of (±)-Cephalotaxine.

    PubMed

    Liu, Hao; Yu, Jing; Li, Xinyu; Yan, Rui; Xiao, Ji-Chang; Hong, Ran

    2015-09-18

    A stereoselective N-iminium ion cyclization with allylsilane to construct vicinal quaternary-tertiary carbon centers was developed for the concise synthesis of (±)-cephalotaxine. The current strategy features a TiCl4-promoted cyclization and ring-closure metathesis to furnish the spiro-ring system. The stereochemical outcome in the N-acyliminium ion cyclization was rationalized by the stereoelectronic effect of the Z- or E-allylsilane. Two diastereomers arising from the cyclization were merged into the formal synthesis of (±)-cephalotaxine. PMID:26332648

  3. Novel and efficient one-pot five- and six-component reactions for the stereoselective synthesis of highly functionalized enaminones and dithiocarbamates.

    PubMed

    Bararjanian, Morteza; Balalaie, Saeed; Rominger, Frank; Movassagh, Barahman; Bijanzadeh, Hamid Reza

    2011-05-01

    Efficient methods for stereoselective synthesis of polyfunctional (E)-enaminones and (Z)-dithiocarbamates via one-pot five- and six-component sequential Ugi/Nucleophilic addition reactions are described. High yields and high bond forming efficiency, and simple operations are the advantages of this method. PMID:21072590

  4. Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3-amino allylic alcohols.

    PubMed

    Deng, Zhimin; Wei, Jialiang; Liao, Lihao; Huang, Haiyan; Zhao, Xiaodan

    2015-04-17

    An efficient route to prepare 3-amino allylic alcohols in excellent regio- and stereoselectivity in the presence of bases by orangoselenium catalysis has been developed. In the absence of bases α,β-unsaturated aldehydes were formed in up to 97% yield. Control experiments reveal that the hydroxy group is crucial for the direct amination. PMID:25849818

  5. Stereoselective Synthesis of Alkylidene Phthalides.

    PubMed

    Dragan, Andrei; Jones, D Heulyn; Kennedy, Alan R; Tomkinson, Nicholas C O

    2016-07-01

    The N,O-diacylhydroxylamine derivative 4 has been prepared and its reactivity with nucleophiles investigated. On reaction with lithium enolates of cyclic or acyclic ketones, 4 is converted stereoselectively to the corresponding alkylidene phthalide. The stereochemical outcome of the transformation can be modified by changing the polarity of the reaction medium and the products isomerized under acidic conditions. PMID:27311815

  6. Stereoselective synthesis and antitumoral activity of Z-enyne pseudoglycosides.

    PubMed

    Dantas, Claudio R; de Freitas, Jucleiton J R; Barbosa, Queila P S; Militão, Gardenia C G; Silva, Thiago D S; da Silva, Teresinha G; Paulino, Antônio A S; Freitas, Juliano C R; Oliveira, Roberta A; Menezes, Paulo H

    2016-07-12

    An efficient approach for the synthesis of Z-1,3-enynes based on the coupling reaction of Z-vinyl tellurides and alkynes containing a pseudoglycoside moiety is described. The products were obtained in good yields via a stereoselective way. Preliminary screening against three tumor cell lines indicated that the synthesized compounds are promising intermediates for the synthesis of an array of more potent target structures. PMID:27336326

  7. Stereoselective Synthesis of Conjugated Fluoro Enynes

    PubMed Central

    Kumar, Rakesh; Zajc, Barbara

    2013-01-01

    Metalation-electrophilic fluorination of TMS- and TIPS-protected 1,3-benzothiazol-2-yl (BT) propargyl sulfones gave corresponding BT fluoropropargyl sulfones, Julia-Kocienski reagents for the synthesis of fluoro enynes. Both reagents reacted with aldehydes under mild DBU, or LHMDS-mediated conditions, giving high yields of conjugated fluoro enynes with E- stereoselectivity. In comparison to DBU-mediated reactions, stereoselectivity was higher in low-temperature LHMDS-mediated reactions. Two ketones were shown to react as well, using LHMDS as base. In situ removal of the TMS group gave terminal conjugated 2-fluoro 1,3-enynes. Synthetic utility of the fluoro enynes was demonstrated by conversion to internal alkynes and to stereoisomeric fluoro dienes via Sonogashira and Heck couplings. PMID:23005035

  8. Stereoselective Synthesis of the C9-C19 Fragment of Lyngbyaloside B and C via Ether Transfer

    PubMed Central

    Stefan, Eric; Taylor, Richard E.

    2012-01-01

    A stereoselective synthesis of the C9-C19 fragment of lyngbyaloside B and C highlighted, by an extension of our ether transfer methodology, enables the formation of tertiary ethers. 2-Naphthylmethyl ethers have been shown to proceed efficiently through ether transfer with high stereoselectivity and are easily deprotected by DDQ oxidation. Variation of the workup conditions results in the stereoselective formation of syn-1,3-diol mono- or diethers. PMID:22716968

  9. Catalytic Stereoselective Synthesis of Diverse Oxindoles and Spirooxindoles from Isatins

    PubMed Central

    MacDonald, Jacob P.; Badillo, Joseph J.; Arevalo, Gary E.; Silva-Garcia, Abel

    2015-01-01

    A strategy for the efficient two-step synthesis of triazole derivatives of oxindoles and spirooxindoles is presented. Using a common set of N-propargylated isatins, a series of mechanistically-distinct stereoselective reactions with different combinations of nucleophiles and catalysts provide access to diverse hydroxy-oxindoles, spiroindolones, and spirocyclic oxazoline structures. The resulting N-propargylated oxindoles are then converted to triazoles using copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. Overall, this strategy affords a 64-member pilot-scale library of diverse oxindoles and spirooxindoles. PMID:22449252

  10. Regioselective and stereoselective cyclizations of chloropolyols in water: rapid synthesis of hydroxytetrahydrofurans.

    PubMed

    Kang, Baldip; Chang, Stanley; Decker, Shannon; Britton, Robert

    2010-04-16

    A concise, stereoselective synthesis of functionalized tetrahydrofuranols has been developed that involves heating readily available chloropolyols in water. These reactions are operationally straightforward and chemoselective for the formation of tetrahydrofurans, obviating the need for complicated protecting group strategies. The efficiency of this process is demonstrated in a short asymmetric synthesis of the natural product (+)-goniothalesdiol. PMID:20297827

  11. Witting Reaction Using a Stabilized Phosphorus Ylid: An Efficient and Stereoselective Synthesis of Ethyl Trans-Cinnamate

    ERIC Educational Resources Information Center

    Speed, Traci J.; Mclntyre, Jean P.; Thamattoor, Dasan M.

    2004-01-01

    An instructive experiment for the synthesis of ethyl trans-cinnamate, a pleasant smelling ester used in perfumery and flavoring by the reaction of benzaldehyde with the stable ylid triphenylphosphorane is described. The synthesis, workup and characterization of trans-cinnamate may be accomplished in a single laboratory session with commonly…

  12. Highly Stereoselective Synthesis of Cyclopentanes bearing Four Stereocenters by a Rhodium Carbene–Initiated Domino Sequence

    PubMed Central

    Parr, Brendan T.; Davies, Huw M. L.

    2014-01-01

    Stereoselective synthesis of a cyclopentane nucleus by convergent annulations constitutes a significant challenge for synthetic chemists. Though a number of biologically relevant cyclopentane natural products are known, more often than not, the cyclopentane core is assembled in a stepwise fashion due to lack of efficient annulation strategies. Herein, we report the rhodium-catalyzed reactions of vinyldiazoacetates with (E)-1,3-disubstituted 2-butenols generate cyclopentanes, containing four new stereogenic centers with very high levels of stereoselectivity (99% ee, >97 : 3 dr). The reaction proceeds by a carbene–initiated domino sequence consisting of five distinct steps: rhodium–bound oxonium ylide formation, [2,3]-sigmatropic rearrangement, oxy-Cope rearrangement, enol–keto tautomerization, and finally an intramolecular carbonyl ene reaction. A systematic study is presented detailing how to control chirality transfer in each of the four stereo-defining steps of the cascade, consummating in the development of a highly stereoselective process. PMID:25082301

  13. Stereoselective synthesis of unsaturated α-amino acids.

    PubMed

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid. PMID:25715756

  14. Recent advances in stereoselective synthesis of 1,3-dienes.

    PubMed

    De Paolis, Michael; Chataigner, Isabelle; Maddaluno, Jacques

    2012-01-01

    The aim of this review is to present the latest developments in the stereoselective synthesis of conjugated dienes, covering the period 2005-2010. Since the use of this class of compounds is linked to the nature of their appendages (aryls, alkyls, electron-withdrawing, and heterosubstituted groups), the review has been categorized accordingly and illustrates the most representative strategies and mechanisms to access these targets. PMID:22527407

  15. Studies on the Synthesis of Reidispongiolide A: Stereoselective Synthesis of the C(22)-C(36) Fragment

    PubMed Central

    Ying, Maben; Roush, William R.

    2011-01-01

    A highly stereoselective synthesis of the C(22)-C(36) fragment 2 of reidispongiolide A is described. This synthesis features the highly stereoselective mismatched double asymmetric crotylboration reaction of the aldehyde derived from 5 and the new chiral reagent (S)-(E)-7 that provides 12 with >15:1 d.r. Subsequent coupling of the derived vinyl iodide 3 with aldehyde 16 provided allylic alcohol 17, that was elaborated by three steps into the targeted reidispongiolide fragment 2. PMID:22711935

  16. Titanium(IV)-Catalyzed Stereoselective Synthesis of Spirooxindole-1-pyrrolines

    PubMed Central

    2015-01-01

    A stereoselective cyclization between alkylidene oxindoles and 5-methoxyoxazoles has been developed using catalytic titanium(IV) chloride (as low as 5 mol %) to afford spiro[3,3′-oxindole-1-pyrrolines] in excellent yield (up to 99%) and diastereoselectivity (up to 99:1). Using a chiral scandium(III)–indapybox/BArF complex affords enantioenriched spirooxindole-1-pyrrolines where a ligand-induced reversal of diastereoselectivity is observed. This methodology is further demonstrated for the synthesis of pyrrolines from malonate alkylidene and coumarin derivatives. PMID:25474118

  17. Titanium(IV)-catalyzed stereoselective synthesis of spirooxindole-1-pyrrolines.

    PubMed

    Badillo, Joseph J; Ribeiro, Carlos J A; Olmstead, Marilyn M; Franz, Annaliese K

    2014-12-19

    A stereoselective cyclization between alkylidene oxindoles and 5-methoxyoxazoles has been developed using catalytic titanium(IV) chloride (as low as 5 mol %) to afford spiro[3,3'-oxindole-1-pyrrolines] in excellent yield (up to 99%) and diastereoselectivity (up to 99:1). Using a chiral scandium(III)-indapybox/BArF complex affords enantioenriched spirooxindole-1-pyrrolines where a ligand-induced reversal of diastereoselectivity is observed. This methodology is further demonstrated for the synthesis of pyrrolines from malonate alkylidene and coumarin derivatives. PMID:25474118

  18. Stereoselective Synthesis of Quaternary Proline Analogues

    PubMed Central

    Calaza, M. Isabel

    2009-01-01

    This review describes available methods for the diastereoselective and asymmetric synthesis of quaternary prolines. The focus is on the preparation of α-functionalized prolines with the pyrrolidine moiety not embedded in a polycyclic frame. The diverse synthetic approaches are classified according to the bond which is formed to complete the quaternary skeleton. PMID:19655047

  19. The stereoselective synthesis of dienes through dehalogenative homocoupling of terminal alkenyl bromides on Cu(110).

    PubMed

    Sun, Qiang; Cai, Liangliang; Ma, Honghong; Yuan, Chunxue; Xu, Wei

    2016-05-21

    We have successfully achieved the stereoselective synthesis of a specific cis-diene moiety through a dehalogenative homocoupling of alkenyl bromides on the Cu(110) surface, where the formation of a cis-form organometallic intermediate is the key to such a stereoselectivity as determined by DFT calculations. PMID:27063567

  20. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Axially Chiral Aromatic Amides.

    PubMed

    Fäseke, Vincent C; Sparr, Christof

    2016-06-13

    The increasing awareness of the importance of amide atropisomers prompts the development of novel strategies for their selective preparation. Described herein is a method for the enantioselective synthesis of atropisomeric aromatic amides by an amine-catalyzed arene-forming aldol condensation. The high reactivity of the glyoxylic amide substrates enables a remarkably efficient construction of a new aromatic ring, which proceeds within minutes at ambient temperature to afford products with excellent stereoselectivity. The high rotational barriers of the reduced products highlight the utility of this stable, spatially organized chiral scaffold. PMID:27166995

  1. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Configurationally Stable Oligo-1,2-naphthylenes.

    PubMed

    Lotter, Dominik; Neuburger, Markus; Rickhaus, Michel; Häussinger, Daniel; Sparr, Christof

    2016-02-18

    Structurally well-defined oligomers are fundamental for the functionality of natural molecular systems and key for the design of synthetic counterparts. Herein, we describe a strategy for the efficient synthesis of individual stereoisomers of 1,2-naphthylene oligomers by iterative building block additions and consecutive stereoselective arene-forming aldol condensation reactions. The catalyst-controlled atropoenantioselective and the substrate-controlled atropodiastereoselective aldol condensation reaction provide structurally distinct ter- and quaternaphthalene stereoisomers, which represent configurationally stable analogues of otherwise stereodynamic, helically shaped ortho-phenylenes. PMID:26799152

  2. Efficient stereoselective synthesis of 2-acetamido-1,2-dideoxyallonojirimycin (DAJNAc) and sp(2)-iminosugar conjugates: Novel hexosaminidase inhibitors with discrimination capabilities between the mature and precursor forms of the enzyme.

    PubMed

    de la Fuente, Alex; Rísquez-Cuadro, Rocío; Verdaguer, Xavier; García Fernández, José M; Nanba, Eiji; Higaki, Katsumi; Ortiz Mellet, Carmen; Riera, Antoni

    2016-10-01

    Due to their capacity to inhibit hexosaminidases, 2-acetamido-1,2-dideoxy-iminosugars have been widely studied as potential therapeutic agents for various diseases. An efficient stereoselective synthesis of 2-acetamido-1,2-dideoxyallonojirimycin (DAJNAc), the most potent inhibitor of human placenta β-N-acetylglucosaminidase (β-hexosaminidase) among the epimeric series, is here described. This novel procedure can be easily scaled up, providing enough material for structural modifications and further biological tests. Thus, two series of sp(2)-iminosugar conjugates derived from DAJNAc have been prepared, namely monocyclic DAJNAc-thioureas and bicyclic 2-iminothiazolidines, and their glycosidase inhibitory activity evaluated. The data evidence the utmost importance of developing diversity-oriented synthetic strategies allowing optimization of electrostatic and hydrophobic interactions to achieve high inhibitory potencies and selectivities among isoenzymes. Notably, strong differences in the inhibition potency of the compounds towards β-hexosaminidase from human placenta (mature) or cultured fibroblasts (precursor form) were encountered. The ensemble of data suggests that the ratio between them, and not the inhibition potency towards the placenta enzyme, is a good indication of the chaperoning potential of TaySachs disease-associated mutant hexosaminidase. PMID:26564401

  3. Stereoselective synthesis of P-homochiral oligo(thymidine methanephosphonates).

    PubMed Central

    Lesnikowski, Z J; Jaworska, M; Stec, W J

    1988-01-01

    An approach to the stereoselective synthesis of P-homochiral oligo(thymidine methanephosphonates) is described. Fully protected (Rp)- and (Sp)-diastereomers of MMTrTPMeTAC (3) were prepared in the stereospecific reaction of P-chiral nucleotide component 5'-O-monomethoxytritylthymidine 3'-O-[O-(4-nitrophenyl)methanephosphonate] (1) and 3'-O-acetylthmydine (2) bearing activated 5'-hydroxyl function. Deprotection of the 5'-OH group in 3 and subsequent stepwise reactions of activated 5'-OH oligonucleotide components with (Rp)- or (Sp)- isomers of 1 gave the trinucleotide MMTrTPMeTPMeTAC (4) and, subsequently, the tetranucleotide MMTrTPMeTPMeTPMeTAC (5) possessing all (Rp)- or all (Sp)- configurations at their internucleotide methanephosphonate P-atoms. PMID:3211747

  4. Experimental and theoretical investigations of the stereoselective synthesis of p-stereogenic phosphine oxides.

    PubMed

    Copey, Laurent; Jean-Gérard, Ludivine; Framery, Eric; Pilet, Guillaume; Robert, Vincent; Andrioletti, Bruno

    2015-06-15

    An efficient enantioselective strategy for the synthesis of variously substituted phosphine oxides has been developed, incorporating the use of (1S,2S)-2-aminocyclohexanol as the chiral auxiliary. The method relies on three key steps: 1) Highly diastereoselective formation of P(V) oxazaphospholidine, rationalized by a theoretical study; 2) highly diastereoselective ring-opening of the oxazaphospholidine oxide with organometallic reagents that takes place with inversion of configuration at the P atom; 3) enantioselective synthesis of phosphine oxides by cleavage of the remaining P-O bond. Interestingly, the use of a P(III) phosphine precursor afforded a P-epimer oxazaphospholidine. Hence, the two enantiomeric phosphine oxides can be synthesized starting from either a P(V) or a P(III) phosphine precursor, which constitutes a clear advantage for the stereoselective synthesis of sterically hindered phosphine oxides. PMID:25980800

  5. Efficient and Stereoselective Dimerization of Pyrroloindolizine Derivatives Inspired by a Hypothesis for the Biosynthesis of Complex Myrmicarin Alkaloids

    PubMed Central

    Movassaghi, Mohammad; Ondrus, Alison E.; Chen, Bin

    2010-01-01

    Pyrroloindolizine derivatives participate in efficient and stereoselective homo- and heterodimerization reactions upon treatment with Brønsted or Lewis acids. The distinctive ability of pyrroloindolizines to act as azafulvenium ion precursors provides direct access to both heptacyclic and hexacyclic dimeric products. The inherent reactivity of these structures suggests a concise synthesis of complex myrmicarin alkaloids via dimerization of pyrroloindolizines, and may have implications for the biosynthesis of these intriguing alkaloids. PMID:18020368

  6. Total synthesis of bryostatins: the development of methodology for the atom-economic and stereoselective synthesis of the ring C subunit.

    PubMed

    Trost, Barry M; Frontier, Alison J; Thiel, Oliver R; Yang, Hanbiao; Dong, Guangbin

    2011-08-22

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for the stereoselective assembly of the ring C subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the ring C subunit of bryostatins. PMID:21793057

  7. Stereoselective synthesis of hernandulcin, peroxylippidulcine A, lippidulcines A, B and C and taste evaluation

    PubMed Central

    Rigamonti, Marco Giulio

    2015-01-01

    Summary The first stereoselective synthesis of lippidulcines A, B and C has been accomplished starting from (+)-hernandulcin, which has been prepared on a multigram scale. The previously assigned absolute configurations have been confirmed. The key steps of this synthesis are based on a modified version of the Kornblum–DeLaMare rearrangement, and on a highly regioselective and stereoselective ketone reduction with the MeCBS reagent. The taste evaluations indicate that none of these sesquiterpenes are sweet, instead the lippidulcine A is a cooling agent with a mint after taste. PMID:26664632

  8. Stereoselective synthesis of hernandulcin, peroxylippidulcine A, lippidulcines A, B and C and taste evaluation.

    PubMed

    Rigamonti, Marco Giulio; Gatti, Francesco Gilberto

    2015-01-01

    The first stereoselective synthesis of lippidulcines A, B and C has been accomplished starting from (+)-hernandulcin, which has been prepared on a multigram scale. The previously assigned absolute configurations have been confirmed. The key steps of this synthesis are based on a modified version of the Kornblum-DeLaMare rearrangement, and on a highly regioselective and stereoselective ketone reduction with the MeCBS reagent. The taste evaluations indicate that none of these sesquiterpenes are sweet, instead the lippidulcine A is a cooling agent with a mint after taste. PMID:26664632

  9. Iron(III) chloride as an efficient catalyst for stereoselective synthesis of glycosyl azides and a cocatalyst with Cu(0) for the subsequent click chemistry.

    PubMed

    Salunke, Santosh B; Babu, N Seshu; Chen, Chien-Tien

    2011-10-01

    A highly efficient and mild method for azido glycosylation of glycosyl β-peracetates to 1,2-trans glycosyl azides was developed by using inexpensive FeCl(3) as the catalyst. In addition, we demonstrated, for the first time, that FeCl(3) in combination with copper powder can promote 1,3-dipolar cycloaddition (click chemistry) of azido glycosides with terminal alkynes. Good to excellent yields were obtained with exclusive formation of a single isomer in both glycosyl azidation and subsequent cycloaddition processes. PMID:21842053

  10. Stereoselective Organocatalytic Synthesis of Oxindoles with Adjacent Tetrasubstituted Stereocenters.

    PubMed

    Engl, Oliver D; Fritz, Sven P; Wennemers, Helma

    2015-07-01

    Oxindoles with adjacent tetrasubstituted stereocenters were obtained in high yields and stereoselectivities by organocatalyzed conjugate addition reactions of monothiomalonates (MTMs) to isatin-derived N-Cbz ketimines. The method requires only a low catalyst loading (2 mol %) and proceeds under mild reaction conditions. Both enantiomers are accessible in good yields and excellent stereoselectivities by using either Takemoto's catalyst or a cinchona alkaloid derivative. The synthetic methodology allowed establishment of a straightforward route to derivatives of the gastrin/cholecystokinin-B receptor antagonist AG-041R. PMID:26033441

  11. Templated Oligosaccharide Synthesis: The Linker Effect on the Stereoselectivity of Glycosylation

    PubMed Central

    Pornsuriyasak, Papapida; Jia, Xiao G.; Kaeothip, Sophon; Demchenko, Alexei V.

    2016-01-01

    A new method for intramolecular oligosaccharide synthesis that is conceptually related to the general molecular clamp approach is introduced. Exceptional α-selectivity has been achieved in a majority of applications. Unlike other related concepts, this approach is based on the bisphenol A template, which allows one to connect multiple building blocks to perform templated oligosaccharide synthesis with complete stereoselectivity. This principle was demonstrated by the synthesis of an α,α-linked trisaccharide. PMID:27115718

  12. Recent Progress on the Stereoselective Synthesis of Cyclic Quaternary α-Amino Acids

    PubMed Central

    Cativiela, Carlos; Ordóñez, Mario

    2010-01-01

    The most recent papers describing the stereoselective synthesis of cyclic quaternary α-amino acids are collected in this review. The diverse synthetic approaches are classified according to the size of the ring and taking into account the bond that is formed to complete the quaternary skeleton. PMID:20300486

  13. Stereoselective total synthesis of (-)-perrottetinene and assignment of its absolute configuration.

    PubMed

    Song, Yanling; Hwang, Soonho; Gong, Ping; Kim, Deukjoon; Kim, Sanghee

    2008-01-17

    The first stereoselective total synthesis of the bibenzyl tetrahydrocannabinol, (-)-perrottetinene, has been achieved from readily available starting materials. The absolute stereochemistry is derived from a chiral gamma-hydroxy vinylstannane. The key reaction is the synthesis of the cis-disubstituted cyclohexene ring of perrottetinene by diastereoselective Ireland-Claisen rearrangement and a ring-closing metathesis reaction. The absolute configuration of (-)-perrottetinene is proposed. PMID:18085788

  14. Stereoselective Synthesis of (R)-3-Methylthalidomide by Piperidin-2-one Ring Assembly Approach.

    PubMed

    Yadav, Shyam Raj; Tiwari, Vinay Shankar; Haq, Wahajul

    2015-09-01

    A simple and stereoselective synthesis of 3-methylthalidomide, a configurationally stable thalidomide analog, is presented. Herein we describe the synthesis of (R)-3-methylthalidomide starting from (S)-alanine by piperidin-2-one ring assembly approach in high yield and enantiomeric purity without using a chiral auxiliary or reagent. Starting from (R)-alanine, the corresponding (S)-3-methylthalidomide can be prepared using the same methodology. PMID:26079113

  15. Stereoselective synthesis of desloratadine derivatives as antagonist of histamine.

    PubMed

    Liu, Gai-Zhi; Xu, Hai-Wei; Chen, Guang-Wei; Wang, Peng; Wang, Ya-Na; Liu, Hong-Min; Yu, De-Quan

    2010-02-15

    A series of desloratadine derivatives were stereoselectively synthesized and evaluated for H(1) antihistamine activity. For the evaluation of H(1) antihistamine activity, the in vitro histamine-induced contraction of the guinea-pig ileum assay (HC) was used. The synthesized desloratadine derivatives 7, 8 and 9 are structurally related to rupatadine and were generated by replacement of the 5-methyl-3-pyridine group of rupatadine with gamma-alkylidene butenolide. Their H(1) antihistamine activities have shown a high dependence on the exact nature of the substituent in the lactone ring. Optimum structures 7, 8a and 8g display potent activity inhibiting histamine-induced effects. PMID:20110173

  16. Stereoselectively synthesis and structural confirmation of dehydrodipeptides with dehydrobutyrine.

    PubMed

    Tian, Xia; Li, Linna; Han, Jianrong; Zhen, Xiaoli; Liu, Shouxin

    2016-01-01

    Most of polypeptides containing α,β-dehydroamino acids have important biological activity, so exploration of synthetic method has practical significance. In this paper, dipeptides were prepared from l-threonine by protecting of c-terminal allyl acetate, and condensing reaction with a series of N-Boc amino acid. Then, treatment of dipeptides obtained with DMAP, (Boc)2O and tetramethylguanidine in the acetonitrile occured β-elimination reaction to yield stereoselectively dehydrodipeptides. Structures of dehydrodipeptides were confirmed by (1)H NMR, (13)C NMR and MS. Analysis of (1)H NMR, 2D NMR and crystal structure showed that the dehydrodipeptides were Z-configuration.Graphical abstractDehydrodipeptides were prepared from l-threonine. Their structures were confirmed by (1)H NMR, (13)C NMR and MS. PMID:27047726

  17. Stereoselective Synthesis of Isochromanones by an Asymmetric Ortho-Lithiation Strategy: Synthetic Access to the Isochromanone Core of the Ajudazols.

    PubMed

    Essig, Sebastian; Menche, Dirk

    2016-03-01

    Full details on the design, development, and application of a highly stereoselective strategy for the synthesis of isochromanones are reported. The method is based on an asymmetric ortho lithiation with aldehyde electrophiles and utilizes the chiral memory of a preoriented atropisomeric amide axis for stereocontrol. For direct transformation of sterically hindered amides to isochromanones, efficient and mild one-pot protocols involving either O-alkylation or acidic microwave activation were developed. The procedures may be applied also to highly functionalized as well as stereochemically complex and sensitive substrates and demonstrate a high protective group tolerance. Furthermore, asymmetric crotylborations of axially chiral amides were studied in detail. These methodologies enable a general access to all possible stereoisomers of hydroxyl-isochromanones with up to three contiguous stereocenters. The true applicability of our approach was finally demonstrated by synthesis of the authentic anti,anti-configured isochromanone core of the ajudazols, highly potent inhibitors of the mitochondrial respiratory chain from myxobacteria. PMID:26824669

  18. Stereoselective terminal functionalization of small peptides for catalytic asymmetric synthesis of unnatural peptides

    PubMed Central

    Maruoka, Keiji; Tayama, Eiji; Ooi, Takashi

    2004-01-01

    The asymmetric phase-transfer catalytic alkylation of peptides has been achieved by the use of designed C2-symmetric chiral quaternary ammonium bromide 1 as catalyst. Excellent stereoselectivities were uniformly observed in the alkylation with a variety of alkyl halides and the efficiency of the transmission of stereochemical information was not affected by the side-chain structure of the preexisting amino acid residues. This method also enables an asymmetric construction of noncoded α,α-dialkyl-α-amino acid residues at the peptide terminal. Since this chirality can be efficiently transferred to the adjacent amino acid moiety, our approach provides a general procedure not only for the highly stereoselective terminal functionalization of peptides but also for the sequential asymmetric construction of unnatural oligopeptides, which should play a vital role in the peptide-based drug discovery process. PMID:15079083

  19. The stereoselective synthesis of α-amino aldols starting from terminal alkynes.

    PubMed

    Miura, Tomoya; Nakamuro, Takayuki; Hiraga, Kentaro; Murakami, Masahiro

    2014-09-18

    A new procedure for the stereoselective synthesis of syn α-amino β-oxy ketones is reported. It consists of two steps; in the first step, α-amino silyl enol ethers having a (Z) geometry are prepared from 1-alkynes via 1-sulfonyl-1,2,3-triazoles. In the second step, the silyl enol ethers undergo the TiCl4-mediated Mukaiyama aldol reaction with aldehydes to produce α-amino β-oxy ketones with excellent syn-selectivity. PMID:25068433

  20. Synthesis of α-Chiral Butyrolactones by Highly Stereoselective Radical Transfer or Sequential Asymmetric Alkylations: Concise Preparation of Leupyrrin Moieties.

    PubMed

    Schrempp, Michael; Thiede, Sebastian; Herkommer, Daniel; Gansäuer, Andreas; Menche, Dirk

    2015-11-01

    Inspired by the bioactive natural metabolites leupyrrin A1 and B1 , two novel stereoselective methods for the highly concise synthesis of densely substituted α-chiral butyrolactones are reported. The first approach relies on an innovative three-step Ti(III) -catalyzed radical reaction that proceeds with excellent chemo-, regio-, and stereoselectivity. The alternative route utilizes sequential asymmetric alkylations and enables asymmetric synthesis of the authentic α-tetrasubstituted butyrolactone motif of the leupyrrins in only four steps from commercially available substrates. PMID:26354047

  1. Stereoselective Synthesis of 1-Tuberculosinyl Adenosine; a Virulence Factor of Mycobacterium tuberculosis.

    PubMed

    Buter, Jeffrey; Heijnen, Dorus; Wan, Ieng Chim; Bickelhaupt, F Matthias; Young, David C; Otten, Edwin; Moody, D Branch; Minnaard, Adriaan J

    2016-08-01

    Despite its status as one of the world's most prevalent and deadly bacterial pathogens, Mycobacterium tuberculosis (Mtb) infection is not routinely diagnosed by rapid and highly reliable tests. A program to discover Mtb-specific biomarkers recently identified two natural compounds, 1-tuberculosinyl adenosine (1-TbAd) and N(6)-tuberculosinyl adenosine (N(6)-TbAd). Based on their association with virulence, the lack of similar compounds in nature, the presence of multiple stereocenters, and the need for abundant products to develop diagnostic tests, synthesis of these compounds was considered to be of high value but challenging. Here, a multigram-scale stereoselective synthesis of 1-TbAd and N(6)-TbAd is described. As a key-step, a chiral auxiliary-mediated Diels-Alder cycloaddition was developed, introducing the three stereocenters with a high exo endo ratio (10:1) and excellent enantioselectivity (>98% ee). This constitutes the first entry into the stereoselective synthesis of diterpenes with the halimane skeleton. Computational studies explain the observed stereochemical outcome. PMID:27398789

  2. Stereoselective synthesis of stable-isotope-labeled amino acids

    SciTech Connect

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  3. A stereoselective synthesis of (+)-physoperuvine using a tandem aza-Claisen rearrangement and ring closing metathesis reaction.

    PubMed

    Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew

    2009-07-01

    A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring. PMID:19532981

  4. Stereoselective 6-exo radical cyclization using cis-vinyl sulfoxide: practical total synthesis of CTX3C.

    PubMed

    Yamashita, Shuji; Ishihara, Yuuki; Morita, Hiroyuki; Uchiyama, Junichi; Takeuchi, Katsutoshi; Inoue, Masayuki; Hirama, Masahiro

    2011-03-25

    Ciguatoxins, the principal causative toxins of ciguatera seafood poisoning, are large ladder-like polycyclic ethers. We report a highly stereoselective 6-exo radical cyclization/ring-closing olefin metathesis sequence to construct the syn/trans-fused polyether system. The new method was applied to the practical synthesis of ciguatoxin CTX3C. PMID:21250701

  5. Stereoselective Synthesis of α-Amino-C-phosphinic Acids and Derivatives.

    PubMed

    Viveros-Ceballos, José Luis; Ordóñez, Mario; Sayago, Francisco J; Cativiela, Carlos

    2016-01-01

    α-Amino-C-phosphinic acids and derivatives are an important group of compounds of synthetic and medicinal interest and particular attention has been dedicated to their stereoselective synthesis in recent years. Among these, phosphinic pseudopeptides have acquired pharmacological importance in influencing physiologic and pathologic processes, primarily acting as inhibitors for proteolytic enzymes where molecular stereochemistry has proven to be critical. This review summarizes the latest developments in the asymmetric synthesis of acyclic and phosphacyclic α-amino-C-phosphinic acids and derivatives, following in the first case an order according to the strategy used, whereas for cyclic compounds the nitrogen embedding in the heterocyclic core is considered. In addition selected examples of pharmacological implications of title compounds are also disclosed. PMID:27589703

  6. Stereoselective Alkylation of the Vinylketene Silyl N,O-Acetal and Its Application to the Synthesis of Mycocerosic Acid.

    PubMed

    Nakamura, Tatsuya; Kubota, Kei; Ieki, Takanori; Hosokawa, Seijiro

    2016-01-01

    Stereoselective alkylation of the vinylketene silyl N,O-acetal possessing a chiral auxiliary has been achieved by using activated alkyl halides including allyl iodides, benzyl iodides, and propargyl iodide with Ag(I) ion in the presence of BF3·OEt2. The reaction proceeded to give reduced polyketides in high stereoselectivity. The synthesis of mycocerosic acid, a component of the cell envelope of Mycobacterium tuberculosis, has been accomplished by this methodology. During the synthetic studies, 2-methylbenzimidazole was found to be a bulky proton source which worked in the presence of liquid ammonia. PMID:26673532

  7. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A–T phosphoramidite building blocks

    PubMed Central

    Schmidtgall, Boris; Höbartner, Claudia

    2015-01-01

    Summary Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T–T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X–T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A–T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues. PMID:25670992

  8. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A-T phosphoramidite building blocks.

    PubMed

    Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian

    2015-01-01

    Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues. PMID:25670992

  9. Stereoselective synthesis of the C1-C29 part of amphidinol 3.

    PubMed

    Tsuruda, Takeshi; Ebine, Makoto; Umeda, Aya; Oishi, Tohru

    2015-01-16

    Stereoselective synthesis of the C1-C29 part of amphidinol 3 (AM3) was achieved. The C1-C20 part was assembled from three building blocks via regioselective cross metathesis to form the C4-C5 double bond and addition of an alkenyllithium and a lithium acetylide to two Weinreb amides followed by asymmetric reduction to form the C9-C10 and C14-C15 bonds, respectively. The C21-C29 part was synthesized via successive cross metathesis and oxa-Michael addition sequence to construct the 1,3-diol system at C25 and C27 and Brown asymmetric crotylation to introduce the stereogenic centers at C23 and C24. Coupling of the C1-C20 and C21-C29 parts was achieved by Julia-Kocienski olefination and regio- and stereoselective dihydroxylation of the C20-C21 double bond in the presence of the C4-C5 and C8-C9 double bonds to afford the C1-C29 part of AM3. PMID:25517178

  10. Silyllithium-Initiated Coupling of α-Ketoamides with tert-Butanesulfinylimines for Stereoselective Synthesis of Enantioenriched α-(Silyloxy)-β-amino Amides.

    PubMed

    Sun, Zhao; Liu, Hui; Zeng, Yong-Ming; Lu, Chong-Dao; Xu, Yan-Jun

    2016-02-01

    A silyllithium-initiated coupling of α-ketoamides with tert-butanesulfinylimines was developed for the efficient, stereoselective synthesis of enantioenriched α-(silyloxy)-β-amino amides. Nucleophilic addition of silyllithium to α-ketoamides, followed by 1,2-Brook rearrangement, generates nucleophilic enolates, which are then intercepted by chiral imines to provide three-component coupling products. Use of α-ketoamides is critical for achieving high yields and diastereoselectivities in the resulting α-hydroxy-β-amino acid derivatives. PMID:26809848

  11. Stereoselective Total Synthesis of Atractylodemayne A, a Conjugated 2(E),8(Z),10(E)-Triene-4,6-diyne.

    PubMed

    Schmidt, Bernd; Audörsch, Stephan

    2016-03-01

    The first total synthesis of the polyacetylene natural product atractylodemayne A is reported. Stereoselective construction of the conjugated 8(Z),10(E)-diene moiety was achieved through a tethered ring-closing metathesis approach, comprising a Ru-catalyzed RCM followed by a base-induced elimination. A Pd-catalyzed Cadiot-Chodkiewicz coupling was used for the synthesis of the diyne. Overall, atractylodemayne A was synthesized in nine steps for the longest linear sequence. PMID:26886865

  12. Stereoselective Construction of β-Mannopyranosides by Anomeric O-Alkylation: Synthesis of the Trisaccharide Core of N-linked Glycans.

    PubMed

    Nguyen, Hai; Zhu, Danyang; Li, Xiaohua; Zhu, Jianglong

    2016-04-01

    A new and efficient approach for direct and stereoselective synthesis of β-mannopyranosides by anomeric O-alkylation has been developed. This anomeric O-alkylation of mannopyranose-derived lactols is proposed to occur under synergistic control of a kinetic anomeric effect and metal chelation. The presence of a conformationally flexible C6 oxygen atom in the sugar-derived lactol donors is required for this anomeric O-alkylation to be efficient, probably because of its chelation with cesium ion. In contrast, the presence of a C2 oxygen atom plays a minor role. This glycosylation method has been successfully utilized for the synthesis of the trisaccharide core of complex N-linked glycans. PMID:26948686

  13. Stereoselective Synthesis of 1,3-Diaminotruxillic Acid Derivatives: An Advantageous Combination of C-H-ortho-Palladation and On-Flow [2+2]-Photocycloaddition in Microreactors.

    PubMed

    Serrano, Elena; Juan, Alberto; García-Montero, Angel; Soler, Tatiana; Jiménez-Márquez, Francisco; Cativiela, Carlos; Gomez, M Victoria; Urriolabeitia, Esteban P

    2016-01-01

    The stereoselective synthesis of ε-isomers of dimethyl esters of 1,3-diaminotruxillic acid in three steps is reported. The first step is the ortho-palladation of (Z)-2-aryl-4-aryliden-5(4H)-oxazolones 1 to give dinuclear complexes 2 with bridging carboxylates. The reaction occurs through regioselective activation of the ortho-CH bond of the 4-arylidene ring in carboxylic acids. The second step is the [2+2]-photocycloaddition of the CC exocyclic bonds of the oxazolone skeleton in 2 to afford the corresponding dinuclear ortho-palladated cyclobutanes 3. This key step was performed very efficiently by using LED light sources with different wavelengths (465, 525 or 625 nm) in flow microreactors. The final step involved the depalladation of 3 by hydrogenation in methanol to afford the ε-1,3-diaminotruxillic acid derivatives as single isomers. PMID:26597315

  14. On the Stereoselective Synthesis of (+)-Pinoresinol in Forsythia Suspensa from its Achiral Precursor, Coniferyl Alcohol

    NASA Technical Reports Server (NTRS)

    Davin, Laurence B.; Bedgar, Diana L.; Katayama, Takeshi; Lewis, Norman G.

    1992-01-01

    The residue from Forsythia suspensa stems, upon removal of soluble enzymes, has provided the first evidence for a stereoselective coupling enzyme in lignan biosynthesis. This preparation catalyses the preferred formation (ca 65%) of (+)-[8,8'- C-14] pinoresinol from [8-C-14]coniferyl alcohol in the absence of exogenously provided cofactors; addition of H2O2 had little effect on enantiomeric composition. However, when NAD and malate were supplied, the stereoselectivity of the coupling reaction was significantly enhanced and pinoresinol consisting of ca 80% of the (+)-antipode was obtained. Clearly, the insoluble residue contains a specific coupling enzyme which catalyses (+)-pinoresinol formation from coniferyl alcohol. By contrast, when [8- C-14] sinapyl alcohol was employed as substrate, only racemic syringaresinols were formed: this non-stereoselective peroxidase-catalysed coupling reaction presumably accounts for the low levels of (-)-pinoresinol encountered in this system when coniferyl alcohol is used as a substrate.

  15. Stereoselective Electrophilic Cyclization.

    PubMed

    Sakakura, Akira; Ishihara, Kazuaki

    2015-08-01

    Electrophilic cyclizations of unactivated alkenes play highly important roles in the synthesis of useful building blocks. This account describes our contributions to the rational design of monofunctionalized chiral Lewis base catalysts for enantioselective iodo- and protocyclizations. For the stereoselective promotion of electrophilic bromocyclizations, nucleophilic phosphite-urea cooperative catalysts have been designed. PMID:26147781

  16. Stereoselective synthesis of (Z)-13-hexadecen-11-yn-1-yl acetate, the major component of the sex pheromone of the pine processionary moth (Thaumetopoea pityocampa).

    PubMed

    Shani, A; Klug, J T; Skorka, J

    1983-07-01

    A short and stereoselective synthesis of (Z)-13-hexadecen-1 1-yn-1-yl acetate is described. The main feature is a low-temperature Wittig reaction of a triphenylpropylphosphonium bromide with a long-chain alkylated propargyl aldehyde. PMID:24407758

  17. Stereoselective synthesis of trans-fused iridoid lactones and their identification in the parasitoid wasp Alloxysta victrix, Part I: Dihydronepetalactones

    PubMed Central

    Zimmermann, Nicole; Hilgraf, Robert; Lehmann, Lutz; Ibarra, Daniel

    2012-01-01

    Summary Starting from the enantiomers of limonene, all eight stereoisomers of trans-fused dihydronepetalactones were synthesized. Key compounds were pure stereoisomers of 1-acetoxymethyl-2-methyl-5-(2-hydroxy-1-methylethyl)-1-cyclopentene. The stereogenic center of limonene was retained at position 4a of the target compounds and used to stereoselectively control the introduction of the other chiral centers during the synthesis. Basically, this approach could also be used for the synthesis of enantiomerically pure trans-fused iridomyrmecins. Using synthetic reference samples, the combination of enantioselective gas chromatography and mass spectrometry revealed that volatiles released by the endohyperparasitoid wasp Alloxysta victrix contain the enantiomerically pure trans-fused (4R,4aR,7R,7aS)-dihydronepetalactone as a minor component, showing an unusual (R)-configured stereogenic center at position 7. PMID:23019455

  18. Copper mediated stereoselective synthesis of C-glycosides from unactivated alkynes.

    PubMed

    Kusunuru, Anil Kumar; Tatina, Madhubabu; Yousuf, Syed Khalid; Mukherjee, Debaraj

    2013-10-01

    A highly stereoselective rapid C-glycosylation reaction has been developed between glycal and unactivated alkynes in the presence of coppertriflate and ascorbic acid at low catalyst loading and at room temperature. A wide variety of glycals and aryl acetylenes participate in the reaction smoothly. TfOH generated during the reduction of Cu(OTf)2 by ascorbic acid may be the active catalyst for the glycosylation. PMID:24049771

  19. Stereoselective synthesis of tetrasubstituted alkenes via a sequential carbocupration and a new sulfur–lithium exchange

    PubMed Central

    Unsinn, Andreas; Dunst, Cora

    2012-01-01

    Summary We have designed a new sequential carbocupration and sulfur–lithium exchange that leads stereo- and regioselectively to trisubstituted alkenyllithiums. Subsequent trapping with various electrophiles yields tetrasubstituted olefins with good control of the double-bond geometry (E/Z ratio up to 99:1). The novel sulfur–lithium exchange could be extended to the stereoselective preparation of Z-styryl lithium derivatives with almost complete retention of the double-bond geometry. PMID:23365630

  20. Selective carbon-carbon bond cleavage for the stereoselective synthesis of acyclic systems.

    PubMed

    Marek, Ilan; Masarwa, Ahmad; Delaye, Pierre-Olivier; Leibeling, Markus

    2015-01-01

    Most of the efforts of organic chemists have been directed to the development of creative strategies to build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. In this Review, we show an alternative approach where challenging molecular skeletons could be prepared through selective cleavage of carbon-carbon bonds. We demonstrate that it has the potential to be a general principle in organic synthesis for the regio-, diastereo-, and even enantioselective preparation of adducts despite the fact that C-C single bonds are among the least reactive functional groups. The development of such strategies may have an impact on synthesis design and can ultimately lead to new selective and efficient processes for the utilization of simple hydrocarbons. PMID:25266824

  1. Ligand-Enabled, Copper-Catalyzed Regio- and Stereoselective Synthesis of Trialkylsubstituted Alkenylboronates from Unactivated Internal Alkynes.

    PubMed

    Itoh, Taisuke; Shimizu, Yohei; Kanai, Motomu

    2016-06-22

    We report the first copper-catalyzed regio- and stereoselective borylalkylation of dialkylsubstituted internal alkynes with bis(pinacolato)diboron and alkyl halides. A catalytically generated borylcopper species containing a novel π-accepting N-heterocyclic carbene ligand chemoselectively reacted with unactivated internal alkynes over alkyl halides. The intermediate alkenylcopper species subsequently reacted with alkyl halides, affording the desired products. The copper catalyst differentiated steric demands between the two aliphatic substituents on the C≡C triple bond of the alkyne substrates to exhibit high regioselectivity from a wide range of alkyne/alkyl halide combinations. This method is useful for the straightforward synthesis of trialkylsubstituted alkenylboronates, i.e., versatile precursors for tetrasubstituted alkenes containing three or four different alkylsubstituents, which are difficult to synthesize by other methods. PMID:27269988

  2. Stereoselectivity in Polyphenol Biosynthesis

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.; Davin, Laurence B.

    1992-01-01

    Stereoselectivity plays an important role in the late stages of phenyl-propanoid metabolism, affording lignins, lignans, and neolignans. Stereoselectivity is manifested during monolignol (glucoside) synthesis, e.g., where the geometry (E or Z) of the pendant double bond affects the specificity of UDPG:coniferyl alcohol glucosyltransferases in different species. Such findings are viewed to have important ramifications in monolignol transport and storage processes, with roles for both E- and Z-monolignols and their glucosides in lignin/lignan biosynthesis being envisaged. Stereoselectivity is also of great importance in enantiose-lective enzymatic processes affording optically active lignans. Thus, cell-free extracts from Forsythia species were demonstrated to synthesize the enantiomerically pure lignans, (-)-secoisolariciresinol, and (-)-pinoresinol, when NAD(P)H, H2O2 and E-coniferyl alcohol were added. Progress toward elucidating the enzymatic steps involved in such highly stereoselective processes is discussed. Also described are preliminary studies aimed at developing methodologies to determine the subcellular location of late-stage phenylpropanoid metabolites (e.g., coniferyl alcohol) and key enzymes thereof, in intact tissue or cells. This knowledge is essential if questions regarding lignin and lignan tissue specificity and regulation of these processes are to be deciphered.

  3. Stereoselective Synthesis of Saturated Heterocycles via Pd-Catalyzed Alkene Carboetherification and Carboamination Reactions

    PubMed Central

    Wolfe, John P.

    2009-01-01

    The development of Pd-catalyzed carboetherification and carboamination reactions between aryl/alkenyl halides and alkenes bearing pendant heteroatoms is described. These transformations effect the stereoselective construction of useful heterocycles such as tetrahydrofurans, pyrrolidines, imidazolidin-2-ones, isoxazolidines, and piperazines. The scope, limitations, and applications of these reactions are presented, and current stereochemical models are described. The mechanism of product formation, which involves an unusual intramolecular syn-insertion of an alkene into a Pd-Heteroatom bond is also discussed in detail. PMID:19183704

  4. New stereoselective titanium reductive amination synthesis of 3-amino and polyaminosterol derivatives possessing antimicrobial activities.

    PubMed

    Salmi, Chanaz; Loncle, Celine; Vidal, Nicolas; Letourneux, Yves; Brunel, Jean Michel

    2008-03-01

    A series of 3-amino and polyaminosterol analogues of squalamine and trodusquemine were synthesized involving a new stereoselective titanium reductive amination reaction in high chemical yields of up to 95% in numerous cases. These derivatives were evaluated for their in vitro antimicrobial properties against human pathogens. Activity was highly dependent on the different compounds' structures involved and best results have been obtained with aminosterol derivatives 4b, 4e and 6i exhibiting activities against yeasts, Gram positive and Gram negative bacteria at average concentrations of 6.25-12.5 microg/mL. PMID:17566609

  5. Stereoselective synthesis of γ-hydroxynorvaline through combination of organo- and biocatalysis.

    PubMed

    Simon, Robert C; Busto, Eduardo; Schrittwieser, Joerg H; Sattler, Johann H; Pietruszka, Jörg; Faber, Kurt; Kroutil, Wolfgang

    2014-12-25

    An efficient route for the synthesis of all four diastereomers of PMP-protected α-amino-γ-butyrolacton to access γ-hydroxynorvaline was established. The asymmetric key steps comprise an organocatalytic Mannich reaction and an enzymatic ketone reduction. Three reaction steps could be integrated in a one-pot process, using 2-PrOH both as solvent and as reducing agent. The sequential construction of stereogenic centres gave access to each of the four stereoisomers in high yield and with excellent stereocontrol. PMID:25251725

  6. A stereoselective and short total synthesis of the polyhydroxylated gamma-amino acid (-)-detoxinine, based on stereoselective preparation of dihydropyrrole derivatives from lithiated alkoxyallenes.

    PubMed

    Flögel, Oliver; Okala Amombo, Marlyse Ghislaine; Reissig, Hans-Ulrich; Zahn, Gernot; Brüdgam, Irene; Hartl, Hans

    2003-03-17

    Based on our earlier results employing lithiated methoxyallene 2 as C(3) building block and imines 3 for the synthesis of dihydropyrrole derivatives 5, we have investigated chiral imines 6, 10, and 15 as electrophilic components. Combined with lithiated alkoxyallenes, these imines provide the corresponding primary adducts and finally the dihydropyrrole derivatives 8, 12, 17, 20, and 22 in good yields and with high to excellent syn selectivities. This stereochemical outcome is interpreted as a result of alpha-chelate control. Treatment with hydrochloric acid converted syn-8 and syn-12 into bicyclic compounds 9 and 13, whereas under more mildly acidic conditions adduct syn-17 was transformed into diol syn-18. The total synthesis of the uncommon gamma-amino acid (-)-detoxinine could be achieved by starting from (S)-malic acid, which was converted into imine 15 in four steps. Lithiated benzyloxyallene added to imine 15 and efficiently furnished the crucial dihydropyrrole derivative syn-22. The hydrogenolysis of this compound did not directly provide the protected triol 29 as anticipated, but a stepwise protocol made the triol available in a fairly satisfactory manner. A second crucial step of the synthesis was the selective oxidation of 29, which could be achieved by employing platinum dioxide and oxygen. The resulting bicyclic lactone 30 was smoothly transformed into enantiopure (-)-detoxinine. Thus, a fairly short synthesis of this natural product based on a lithiated alkoxyallene could be performed, demonstrating the potential of these intermediates for syntheses of interesting functionalized heterocyclic compounds. PMID:12645030

  7. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity.

    PubMed

    Stavrinides, Anna; Tatsis, Evangelos C; Caputi, Lorenzo; Foureau, Emilien; Stevenson, Clare E M; Lawson, David M; Courdavault, Vincent; O'Connor, Sarah E

    2016-01-01

    Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. PMID:27418042

  8. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity

    PubMed Central

    Stavrinides, Anna; Tatsis, Evangelos C.; Caputi, Lorenzo; Foureau, Emilien; Stevenson, Clare E. M.; Lawson, David M.; Courdavault, Vincent; O'Connor, Sarah E.

    2016-01-01

    Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. PMID:27418042

  9. A highly stereoselective synthesis of C-24 and C-25 oxysterols from desmosterol.

    PubMed

    Zhao, Qian; Qian, Chao; Chen, Xin-Zhi

    2016-05-01

    A new highly stereoselective construction of the side chain of the C-24 and C-25 oxysterols has been achieved by using desmosterol acetate as the starting material and an improved Sharpless catalytic asymmetric dihydroxylation with 100% d.e. (diastereomeric excess) as the key step. The result is much better than the usual asymmetric dihydroxylation procedure. t-Butyl nitrite/2,2,6,6-tetramethylpiperidine N-oxyl radical/FeCl3 catalyst system was developed to activate molecular oxygen for the aerobic oxidation of 24-hydroxycholesterol and the 24-ketocholesterol was obtained in 86.2% yield. The oxidation system has never been reported before. The mechanism for the catalytic aerobic oxidation was also proposed. PMID:26968128

  10. Stereoselective synthesis of (E)-trisubstituted alpha,beta-unsaturated amides and acids.

    PubMed

    Feuillet, Fred J P; Cheeseman, Matt; Mahon, Mary F; Bull, Steven D

    2005-08-21

    Potassium alkoxides of N-acyl-oxazolidin-2-one-syn-aldols undergo stereoselective elimination reactions to afford a range of trisubstituted (E)-alpha,beta-unsaturated amides in >95% de, that may be subsequently converted into their corresponding (E)-alpha,beta-unsaturated acids or (E)-alpha,beta-unsaturated oxazolines in good yield. syn-Aldols derived from alpha,beta-unsaturated aldehydes gave their corresponding trisubstituted (E)-alpha,beta-unsaturated-amides with poorer levels of diastereocontrol, whilst there was a similar loss in (E)-selectivity during elimination of syn-aldols derived from chiral aldehydes. These elimination reactions proceed via rearrangement of the potassium alkoxide of the syn-aldol to a 1,3-oxazinane-2,4-dione enolate intermediate that subsequently eliminates carbon dioxide to afford a trisubstituted (E)-alpha,beta-unsaturated amide. The (E)-selectivity observed during the E1cB-type elimination step has been rationalised using a simple conformational model that employs a chair-like transition state to explain the observed stereocontrol. PMID:16186928

  11. Regio- and Stereoselective Synthesis of Spiropyrrolizidines and Piperazines through Azomethine Ylide Cycloaddition Reaction.

    PubMed

    Haddad, Saoussen; Boudriga, Sarra; Porzio, François; Soldera, Armand; Askri, Moheddine; Knorr, Michael; Rousselin, Yoann; Kubicki, Marek M; Golz, Christopher; Strohmann, Carsten

    2015-09-18

    A series of original spiropyrrolizidine derivatives has been prepared by a one-pot three-component [3 + 2] cycloaddition reaction of (E)-3-arylidene-1-phenyl-pyrrolidine-2,5-diones, l-proline, and the cyclic ketones 1H-indole-2,3-dione (isatin), indenoquinoxaline-11-one and acenaphthenequinone. We disclose an unprecedented isomerization of some spiroadducts leading to a new family of spirooxindolepyrrolizidines. Furthermore, these cycloadducts underwent retro-1,3-dipolar cycloaddition yielding unexpected regioisomers. Upon treatment of the dipolarophiles with in situ generated azomethine ylides from l-proline or acenaphthenequinone, formation of spiroadducts and unusual polycyclic fused piperazines through a stepwise [3 + 3] cycloaddition pathway is observed. The stereochemistry of these N-heterocycles has been confirmed by several X-ray diffraction studies. Some of these compounds exhibit extensive hydrogen bonding in the crystalline state. To enlighten the observed regio- and stereoselectivity of the [3 + 2] cycloaddition, calculations using the DFT approach at the B3LYP/6-31G(d,p) level were carried out. It was found that this reaction is under kinetic control. PMID:26291879

  12. Stereoselective Synthesis and Retentive Trapping of α-Chiral Secondary Alkyllithiums Leading to Stereodefined α,β-Dimethyl Carboxylic Esters.

    PubMed

    Morozova, Varvara; Moriya, Kohei; Mayer, Peter; Knochel, Paul

    2016-07-11

    The treatment of α-chiral secondary alkyl iodides with tBuLi at -100 °C leads to the corresponding secondary alkyllithiums with high retention of configuration. Subsequent quenching with various electrophiles such as Bu2 S2 , DMF, MeOB(OR)2 , or Et2 CO provides the desired products with retention of configuration. Furthermore, a transmetalation with CuBr⋅P(OEt)3 also allows retentive trapping with acid chlorides and ethylene oxide. The quenching of the resulting alkyllithiums with ClCO2 Et furnishes stereoselectively syn- and anti-ethyl-2,3-dimethyl ester carboxylates (d.r.>94 %). Related esters bearing three adjacent stereo-controlled centers (stereotriads) have also been prepared. This method has been applied to the synthesis of the ant pheromone (±)-lasiol in 26 % overall yield (four steps) with d.r.=97:3 starting from commercially available cis-2,3-epoxybutane. PMID:27140953

  13. Stereoselective total synthesis of the glycosyl phosphatidylinositol (GPI) anchor of Trypanosoma brucei.

    PubMed

    Murakata, C; Ogawa, T

    1992-11-01

    The total synthesis of O-(O-[6-O-(2-aminoethylphosphono)-alpha-D-mannopyranosyl]-(1-->2)- O-alpha- D-mannopyranosyl-(1-->6)-O-[O-alpha-D-galactopyranosyl-(1-->6)-alpha-D- galactopyranosyl-(1-->3)]-O-alpha-D-mannopyranosyl-(1-->4)-2-amino-2-deo xy- alpha-D-glucopyranosyl)-(1-->6)-[1-O-(1,2-dimyristoyl-sn-glycero-3-phosp hono) - 1D-myo-inositol], the GPI anchor of Trypanosoma brucei was achieved for the first time. The core structure of the GPI molecule, the glycoheptaosyl part, was constructed in a highly stereocontrolled manner from O-[O-(2,4-di-O-benzyl-alpha-D-mannopyranosyl-(1-->4)-2-azido-3,6-di-O-be nzyl- 2-deoxy-D-glucopyranosyl]-(1-->6)-2,3,4,5-tetra-O-benzyl-1-O-(4- methoxybenzyl)-D-myo-inositol, O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-(1-->6)-2,3,4-tri-O- benzyl-D-galactopyranosyl fluoride, 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride, and 6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-mannopyranosyl fluoride. The introduction of two phosphodiester functions was efficiently achieved using the H-phosphonate method. PMID:1473115

  14. Chiral hybrid inorganic-organic materials: synthesis, characterization, and application in stereoselective organocatalytic cycloadditions.

    PubMed

    Puglisi, Alessandra; Benaglia, Maurizio; Annunziata, Rita; Chiroli, Valerio; Porta, Riccardo; Gervasini, Antonella

    2013-11-15

    The synthesis of chiral imidazolidinones on mesoporous silica nanoparticles, exploiting two different anchoring sites and two different linkers, is reported. Catalysts 1-4 were prepared starting from l-phenylalanine or l-tyrosine methyl esters and supporting the imidazolidinone onto silica by grafting protocols or azide-alkyne copper(I)-catalyzed cycloaddition. The four catalysts were fully characterized by solid-state NMR, N2 physisorption, SEM, and TGA in order to provide structural assessments, including an evaluation of surface areas, pore dimensions, and catalyst loading. They were used in organocatalyzed Diels-Alder cycloadditions between cyclopentadiene and different aldehydes, affording results comparable to those obtained with the nonsupported catalyst (up to 91% yield and 92% ee in the model reaction between cyclopentadiene and cinnamic aldehyde). The catalysts were recovered from the reaction mixture by simple filtration or centrifugation. The most active catalyst was recycled two times with some loss of catalytic efficiency and a small erosion of ee. PMID:24134403

  15. Efficient synthesis and reactions of 1,2-dipyrrolylethynes

    PubMed Central

    Tanui, Hillary K.; Hao, Erhong; Ihachi, Moses I.; Fronczek, Frank R.; Smith, Kevin M.; Vicente, M. Graça H.

    2011-01-01

    Various dipyrroles possess important motifs for construction of pyrrole-containing pigments. A series of 1,2-dipyrrolylethynes (4a–d) has been efficiently synthesized using an improved one-pot double Sonagashira coupling from trimethylsilylethyne and various 2-iodopyrroles. The resulting 1,2-dipyrrolylethynes were further transformed into novel indolyl-, ethenyl- and carboranyl-dipyrroles (5–7) using the Larock indole synthesis, stereoselective catalytic hydrogenation, or B10H14. Indolyl-dipyrroles were found to selectively bind fluoride ions using one pyrrolic and the indolyl NHs, whereas the carboranyl- and ethenyl-dipyrroles are potentially valuable precursors for the synthesis of porphyrin isomers and expanded pigments. PMID:21822371

  16. Highly Stereoselective Synthesis of Saccharin-Substituted β-Lactams via in Situ Generation of a Heterosubstituted Ketene and a Zwitterionic Intermediate as Potential Antibacterial Agents.

    PubMed

    Mortazavi, Zahra F A; Islami, Mohammad R; Khaleghi, Moj

    2015-06-19

    Highly stereoselective synthesis of saccharin derivatives containing functionalized 2-azetidinone moiety was achieved starting from saccharin as an available precursor. The approach to these valuable heterocyclic scaffolds involves a formal [2π + 2π] cycloaddition between Schiff bases and the saccharinylketene as a novel ketene which was generated in situ and an electrocyclic reaction of a zwitterionic intermediate. The identification of the ketene was confirmed by reaction with the stable free radical TEMPO (TO•). Also, the antimicrobial activities of some new substituted saccharin against nine standard bacteria, four bacteria which were isolated from clinical samples and one yeast, were evaluated. PMID:26029959

  17. Highly regio- and stereoselective synthesis of alpha-(N-alkyl-N-p-toluenesulfonyl)-beta-bromo-ketones via Ni(OAc)2-catalyzed aminobromination of chalcones.

    PubMed

    Sun, Hao; Zhi, San-Jun; Han, Jian-Lin; Li, Guigen; Pan, Yi

    2010-03-01

    The combinations of N-methyl-p-toluenesulfonamide/NBS and N-ethyl-p-toluenesulfonamide/NBS were found to be good nitrogen/halogen resources for the aminohalogenation of alpha,beta-unsaturated ketones in the presence of Ni(OAc)(2) as the catalyst for the synthesis of vicinal haloamino ketone derivatives. The introduction of N-alkyl groups to the nitrogen resources resulted in excellent regio- and stereoselectivity for both electron-donating and electron-withdrawing group-attached unsaturated ketone substrates. The structure of the resulting products has been unambiguously confirmed by X-ray crystal structure analysis. PMID:20331646

  18. Stereoselective and Regiodivergent Allylic Suzuki-Miyaura Cross-Coupling of 2-Ethoxydihydropyranyl Boronates: Synthesis and Confirmation of Absolute Stereochemistry of Diospongin B.

    PubMed

    Rybak, Taras; Hall, Dennis G

    2015-09-01

    Oxygen-containing heterocycles such as pyrans are a common substructure present in a variety of natural products and pharmaceutical drugs. Highly functionalized 4- and 6-aryl/heteroaryl dihydropyran derivatives are assembled by a highly stereoselective, ligand-controlled regiodivergent sp(3)-sp(2) Suzuki-Miyaura cross-coupling of a 2-ethoxy dihydropyranyl boronate derived from a catalytic enantioselective inverse-electron-demand oxa[4 + 2] cycloaddition. The scope and selectivity of this method were assessed along with an application to a concise total synthesis of the diarylheptanoid natural product diospongin B. PMID:26291472

  19. Stereoselection in Intramolecular Diels-Alder Reactions of 2-Cyano-1-azadienes: Indolizidine and Quinolizidine Synthesis.

    PubMed

    Tay, Gidget C; Sizemore, Nicholas; Rychnovsky, Scott D

    2016-07-01

    Progress toward understanding the scope and diastereoselectivity of intramolecular Diels-Alder reactions using 2-cyano-1-azadienes is described herein. The resulting cyanoenamine products are underutilized intermediates in organic synthesis. Assembly of the Diels-Alder precursors was achieved using an improved imine condensation/oxidative cyanation protocol. By this method, several highly substituted indolizidine and quinolizidine architectures were constructed. Quantum mechanical DFT calculations at the B3LYP/6-31+G(d) level of theory were performed for these cyclizations and provide insights into the origins of the observed diastereoselectivities. PMID:27295460

  20. From glycals to aminosugars: a challenging test for new stereoselective aminohydroxylation and related methodologies.

    PubMed

    Mirabella, S; Cardona, F; Goti, A

    2016-06-21

    The introduction of amino functionalities in a regio- and stereoselective manner onto sugar scaffolds represents a great challenge in carbohydrate synthesis. The most relevant methods to access 1-, 2-, 3-amino or 1,2-diaminosugars starting from glycals and 2,3-hexenopyranosides derived from them are concisely reviewed. The main synthetic strategies for accessing this class of compounds are classified in intermolecular and intramolecular approaches and the key features of each class are discussed. This review highlights how carbohydrate derivatives always pose great challenges representing a benchmark for assessing the efficiency of stereoselective strategies, and aims to give the readers inspiration for the development of new procedures. PMID:27185584

  1. An efficient synthesis of loline alkaloids

    NASA Astrophysics Data System (ADS)

    Cakmak, Mesut; Mayer, Peter; Trauner, Dirk

    2011-07-01

    Loline (1) is a small alkaloid that, in spite of its simple-looking structure, has posed surprising challenges to synthetic chemists. It has been known for more than a century and has been the subject of extensive biological investigations, but only two total syntheses have been achieved to date. Here, we report an asymmetric total synthesis of loline that, with less then ten steps, is remarkably short. Our synthesis incorporates a Sharpless epoxidation, a Grubbs olefin metathesis and an unprecedented transannular aminobromination, which converts an eight-membered cyclic carbamate into a bromopyrrolizidine. The synthesis is marked by a high degree of chemo- and stereoselectivity and gives access to several members of the loline alkaloid family. It delivers sufficient material to support a programme aimed at studying the complex interactions between plants, fungi, insects and bacteria brokered by loline alkaloids.

  2. A non-canonical caleosin from Arabidopsis efficiently epoxidizes physiological unsaturated fatty acids with complete stereoselectivity.

    PubMed

    Blée, Elizabeth; Flenet, Martine; Boachon, Benoît; Fauconnier, Marie-Laure

    2012-10-01

    In plants, epoxygenated fatty acids (EFAs) are constituents of oil seeds as well as defence molecules and components of biopolymers (cutin, suberin). While the pleiotropic biological activities of mammalian EFAs have been well documented, there is a paucity of information on the physiological relevance of plant EFAs and their biosynthesis. Potential candidates for EFA formation are caleosin-type peroxygenases which catalyze the epoxidation of unsaturated fatty acids in the presence of hydroperoxides as co-oxidants. However, the caleosins characterized so far, which are mostly localized in seeds, are poor epoxidases. In sharp contrast, quantitative RT-PCR analysis revealed that PXG4, a class II caleosin gene, is expressed in roots, stems, leaves and flowers of Arabidopsis. Expressed in yeast, PXG4 encodes a calcium-dependent membrane-associated hemoprotein able to catalyze typical peroxygenase reactions. Moreover, we show here that purified recombinant PXG4 is an efficient fatty acid epoxygenase, catalyzing the oxidation of cis double bonds of unsaturated fatty acids. Physiological linoleic and linolenic acids proved to be the preferred substrates for PXG4; they are oxidized into the different positional isomers of the monoepoxides and into diepoxides. An important regioselectivity was observed; the C-12,13 double bond of these unsaturated fatty acids being the least favored unsaturation epoxidized by PXG4, linolenic acid preferentially yielded the 9,10-15,16-diepoxide. Remarkably, PXG4 catalyzes exclusively the formation of (R),(S)-epoxide enantiomers, which is the absolute stereochemistry of the epoxides found in planta. These findings pave the way for the study of the functional role of EFAs and caleosins in plants. PMID:22913587

  3. Water-Assisted Nitrile Oxide Cycloadditions: Synthesis of Isoxazoles and Stereoselective Syntheses of Isoxazolines and 1,2,4-Oxadiazoles.

    PubMed

    Kesornpun, Chatchai; Aree, Thammarat; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2016-03-14

    Conventional methods generate nitrile oxides from oxime halides in organic solvents under basic conditions. However, the present work revealed that water-assisted generation of nitrile oxides proceeds under mild acidic conditions (pH 4-5). Cycloadditions of nitrile oxides with alkynes and alkenes easily occurred in water without using catalysts, thus yielding isoxazoles and isoxazolines, respectively, with excellent stereoselectivity toward five- and six-membered cyclic alkenes. A double stereoselective cycloaddition of two units of a nitrile oxide with cyclohexene was also achieved, thus yielding 1,2,4-oxadiazole derivatives having a unique hybrid isoxazoline-oxadiazole skeleton. Enantiomerically pure isoxazolines were prepared from monoterpenes with a ring strain. In one case, the isoxazoline with a butterfly-like structure was simply prepared, and it might be used as a ligand in asymmetric catalysis. PMID:26914177

  4. Unstabilized azomethine ylides for the stereoselective synthesis of substituted piperidines, tropanes and azabicyclo[3.1.0] systems

    PubMed Central

    Ischay, Michael A.; Takase, Michael K.; Bergman, Robert G.; Ellman, Jonathan A.

    2013-01-01

    Acid treatment of densely substituted 2-silyl-1,2-dihydropyridines provides a new and convenient entry to reactive azomethine ylides that can (1) be protonated and reduced with high stereoselectivity to give piperidines, (2) participate in [3+2] dipolar cycloaddition to give tropanes, and (3) undergo a Nazarov-like 6-π electrocyclization that upon reduction give 2-azabicyclo[3.1.0] systems. PMID:23398467

  5. Stereoselective Synthesis of Functionalized Pyrrolidines by the Diverted N-H Insertion Reaction of Metallocarbenes with β-Aminoketone Derivatives.

    PubMed

    Nicolle, Simon M; Lewis, William; Hayes, Christopher J; Moody, Christopher J

    2016-03-01

    A highly stereoselective route to functionalized pyrrolidines by the metal-catalyzed diverted N-H insertion of a range of diazocarbonyl compounds with β-aminoketone derivatives is described. A number of catalysts (rhodium(II) carboxylate dimers, copper(I) triflate, and an iron(III) porphyrin) are shown to promote the process under mild conditions to give a wide range of highly substituted proline derivatives. The reaction starts as a metallocarbene N-H insertion but is diverted by an intermolecular aldol reaction. PMID:26847664

  6. One-pot regio- and stereoselective synthesis of α'-methoxy-γ-pyrones: biological evaluation as mitochondrial respiratory complex inhibitors.

    PubMed

    Rosso, Helena; De Paolis, Michaël; Collin, Valérie C; Dey, Sriloy; Hecht, Sidney M; Prandi, Cristina; Richard, Vincent; Maddaluno, Jacques

    2011-11-18

    The one-pot construction of functionalized α'-methoxy-γ-pyrones is detailed. Starting from α,α'-dimethoxy-γ-pyrone, molecular diversity is attained by a regio- and stereoselective desymmetrization using allyllithium followed by vinylogous aldol reaction. Mechanistic considerations including density functional theory calculations and insightful experiments have been gathered to shed light on this complex multistep process. To illustrate the versatility of this methodology, some of the molecules prepared were evaluated for their ability to inhibit NADH-oxidase and NADH-ubiquinone oxidoreductase. In the process, a potent new inihibitor of NADH-oxidase activity (IC(50) 44 nM) was identified. PMID:22011074

  7. Chemical synthesis and enzymatic, stereoselective hydrolysis of a functionalized dihydropyrimidine for the synthesis of β-amino acids.

    PubMed

    Slomka, Christin; Zhong, Sabilla; Fellinger, Anna; Engel, Ulrike; Syldatk, Christoph; Bräse, Stefan; Rudat, Jens

    2015-12-01

    A novel substrate, 6-(4-nitrophenyl)dihydropyrimidine-2,4(1H,3H)-dione (pNO2PheDU), was chemically synthesized and analytically verified for the potential biocatalytic synthesis of enantiopure β-amino acids. The hydantoinase (EC 3.5.2.2) from Arthrobacter crystallopoietes DSM20117 was chosen to prove the enzymatic hydrolysis of this substrate, since previous investigations showed activities of this enzyme toward 6-monosubstituted dihydrouracils. Whole cell biotransformations with recombinant Escherichia coli expressing the hydantoinase showed degradation of pNO2PheDU. Additionally, the corresponding N-carbamoyl-β-amino acid (NCarbpNO2 βPhe) was chemically synthesized, an HPLC-method with chiral stationary phases for detection of this product was established and thus (S)-enantioselectivity toward pNO2PheDU has been shown. Consequently this novel substrate is a potential precursor for the enantiopure β-amino acid para-nitro-β-phenylalanine (pNO2 βPhe). PMID:26705241

  8. ent-Kaurane-Based Regio- and Stereoselective Inverse Electron Demand Hetero-Diels-Alder Reactions: Synthesis of Dihydropyran-Fused Diterpenoids†

    PubMed Central

    Ding, Chunyong; Wang, Lili; Chen, Haijun; Wild, Christopher; Ye, Na; Ding, Ye; Wang, Tianzhi; White, Mark A.; Shen, Qiang; Zhou, Jia

    2014-01-01

    A mild and concise approach for the construction of 3,4-dihydro-2H-pyran ring integrated into the A-ring of the natural product oridonin using an optimized inverse electron demand hetero-Diels-Alder (IED HDA) reaction is reported herein. A self-dimerization of the exocyclic enone installed in the A-ring through a homo-HDA reaction was identified to exclusively give a dimeric ent-kaurane diterpenoid with the spirochroman core. Moreover, the efficient cross-HDA cycloadditions of this enone with various vinyl ethers or vinyl sulfides, instead of its own homo-HDA dimerization, were achieved in regio- and stereoselective manners, thus providing the access to novel dihydropyran-fused diterpenoids as potential anticancer agents to overcome chemoresistance. PMID:25225052

  9. ent-Kaurane-based regio- and stereoselective inverse electron demand hetero-Diels-Alder reactions: synthesis of dihydropyran-fused diterpenoids.

    PubMed

    Ding, Chunyong; Wang, Lili; Chen, Haijun; Wild, Christopher; Ye, Na; Ding, Ye; Wang, Tianzhi; White, Mark A; Shen, Qiang; Zhou, Jia

    2014-11-14

    A mild and concise approach for the construction of a 3,4-dihydro-2H-pyran ring integrated into the A-ring of the natural product oridonin using an optimized inverse electron demand hetero-Diels-Alder (IED HDA) reaction is reported herein. A self-dimerization of the exocyclic enone installed in the A-ring through a homo-HDA reaction was identified to exclusively give a dimeric ent-kaurane diterpenoid with the spirochroman core. Moreover, efficient cross-HDA cycloadditions of this enone with various vinyl ethers or vinyl sulfides, instead of its own homo-HDA dimerization, were achieved in a regio- and stereoselective manner, thus providing access to novel dihydropyran-fused diterpenoids as potential anticancer agents to overcome chemoresistance. PMID:25225052

  10. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups.

    PubMed

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold; Reissig, Hans-Ulrich

    2016-01-01

    Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  11. Stereoselective synthesis of β-d-GlcNAc-(1→4)-D-Glc disaccharide starting from lactose.

    PubMed

    Guazzelli, Lorenzo; Catelani, Giorgio; D'Andrea, Felicia; Gragnani, Tiziana

    2014-03-31

    The stereoselective preparation of the β-d-GlcNAc-(1→4)-D-Glc disaccharide starting from known 4-O-[6-O-(1-methoxy-1-methylethyl)-3,4-O-isopropylidene-β-d-talopyranosyl]-2,3:5,6-di-O-isopropylidene-aldehydo-D-glucose dimethyl acetal (2), in turn easily obtained from lactose, is reported. Key steps of this new procedure, that avoids the glycosylation reaction, are (a) a first epimerization at C-4' through an unusual procedure involving a completely stereospecific hydroboration-oxidation of the enol ether group of the hex-4-enopyranoside 4, obtained from 3 by base promoted acetone elimination, (b) an amination with inversion by S(N)2 reaction on an imidazylate intermediate, and, finally, (c) N-acetylation followed by complete deprotection. PMID:24614689

  12. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups

    PubMed Central

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold

    2016-01-01

    Summary Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  13. Chemical synthesis of two series of nerve agent model compounds and their stereoselective interaction with human acetylcholinesterase and human butyrylcholinesterase

    PubMed Central

    Barakat, Nora H.; Zheng, Xueying; Gilley, Cynthia B.; MacDonald, Mary; Okolotowicz, Karl; Cashman, John R.; Vyas, Shubham; Beck, Jeremy M.; Hadad, Christopher M.; Zhang, Jun

    2009-01-01

    Both G- and V-type nerve agents possess a center of chirality about phosphorus. The Sp-enantiomers are generally more potent inhibitors than their Rp-counterparts toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). To develop model compounds with defined centers of chirality that mimic the target nerve agent structures, we synthesized both the Sp and Rp stereoisomers of two series of G-type nerve agent model compounds in enantiomerically enriched form. The two series of model compounds contained identical substituents on the phosphorus as the G-type agents, except that thiomethyl (CH3-S-) and thiocholine ((CH3)3NCH2CH2-S-) groups were used to replace the traditional nerve agent leaving groups (i.e., fluoro for GB, GF, and GD; and cyano for GA). Inhibition kinetic studies of the thiomethyl- and thiocholine-substituted series of nerve agent model compounds revealed that the Sp enantiomers of both series of compounds showed greater inhibition potency toward AChE and BChE. The level of stereoselectivity, as indicated by the ratio of the bimolecular inhibition rate constants between Sp and Rp enantiomers, was greatest for the GF model compounds in both series. The thiocholine analogs were much more potent than the corresponding thiomethyl analogs. With the exception of the GA model compounds, both series showed greater potency against AChE than BChE. The stereoselectivity (i.e., Sp > Rp), enzyme selectivity, and dynamic range of inhibition potency contributed from these two series of compounds suggest that the combined application of these model compounds will provide useful research tools for understanding interactions of nerve agents with cholinesterase and other enzymes involved in nerve agent and organophosphate pharmacology. The potential of and limitations for using these model compounds in the development of biological therapeutics against nerve agent toxicity are also discussed. PMID:19715346

  14. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    PubMed Central

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  15. Regio- and stereoselective synthesis of benzothiazolo-pyrimidinones via an NHC-catalyzed Mannich/lactamization domino reaction† †Electronic supplementary information (ESI) available. CCDC 1029497. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4cc08594a

    PubMed Central

    Ni, Qijian; Song, Xiaoxiao; Xiong, Jiawen; Raabe, Gerhard

    2015-01-01

    An NHC-catalyzed regio- and stereoselective Mannich/lactamization domino reaction of N-(benzothiazolyl)imines with α-chloroaldehydes has been developed. This new protocol provides a facile approach for the asymmetric synthesis of benzothiazolo-pyrimidinones and a pyrrolo[1,2-a]indolone in moderate to good yields (34–78%) and excellent stereoselectivities (87–99% ee, up to >20 : 1 d.r.). PMID:25476422

  16. Efficient N-Acyldopamine Synthesis.

    PubMed

    Matsumoto, Yotaro; Ito, Akihiro; Uesugi, Motonari; Kittaka, Atsushi

    2016-01-01

    N-Acyldopamines are endogenous analogs of capsaicin that exhibit cannabinoid-like activities and were identified from brain extracts. Among them, N-arachidonoyldopamine (AADA) and N-oleoyldopamine (ODA) were characterized as transient receptor potential vanilloid type V1 channel (TRPV1) ligands. Recently, it was shown that N-acyldopamines may possess diverse physiological roles in addition to their ligand activities. To study the multiple functions and action mechanisms of endogenous N-acyldopamines, a simple and efficient method of N-acyldopamine synthesis was investigated. The eighteen potentially endogenous N-acyldopamines and two deuterated ones, N-palmitoyl dopamine-d5 and N-stearoyl dopamine-d5, were efficiently synthesized without protective groups in CH2Cl2 under optimized conditions using propylphosphoric acid cyclic anhydride (PPACA) as a condensation agent. PMID:27373649

  17. Creation of a Broad-Range and Highly Stereoselective d-Amino Acid Dehydrogenase for the One-Step Synthesis of d-Amino Acids

    PubMed Central

    Vedha-Peters, Kavitha; Gunawardana, Manjula; Rozzell, J. David; Novick, Scott J.

    2008-01-01

    Using both rational and random mutagenesis, we have created the first known broad substrate range, nicotinamide cofactor dependent, and highly stereoselective d-amino acid dehydrogenase. This new enzyme is capable of producing d-amino acids via the reductive amination of the corresponding 2-keto acid with ammonia. This biocatalyst was the result of three rounds of mutagenesis and screening performed on the enzyme meso-diaminopimelate d-dehydrogenase. The first round targeted the active site of the wild-type enzyme and produced mutants that were no longer strictly dependent on the native substrate. The second and third rounds produced mutants that had an increased substrate range including straight- and branched-aliphatic amino acids and aromatic amino acids. The very high selectivity towards the d-enantiomer (95 to > 99% e.e) was shown to be preserved even after the addition of the five mutations found in the three rounds of mutagenesis and screening. This new enzyme could complement and improve upon current methods for d-amino acid synthesis. PMID:16910688

  18. Efficient total synthesis of novel bioactive microbial metabolites.

    PubMed

    Sunazuka, Toshiaki; Hirose, Tomoyasu; Omura, Satoshi

    2008-02-01

    neuroblastoma cell to further discover new AD medicines. Lactacystin has a novel gamma-lactam thioester structure and is also a selective and strong proteasome inhibitor. We have developed a concise approach to synthesize lactacystin designed to afford easy access to the original compound and a variety of analogs. Macrosphelides were isolated from Microsphaeropsis sp. FO-5050 from our screening of microbial metabolites that inhibit the adhesion of HL-60 cells to human umbilical vein endothelial cells (HUVEC). Macrosphelides are the first 16-membered macrotriolides. Macrosphelides prevent cell-cell adhesion by inhibiting the binding of sialyl Lewis X to E-selectin. We have accomplished the first efficient total synthesis of macrosphelides. Madindolines were isolated from Streptomyces nitrosporeus K93-0711 by our program to discover new interleukin 6 (IL-6) modulators. Madindolines are comprised of a 3a-hydroxyfuroindoline ring connected at nitrogen via a methylene bridge to a cyclopentene-1,3-dione ring. We have developed an efficient and practical total synthesis of madindolines. Madindoline A binds to gp130 selectively and inhibits IL-6 activity. Neoxaline was isolated from Aspergillus japonicus Fg-551. Neoxaline is a member of a novel class of biologically active indole alkaloids characterized by a unique indoline spiroaminal framework and binds to tubulin, which results in inhibition of tubulin polymerization. We have developed a concise stereoselective synthesis of the indoline spiroaminal framework of neoxaline. PMID:18217720

  19. Expanding the Scope of Primary Amine Catalysis: Stereoselective Synthesis of Indanedione-Fused 2,6-Disubstituted trans-Spirocyclohexanones.

    PubMed

    Madhusudhan Reddy, G; Ko, Chi-Ting; Hsieh, Kai-Hong; Lee, Chia-Jui; Das, Utpal; Lin, Wenwei

    2016-03-18

    A cinchona-alkaloid-derived chiral primary-amine-catalyzed enantioselective method for the synthesis of the thermodynamically less stable indanedione-fused 2,6-trans-disubstituted spirocyclohexanones is demonstrated. Both the enantiomeric forms of the trans isomer are obtained in excellent yields and enantioselectivities. Furthermore, one of the enantiopure trans-spiranes bearing an additional α-substitution on the cyclohexanone ring was then epimerized into its thermodynamically stable cis counterpart, with little loss of enantioselectivity to demonstrate the feasibility of such a transformation. Mechanistic investigations revealed two competing pathways, a concerted Diels-Alder reaction and a stepwise Michael addition, for the formation of corresponding products. PMID:26907160

  20. Stereoselective synthesis of trans-fused iridoid lactones and their identification in the parasitoid wasp Alloxysta victrix, Part II: Iridomyrmecins

    PubMed Central

    Hilgraf, Robert; Zimmermann, Nicole; Lehmann, Lutz; Tröger, Armin

    2012-01-01

    Summary Following our earlier approach to the synthesis of dihydronepetalactones, all eight stereoisomers of trans-fused iridomyrmecins were synthesized starting from the enantiomers of limonene. Combined gas chromatography and mass spectrometry including enantioselective gas chromatography revealed that volatiles released by the endohyperparasitoid wasp Alloxysta victrix contain (4S,4aR,7S,7aR)-iridomyrmecin of 95–97% ee and stereochemically pure (4S,4aS,7R,7aS)-iridomyrmecin as a minor component. PMID:23019456

  1. Direct Stereocontrolled Synthesis of 3-Amino-3-deoxy-β-Mannopyranosides: Importance of the Nitrogen Protecting Group on Stereoselectivity

    PubMed Central

    Crich, David; Xu, Huadong

    2008-01-01

    The highly stereocontrolled synthesis of the 3-amino-3-deoxy-β-mannopyranosides is achieved by means of thioglycoside donors protected with a 4,6-O-benzylidene or alkylidene acetal and a benzylidene imine group. Among the various nitrogen protecting groups investigated only the Schiff’s base was found to give high β-selectivity. N-Phthalimido and N-acetamido protected donors were found to be highly α-selective, whereas 3-azido-3-deoxy glycosyl donors gave intermediate selectivity. The reasons for the protecting group dependency are discussed in terms of the change in the O2-C2-C3-N3 torsional interaction on conversion of the covalent glycosyl triflates to the transient oxacarbenium ions. PMID:17567072

  2. Regio- and stereoselective biomimetic synthesis of oligostilbenoid dimers from resveratrol analogues: influence of the solvent, oxidant, and substitution.

    PubMed

    Velu, Saraswati S; Buniyamin, Irmaizatussyehdany; Ching, Lee Kiew; Feroz, Fareeda; Noorbatcha, Ibrahim; Gee, Lim Chuan; Awang, Khalijah; Wahab, Ibtisam Abd; Weber, Jean-Frédéric Faizal

    2008-01-01

    Oligostilbenoids are polyphenols that are widely distributed in nature with multifaceted biological activities. To achieve biomimetic synthesis of unnatural derivatives, we subjected three resveratrol analogues to oligomerization by means of one-electron oxidants. Upon varying the metal oxidant (AgOAc, CuBr(2), FeCl(3)6 H(2)O, FeCl(3)6 H(2)O/NaI, PbO(2), VOF(3)), the solvent (over the whole range of polarities), and the oxygenated substitution pattern of the starting material, stilbenoid oligomers with totally different carbon skeletons were obtained. Here we propose to explain the determinism of the type of skeleton produced with the aid of hard and soft acid/base concepts in conjunction with the solvating properties of the solvents and the preferred alignment by the effect of pi stacking. PMID:19003831

  3. Redesigning Aldolase Stereoselectivity by Homologous Grafting.

    PubMed

    Bisterfeld, Carolin; Classen, Thomas; Küberl, Irene; Henßen, Birgit; Metz, Alexander; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity. PMID:27327271

  4. Redesigning Aldolase Stereoselectivity by Homologous Grafting

    PubMed Central

    Henßen, Birgit; Metz, Alexander; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity. PMID:27327271

  5. Organocatalytic Synthesis of Higher‐Carbon Sugars: Efficient Protocol for the Synthesis of Natural Sedoheptulose and d‐Glycero‐l‐galacto‐oct‐2‐ulose†

    PubMed Central

    Popik, Oskar; Pasternak‐Suder, Monika; Baś, Sebastian

    2015-01-01

    Abstract Herein we report a short and efficient protocol for the synthesis of naturally occurring higher‐carbon sugars—sedoheptulose (d‐altro‐hept‐2‐ulose) and d‐glycero‐l‐galacto‐oct‐2‐ulose—from readily available sugar aldehydes and dihydroxyacetone (DHA). The key step includes a diastereoselective organocatalytic syn‐selective aldol reaction of DHA with d‐erythrose and d‐xylose, respectively. The methodology presented can be expanded to the synthesis of various higher sugars by means of syn‐selective carbon–carbon‐bond‐forming aldol reactions promoted by primary‐based organocatalysts. For example, this methodology provided useful access to d‐glycero‐d‐galacto‐oct‐2‐ulose and 1‐deoxy‐d‐glycero‐d‐galacto‐oct‐2‐ulose from d‐arabinose in high yield (85 and 74 %, respectively) and high stereoselectivity (99:1). PMID:27308197

  6. Stereoselective synthesis of glycobiosyl phosphatidylinositol, a part structure of the glycosyl-phosphatidylinositol (GPI) anchor of Trypanosoma brucei.

    PubMed

    Murakata, C; Ogawa, T

    1992-10-01

    O-alpha-D-Mannopyranosyl-(1-->4)-O-2-amino-2-deoxy-alpha-D-glucopyranosy l- (1-->6)-1D-myo-inositol 1-(1,2-di-O-myristoyl-sn-glycer-3-yl hydrogen phosphate), a part structure of the glycosyl-phosphatidylinositol (GPI) anchor of Trypanosoma brucei, was synthesised efficiently by the phosphonate approach. The glycobiosylinositol core was prepared in a stereocontrolled manner from 1D-2,3,4,5-tetra-O-benzyl-1-O-(4-methoxybenzyl)-myo-inositol, tert-butyldimethylsilyl 2-azido-3,6-di-O-benzyl-2-deoxy-alpha-D-glucopyranoside, and methyl 3,6-di-O-acetyl-2,6-di-O-benzyl-2-thio-alpha-D-mannopyranoside. PMID:1468082

  7. Assembly of a Complex Branched Oligosaccharide by Combining Fluorous-Supported Synthesis and Stereoselective Glycosylations using Anomeric Sulfonium Ions.

    PubMed

    Huang, Wei; Gao, Qi; Boons, Geert-Jan

    2015-09-01

    There is an urgent need to develop reliable strategies for the rapid assembly of complex oligosaccharides. This paper presents a set of strategically selected orthogonal protecting groups, glycosyl donors modified by a (S)-phenylthiomethylbenzyl ether at C-2, and a glycosyl acceptor containing a fluorous tag, which makes it possible to rapidly prepare complex branched oligosaccharides of biological importance. The C-2 auxiliary controlled the 1,2-cis anomeric selectivity of the various galactosylations. The orthogonal protecting groups, 2-naphthylmethyl ether (Nap) and levulinic ester (Lev), made it possible to generate glycosyl acceptors and allowed the installation of a crowded branching point. After the glycosylations, the chiral auxiliary could be removed using acidic conditions, which was compatible with the presence of the orthogonal protecting groups Lev and Nap, thereby allowing the efficient installation of 1,2-linked glycosides. The light fluorous tag made it possible to purify the compounds by a simple filtration method using silica gel modified by fluorocarbons. The set of building blocks was successfully employed for the preparation of the carbohydrate moiety of the GPI anchor of Trypanosoma brucei, which is a parasite that causes sleeping sickness in humans and similar diseases in domestic animals. PMID:26250358

  8. Exploring stereoselectivity of 3-indolyl cyclopent[b]indoles: a parallel synthesis and anti-EGFR study on human cancer cells.

    PubMed

    Fan, Dacheng; Sun, Weizhi; Qiu, Peiju; Wu, Zhiyong; Li, Yantuan; Wan, Shengbiao; Jiang, Tao; Zhang, Lijuan

    2014-03-01

    We synthesized a series of novel 3-indolyl cyclopent[b]indoles by trifluoroacetic acid mediated cyclodimerizations. The reaction showed high stereoselectivity and moderate to good yields. The influencing factors for stereoselectivity were systematically analyzed and a stepwise reaction mechanism was proposed. The cell viability tests in two colon and two lung cancer cell lines indicated the 1-benzyl-2-phenyl-group in 3-indolyl cyclopent[b]indoles was critical for the observed lower IC₅₀s in these compounds. Western blot analysis demonstrated that the compound inhibited the expression and phosphorylation of EGFR through altered HSP90 expression. Further cell cycle and cell cycle check point protein analyses showed expected anti-cellular proliferation and cell cycle arresting properties associated with suppressed EGFR expression and phosphorylation. These data revealed a novel molecular mechanism explaining the observed cytotoxicities for these compounds. PMID:24518873

  9. A highly efficient preparative method of alpha-ylidene-beta-diketones via Au(III)-catalyzed acyl migration of propargylic esters.

    PubMed

    Wang, Shaozhong; Zhang, Liming

    2006-07-01

    A highly efficient synthesis of alpha-alkylidene or benzylidene-beta-diketones from readily available propargylic esters has been developed. The proposed key transformation is a novel intramolecular acyl migration to nucleophilic AuIII-C(sp2) bonds. Noteworthy features of this method are its efficiency and stereoselectivity. The yields of this reaction were mostly close to quantitative, and high to excellent stereoselectivities were observed in the cases of dienyl beta-diketones. PMID:16802803

  10. Tactical Synthesis Of Efficient Global Search Algorithms

    NASA Technical Reports Server (NTRS)

    Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.

    2009-01-01

    Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.

  11. One-pot stereoselective synthesis of α,β-differentiated diamino esters via the sequence of aminochlorination, aziridination and intermolecular SN2 reaction.

    PubMed

    Xiong, Yiwen; Qian, Ping; Cao, Chenhui; Mei, Haibo; Han, Jianlin; Li, Guigen; Pan, Yi

    2014-01-01

    We report here an efficient one-pot method for the synthesis of α,β-differentiated diamino esters directly from cinnamate esters using N,N-dichloro-p-toluenesulfonamide and benzylamine as nitrogen sources. The key transformations include a Cu-catalyzed aminohalogenation and aziridination, followed by an intermolecular SN2 nucleophilic ring opening by benzylamine. The reactions feature a wide scope of substrates and proceed with excellent stereo- and regioselectivity (anti:syn >99:1) . PMID:25161740

  12. One-pot stereoselective synthesis of α,β-differentiated diamino esters via the sequence of aminochlorination, aziridination and intermolecular SN2 reaction

    PubMed Central

    Xiong, Yiwen; Qian, Ping; Cao, Chenhui; Mei, Haibo; Li, Guigen

    2014-01-01

    Summary We report here an efficient one-pot method for the synthesis of α,β-differentiated diamino esters directly from cinnamate esters using N,N-dichloro-p-toluenesulfonamide and benzylamine as nitrogen sources. The key transformations include a Cu-catalyzed aminohalogenation and aziridination, followed by an intermolecular SN2 nucleophilic ring opening by benzylamine. The reactions feature a wide scope of substrates and proceed with excellent stereo- and regioselectivity (anti:syn >99:1) . PMID:25161740

  13. Aryl(trifluoroethyl)iodonium Triflimide and Nitrile Solvent Systems: A Combination for the Stereoselective Synthesis of Armed 1,2-trans-β-Glycosides at Noncryogenic Temperatures.

    PubMed

    Chu, An-Hsiang Adam; Minciunescu, Andrei; Bennett, Clay S

    2015-12-18

    Armed thioglycosides can be activated with aryl(trifluoroethyl)iodonium triflimide in 2:1 CH2Cl2/pivalonitrile or a solvent combination of CH2Cl2, acetonitrile, isobutyronitrile, and pivalonitrile (6:1:1:1) at 0 °C for glycosylation reactions that proceed in good yield and moderate to excellent selectivity (up to 25:1 β/α). Comparison to other common glycosylation promoters reveals that both the mixed solvent and the iodonium salt promoter are required for stereoselectivity. PMID:26634960

  14. Palladium(II)-Catalyzed Cross-Dehydrogenative Coupling (CDC) of N-Phthaloyl Dehydroalanine Esters with Simple Arenes: Stereoselective Synthesis of Z-Dehydrophenylalanine Derivatives.

    PubMed

    Bartoccini, Francesca; Cannas, Diego Maria; Fini, Francesco; Piersanti, Giovanni

    2016-06-01

    Pd(II)-catalyzed cross-dehydrogenative coupling (CDC) of methyl N-phthaloyl dehydroalanine esters with simple aromatic hydrocarbons is reported. The reaction, which involves the cleavage of two sp(2) C-H bonds followed by C-C bond formation, stereoselectively generates highly valuable Z-dehydrophenylalanine skeletons in a practical, versatile, and atom economical manner. In addition, a perfluorinated product was expediently converted into important nonproteinogenic amino acid building blocks through copper-catalyzed conjugate additions of boron, silicon, and hydride moieties. PMID:27206072

  15. Efficient Biocatalytic Synthesis of Chiral Chemicals.

    PubMed

    Zhang, Zhi-Jun; Pan, Jiang; Ma, Bao-Di; Xu, Jian-He

    2016-01-01

    Chiral chemicals are a group of important chiral synthons for the synthesis of a series of pharmaceuticals, agrochemicals, and fine chemicals. In past decades, a number of biocatalytic approaches have been developed for the green and effective synthesis of various chiral chemicals. However, the practical application of these biocatalytic processes is still hindered by the lack of highly efficient and robust biocatalysts, which usually results in the low volumetric productivity and high cost of the bioprocesses. Further step forward of biocatalysis in industrial application strongly requires the development of versatile and highly efficient biocatalysts, aiming to increase the process efficiency and facilitate the downstream processing. Recently, the fast growth of genome sequences in the database in post-genomic era offers great opportunities for accessing numerous biocatalysts with practical application potential, and the so-called genome mining approach provides time-effective and highly specific strategy for the fast identification of target enzymes with desired properties and outperforms the traditional screening of soil samples for microbial enzyme producers of interest. A number of biocatalytic processes with industrial application potential were developed thereafter. Further development of protein engineering strategies, process optimization, and cooperative work between biologists, organic chemists, and engineers is expected to make biocatalysis technology the first choice approach for the eco-friendly, highly efficient, and cost-effective synthesis of chiral chemicals in the near future. PMID:25537446

  16. Unexpected isocyanide-based three-component bicyclizations for stereoselective synthesis of densely functionalized pyrano[3,4-c]pyrroles

    PubMed Central

    Gao, Qian; Hao, Wen-Juan; Liu, Feng; Wang, Shu-Liang

    2015-01-01

    A novel three-component bicyclization strategy for efficient synthesis of densely functionalized pyrano[3,4-c]pyrroles has been established from readily accessible 3-aroylacrylic acids, dialkyl acetylenedicarboxylates and isocyanides. The reaction pathway involves Huisgen 1,3-dipole formation, Passerini-type reaction, Mumm rearrangement and oxo-Diels–Alder reaction sequence, resulting in continuous multiple bond-forming events including C–N, C–O and C–H bonds to rapidly build up molecular complexity. PMID:26576646

  17. Approximation concepts for efficient structural synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Miura, H.

    1976-01-01

    It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.

  18. Diastereoselective Total Synthesis of (-)-Galiellalactone.

    PubMed

    Kim, Taewoo; Han, Young Taek; An, Hongchan; Kim, Kyeojin; Lee, Jeeyeon; Suh, Young-Ger

    2015-12-18

    An enantioselective total synthesis of (-)-galiellalactone has been accomplished. The key features of the synthesis involve the highly stereoselective construction of the cis-trisubstituted cyclopentane intermediate by a Pd(0)-catalyzed cyclization, the stereospecific introduction of an angular hydroxyl group by Riley oxidation, and the efficient construction of the tricyclic system of (-)-galiellalactone via a combination of diastereoselective Hosomi-Sakurai crotylation and ring-closing metathesis (RCM). PMID:26544529

  19. [Saccharomyces cerevisiae B5 efficiently and stereoselectively reduces 2'-chloroacetophenone to R-2'-chloro-1-phenylethanol in the presence of 5% ethanol].

    PubMed

    Ou, Zhi-Min; Wu, Jian-Ping; Yang, Li-Rong; Cen, Pei-Lin; Liu, Lin; Qi, Nan

    2003-03-01

    (R)-chlorprenaline, a selective activator of beta2 receptor and an effective drug for bronchitis and asthma, is industrially prepared from (R)-2'-chloro-1-phenyl-ethanol. In this communication, we describe (1) the identification of Saccharomyces cerevisiae B5 as an effective host for stereoselective reduction of 2'-chloroacetophenone to (R)-2'-chloro-1-phenyl-ethanol; (2) the presence of ethanol enhances the conversion; and (3) the biochemical factors that effect the yield of the product. Among the four yeast strains capable of reduction 2'-chloroacetophenone to (R)-2'-chloro-1-phenyl-ethanol we screened, Saccharomyces cerevisiae B5 showed the highest activity and stereoselectivity, and was used for the subsequent study. The effect of the presence of methanol, ethanol, 2-propanol, 1-butanol, glucose, glycerol and lactic acid was first investigated, as it was previously reported that they increased the yield and stereoselectivity of the reaction. The addition of the co-substrate methanol, ethanol, 2-propanol, 1-butanol, glucose and glycerol favored the formation of the 2'-chloroacetophenone to (R)-2'-chloro-1-phenyl-ethanol. Lactic acid inhibited the enzyme activity. Ethanol is the best co-substrate among the seven co-substrates and under the optimum concentration of 5% , the yield of (R)-2'-chloro-1-phenyl-ethanol was increased from 17% to 74%. The oxidation of ethanol regenerates NADH required for the reduction. The effects of the reaction time, pH, cell concentration, substrate concentration and temperature on the reduction were investigated next. The enantiometric excess of (R)-2'-chloro-1-phenyl-ethanol reached 100% under the optimal condition: pH8.0, 25 degrees C and 5% ethanol. The product yield went up with the increasing Saccharomyces cerevisiae B5 concentration and reached 100% when the cell dry weight was 10.75 mg/mL and 2'-chloroacetophenone was 6.47 mmol/L. The yield of (R)-2'-chloro-1-phenyl-ethanol decreased sharply with the increase of substrate

  20. Stereoselective Reduction of Imines with Trichlorosilane Using Solid-Supported Chiral Picolinamides.

    PubMed

    Fernandes, Sílvia D; Porta, Riccardo; Barrulas, Pedro C; Puglisi, Alessandra; Burke, Anthony J; Benaglia, Maurizio

    2016-01-01

    The stereoselective reduction of imines with trichlorosilane catalyzed by chiral Lewis bases is a well-established procedure for the synthesis of enantio-enriched amines. Five supported cinchona-based picolinamides have been prepared and their activity tested in a model reaction. The comparison of different supporting materials revealed that polystyrene gave better results than silica in terms of stereoselectivity. The applicability of the solid-supported catalyst of choice to the reduction of different imines was also demonstrated. Additionally, for the first time, a catalytic reactor containing a polymer-immobilized chiral picolinamide has been employed for the stereoselective reduction of imines with trichlorosilane under continuous flow conditions. PMID:27608000

  1. Regio- and stereoselective synthesis of pregnane-fused isoxazolines by nitril-oxide/alkene 1,3-dipolar cycloaddition and an evaluation of their cell-growth inhibitory effect in vitro

    NASA Astrophysics Data System (ADS)

    Mótyán, Gergő; Baji, Ádám; Zupkó, István; Frank, Éva

    2016-04-01

    Efficient syntheses of some pregnane-fused isoxazolines from 16-dehydropregnenolone acetate with different arylnitrile oxides were carried out by 1,3-dipolar cycloadditions. The intermolecular ring-closures occurred in a highly regio- and stereoselective manner permitting the formation of a single 16α,17α-condensed diastereomer in which the O terminus of the nitrile oxide dipole is attached to C-17 of the sterane core. The conversions were found to be affected significantly by the electronic character of the substituents on the aromatic moiety of the 1,3-dipoles. Deacetylation of the primary products resulted in the corresponding 3β-OH analogs. All of the synthesized compounds were subjected to in vitro pharmacological studies for the determination of their antiproliferative effects on four breast cancer cell lines (MCF7, T47D, MDA-MB-231 and MDA-MB-361).

  2. Azomethine Ylides from Nitrones: Using Catalytic nBuLi for the Totally Stereoselective Synthesis of trans-2-Alkyl-3-oxazolines.

    PubMed

    Juste-Navarro, Veronica; Delso, Ignacio; Tejero, Tomás; Merino, Pedro

    2016-08-01

    The cycloaddition of azomethine ylide N-oxides (nitrone ylides) with aldehydes provides 3-oxazolines in a completely stereoselective manner in the presence of a catalytic amount of n-butyllithium. The process involves an initial nucleophilic attack on the aldehyde, followed by intramolecular oxygen addition to the nitrone moiety and lithium-assisted elimination of water, regenerating the catalytic species. Various Li-based catalytic systems are possible and the in situ generated water is required for continuing the catalytic cycle. The best results are observed with 20 mol % of n-butyllithium, whereas the use of stoichiometric amounts inhibit the rate of catalysis. Experimental, spectroscopic, and computational mechanistic studies have provided evidence of lithium-ion catalysis and rationalized several competing catalytic pathways. PMID:27258625

  3. Stereoselective synthesis of 11-phenylundeca-5Z,9Z-dienoic acid and investigation of its human topoisomerase I and IIα inhibitory activity.

    PubMed

    D'yakonov, Vladimir A; Dzhemileva, Lilya U; Makarov, Aleksey A; Mulukova, Alfiya R; Baev, Dmitry S; Khusnutdinova, Elza K; Tolstikova, Tatiana G; Dzhemilev, Usein M

    2015-06-01

    (5Z,9Z)-11-Phenylundeca-5,9-dienoic acid was stereoselectively synthesized, based on original cross-cyclomagnesiation of 2-(hepta-5,6-dien-1-yloxy)tetrahydro-2H-pyran and buta-2,3-dien-1-ylbenzene with EtMgBr in the presence of Cp2TiCl2 catalyst giving 2,5-dialkylidenemagnesacyclopentane in 86% yield. The acid hydrolysis of the product and the Jones oxidation of the resulting 2-{[(5Z,9Z)-11-phenylundeca-5,9-dien-1-yl]oxy}tetrahydro-2Н-pyran afforded (5Z,9Z)-11-phenylundeca-5,9-dienoic acid in an overall yield of 75%. A high inhibitory activity of the synthesized acid with respect to human topoisomerase I (hTop1) and II (hTop2α) was determined. PMID:25913198

  4. Macrocyclic polyenynes: a stereoselective route to vinyl-ether-containing skipped diene systems.

    PubMed

    Ronson, Thomas O; Voelkel, Martin H H; Taylor, Richard J K; Fairlamb, Ian J S

    2015-05-11

    The stereoselective synthesis of a challenging macrocyclic polyene scaffold, containing a sensitive vinyl ether motif, has been accomplished using O,C-dilithiation/selective C-alkylation, Pd-catalysed etherification and Wittig reactions as key steps. An end-game macrocyclisation strategy employed a regio- and stereoselective Stille cross-coupling using Pd(Br)(N-Succ)(AsPh3)2 (AsCat) as the precatalyst. PMID:25891970

  5. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent. PMID:18066762

  6. Efficient Synthesis of Fluorescent Squaraine Rotaxane Dendrimers

    PubMed Central

    Xiao, Shuzhang; Fu, Na; Peckham, Kaitlin; Smith, Bradley D.

    2009-01-01

    A squaraine rotaxane scaffold with four alkynes groups is readily converted into a range of dendritic architectures using high yielding copper catalyzed alkyne azide cycloaddition (CuAAC) chemistry. A convergent synthesis approach is more efficient than a divergent pathway. Dendritic squaraine rotaxanes with peripheral amine groups can be further functionalized to produce multivalent deep-red fluorescent derivatives that exhibit high brightness and outstanding chemical stability in biological solution. The surface groups on these functionalized fluorescent dendrimers include guanidinium, mannose, and phosphatidylcholine. PMID:19957971

  7. Stereoselective aminoacylation of RNA

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Needels, M. C.; Brenner, T.

    1986-01-01

    Prebiotic chemistry is faced with a major problem: how could a controlled and selective reaction occur, when there is present in the same solution a large number of alternative possible coreactants? This problem is solved in the modern cell by the presence of enzymes, which are not only highly efficient and controllable catalysts, but which also can impose on their substrates a precise structural requirement. However, enzymes are the result of billions of years of evolution, and we cannot invoke them as prebiotic catalysts. One approach to solving this problem in the prebiotic context is to make use of template-directed reactions. These reactions increase the number of structural requirements that must be simultaneously present in a molecule for it to be able to react, and thereby increase the selectivity of the reaction. They also can give a large increase in the rate of a reaction, if the template constrains two potential coreactants to lie close together. A third benefit is that information that is present in the template molecule can be passed on to the product molecules. If the earliest organisms were based on proteins and nucleic acids, then the investigation of peptide synthesis on an oligonucleotide template is highly relevant to the study of the origin of life.

  8. Stereoselective synthesis of biphenolate/binaphtolate titanate and zirconate alkoxide species: structural characterization and use in the controlled ROP of lactide.

    PubMed

    Azor, Laurine; Bailly, Corinne; Brelot, Lydia; Henry, Marc; Mobian, Pierre; Dagorne, Samuel

    2012-10-15

    Well-defined biphenol/binaphtolate group 4 alkoxide salt species [(Ph-Biphen-O)(2)M(O(i)Pr)]Li(THF) (2a, M = Ti; 4a, M = Zr) and [(Ph-binapht-O)(2)M(O(i)Pr)]Li(THF) (2b, M = Ti; 4b, M = Zr) were found to be readily accessible in good yields via alcohol elimination routes and/or substitution reactions from the corresponding pro-ligands Ph-Biphen-OH (1a) and rac-Ph-Binapht-OH (1b). As established via X-ray crystallographic analysis, the molecular structures of the Ti derivatives 2a and 2b consist of Li(+) salts of anionic Ti-O(i)Pr moieties in which the Ti center adopts a distorted tbp geometry and is effectively chelated by two biphenolate/binaphtolate units. Remarkably, the solution and solid state data for salt species 2a,b agree with the sole presence of one diastereomer (with a (Δ, aS, aS)/(Λ, aR, aR) configuration), thus indicating that formation of the Ti and Zr alkoxide complexes 2a,b/4a,b proceeds stereoselectively. In contrast, the neutral biphenolate/binaphtolate Zr complexes (Ph-biphen-O)(2)Zr(THF)(2) (3a) and (Ph-binapht-O)(2)Zr(THF)(2) (3b) were both isolated and X-ray characterized as stereomers in a heterochiral configuration (Δ, aR, aS)/(Λ, aS, aR). The Ti and Zr alkoxide anionic chelates were found to initiate the ROP of rac-lactide in a controlled manner for production of narrowly disperse and ester-end group PLA, as deduced from SEC, kinetic, and MALDI-TOF data. The Zr-O(i)Pr derivatives 4a,b exhibit superior performance to their Ti counterparts (whether regarding activity, polymerization control, or stereoselectivity) to produce narrowly disperse and heterotactically enriched PLA (P(r) = 0.67, PDI < 1.15). The significantly decreased Lewis acidity of the Zr metal center in anions 4a,b (versus neutral analogues) due to the anionic charge and a likely substantial electronic π donation of the four Zr-O(ArO) oxygens to the Zr metal center may rationalize the moderate polymerization activity. Control experiments suggest that the nature of the

  9. Synthesis of cyclic sulfones by ring-closing metathesis.

    PubMed

    Yao, Qingwei

    2002-02-01

    A general and highly efficient synthesis of cyclic sulfones based on ring-closing metathesis has been developed. The synthetic utility of the resulting cyclic sulfones was demonstrated by their participation in stereoselective Diels-Alder reactions and transformation to cyclic dienes by the Ramberg-Bäcklund reaction. PMID:11820896

  10. Biotransformation: a green and efficient way of antioxidant synthesis.

    PubMed

    Zafar, Salman; Ahmed, Rida; Khan, Rasool

    2016-09-01

    Antioxidant compounds play a vital role in human physiology. They prevent the oxidation of biomolecules by scavenging free radicals produced during physiochemical processes and/or as a result of several pathological states. A balance between the reactive oxygen species (free radicals) and antioxidants is essential for proper physiological conditions. Excessive free radicals cause oxidative stress which can lead to several human diseases. Therefore, synthesis of the effective antioxidants is crucial in managing the oxidative stress. Biotransformation has evolved as an effective technique for the production of structurally diverse molecules with a wide range of biological activities. This methodology surpasses the conventional chemical synthesis due to the fact that enzymes, being specific in nature, catalyze reactions affording products with excellent regio- and stereoselectivities. Structural transformation of various classes of compounds such as alkaloids, steroids, flavonoids, and terpenes has been carried out through this technique. Several bioactive molecules, especially those having antioxidant potential have also been synthesized by using different biotransformation techniques and enzymes. Hydroxylated, glycosylated, and acylated derivatives of phenols, flavonoids, cinnamates, and other molecules have proven abilities as potential antioxidants. A critical review of the biotransformation of these compounds into potent antioxidant metabolites is presented here. PMID:27383446

  11. Stereoselective Synthesis and Modelling-Driven Optimisation of Carane-Based Aminodiols and 1,3-Oxazines as Catalysts for the Enantioselective Addition of Diethylzinc to Benzaldehyde.

    PubMed

    Szakonyi, Zsolt; Csőr, Árpád; Csámpai, Antal; Fülöp, Ferenc

    2016-05-17

    The reductive amination of (-)-2-carene-3-aldehyde, prepared in two steps from (-)-perillaldehyde, furnished 2-carene-based allylamines. tert-Butyloxycarbonyl (Boc) or carbobenzyloxy (Cbz) protection of the resulting amines, followed by stereoselective dihydroxylation in highly stereospecific reactions with OsO4 and subsequent deprotection, resulted in N-benzylaminodiols, which were transformed to primary and tertiary aminodiols. The reactions of the N-benzyl- and N-(1-phenylethyl)-substituted derivatives with formaldehyde led to highly regioselective ring closure, resulting in carane-fused 1,3-oxazines. The aminodiols and their 1,3-oxazine derivatives were applied as chiral catalysts in the enantioselective addition of diethylzinc to aldehydes. The best (R) enantioselectivity was observed in the case of the N-((R)-1-phenylethyl)-substituted aminodiol, whereas the opposite chiral direction was preferred when the 1,3-oxazines were applied. Through the use of molecular modelling at an ab initio level, this phenomenon was interpreted in terms of competing reaction pathways. Molecular modelling at the RHF/LANL2DZ level of theory was successfully applied for a mechanism-based interpretation of the stereochemical outcome of the reactions leading to the development of further 1,3-oxazine-based ligands, which display excellent (S) enantioselectivity (95 and 98 % ee) in the examined transformation. PMID:27072603

  12. endo/exo stereoselectivity in Diels-Alder reactions of α,β-dialkylated conjugated enals to cyclic 1,3-dienes: intermediates in the synthesis of (-)-β-santalol and its analogs.

    PubMed

    Chapuis, Christian; Skuy, David; de Saint Laumer, Jean-Yves; Brauchli, Robert

    2014-10-01

    Highly exo-selective [4+2] cycloadditions of cyclopenta-1,3-diene 2a to α,β-dialkyl conjugated enals 5 are compared with the analogous endo-favored Diels-Alder reaction of cyclohexa-1,3-diene 7. The exo-stereoselectivity is lower in the homologous case of methylcyclopenta-1,3-diene 9. This diastereoselectivity is discussed either in terms of a retro-homo-Diels-Alder reaction, associated with thermodynamic control, or with respect to either a competing hetero-Diels-Alder/Claisen or Cope domino pathway, or retro-Claisen/retro-hetero-Diels-Alder of the endo-homo-cycloadducts. These hypothetical mechanisms have been examined by DFT calculations at the MPW1K(CH2 Cl2 )/6-31+G** level of theory for the AlCl3 -mediated cycloadditions of 5d to 2a and 7. Application of Corey's methodology to the γ-halogeno-α-methyl-substituted dienophiles 5a and 5b allowed an enantioselective preparation of known and useful intermediates for the synthesis of either the naturally occurring (-)-β-santalol or its potentially olfactive structural analogs. PMID:25329781

  13. Chemoenzymatic collective synthesis of optically active hydroxyl(methyl)tetrahydronaphthalene-based bioactive terpenoids.

    PubMed

    Batwal, Ramesh U; Argade, Narshinha P

    2015-12-14

    Starting from succinic anhydride and 2-methylanisole, a chemoenzymatic collective formal/total synthesis of several optically active tetrahydronaphthalene based bioactive natural products has been presented via advanced level common precursors; the natural product and antipode (-)/(+)-aristelegone B. Regioselective benzylic oxidations, stereoselective introduction of hydroxyl groups at the α-position of ketone moiety in syn-orientation, efficient enzymatic resolutions with high enantiomeric purity, stereoselective reductions, samarium iodide induced deoxygenations and tandem acylation-Wittig reactions without racemization and/or eliminative aromatization were the key features. An attempted diastereoselective synthesis of (±)-vallapin has also been described. PMID:26419842

  14. Enantiopure N-acyldihydropyridones as synthetic intermediates: asymmetric synthesis of (-)-slaframine.

    PubMed

    Comins, D L; Fulp, A B

    1999-12-16

    [formula: see text] An asymmetric synthesis of (-)-slaframine and N-acetylslaframine has been accomplished starting from an enantiopure dihydropyridone building block. The oxygen-carbon bond at C-1 was incorporated with complete stereoselectivity by using an efficient phenylselenocyclocarbamation reaction. PMID:10836051

  15. Asymmetric formal synthesis of schulzeines A and C.

    PubMed

    Jang, Jaebong; Jung, Jong-Wha; Ahn, Jaeseung; Sim, Jaehoon; Chang, Dong-Jo; Kim, Dae-Duk; Suh, Young-Ger

    2012-07-21

    The asymmetric formal synthesis of schulzeines A and C is described. Key features of the synthesis include the efficient and stereoselective construction of the benzoquinolizidine skeleton via the aza-Claisen rearrangement-induced ring expansion of the 1-vinyl-N-glycyl-isoquinoline, which was prepared by the highly enantioselective asymmetric allylation of the 8-benzyloxy-substituted dihydroisoquinoline and by the acid-catalyzed transannulation of the resulting 10-membered lactam. PMID:22692049

  16. Stereoselective, one-step assembly of the strained protoilludane framework by cobalt-mediated cyclization of an acyclic enediyne precursor. A total synthesis of illudol

    SciTech Connect

    Johnson, E.P.; Vollhardt, K.P.C. )

    1991-01-02

    A number of basidiomycete sesquiterpenoids exhibit considerable toxic, antibiotic, and antitumor activity, including members of the protoilludane, illudane, marasmane, and sterpurane families. The first type is considered to play an important biogenetic role with respect to the remainder. Among the synthetically most challenging protoilludanes ranks illudol (1), because it combines the task of constructing the unusual angular and strained hydrocyclobutaindane nucleus with that of controlling five contiguous stereocenters. The authors report the synthesis of illudol.

  17. Efficient Synthesis of 5-Carboxy-2'-Deoxypyrimidine Nucleoside 5'-Triphosphates.

    PubMed

    Gong, Shan-Shan; Sun, Jian; You, Yue-Hai; Chen, Ji-Zong; Liu, Guo-Dong; Sun, Qi

    2016-06-01

    An efficient P(V)-N activation method for the synthesis of 5-carboxy-2'-deoxyuridine and 5-carboxy-2'-deoxycytidine triphosphates directly from the corresponding phosphoropiperidate precursors has been developed. PMID:27104859

  18. Total Synthesis of Cyclomarin A, a Marine Cycloheptapeptide with Anti-Tuberculosis and Anti-Malaria Activity.

    PubMed

    Barbie, Philipp; Kazmaier, Uli

    2016-01-15

    An efficient synthetic protocol for the stereoselective synthesis of cyclomarin A is reported. Key steps in the syntheses of the building blocks are an asymmetric chelate-enolate Claisen rearrangement, an asymmetric hydrogenation, and highly diastereoselective additions of organozinc and -titanium reagents. PMID:26699807

  19. Nickel-catalyzed synthesis of (E)-olefins from benzylic alcohol derivatives and arylacetonitriles via C-O activation.

    PubMed

    Xiao, Jing; Yang, Jia; Chen, Tieqiao; Han, Li-Biao

    2016-02-01

    An efficient Ni-catalyzed synthesis of (E)-olefins using the readily available benzylic alcohol derivatives and arylacetonitriles is described. This transformation should proceed via a tandem process involving nickel-catalyzed cross coupling via C-O activation and subsequent stereoselective E2 elimination. PMID:26699396

  20. Rapid and Stereoselective Conversion of a "trans"-Cinnamic Acid to a beta-Bromostyrene

    ERIC Educational Resources Information Center

    Evans, Thomas A.

    2006-01-01

    The stereoselective synthesis of an aryl vinyl bromide is accomplished in a rapid microscale reaction of "trans"-4-methoxycinnamic acid with N-bromosuccinimide in dichloromethane. The product is purified by dry column vacuum chromatography and its stereochemistry is determined by [superscript 1]H NMR. TLC, GC and GC-MSD can also be used. This…

  1. Stereoselective synthesis of cis- and trans-2,3-disubstituted tetrahydrofurans via oxonium-prins cyclization: access to the cordigol ring system.

    PubMed

    Spivey, Alan C; Laraia, Luca; Bayly, Andrew R; Rzepa, Henry S; White, Andrew J P

    2010-03-01

    SnBr(4)-promoted oxonium-Prins cyclizations to form 2,3-disubstituted tetrahydrofurans (THFs) are reported. In the absence of an internal nucleophile, the carbocation intermediates are trapped by bromide to give 2,3-cis- and 2,3-trans-configured products; two variations with intramolecular trapping are also reported. One of these allows a single-step stereocontrolled synthesis of the core 2,3-cis-THF ring system of cordigol, a fungicidal polyphenol from the stem bark of Cordia goetzei. For this latter transformation, a stepwise oxonium-Prins/cation trapping pathway rather than orthoquinonemethide formation/hetero-Diels-Alder cycloaddition is supported computationally. PMID:20143863

  2. An Efficient Total Synthesis of Ammosamide B

    PubMed Central

    Reddy, P. V. Narasimha; Banerjee, Biplab; Cushman, Mark

    2010-01-01

    A total synthesis of ammosamide B, a metabolite of the marine-derived Streptomyces strain CNR-698, has been executed in nine steps and 6.9% overall yield. The key step involves the condensation of a 4,6-diBoc protected 1,3,4,6-tetraaminobenzene derivative with dimethyl 2-ketoglutaconate, which effectively constructs the pyrrolidinone ring and the quinoline ring in a single step. This contributes a unique approach to the synthesis of pyrroloquinoline alkaloids that offers the advantages of brevity and relatively high overall yield. PMID:20515072

  3. Total synthesis of (-)-spinosyn A: examination of structural features that govern the stereoselectivity of the key transannular Diels-Alder reaction.

    PubMed

    Winbush, SusAnn M; Mergott, Dustin J; Roush, William R

    2008-03-01

    A study of elements of stereochemical control in transannular Diels-Alder reactions leading to the decahydro-as-indacene core of (-)-spinosyn A is described. Initial studies focused on macrocyclic pentaene 9, which includes C(6)-Br and C(8)-OTBS substituents. Excellent selectivity (>95:5) was observed in the cycloaddition of 9 as a consequence of 1,3-allylic strain interactions involving the C(6) and C(8) substituents in the disfavored TS-2. The major cycloadduct 22 was used in a formal synthesis of (-)-spinosyn A. The TDA cyclizations of 12 (which lacks the C(8)-OTBS unit of 9), 13 (which lacks the C(6)-Br substituent of 12), and 14 (which lacks the C(6)-Br and C(21)-Et substituents of 12) were also studied. Macrocycles 12 and 13 served as precursors to (-)-spinosyn A and the (-)-spinosyn A aglycon (34), respectively. It is striking that substrates 12-14 give very similar distributions of transannular Diels-Alder cycloadducts, indicating that the C(6)-Br and C(21)-stereocenter do not play a significant role in the diastereoselectivity of the TDA cycloaddition of spinosyn A precursor 12. It is likely that some as yet unidentified conformational or structural features of macrocycles 12-14 contribute to the levels of diastereoselectivity achieved, since these TDA reactions are more selective for the C(7)-C(9) stereochemical relationship found in the natural product than are the IMDA reactions of trienes 4 and 7. PMID:18215065

  4. Practical asymmetric synthesis of the herbicide (S)-indanofan via lipase-catalyzed kinetic resolution of a diol and stereoselective acid-catalyzed hydrolysis of a chiral epoxide.

    PubMed

    Tanaka, Ken; Yoshida, Kenji; Sasaki, Chiduko; Osano, Yasuko T

    2002-05-01

    Racemic indanofan [(+/-)-1] was efficiently converted to enantiopure (S)-indanofan [(S)-1] by a combination of enzymatic resolution and chemical inversion techniques. An additional important technique is the use of an o-xylene complex of a hemiketal (S)-3c as a precursor, which can be quantitatively converted to (S)-indanofan and easily purified by recrystallization from o-xylene. PMID:11975580

  5. Stereoselective Synthesis of Diazabicyclic β-Lactams through Intramolecular Amination of Unactivated C(sp(3))-H Bonds of Carboxamides by Palladium Catalysis.

    PubMed

    Zhang, Shi-Jin; Sun, Wen-Wu; Cao, Pei; Dong, Xiao-Ping; Liu, Ji-Kai; Wu, Bin

    2016-02-01

    An efficient C(sp(3))-H bond activation and intramolecular amination reaction via palladium catalysis at the β-position of carboxyamides to make β-lactams was described. The investigation of the substrate scope showed that the current reaction conditions favored activation of the β-methylene group. Short sequences were developed for preparation of various diazabicyclic β-lactam compounds with this method as the key step from chiral proline and piperidine derivatives. PMID:26745308

  6. Stereoselective Microbial Dehalorespiration with Vicinal Dichlorinated Alkanes

    PubMed Central

    De Wildeman, Stefaan; Diekert, Gabriele; Van Langenhove, Herman; Verstraete, Willy

    2003-01-01

    The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis. PMID:12957955

  7. Cu-Catalyzed Multicomponent Reaction of Styrenes, Perfluoroalkyl Halide, Alcohol, and tert-Butyl Hydroperoxide: One-Pot Synthesis of (Z)-β-Alkoxyperfluoroalkenone.

    PubMed

    Luo, Qiang; Liu, Chunmei; Tong, Jingjing; Shao, Ying; Shan, Wenyu; Wang, Hanghang; Zheng, Hao; Cheng, Jiang; Wan, Xiaobing

    2016-04-15

    An efficient synthesis of Z-perfluoroalkyl-substituted enones by a multicomponent reaction strategy has been described. A variety of elusive perfluoroalkylated enones are furnished under mild reaction conditions in good yields with unique chemo- and stereoselectivity. A sequence of radical-mediated Kornblum-DeLaMare reaction, Michael addition, and HF elimination is proposed for the mechanism. PMID:26980724

  8. Efficient synthesis of esermethole and its analogues.

    PubMed

    Zhou, Yongyun; Zhao, Yuanhong; Dai, Xiaoyong; Liu, Jianping; Li, Liang; Zhang, Hongbin

    2011-06-01

    In this work, a general and flexible synthetic route towards the synthesis of pyrroloindoline alkaloids was developed. This new strategy features with a palladium mediated sequential arylation-allylation of o-bromoanilides and leads to the construction of oxindoles bearing a full carbon quaternary center. The cheap triphenylphosphine was proved to be a highly effective ligand for this one pot transformation. On the basis of this new method, esermethole and its analogues were synthesized. PMID:21472186

  9. An Efficient Microscale Procedure for the Synthesis of Aspirin

    NASA Astrophysics Data System (ADS)

    Pandita, Sangeeta; Goyal, Samta

    1998-06-01

    The synthesis of aspirin is a part of many undergraduate organic synthesis labs and is frequently used in qualitative organic analysis laboratory for the identification of salicylic acid. We have found that aspirin can be synthesized on microscale by a simple and efficient procedure that eliminates the heating step employed in literature procedures and gives a pure, ferric-negative product (no purple color with alcoholic ferric chloride solution).

  10. Applications of cationic aza-cope rearrangements for alkaloid synthesis. Stereoselective preparation of cis-3a-aryloctahydroindoles and a new short route to amaryllidaceae alkaloids. [cis-3a-aryloctahydroindoles

    SciTech Connect

    Overman, L.E.; Mendelson, L.T.; Jacobsen, E.J.

    1983-11-02

    A new synthesis of cis-3a-aryloctahydroindoles is detailed. The key step is a ring-enlarging pyrrolidine annulation reaction which occurs when 2-amino-1-(1-arylethenyl)cyclopentanols are treated under mild conditions with an aldehyde and acid. Three different methods (Schemes I-III) for assemblying the 2-amino(1-arylethenyl)cyclopentanol intermediates are reported. An efficient formal total synthesis of the Amaryllidaceae alkaloid (+-)-crinine (Scheme III) is reported, in which key intermediate 26 was assembled with virtually complete stereocontrol in four steps and 44% overall yield from readily available 1,2-bis(trimethylsilyoxy)cyclopentene.

  11. Oxidative Prins and Prins/Friedel-Crafts cyclizations for the stereoselective synthesis of dioxabicycles and hexahydro-1H-benzo[f]isochromenes via the benzylic C-H activation.

    PubMed

    Reddy, B V Subba; Borkar, Prashant; Yadav, J S; Reddy, P Purushotham; Kunwar, A C; Sridhar, B; Grée, René

    2012-02-21

    1-Benzyl ethers of (E)- and (Z)-hex-3-en-1,6-diols and hept-3-en-1,7-diols undergo a smooth oxidative cyclization with DDQ in the presence of In(OTf)(3) through a sequential C-H bond activation and an intramolecular Prins cyclization to afford the corresponding trans- and cis-fused hexahydro-2H-furo[3,2-c]pyrans and octahydropyrano[4,3-b]pyrans respectively in good yields with an excellent stereoselectivity. Aryl tethered homoallylbenzyl ethers such as benzyl ethers of (E)- and (Z)-6-arylhex-3-enyl alcohols undergo a tandem Prins/Friedel-Crafts cyclization in the presence of stoichiometric amounts of DDQ and SnCl(4)via the benzylic C-H bond activation to furnish the corresponding trans- and cis-fused hexahydro-1H-benzo[f]isochromenes in good yields with complete stereoselectivity. PMID:22187046

  12. The Total Synthesis of Inostamycin A.

    PubMed

    Yu, Guangri; Jung, Byunghyuck; Lee, Hee-Seung; Kang, Sung Ho

    2016-02-12

    The first total synthesis of inostamycin A is described. With efficient and stereoselective synthetic routes to aldehyde 3 and ketone 4 developed through asymmetric aldol reactions, addition reactions and reduction, and with chiral building blocks, the two large fragments were coupled with remarkable anti stereoselectivity and efficiency by aldol condensation. The coupling reaction provided the complete carbon skeleton with all the requisite functional groups and stereogenic centers for inostamycin A. The two quaternary carbons at C20 and C16 of ketone 4 were elaborated in a highly stereocontrolled manner by addition reactions of the transmetallated 5 to ethyl ketone 6 and the transmetallated 7 to methyl ketone 8, respectively, in which the use of LaCl3 for transmetallation was critical for high coupling efficiency. PMID:26800259

  13. Mechanistic Investigations into the Application of Sulfoxides in Carbohydrate Synthesis

    PubMed Central

    Brabham, Robin

    2016-01-01

    Abstract The utility of sulfoxides in a diverse range of transformations in the field of carbohydrate chemistry has seen rapid growth since the first introduction of a sulfoxide as a glycosyl donor in 1989. Sulfoxides have since developed into more than just anomeric leaving groups, and today have multiple roles in glycosylation reactions. These include as activators for thioglycosides, hemiacetals, and glycals, and as precursors to glycosyl triflates, which are essential for stereoselective β‐mannoside synthesis, and bicyclic sulfonium ions that facilitate the stereoselective synthesis of α‐glycosides. In this review we highlight the mechanistic investigations undertaken in this area, often outlining strategies employed to differentiate between multiple proposed reaction pathways, and how the conclusions of these investigations have and continue to inform upon the development of more efficient transformations in sulfoxide‐based carbohydrate synthesis. PMID:26744250

  14. Indium-mediated allylation in carbohydrate synthesis: A short and efficient approach towards higher 2-acetamido-2-deoxy sugars.

    PubMed

    Albler, Christopher; Hollaus, Ralph; Kählig, Hanspeter; Schmid, Walther

    2014-01-01

    Higher aminosugars are interesting targets in carbohydrate synthesis since these compounds play important roles in biological systems. However, their availability from natural sources is limited. Thus, in order to investigate their biological function, the development of facile and adaptable routes to this class of compounds is of fundamental importance. Our synthetic route towards these target molecules makes use of readily accessible pentoses and hexoses, which are subjected to indium-mediated two-carbon chain elongation. Subsequent ozonolysis and treatment with base yields α,β-unsaturated aldehydes, which are stereoselectively epoxidized using Jørgenson's protocol. After Wittig chain elongation the obtained allylic epoxides were regio- and stereoselectively opened with trimethylsilyl azide under palladium catalysis. Finally, a suitable deprotection protocol, starting with acidic acetate cleavage and ozonolysis was established. Peracetylation of the products simplifies purification and subsequent azide reduction followed by final deacetylation using methanolic sodium methoxide furnishes the title compounds. PMID:25246982

  15. Efficient synthesis of the antigenic phosphoglycans of the Leishmania parasite.

    PubMed

    Ruhela, D; Vishwakarma, R A

    2001-10-01

    Antigenic phosphoglycan repeats of the Leishmania parasite can be assembled in a flexible and efficient manner without involving any glycosidation steps, and the chain can be extended either towards the non-reducing (6'-OH) or reducing (1-OH) end suitable for synthesis of lipophosphoglycan, proteophosphoglycan and analogues. PMID:12240271

  16. Selective synthesis of either enantiomer of an anti-breast cancer agent via a common enantioenriched intermediate

    PubMed Central

    Johnson, Aaron George; Tranquilli, Marissa M.; Harris, Michael R.; Jarvo, Elizabeth R.

    2015-01-01

    A stereoselective synthesis of a bioactive triarylmethane is described. Key to the synthesis is a nickel-catalyzed Suzuki-Miyaura coupling which proceeds with retention at the benzylic center. This method is complementary to our previously reported nickel-catalyzed Kumada coupling which proceeds with inversion. Together, the two methods allow for efficient access to either enantiomer of biologically relevant triarylmethanes from a common enantioenriched intermediate. PMID:26085695

  17. Structure elucidation via stereoselective synthesis of the acetate center of 1-Azabicyclo[2.2.2]oct-3-yl {alpha}-hydroxy-{alpha}(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP). A high affinity muscarinic imaging agent for SPECT

    SciTech Connect

    McPherson, D.W.; Knapp, F.F. Jr.

    1996-11-15

    A facile stereoselective synthesis of {alpha}-hydroxy-{alpha}-phenyl-{alpha}-(1-propyn-3-yl)acetic acid in high enantiomeric excess has been developed and allows determination of the (R/S) conformation at this center. In addition, comparison of the specific rotation, HPLC, and NMR data of (E)-(R,R)-and (E)-(R,S)-IQNP to those prepared by a classical resolution of the acetate moiety allows the assignment of (E)-(R,R)-IQNP as the isomer demonstrating binding to the M{sub 1} mAChR subtype and (Z)-(R,R)-IQNP as the isomer binding to both the M{sub 1} and M{sub 2} mAChR subtypes.

  18. Stereoselective synthesis: Molecular editing of carbohydrates

    NASA Astrophysics Data System (ADS)

    McNally, Andrew

    2015-07-01

    Deoxygenation reactions have been used to convert biomass-derived carbohydrates into useful platform chemicals. Now, a method has been described that can selectively excise C-O bonds to produce valuable chiral synthons.

  19. Total Synthesis of a Diacetonide Derivative of Thuggacin A.

    PubMed

    Yadav, Jhillu S; Dutta, Palash

    2016-03-01

    A highly stereoselective total synthesis of the diacetonide derivative of the antibiotic thuggacin A has been described. The synthesis features the stereoselective Stille cross-coupling reaction to set up the whole carbon framework, aldol condensation to construct the highly substituted conjugated diene, non-Evans syn aldol, CBS reduction, Hantzsch's thiazole synthesis, Horner-Wadsworth-Emmons reaction, and Shiina's macrolactonization. PMID:26856208

  20. Synthesis of a Precursor to Sacubitril Using Enabling Technologies.

    PubMed

    Lau, Shing-Hing; Bourne, Samuel L; Martin, Benjamin; Schenkel, Berthold; Penn, Gerhard; Ley, Steven V

    2015-11-01

    An efficient preparation of a precursor to the neprilysin inhibitor sacubitril is described. The convergent synthesis features a diastereoselective Reformatsky-type carbethoxyallylation and a rhodium-catalyzed stereoselective hydrogenation for installation of the two key stereocenters. Moreover, by integrating machine-assisted methods with batch processes, this procedure allows a safe and rapid production of the key intermediates which are promptly transformed to the target molecule (3·HCl) over 7 steps in 54% overall yield. PMID:26509957

  1. Copper(I)-Y Zeolite-Catalyzed Regio- and Stereoselective [2 + 2 + 2] Cyclotrimerization Cascade: An Atom- and Step-Economical Synthesis of Pyrimido[1,6-a]quinoline.

    PubMed

    Ramanathan, Devenderan; Pitchumani, Kasi

    2015-10-16

    An elegant copper(I)-Y zeolite-catalyzed tandem process, involving ketenimine-based termolecular [2 + 2 + 2]/[NC + CC + NC] cycloaddition, using sulfonyl azide, alkyne, and quinoline, to prepare pyrimido[1,6-a]quinolines is reported. In this straightforward, highly atom- and step-economical protocol, copper(I) promotes for azide-alkyne [3 + 2] cycloaddition which is followed by ring-rearrangement/ketenimine formation/regio- and stereoselective [2 + 2 + 2] termolecular cycloaddition and dehydrogenation cascade to yield selectively the E-isomer of pyrimido[1,6-a]quinoline. PMID:26390020

  2. Stereoselective synthesis of 2,3-disubstituted indoline, pyrrolidine and cyclic ether-fused 1,2-dihydroquinoline derivatives using alkyne iminium ion cyclization of vinylogous carbamates: switch of regioselectivity using an internal hydroxy group as a nucleophile.

    PubMed

    Gharpure, Santosh J; Prasath, V; Kumar, Vinod

    2015-09-14

    An intramolecular, alkyne iminium ion cyclization of vinylogous carbamates derived from o-alkynyl anilines and N-protected homopropargyl amines is developed for the stereoselective construction of trans-2,3-disubstituted indolines and pyrrolidine derivatives, respectively. The regioselectivity of the alkyne iminium ion cyclization could be switched using a hydroxy group as an internal nucleophile resulting in cyclic ether-fused 1,2-dihydroquinolines. The entire process of nitrogen heterocycle formation can also be carried out in a 'one-pot' manner starting from o-iodo aniline derivatives. PMID:26226402

  3. Total Synthesis of (±)-Englerin A Using An Intermolecular [3+2] Cycloaddition Reaction of Platinum-Containing Carbonyl Ylide.

    PubMed

    Kusama, Hiroyuki; Tazawa, Aoi; Ishida, Kento; Iwasawa, Nobuharu

    2016-01-01

    Total synthesis of (±)-Englerin A has been achieved starting from γ,δ-ynone 5 in 14 steps. The key feature of this synthesis is the highly efficient and stereoselective preparation of 8-oxabicyclo[3.2.1]octane derivative 6, a core skeleton of Englerin A, based on an inverse electron-demand [3+2] cycloaddition reaction of the platinum-containing carbonyl ylide, which was developed in our laboratory. PMID:26377511

  4. A Multi-Enzymatic Cascade Reaction for the Stereoselective Production of γ-Oxyfunctionalyzed Amino Acids

    PubMed Central

    Enoki, Junichi; Meisborn, Jaqueline; Müller, Ann-Christin; Kourist, Robert

    2016-01-01

    A stereoselective three-enzyme cascade for synthesis of diasteromerically pure γ-oxyfunctionalized α-amino acids was developed. By coupling a dynamic kinetic resolution (DKR) using an N-acylamino acid racemase (NAAAR) and an L-selective aminoacylase from Geobacillus thermoglucosidasius with a stereoselective isoleucine dioxygenase from Bacillus thuringiensis, diastereomerically pure oxidized amino acids were produced from racemic N-acetylamino acids. The three enzymes differed in their optimal temperature and pH-spectra. Their different metal cofactor dependencies led to inhibitory effects. Under optimized conditions, racemic N-acetylmethionine was quantitatively converted into L-methionine-(S)-sulfoxide with 97% yield and 95% de. The combination of these three different biocatalysts allowed the direct synthesis of diastereopure oxyfunctionalized amino acids from inexpensive racemic starting material. PMID:27092111

  5. A Multi-Enzymatic Cascade Reaction for the Stereoselective Production of γ-Oxyfunctionalyzed Amino Acids.

    PubMed

    Enoki, Junichi; Meisborn, Jaqueline; Müller, Ann-Christin; Kourist, Robert

    2016-01-01

    A stereoselective three-enzyme cascade for synthesis of diasteromerically pure γ-oxyfunctionalized α-amino acids was developed. By coupling a dynamic kinetic resolution (DKR) using an N-acylamino acid racemase (NAAAR) and an L-selective aminoacylase from Geobacillus thermoglucosidasius with a stereoselective isoleucine dioxygenase from Bacillus thuringiensis, diastereomerically pure oxidized amino acids were produced from racemic N-acetylamino acids. The three enzymes differed in their optimal temperature and pH-spectra. Their different metal cofactor dependencies led to inhibitory effects. Under optimized conditions, racemic N-acetylmethionine was quantitatively converted into L-methionine-(S)-sulfoxide with 97% yield and 95% de. The combination of these three different biocatalysts allowed the direct synthesis of diastereopure oxyfunctionalized amino acids from inexpensive racemic starting material. PMID:27092111

  6. An efficient and sustainable synthesis of NHC gold complexes.

    PubMed

    Johnson, Alice; Gimeno, M Concepción

    2016-08-11

    A simple, efficient and sustainable method for the general synthesis of NHC gold(i) complexes is described. The reaction of imidazolium salts, of different electronic and steric requirements, with [AuX(tht)] (tht = tetrahydrothiophene) derivatives, in the presence of NBu4(acac), in air and at room temperature leads to the NHC gold species in good yields and with very short reaction times. PMID:27401053

  7. Enantioselective organocatalytic reduction of β-trifluoromethyl nitroalkenes: an efficient strategy for the synthesis of chiral β-trifluoromethyl amines.

    PubMed

    Massolo, Elisabetta; Benaglia, Maurizio; Orlandi, Manuel; Rossi, Sergio; Celentano, Giuseppe

    2015-02-23

    An efficient organocatalytic stereoselective reduction of β-trifluoromethyl-substituted nitroalkenes, mediated by 3,5-dicarboxylic ester-dihydropyridines (Hantzsch ester type), has been successfully developed. A multifunctional thiourea-based (S)-valine derivative was found to be the catalyst of choice, promoting the reaction in up to 97% ee. The methodology has been applied to a wide variety of substrates, leading to the formation of differently substituted precursors of enantiomerically enriched β-trifluoromethyl amines. The mechanism of the reaction and the mode of action of the metal-free catalytic species were computationally investigated; on the basis of DFT transition-state (TS) analysis, a model of stereoselection was also proposed. PMID:25573847

  8. Regio- and stereoselectivities in plant cell biotransformation

    SciTech Connect

    Hamada, H.

    1995-12-01

    The ability of plant cultured cells to convert foreign substrates into more useful substances is of considerable interest. Therefore I have studied biotransformation of foreign substrate by plant cell suspension cultures. In this presentation, I report regio- and stereoselectivities in biotransformation of steroids and indole alkaloids and taxol by plant (tobacco, periwinkle, moss, orchid) cell suspension cultures.

  9. Stereoselective intermolecular C-H amination reactions.

    PubMed

    Lebel, Hélène; Trudel, Carl; Spitz, Cédric

    2012-08-14

    A novel chiral N-mesyloxycarbamate to perform rhodium-catalyzed stereoselective C-H amination reactions is reported. Chiral benzylic and propargylic amines are produced in good yields and selectivities using ethyl acetate as solvent. The corresponding free amines are easily obtained by cleavage of the chiral reagent, which could also be recovered. PMID:22751570

  10. Efficient synthesis of longer Aβ peptides via removable backbone modification.

    PubMed

    Zuo, Chao; Tang, Shan; Si, Yan-Yan; Wang, Zhipeng A; Tian, Chang-Lin; Zheng, Ji-Shen

    2016-06-14

    Longer amyloid-beta (Aβ) peptides (43 to 49 amino acids) play essential roles in the pathology of Alzheimer's disease (AD). The difficulty in the preparation of longer Aβ peptides is still an obstacle to elucidate their roles in AD. Herein we report a robust and efficient strategy for the chemical synthesis of longer Aβ peptides (Aβ48 and Aβ49). A key feature of this method is the installation of removable Arg4-tagged backbone modification groups into the hydrophobic region of Aβ. This modification can improve the handling properties of the purification, ligation and mass characterization of longer Aβ peptides. The practicability of the new method has been demonstrated by the successful synthesis of Aβ48 and Aβ49 peptides. PMID:27188564

  11. Energy efficiency in nanoscale synthesis using nanosecond plasmas

    PubMed Central

    Pai, David Z.; (Ken) Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A.; Levchenko, Igor; Laux, Christophe O.

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges. PMID:23386976

  12. The first asymmetric synthesis of marliolide from readily accessible carbohydrate as chiral template.

    PubMed

    Mailar, Karabasappa; Choi, Won Jun

    2016-09-01

    A simple and efficient strategy for the first asymmetric total synthesis of marliolide was accomplished by using stereoselective alkylation of the dianion of the β-hydroxy lactone enolate with myristyl aldehyde as a key step. The key intermediate, β-hydroxyl γ-methyl butyrolactone was prepared by transformation of L-lyxonolactone starting from D-ribose, a naturally abundant chiral carbohydrate. PMID:27356234

  13. Nickel-Catalyzed Regioselective Cleavage of Csp(2)-S Bonds: Method for the Synthesis of Tri- and Tetrasubstituted Alkenes.

    PubMed

    Chen, Jinyang; Chen, Sihai; Xu, Xinhua; Tang, Zhi; Au, Chak-Tong; Qiu, Renhua

    2016-04-15

    We describe here an efficient route for the synthesis of (Z)-vinylic sulfides 3 via the highly regio- and stereoselective coupling of (Z)-1,2-bis(aryl(alkyl)thio)alkenes and Grignard reagents over a Ni catalyst under mild conditions. (Z)-Vinylic sulfides 3 are important intermediates in the synthesis of tri- and tetrasubstituted alkenes that are important construction blocks for drugs and natural products. The directing organosulfur groups (SR) can be converted to diaryl(alkyl) disulfides (RSSR) using H2O2 as oxidant, hence avoiding the waste of sulfur resources. The protocol provides a general method that is highly regio- and stereoselective for the synthesis of a diversity of tri- and tetrasubstituted alkenes. PMID:26999304

  14. Microbial transformations of warfarin: stereoselective reduction by Nocardia corallina and Arthrobacter species.

    PubMed Central

    Davis, P J; Rizzo, J D

    1982-01-01

    The microbiological metabolism of warfarin was examined as a model of metabolism in higher organisms, including humans, and to determine the chirality of microbial reductases for application in organic synthesis. Nineteen cultures were examined based on their reported abilities to reduce ketonic substrates, and several were shown to catalyze the desired reaction. Nocardia corallina (ATCC 19070) exhibited complete substrate and product stereoselectivity as it reduced S-warfarin to the corresponding S-alcohol. Arthrobacter species (ATCC 19140) exhibited marked substrate and complete product stereoselectivity since S-warfarin, and to a lesser extent R-warfarin, were reduced to the corresponding S-alcohols. These reductions parallel those reported to occur in mammalian species. PMID:7081986

  15. Chemo- and Stereoselective Transition-Metal-Free Amination of Amides with Azides

    PubMed Central

    2016-01-01

    The synthesis of α-amino carbonyl/carboxyl compounds is a contemporary challenge in organic synthesis. Herein, we present a stereoselective α-amination of amides employing simple azides that proceeds under mild conditions with release of nitrogen gas. The amide is used as the limiting reagent, and through simple variation of the azide pattern, various differently substituted aminated products can be obtained. The reaction is fully chemoselective for amides even in the presence of esters or ketones and lends itself to preparation of optically enriched products. PMID:27350334

  16. A simple, universal, efficient PCR-based gene synthesis method: sequential OE-PCR gene synthesis.

    PubMed

    Zhang, Pingping; Ding, Yingying; Liao, Wenting; Chen, Qiuli; Zhang, Huaqun; Qi, Peipei; He, Ting; Wang, Jinhong; Deng, Songhua; Pan, Tianyue; Ren, Hao; Pan, Wei

    2013-07-25

    Herein we present a simple, universal, efficient gene synthesis method based on sequential overlap extension polymerase chain reactions (OE-PCRs). This method involves four key steps: (i) the design of paired complementary 54-mer oligonucleotides with 18 bp overlaps, (ii) the utilisation of sequential OE-PCR to synthesise full-length genes, (iii) the cloning and sequencing of four positive T-clones of the synthesised genes and (iv) the resynthesis of target genes by OE-PCR with correct templates. Mispriming and secondary structure were found to be the principal obstacles preventing successful gene synthesis and were easily identified and solved in this method. Compensating for the disadvantages of being laborious and time-consuming, this method has many attractive advantages, such as the ability to guarantee successful gene synthesis in most cases and good allowance for Taq polymerase, oligonucleotides, PCR conditions and a high error rate. Thus, this method provides an alternative tool for individual gene synthesis without strict needs of the high-specialised experience. PMID:23597923

  17. A novel and practical asymmetric synthesis of dapoxetine hydrochloride

    PubMed Central

    Zhu, Yijun; Liu, Zhenren; Li, Hongyan

    2015-01-01

    Summary A novel and practical asymmetric synthesis of dapoxetine hydrochloride by using the chiral auxiliary (S)-tert-butanesulfinamide was explored. The synthesis was concise, mild, and easy to perform. The overall yield and stereoselectivity were excellent. PMID:26734109

  18. A novel and practical asymmetric synthesis of dapoxetine hydrochloride.

    PubMed

    Zhu, Yijun; Liu, Zhenren; Li, Hongyan; Ye, Deyong; Zhou, Weicheng

    2015-01-01

    A novel and practical asymmetric synthesis of dapoxetine hydrochloride by using the chiral auxiliary (S)-tert-butanesulfinamide was explored. The synthesis was concise, mild, and easy to perform. The overall yield and stereoselectivity were excellent. PMID:26734109

  19. Framework for efficient synthesis of spatially embedded morphologies.

    PubMed

    Vanherpe, Liesbeth; Kanari, Lida; Atenekeng, Guy; Palacios, Juan; Shillcock, Julian

    2016-08-01

    Many problems in science and engineering require the ability to grow tubular or polymeric structures up to large volume fractions within a bounded region of three-dimensional space. Examples range from the construction of fibrous materials and biological cells such as neurons, to the creation of initial configurations for molecular simulations. A common feature of these problems is the need for the growing structures to wind throughout space without intersecting. At any time, the growth of a morphology depends on the current state of all the others, as well as the environment it is growing in, which makes the problem computationally intensive. Neuron synthesis has the additional constraint that the morphologies should reliably resemble biological cells, which possess nonlocal structural correlations, exhibit high packing fractions, and whose growth responds to anatomical boundaries in the synthesis volume. We present a spatial framework for simultaneous growth of an arbitrary number of nonintersecting morphologies that presents the growing structures with information on anisotropic and inhomogeneous properties of the space. The framework is computationally efficient because intersection detection is linear in the mass of growing elements up to high volume fractions and versatile because it provides functionality for environmental growth cues to be accessed by the growing morphologies. We demonstrate the framework by growing morphologies of various complexity. PMID:27627420

  20. Donor Substrate Regeneration for Efficient Synthesis of Globotetraose and Isoglobotetraose

    PubMed Central

    Shao, Jun; Zhang, Jianbo; Kowal, Przemyslaw; Wang, Peng George

    2002-01-01

    Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcβ1→3Galα1→4Galβ1→4Glc) and isoglobotetraose (GalNAcβ1→3Galα1→3Galβ1→4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant β-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields. PMID:12406759

  1. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

    PubMed Central

    Matthessen, Roman; Fransaer, Jan; Binnemans, Koen

    2014-01-01

    Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process. PMID:25383120

  2. Radical additions to chiral hydrazones: stereoselectivity and functional group compatibility.

    PubMed

    Friestad, Gregory K

    2012-01-01

    Free radical additions to imino compounds offer increased synthetic accessibility of chiral amines, but lack of general methods for stereocontrol has hindered their development. This review focuses on two asymmetric amine synthesis strategies designed to address this problem, with emphasis on addition of functionalized radicals which may facilitate applications to synthesis of complex targets. First, chiral N-acylhydrazones are acceptors for intermolecular radical additions of a wide range of primary, secondary, and tertiary alkyl halides to the C=N bond, with radicals generated under manganese-, tin-, or boron-mediated conditions. A variety of aldehydes and ketones serve as viable precursors for the chiral hydrazones, and the highly stereoselective reactions tolerate electrophilic functionality in both coupling components. Second, radical precursors may be linked to chiral α-hydroxyhydrazones via a silicon tether to the hydroxyl group; conformational constraints impart stereocontrol during 5-exo radical cyclization under stannyl- or thiyl-mediated conditions. The silicon tether may later be removed to reveal the formal adducts of hydroxymethyl, vinyl, acetyl, and 2-oxoethyl radicals to the C=N bond. Methodology development and applications to biologically important targets are discussed. PMID:21842359

  3. Ir-Catalyzed Regio- and Stereoselective Hydrosilylation of Internal Thioalkynes: A Combined Experimental and Computational Study.

    PubMed

    Song, Li-Juan; Ding, Shengtao; Wang, Yong; Zhang, Xinhao; Wu, Yun-Dong; Sun, Jianwei

    2016-08-01

    Iridium complexes are known catalysts for a range of silylation reactions. However, the exploitation for selective hydrosilylation of unsymmetrical internal alkynes has been limitedly known. Described here is a new example of this type. Specifically, [(cod)IrCl]2 catalyzes the efficient and mild hydrosilylation of thioalkynes by various silanes with excellent regio- and stereoselectivity. DFT studies suggested a new mechanism involving Ir(I) hydride as the key intermediate. PMID:27232905

  4. Heterogeneous Diastereoselective Catalysis--A Powerful Strategy Toward C(15) Stereoselectivity from PGF2α Analogues Structure.

    PubMed

    Coman, Simona M; Parvulescu, Vasile I

    2015-01-01

    A major trend in fine chemicals and pharmaceuticals is the synthesis of molecules with increased complexity. This trend translates the aim of organic syntheses to conditions in which high degrees of chemo-, regio- and stereoselectivity can be provided. In this context, the chemoselective hydrogenation of one functional group in the presence of other reactive groups is a frequently encountered problem in fine chemicals manufacture. This study provides a critical analysis including elegant examples of reactions in which high chemo- and diastereoselectivities were achieved in the hydrogenation of a C=O group in the presence of C=C double bond. A particular emphasis is addressed to the stereoselective C(15) synthesis from Cloprostenol--a PGF2α structural analogue. PMID:26553252

  5. Regio- and stereoselective carbometallation reactions of N-alkynylamides and sulfonamides

    PubMed Central

    Minko, Yury; Pasco, Morgane; Chechik, Helena

    2013-01-01

    Summary The carbocupration reactions of heterosubstituted alkynes allow the regio- and stereoselective formation of vinyl organometallic species. N-Alkynylamides (ynamides) are particularly useful substrates for the highly regioselective carbocupration reaction, as they lead to the stereodefined formation of vinylcopper species geminated to the amide moiety. The latter species are involved in numerous synthetically useful transformations leading to valuable building blocks in organic synthesis. Here we describe in full the results of our studies related to the carbometallation reactions of N-alkynylamides. PMID:23616793

  6. Synthesis of all nineteen appropriately protected chiral alpha-hydroxy acid equivalents of the alpha-amino acids for Boc solid-phase depsi-peptide synthesis.

    PubMed

    Deechongkit, Songpon; You, Shu-Li; Kelly, Jeffery W

    2004-02-19

    [reaction: see text] The preparation of depsi-peptides, amide-to-ester-substituted peptides used to probe the role of hydrogen bonding in protein folding energetics, is accomplished by replacing specific l-alpha-amino acid residues by their alpha-hydroxy acid counterparts in a solid-phase synthesis employing a t-Boc strategy. Herein we describe the efficient stereoselective synthesis of all 19 appropriately protected alpha-hydroxy acid equivalents of the l-alpha-amino acids, employing commercially available materials, expanding the number of available alpha-hydroxy acids from 9 to 19. PMID:14961607

  7. On the stereoselective aminoacylation of RNA

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Needels, M. C.

    1984-01-01

    Gabbay and Kleinman (1970) have found that stereospecific complex formation (noncovalent) occurs between nucleic acids and a number of derivatives of amino acids. However, until recently, chiral selection in any nonenzymatic RNA-aminoacylation reaction was unknown. Profy and Usher (1984) reported that aminoacylation of the 'internal' 2-prime-ester occurred with a significant amount of stereoselection. Profy and Usher (1984) have also observed that aminoacylation of the 'internal' 2-prime-hydroxyl groups of polyribonucleotides by the imidazolide of N-3,5-dinitrobenzoylalanine occurs with chiral selection. In order to obtain further information regarding the considered phenomena, a systematic investigation was initiated of the factors which contribute to the observed stereoselectivity of the aminoacylation reaction. In the present paper, the effect of a change in the amino acid from alanine to leucine is considered along with an investigation of the D- and L-alanyl internal' 2-prime esters of the dinucleoside monophosphate of 3-prime,5-prime-ApA.

  8. Total Synthesis of (−)-Calyciphylline N

    PubMed Central

    Shvartsbart, Artem; Smith, Amos B.

    2014-01-01

    The total synthesis of the architecturally complex Daphniphyllum alkaloid (−)-calyciphylline N has been achieved. Highlights of the synthesis include a Et2AlCl promoted, highly stereoselective susbtrate controlled intramolecular Diels-Alder reaction, a transannular enolate alkylation, an effective Stille carbonylation/Nazarov cyclization sequence, and a high risk dia-stereoselective hydrogenation of a fully substituted conjugated diene ester. PMID:24319987

  9. Efficient chemoenzymatic synthesis of 4-nitrophenyl β-d-apiofuranoside and its use in screening of β-d-apiofuranosidases.

    PubMed

    Kis, Peter; Potocká, Elena; Mastihuba, Vladimír; Mastihubová, Mária

    2016-07-22

    4-Nitrophenyl β-d-apiofuranoside as a chromogenic probe for detection of β-d-apiofuranosidase activity was prepared in 61% yield from 2,3-isopropylidene-α,β-d-apiofuranose through a sequence of five reactions. The synthesis involves one regioselective enzymatic step-benzoylation of primary hydroxyl of 2,3-isopropylidene-α,β-d-apiofuranose catalysed by Lipolase 100T and stereoselective β-d-apiofuranosylation of p-nitrophenol using BF3⋅OEt2/Et3N. The product was used for screening of β-d-apiofuranosidase activity in 61 samples of crude commercial enzymes and plant materials. Fifteen enzyme preparations originating from different strains of genera Aspergillus display β-d-apiofuranosidase activity. The highest activity was found in Rapidase AR 2000 (78.27 U/g) and lyophilized Viscozyme L (64,36 U/g). PMID:27196312

  10. Iodine catalyzed simple and efficient synthesis of antiproliferative 2-pyridones.

    PubMed

    Buduma, Komuraiah; Chinde, Srinivas; Arigari, Niranjana Kumar; Grover, Paramjit; Srinivas, K V N S; Kotesh Kumar, J

    2016-05-01

    A simple and efficient method for the selective synthesis of 2-pyrdones from 4H-pyrans using iodine as catalyst and ethanol as solvent was developed. The present method is equally effective for both aromatic and hetero aromatic ring containing 4H-pyrans. The compatibility with various functional groups, mild reaction conditions, high yields and application of inexpensive, readily and easily available iodine as catalyst and formation of 2-pyridones as major products are the advantages of the present procedure. In vitro antiproliferative activity of the final synthesized compounds was evaluated with four different human cancer cell lines (Lung adenocarcinoma-A549, Hepatocarcinoma-HepG2, Breast carcinoma-MCF-7 and Ovarian carcinoma-SKOV3) and normal human lung fibroblast cell line (MRC-5). Compounds 2b showed better inhibition against MCF-7, HepG2 and A549 cell lines (IC50 8.00 ± 0.11, 11.93 ± 0.01 and 15.85 ± 0.04 μM, respectively) as compared with doxorubicin and also 2e showed moderate inhibition against MCF-7, HepG2 (IC50 9.32 ± 0.21 and 20.22 ± 0.01 μM, respectively, cell lines, respectively) as compared with doxorubicin. As many clinically used antiproliferative agents induce apoptosis in cancer cells hence, the 2-pyridone analogues were also tested for their ability to induce apoptosis in MCF-7 cells using the caspases-3 and -9 assays. PMID:27036521

  11. Total Synthesis of Enantiopure (+)-γ -Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Chapsal, Bruno D.; Ojima, Iwao

    2008-01-01

    Highly efficient short total synthesis of γ -lycorane (>99% ee, 41% overall yield) was achieved by using the asymmetric allylic alkylation in the key step catalyzed by palladium complexes with novel chiral biphenol-based monodentate phosphoramidite ligands. PMID:16562900

  12. Directed Evolution of Stereoselective Hybrid Catalysts

    NASA Astrophysics Data System (ADS)

    Reetz, Manfred T.

    Whereas the directed evolution of stereoselective enzymes provides a useful tool in asymmetric catalysis, generality cannot be claimed because enzymes as catalysts are restricted to a limited set of reaction types. Therefore, a new concept has been proposed, namely directed evolution of hybrid catalysts in which proteins serve as hosts for anchoring ligand/transition metal entities. Accordingly, appropriate genetic mutagenesis methods are applied to the gene of a given protein host, providing after expression a library of mutant proteins. These are purified and a ligand/transition metal anchored site-specifically. Following en masse ee-screening, the best hit is identified, and the corresponding mutant gene is used as a template for another round of mutagenesis, expression, purification, bioconjugation, and screening. This allows for a Darwinian optimization of transition metal catalysts.

  13. Stereoselectivity of phosphotriesterase with paraoxon derivatives: a computational study.

    PubMed

    Zhan, Dongling; Guan, Shanshan; Jin, Hanyong; Han, Weiwei; Wang, Song

    2016-01-01

    The bacterial enzyme phosphotriesterase (PTE) exhibits stereoselectivity toward hydrolysis of chiral substrates with a preference for the Sp enantiomer. In this work, docking analysis and two explicit-solvent molecular dynamics (MD) simulations were performed to characterize and differentiate the structural dynamics of PTE bound to the Sp and Rp paraoxon derivative enantiomers (Rp-1 and Sp-1) hydrolyzed with distinct catalytic efficiencies. Comparative analysis of the molecular trajectories for PTE bound to Rp-1 and Sp-1 suggested that substrate binding induced conformational changes in the loops near the active site. After 100 ns of MD simulation, the Zn β(2+) metal ion formed hexacoordinated- and tetracoordinated geometries in the Sp-1-PTE and Rp-1-PTE ensembles, respectively. Simulation results further showed that the hydrogen bond between Asp301 and His254 occurred with a higher probability after Sp-1 binding to PTE (47.5%) than that after Rp-1 binding (22.2%). These results provide a qualitative and molecular-level explanation for the 10 orders of magnitude increase in the catalytic efficiency of PTE toward the Sp enantiomer of paraoxon. PMID:25929154

  14. Highly Efficient Formal [2+2+2] Strategy for the Rapid Construction of Polycyclic Spiroindolines: A Concise Synthesis of 11-Demethoxy-16-epi-myrtoidine.

    PubMed

    Zhu, Jun; Cheng, Yu-Jing; Kuang, Xiao-Kang; Wang, Lijia; Zheng, Zhong-Bo; Tang, Yong

    2016-08-01

    A novel formal [2+2+2] strategy for the stereoselective elaboration of polycyclic indole alkaloids is described. Upon treatment with the catalyst InCl3 (5 mol %), tryptamine-derived enamides reacted readily with methylene malonate, thus enabling rapid and gram-scale access to versatile tetracyclic spiroindolines with excellent diastereoselectivity (21 examples, up to 95 % yield, up to d.r.>95:5). This strategy provides a concise approach to alkaloids isolated from Strychnos myrtoides, as demonstrated by a short synthesis of 11-demethoxy-16-epi-myrtoidine. PMID:27312730

  15. Chemical Synthesis of the Tumor-Associated Globo H Antigen†

    PubMed Central

    Mandal, Satadru S.; Liao, Guochao; Guo, Zhongwu

    2015-01-01

    A derivative of the tumor-associated globo H antigen, a complex hexasaccharide, was synthesized by a convergent and efficient [3+2+1] strategy using various glycosylation methods. All glycosylation reactions afforded good to excellent yields and outstanding stereoselectivity, including the installation of cis α-linked D-galactose and L-fucose. The longest linear sequence for this synthesis was 11 steps from a galactose derivative 11 to give an overall yield of 2.6%. The synthetic target had a free and reactive amino group at the glycan reducing end, facilitating its conjugation with other molecules for various applications. PMID:26257889

  16. Perylenequinone Natural Products: Total Synthesis of Hypocrellin A

    PubMed Central

    O’Brien, Erin M.; Morgan, Barbara J.; Mulrooney, Carol A.; Carroll, Patrick J.; Kozlowski, Marisa C.

    2009-01-01

    An efficient and stereoselective total synthesis of the perylenequinone natural product hypocrellin A (1) is described. The key features include a potentially biomimetic 1,8-diketone aldol cyclization to set the centrochiral C7,C7’-stereochemistry, bis(trifluoroacetoxy)iodobenzene mediated oxygenation, a palladium-catalyzed decarboxylation, and an enantioselective catalytic oxidative 2-naphthol coupling to establish the biaryl axial chirality. The helical stereochemistry is formed from an axial chiral intermediate and is then utilized in a dynamic stereochemical transfer to dictate the stereochemistry of the C7,C7’-seven membered ring formed during the aldol cyclization. PMID:19894741

  17. 2,2',5,5'-tetramethyl-4,4'-bis(diphenylphoshino)-3,3'-bithiophene: a new, very efficient, easily accessible, chiral biheteroaromatic ligand for homogeneous stereoselective catalysis

    PubMed

    Benincori; Cesarotti; Piccolo; Sannicolo

    2000-04-01

    The four-step straightforward synthesis of enantiopure (+)- and (-)-2,2',5,5'-tetramethyl-4,4'-bis-(diphenylphoshino)-3,3'-bithiophene (tetraMe-BITIOP), a new C2-symmetry chelating ligand for transition metals, is described, starting from 2,5-dimethylthiophene. The complexes of this electron-rich diphosphine with Ru(II) and Rh(I) were used as catalysts in some homogeneous hydrogenation reactions of prostereogenic carbonyl functions of alpha- and beta-ketoesters, of prostereogenic carbon-carbon double bonds of substituted acrylic acids, and of N-acetylenamino acids. The enantiomeric excesses were found to be excellent in all the experiments and comparable with the best results reported in the literature for the same reactions, carried out under similar experimental conditions, with the metal complexes of the most popular chiral diphosphine ligands as catalysts. PMID:10774024

  18. An enzyme-encapsulated microreactor for efficient theanine synthesis.

    PubMed

    Matsuura, Shun-ichi; Yokoyama, Takuji; Ishii, Ryo; Itoh, Tetsuji; Tomon, Emiko; Hamakawa, Satoshi; Tsunoda, Tatsuo; Mizukami, Fujio; Nanbu, Hironobu; Hanaoka, Taka-aki

    2012-07-18

    A flow-type microreactor containing glutaminase-mesoporous silica composites with 10.6 nm pore diameter (TMPS10.6) was developed for the continuous synthesis of theanine, a unique amino acid. High enzymatic activity was exhibited by the local control of the reaction temperature. PMID:22674037

  19. Stereoselective reaction of 2-carboxythioesters-1,3-dithiane with nitroalkenes: an organocatalytic strategy for the asymmetric addition of a glyoxylate anion equivalent.

    PubMed

    Massolo, Elisabetta; Benaglia, Maurizio; Genoni, Andrea; Annunziata, Rita; Celentano, Giuseppe; Gaggero, Nicoletta

    2015-05-28

    An efficient organocatalytic methodology has been developed to perform the stereoselective addition of 2-carboxythioesters-1,3-dithiane to nitroalkenes. Under mild reaction conditions γ-nitro-β-aryl-α-keto esters with up to 92% ee were obtained, realizing a formal catalytic stereoselective conjugate addition of the glyoxylate anion synthon. The reaction products are versatile starting materials for further synthetic transformations; for example, the simultaneous reduction of the nitro group and removal of the dithiane ring was accomplished, allowing the preparation of a GABAB receptor agonist baclofen. PMID:25883074

  20. Highly Chemo-, Regio-, and Stereoselective Cobalt-Catalyzed Markovnikov Hydrosilylation of Alkynes.

    PubMed

    Guo, Jun; Lu, Zhan

    2016-08-26

    A highly chemo-, regio- and stereoselective cobalt-catalyzed Markovnikov hydrosilylation of alkynes was developed. Various functionalized groups, such as halides, free alcohols, free aniline, ketones, esters, amides, and nitriles are tolerated, which may lead to further applications and late-stage derivatizations. To date, this is the most efficient cobalt catalytic system (TOF=65 520 h(-1) ; TOF=turnover frequency) for hydrosilylation of alkynes. The Hiyama-Denmark cross-coupling reactions of vinylsilanes with aryl iodides underwent smoothly to afford 1,1-diarylethenes. A unique regioselectivity-controllable hydrosilylation/hydroboration reaction of alkynes was also described. PMID:27440515

  1. Stereoselective Rh-Catalyzed Hydrogenative Desymmetrization of Achiral Substituted 1,4-Dienes.

    PubMed

    Fernández-Pérez, Héctor; Lao, Joan R; Vidal-Ferran, Anton

    2016-06-17

    Highly efficient catalytic stereoselective hydrogenative desymmetrization reactions mediated by rhodium complexes derived from enantiopure phosphine-phosphite (P-OP) ligands are described. The highest performing ligand, which contains a TADDOL-derived phosphite fragment [TADDOL = (2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanol)], presented excellent catalytic properties for the desymmetrization of a set of achiral 1,4-dienes, providing access to the selective formation of a variety of enantioenriched secondary and tertiary alcohols (six examples, up to 92% ee). PMID:27230728

  2. Continuous-flow stereoselective organocatalyzed Diels-Alder reactions in a chiral catalytic "homemade" HPLC column.

    PubMed

    Chiroli, Valerio; Benaglia, Maurizio; Cozzi, Franco; Puglisi, Alessandra; Annunziata, Rita; Celentano, Giuseppe

    2013-07-19

    Continuous-flow organocatalyzed Diels-Alder reactions have been performed with excellent enantioselectivity for the first time in a chiral "homemade" HPLC column, packed with silica on which a MacMillan catalyst has been supported by a straightforward immobilization procedure. The versatility of the system was also proven by running with the same column continuous-flow stereoselective reactions with three different substrates, showing that the catalytic reactor may efficiently work in continuo for more than 150 h; the regeneration of the HPLC column was also demonstrated, allowing to further extend the activity of the reactor to more than 300 operating hours. PMID:23808663

  3. Iridium/Copper Co-catalyzed Anti-Stereoselective Ring Opening of Oxabenzonorbornadienes with Grignard Reagents.

    PubMed

    Cheng, Guo; Yang, Wen; Li, Yue; Yang, Dingqiao

    2016-09-01

    Cooperative catalysis has been widely considered as one of the most powerful strategies to improve synthetic efficiency. A new iridium/copper cocatalyst was developed for the ring-opening reaction of oxabenzonorbornadienes with a wide variety of Grignard reagents, which afforded the corresponding anti-2-substituted 1,2-dihydronaphthalen-1-ols in high yields (up to 99% yield) under mild conditions. The effects of catalyst loading, Lewis acid, Grignard reagent loading, and reaction temperature on the yield were investigated. To the best of our knowledge, it represents the first example of ring-opening reactions of oxabicyclic alkenes with Grignard reagent nucleophiles in a trans-stereoselective manner. PMID:27455165

  4. A Novel Implementation of Efficient Algorithms for Quantum Circuit Synthesis

    NASA Astrophysics Data System (ADS)

    Zeller, Luke

    In this project, we design and develop a computer program to effectively approximate arbitrary quantum gates using the discrete set of Clifford Gates together with the T gate (π/8 gate). Employing recent results from Mosca et. al. and Giles and Selinger, we implement a decomposition scheme that outputs a sequence of Clifford, T, and Tt gates that approximate the input to within a specified error range ɛ. Specifically, the given gate is first rounded to an element of Z[1/2, i] with a precision determined by ɛ, and then exact synthesis is employed to produce the resulting gate. It is known that this procedure is optimal in approximating an arbitrary single qubit gate. Our program, written in Matlab and Python, can complete both approximate and exact synthesis of qubits. It can be used to assist in the experimental implementation of an arbitrary fault-tolerant single qubit gate, for which direct implementation isn't feasible.

  5. Remarkable beta-selectivity in the synthesis of beta-1-C-arylglucosides: stereoselective reduction of acetyl-protected methyl 1-C-arylglucosides without acetoxy-group participation.

    PubMed

    Deshpande, Prashant P; Ellsworth, Bruce A; Buono, Frederic G; Pullockaran, Annie; Singh, Janak; Kissick, Thomas P; Huang, Ming-H; Lobinger, Hildegard; Denzel, Theodor; Mueller, Richard H

    2007-12-01

    An efficient and practical process to generate beta-C-arylglucoside derivatives was achieved. The process described involves Lewis acid mediated ionic reduction of a peracetylated 1-C-aryl methyl glucoside derived from the addition of an aryl-Li to selectively protected delta-D-gluconolactone. The reduction of the 2-acetoxy-1-C-oxacarbenium ion intermediates proceeds with a high degree of selectivity to give beta-C-arylglucosides without 2-acetoxy group participation. Furthermore, during the reduction process we also identified an unprecedented critical role of water. By changing from the usual benzyl ether protecting groups because of cost and chemical compatibility concerns, the new process is made additionally efficient and highly selective. PMID:17997568

  6. Odorless, One-Pot Regio- and Stereoselective Iodothiolation of Alkynes with Sodium Arenesulfinates under Metal-Free Conditions in Water.

    PubMed

    Lin, Ya-mei; Lu, Guo-ping; Cai, Chun; Yi, Wen-bin

    2015-07-01

    A newly developed regio- and stereoselective radical addition of alkyne under metal-free conidtions has been disclosed. This chemistry, in which odorless sodium arenesulfinates in place of thiols are used as the sulfur reagent, provides an efficient, one-pot approach for the generation of β-iodoalkenyl sulfides, which can be easily further functionalized to derive various alkenes and alkynyl sulfides rendering this methodology attractive to both synthetic and medicinal chemistry. PMID:26084011

  7. Synergy, compatibility, and innovation: merging Lewis acids with stereoselective enamine catalysis.

    PubMed

    Gualandi, Andrea; Mengozzi, Luca; Wilson, Claire M; Cozzi, Pier Giorgio

    2014-04-01

    In recent years there has been an accelerated rate of development in the field of organocatalysis, with asymmetric organocatalysis now reaching full maturity. The invention of new organocatalytic reactions and the exploration of new concepts now appear in tandem with the application of organocatalytic techniques in the synthesis of natural products and active pharmaceutical ingredients (APIs). After a "golden rush" in organocatalysis, researchers are now starting to combine different methods, thereby taking advantage of the significant benefits of synergy. Metals are used in combination with organocatalytic processes, thus reaching complexity that is found in nature, where enzymes take advantage of the presence of certain metals to increase the arsenal of organic transformations available. In this Focus review, we illustrate the possibility of a "happy marriage" between Lewis acids and organocatalytic stereoselective processes. Questions have been raised about the combination of Lewis acids and organocatalysis owing to the presence of water and/or strong bases in these processes. Some Lewis acids have been shown to be compatible with organocatalysis and concepts relating to their use will be illustrated herein. To summarize the fruitful use of Lewis acids in stereoselective organocatalytic processes, we will draw attention to the advantages and selectivity achieved using this method. PMID:24677815

  8. Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists

    SciTech Connect

    Eltze, M.; Boer, R.; Sanders, K.H.; Boss, H.; Ulrich, W.R.; Flockerzi, D. )

    1990-01-01

    The biological activity of the (+)-S- and (-)-R-enantiomers of niguldipine, of the (-)-S- and (+)-R-enantiomers of felodipine and nitrendipine, and of rac-nisoldipine and rac-nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)-mimetic U-46619 in guinea pig Langendorff hearts, displacement of (+)-({sup 3}H)isradipine from calcium channel binding sites of guinea pig skeletal muscle T-tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross-contamination was less than 0.5% for both S- and R-enantiomers of niguldipine and nitrendipine and less than 1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)-(S)-/(-)-(R)-niguldipine, (-)-(S)-/(+)-(R)-felodipine, and (-)-(S)-/(+)-(R)-nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio rac-nisoldipine/rac-nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)-(S)-/(-)-(R)-niguldipine = 45 and 35, (-)-(S)-/(+)-(R)-felodipine = 12 and 13, (-)-(S)-/(+)-(R)-nitrendipine = 8 and 8, and rac-nisoldipine/rac-nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U-46619-induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity.

  9. Origins of Stereoselectivity in the trans-Diels-Alder Paradigm

    PubMed Central

    Paton, Robert S.; Mackey, Joel L.; Kim, Woo Han; Lee, Jun Hee; Danishefsky, Samuel J.; Houk, K. N.

    2010-01-01

    The regioselectivity and stereoselectivity aspects of the Diels-Alder/radical hydrodenitration reaction sequence leading to trans-fused ring systems have been investigated with density functional calculations. A continuum of transition structures representing Diels-Alder and hetero-Diels-Alder cycloadditions as well as a sigmatropic rearrangement have been located, and they all lie very close in energy on the potential energy surface. All three pathways are found to be important in the formation of the Diels-Alder adduct. Reported regioselectivities are reproduced by the calculations. The stereoselectivity of radical hydrodenitration of the cis-Diels-Alder adduct is found to be related to the relative conformational stabilities of bicyclic radical intermediates. Overall, the computations provide understanding of the regioselectivities and stereoselectivities of the trans-Diels-Alder paradigm. PMID:20557046

  10. Assimilation efficiencies of chemical contaminants in aquatic invertebrates: A synthesis

    SciTech Connect

    Wang, W.X.; Fisher, N.S.

    1999-09-01

    Assimilation efficiencies of contaminants from ingested food are critical for understanding chemical accumulation and trophic transfer in aquatic invertebrates. Assimilation efficiency is a first-order physiological parameter that can be used to systematically compare the bioavailability of different contaminants from different foods. The various techniques used to measure contaminant assimilation efficiencies are reviewed. Pulse-chase feeding techniques and the application of gamma-emitting radiotracers have been invaluable in measuring metal assimilation efficiencies in aquatic animals. Uniform radiolabeling of food is required to measure assimilation, but this can be difficult when sediments are the food source. Biological factors that influence contaminant assimilation include food quantity and quality, partitioning of contaminants in the food particles, and digestive physiology of the animals. Other factors influencing assimilation include the behavior of the chemical within the animal's gut and its associations with different geochemical fractions of food particles. Assimilation efficiency is a critical parameter to determine (and to make predictions of) bioaccumulation of chemicals from dietary exposure. Robust estimates of assimilation efficiency coupled with estimates of aqueous uptake can be used to determine the relative importance of aqueous and dietary exposures. For bioaccumulation of metals from sediments, additional studies are required to test whether metals bound to the acid-volatile sulfide fraction of sediments can be available to benthic deposit-feeding inverterbrates. Most assimilation efficiency studies have focused on chemical transfer in organisms at the bottom of the food chain; additional studies are required to examine chemical transfer at higher trophic levels.

  11. Stereoselective cyclotetramerization of a 3-(Hydroxymethyl)salicylaldehyde

    PubMed

    Butler; Brown; Boger; Ferfolia; Fitzgibbons; Jongeling; Kelleher; Malec; Malerich; Weltner

    2000-12-28

    Both 3-(hydroxymethyl)-5-methylsalicylaldehyde and its acetonide condense in the presence of hydrogen chloride in ether to form macrocyclic S(4)-symmetric tetraacetal 2. The reaction is completely oligo- and stereoselective, forming only the tetramer and only the achiral (R,S,R,S)-stereoisomer. Acid-catalyzed equilibration studies and molecular mechanics calculations indicate that the stereoselectivity is thermodynamic in origin. In the crystal the saddle-shaped molecules of 2 form coaxial stacks reminiscent of the packing of Pringles potato chips. PMID:11150180

  12. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    PubMed Central

    2011-01-01

    Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062

  13. Stereoselective fungal metabolism of methylated anthracenes.

    PubMed Central

    Cerniglia, C E; Campbell, W L; Fu, P P; Freeman, J P; Evans, F E

    1990-01-01

    The metabolism of 9-methylanthracene (9-MA), 9-hydroxymethylanthracene (9-OHMA), and 9,10-dimethylanthracene (9,10-DMA) by the fungus Cunninghamella elegans ATCC 36112 is described. The metabolites were isolated by high-performance liquid chromatography and characterized by UV-visible, mass, and 1H nuclear magnetic resonance spectral techniques. The compounds 9-MA and 9,10-DMA were metabolized by two pathways, one involving initial hydroxylation of the methyl group(s) and the other involving epoxidation of the 1,2- and 3,4- aromatic double bond positions, followed by enzymatic hydration to form hydroxymethyl trans-dihydrodiols. For 9-MA metabolism, the major metabolites identified were trans-1,2-dihydro-1,2-dihydroxy and trans-3,4-dihydro-3,4-dihydroxy derivatives of 9-MA and 9-OHMA. 9-OHMA was also metabolized to trans-1,2- and 3,4-dihydrodiol derivatives. The absolute configuration and optical purity were determined for each of the trans-dihydrodiols formed by fungal metabolism and compared with previously published circular dichroism spectral data obtained from rat liver microsomal metabolism of 9-MA, 9-OHMA, and 9,10-DMA. Circular dichroism spectral analysis revealed that the major enantiomer for each dihydrodiol was predominantly in the S,S configuration, in contrast to the predominantly R,R configuration of the trans-dihydrodiol formed by mammalian enzyme systems. These results indicate that C. elegans metabolizes methylated anthracenes in a highly stereoselective manner that is different from that reported for rat liver microsomes. PMID:2317041

  14. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    PubMed Central

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  15. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  16. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells.

    PubMed

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4'-(2,2-dicyanovinyl)-[1,1'-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  17. Stereoselective construction of the 5-hydroxy diazabicyclo[4.3.1]decane-2-one scaffold, a privileged motif for FK506-binding proteins.

    PubMed

    Bischoff, Matthias; Sippel, Claudia; Bracher, Andreas; Hausch, Felix

    2014-10-17

    A stereoselective synthesis of a derivatized bicyclic [4.3.1]decane scaffold based on an acyclic precursor is described. The key steps involve a Pd-catalyzed sp(3)-sp(2) Negishi-coupling, an asymmetric Shi epoxidation, and an intramolecular epoxide opening. Representative derivatives of this novel scaffold were synthesized and found to be potent inhibitors of the psychiatric risk factor FKBP51, which bound to FKBP51 with the intended molecular binding mode. PMID:25286062

  18. Asymmetric Conjugate Addition of Benzofuran-2-ones to Alkyl 2-Phthalimidoacrylates: Modeling Structure-Stereoselectivity Relationships with Steric and Electronic Parameters.

    PubMed

    Yang, Chen; Zhang, En-Ge; Li, Xin; Cheng, Jin-Pei

    2016-05-23

    A highly predictive model to correlate the steric and electronic parameters of tertiary amine thiourea catalysts with the stereoselectivity of Michael reactions of 3-substituted benzofuranones and alkyl 2-phthalimidoacrylates is described. As predicted, new 3,5-bis(trifluoromethyl)benzyl- and methyl-substituted tertiary amine thioureas turned out to be highly suitable catalysts for this reaction and enabled the synthesis of enantioenriched α-amino acid derivatives with 1,3-nonadjacent stereogenic centers. PMID:27080558

  19. Assessment of the stereoselective metabolism of methaqualone in man by capillary electrophoresis.

    PubMed

    Prost, Francine; Thormann, Wolfgang

    2003-08-01

    Methaqualone (MQ) and its hydroxylated metabolites are quinazoline derivatives that exhibit atropisomerism. As a continuation of our previous work with these compounds (Electrophoresis 2001, 22, 3270-3280), chiral capillary zone electrophoresis with hydroxypropyl-beta-cyclodextrin as buffer additive and multiwavelength absorbance detection is shown to be an effective tool to provide insight into the stereoselectivity of the MQ metabolism. The five major monohydroxy MQ metabolites formed during biotransformation do not show enantiomerization at temperatures up to 85 degrees C. Enzymatic and acidic hydrolysis of urines that were collected after concomitant administration of 250 mg of MQ and 25 mg diphenhydramine (DH) chloride are both shown to provide stereoselective metabolic patterns with 4'-hydroxymethaqualone, the major urinary metabolite, being excreted almost exclusively as a single enantiomer. A stereoselectivity in the formation of 2'-hydroxymethaqualone and 2-hydroxymethaqualone was also observed in vitro using human liver microsomes and preparations containing the cytochrome P450 enzyme (CYP) CYP3A4 only. The presence of DH during incubation with human liver microsomes did not reveal a difference in the metabolic pattern obtained. Furthermore, CYP2D6 and CYP2C19 do not significantly contribute to the metabolism of MQ. This was independently observed in vitro and via analysis of urines of individuals that are either efficient metabolizer phenotypes or poor metabolizer phenotypes for the two polymorphic enzymes. Although interindividual differences in the monitored metabolic patterns were noted, no marked difference could be related to a CYP2D6 or CYP2C19 polymorphism. PMID:12900872

  20. Total Synthesis of (-)-Daphenylline.

    PubMed

    Yamada, Ryosuke; Adachi, Yohei; Yokoshima, Satoshi; Fukuyama, Tohru

    2016-05-10

    Total synthesis of (-)-daphenylline, a hexacyclic Daphniphyllum alkaloid, was achieved. Construction of the tricyclic DEF ring system was initiated by asymmetric Negishi coupling followed by an intramolecular Friedel-Crafts reaction. Installation of a side chain onto the tricyclic core was carried out through Sonogashira coupling, stereocontrolled Claisen rearrangement by taking advantage of the characteristic conformation of the tricyclic DEF core, and the stereoselective alkylation of a lactone. After the introduction of a glycine unit, the ABC ring system was stereoselectively constructed through intramolecular cycloaddition of the cyclic azomethine ylide. PMID:27062676

  1. Domino Strategy for the Stereoselective Construction of Angularly Fused Tricyclic Ethers.

    PubMed

    Reddy, B V Subba; Medaboina, Durgaprasad; Reddy, S Gopal; Reddy, V Hanuman; Singarapu, Kiran Kumar; Sridhar, Balasubramanian

    2015-12-18

    A stereoselective synthesis of decahydrofuro[3,2-d]isochromene derivatives has been achieved by the condensation of 2-cyclohexenylbutane-1,4-diol with aldehydes in the presence of a stochiometric amount of BF3·OEt2 in dichloromethane at -78 °C. Similarly, the condensation of 2-cyclopentenylbutan-1,4-diol with aldehydes provides the corresponding octahydro-2H-cyclopenta[c]furo[2,3-d]pyran derivatives in good yields with high diastereoselectivity. It is an elegant strategy for the quick construction of tricyclic architectures with four contiguous stereogenic centers in a single step. These tricyclic frameworks are the integral part of numerous natural products. PMID:26562722

  2. Stereoselective formation of a 2 prime (3 prime)- aminoacyl ester of a nucleotide

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    Reaction of DL-series and adenosine-5-phosphorimidazolide in the presence of adenosine-5'-(0-methylphosphate) and imidazole resulted in the stereoselective synthesis of the aminoacyl nucleotide ester, 2'(3')-0-seryl-adenosine-5'-(0-methylphosphate). The enantiomeric excess of D-serine incorporated into 2'(3')-0-seryl-adenosine-5'-(0-methylphosphate) was about 9%. Adenylyl-(5->N)-serine and an unknown product also incorporated an excess of D-serine, however, seryl-serine showed an excess of L-serine. The relationship of these results to the origin of the biological pairing of L-amino acids and nucleotides containing D-ribose is discussed.

  3. ACCESS-2: Approximation Concepts Code for Efficient Structural Synthesis, user's guide

    NASA Technical Reports Server (NTRS)

    Miura, H.; Schmit, L. A., Jr.

    1978-01-01

    A user's guide is presented for the ACCESS-2 computer program. ACCESS-2 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure.

  4. Efficient one-pot synthesis of 1-arylcycloprop-2-ene-1-carboxamides.

    PubMed

    Edwards, Andrew; Rubin, Michael

    2016-03-14

    An expeditious and cost-efficient method for synthesis of 1-arylcycloprop-2-ene-1-carboxamides was developed. This one-pot protocol involving coupling of amines with acyl chlorides, generated upon treatment of cyclopenylcarboxylic acids with oxalyl chloride, is applicable for the preparation of sensitive products with a reactive, unsubstituted strained double bond. PMID:26864495

  5. Efficient synthesis of probabilistic quantum circuits with fallback

    NASA Astrophysics Data System (ADS)

    Bocharov, Alex; Roetteler, Martin; Svore, Krysta M.

    2015-05-01

    Repeat-until-success (RUS) circuits can approximate a given single-qubit unitary with an expected number of T gates of about 1/3 of what is required by optimal, deterministic, ancilla-free decompositions over the Clifford + T gate set. In this work, we introduce a more general and conceptually simpler circuit decomposition method that allows for synthesis into protocols that probabilistically implement quantum circuits over several universal gate sets including, but not restricted to, the Clifford + T gate set. The protocol, which we call probabilistic quantum circuits with fallback (PQF), implements a walk on a discrete Markov chain in which the target unitary is an absorbing state and in which transitions are induced by multiqubit unitaries followed by measurements. In contrast to RUS protocols, the presented PQF protocols are guaranteed to terminate after a finite number of steps. Specifically, we apply our method to the Clifford + T , Clifford + V , and Clifford + π /12 gate sets to achieve decompositions with expected gate counts of logb(1 /ɛ ) +O {ln[ln(1 /ɛ ) ] } , where b is a quantity related to the expansion property of the underlying universal gate set.

  6. Improvement of efficiency in the enzymatic synthesis of lactulose palmitate.

    PubMed

    Bernal, Claudia; Illanes, Andres; Wilson, Lorena

    2015-04-15

    Sugar esters are considered as surfactants due to its amphiphilic balance that can lower the surface tension in oil/water mixtures. Enzymatic syntheses of these compounds are interesting both from economic and environmental considerations. A study was carried out to evaluate the effect of four solvents, temperature, substrate molar ratio, biocatalyst source, and immobilization methodology on the yield and specific productivity of lactulose palmitate monoester synthesis. Lipases from Pseudomonas stutzeri (PsL) and Alcaligenes sp. (AsL), immobilized in porous silica functionalized with octyl groups (adsorption immobilization, OS) and with glyoxyl-octyl groups (both adsorption and covalent immobilization, OGS), were used. The highest lactulose palmitate yields were obtained at 47 °C in acetone, for all biocatalysts, while the best lactulose:palmitic acid molar ratio differed according to the immobilization methodology, being 1:1 for AsL-OGS biocatalyst (20.7 ± 3%) and 1:3 for the others (30-50%). PMID:25797166

  7. An efficient prebiotic synthesis of cytosine and uracil

    NASA Astrophysics Data System (ADS)

    Robertson, Michael P.; Miller, Stanley L.

    1995-06-01

    IN contrast to the purines1 3, the routes that have been proposed for the prebiotic synthesis of pyrimidines from simple precursors give only low yields. Cytosine can be synthesized from cyano-acetylene and cyanate4,5; the former precursor is produced from a spark discharge in a CH4/N2 mixture4,5 and is an abundant interstellar molecule6. But this reaction requires relatively high concentrations of cyanate (>0.1 M), which are unlikely to occur in aqueous media as cyanate is hydrolysed rapidly to CO2 and NH3. An alternative route that has been explored7 is the reaction of cyanoacetaldehyde (formed by hydrolysis of cyanoacetylene8) with urea. But at low concentrations of urea, this reaction produces no detectable quantities of cytosine7. Here we show that in concentrated urea solution-such as might have been found in an evaporating lagoon or in pools on drying beaches on the early Earth-cyanoacetaldehyde reacts to form cytosine in yields of 30-50%, from which uracil can be formed by hydrolysis. These reactions provide a plausible route to the pyrimidine bases required in the RNA world9.

  8. An efficient prebiotic synthesis of cytosine and uracil

    NASA Technical Reports Server (NTRS)

    Robertson, M. P.; Miller, S. L.

    1995-01-01

    In contrast to the purines, the routes that have been proposed for the prebiotic synthesis of pyrimidines from simple precursors give only low yields. Cytosine can be synthesized from cyanoacetylene and cyanate; the former precursor is produced from a spark discharge in a CH4/N2 mixture and is an abundant interstellar molecule. But this reaction requires relatively high concentrations of cyanate (> 0.1 M), which are unlikely to occur in aqueous media as cyanate is hydrolysed rapidly to CO2 and NH3. An alternative route that has been explored is the reaction of cyanoacetaldehyde (formed by hydrolysis of cyanoacetylene) with urea. But at low concentrations of urea, this reaction produces no detectable quantities of cytosine. Here we show that in concentrated urea solution--such as might have been found in an evaporating lagoon or in pools on drying beaches on the early Earth--cyanoacetaldehyde reacts to form cytosine in yields of 30-50%, from which uracil can be formed by hydrolysis. These reactions provide a plausible route to the pyrimidine bases required in the RNA world.

  9. Efficient synthesis of Au99(SR)42 nanoclusters

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Lin, Jizhi; Shi, Yangwei; Li, Gao

    2015-03-01

    We report a new synthetic protocol of Au99(SPh)42 nanoclusters with moderate efficiency (~15% yield based on HAuCl4), via a combination of the ligand-exchange and ``size-focusing'' processes. The purity of the as-prepared gold nanoclusters is characterized by matrix-assisted laser desorption ionization mass spectrometry and size exclusion chromatography.We report a new synthetic protocol of Au99(SPh)42 nanoclusters with moderate efficiency (~15% yield based on HAuCl4), via a combination of the ligand-exchange and ``size-focusing'' processes. The purity of the as-prepared gold nanoclusters is characterized by matrix-assisted laser desorption ionization mass spectrometry and size exclusion chromatography. Electronic supplementary information (ESI) available: Experimental section: the synthetic procedure of the Au99(SPh)42 nanoclusters and characterization of the Au cluster. See DOI: 10.1039/c5nr00543d

  10. Efficient Synthesis of Topologically Linked Three-Ring DNA Catenanes.

    PubMed

    Li, Qi; Wu, Guangqi; Wu, Wei; Liang, Xingguo

    2016-06-16

    Topologically controlled DNA catenanes are promising elements for the construction of molecular machines but present a significant effort in DNA nanotechnology. We report an efficient approach for preparing linear three-ring catenanes (L3C) composed of single-stranded DNA. The linking number was strictly controlled by using short complementary regions (6 nt) between each two DNA rings. High efficiency of forming three-ring catenanes (yield as high as 63 %) was obtained by using an 80 nt oligonucleotide as the scaffold to draw close the three pre-rings for hybridization between short complementary DNA. After assembly, three pre-rings were closed by DNA ligation using three 12 nt oligonucleotides as splints to form interlocked three-ring catenanes. L3C nanostructures were imaged in air by AFM: the catenane exhibited a smooth circular shape and was arranged in a line with well-defined structure, as expected. PMID:27214092

  11. High stereoselectivity on low temperature Diels-Alder reactions

    PubMed Central

    da Silva Filho, Luiz Carlos; Lacerda Júnior, Valdemar; Constantino, Mauricio Gomes; da Silva, Gil Valdo José; Invernize, Paulo Roberto

    2005-01-01

    We have found that some of the usually poor dienophiles (2-cycloenones) can undergo Diels-Alder reaction at -78°C with unusually high stereoselectivity in the presence of niobium pentachloride as a Lewis acid catalyst. A remarkable difference in reaction rates for unsubstituted and α- or β-methyl substituted 2-cycloenones was also observed. PMID:16542029

  12. High stereoselectivity on low temperature Diels-Alder reactions.

    PubMed

    da Silva Filho, Luiz Carlos; Lacerda Júnior, Valdemar; Constantino, Mauricio Gomes; da Silva, Gil Valdo José; Invernize, Paulo Roberto

    2005-01-01

    We have found that some of the usually poor dienophiles (2-cycloenones) can undergo Diels-Alder reaction at -78 degrees C with unusually high stereoselectivity in the presence of niobium pentachloride as a Lewis acid catalyst. A remarkable difference in reaction rates for unsubstituted and alpha- or beta-methyl substituted 2-cycloenones was also observed. PMID:16542029

  13. Isomerizing ethenolysis as an efficient strategy for styrene synthesis.

    PubMed

    Baader, Sabrina; Ohlmann, Dominik M; Gooßen, Lukas J

    2013-07-22

    A shrinking chain: A bimetallic system consisting of [{Pd(μ-Br)(tBu3P)}2] and a ruthenium metathesis catalyst has been found to efficiently promote the cross-metathesis between substituted alkenes and ethylene, while continuously migrating the double bond along the alkenyl chain (see scheme). When alkenylarenes, such as the natural products eugenol, safrol, or estragol, were treated with this catalyst under an ethylene atmosphere, they were cleanly converted into the corresponding styrenes and propylene gas. PMID:23776109

  14. An Efficient, Optimized Synthesis of Fentanyl and Related Analogs

    PubMed Central

    Valdez, Carlos A.; Leif, Roald N.; Mayer, Brian P.

    2014-01-01

    The alternate and optimized syntheses of the parent opioid fentanyl and its analogs are described. The routes presented exhibit high-yielding transformations leading to these powerful analgesics after optimization studies were carried out for each synthetic step. The general three-step strategy produced a panel of four fentanyls in excellent yields (73–78%) along with their more commonly encountered hydrochloride and citric acid salts. The following strategy offers the opportunity for the gram-scale, efficient production of this interesting class of opioid alkaloids. PMID:25233364

  15. New mono- and diethynylsiloxysilsesquioxanes--efficient procedures for their synthesis.

    PubMed

    Dudziec, Beata; Rzonsowska, Monika; Marciniec, Bogdan; Brząkalski, Dariusz; Woźniak, Bartosz

    2014-09-21

    Ethynyl-substituted siloxysilsesquioxanes are promising building blocks for a wide range of substances based on a POSS/DDSQ core, especially for (oligo-)polymer syntheses and modifications (the formation of hybrid materials with interesting photophysical and mechanical properties). In this study, we report on a series of new mono- and diethynylsiloxysilsesquioxanes formed via an efficient and highly selective one-pot process from silsesquioxanes with reactive Si-OH groups based on sequential condensation, hydrolysis, chlorination and substitution reactions. All newly synthesized compounds were isolated and characterized by spectroscopic methods. PMID:25047114

  16. Stereoselective synthesis and molecular modeling of chiral cyclopentanes.

    PubMed

    Abdel-Jalil, Raid J; Steinbrecher, Thomas; Al-Harthy, Thuraya; Mahal, Ahmed; Abou-Zied, Osama K; Voelter, Wolfgang

    2015-10-13

    The reaction of 3-methyseleno-2-methylselenomethyl-propene with benzyl 2,3-anhydro-4-O-triflyl-β-L-ribopyranoside provides a major convenient enantiomeric product of 1-methylene-(benzyl3,4-dideoxy-α-D-arabinopyranoso)-[3,4-c]-cyclopentane, with benzyl-2,3-anhydro-4-deoxy-4-C-(2-methyl- propen-3-yl)-α-D-lyxopyranoside as a minor product. While the reaction of 3-methyseleno-2-[methylselenomethyl]-propene with benzyl 2,3-anhydro-4-O-triflyl-α-D-ribopyranoside produces a good yield of benzyl-2,3-anhydro-4-deoxy-4-C-(2-methylpropen-3-yl)-α-D-lyxo-pyranoside. Molecular modeling and molecular dynamics simulations indicate that the intermediate in the reaction of the β-L sugar frequently occupies an optimal conformation that leads to the formation of cyclopentane, while the intermediate in the reaction of the α-D sugar has a very small probability. The results point to the dominant role of the β-L sugar intermediate in controlling the cyclopentane formation. PMID:26267888

  17. Stereoselective Phytotoxicity of HCH Mediated by Photosynthetic and Antioxidant Defense Systems in Arabidopsis thaliana

    PubMed Central

    Zhang, Qiong; Zhou, Cong; Zhang, Quan; Qian, Haifeng; Liu, Weiping; Zhao, Meirong

    2013-01-01

    Background Hexachlorocyclohexane (HCH) has been used for plant protection and sanitation world-widely, and its isomers have been detected in water, soil, and air as well as in vegetation. As a sink for lipophilic pollutants, vegetation is very important for the degradation and fate of organic contamination; however, little was known about their phytotoxicity and mechanisms of toxic effect. In this study, the stereoselective phototoxicity of four isomers (α, β, γ, and δ) of HCHs mediated by independent as well as interconnecting systems of photosynthesis and enzymatic antioxidant defense system in Arabidopsis thaliana were assessed. Principal Findings Our results revealed that all the HCHs not only stimulated the activities of catalase (CAT) and peroxidase (POD), but also inhibited the activity of superoxide dismutase (SOD). In photosynthesis system, the photosynthetic efficiency of PSI and PSII were all down regulated. Meanwhile, results from both systems showed that δ-HCH was the most toxic one, while α-HCH the least in Arabidopsis thaliana. Conclusions For the first time, stereoselective effects of different isomers of HCH in plant were demonstrated. And the results suggest that it requires further research to fully elucidate the environmental toxicity and their mechanisms. PMID:23349669

  18. Synthesis of (-)-Cannabimovone and Structural Reassignment of Anhydrocannabimovone through Gold(I)-Catalyzed Cycloisomerization.

    PubMed

    Carreras, Javier; Kirillova, Mariia S; Echavarren, Antonio M

    2016-06-13

    The first total synthesis of cannabimovone from Cannabis sativa and anhydrocannabimovone was achieved by means of a highly stereoselective gold(I)-catalyzed cycloisomerization. The results led to reassignment of the structure of anhydrocannabimovone. PMID:27119910

  19. Total synthesis of (-)-spinosyn A.

    PubMed

    Mergott, Dustin J; Frank, Scott A; Roush, William R

    2004-08-17

    A convergent, highly stereoselective total synthesis of (-)-spinosyn A (1) is described. Key features of the synthesis include the transannular Diels-Alder reaction of macrocyclic pentaene 11 and the transannular Morita-Baylis-Hillman cyclization of 12 that generates tetracycle 26. The total synthesis of (-)-spinosyn A was completed by a sequence involving the highly beta-selective glycosidation reaction of 13 and glycosyl imidate 30. PMID:15173590

  20. Information and Efficiency in the Nervous System—A Synthesis

    PubMed Central

    Sengupta, Biswa; Stemmler, Martin B.; Friston, Karl J.

    2013-01-01

    In systems biology, questions concerning the molecular and cellular makeup of an organism are of utmost importance, especially when trying to understand how unreliable components—like genetic circuits, biochemical cascades, and ion channels, among others—enable reliable and adaptive behaviour. The repertoire and speed of biological computations are limited by thermodynamic or metabolic constraints: an example can be found in neurons, where fluctuations in biophysical states limit the information they can encode—with almost 20–60% of the total energy allocated for the brain used for signalling purposes, either via action potentials or by synaptic transmission. Here, we consider the imperatives for neurons to optimise computational and metabolic efficiency, wherein benefits and costs trade-off against each other in the context of self-organised and adaptive behaviour. In particular, we try to link information theoretic (variational) and thermodynamic (Helmholtz) free-energy formulations of neuronal processing and show how they are related in a fundamental way through a complexity minimisation lemma. PMID:23935475

  1. Efficient synthesis of hexahydroindenopyridines and their potential as melatoninergic ligands.

    PubMed

    Párraga, Javier; Moreno, Laura; Diaz, Amelia; El Aouad, Noureddine; Galán, Abraham; Sanz, María Jesús; Caignard, Daniel-Henri; Figadère, Bruno; Cabedo, Nuria; Cortes, Diego

    2014-10-30

    Hexahydroindenopyridine (HHIP) is an interesting tricyclic piperidine nucleus that is structurally related to melatonin, a serotonin-derived neurohormone. Melatonin receptor ligands have applications in several cellular, neuroendocrine and neurophysiological disorders, including depression and/or insomnia. We report herein an efficient two-step method to prepare new HHIP via enamine C-alkylation-cyclization. The influence of substituents on the benzene ring and the nitrogen atom on melatoninergic receptors has been studied. Among the 25 synthesized HHIPs, some of them containing methylenedioxy (series 2) and 8-chloro-7-methoxy substituents (series 4) on the benzene ring revealed affinity for the MT1 and/or the MT2 receptors within the nanomolar range or low micromolar. Similar activities were also encountered for those presenting urea (4g), N-aryl (2e) and N-alkyl (2f) acetamide functions. Therefore, new synthesized compounds with a HHIP nucleus have emerged as new promising leads towards the discovery of melatoninergic ligands which could provide new therapeutic agents. PMID:25232966

  2. Hangman corroles: efficient synthesis and oxygen reaction chemistry.

    PubMed

    Dogutan, Dilek K; Stoian, Sebastian A; McGuire, Robert; Schwalbe, Matthias; Teets, Thomas S; Nocera, Daniel G

    2011-01-12

    The construction of a new class of compounds--the hangman corroles--is provided efficiently by the modification of macrocyclic forming reactions from bilanes. Hangman cobalt corroles are furnished in good yields from a one-pot condensation of dipyrromethane with the aldehyde of a xanthene spacer followed by metal insertion using microwave irradiation. In high oxidation states, X-band EPR spectra and DFT calculations of cobalt corrole axially ligated by chloride are consistent with the description of a Co(III) center residing in the one-electron oxidized corrole macrocycle. These high oxidation states are likely accessed in the activation of O-O bonds. Along these lines, we show that the proton-donating group of the hangman platform works in concert with the redox properties of the corrole to enhance the catalytic activity of O-O bond activation. The hangman corroles show enhanced activity for the selective reduction of oxygen to water as compared to their unmodified counterparts. The oxygen adduct, prior to oxygen reduction, is characterized by EPR and absorption spectroscopy. PMID:21142043

  3. Total Synthesis of Laulimalide: Assembly of the Fragments and Completion of the Synthesis of the Natural Product and a Potent Analogue

    PubMed Central

    Trost, Barry M.; Amans, Dominique; Seganish, W. Michael; Chung, Cheol K.

    2012-01-01

    In this manuscript, we report the full account of our efforts to couple the northern and the southern building blocks, whose synthesis were described in the preceding paper, along with the modifications required which ultimately lead to a successful synthesis of laulimalide. Key highlights include an exceptionally efficient and atom-economical intramolecular ruthenium-catalyzed alkene-alkyne coupling to build the macrocycle followed by a highly stereoselective 1,3-allylic isomerization promoted by a rhenium complex. Interestingly, the designed synthetic route also allowed us to prepare an analogue of the natural product that possesses significant cytotoxic activity. We also report in this paper a second generation route which provided a more concise synthesis of the natural product. PMID:22307856

  4. Total Synthesis of Notoamides F, I, and R and Sclerotiamide.

    PubMed

    Zhang, Benxiang; Zheng, Weifeng; Wang, Xiaoqing; Sun, Deqian; Li, Chaozhong

    2016-08-22

    The total synthesis of the natural indole alkaloids (+)-notoamide F, I, and R and (-)-sclerotiamide is described. The four heptacyclic compounds were synthesized in 10-12 steps in a convergent and highly stereoselective manner from the readily available Seebach acetal. Key steps of the synthesis include a stereoselective oxidative aza-Prins cyclization to construct the bicyclo[2.2.2]diazaoctane, and a cobalt-catalyzed radical cycloisomerization to create the cyclohexenyl ring. PMID:27443750

  5. A Versatile Organocatalytic Approach for the Synthesis of Enantioenriched gem-Difluorinated Compounds.

    PubMed

    Saulnier, Steve; Ciardi, Moira; Lopez-Carrillo, Veronica; Gualandi, Andrea; Cozzi, Pier Giorgio

    2015-09-21

    The combination of a practical and highly enantioselective organocatalytic reaction, which allows the stereoselective introduction of a benzodithiol group, with a fluorination step, gives a new and effective strategy for the stereoselective synthesis of difluorinated building blocks. The benzodithiol group is a versatile and chameleonic group that can be further functionalized before fluorination, giving customized and tailored useful synthetic strategies. As an example of the application of this facile strategy, the effective enantioselective synthesis of difluoroarundic acid is described. PMID:26239866

  6. Efficient enzymatic synthesis of ampicillin by mutant Alcaligenes faecalis penicillin G acylase.

    PubMed

    Deng, Senwen; Su, Erzheng; Ma, Xiaoqiang; Yang, Shengli; Wei, Dongzhi

    2015-04-10

    Semi-synthetic β-lactam antibiotics (SSBAs) are one of the most important antibiotic families in the world market. Their enzymatic synthesis can be catalyzed by penicillin G acylases (PGAs). In this study, to improve enzymatic synthesis of ampicillin, site-saturating mutagenesis was performed on three conserved amino acid residues: βF24, αR146, and αF147 of thermo-stable penicillin G acylase from Alcaligenes faecalis (Af PGA). Four mutants βF24G, βF24A, βF24S, and βF24P were recovered by screening the mutant bank. Kinetic analysis of them showed up to 800-fold increased kcat/Km value for activated acyl donor D-phenylglycine methyl ester (D-PGME). When βF24G was used for ampicillin synthesis under kinetic control at industrially relevant conditions, 95% of nucleophile 6-aminopenicillanic acid (6-APA) was converted to ampicillin in aqueous medium at room temperature while 12% process time is needed to reach maximum product accumulation at 25% enzyme concentration compared with the wild-type Af PGA. Consequently, process productivity of enzymatic synthesis of ampicillin catalyzed by Af PGA was improved by more than 130 times, which indicated an enzyme viable for efficient SSBAs synthesis. PMID:25681630

  7. Highly Efficient Synthesis of Clean Biofuels from Biomass Using FeCuZnAlK Catalyst

    NASA Astrophysics Data System (ADS)

    Qiu, Song-bai; Xu, Yong; Ye, Tong-qi; Gong, Fei-yan; Yang, Zhi; Yamamoto, Mitsuo; Liu, Yong; Li, Quan-xin

    2011-12-01

    Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasification was performed over Fe1.5Cu1Zn1Al1K0.117 catalyst. The maximum biofuel yield from the bio-syngas reaches about 1.59 kg biofuels/(kgcatal·h) with a contribution of 0.57 kg alcohols/(kgcatal·h) and 1.02 kg liquid hydrocarbons/(kgcatal·h). The alcohol products in the resulting biofuels were dominated by the C2+ alcohols (mainly C2—C6 alcohols) with a content of 73.55%-89.98%. The selectivity of the liquid hydrocarbons (C5+) in the hydrocarbon products ranges from 60.37% to 70.94%. The synthesis biofuels also possess a higher heat value of 40.53-41.49 MJ/kg. The effects of the synthesis conditions, including temperature, pressure, and gas hourly space velocity, on the biofuel synthesis were investigated in detail. The catalyst features were characterized by inductively coupled plasma and atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, and the N2 adsorption-desorption isotherms measurements. The present biofuel synthesis with a higher biofuel yield and a higher selectivity of liquid hydrocarbons and C2+ alcohols may be a potentially useful route to produce clean biofuels and chemicals from biomass.

  8. Nano Clinoptilolite: Highly Efficient Catalyst for the Synthesis of Chromene Derivatives Under Solvent-Free Conditions.

    PubMed

    Hallajian, Sara; Khalilzadeh, Mohammad A; Tajbakhsh, Mahgol; Alipour, Eskandar; Safaei, Zahra

    2015-01-01

    An efficient and selective synthesis of substituted chromene derivatives via three-component reaction of 4-hydroxycoumarin or 1,3-dicarbonyl compounds, activated acetylenic compounds and N-nucleophiles is described. The reaction was conducted under solvent-free conditions at 70°C using potassium fluoride impregnated on natural zeolite as a cheap and available solid base. The procedure has several advantages involving selectivity, excellent yields and a convenient work-up method. PMID:25910084

  9. Temporary Restraints to Overcome Steric Obstacles—Efficient Strategy for the Synthesis of Mycalamide B**

    PubMed Central

    Jewett, John C.; Rawal, Viresh H.

    2014-01-01

    Restrain and Release: An efficient synthesis of mycalamide B is reported. The synthetic route features (a) a one-pot Mukaiyama–Michael/epoxidation sequence to introduce three of the stereocenters found in the natural product, (b) an intramolecular isocyanate trapping to produce a rigid 10-membered cyclic carbamate, and (c) the selective opening of the cyclic carbamate to reveal the fully constructed natural product. PMID:20931583

  10. ACCESS 1: Approximation Concepts Code for Efficient Structural Synthesis program documentation and user's guide

    NASA Technical Reports Server (NTRS)

    Miura, H.; Schmit, L. A., Jr.

    1976-01-01

    The program documentation and user's guide for the ACCESS-1 computer program is presented. ACCESS-1 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure. Implementation of the computer program, preparation of input data and basic program structure are described, and three illustrative examples are given.