Science.gov

Sample records for egf-r antibodies mediate

  1. EGF-R small inhibitors and anti-EGF-R antibodies: advantages and limits of a new avenue in anticancer therapy.

    PubMed

    Caraglia, Michele; Marra, Monica; Meo, Giuseppina; Addeo, Santolo R; Tagliaferri, Pierosandro; Budillon, Alfredo

    2006-06-01

    Cellular receptors for the Epidermal Growth Factor (EGF-R) are members of the ErbB receptor family and are considered important targets for the experimental treatment of human cancer. Monoclonal antibodies as well as small tyrosine kinase inhibitors (TKIs) have been developed and have undergone extensive evaluation in preclinical and clinical studies based on the general idea that EGF-R plays a critical role on the growth and survival of human tumors. This assumption has been derived by the successful development of BCR/ABL tyrosine kinase inhibitors in human chronic myeloid leukemia as well as on the activity of therapy with monoclonal antibodies (mAb) in breast cancer and lymphoproliferative diseases. It is now becoming clear that factors regulating sensitivity to kinase inhibitors may differ from monoclonal antibodies and that the molecules targeted by interfering drugs must be prioritaire for growth and survival of those specific tumors in order to achieve valuable results. In this article, we will describe the signal transduction pathways regulated by EGF-R and the principal pharmacological and biotechnological agents directed against EGF-R. We will discuss the significance of targeting the EGF-R driven survival pathways and the compensatory intracellular survival mechanisms that counteract the specific EGF-R inhibition and are the cause of the poor clinical results derived from study based on the use of these agents. We will describe new multipotent TKIs that target also other members of ErbB family (i.e. ErbB2) blocking one of the compensatory mechanism that can be triggered in cancer cells. Moreover, we will report new patent on bispecific mAbs that bind EGF-R and immune effectors in order to increase the immunological function of this agent that could be the basis of the different clinical results achieved with the use of TKI and mAbs. Finally, we will propose a pharmacological model able to make cancer cells dependent on EGF-R for their survival and

  2. A potencial theranostic agent for EGF-R expression tumors: (177)Lu-DOTA-nimotuzumab.

    PubMed

    Calzada, Victoria; Zhang, Xiuli; Fernandez, Marcelo; Diaz-Miqueli, Arlhee; Iznaga-Escobar, Normando; Deutscher, Susan L; Balter, Henia; Quinn, Thomas P; Cabral, Pablo

    2012-10-01

    In this work Nimotuzumab (monoclonal antibody, recognizes the EGF-R) was radiolabeled with (177)Lu as a potential cancer therapy radiopharmaceutical. In-vitro cell binding studies and in-vivo biodistribution and imaging studies were performed to determine the radiochemical stability, targeting specificity and pharmacokinetics of the (177)Lu-labeled antibody. Nimotuzumab was derivatized with DOTA-NHS at room temperature for 2 hours. DOTA-Nimotuzumab was radiolabeled with (177)LuCl3 (15 MBq/mg) at 37°C for 1 h. The radiochemical purity was assessed by ITLC, silica gel and by RP-HPLC. Binding specificity studies were performed with EGF-R positive A431 human epithelial carcinoma and EGF-R negative MDA-MB-435 breast carcinoma cells. Biodistribution studies were performed in healthy female CD-1 mice at 1 h, 4 h, 24 h, and A431 xenografted nude mice at 10 min, 1 h, 4 h, 24 h, 48 h, and 96 h. SPECT-CT imaging studies were performed in A431 xenografted mice at 24 h post injection. DOTA-Nimotuzumab was efficiently labeled with (177) LuCl(3) at 37°C. The in vitro stability of labeled product was optimal over 24 h in buffered saline and mouse serum. Specific recognition of EGF-R by (177)Lu-DOTA-Nimotuzumab was observed in A431 cell binding studies. Biodistribution studies demonstrated increasing tumor uptake of (177)Lu-DOTA-Nimotuzumab over time, with tumor to muscle ratios of 6.26, 10.68, and 18.82 at 4 h, 24 h, and 96 h post injection. Imaging of A431 xenografted mice showed high uptake in the tumor. (177)Lu-DOTA-Nimotuzumab has the potential to be a promising therapy agent, which may be useful in the treatment of patients with EGF-R positive cancer. PMID:22280117

  3. Antibody-mediated radiotherapy

    SciTech Connect

    Bloomer, W.D.; Lipsztein, R.; Dalton, J.F.

    1985-05-01

    Antibodies that react with antigens on the surface of tumor cells but not normal cells have great potential for cancer detection and therapy. If radiolabeled without loss of immunologic specificity, such antibodies may be able to deliver cytoxic amounts of radiation. Target- cell specificity and a high extraction coefficient are necessary with any radionuclide in order to minimize normal tissue irradiation. Tumor- cell-retention time and the rate of catabolized radionuclide will also influence ultimate applicability. Among the unanswered questions for choosing a radionuclide is the choice of particle emitter. Although classic beta emitters have been used in a number of clinical situations, they have not had a major impact on disease outcome except in diseases of the thyroid. Unfortunately, Auger emitters such as iodine 125 are cytotoxic only when localized within close proximity to the genome. On the other hand, alpha emitters such as astatine 211 eliminate the need for subcellular sequestration but not cell-specific localization. 34 references.

  4. Antibody-Mediated Lung Transplant Rejection

    PubMed Central

    Hachem, Ramsey

    2012-01-01

    Antibody-mediated rejection after lung transplantation remains enigmatic. However, emerging evidence over the past several years suggests that humoral immunity plays an important role in allograft rejection. Indeed, the development of donor-specific antibodies after transplantation has been identified as an independent risk factor for acute cellular rejection and bronchiolitis obliterans syndrome. Furthermore, cases of acute antibody-mediated rejection resulting in severe allograft dysfunction have been reported, and these demonstrate that antibodies can directly injure the allograft. However, the incidence and toll of antibody-mediated rejection are unknown because there is no widely accepted definition and some cases may be unrecognized. Clearly, humoral immunity has become an important area for research and clinical investigation. PMID:23002428

  5. Vector-Mediated In Vivo Antibody Expression.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis. PMID:26104192

  6. Neuronal Surface Antibody-Mediated Autoimmune Encephalitis

    PubMed Central

    Linnoila, Jenny J.; Rosenfeld, Myrna R.; Dalmau, Josep

    2016-01-01

    In the past few years, many autoimmune encephalitides have been identified, with specific clinical syndromes and associated antibodies against neuronal surface antigens. There is compelling evidence that many of these antibodies are pathogenic and most of these encephalitides are highly responsive to immunotherapies. The clinical spectra of some of these antibody-mediated syndromes, especially those reported in only a few patients, are evolving. Others, such as anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, are well characterized. Diagnosis involves recognizing the specific syndromes and identifying the antibody in a patient’s cerebrospinal fluid (CSF) and/or serum. These syndromes are associated with variable abnormalities in CSF, magnetic resonance imaging, and electroencephalography. Treatment is often multidisciplinary and should be focused upon neutralizing the effects of antibodies and eliminating their source. Overlapping disorders have been noted, with some patients having more than one neurologic autoimmune disease. In other patients, viral infections such as herpes simplex virus encephalitis trigger robust antineuronal autoimmune responses. PMID:25369441

  7. Antibody-Mediated Autoimmune Encephalopathies and Immunotherapies.

    PubMed

    Gastaldi, Matteo; Thouin, Anaïs; Vincent, Angela

    2016-01-01

    Over the last 15 years it has become clear that rare but highly recognizable diseases of the central nervous system (CNS), including newly identified forms of limbic encephalitis and other encephalopathies, are likely to be mediated by antibodies (Abs) to CNS proteins. The Abs are directed against membrane receptors and ion channel-associated proteins that are expressed on the surface of neurons in the CNS, such as N-methyl D-aspartate receptors and leucine-rich, glioma inactivated 1 protein and contactin-associated protein like 2, that are associated with voltage-gated potassium channels. The diseases are not invariably cancer-related and are therefore different from the classical paraneoplastic neurological diseases that are associated with, but not caused by, Abs to intracellular proteins. Most importantly, the new antibody-associated diseases almost invariably respond to immunotherapies with considerable and sometimes complete recovery, and there is convincing evidence of their pathogenicity in the relatively limited studies performed so far. Treatments include first-line steroids, intravenous immunoglobulins, and plasma exchange, and second-line rituximab and cyclophosphamide, followed in many cases by steroid-sparing agents in the long-term. This review focuses mainly on N-methyl D-aspartate receptor- and voltage-gated potassium channel complex-related Abs in adults, the clinical phenotypes, and treatment responses. Pediatric cases are referred to but not reviewed in detail. As there have been very few prospective studies, the conclusions regarding immunotherapies are based on retrospective studies. PMID:26692392

  8. Pathogenesis and mechanisms of antibody-mediated hemolysis

    PubMed Central

    Flegel, Willy A

    2015-01-01

    Background The clinical consequences of antibodies to red blood cells (RBC) have been studied for a century. Most clinically relevant antibodies can be detected by sensitive in vitro assays. Several mechanisms of antibody-mediated hemolysis are well understood. Such hemolysis following transfusion is reliably avoided in a donor/recipient pair, if one individual is negative for the cognate antigen to which the other has the antibody. Study design and results Mechanisms of antibody-mediated hemolysis were reviewed based on a presentation at the Strategies to Address Hemolytic Complications of Immune Globulin Infusions Workshop addressing intravenous immunoglobulin (IVIG) and ABO antibodies. The presented topics included the rates of intravascular and extravascular hemolysis; IgM and IgG isoagglutinins; auto- and alloantibodies; antibody specificity; A, B, A,B and A1 antigens; A1 versus A2 phenotypes; monocytes/macrophages, other immune cells and complement; monocyte monolayer assay (MMA); antibody-dependent cell-mediated cytotoxicity (ADCC); and transfusion reactions due to ABO and other antibodies. Conclusion Several clinically relevant questions remained unresolved, and diagnostic tools were lacking to routinely and reliably predict the clinical consequences of RBC antibodies. Most hemolytic transfusion reactions associated with IVIG were due to ABO antibodies. Reducing the titers of such antibodies in IVIG may lower the frequency of this kind of adverse event. The only way to stop these events is to have no anti-A or anti-B antibodies in the IVIG products. PMID:26174897

  9. Antibody-mediated Xenograft Injury: Mechanisms and Protective Strategies

    PubMed Central

    Pierson, Richard N.

    2009-01-01

    The use of porcine organs for clinical transplantation is a promising potential solution to the shortage of human organs. Preformed anti-pig antibody is the primary cause of hyperacute rejection, while elicited antibody can contribute to subsequent “delayed” xenograft rejection. This article will review recent progress to overcome antibody mediated xenograft rejection, through modification of the host immunity and use of genetically engineered pig organs. PMID:19376229

  10. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    PubMed

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  11. Antibodies as Mediators of Brain Pathology.

    PubMed

    Brimberg, Lior; Mader, Simone; Fujieda, Yuichiro; Arinuma, Yoshiyuki; Kowal, Czeslawa; Volpe, Bruce T; Diamond, Betty

    2015-11-01

    The brain is normally sequestered from antibody exposure by the blood brain barrier. However, antibodies can access the brain during fetal development before the barrier achieves full integrity, and in disease states when barrier integrity is compromised. Recent studies suggest that antibodies contribute to brain pathology associated with autoimmune diseases such as systemic lupus erythematosus and neuromyelitis optica, and can lead to transient or permanent behavioral or cognitive abnormalities. We review these findings here and examine the circumstances associated with antibody entry into the brain, the routes of access and the mechanisms that then effect pathology. Understanding these processes and the nature and specificity of neuronal autoantibodies may reveal therapeutic strategies toward alleviating or preventing the neurological pathologies and behavioral abnormalities associated with autoimmune disease. PMID:26494046

  12. Antibodies as Mediators of Brain Pathology

    PubMed Central

    Brimberg, Lior; Mader, Simone; Fujieda, Yuichiro; Arinuma, Yoshiyuki; Kowal, Czeslawa; Volpe, Bruce T.; Diamond, Betty

    2016-01-01

    The brain is normally sequestered from antibody exposure by the blood brain barrier. However, antibodies can access the brain during fetal development before the barrier achieves full integrity, and in disease states when barrier integrity is compromised. Recent studies suggest that antibodies contribute to brain pathology associated with autoimmune diseases such as systemic lupus erythematosus and neuromyelitis optica, and can lead to transient or permanent behavioral or cognitive abnormalities. We review these findings here and examine the circumstances associated with antibody entry into the brain, the routes of access and the mechanisms that then effect pathology. Understanding these processes and the nature and specificity of neuronal autoantibodies may reveal therapeutic strategies toward alleviating or preventing the neurological pathologies and behavioral abnormalities associated with autoimmune disease. PMID:26494046

  13. Antibody-Mediated Pathogen Resistance in Plants.

    PubMed

    Peschen, Dieter; Schillberg, Stefan; Fischer, Rainer

    2016-01-01

    The methods described in this chapter were developed in order to produce transgenic plants expressing pathogen-specific single-chain variable fragment (scFv) antibodies fused to antifungal peptides (AFPs), conferring resistance against fungal pathogens. We describe the selection from a phage display library of avian scFv antibodies that recognize cell surface proteins on fungi from the genus Fusarium, and the construction of scFv-AFP fusion protein constructs followed by their transient expression in tobacco (Nicotiana spp.) plants and stable expression in Arabidopsis thaliana plants. Using these techniques, the antibody fusion with the most promising in vitro activity can be used to generate transgenic plants that are resistant to pathogens such as Fusarium oxysporum f. sp. matthiolae. PMID:26614296

  14. Antibody-Mediated Clearance of Alphavirus Infection from Neurons

    NASA Astrophysics Data System (ADS)

    Levine, Beth; Hardwick, J. Marie; Trapp, Bruce D.; Crawford, Thomas O.; Bollinger, Robert C.; Griffin, Diane E.

    1991-11-01

    Humoral immunity is important for protection against viral infection and neutralization of extracellular virus, but clearance of virus from infected tissues is thought to be mediated solely by cellular immunity. However, in a SCID mouse model of persistent alphavirus encephalomyelitis, adoptive transfer of hyperimmune serum resulted in clearance of infectious virus and viral RNA from the nervous system, whereas adoptive transfer of sensitized T lymphocytes had no effect on viral replication. Three monoclonal antibodies to two different epitopes on the E2 envelope glycoprotein mediated viral clearance. Treatment of alphavirus-infected primary cultured rat neurons with these monoclonal antibodies to E2 resulted in decreased viral protein synthesis, followed by gradual termination of mature infectious virion production. Thus, antibody can mediate clearance of alphavirus infection from neurons by restricting viral gene expression.

  15. Antibody-mediated cofactor-driven reactions

    DOEpatents

    Schultz, Peter G.

    1993-01-01

    Chemical reactions capable of being rate-enhanced by auxiliary species which interact with the reactants but do not become chemically bound to them in the formation of the final product are performed in the presence of antibodies which promote the reactions. The antibodies contain regions within their antigen binding sites which recognize the auxiliary species in a conformation which promotes the reaction. The antigen binding site frequently recognizes a particular transition state complex or other high energy complex along the reaction coordinate, thereby promoting the progress of the reaction along the desired route as opposed to other less favorable routes. Various classes of reaction together with appropriate antigen binding site specificities tailored for each are disclosed.

  16. Rational clinical trial design for antibody mediated renal allograft injury

    PubMed Central

    Sandal, Shaifali; Zand, Martin S.

    2015-01-01

    Antibody mediated renal allograft rejection is a significant cause of acute and chronic graft loss. Recent work has revealed that AMR is a complex processes, involving B and plasma cells, donor-specific antibodies, complement, vascular endothelial cells, NK cells, Fc receptors, cytokines and chemokines. These insights have led to the development of numerous new therapies, and adaptation of others originally developed for treatment of hemetologic malignancies, autoimmune and complement mediated conditions. Here we review emerging insights into the pathophysiology of AMR as well as current and emerging therapies for both acute and chronic AMR. Finally, we discuss rational clinical trial design in light of antibody and B cell immunobiology, as well as appropriate efficacy metrics to identify robust protocols and therapeutic agents. PMID:25553476

  17. Rational clinical trial design for antibody mediated renal allograft injury.

    PubMed

    Sandal, Shaifali; Zand, Martin S

    2015-01-01

    Antibody mediated renal allograft rejection is a significant cause of acute and chronic graft loss. Recent work has revealed that AMR is a complex processes, involving B and plasma cells, donor-specific antibodies, complement, vascular endothelial cells, NK cells, Fc receptors, cytokines and chemokines. These insights have led to the development of numerous new therapies, and adaptation of others originally developed for treatment of hemetologic malignancies, autoimmune and complement mediated conditions. Here we review emerging insights into the pathophysiology of AMR as well as current and emerging therapies for both acute and chronic AMR. Finally, we discuss rational clinical trial design in light of antibody and B cell immunobiology, as well as appropriate efficacy metrics to identify robust protocols and therapeutic agents. PMID:25553476

  18. Molecular Communication Modeling of Antibody-Mediated Drug Delivery Systems.

    PubMed

    Chahibi, Youssef; Akyildiz, Ian F; Balasubramaniam, Sasitharan; Koucheryavy, Yevgeni

    2015-07-01

    Antibody-mediated Drug Delivery Systems (ADDS) are emerging as one of the most encouraging therapeutic solutions for treating several diseases such as human cancers. ADDS use small molecules (antibodies) that propagate in the body and bind selectively to their corresponding receptors (antigens) expressed at the surface of the diseased cells. In this paper, the Molecular Communication (MC) paradigm, where information is conveyed through the concentration of molecules, is advocated for the engineering of ADDS and modeling their complex behavior, to provide a realistic model without the over-complication of system biology models, and the limitations of experimental approaches. The peculiarities of antibodies, including their anisotropic transport and complex electrochemical structure, are taken into account to develop an analytical model of the ADDS transport and antigen-binding kinetics. The end-to-end response of ADDS, from the drug injection to the drug absorption, is mathematically derived based on the geometry of the antibody molecule, the electrochemical structure of the antibody-antigen complex, and the physiology of the patient. The accuracy of the MC model is validated by finite-element (COMSOL) simulations. The implications of the complex interplay between the transport and kinetics parameters on the performance of ADDS are effectively captured by the proposed MC model. The MC model of ADDS will enable the discovery and optimization of drugs in a versatile, cost-efficient, and reliable manner. PMID:25675450

  19. Novel antimalarial antibodies highlight the importance of the antibody Fc region in mediating protection.

    PubMed

    Pleass, Richard J; Ogun, Solabomi A; McGuinness, David H; van de Winkel, Jan G J; Holder, Anthony A; Woof, Jenny M

    2003-12-15

    Parasite drug resistance and difficulties in developing effective vaccines have precipitated the search for alternative therapies for malaria. The success of passive immunization suggests that immunoglobulin (Ig)-based therapies are effective. To further explore the mechanism(s) by which antibody mediates its protective effect, we generated human chimeric IgG1 and IgA1 and a single-chain diabody specific for the C-terminal 19-kDa region of Plasmodium yoelii merozoite surface protein 1 (MSP119), a major target of protective immune responses. These novel human reagents triggered in vitro phagocytosis of merozoites but, unlike their parental mouse IgG2b, failed to protect against parasite challenge in vivo. Therefore, the Fc region appears critical for mediating protection in vivo, at least for this MSP119 epitope. Such antibodies may serve as prototype therapeutic agents, and as useful tools in the development of in vitro neutralization assays with Plasmodium parasites. PMID:12855589

  20. IgA EGFR antibodies mediate tumour killing in vivo

    PubMed Central

    Boross, Peter; Lohse, Stefan; Nederend, Maaike; Jansen, Johannes Hendrik Marco; van Tetering, Geert; Dechant, Michael; Peipp, Matthias; Royle, Louise; Liew, Li Phing; Boon, Louis; van Rooijen, Nico; Bleeker, Wim K; Parren, Paul W H I; van de Winkel, Jan G J; Valerius, Thomas; Leusen, Jeanette H W

    2013-01-01

    Currently all approved anti-cancer therapeutic monoclonal antibodies (mAbs) are of the IgG isotype, which rely on Fcgamma receptors (FcγRs) to recruit cellular effector functions. In vitro studies showed that targeting of FcαRI (CD89) by bispecific antibodies (bsAbs) or recombinant IgA resulted in more effective elimination of tumour cells by myeloid effector cells than targeting of FcγR. Here we studied the in vivo anti-tumour activity of IgA EGFR antibodies generated using the variable sequences of the chimeric EGFR antibody cetuximab. Using FcαRI transgenic mice, we demonstrated significant in vivo anti-tumour activity of IgA2 EGFR against A431 cells in peritoneal and lung xenograft models, as well as against B16F10-EGFR cells in a lung metastasis model in immunocompetent mice. IgA2 EGFR was more effective than cetuximab in a short-term syngeneic peritoneal model using EGFR-transfected Ba/F3 target cells. The in vivo cytotoxic activity of IgA2 EGFR was mediated by macrophages and was significantly decreased in the absence of FcαRI. These results support the potential of targeting FcαRI for effective antibody therapy of cancer. The study reveals that IgA antibodies directed against EGFR and engaging Fcalpha receptor (FcαRI) on effector cells, have in vivo anti-cancer activity. These data support the development of novel immunotherapeutic strategies based on targeting FcαRI. PMID:23918228

  1. Recent advances in renal transplantation: antibody-mediated rejection takes center stage

    PubMed Central

    Chen, Chien Chia; Sicard, Antoine; Rabeyrin, Maud; Morelon, Emmanuel; Dubois, Valérie

    2015-01-01

    Overlooked for decades, antibodies have taken center stage in renal transplantation and are now widely recognized as the first cause of allograft failure. Diagnosis of antibody-mediated rejection has considerably improved with identification of antibody-mediated lesions in graft biopsies and advances made in the detection of circulating donor-specific antibodies. Unfortunately, this progress has not yet translated into better outcomes for patients. Indeed, in the absence of a drug able to suppress antibody generation by plasma cells, available therapies can only slow down graft destruction. This review provides an overview of the current knowledge of antibody-mediated rejection and discusses future interesting research directions. PMID:26097724

  2. Identifying Subphenotypes of Antibody-Mediated Rejection in Kidney Transplants.

    PubMed

    Halloran, P F; Merino Lopez, M; Barreto Pereira, A

    2016-03-01

    The key lesions in antibody-mediated kidney transplant rejection (ABMR) are microcirculation inflammation (peritubular capillaritis and/or glomerulitis lesions, abbreviated "pg") and glomerular double contours (cg lesions). We used these features to explore subphenotypes in 164 indication biopsies with ABMR-related diagnoses: 137 ABMR (109 pure and 28 mixed with T cell-mediated rejection [TCMR]) and 27 transplant glomerulopathy (TG), identified from prospective multicenter studies. The lesions indicated three ABMR subphenotypes: pgABMR, cgABMR, and pgcgABMR. Principal component analysis confirmed these subphenotypes and showed that TG can be reclassified as pgcgABMR (n = 17) or cgABMR (n = 10). ABMR-related biopsies included 45 pgABMR, 90 pgcgABMR, and 25 cgABMR, with four unclassifiable. Dominating all time intervals was the subphenotype pgcgABMR. The pgABMR subphenotype presented earliest (median <2 years), frequently mixed with TCMR, and was most associated with nonadherence. The cgABMR subphenotype presented late (median 9 years). Subphenotypes differed in their molecular changes, with pgABMR having the most histologic-molecular discrepancies (i.e. potential errors). Donor-specific antibody (DSA) was not identified in 29% of pgcgABMR and 46% of cgABMR, but failure rates and molecular findings were similar to cases where DSA was known to be positive. Thus, ABMR presents distinct subphenotypes, early pg-dominant, late cg-dominant, and combined pgcg phenotype, differing in time, molecular features, accompanying TCMR, HLA antibody, and probability of nonadherence. PMID:26743766

  3. A Neutralizing Antibody Assay Based on a Reporter of Antibody-Dependent Cell-Mediated Cytotoxicity.

    PubMed

    Wu, Yuling; Li, Jia J; Kim, Hyun Jun; Liu, Xu; Liu, Weiyi; Akhgar, Ahmad; Bowen, Michael A; Spitz, Susan; Jiang, Xu-Rong; Roskos, Lorin K; White, Wendy I

    2015-11-01

    Benralizumab is a humanized anti-IL5 receptor α (IL5Rα) monoclonal antibody (mAb) with enhanced (afucosylation) antibody-dependent cell-mediated cytotoxicity (ADCC) function. An ADCC reporter cell-based neutralizing antibody (NAb) assay was developed and characterized to detect NAb against benralizumab in human serum to support the clinical development of benralizumab. The optimal ratio of target cells to effector cells was 3:1. Neither parental benralizumab (fucosylated) nor benralizumab Fab resulted in ADCC activity, confirming the requirement for ADCC activity in the NAb assay. The serum tolerance of the cells was determined to be 2.5%. The cut point derived from normal and asthma serum samples was comparable. The effective range of benralizumab was determined, and 35 ng/mL [80% maximal effective concentration (EC80)] was chosen as the standard concentration to run in the assessment of NAb. An affinity purified goat anti-benralizumab polyclonal idiotype antibody preparation was shown to have NAb since it inhibited ADCC activity in a dose-dependent fashion. The low endogenous concentrations of IL5 and soluble IL5 receptor (sIL5R) did not demonstrate to interfere with the assay. The estimated assay sensitivities at the cut point were 1.02 and 1.10 μg/mL as determined by the surrogate neutralizing goat polyclonal and mouse monoclonal anti-drug antibody (ADA) controls, respectively. The assay can detect NAb (at 2.5 μg/mL) in the presence of 0.78 μg/mL benralizumab. The assay was not susceptible to non-specific matrix effects. This study provides an approach and feasibility of developing an ADCC cell-based NAb assay to support biopharmaceuticals with an ADCC function. PMID:26205082

  4. Antibody-mediated neutralization of African swine fever virus: myths and facts.

    PubMed

    Escribano, José M; Galindo, Inmaculada; Alonso, Covadonga

    2013-04-01

    Almost all viruses can be neutralized by antibodies. However, there is some controversy about antibody-mediated neutralization of African swine fever virus (ASFV) with sera from convalescent pigs and about the protective relevance of antibodies in experimentally vaccinated pigs. At present, there is no vaccine available for this highly lethal and economically relevant virus and all classical attempts to generate a vaccine have been unsuccessful. This failure has been attributed, in part, to what many authors describe as the absence of neutralizing antibodies. The findings of some studies clearly contradict the paradigm of the impossibility to neutralize ASFV by means of monoclonal or polyclonal antibodies. This review discusses scientific evidence of these types of antibodies in convalescent and experimentally immunized animals, the nature of their specificity, the neutralization-mediated mechanisms demonstrated, and the potential relevance of antibodies in protection. PMID:23159730

  5. Antibody-Mediated Rejection in Lung Transplantation: Clinical Outcomes and Donor-Specific Antibody Characteristics.

    PubMed

    Roux, A; Bendib Le Lan, I; Holifanjaniaina, S; Thomas, K A; Hamid, A M; Picard, C; Grenet, D; De Miranda, S; Douvry, B; Beaumont-Azuar, L; Sage, E; Devaquet, J; Cuquemelle, E; Le Guen, M; Spreafico, R; Suberbielle-Boissel, C; Stern, M; Parquin, F

    2016-04-01

    In the context of lung transplant (LT), because of diagnostic difficulties, antibody-mediated rejection (AMR) remains a matter of debate. We retrospectively analyzed an LT cohort at Foch Hospital to demonstrate the impact of AMR on LT prognosis. AMR diagnosis requires association of clinical symptoms, donor-specific antibodies (DSAs), and C4d(+) staining and/or histological patterns consistent with AMR. Prospective categorization split patients into four groups: (i) DSA positive, AMR positive (DSA(pos) AMR(pos) ); (ii) DSA positive, AMR negative (DSA(pos) AMR(neg) ); (iii) DSA limited, AMR negative (DSA(Lim) ; equal to one specificity, with mean fluorescence intensity of 500-1000 once); and (iv) DSA negative, AMR negative (DSA(neg) ). AMR treatment consisted of a combination of plasmapheresis, intravenous immunoglobulin and rituximab. Among 206 transplanted patients, 10.7% were DSA(pos) AMR(pos) (n = 22), 40.3% were DSA(pos) AMR(neg) (n = 84), 6% were DSA(Lim) (n = 13) and 43% were DSA(neg) (n = 88). Analysis of acute cellular rejection at month 12 showed higher cumulative numbers (mean plus or minus standard deviation) in the DSA(pos) AMR(pos) group (2.1 ± 1.7) compared with DSA(pos) AMR(neg) (1 ± 1.2), DSA(Lim) (0.75 ± 1), and DSA(neg) (0.7 ± 1.23) groups. Multivariate analysis demonstrated AMR as a risk factor for chronic lung allograft dysfunction (hazard ratio [HR] 8.7) and graft loss (HR 7.56) for DSA(pos) AMR(pos) patients. Our results show a negative impact of AMR on LT clinical course and advocate for an early active diagnostic approach and evaluation of therapeutic strategies to improve prognosis. PMID:26845386

  6. A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies

    PubMed Central

    Ding, Shilei; Veillette, Maxime; Coutu, Mathieu; Prévost, Jérémie; Scharf, Louise; Bjorkman, Pamela J.; Ferrari, Guido; Robinson, James E.; Stürzel, Christina; Hahn, Beatrice H.; Sauter, Daniel; Kirchhoff, Frank; Lewis, George K.; Pazgier, Marzena

    2015-01-01

    Previous studies have shown that sera from HIV-1-infected individuals contain antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC). These antibodies preferentially recognize envelope glycoprotein (Env) epitopes induced upon CD4 binding. Here, we show that a highly conserved tryptophan at position 69 of the gp120 inner domain is important for ADCC mediated by anti-cluster A antibodies and sera from HIV-1-infected individuals. PMID:26637462

  7. Nanoliposome-mediated targeting of antibodies to tumors: IVIG antibodies as a model.

    PubMed

    Nikpoor, Amin Reza; Tavakkol-Afshari, Jalil; Gholizadeh, Zahra; Sadri, Kayvan; Babaei, Mohammad Hossein; Chamani, Jamshidkhan; Badiee, Ali; Jalali, Seyed Amir; Jaafari, Mahmoud Reza

    2015-11-10

    Monoclonal antibodies are routinely used as tools in immunotherapies against solid tumors. However, administration of monoclonal antibodies may cause undesired side effects due to their accumulation in non-targeted organs. Nanoliposomes of less than 200 nm can target antibodies to tumors by enhanced permeation and retention (EPR) mechanisms. To direct monoclonal antibodies to tumors, nanoliposomes encapsulating intravenous immunoglobulin (IVIG) as a model antibody were prepared. The liposomes had average diameters of 100 nm and encapsulation efficiencies of 31 to 46%. They showed less than 10% release in plasma at 37°C up to seven days. The secondary and tertiary structures of liposome-encapsulated antibodies were analyzed by circular dichroism (CD) spectroscopy. The near and far-UV spectra analyses revealed no obvious conformational changes in the structures of the encapsulated antibodies. The biodistribution of free and liposome-encapsulated iodinated antibodies was investigated in mice bearing C-26 colon carcinoma tumors. The accumulation of liposome-encapsulated antibodies in tumors was significantly greater than that of free antibodies due to the EPR effect. The PEGylated liposomes were more efficient in the delivery of antibodies to the tumor site than non-PEGylated liposomes. We conclude that administration of monoclonal antibodies in PEGylated liposomes is more efficient than administration of non-encapsulated monoclonal antibodies for solid tumor immunotherapy. PMID:26302860

  8. Relationship between natural and heme-mediated antibody polyreactivity.

    PubMed

    Hadzhieva, Maya; Vassilev, Tchavdar; Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien; Dimitrov, Jordan D

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. PMID:26926563

  9. Antibody-dependent, cell-mediated cytolysis (ADCC) with antibody-coated effectors: rat and human effectors versus tumor targets.

    PubMed

    Jones, J F; Titus, J A; Segal, D M

    1981-06-01

    We have previously described techniques that cause antibody molecules to remain bound to P388D1 cells for at least 18 hr, and enable these cells to lyse hapten-coated erythrocytes not sensitized with antibody. These methods collectively are called "franking." In this study, we have determined that these methods are applicable to other systems. We franked rat splenocytes and human peripheral blood leukocytes with rabbit anti-TNP antibody, and showed that they were capable of lysing TNP-tumor and erythrocyte targets (not coated with antibody) in a hapten-specific, antibody-dependent fashion. Both the mononuclear and the polymorphonuclear (PMN) leukocyte fractions of the human cells were capable of mediating lysis. Additionally, human leukocytes franked with rabbit antibody were stained with fluorescent goat anti-rabbit IgG Fab, and were analyzed for fluorescence by flow microfluorometry. Nearly all of the PMN cells and about one-half of the mononuclear cells had IgG on their surfaces after franking. Clearly, not all cells can be franked, but those that can retain significant numbers of antibody molecules (approximately 5 X 10(4), in the case of PMN cells) on their surfaces. PMID:7014718

  10. A game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infection

    PubMed Central

    Pierson, Theodore C.; Diamond, Michael S.

    2016-01-01

    The humoral response contributes to the protection against viral pathogens. Although antibodies have the potential to inhibit viral infections via several mechanisms, an ability to neutralize viruses directly may be particularly important. Neutralizing antibody titers are commonly used as predictors of protection from infection, especially in the context of vaccine responses and immunity. Despite the simplicity of the concept, how antibody binding results in virus inactivation is incompletely understood despite decades of research. Flaviviruses have been an attractive system in which to seek a structural and quantitative understanding of how antibody interactions with virions modulate infection because of the contribution of antibodies to both protection and pathogenesis. This review will present a stoichiometric model of antibody-mediated neutralization of flaviviruses and discuss how these concepts can inform the development of vaccines and antibody-based therapeutics. PMID:25595803

  11. Flexibility in Surface-Exposed Loops in a Virus Capsid Mediates Escape from Antibody Neutralization

    PubMed Central

    Kolawole, Abimbola O.; Li, Ming; Xia, Chunsheng; Fischer, Audrey E.; Giacobbi, Nicholas S.; Rippinger, Christine M.; Proescher, Jody B. G.; Wu, Susan K.; Bessling, Seneca L.; Gamez, Monica; Yu, Chenchen; Zhang, Rebecca; Mehoke, Thomas S.; Pipas, James M.; Wolfe, Joshua T.; Lin, Jeffrey S.; Feldman, Andrew B.

    2014-01-01

    ABSTRACT New human norovirus strains emerge every 2 to 3 years, partly due to mutations in the viral capsid that allow escape from antibody neutralization and herd immunity. To understand how noroviruses evolve antibody resistance, we investigated the structural basis for the escape of murine norovirus (MNV) from antibody neutralization. To identify specific residues in the MNV-1 protruding (P) domain of the capsid that play a role in escape from the neutralizing monoclonal antibody (MAb) A6.2, 22 recombinant MNVs were generated with amino acid substitutions in the A′B′ and E′F′ loops. Six mutations in the E′F′ loop (V378F, A382K, A382P, A382R, D385G, and L386F) mediated escape from MAb A6.2 neutralization. To elucidate underlying structural mechanisms for these results, the atomic structure of the A6.2 Fab was determined and fitted into the previously generated pseudoatomic model of the A6.2 Fab/MNV-1 virion complex. Previously, two distinct conformations, A and B, of the atomic structures of the MNV-1 P domain were identified due to flexibility in the two P domain loops. A superior stereochemical fit of the A6.2 Fab to the A conformation of the MNV P domain was observed. Structural analysis of our observed escape mutants indicates changes toward the less-preferred B conformation of the P domain. The shift in the structural equilibrium of the P domain toward the conformation with poor structural complementarity to the antibody strongly supports a unique mechanism for antibody escape that occurs via antigen flexibility instead of direct antibody-antigen binding. IMPORTANCE Human noroviruses cause the majority of all nonbacterial gastroenteritis worldwide. New epidemic strains arise in part by mutations in the viral capsid leading to escape from antibody neutralization. Herein, we identify a series of point mutations in a norovirus capsid that mediate escape from antibody neutralization and determine the structure of a neutralizing antibody. Fitting of

  12. Antibody-mediated reduction of {alpha}-ketoamides

    DOEpatents

    Schultz, P.G.; Gallop, M.A.

    1998-06-09

    Monoclonal antibodies raised against a 4-nitrophenyl phosphonate hapten catalyze the stereospecific reduction of an {alpha}-ketoamide to the corresponding {alpha}-hydroxyamide in the presence of an appropriate reducing agent.

  13. Antibody-mediated reduction of .alpha.-ketoamides

    DOEpatents

    Schultz, Peter G.; Gallop, Mark A.

    1998-01-01

    Monoclonal antibodies raised against a 4-nitrophenyl phosphonate hapten catalyze the stereospecific reduction of an .alpha.-ketoamide to the corresponding .alpha.-hydroxyamide in the presence of an appropriate reducing agent.

  14. [Progress of study on antitumor effects of antibody dependent cell mediated cytotoxicity--review].

    PubMed

    Qu, Yu-Hua; Li, Yang

    2010-10-01

    In recent years, as increasing of monoclonal antibody application in clinic, the antitumor effect of antibody dependent cell-mediated cytotoxicity (ADCC) get increasing attention. The natural killer (NK) cells are the most important effector cells mediating specific antitumor of ADCC; the phagocytes, T-cells and granulocytes have the definite effect on antitumor of ADCC. ADCC is confirmed as the important mechanism and means for clinically treating the cancers with monoclonal antibodies. The IgG antibody firstly combines with target cells (tumor cells) through antigen-binding sites, and then FcγR on effector cells identifies its Fc fragment and mediates ADCC. Today many kinds of monoclonal antibodies have been put into clinical application such as rituximab and other new anti-CD20 monoclonal antibodies including trastuzumab, erbitux, cetuximab, edrecolomab, nimotuzumab, gemtuzumab ozogamicin and so on, which all can mediate ADCC. The antitumor effects of ADCC mediated by monoclonal antibody can be influenced by IgG Fc receptor gene polymorphism, tumor cell antigen, serum antibody levels, cytokines and drugs etc. As to peripheral blood mononuclear cells, ADCC efficacies of FcγRIIIa-158V/V and FcγRIIa-131H/H are higher than that of other genotypes, while increasing the level of tumor antigen and decreasing the level of serum antibody or adding some cytokines (IL-2, IL-21, IL-15, etc) may elevate the ADCC effect mediated by monoclonal antibodies. Avoiding use of certain drugs (dexamethasone, TNF antagonist) or appropriately using of ondansetron and clemastine also can enhance the anti-tumor effect of ADCC mediated by monoclonal antibodies. In short, ADCC is very important in clinical application for anti-tumor treatment, but its efficacy may be impacted by multiple factors.In this article, the killing mechanisms of ADCC, the clinical use of monoclonal antibodies with antitumor effect of ADCC, the factors influencing anti-tumor efficacy of ADCC, and the antitumor

  15. Lung injury mediated by antibodies to endothelium. II. Study of the effect of repeated antigen-antibody interactions in rabbits tolerant to heterologous antibody.

    PubMed Central

    Camussi, G.; Caldwell, P. R.; Andres, G.; Brentjens, J. R.

    1987-01-01

    The effect of repeated interactions of antibodies with cell surface antigens have been examined in in vitro, but not in in vivo systems. In this study are described the results of multiple antibody-cell surface antigen interactions in vivo. Rabbits were given repeated intravenous injections of goat antibodies to angiotensin converting enzyme (ACE), an antigen expressed on the surface of lung endothelial cells. For prevention of anaphylactic reactions, which would have been induced by multiple injections of heterologous immune or nonimmune IgG, the rabbits were made neonatally tolerant to goat IgG. Divalent immune IgG given daily for 21 days induced chronic antigenic modulation (antigen disappearance) with resistance to antibody-mediated inflammatory lesions. The rabbits, however, developed degenerative changes of alveolar endothelial and epithelial cells. Administration of immune IgG every other day for 43 days allowed partial reexpression of ACE and was associated with intravascular, but not interstitial, inflammatory changes. In contrast, repeated administration of monovalent immune Fab did not induce antigenic modulation but caused severe, lethal, interstitial pneumonitis. Thus, in this experimental model the development of acute interstitial inflammatory changes correlates with persistence of antigen and is abrogated by disappearance of antigen induced by divalent antibodies. Further, repeated endothelial antigen antibody interactions fail to induce chronic inflammatory or sclerosing lung lesions. Images Figure 5 Figure 6 Figure 11 Figure 12 Figure 13 Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 7 Figure 9 Figure 10 PMID:3034065

  16. Macrophage-Mediated Trogocytosis Leads to Death of Antibody-Opsonized Tumor Cells.

    PubMed

    Velmurugan, Ramraj; Challa, Dilip K; Ram, Sripad; Ober, Raimund J; Ward, E Sally

    2016-08-01

    Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcγ receptor (FcγR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is protumorigenic. In the current study, we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcγR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies. Mol Cancer Ther; 15(8); 1879-89. ©2016 AACR. PMID:27226489

  17. Iron as the Key Modulator of Hepcidin Expression in Erythroid Antibody-Mediated Hypoplasia

    PubMed Central

    Fernandes, J. C.; Garrido, P.; Ribeiro, S.; Rocha-Pereira, P.; Bronze-da-Rocha, E.; Belo, L.; Costa, E.; Reis, F.; Santos-Silva, A.

    2014-01-01

    Erythroid hypoplasia (EH) is a rare complication associated with recombinant human erythropoietin (rHuEPO) therapies, due to development of anti-rHuEPO antibodies; however, the underlying mechanisms remain poorly clarified. Our aim was to manage a rat model of antibody-mediated EH induced by rHuEPO and study the impact on iron metabolism and erythropoiesis. Wistar rats treated during 9 weeks with a high rHuEPO dose (200 IU) developed EH, as shown by anemia, reduced erythroblasts, reticulocytopenia, and plasmatic anti-rHuEPO antibodies. Serum iron was increased and associated with mRNA overexpression of hepatic hepcidin and other iron regulatory mediators and downregulation of matriptase-2; overexpression of divalent metal transporter 1 and ferroportin was observed in duodenum and liver. Decreased EPO expression was observed in kidney and liver, while EPO receptor was overexpressed in liver. Endogenous EPO levels were normal, suggesting that anti-rHuEPO antibodies blunted EPO function. Our results suggest that anti-rHuEPO antibodies inhibit erythropoiesis causing anemia. This leads to a serum iron increase, which seems to stimulate hepcidin expression despite no evidence of inflammation, thus suggesting iron as the key modulator of hepcidin synthesis. These findings might contribute to improving new therapeutic strategies against rHuEPO resistance and/or development of antibody-mediated EH in patients under rHuEPO therapy. PMID:25580431

  18. Enhanced antigen-antibody binding affinity mediated by an anti-idiotypic antibody

    SciTech Connect

    Sawutz, D.G.; Koury, R.; Homcy, C.J.

    1987-08-25

    The authors previously described the production of four monoclonal antibodies to the ..beta..-adrenergic receptor antagonist alprenolol. One of these antibodies, 5B7 (IgG/sub 2a/, kappa), was used to raise anti-idiotypic antisera in rabbits. In contrast to the expected results, one of the anti-idiotypic antisera (R9) promotes (/sup 125/I)iodocyanopinodolol (ICYP) binding to antibody 5B7. In the presence of R9, the dissociation constant decreases 100-fold from 20 to 0.3 nM. This increase in binding affinity of antibody 5B7 for ICYP is not observed in the presence of preimmune, rabbit anti-mouse or anti-idiotypic antisera generated to a monoclonal antibody of a different specificity. Furthermore, R9 in the absence of 5B7 does not bind ICYP. The F(ab) fragments of 5B7 and T9 behaved in a similar manner, and the soluble complex responsible for the high-affinity interaction with ICYP can be identified by gel filtration chromatography. The elution position of the complex is consistent with a 5B7 F(ab)-R9 F(ab) dimer, indicating that polyvalency is not responsible for the enhanced ligand binding. Kinetic analysis of ICYP-5B7 binding revealed that the rate of ICYP dissociation from 5B7 in the presence of R9 is approximately 100 times slower than in the absence of R9, consistent with the 100-fold change in binding affinity of 5B7 for ICYP. The available data best fit a model in which an anti-idiotypic antibody binds at or near the binding site of the idiotype participating in the formation of a hybrid ligand binding site. This would allow increased contact of the ligand with the idiotype-anti-idiotype complex and result in an enhanced affinity of the ligand interaction.

  19. Effective protein inhibition in intact mouse oocytes through peptide nanoparticle-mediated antibody transfection

    PubMed Central

    Li, Ruichao; Jin, Zhen; Gao, Leilei; Liu, Peng

    2016-01-01

    Female meiosis is a fundamental area of study in reproductive medicine, and the mouse oocyte model of in vitro maturation (IVM) is most widely used to study female meiosis. To investigate the probable role(s) of an unknown protein in female meiosis, the method traditionally used involves microinjecting a specific antibody into mouse oocytes. Recently, in studies on somatic cells, peptide nanoparticle-mediated antibody transfection has become a popular tool because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, untill now no researchers have tried using this technique on mouse oocytes because the zona pellucida surrounding the oocyte membrane (vitelline membrane) is usually thought or proved to be a tough barrier to macromolecules such as antibodies and proteins. Therefore, we attempted to introduce an antibody into mouse oocytes using a peptide nanoparticle. Here we show for the first time that with our optimized method, an antibody can be effectively delivered into mouse oocytes and inhibit its target protein with high specificity. We obtained significant results using small GTPase Arl2 as a test subject protein. We propose peptide nanoparticle-mediated antibody transfection to be a superior alternative to antibody microinjection for preliminary functional studies of unknown proteins in mouse oocytes. PMID:27114861

  20. [Immunopathogenesis of cytotoxic antibody-mediated autoimmune diseases].

    PubMed

    Morenz, J

    1980-01-15

    This review deals with autoantibodies, autoantigens, immunopathogenetic mechanisms and their consequences in autoimmune diseases caused by cytotoxic antibodies. Findings demonstrating the pathogenicity and pathogenic potency of antibodies, the involvement of complement and polymorphonuclears, and the chain of events leading from the start of immune reactions to clinical signs and symptoms are stressed. It is shown that the immunopathogenesis of this group of diseases can be deduced from only a few related immune mechanisms while the heterogeneity of clinical syndromes can be explained primarily by the function and localization of autoantigens. Questions still open and findings not yet understood are pointed out. From the progress of immunology in recent years further diseases can be expected to be recognized as type II autoimmune diseases in the years ahead notably by the combined application of immunological and physiological or pharmacological methods. PMID:6996350

  1. Non-IgE antibody mediated mechanisms in food allergy.

    PubMed

    Halpern, G M; Scott, J R

    1987-01-01

    Food sensitivity or intolerance is not necessarily based on the Type I allergic reaction. Non-IgE antibody reactions, complement-dependent reactions, enzyme deficiencies such as lactase and non-immunologic histamine release (such as with some sea foods) have been described. Even the detection of specific antibodies on their own does not necessarily indicate that a given symptom is due to that antibody. Food allergy nevertheless exists. It is important that those observers fortunate enough to see many cases document their observations carefully and eventually publish them for the education of their less fortunate colleagues. Is food allergy more common in infants and young children? What happens as they grow older? How often is atopic eczema due to food allergy? Why are some foods more likely to be implicated than others? Does a negative RAST result eliminate the diagnosis or a positive one confirm it? Until the answers to these and other questions are known, the mainstay of diagnosis will be the history, and that of treatment will be the elimination diet. PMID:3099610

  2. Late antibody-mediated rejection after ABO-incompatible kidney transplantation during Gram-negative sepsis

    PubMed Central

    2014-01-01

    Background The major challenge in ABO-incompatible transplantation is to minimize antibody-mediated rejection. Effective reduction of the anti-ABO blood group antibodies at the time of transplantation has made ABO-incompatible kidney transplantation a growing practice in our hospital and in centers worldwide. ABO antibodies result from contact with A- and B-like antigens in the intestines via nutrients and bacteria. We demonstrate a patient with fulminant antibody-mediated rejection late after ABO-incompatible kidney transplantation, whose anti-A antibody titers rose dramatically following Serratia marcescens sepsis. Case presentation A 58-year-old woman underwent an ABO-incompatible kidney transplantation for end-stage renal disease secondary to autosomal dominant polycystic kidney disease. It concerned a blood group A1 to O donation. Pre-desensitization titers were 64 for anti-blood group A IgM and 32 for anti-blood group A IgG titers. Desensitization treatment consisted of rituximab, tacrolimus, mycophenolate mofetil, corticosteroids, immunoadsorption and intravenous immunoglobulines. She was readmitted to our hospital 11 weeks after transplantation for S. marcescens urosepsis. Her anti-A IgM titer rose to >5000 and she developed a fulminant antibody-mediated rejection. We hypothesized that the (overwhelming) presence in the blood of S. marcescens stimulated anti-A antibody formation, as S. marcescens might share epitopes with blood group A antigen. Unfortunately we could not demonstrate interaction between blood group A and S. marcescens in incubation experiments. Conclusion Two features of this post-transplant course are remarkably different from other reports of acute rejection in ABO-incompatible kidney transplantation: first, the late occurrence 12 weeks after kidney transplantation and second, the very high anti-A IgM titers (>5000), suggesting recent boosting of anti-A antibody formation by S. marcescens. PMID:24517251

  3. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection.

    PubMed

    Locke, J E; Magro, C M; Singer, A L; Segev, D L; Haas, M; Hillel, A T; King, K E; Kraus, E; Lees, L M; Melancon, J K; Stewart, Z A; Warren, D S; Zachary, A A; Montgomery, R A

    2009-01-01

    Desensitized patients are at high risk of developing acute antibody-mediated rejection (AMR). In most cases, the rejection episodes are mild and respond to a short course of plasmapheresis (PP) / low-dose IVIg treatment. However, a subset of patients experience severe AMR associated with sudden onset oliguria. We previously described the utility of emergent splenectomy in rescuing allografts in patients with this type of severe AMR. However, not all patients are good candidates for splenectomy. Here we present a single case in which eculizumab, a complement protein C5 antibody that inhibits the formation of the membrane attack complex (MAC), was used combined with PP/IVIg to salvage a kidney undergoing severe AMR. We show a marked decrease in C5b-C9 (MAC) complex deposition in the kidney after the administration of eculizumab. PMID:18976298

  4. Antibody-mediated targeting of the Orai1 calcium channel inhibits T cell function.

    PubMed

    Cox, Jennifer H; Hussell, Scott; Søndergaard, Henrik; Roepstorff, Kirstine; Bui, John-Vu; Deer, Jen Running; Zhang, Jun; Li, Zhan-Guo; Lamberth, Kasper; Kvist, Peter Helding; Padkjær, Søren; Haase, Claus; Zahn, Stefan; Odegard, Valerie H

    2013-01-01

    Despite the attractiveness of ion channels as therapeutic targets, there are no examples of monoclonal antibodies directed against ion channels in clinical development. Antibody-mediated inhibition of ion channels could offer a directed, specific therapeutic approach. To investigate the potential of inhibiting ion channel function with an antibody, we focused on Orai1, the pore subunit of the calcium channel responsible for store-operated calcium entry (SOCE) in T cells. Effector T cells are key drivers of autoimmune disease pathogenesis and calcium signaling is essential for T cell activation, proliferation, and cytokine production. We show here the generation of a specific anti-human Orai1 monoclonal antibody (mAb) against an extracellular loop of the plasma membrane-spanning protein. The anti-Orai1 mAb binds native Orai1 on lymphocytes and leads to cellular internalization of the channel. As a result, T cell proliferation, and cytokine production is inhibited in vitro. In vivo, anti-Orai1 mAb is efficacious in a human T cell-mediated graft-versus host disease (GvHD) mouse model. This study demonstrates the feasibility of antibody-mediated inhibition of Orai1 function and, more broadly, reveals the possibility of targeting ion channels with biologics for the treatment of autoimmunity and other diseases. PMID:24376610

  5. Suppression of Fcγ-receptor-mediated antibody effector function during persistent viral infection.

    PubMed

    Yamada, Douglas H; Elsaesser, Heidi; Lux, Anja; Timmerman, John M; Morrison, Sherie L; de la Torre, Juan Carlos; Nimmerjahn, Falk; Brooks, David G

    2015-02-17

    Understanding how viruses subvert host immunity and persist is essential for developing strategies to eliminate infection. T cell exhaustion during chronic viral infection is well described, but effects on antibody-mediated effector activity are unclear. Herein, we show that increased amounts of immune complexes generated in mice persistently infected with lymphocytic choriomeningitis virus (LCMV) suppressed multiple Fcγ-receptor (FcγR) functions. The high amounts of immune complexes suppressed antibody-mediated cell depletion, therapeutic antibody-killing of LCMV infected cells and human CD20-expressing tumors, as well as reduced immune complex-mediated cross-presentation to T cells. Suppression of FcγR activity was not due to inhibitory FcγRs or high concentrations of free antibody, and proper FcγR functions were restored when persistently infected mice specifically lacked immune complexes. Thus, we identify a mechanism of immunosuppression during viral persistence with implications for understanding effective antibody activity aimed at pathogen control. PMID:25680277

  6. An integrative structure-based framework for predicting biological effects mediated by antipeptide antibodies.

    PubMed

    Caoili, Salvador Eugenio C

    2015-12-01

    A general framework is presented for predicting quantitative biological effects mediated by antipeptide antibodies, primarily on the basis of antigen structure (possibly featuring intrinsic disorder) analyzed to estimate epitope-paratope binding affinities, which in turn is considered within the context of dose-response relationships as regards antibody concentration. This is illustrated mainly using an approach based on protein structural energetics, whereby expected amounts of solvent-accessible surface area buried upon epitope-paratope binding are related to the corresponding binding affinity, which is estimated from putative B-cell epitope structure with implicit treatment of paratope structure, for antipeptide antibodies either reacting with peptides or cross-reacting with cognate protein antigens. Key methods described are implemented in SAPPHIRE/SUITE (Structural-energetic Analysis Program for Predicting Humoral Immune Response Epitopes/SAPPHIRE User Interface Tool Ensemble; publicly accessible via http://freeshell.de/~badong/suite.htm). Representative results thus obtained are compared with published experimental data on binding affinities and quantitative biological effects, with special attention to loss of paratope sidechain conformational entropy (neglected in previous analyses) and in light of key in-vivo constraints on antigen-antibody binding affinity and antibody-mediated effects. Implications for further refinement of B-cell epitope prediction methods are discussed as regards envisioned biomedical applications including the development of prophylactic and therapeutic antibodies, peptide-based vaccines and immunodiagnostics. PMID:26410103

  7. VEGFR2-targeted fusion antibody improved NK cell-mediated immunosurveillance against K562 cells.

    PubMed

    Ren, Xueyan; Xie, Wei; Wang, Youfu; Xu, Menghuai; Liu, Fang; Tang, Mingying; Li, Chenchen; Wang, Min; Zhang, Juan

    2016-08-01

    MHC class I polypeptide-related sequence A (MICA), which is normally expressed on cancer cells, activates NK cells via NK group 2-member D pathway. However, some cancer cells escape NK-mediated immune surveillance by shedding membrane MICA causing immune suppression. To address this issue, we designed an antibody-MICA fusion targeting tumor-specific antigen (vascular endothelial growth factor receptor 2, VEGFR2) based on our patented antibody (mAb04) against VEGFR2. In vitro results demonstrate that the fusion antibody retains both the antineoplastic and the immunomodulatory activity of mAb04. Further, we revealed that it enhanced NK-mediated immunosurveillance against K562 cells through increasing degranulation and cytokine production of NK cells. The overall data suggest our new fusion protein provides a promising approach for cancer-targeted immunotherapy and has prospects for potential application of chronic myeloid leukemia. PMID:27154226

  8. PRESENCE OF PRE-EXISTING ANTIBODIES MEDIATE SURVIVAL IN SEPSIS

    PubMed Central

    Moitra, Rituparna; Beal, Dominic R.; Belikoff, Bryan G.; Remick, Daniel G.

    2011-01-01

    Sepsis is one of the leading causes of death in hospitals worldwide. Even with optimal therapy, severe sepsis results in 50% mortality, indicating variability in the response of individuals towards treatment. We hypothesize that the presence of pre-existing antibodies present in the blood before the onset of sepsis induced by cecal ligation and puncture (CLP) in mice, accounts for the differences in their survival. A Plasma Enhanced Killing (PEK) assay was performed to calculate the PEK capacity of plasma i.e. the ability of plasma to augment PMN killing of bacteria. PEK was calculated as PEK= (1/log (N)) × 100; where N= number of surviving bacteria; a higher PEK indicated better bacterial killing. A range of PEK in plasma collected from mice prior to CLP was observed, documenting individual differences in bacterial killing capacity. Mortality was predicted based on plasma IL-6 levels at 24 hr post CLP. Mice predicted to die (Die-P) had a lower PEK (<14) and higher peritoneal bacterial counts 24 hr post sepsis compared to those predicted to live (Live-P) with a PEK>16. Mice with PEK<14 were 3.1 times more likely to die compared to the PEK>16 group. To understand the mechanism of defense conferred by the pre-existing antibodies, binding of IgM or IgG to enteric bacteria was documented by flow cytometry. To determine the relative contribution of IgM or IgG, the immunoglobulins were specifically immuno-depleted from the naïve plasma samples and the PEK of the depleted plasma measured. Compared to naïve plasma, depletion of IgM had no effect on the PEK. However, depletion of IgG increased PEK suggesting that an inhibitory IgG binds to antigenic sites on bacteria preventing optimal opsonization of the bacteria. These data demonstrate that prior to CLP; circulating inhibitory IgG antibodies exist that prevent bacterial killing by PMNs in a CLP model of sepsis. PMID:21921828

  9. Modalities for treatment of antisperm antibody mediated infertility: novel perspectives.

    PubMed

    Naz, Rajesh K

    2004-05-01

    Immunoinfertility because of antisperm antibodies (ASA) is an important cause of infertility in humans. The incidence of ASA in infertile couples is 9-36% depending on the reporting center. Early claims regarding the incidence and involvement of ASA in involuntary infertility were probably overemphasized, which has resulted in subsequent confusion, doubt, and underestimation of their clinical significance. No immunoglobulin that binds to sperm should be called an antisperm antibody in a strict sense unless it is directed against a sperm antigen that plays a role in fertilization and fertility. ASA directed against the fertilization-related antigens are more relevant to infertility than the immunoglobulins that bind to sperm associated antigens. Several methods have been reported for treatment of immunoinfertility. These include: immunosuppressive therapies using corticosteroids or cyclosporine; assisted reproductive technologies such as intrauterine insemination, gamete intrafallopian transfer, in vitro fertilization, and intracytoplasmic sperm injection; laboratory techniques such as sperm washing, immunomagnetic sperm separation, proteolytic enzyme treatment, and use of immunobeads. Most of the available techniques have side effects, are invasive and expensive, have low efficacy, or provide conflicting results. Recent findings using defined sperm antigens that have a role in fertilization/fertility have provided animal models and innovative novel perspectives for studying the mechanism of immunoinfertility and possible modalities for treatment. The better understanding of local immunity and latest advances in hybridoma and recombinant technologies, proteomics and genomics leading to characterization of sperm antigens relevant to fertility will help to clarify the controversy and to establish the significance of ASA in infertility. PMID:15212677

  10. Cellular cytotoxicity mediated by isotype-switch variants of a monoclonal antibody to human neuroblastoma.

    PubMed Central

    d'Uscio, C. H.; Jungi, T. W.; Blaser, K.

    1991-01-01

    The biological property of an antibody is determined by its antigen binding characteristics and its isotype-related effector functions. We have established monoclonal antibodies of different isotypes by stepwise selection and cloning of the hybridoma CE7. The original CE7 secretes an IgG1/kappa (CE7 gamma 1) antibody that recognises a 185 kD cell surface glycoprotein expressed on all human sympatho-adrenomedullary cells. Isotype-switch variants were isolated in the following sequence: from the original CE7 gamma 1, CE7 gamma 2b variants were isolated, and from a CE7 gamma 2b variant CE7 gamma 2a variants were isolated. The antibodies of three different isotype variant cell lines possess identical antigen binding characteristics, but display distinct effector functions as demonstrated by antibody dependent cell-mediated cytotoxicity (ADCC). ADCC was performed with the neuroblastoma line IMR-32 as the target cells, and different FcR gamma positive cells were either freshly isolated from human peripheral blood leukocytes or cultured for 6-10 days and tested as potential effector cells. Tumour lysis mediated by monocyte-derived macrophages depended on the presence of CE7 gamma 2a antibodies; antibodies from the CE7 hybridomas of gamma 2b and gamma 1 isotypes were virtually inactive in ADCC assay. Pre-exposure of macrophages to rIFN-gamma enhanced their ADCC activity, a result that is compatible with the notion that the high affinity Fc IgG receptor (FcR gamma I/CD64) is involved in the triggering of ADCC in macrophages. In contrast to macrophages, mononuclear cells, nonadherent cells and monocytes displayed considerable non-specific lytic activity, which was little influenced by the presence of antibody regardless of the isotype added. PMID:1911183

  11. Antibody-mediated disruption of the mechanics of CS20 fimbriae of enterotoxigenic Escherichia coli

    PubMed Central

    Singh, Bhupender; Mortezaei, Narges; Uhlin, Bernt Eric; Savarino, Stephen J.; Bullitt, Esther; Andersson, Magnus

    2015-01-01

    Preventive vaccines against enterotoxigenic Escherichia coli (ETEC) are being developed, many of which target common fimbrial colonization factors as the major constituent, based on empirical evidence that these function as protective antigens. Particularly, passive oral administration of ETEC anti-fimbrial antibodies prevent ETEC diarrhea. Little is, however, known regarding the specific mechanisms by which intestinal antibodies against ETEC fimbriae function to prevent disease. Using coli surface antigen 20 (CS20) fimbriae as a model ETEC colonization factor, we show using force spectroscopy that anti-fimbrial antibodies diminish fimbrial elasticity by inhibiting their natural capacity to unwind and rewind. In the presence of anti-CS20 antibodies the force required to unwind a single fimbria was increased several-fold and the extension length was shortened several-fold. Similar measurements in the presence of anti-CS20 Fab fragments did not show any effect, indicating that bivalent antibody binding is required to reduce fimbrial elasticity. Based on these findings, we propose a model for an in-vivo mechanism whereby antibody-mediated disruption of the biomechanical properties of CS20 fimbriae impedes sustained adhesion of ETEC to the intestinal mucosal surface. Further elucidation of the role played by intestinal antibodies in mechanical disruption of fimbrial function may provide insights relevant to ETEC vaccine development. PMID:26411657

  12. Antibody-mediated disruption of the mechanics of CS20 fimbriae of enterotoxigenic Escherichia coli.

    PubMed

    Singh, Bhupender; Mortezaei, Narges; Uhlin, Bernt Eric; Savarino, Stephen J; Bullitt, Esther; Andersson, Magnus

    2015-01-01

    Preventive vaccines against enterotoxigenic Escherichia coli (ETEC) are being developed, many of which target common fimbrial colonization factors as the major constituent, based on empirical evidence that these function as protective antigens. Particularly, passive oral administration of ETEC anti-fimbrial antibodies prevent ETEC diarrhea. Little is, however, known regarding the specific mechanisms by which intestinal antibodies against ETEC fimbriae function to prevent disease. Using coli surface antigen 20 (CS20) fimbriae as a model ETEC colonization factor, we show using force spectroscopy that anti-fimbrial antibodies diminish fimbrial elasticity by inhibiting their natural capacity to unwind and rewind. In the presence of anti-CS20 antibodies the force required to unwind a single fimbria was increased several-fold and the extension length was shortened several-fold. Similar measurements in the presence of anti-CS20 Fab fragments did not show any effect, indicating that bivalent antibody binding is required to reduce fimbrial elasticity. Based on these findings, we propose a model for an in-vivo mechanism whereby antibody-mediated disruption of the biomechanical properties of CS20 fimbriae impedes sustained adhesion of ETEC to the intestinal mucosal surface. Further elucidation of the role played by intestinal antibodies in mechanical disruption of fimbrial function may provide insights relevant to ETEC vaccine development. PMID:26411657

  13. Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies from an HIV-1 Vaccine Efficacy Trial Target Multiple Epitopes and Preferentially Use the VH1 Gene Family

    PubMed Central

    Pollara, Justin; Moody, M. Anthony; Alpert, Michael D.; Chen, Xi; Hwang, Kwan-Ki; Gilbert, Peter B.; Huang, Ying; Gurley, Thaddeus C.; Kozink, Daniel M.; Marshall, Dawn J.; Whitesides, John F.; Tsao, Chun-Yen; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Kim, Jerome H.; Michael, Nelson L.; Tomaras, Georgia D.; Montefiori, David C.; Lewis, George K.; DeVico, Anthony; Evans, David T.; Ferrari, Guido; Liao, Hua-Xin; Haynes, Barton F.

    2012-01-01

    The ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies. We found that the majority (73 to 90%) of a representative group of vaccinees displayed plasma ADCC activity, usually (96.2%) blocked by competition with the C1 region-specific A32 Fab fragment. Using memory B-cell cultures and antigen-specific B-cell sorting, we isolated 23 ADCC-mediating nonclonally related antibodies from 6 vaccine recipients. These antibodies targeted A32-blockable conformational epitopes (n = 19), a non-A32-blockable conformational epitope (n = 1), and the gp120 Env variable loops (n = 3). Fourteen antibodies mediated cross-clade target cell killing. ADCC-mediating antibodies displayed modest levels of V-heavy (VH) chain somatic mutation (0.5 to 1.5%) and also displayed a disproportionate usage of VH1 family genes (74%), a phenomenon recently described for CD4-binding site broadly neutralizing antibodies (bNAbs). Maximal ADCC activity of VH1 antibodies correlated with mutation frequency. The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH1 bNAbs. PMID:22896626

  14. Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family.

    PubMed

    Bonsignori, Mattia; Pollara, Justin; Moody, M Anthony; Alpert, Michael D; Chen, Xi; Hwang, Kwan-Ki; Gilbert, Peter B; Huang, Ying; Gurley, Thaddeus C; Kozink, Daniel M; Marshall, Dawn J; Whitesides, John F; Tsao, Chun-Yen; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Kim, Jerome H; Michael, Nelson L; Tomaras, Georgia D; Montefiori, David C; Lewis, George K; DeVico, Anthony; Evans, David T; Ferrari, Guido; Liao, Hua-Xin; Haynes, Barton F

    2012-11-01

    The ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies. We found that the majority (73 to 90%) of a representative group of vaccinees displayed plasma ADCC activity, usually (96.2%) blocked by competition with the C1 region-specific A32 Fab fragment. Using memory B-cell cultures and antigen-specific B-cell sorting, we isolated 23 ADCC-mediating nonclonally related antibodies from 6 vaccine recipients. These antibodies targeted A32-blockable conformational epitopes (n = 19), a non-A32-blockable conformational epitope (n = 1), and the gp120 Env variable loops (n = 3). Fourteen antibodies mediated cross-clade target cell killing. ADCC-mediating antibodies displayed modest levels of V-heavy (VH) chain somatic mutation (0.5 to 1.5%) and also displayed a disproportionate usage of VH1 family genes (74%), a phenomenon recently described for CD4-binding site broadly neutralizing antibodies (bNAbs). Maximal ADCC activity of VH1 antibodies correlated with mutation frequency. The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH1 bNAbs. PMID:22896626

  15. The Complement System and Antibody-Mediated Transplant Rejection.

    PubMed

    Stites, Erik; Le Quintrec, Moglie; Thurman, Joshua M

    2015-12-15

    Complement activation is an important cause of tissue injury in patients with Ab-mediated rejection (AMR) of transplanted organs. Complement activation triggers a strong inflammatory response, and it also generates tissue-bound and soluble fragments that are clinically useful markers of inflammation. The detection of complement proteins deposited within transplanted tissues has become an indispensible biomarker of AMR, and several assays have recently been developed to measure complement activation by Abs reactive to specific donor HLA expressed within the transplant. Complement inhibitors have entered clinical use and have shown efficacy for the treatment of AMR. New methods of detecting complement activation within transplanted organs will improve our ability to diagnose and monitor AMR, and they will also help guide the use of complement inhibitory drugs. PMID:26637661

  16. Sialylated intravenous immunoglobulin suppress anti-ganglioside antibody mediated nerve injury.

    PubMed

    Zhang, Gang; Massaad, Cynthia A; Gao, Tong; Pillai, Laila; Bogdanova, Nataliia; Ghauri, Sameera; Sheikh, Kazim A

    2016-08-01

    The precise mechanisms underlying the efficacy of intravenous immunoglobulin (IVIg) in autoimmune neurological disorders including Guillain-Barré syndrome (GBS) are not known. Anti-ganglioside antibodies have been reported to be pathogenic in some variants of GBS, and we have developed passive transfer animal models to study anti-ganglioside antibody mediated-endoneurial inflammation and associated neuropathological effects and to evaluate the efficacy of new therapeutic approaches. Some studies indicate that IVIg's anti-inflammatory activity resides in a minor sialylated IVIg (sIVIg) fractions and is dependent on an innate Th2 response via binding to a specific ICAM3-grabbing nonintegrin related 1 receptor (SIGN-R1). Therefore the efficacy of IVIg, IVIg fractions with various IgG Fc sialylation status, and the involvement of Th2 pathway were examined in one of our animal model of antibody-mediated inhibition of axonal regeneration. We demonstrate that both IVIg and sIVIg ameliorated anti-glycan antibody mediated-pathological effect, whereas, the unsialylated fractions of IVIg were not beneficial in our model. Tenfold lower doses of sIVIg compared to whole IVIg provided equivalent efficacy in our studies. Moreover, we found that whole IVIg and sIVIg significantly upregulates the gene expression of IL-33, which itself can provide protection from antibody-mediated nerve injury in our model. Our results support that the SIGN-R1-Th2 pathway is involved in the anti-inflammatory effects of IVIg on endoneurium in our model and elements of this pathway including IL-33 can provide novel therapeutics in inflammatory neuropathies. PMID:27208700

  17. Low-Dose Rituximab Therapy for Antibody-Mediated Rejection in a Highly Sensitized Heart-Transplant Recipient

    PubMed Central

    Aggarwal, Ashim; Pyle, Joseph; Hamilton, John; Bhat, Geetha

    2012-01-01

    Antibody-mediated rejection is the B-cell–mediated production of immunoglobulin G antibody against the transplanted heart. The currently available therapies for antibody-mediated rejection have had marginal success, and chronic manifestations of rejection can result in an increased risk of graft vasculopathy and perhaps require repeat transplantation. Rituximab, a monoclonal antibody directed against the CD20 receptor of B-lymphocytes and approved as therapy for lymphoma, can be used in heart-transplant patients for the management of antibody-mediated rejection. We present the case of a 52-year-old woman with high allosensitization (pre-transplantation panel reactive antibody level, 72%) who underwent successful orthotopic heart transplantation. Postoperatively, her acute antibody-mediated rejection with concomitant cellular rejection was successfully treated with low-dose rituximab. The patient died 5 months later because of multiple other medical problems. The present case suggests a role for low-dose rituximab as therapy for antibody-mediated rejection in heart-transplant patients. PMID:23304051

  18. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition.

    PubMed

    Green, M R; Couchman, J R

    1985-09-01

    Two methods have been used to examine epidermal growth factor (EGF) receptor distribution in human scalp and foreskin. The first employed [125I]EGF viable explants and autoradiography to determine the EGF binding pattern while the second used a monoclonal antibody to the human EGF receptor to map the distribution on frozen skin sections of an extracellular epitope on the EGF receptor. The [125I]EGF binding experiments showed accessible, unoccupied EGF receptors to be present on the epidermal basal cells (with reduced binding to spinous cells), the basal cells of the hair shaft and sebaceous gland, the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing presumptive cortex cells, excluding the medulla, lying around and above the upper dermal papilla of anagen hair follicles, epithelial cells around the lower dermal papilla region, and in some tissue samples the cell margins of the viable differentiating layers of the epidermis. In a control study, to clarify whether EGF-R1 could recognize molecules unrelated to the EGF receptor, the EGF binding and EGF-R1 recognition profiles were compared on cultures of SVK14 cells, a SV40 transformed human keratinocyte cell line. EGF binding and EGF-R1 monoclonal antibody distribution on these cells was found to be similar, indicating that, at least for SVK14 cells, EGF-R1 binding provides a reliable marker for EGF binding. Explanations for the discrepancies between these two methods for determining EGF receptor distribution in human skin are discussed, including the possibility that latent EGF receptors, unable to bind [125I]EGF, may be present in some differentiating epithelial compartments. PMID:2411822

  19. Procedures for Sxs antigen detection by antibody-mediated cytotoxicity tests. A comparative analysis.

    PubMed

    Sánchez, A; Jiménez, R; Burgos, M; Díaz de la Guardia, R

    1994-11-01

    Biological reagents used in the serological detection of Sxs antigen by antibody-mediated cytotoxicity tests were compared in order to optimize the method. Our analyses showed that: (a) red cell-free spleen cells are the best target cells, (b) rabbit serum used as the complement source should be obtained from females, and absorbed with female spleen cells before use, (c) antiserum obtained by immunizing females with repeated injections of syngenic male spleen cells provides the highest anti-Sxs antibody titer, and (d) of the different biological fluids investigated, testis supernatant has highest concentration of Sxs antigen. PMID:7836542

  20. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  1. Expanding the antibody-mediated component of plasma cell-rich acute rejection: A case series

    PubMed Central

    Uppin, M. S.; Gudithi, S.; Taduri, G.; Prayaga, A. K.; Raju, S. B.

    2016-01-01

    Renal allograft rejection is mediated by T-cells (T-cell mediated rejection) or by donor-specific antibodies (DSAs) (antibody mediated rejection, ABMR). Plasma cell-rich acute rejection (PCAR) is a unique entity due to its peculiar morphology and poor prognostic behavior. All allograft biopsies done at our center from January 2013 to October 2014 were reviewed, and seven were identified with a diagnosis of PCAR with antibody mediated rejection (ABMR). The allograft biopsies were classified as per the Banff 2007 schema. Immunohistochemistry with C4d, SV 40, CD3, CD20, CD138, kappa and lambda light chain was performed. Total 210 allograft biopsies were performed in the study period of which seven biopsies (3.3%) were diagnosed as PCAR with ABMR. All these were late ABMRs (more than 6 months) with median posttransplant duration of 17 months. The allograft biopsy showed features of PCAR along with glomerulitis, peritubular capillaritis, and positive C4d. DSA was positive in six patients. All the patients were treated with standard therapeutic measures of acute cellular rejection (ACR) and ABMR including steroids, plasma exchange, rituximab and intravenous immunoglobulins. All the patients had persistent graft dysfunction or graft loss on follow-up. PMID:27194831

  2. Prevention trumps treatment of antibody-mediated transplant rejection

    PubMed Central

    Knechtle, Stuart J.; Kwun, Jean; Iwakoshi, Neal

    2010-01-01

    Belying the spectacular success of solid organ transplantation and improvements in immunosuppressive therapy is the reality that long-term graft survival rates remain relatively unchanged, in large part due to chronic and insidious alloantibody-mediated graft injury. Half of heart transplant recipients develop chronic rejection within 10 years — a daunting statistic, particularly for young patients expecting to achieve longevity by enduring the rigors of a transplant. The current immunosuppressive pharmacopeia is relatively ineffective in preventing late alloantibody-associated chronic rejection. In this issue of the JCI, Kelishadi et al. report that preemptive deletion of B cells prior to heart transplantation in cynomolgus monkeys, in addition to conventional posttransplant immunosuppressive therapy with cyclosporine, markedly attenuated not only acute graft rejection but also alloantibody elaboration and chronic graft rejection. The success of this preemptive strike implies a central role for B cells in graft rejection, and this approach may help to delay or prevent chronic rejection after solid organ transplantation. PMID:20335653

  3. Impaired antibody-dependent cellular cytotoxicity mediated by herceptin in patients with gastric cancer.

    PubMed

    Kono, Koji; Takahashi, Akihiro; Ichihara, Fumiko; Sugai, Hidemitsu; Fujii, Hideki; Matsumoto, Yoshirou

    2002-10-15

    The humanized monoclonal antibody Herceptin, which specifically targets HER-2/neu, exhibits growth inhibitory activity against HER-2/neu-overexpressing tumors and is approved for therapeutic use with proved survival benefit in patients with HER-2/neu-positive breast cancer. In the present study, we investigated whether Herceptin could affect the HER-2/neu-overexpressing gastric cancer cells based on antibody-dependent cell-mediated cytotoxicity (ADCC) and compared immune effector cells from gastric cancer patients with normal individuals on ADCC. HER-2/neu-expressing gastric cancer cells could be killed by Herceptin-mediated ADCC and the Herceptin-induced ADCC correlated with the degree of HER-2/neu expression on the gastric cancer cells. However, the Herceptin-mediated ADCC was significantly impaired in peripheral blood mononuclear cells from advanced disease patients (n = 10) compared with that in early disease (n = 12; P = 0.04) or healthy individuals (n = 10, P = 0.02). Moreover, natural killer (NK) cells purified from patients with advanced disease indicated less Herceptin-mediated ADCC in comparison with that from healthy donors (P = 0.04), whereas monocytes purified from the patients showed an almost equal amount of Herceptin-mediated ADCC in comparison with that from healthy individuals, indicating that NK cell dysfunction contributed to the impaired Herceptin-mediated ADCC in gastric cancer patients. Furthermore, the NK-cell dysfunction on Herceptin-mediated ADCC correlated with the down-regulation of CD16zeta expression in the patients, and interleukin 2 ex vivo treatment of NK cells could restore the impairment of Herceptin-mediated ADCC, concomitant to the normalization of the expression of CD16zeta molecules. Thus, some modalities such as interleukin 2 treatment aimed at reversing NK dysfunction may be necessary for successful Herceptin treatment of gastric cancer. PMID:12384543

  4. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection

    SciTech Connect

    Pierson, Theodore C. . E-mail: piersontc@mail.nih.gov; Sanchez, Melissa D.; Puffer, Bridget A.; Ahmed, Asim A.; Geiss, Brian J.; Valentine, Laura E.; Altamura, Louis A.; Diamond, Michael S.; Doms, Robert W. . E-mail: doms@mail.med.upenn.edu

    2006-03-01

    West Nile virus (WNV) is a neurotropic flavivirus within the Japanese encephalitis antigenic complex that is responsible for causing West Nile encephalitis in humans. The surface of WNV virions is covered by a highly ordered icosahedral array of envelope proteins that is responsible for mediating attachment and fusion with target cells. These envelope proteins are also primary targets for the generation of neutralizing antibodies in vivo. In this study, we describe a novel approach for measuring antibody-mediated neutralization of WNV infection using virus-like particles that measure infection as a function of reporter gene expression. These reporter virus particles (RVPs) are produced by complementation of a sub-genomic replicon with WNV structural proteins provided in trans using conventional DNA expression vectors. The precision and accuracy of this approach stem from an ability to measure the outcome of the interaction between antibody and viral antigens under conditions that satisfy the assumptions of the law of mass action as applied to virus neutralization. In addition to its quantitative strengths, this approach allows the production of WNV RVPs bearing the prM-E proteins of different WNV strains and mutants, offering considerable flexibility for the study of the humoral immune response to WNV in vitro. WNV RVPs are capable of only a single round of infection, can be used under BSL-2 conditions, and offer a rapid and quantitative approach for detecting virus entry and its inhibition by neutralizing antibody.

  5. TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination

    PubMed Central

    Oh, Jason Z.; Ravindran, Rajesh; Chassaing, Benoit; Carvalho, Frederic A.; Maddur, Mohan S.; Bower, Maureen; Hakimpour, Paul; Gill, Kiran P.; Nakaya, Helder I.; Yarovinsky, Felix; Sartor, R. Balfour; Gewirtz, Andrew T.; Pulendran, Bali

    2014-01-01

    SUMMARY Systems biological analysis of immunity to the trivalent inactivated influenza vaccine (TIV) in humans revealed a correlation between early expression of TLR5 and the magnitude of the antibody response. Vaccination of Trl5−/− mice resulted in reduced antibody titers and lower frequencies of plasma cells, demonstrating a role for TLR5 in immunity to TIV. This was due to a failure to sense host microbiota. Thus, antibody responses in germ-free or antibiotic-treated mice were impaired, but restored by oral reconstitution with a flagellated, but not aflagellated, strain of E. coli. TLR5-mediated sensing of flagellin promoted plasma cell differentiation, directly, and by stimulating lymph node macrophages to produce plasma cell growth factors. Finally, TLR5-mediated sensing of the microbiota also impacted antibody responses to the inactivated polio vaccine, but not to adjuvanted vaccines or the live-attenuated yellow fever vaccine. These results reveal an unappreciated role for gut microbiota in promoting immunity to vaccination. PMID:25220212

  6. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination.

    PubMed

    Oh, Jason Z; Ravindran, Rajesh; Chassaing, Benoit; Carvalho, Frederic A; Maddur, Mohan S; Bower, Maureen; Hakimpour, Paul; Gill, Kiran P; Nakaya, Helder I; Yarovinsky, Felix; Sartor, R Balfour; Gewirtz, Andrew T; Pulendran, Bali

    2014-09-18

    Systems biological analysis of immunity to the trivalent inactivated influenza vaccine (TIV) in humans revealed a correlation between early expression of TLR5 and the magnitude of the antibody response. Vaccination of Trl5(-/-) mice resulted in reduced antibody titers and lower frequencies of plasma cells, demonstrating a role for TLR5 in immunity to TIV. This was due to a failure to sense host microbiota. Thus, antibody responses in germ-free or antibiotic-treated mice were impaired, but restored by oral reconstitution with a flagellated, but not aflagellated, strain of E. coli. TLR5-mediated sensing of flagellin promoted plasma cell differentiation directly and by stimulating lymph node macrophages to produce plasma cell growth factors. Finally, TLR5-mediated sensing of the microbiota also impacted antibody responses to the inactivated polio vaccine, but not to adjuvanted vaccines or the live-attenuated yellow fever vaccine. These results reveal an unappreciated role for gut microbiota in promoting immunity to vaccination. PMID:25220212

  7. Mediation of macrophage cytolytic and phagocytic activities by antibodies of different classes and class-specific Fc-receptors.

    PubMed

    Walker, W S

    1977-08-01

    The classes of antibodies that mediate the phagocytosis and cytolysis of 51Cr-labeled chicken erythrocytes by IC-21 macrophages, an established line of mouse peritoneal macrophages, were identified. The phagocytic activity of IC-21 macrophages, as determined by a functional inhibition assay with mouse myeloma proteins, depended mainly on IgM and IgG2a antibodies and to a lesser extent on IgG2b antibodies. Extracellular cytolysis of target cells was mediated solely by IgG2b antibodies. These results correlate with the previously documented specificities of discrete Fc-receptors for IgG2a and IgG2b immunoglobulins on IC-21 cells. Thus, phagocytosis and cytolysis appear to be mediated by antibodies of different classes operating through separate and distinct sites on the surface of IC-21 macrophages. PMID:886183

  8. Antidotes, antibody-mediated immunity and the future of pharmaceutical product development

    PubMed Central

    Caoili, Salvador Eugenio C.

    2013-01-01

    If new scientific knowledge is to be more efficiently generated and applied toward the advancement of health, human safety must be more effectively addressed in the conduct of research. Given the present difficulties of accurately predicting biological outcomes of novel interventions in vivo, the imperative of human safety suggests the development of novel pharmaceutical products in tandem with their prospective antidotes in anticipation of possible adverse events, to render the risks of initial clinical trials more acceptable from a regulatory standpoint. Antibody-mediated immunity provides a generally applicable mechanistic basis for developing antidotes to both biologicals and small-molecule drugs (such that antibodies may serve as antidotes to pharmaceutical agents as a class including other antibodies) and also for the control and prevention of both infectious and noninfectious diseases via passive or active immunization. Accordingly, the development of prophylactic or therapeutic passive-immunization strategies using antipeptide antibodies is a plausible prelude to the development of corresponding active-immunization strategies using peptide-based vaccines. In line with this scheme, global proliferation of antibody- and vaccine-production technologies, especially those that obviate dependence on the cold chain for storage and transport of finished products, could provide geographically distributed breakout capability against emerging and future health challenges. PMID:23291934

  9. Integrin receptors on tumor cells facilitate NK cell-mediated antibody-dependent cytotoxicity.

    PubMed

    Anikeeva, Nadia; Steblyanko, Maria; Fayngerts, Svetlana; Kopylova, Natalya; Marshall, Deborah J; Powers, Gordon D; Sato, Takami; Campbell, Kerry S; Sykulev, Yuri

    2014-08-01

    NK cells that mediate ADCC play an important role in tumor-specific immunity. We have examined factors limiting specific lysis of tumor cells by CD16.NK-92 cells induced by CNTO 95LF antibodies recognizing αV integrins that are overexpressed on many tumor cells. Although all tested tumor cells were killed by CD16.NK-92 effectors in the presence of the antibodies, the killing of target cells with a low level of ICAM-1 expression revealed a dramatic decrease in their specific lysis at high antibody concentration, revealing a dose limiting effect. A similar effect was also observed with primary human NK cells. The effect was erased after IFN-γ treatment of tumor cells resulting in upregulation of ICAM-1. Furthermore, killing of the same tumor cells induced by Herceptin antibody was significantly impaired in the presence of CNTO 95Ala-Ala antibody variant that blocks αV integrins but is incapable of binding to CD16. These data suggest that αV integrins on tumor cells could compensate for the loss of ICAM-1 molecules, thereby facilitating ADCC by NK cells. Thus, NK cells could exercise cytolytic activity against ICAM-1 deficient tumor cells in the absence of proinflammatory cytokines, emphasizing the importance of NK cells in tumor-specific immunity at early stages of cancer. PMID:24810893

  10. Antidotes, antibody-mediated immunity and the future of pharmaceutical product development.

    PubMed

    Caoili, Salvador Eugenio C

    2013-02-01

    If new scientific knowledge is to be more efficiently generated and applied toward the advancement of health, human safety must be more effectively addressed in the conduct of research. Given the present difficulties of accurately predicting biological outcomes of novel interventions in vivo, the imperative of human safety suggests the development of novel pharmaceutical products in tandem with their prospective antidotes in anticipation of possible adverse events, to render the risks of initial clinical trials more acceptable from a regulatory standpoint. Antibody-mediated immunity provides a generally applicable mechanistic basis for developing antidotes to both biologicals and small-molecule drugs (such that antibodies may serve as antidotes to pharmaceutical agents as a class including other antibodies) and also for the control and prevention of both infectious and noninfectious diseases via passive or active immunization. Accordingly, the development of prophylactic or therapeutic passive-immunization strategies using antipeptide antibodies is a plausible prelude to the development of corresponding active-immunization strategies using peptide-based vaccines. In line with this scheme, global proliferation of antibody- and vaccine-production technologies, especially those that obviate dependence on the cold chain for storage and transport of finished products, could provide geographically distributed breakout capability against emerging and future health challenges. PMID:23291934

  11. DEATH OF INTERMEDIOLATERAL SPINAL CORD NEURONS FOLLOWS SELECTIVE COMPLEMENT-MEDIATED DESTRUCTION OF PERIPHERAL PREGANGLIONIC SYMPATHETIC TERMINALS BY ACETYLCHOLINESTERASE ANTIBODIES

    EPA Science Inventory

    Systemically administered antibodies to acetylcholinesterase (ACHE) cause a selective complement-mediated destruction of preganglionic sympathetic nerve terminals. o assess neurologic integrity, rats given murine monoclonal AChE-antibodies or normal mouse IgG (1.5 mg,i.v.) were e...

  12. Diagnosis and Management of Antibody-Mediated Rejection: Current Status and Novel Approaches

    PubMed Central

    Djamali, A; Kaufman, D B; Ellis, T M; Zhong, W; Matas, A; Samaniego, M

    2014-01-01

    Advances in multimodal immunotherapy have significantly reduced acute rejection rates and substantially improved 1-year graft survival following renal transplantation. However, long-term (10-year) survival rates have stagnated over the past decade. Recent studies indicate that antibody-mediated rejection (ABMR) is among the most important barriers to improving long-term outcomes. Improved understanding of the roles of acute and chronic ABMR has evolved in recent years following major progress in the technical ability to detect and quantify recipient anti-HLA antibody production. Additionally, new knowledge of the immunobiology of B cells and plasma cells that pertains to allograft rejection and tolerance has emerged. Still, questions regarding the classification of ABMR, the precision of diagnostic approaches, and the efficacy of various strategies for managing affected patients abound. This review article provides an overview of current thinking and research surrounding the pathophysiology and diagnosis of ABMR, ABMR-related outcomes, ABMR prevention and treatment, as well as possible future directions in treatment. This review addresses the spectrum of antibody-mediated rejection after kidney transplantation, including its pathogenesis, risk factors, phenotypes, the revised Banff 2013 classification, treatment options, and outcomes. Also see meeting report by Haas et al on page 272. PMID:24401076

  13. Specialized proresolving mediators enhance human B cell differentiation to antibody secreting cells1

    PubMed Central

    Ramon, Sesquile; Gao, Fei; Serhan, Charles N.; Phipps, Richard P.

    2012-01-01

    The resolution of inflammation is an active and dynamic process critical in maintaining homeostasis. Newly identified lipid mediators have been recognized as key players during the resolution phase. These specialized proresolving mediators (SPM) constitute separate families that include lipoxins, resolvins, protectins and maresins each derived from essential polyunsaturated fatty acids. New results demonstrate that SPM regulate aspects of the immune response, including reduction of neutrophil infiltration, decreased T cell cytokine production and stimulation of macrophage phagocytic activity. The actions of SPM on B lymphocytes remain unknown. Our study shows for the first time that the novel SPM 17-hydroxydosahexaenoic acid (17-HDHA), resolvin D1 (RvD1) and protectin D1 (PD1) are present in the spleen. Interestingly, 17-HDHA, RvD1 but not PD1, strongly increase activated human B cell IgM and IgG production. Furthermore, increased antibody production by 17-HDHA is due to augmented B cell differentiation towards a CD27+CD38+ antibody-secreting cell phenotype. 17-HDHA did not affect proliferation and was non-toxic to cells. Increase of plasma cell differentiation and antibody production supports the involvement of SPM during the late stages of inflammation and pathogen clearance. The present study provides new evidence for SPM activity in the humoral response. These new findings highlight the potential applications of SPM as endogenous and non-toxic adjuvants, and as anti-inflammatory therapeutic molecules. PMID:22711890

  14. Antibody-mediated immune suppression is improved when blends of anti-RBC monoclonal antibodies are used in mice.

    PubMed

    Bernardo, Lidice; Amash, Alaa; Marjoram, Danielle; Lazarus, Alan H

    2016-08-25

    Although the prevention of hemolytic disease of the fetus and newborn is highly effective using polyclonal anti-D, a recombinant alternative is long overdue. Unfortunately, anti-D monoclonal antibodies have been, at best, disappointing. To determine the primary attribute defining an optimal antibody, we assessed suppression of murine red blood cell (RBC) immunization by single-monoclonal antibodies vs defined blends of subtype-matched antibodies. Allogeneic RBCs expressing the HOD antigen (hen egg lysozyme [HEL]-ovalbumin-human transmembrane Duffy(b)) were transfused into naïve mice alone or together with selected combinations of HEL-specific antibodies, and the resulting suppressive effect was assessed by evaluating the antibody response. Polyclonal HEL antibodies dramatically inhibited the antibody response to the HOD antigen, whereas single-monoclonal HEL antibodies were less effective despite the use of saturating doses. A blend of monoclonal HEL-specific antibodies reactive with different HEL epitopes significantly increased the suppressive effect, whereas a blend of monoclonal antibodies that block each other's binding to the HEL protein did not increase suppression. In conclusion, these data show that polyclonal antibodies are superior to monoclonal antibodies at suppressing the immune response to the HOD cells, a feature that can be completely recapitulated using monoclonal antibodies to different epitopes. PMID:27330002

  15. Cross-neutralization of influenza A viruses mediated by a single antibody loop.

    PubMed

    Ekiert, Damian C; Kashyap, Arun K; Steel, John; Rubrum, Adam; Bhabha, Gira; Khayat, Reza; Lee, Jeong Hyun; Dillon, Michael A; O'Neil, Ryann E; Faynboym, Aleksandr M; Horowitz, Michael; Horowitz, Lawrence; Ward, Andrew B; Palese, Peter; Webby, Richard; Lerner, Richard A; Bhatt, Ramesh R; Wilson, Ian A

    2012-09-27

    Immune recognition of protein antigens relies on the combined interaction of multiple antibody loops, which provide a fairly large footprint and constrain the size and shape of protein surfaces that can be targeted. Single protein loops can mediate extremely high-affinity binding, but it is unclear whether such a mechanism is available to antibodies. Here we report the isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3. X-ray and electron microscopy structures show that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein. Recognition of the haemagglutinin receptor-binding site is dominated by a single heavy-chain complementarity-determining region 3 loop, with minor contacts from heavy-chain complementarity-determining region 1, and is sufficient to achieve nanomolar binding with a minimal footprint. Thus, binding predominantly with a single loop can allow antibodies to target small, conserved functional sites on otherwise hypervariable antigens. PMID:22982990

  16. Current and future challenges in therapy for antibody-mediated rejection.

    PubMed

    Nair, Nandini; Ball, Timothy; Uber, Patricia A; Mehra, Mandeep R

    2011-06-01

    Antibody-mediated rejection (AMR) continues to present a challenge for the survival of the cardiac allograft. AMR appears to be on the rise, likely secondary to changing trends in clinical practice, including selection of patients for transplantation on mechanical circulatory support and development of more effective combinations of immunosuppressive drugs against acute cellular rejection. Most current strategies are aimed at treating acute AMR, but the treatment of chronic AMR is still not well defined. Clinically, AMR can often be more severe than cellular rejection and more difficult to treat, often not responding to typical protocols of increased immunosuppression. Complex steps involved in the antibody response allows for several potential targets for therapeutic intervention, including suppression of T and B cells, elimination of circulating antibodies, and inhibition of residual antibodies. Existing evidence suggests a multiregimen approach is the best option. Sustenance of accommodation and induction of tolerance could be viewed as viable options if adequate immune surveillance can be achieved in this setting. This review discusses the challenges in treating AMR and provides a critical analysis of current and possible future therapies. PMID:21474341

  17. De novo donor-specific anti-HLA antibodies mediated rejection in liver-transplant patients.

    PubMed

    Del Bello, Arnaud; Congy-Jolivet, Nicolas; Danjoux, Marie; Muscari, Fabrice; Lavayssière, Laurence; Esposito, Laure; Cardeau-Desangles, Isabelle; Guitard, Joëlle; Dörr, Gaëlle; Milongo, David; Suc, Bertrand; Duffas, Jean Pierre; Alric, Laurent; Bureau, Christophe; Guilbeau-Frugier, Céline; Rostaing, Lionel; Kamar, Nassim

    2015-12-01

    The incidence and consequences of de novo donor-specific anti-HLA antibodies (DSAs) after liver transplantation (LT) are not well known. We investigated the incidence, risk factors, and complications associated with de novo DSAs in this setting. A total of 152 de novo liver-transplant patients, without preformed anti-HLA DSAs, were tested for anti-HLA antibodies, with single-antigen bead technology, before, at transplantation, at 1, 3, 6 and 12 months after transplantation, and thereafter annually and at each time they presented with increased liver-enzyme levels until the last follow-up, that is, 34 (1.5-77) months. Twenty-one patients (14%) developed de novo DSAs. Of these, five patients had C1q-binding DSAs (24%). Younger age, low exposure to calcineurin inhibitors, and noncompliance were predictive factors for de novo DSA formation. Nine of the 21 patients (43%) with de novo DSAs experienced an acute antibody-mediated rejection (AMR). Positive C4d staining was more frequently observed in liver biopsies of patients with AMR (9/9 vs. 1/12, P < 0.0001). Eight patients received a B-cell targeting therapy, and one patient received polyclonal antibodies. Only one patient required retransplantation. Patient- and graft-survival rates did not differ between patients with and without DSAs. In conclusion, liver-transplant patients with liver abnormalities should be screened for DSAs and AMR. PMID:26303035

  18. A refractory case of subclinical antibody-mediated rejection due to anti-HLA-DQ antibody in a kidney transplant patient.

    PubMed

    Fujimoto, Toshinari; Nakada, Yasuyuki; Yamamoto, Izumi; Kobayashi, Akimitsu; Tanno, Yudo; Yamada, Hiroki; Miki, Jun; Ohkido, Ichiro; Tsuboi, Nobuo; Yamamoto, Hiroyasu; Yokoo, Takashi

    2015-07-01

    We herein report a refractory case of subclinical antibody-mediated rejection (AMR) due to anti-HLA-DQ antibody in a kidney transplant patient. A 45-year-old man was admitted for a protocol biopsy; he had a serum creatinine (S-Cr) level of 1.8 mg/dL 3 years following primary kidney transplantation. Histological examination revealed moderate to severe inflammatory cell infiltration in the peritubular capillaries. Thorough laboratory examination showed that the patient had donor-specific antibodies (DSAbs) to DR9 and DQ9. Considering both the histological and laboratory findings, we diagnosed acute antibody-mediated rejection. The patient underwent 3 days of consecutive steroid pulse therapy, intravenous immunoglobulin (IVIG), and plasma exchange. We also administered rituximab (200 mg/body). Six months after the treatment, a second allograft biopsy revealed the progression of interstitial fibrosis and tubular atrophy and persistence of mild peritubular capillaritis. Further analysis showed that the anti-DR9 antibodies had disappeared, but that the mean fluorescence intensity value of the anti-DQ9 antibodies had increased. Therefore, we repeated the plasma exchange and IVIG. Allograft function was stable throughout the course of treatment, and the S-Cr level remained at 1.8 mg/dL. This case report demonstrates the difficulty of treating AMR due to the presence of anti-DQ DSAbs and the necessity for subsequent therapies in refractory cases. PMID:26031594

  19. Role of antibody dependent cell mediated cytotoxicity (ADCC) in Sm-p80-mediated protection against Schistosoma mansoni

    PubMed Central

    Torben, Workineh; Ahmad, Gul; Zhang, Weidong; Nash, Stewart; Le, Loc; Karmakar, Souvik; Siddiqui, Afzal A.

    2012-01-01

    Schistosomiasis is a major health problem in the developing world and for international travelers to the endemic countries. Existing strategies to control schistosomiasis have had limited successes so far. The addition of an effective vaccine in existing control measures would be greatly beneficial in reducing the impact of the disease. In this regard, Sm-p80 mediated protection against intestinal schistosomiasis caused by Schistosoma mansoni has been observed to be promising in two animal models of infection and disease. In this study, the role of antibody dependent cell mediated cytotoxcity (ADCC) was deciphered in Sm-p80-mediated protection especially in the elimination of lung stage schistosomula. This was achieved using lung lavage cells and lung cells that were isolated from mice immunized with and without Sm-p80 formulated in a recombinant vaccine formulation. Significant differences were observed in cytotoxicity assays using immune sera with the lung lavage cells which showed 51% more killing of schistosomula and elevated levels of nitric oxide in the supernatants were detected compared to controls. PMID:23000221

  20. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) -Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART)

    PubMed Central

    Jensen, Sanne Skov; Fomsgaard, Anders; Borggren, Marie; Tingstedt, Jeanette Linnea; Gerstoft, Jan; Kronborg, Gitte; Rasmussen, Line Dahlerup; Pedersen, Court; Karlsson, Ingrid

    2015-01-01

    Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated the ability of effector cells and antibodies to mediate ADCC separately and in combination using the ADCC-PanToxiLux assay. The ability of the peripheral blood mononuclear cells (PBMCs) to mediate ADCC was significantly higher in individuals who had been treated with ART before seroconversion, compared to the individuals initiating ART at a low CD4+ T cell count (<350 cells/μl blood) and the ART-naïve individuals. The frequency of CD16 expressing natural killer (NK) cells correlated with both the duration of ART and Granzyme B (GzB) activity. In contrast, the plasma titer of antibodies mediating ADCC declined during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART. PMID:26696395

  1. Report from a consensus conference on antibody-mediated rejection in heart transplantation

    PubMed Central

    Kobashigawa, Jon; Crespo-Leiro, Maria G.; Ensminger, Stephan M.; Reichenspurner, Hermann; Angelini, Annalisa; Berry, Gerald; Burke, Margaret; Czer, Lawrence; Hiemann, Nicola; Kfoury, Abdallah G.; Mancini, Donna; Mohacsi, Paul; Patel, Jignesh; Pereira, Naveen; Platt, Jeffrey L.; Reed, Elaine F.; Reinsmoen, Nancy; Rodriguez, E. Rene; Rose, Marlene L.; Russell, Stuart D.; Starling, Randy; Suciu-Foca, Nicole; Tallaj, Jose; Taylor, David O.; Van Bakel, Adrian; West, Lori; Zeevi, Adriana; Zuckermann, Andreas

    2012-01-01

    BACKGROUND The problem of AMR remains unsolved because standardized schemes for diagnosis and treatment remains contentious. Therefore, a consensus conference was organized to discuss the current status of antibody-mediated rejection (AMR) in heart transplantation. METHODS The conference included 83 participants (transplant cardiologists, surgeons, immunologists and pathologists) representing 67 heart transplant centers from North America, Europe, and Asia who all participated in smaller break-out sessions to discuss the various topics of AMR and attempt to achieve consensus. RESULTS A tentative pathology diagnosis of AMR was established, however, the pathologist felt that further discussion was needed prior to a formal recommendation for AMR diagnosis. One of the most important outcomes of this conference was that a clinical definition for AMR (cardiac dysfunction and/or circulating donor-specific antibody) was no longer believed to be required due to recent publications demonstrating that asymptomatic (no cardiac dysfunction) biopsy-proven AMR is associated with subsequent greater mortality and greater development of cardiac allograft vasculopathy. It was also noted that donor-specific antibody is not always detected during AMR episodes as the antibody may be adhered to the donor heart. Finally, recommendations were made for the timing for specific staining of endomyocardial biopsy specimens and the frequency by which circulating antibodies should be assessed. Recommendations for management and future clinical trials were also provided. CONCLUSIONS The AMR Consensus Conference brought together clinicians, pathologists and immunologists to further the understanding of AMR. Progress was made toward a pathology AMR grading scale and consensus was accomplished regarding several clinical issues. PMID:21300295

  2. HLA-C antibodies in women with recurrent miscarriage suggests that antibody mediated rejection is one of the mechanisms leading to recurrent miscarriage.

    PubMed

    Meuleman, T; van Beelen, E; Kaaja, R J; van Lith, J M M; Claas, F H J; Bloemenkamp, K W M

    2016-08-01

    HLA-C is the only polymorphic classical HLA I antigen expressed on trophoblast cells. It is known that higher incidence of C4d deposition on trophoblast cells is present in women with recurrent miscarriage. C4d is a footprint of antibody-mediated classical complement activation. Therefore, this study hypothesize that antibodies against HLA-C may play a role in the occurrence of unexplained consecutive recurrent miscarriage. Present case control study compared the incidence of HLA-C specific antibodies in 95 women with at least three consecutive miscarriages and 105 women with uneventful pregnancy. In the first trimester of the next pregnancy, presence and specificity of HLA antibodies were determined and their complement fixing ability. The incidence of HLA antibodies was compared with uni- and multivariate logistic regression models adjusting for possible confounders. Although in general a higher incidence of HLA antibodies was found in women with recurrent miscarriage 31.6% vs. in control subjects 9.5% (adjusted OR 4.3, 95% CI 2.0-9.5), the contribution of antibodies against HLA-C was significantly higher in women with recurrent miscarriage (9.5%) compared to women with uneventful pregnancy (1%) (adjusted OR 11.0, 95% CI 1.3-89.0). In contrast to the control group, HLA-C antibodies in the recurrent miscarriage group were more often able to bind complement. The higher incidence of antibodies specific for HLA-C in women with recurrent miscarriage suggests that HLA-C antibodies may be involved in the aetiology of unexplained consecutive recurrent miscarriage. PMID:27172837

  3. Protein disulfide isomerases are antibody targets during immune-mediated tumor destruction

    PubMed Central

    Fonseca, Catia; Soiffer, Robert; Ho, Vincent; Vanneman, Matthew; Jinushi, Masahisa; Ritz, Jerome; Neuberg, Donna; Stone, Richard; DeAngelo, Dan

    2009-01-01

    The identification of cancer antigens that contribute to transformation and are linked with immune-mediated tumor destruction is an important goal for immunotherapy. Toward this end, we screened a murine renal cell carcinoma cDNA expression library with sera from mice vaccinated with irradiated tumor cells engineered to secrete granulocyte macrophage colony-stimulating factor (GM-CSF). Multiple nonmutated, overexpressed proteins that function in tumor cell migration, protein/nucleic acid homeostasis, metabolism, and stress responses were detected. Among these, the most frequently recognized clone was protein disulfide isomerase (PDI). High titer antibodies to human PDI were similarly induced in an acute myeloid leukemia patient who achieved a complete response after vac-cination with irradiated, autologous GM-CSF–secreting tumor cells in the setting of nonmyeloablative allogeneic bone marrow transplantation. Moreover, ERp5, a closely related disulfide isomerase involved in major histocompatibility complex (MHC) class I chain-related protein A (MICA) shedding, also evoked potent humoral reactions in diverse solid and hematologic malignancy patients who responded to GM-CSF–secreting tumor cell vaccines or antibody blockade of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4). Together, these findings reveal the unexpected immunogenicity of PDIs and raise the possibility that these gene products might serve as targets for therapeutic monoclonal antibodies. PMID:19008459

  4. Compromised NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Chronic SIV/SHIV Infection

    PubMed Central

    He, Xuan; Li, Dan; Luo, Zhenwu; Liang, Hua; Peng, Hong; Zhao, Yangyang; Wang, Nidan; Liu, Donghua; Qin, Chuan; Wei, Qiang; Yan, Huimin; Shao, Yiming

    2013-01-01

    Increasing evidence indicates that antibody-dependent cellular cytotoxicity (ADCC) contributes to the control of HIV/SIV infection. However, little is known about the ADCC function of natural killer (NK) cells in non-human primate model. Here we demonstrated that ADCC function of NK cells was significantly compromised in chronic SIV/SHIV infection, correlating closely with the expression of FcγRIIIa receptor (CD16) on NK cells. CD32, another class of IgG Fc receptors, was identified on NK cells with higher expression in the infected macaques and the blockade of CD32 impacted the ability of NK cells to respond to antibody-coated target cells. The inhibition of matrix metalloproteases (MMPs), a group of enzymes normally involved in tissue/receptor remodeling, could restore NK cell-mediated ADCC with increased CD16 expression on macaque NK cells. These data offer a clearer understanding of NK cell-mediated ADCC in rhesus macaques, which will allow us to evaluate the ADCC repertoire arising from preclinical vaccination studies in non-human primates and inform us in the future design of effective HIV vaccination strategies. PMID:23424655

  5. Antibody-mediated neutralization of myelin-associated EphrinB3 accelerates CNS remyelination.

    PubMed

    Syed, Yasir A; Zhao, Chao; Mahad, Don; Möbius, Wiebke; Altmann, Friedrich; Foss, Franziska; Sentürk, Aycan; Acker-Palmer, Amparo; Lubec, Gert; Lilley, Kathryn; Franklin, Robin J M; Nave, Klaus-A; Kotter, Mark R N

    2016-02-01

    Remyelination in multiple sclerosis (MS) lesions often remains incomplete despite the presence of oligodendrocyte progenitor cells (OPCs). Amongst other factors, successful remyelination depends on the phagocytic clearance of myelin debris. However, the proteins in myelin debris that act as potent and selective inhibitors on OPC differentiation and inhibit CNS remyelination remain unknown. Here, we identify the transmembrane signalling protein EphrinB3 as important mediator of this inhibition, using a protein analytical approach in combination with a primary rodent OPC assay. In the presence of EphrinB3, OPCs fail to differentiate. In a rat model of remyelination, infusion of EphrinB3 inhibits remyelination. In contrast, masking EphrinB3 epitopes using antibodies promotes remyelination. Finally, we identify EphrinB3 in MS lesions and demonstrate that MS lesion extracts inhibit OPC differentiation while antibody-mediated masking of EphrinB3 epitopes promotes it. Our findings suggest that EphrinB3 could be a target for therapies aiming at promoting remyelination in demyelinating disease. PMID:26687980

  6. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection.

    PubMed

    Neilan, J G; Zsak, L; Lu, Z; Burrage, T G; Kutish, G F; Rock, D L

    2004-02-20

    Although antibody-mediated immune mechanisms have been shown to be important in immunity to ASF, it remains unclear what role virus neutralizing antibodies play in the protective response. Virus neutralizing epitopes have been identified on three viral proteins, p30, p54, and p72. To evaluate the role(s) of these proteins in protective immunity, pigs were immunized with baculovirus-expressed p30, p54, p72, and p22 from the pathogenic African swine fever virus (ASFV) isolate Pr4. ASFV specific neutralizing antibodies were detected in test group animals. Following immunization, animals were challenged with 10(4) TCID(50) of Pr4 virus. In comparison to the control group, test group animals exhibited a 2-day delay to onset of clinical disease and reduced viremia levels at 2 days postinfection (DPI); however, by 4 DPI, there was no significant difference between the two groups and all animals in both groups died between 7 and 10 DPI. These results indicate that neutralizing antibodies to these ASFV proteins are not sufficient for antibody-mediated protection. PMID:14980493

  7. Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets.

    PubMed

    Bandrick, Meggan; Ariza-Nieto, Claudia; Baidoo, Samuel K; Molitor, Thomas W

    2014-03-01

    Immunoglobulins and immune cells are critical components of colostral immunity; however, their transfer to and function in the neonate, especially maternal lymphocytes, is unclear. Cell-mediated and antibody-mediated immunity in sow blood and colostrum and piglet blood before (PS) and after (AS) suckling were assessed to investigate transfer and function of maternal immunity in the piglet. CD4, CD8, and γδ lymphocytes were found in sow blood and colostrum and piglet blood PS and AS; each had a unique T lymphocyte profile. Immunoglobulins were detected in sow blood, colostrum, and in piglet blood AS; the immunoglobulin profile of piglet serum AS mimicked that of sow serum. These results suggest selectivity in lymphocyte concentration into colostrum and subsequent lymphocyte transfer into the neonate, but that immunoglobulin transfer is unimpeded. Assessment of colostral natural killer activity and antigen-specific proliferation revealed that colostral cells are capable of influencing the innate and specific immune response of neonatal pigs. PMID:24252519

  8. Outcome of subclinical antibody-mediated rejection in kidney transplant recipients with preformed donor-specific antibodies.

    PubMed

    Loupy, A; Suberbielle-Boissel, C; Hill, G S; Lefaucheur, C; Anglicheau, D; Zuber, J; Martinez, F; Thervet, E; Méjean, A; Charron, D; Duong van Huyen, J P; Bruneval, P; Legendre, C; Nochy, D

    2009-11-01

    This study describes clinical relevance of subclinical antibody-mediated rejection (SAMR) in a cohort of 54 DSA-positive kidney transplant recipients receiving a deceased donor. In 3 months screening biopsies, 31.1% of patients met the criteria of SAMR. A total of 48.9% had an incomplete form of SAMR (g+/ptc+/C4d-negative) whereas 20% had no humoral lesions. Patients with SAMR at 3 months had at 1 year: a higher C4d score, ptc score, and arteriosclerosis score, higher rate of IFTA (100% vs. 33.3%, p < 0.01) and a higher rate of transplant glomerulopathy (43% vs. 0%, p = 0.02) compared to patients without 3-month SAMR. Patients with SAMR at 3 months exhibited at 1 year a higher class II MFImax-DSA and a lower mGFR compared to patients without SAMR (39.2 +/- 13.9 vs. 61.9 +/- 19.2 mL/min/1.73 m(2) respectively, p < 0.01). The group of patients with C4d-negative SAMR at 3 months developed more ptc and IFTA lesions, and lower GFR at 1 year in comparison to biopsies without humoral lesions. SAMR is a frequent entity in KTR with preexisting DSAs and promotes subsequent GFR impairment and development of chronic AMR. C4d-negative SAMR patients displayed an intermediate course between the no-SAMR group and the C4d+ SAMR group. Screening biopsies may be useful to recognize patients more likely to develop SAMR. PMID:19775320

  9. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy

    PubMed Central

    Wang, Wei; Erbe, Amy K.; Hank, Jacquelyn A.; Morris, Zachary S.; Sondel, Paul M.

    2015-01-01

    Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be “specifically activated” through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies. PMID:26284063

  10. Antibody-mediated delivery of IL-10 inhibits the progression of established collagen-induced arthritis

    PubMed Central

    Trachsel, Eveline; Bootz, Frank; Silacci, Michela; Kaspar, Manuela; Kosmehl, Hartwig; Neri, Dario

    2007-01-01

    The antibody-mediated targeted delivery of cytokines to sites of disease is a promising avenue for cancer therapy, but it is largely unexplored for the treatment of chronic inflammatory conditions. Using both radioactive and fluorescent techniques, the human monoclonal antibodies L19 and G11 (specific to two markers of angiogenesis that are virtually undetectable in normal adult tissues) were found to selectively localize at arthritic sites in the murine collagen-induced model of rheumatoid arthritis following intravenous (i.v.) administration. The same animal model was used to study the therapeutic action of the L19 antibody fused to the cytokines IL-2, tumour necrosis factor (TNF) and IL-10. Whereas L19–IL-2 and L19–TNF treatment led to increased arthritic scores and paw swellings, the fusion protein L19–IL-10 displayed a therapeutic activity, which was superior to the activity of IL-10 fused to an antibody of irrelevant specificity in the mouse. The anti-inflammatory cytokine IL-10 has been investigated for the treatment of patients with rheumatoid arthritis, but clinical development plans have been discontinued because of a lack of efficacy. Because the antigen recognised by L19 is strongly expressed at sites of arthritis in humans and identical in both mice and humans, it suggests that the fusion protein L19–IL-10 might help overcome some of the clinical limitations of IL-10 and provide a therapeutic benefit to patients with chronic inflammatory disorders, including arthritis. PMID:17261171

  11. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma

    PubMed Central

    Overdijk, Marije B; Verploegen, Sandra; Bögels, Marijn; van Egmond, Marjolein; van Bueren, Jeroen J Lammerts; Mutis, Tuna; Groen, Richard WJ; Breij, Esther; Martens, Anton CM; Bleeker, Wim K; Parren, Paul WHI

    2015-01-01

    Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt's lymphoma cell lines. Phagocytosis contributed to DARA's anti-tumor activity in vivo, in both a subcutaneous and an intravenous leukemic xenograft mouse model. Finally, DARA was shown to induce macrophage-mediated phagocytosis of MM cells isolated from 11 of 12 MM patients that showed variable levels of CD38 expression. In summary, we demonstrate that phagocytosis is a fast, potent and clinically relevant mechanism of action that may contribute to the therapeutic activity of DARA in multiple myeloma and potentially other hematological tumors. PMID:25760767

  12. Eculizumab for the Treatment of Severe Antibody-Mediated Rejection: A Case Report and Review of the Literature

    PubMed Central

    Boucher, Anne; Collette, Suzon; Senécal, Lynne

    2016-01-01

    In renal transplantation, treatment options for antibody-mediated rejection are limited. Here, we report a case of severe AMR treated with eculizumab. A 50-year-old woman known for end stage kidney disease secondary to IgA nephropathy received a kidney transplant from a 50-year-old deceased donor. At 5 months after transplantation, she presented with acute graft dysfunction and biopsy showed a severe antibody-mediated rejection associated with thrombotic microangiopathy. Despite an aggressive conventional immunosuppressive regimen, signs of rejection persisted and the patient was treated with 3 doses of eculizumab. Following the therapy, markers of TMA improved and graft function stabilized. However, ongoing signs of rejection remained in the repeated biopsy. In kidney transplantation, eculizumab is an expensive treatment and its role in the treatment of antibody-mediated rejection remains to be determined. PMID:27478676

  13. Complement Inhibition for Prevention and Treatment of Antibody-Mediated Rejection in Renal Allograft Recipients.

    PubMed

    Jordan, S C; Choi, J; Kahwaji, J; Vo, A

    2016-04-01

    Therapeutic interventions aimed at the human complement system are recognized as potentially important strategies for the treatment of inflammatory and autoimmune diseases because there is often evidence of complement-mediated injury according to pathologic assessments. In addition, there are a large number of potential targets, both soluble and cell bound, that might offer potential for new drug development, but progress in this area has met with significant challenges. Currently, 2 drugs are approved aimed at inhibition of complement activation. The first option is eculizumab (anti-C5), which is approved for the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Eculizumab has also been studied in human transplantation for the treatment and prevention of antibody-mediated rejection (ABMR). Initial data from uncontrolled studies suggested a significant benefit of eculizumab for the prevention of ABMR in highly HLA-sensitized patients, but a subsequent randomized, placebo-controlled trial failed to meet its primary endpoint. Anecdotal data, primarily from case studies, showed benefits in treating complement-mediated ABMR. A second approved complement-inhibiting therapy is C1 esterase inhibitor (C1-INH), which is approved for use in patients with hereditary angioedema, a condition caused by mutations in the gene that codes for C1-INH. A recent placebo-controlled trial of C1-INH for prevention of ABMR in HLA-sensitized patients found that the drug was safe, with evidence for inhibition of systemic complement activation and complement-activating donor-specific antibodies. Other drugs are now under development. PMID:27234741

  14. High-performance low-cost antibody microarrays using enzyme-mediated silver amplification.

    PubMed

    Zhou, Gina; Bergeron, Sebastien; Juncker, David

    2015-04-01

    Antibody microarrays can detect multiple proteins simultaneously, but the need for bulky and expensive fluorescence scanners limits their adaptation in clinical settings. Here we introduce a 15-plex enzyme-mediated silver enhanced sandwich immunoassay (SENSIA) on a microarray as an economic alternative to conventional fluorescence microarray assays. We compared several gold and silver amplification schemes, optimized HRP-mediated silver amplification, and evaluated the use of flatbed scanners for microarray quantification. Using the optimized assay condition, we established binding curves for 15 proteins using both SENSIA and conventional fluorescence microarray assays and compared their limits of detection (LODs) and dynamic ranges (DRs). We found that the LODs for all proteins are in the pg/mL range, with LODs for 12 proteins below 10 pg/mL. All but two proteins (ENDO and IL4) have similar LODs (less than 10-fold difference) and all but two proteins (IL1b and MCP1) are similar in DR (less than 1.5-log difference). Furthermore, we spiked six proteins in diluted serum and measured them by both silver enhancement and fluorescence detection and found a good agreement (R(2) > 0.9) between the two methods, suggesting that a complex matrix such as serum has a minimal effect on the measurement. By combining enzyme-mediated silver enhancement and consumer electronics for optical detection, SENSIA presents a new opportunity for low-cost high-sensitivity multiplex immunoassays for clinical applications. PMID:25668573

  15. Molecular microscope strategy to improve risk stratification in early antibody-mediated kidney allograft rejection.

    PubMed

    Loupy, Alexandre; Lefaucheur, Carmen; Vernerey, Dewi; Chang, Jessica; Hidalgo, Luis G; Beuscart, Thibaut; Verine, Jerome; Aubert, Olivier; Dubleumortier, Sébastien; Duong van Huyen, Jean-Paul; Jouven, Xavier; Glotz, Denis; Legendre, Christophe; Halloran, Philip F

    2014-10-01

    Antibody-mediated rejection (ABMR) is the leading cause of kidney allograft loss. We investigated whether the addition of gene expression measurements to conventional methods could serve as a molecular microscope to identify kidneys with ABMR that are at high risk for failure. We studied 939 consecutive kidney recipients at Necker Hospital (2004-2010; principal cohort) and 321 kidney recipients at Saint Louis Hospital (2006-2010; validation cohort) and assessed patients with ABMR in the first 1 year post-transplant. In addition to conventional features, we assessed microarray-based gene expression in transplant biopsy specimens using relevant molecular measurements: the ABMR Molecular Score and endothelial donor-specific antibody-selective transcript set. The main outcomes were kidney transplant loss and progression to chronic transplant injury. We identified 74 patients with ABMR in the principal cohort and 54 patients with ABMR in the validation cohort. Conventional features independently associated with failure were donor age and humoral histologic score (g+ptc+v+cg+C4d). Adjusting for conventional features, ABMR Molecular Score (hazard ratio [HR], 2.22; 95% confidence interval [95% CI], 1.37 to 3.58; P=0.001) and endothelial donor-specific antibody-selective transcripts (HR, 3.02; 95% CI, 1.00 to 9.16; P<0.05) independently associated with an increased risk of graft loss. The results were replicated in the independent validation group. Adding a gene expression assessment to a traditional risk model improved the stratification of patients at risk for graft failure (continuous net reclassification improvement, 1.01; 95% CI, 0.57 to 1.46; P<0.001; integrated discrimination improvement, 0.16; P<0.001). Compared with conventional assessment, the addition of gene expression measurement in kidney transplants with ABMR improves stratification of patients at high risk for graft loss. PMID:24700874

  16. Disappearance of T Cell-Mediated Rejection Despite Continued Antibody-Mediated Rejection in Late Kidney Transplant Recipients.

    PubMed

    Halloran, Philip F; Chang, Jessica; Famulski, Konrad; Hidalgo, Luis G; Salazar, Israel D R; Merino Lopez, Maribel; Matas, Arthur; Picton, Michael; de Freitas, Declan; Bromberg, Jonathan; Serón, Daniel; Sellarés, Joana; Einecke, Gunilla; Reeve, Jeff

    2015-07-01

    The prevalent renal transplant population presents an opportunity to observe the adaptive changes in the alloimmune response over time, but such studies have been limited by uncertainties in the conventional biopsy diagnosis of T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR). To circumvent these limitations, we used microarrays and conventional methods to investigate rejection in 703 unselected biopsies taken 3 days to 35 years post-transplant from North American and European centers. Using conventional methods, we diagnosed rejection in 205 biopsy specimens (28%): 67 pure TCMR, 110 pure ABMR, and 28 mixed (89 designated borderline). Using microarrays, we diagnosed rejection in 228 biopsy specimens (32%): 76 pure TCMR, 124 pure ABMR, and 28 mixed (no borderline). Molecular assessment confirmed most conventional diagnoses (agreement was 90% for TCMR and 83% for ABMR) but revealed some errors, particularly in mixed rejection, and improved prediction of failure. ABMR was strongly associated with increased graft loss, but TCMR was not. ABMR became common in biopsy specimens obtained >1 year post-transplant and continued to appear in all subsequent intervals. TCMR was common early but progressively disappeared over time. In 108 biopsy specimens obtained 10.2-35 years post-transplant, TCMR defined by molecular and conventional features was never observed. We conclude that the main cause of kidney transplant failure is ABMR, which can present even decades after transplantation. In contrast, TCMR disappears by 10 years post-transplant, implying that a state of partial adaptive tolerance emerges over time in the kidney transplant population. PMID:25377077

  17. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment

    PubMed Central

    Rajasekaran, Narendiran; Chester, Cariad; Yonezawa, Atsushi; Zhao, Xing; Kohrt, Holbrook E

    2015-01-01

    The therapeutic efficacy of some anti-tumor monoclonal antibodies (mAbs) depends on the capacity of the mAb to recognize the tumor-associated antigen and induce cytotoxicity via a network of immune effector cells. This process of antibody-dependent cell-mediated cytotoxicity (ADCC) against tumor cells is triggered by the interaction of the fragment crystallizable (Fc) portion of the mAb with the Fc receptors on effector cells like natural killer cells, macrophages, γδ T cells, and dendritic cells. By augmenting ADCC, the antitumor activity of mAbs can be significantly increased. Currently, identifying and developing therapeutic agents that enhance ADCC is a growing area of research. Combining existing tumor-targeting mAbs and ADCC-promoting agents that stimulate effector cells will translate to greater clinical responses. In this review, we discuss strategies for enhancing ADCC and emphasize the potential of combination treatments that include US Food and Drug Administration-approved mAbs and immunostimulatory therapeutics.

  18. Systemic induction of cells mediating antibody-dependent cellular cytotoxicity following administration of interleukin 2.

    PubMed

    Eisenthal, A; Rosenberg, S A

    1989-12-15

    We have previously demonstrated that incubation of murine cells in vitro in interleukin 2 (IL-2) induced antibody-dependent cellular cytotoxicity (ADCC) and that these cells were derived from the NK/LAK, FcR+ cell population. In the present study we show that in vivo administration of IL-2 to mice induces cells which exhibit ADCC activity in the peritoneal cavity, liver, lungs, and to a lesser degree in the bone marrow, spleen, mesenteric lymph nodes, and thymus. A gradual increase in ADCC activity and the number of Fc-receptor-positive cells was seen 1 to 3 days after starting IL-2 treatment. The cells mediating ADCC are closely related to LAK cells since they expressed Thy1.2 antigens and are derived from asialo GM1-positive, Lyt2/L3T4-negative, radiosensitive cells. These results demonstrate that IL-2 can systemically induce cells with ADCC activity and that this ability may be useful in the establishment of therapeutic models against disseminated cancer when combined with specific antitumor monoclonal antibodies. PMID:2573425

  19. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor

    PubMed Central

    Hennen, Stephanie; Kodra, János T.; Soroka, Vladyslav; Krogh, Berit O.; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G.; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S.; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  20. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor.

    PubMed

    Hennen, Stephanie; Kodra, János T; Soroka, Vladyslav; Krogh, Berit O; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  1. Activation of NLRC4 downregulates TLR5-mediated antibody immune responses against flagellin

    PubMed Central

    Li, Wei; Yang, Jingyi; Zhang, Ejuan; Zhong, Maohua; Xiao, Yang; Yu, Jie; Zhou, Dihan; Cao, Yuan; Yang, Yi; Li, Yaoming; Yan, Huimin

    2016-01-01

    Bacterial flagellin is a unique pathogen-associated molecular pattern (PAMP), which can be recognized by surface localized Toll-like receptor 5 (TLR5) and the cytosolic NOD-like receptor (NLR) protein 4 (NLRC4) receptors. Activation of the TLR5 and/or NLRC4 signaling pathways by flagellin and the resulting immune responses play important roles in anti-bacterial immunity. However, it remains unclear how the dual activities of flagellin that activate the TLR5 and/or NLRC4 signaling pathways orchestrate the immune responses. In this study, we assessed the effects of flagellin and its mutants lacking the ability to activate TLR5 and NLRC4 alone or in combination on the adaptive immune responses against flagellin. Flagellin that was unable to activate NLRC4 induced a significantly higher antibody response than did wild-type flagellin. The increased antibody response could be eliminated when macrophages were depleted in vivo. The activation of NLRC4 by flagellin downregulated the flagellin-induced and TLR5-mediated immune responses against flagellin. PMID:25914934

  2. Better understanding of transplant glomerulopathy secondary to chronic antibody-mediated rejection.

    PubMed

    Remport, Adam; Ivanyi, Bela; Mathe, Zoltan; Tinckam, Kathryn; Mucsi, Istvan; Molnar, Miklos Z

    2015-11-01

    Transplant glomerulopathy (TG) is generally accepted to result from repeated episodes of endothelial activation, injury and repair, leading to pathological abnormalities of double contouring or multi-layering of the glomerular basement membrane. TG is a major sequel of chronic active antibody-mediated rejection (cABMR), from pre-existing or de novo anti-HLA antibodies. Hepatitis C infection, thrombotic microangiopathy or other factors may also contribute to TG development. TG prevalence is 5-20% in most series, reaching 55%, in some high-risk cohorts, and is associated with worse allograft outcomes. Despite its prevalence and clinical significance, few well-studied treatment options have been proposed. Similar to desensitization protocols, plasmapheresis with or without immunoabsorption, high-dose intravenous immunoglobulin, rituximab, bortezomib and eculizumab have been proposed in the treatment of TG due to cABMR individually or in various combinations. Robust clinical trials are urgently needed to address this major cause of allograft loss. This review summarizes the current knowledge of the epidemiology, etiology, pathology, and the preventive and treatment options for TG secondary to cABMR. PMID:25473123

  3. Antibody-mediated glomerulonephritis in mice: the role of endotoxin, complement and genetic background

    PubMed Central

    ROBSON, M G; COOK, H T; PUSEY, C D; WALPORT, M J; DAVIES, K A

    2003-01-01

    Antibody-mediated glomerulonephritis in man may be exacerbated by infection and this effect may be mediated by bacterial endotoxin. There is evidence supporting a role for endotoxin in heterologous nephrotoxic nephritis in rats, but the role of endotoxin in this model in mice has not previously been explored. Previous data in mice on the role of complement in this model are conflicting and this may be due to the mixed genetic background of mice used in these studies. We used the model of heterologous nephrotoxic nephritis in mice and explored the role of endotoxin, complement and genetic background. In this study we show a synergy between antibody and endotoxin in causing a neutrophil influx. We also show that C1q-deficient mice have an increased susceptibility to glomerular inflammation but this is seen only on a mixed 129/Sv × C57BL/6 genetic background. On a C57BL/6 background we did not find any differences in disease susceptibility when wildtype, C1q, factor B or factor B/C2 deficient mice were compared. We also demonstrate that C57BL/6 mice are more susceptible to glomerular inflammation than 129/Sv mice. These results show that endotoxin is required in this model in mice, and that complement does not play a major role in glomerular inflammation in C57BL/6 mice. C1q may play a protective role in mixed-strain 129/Sv × C57BL/6 mice, but the data may also be explained by systematic bias in background genes, as there is a large difference in disease susceptibility between C57BL/6 and 129/Sv mice. PMID:12930357

  4. Antibody Mediated Rejection as a Contributor to Previously Unexplained Early Liver Allograft Loss

    PubMed Central

    O’Leary, Jacqueline G.; Kaneku, Hugo; Demetris, Anthony J.; Marr, John D.; Shiller, S. Michelle; Susskind, Brian M.; Tillery, Glenn W.; Terasaki, Paul I.; Klintmalm, Göran B.

    2015-01-01

    We analyzed 60 patients with idiopathic early allograft loss (defined as death or retransplantation <90 days) to determine the relative contribution of preformed donor specific HLA alloantibodies (DSA) to this endpoint and defined strict criteria for the diagnosis of antibody-mediated rejection (AMR) in liver allografts. Inclusion criteria encompassed availability of a pre-transplant serum sample and both post-reperfusion and follow-up tissue specimens for “blinded” retrospective re-review of histology and C4d staining. AMR was diagnosed based on the presence of all 4 strict criteria: 1) DSA in serum; 2) histopathological evidence of diffuse microvascular injury/microvasculitis, consistent with antibody-mediated injury; 3) diffuse C4d staining in the portal microvasculature with or without staining in the sinusoids or central veins in at least one sample; and 4) exclusion of other causes of a similar type of injury. Patients thought to be experiencing definite AMR on the basis of routine histopathology alone showed the highest levels of DSA sensitization. Forty percent of patients with pre-transplant DSA with a pattern of bead saturation after serial dilutions developed AMR. One additional multiparous female developed, what appeared to be, a strong “recall” response resulting in combined AMR and ACR causing graft failure. A contribution of DSA to allograft failure could not be excluded in three additional patients who received marginal grafts. In conclusion, liver allograft recipients with high mean fluorescence intensity (MFI) preformed DSA despite dilution seem to be at risk for clinically significant allograft injury, and possibly loss, from AMR often in combination with ACR. PMID:24382837

  5. Antibody-Mediated Rejection in Sensitized Nonhuman Primates: Modeling Human Biology.

    PubMed

    Burghuber, C K; Kwun, J; Page, E J; Manook, M; Gibby, A C; Leopardi, F V; Song, M; Farris, A B; Hong, J J; Villinger, F; Adams, A B; Iwakoshi, N N; Knechtle, S J

    2016-06-01

    We have established a model of sensitization in nonhuman primates and tested two immunosuppressive regimens. Animals underwent fully mismatched skin transplantation, and donor-specific antibody (DSA) response was monitored by flow cross-match. Sensitized animals subsequently underwent kidney transplantation from their skin donor. Immunosuppression included tacrolimus, mycophenolate, and methylprednisolone. Three animals received basiliximab induction; compared with nonsensitized animals, they showed a shorter mean survival time (4.7 ± 3.1 vs. 187 ± 88 days). Six animals were treated with T cell depletion (anti-CD4/CD8 mAbs), which prolonged survival (mean survival time 21.6 ± 19.0 days). All presensitized animals showed antibody-mediated rejection (AMR). In two of three basiliximab-injected animals, cellular rejection (ACR) was prominent. After T cell depletion, three of six monkeys experienced early acute rejection within 8 days with histological evidence of thrombotic microangiopathy and AMR. The remaining three monkeys survived 27-44 days, with mixed AMR and ACR. Most T cell-depleted animals experienced a rebound of DSA that correlated with deteriorating kidney function. We also found an increase in proliferating memory B cells (CD20(+) CD27(+) IgD(-) Ki67(+) ), lymph node follicular helper T cells (ICOS(+) PD-1(hi) CXCR5(+) CD4(+) ), and germinal center (GC) response. Depletion controlled cell-mediated rejection in sensitized nonhuman primates better than basiliximab, yet grafts were rejected with concomitant DSA rise. This model provides an opportunity to test novel desensitization strategies. PMID:26705099

  6. Growth inhibition of human lung adenocarcinoma cells by antibodies against epidermal growth factor receptor and by ganglioside GM3: involvement of receptor-directed protein tyrosine phosphatase(s).

    PubMed Central

    Suarez Pestana, E.; Greiser, U.; Sánchez, B.; Fernández, L. E.; Lage, A.; Perez, R.; Böhmer, F. D.

    1997-01-01

    Growth of the EGF receptor-expressing non-small-cell lung carcinoma cell line H125 seems to be at least partially driven by autocrine activation of the resident EGF receptors. Thus, the possibility of an EGF receptor-directed antiproliferative treatment was investigated in vitro using a monoclonal antibody (alpha EGFR ior egf/r3) against the human EGF receptor and gangliosides which are known to possess antiproliferative and anti-tyrosine kinase activity. The moderate growth-inhibitory effect of alpha EGFR ior egf/r3 was strongly potentiated by the addition of monosialoganglioside GM3. Likewise, the combination of alpha EGFR ior egf/r3 and GM3 inhibited EGF receptor autophosphorylation activity in H125 cells more strongly than either agent alone. A synergistic inhibition of EGF receptor autophosphorylation by alpha EGFR ior egf/r3 and GM3 was also observed in the human epidermoid carcinoma cell line A431. In both cell lines, the inhibition of EGF receptor autophosphorylation by GM3 was prevented by pretreatment of the cells with pervanadate, a potent inhibitor of protein tyrosine phosphatases (PTPases). Also, GM3 accelerated EGF receptor dephosphorylation in isolated A431 cell membranes. These findings indicate that GM3 has the capacity to activate EGF receptor-directed PTPase activity and suggest a novel possible mechanism for the regulation of cellular PTPases. Images Figure 5 Figure 6 PMID:9010029

  7. Separation of effector cells mediating antibody-dependent cellular cytotoxicity (ADC) to erythrocyte targets from those mediating ADC to tumor targets.

    PubMed

    Pollack, S B; Nelson, K; Grausz, J D

    1976-04-01

    Murine spleen cells mediate antibody-dependent cellular cytotoxicity (ADC) both to erythrocyte targets in a 51Cr release assay and to syngeneic tumor targets in a microcytotoxicity assay. The effector cells active in the two ADC assays can be separated by passage of the spleen cells through columns of Sephadex G-10 at 37 degrees C. Cells mediating ADC to sarcoma cells did not adhere to the G-10 and were recovered in the column effluent. These nonadherent cells were not cytotoxic to antibody-coated chicken red blood cells. Spleen cells which mediated ADC in a 51Cr release assay to the red cell targets adhered to G-10. Adherent effector cells could subsequently be recovered from the columns by elution with 5 X 10(-4) M EDTA. PMID:815438

  8. Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts.

    PubMed

    Vasu, Sumithira; He, Shun; Cheney, Carolyn; Gopalakrishnan, Bhavani; Mani, Rajeswaran; Lozanski, Gerard; Mo, Xiaokui; Groh, Veronica; Whitman, Susan P; Konopitzky, Renate; Kössl, Christian; Bucci, Donna; Lucas, David M; Yu, Jianhua; Caligiuri, Michael A; Blum, William; Adam, Paul J; Borges, Eric; Rueter, Bjoern; Heider, Karl-Heinz; Marcucci, Guido; Muthusamy, Natarajan

    2016-06-01

    Acute myeloid leukemia (AML) is the most common type of acute leukemia, affecting older individuals at a median age of 67 years. Resistance to intensive induction chemotherapy is the major cause of death in elderly AML; hence, novel treatment strategies are warranted. CD33-directed antibody-drug conjugates (gemtuzumab ozogamicin) have been shown to improve overall survival, validating CD33 as a target for antibody-based therapy of AML. Here, we report the in vitro efficacy of BI 836858, a fully human, Fc-engineered, anti-CD33 antibody using AML cell lines and primary AML blasts as targets. BI 836858-opsonized AML cells significantly induced both autologous and allogeneic natural killer (NK)-cell degranulation and NK-cell-mediated antibody-dependent cellular cytotoxicity (ADCC). In vitro treatment of AML blasts with decitabine (DAC) or 5-azacytidine, 2 hypomethylating agents that show efficacy in older patients, did not compromise BI 836858-induced NK-cell-mediated ADCC. Evaluation of BI 836858-mediated ADCC in serial marrow AML aspirates in patients who received a 10-day course of DAC (pre-DAC, days 4, 11, and 28 post-DAC) revealed significantly higher ADCC in samples at day 28 post-DAC when compared with pre-DAC treatment. Analysis of ligands to activating receptors (NKG2D) showed significantly increased NKG2D ligand [NKG2DL] expression in day 28 post-DAC samples compared with pre-DAC samples; when NKG2DL receptor was blocked using antibodies, BI 836858-mediated ADCC was significantly decreased, suggesting that DAC enhances AML blast susceptibility to BI 836858 by upregulating NKG2DL. These data provide a rationale for combination therapy of Fc-engineered antibodies such as BI 836858 with azanucleosides in elderly patients with AML. PMID:27013443

  9. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement.

    PubMed

    Lee, Seung-Hye; Le Pichon, Claire E; Adolfsson, Oskar; Gafner, Valérie; Pihlgren, Maria; Lin, Han; Solanoy, Hilda; Brendza, Robert; Ngu, Hai; Foreman, Oded; Chan, Ruby; Ernst, James A; DiCara, Danielle; Hotzel, Isidro; Srinivasan, Karpagam; Hansen, David V; Atwal, Jasvinder; Lu, Yanmei; Bumbaca, Daniela; Pfeifer, Andrea; Watts, Ryan J; Muhs, Andreas; Scearce-Levie, Kimberly; Ayalon, Gai

    2016-08-01

    The spread of tau pathology correlates with cognitive decline in Alzheimer's disease. In vitro, tau antibodies can block cell-to-cell tau spreading. Although mechanisms of anti-tau function in vivo are unknown, effector function might promote microglia-mediated clearance. In this study, we investigated whether antibody effector function is required for targeting tau. We compared efficacy in vivo and in vitro of two versions of the same tau antibody, with and without effector function, measuring tau pathology, neuron health, and microglial function. Both antibodies reduced accumulation of tau pathology in Tau-P301L transgenic mice and protected cultured neurons against extracellular tau-induced toxicity. Only the full-effector antibody enhanced tau uptake in cultured microglia, which promoted release of proinflammatory cytokines. In neuron-microglia co-cultures, only effectorless anti-tau protected neurons, suggesting full-effector tau antibodies can induce indirect toxicity via microglia. We conclude that effector function is not required for efficacy, and effectorless tau antibodies may represent a safer approach to targeting tau. PMID:27475227

  10. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways

    NASA Astrophysics Data System (ADS)

    Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna

    2013-12-01

    DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing

  11. Histopathologic insights into the mechanism of anti-non-Gal antibody-mediated pig cardiac xenograft rejection

    PubMed Central

    Byrne, Guerard W; Azimzadeh, Agnes M; Ezzelarab, Mohamed; Tazelaar, Henry D; Ekser, Burcin; Pierson, Richard N; Robson, Simon C; Cooper, David K C; McGregor, Christopher G A

    2013-01-01

    The histopathology of cardiac xenograft rejection has evolved over the last 20 yr with the development of new modalities for limiting antibody-mediated injury, advancing regimens for immune suppression, and an ever-widening variety of new donor genetics. These new technologies have helped us progress from what was once an overwhelming anti-Gal-mediated hyperacute rejection to a more protracted anti-Gal-mediated vascular rejection to what is now a more complex manifestation of non-Gal humoral rejection and coagulation dysregulation. This review summarizes the changing histopathology of Gal- and non-Gal-mediated cardiac xenograft rejection and discusses the contributions of immune-mediated injury, species-specific immune-independent factors, transplant and therapeutic procedures, and donor genetics to the overall mechanism(s) of cardiac xenograft rejection. PMID:25098626

  12. Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen.

    PubMed Central

    Brown, E J; Bohnsack, J F; Gresham, H D

    1988-01-01

    We have investigated the effects of the monoclonal antibodies against the cell surface molecule Mac-1 on C3bi-mediated rosetting and IgG-mediated rosetting and phagocytosis by human peripheral blood monocytes. Highly purified M1/70 F(ab')2, used in the fluid phase, inhibited both monocyte functions. Half-maximal C3bi rosette inhibition occurred at a concentration of 2 nM F(ab')2 M1/70. An equivalent decrease in IgG-mediated rosetting required 10 nM M1/70 F(ab')2, and 50% inhibition of IgG-mediated phagocytosis required 7 nM antibody. Mo-1 F(ab')2 inhibited EC3bi binding with an ID50 of 0.3 nM, whereas 50% decrease in IgG-mediated rosetting required 70 nM of this antibody. OKM1 did not inhibit rosettes of sheep erythrocytes opsonized with IgG antibody (EA) at all. F(ab')2 M1/70 did not affect the binding of monomeric human IgG to monocytes, but did substantially decrease the binding of IgG aggregates. Half-maximal inhibition of aggregated IgG binding at 0 degrees C occurred at 8 nM F(ab')2 M1/70, very close to the concentration that caused equivalent inhibition of IgG-mediated phagocytosis. Aggregated IgG inhibited the binding of radiolabeled M1/70 to monocytes by approximately 40%, suggesting that some, but not all Mac-1 molecules were associated with IgG receptors under these conditions. When cells were allowed to adhere to surfaces coated with M1/70 or Mo-1 F(ab')2, C3bi-mediated rosetting was inhibited, but IgG mediated-phagocytosis was unaffected. Moreover, the dose response of inhibition of phagocytosis by fluid-phase F(ab')2, of anti-Mac-1 monoclonals was similar on monocytes adherent to albumin-coated and antibody-coated surfaces. Kinetic experiments showed that even prolonged incubation of monocytes on M1/70 coated surfaces did not lead to inhibition of EA binding nor did these incubations alter the dose response for inhibition of EA binding by fluid-phase M1/70 F(ab')2. This suggested that not all molecules recognized by M1/70 are freely mobile in the

  13. Antibody-Dependent Cell-Mediated Cytotoxicity to Hemagglutinin of Influenza A Viruses After Influenza Vaccination in Humans

    PubMed Central

    Zhong, Weimin; Liu, Feng; Wilson, Jason R.; Holiday, Crystal; Li, Zhu-Nan; Bai, Yaohui; Tzeng, Wen-Pin; Stevens, James; York, Ian A.; Levine, Min Z.

    2016-01-01

    Background. Detection of neutralizing antibodies (nAbs) to influenza A virus hemagglutinin (HA) antigens by conventional serological assays is currently the main immune correlate of protection for influenza vaccines However, current prepandemic avian influenza vaccines are poorly immunogenic in inducing nAbs despite considerable protection conferred. Recent studies show that Ab-dependent cell-mediated cytotoxicity (ADCC) to HA antigens are readily detectable in the sera of healthy individuals and patients with influenza infection. Methods. Virus neutralization and ADCC activities of serum samples from individuals who received either seasonal or a stock-piled H5N1 avian influenza vaccine were evaluated by hemagglutination inhibition assay, microneutralization assay, and an improved ADCC natural killer (NK) cell activation assay. Results. Immunization with inactivated seasonal influenza vaccine led to strong expansion of both nAbs and ADCC-mediating antibodies (adccAbs) to H3 antigen of the vaccine virus in 24 postvaccination human sera. In sharp contrast, 18 individuals vaccinated with the adjuvanted H5N1 avian influenza vaccine mounted H5-specific antibodies with strong ADCC activities despite moderate virus neutralization capacity. Strength of HA-specific ADCC activities is largely associated with the titers of HA-binding antibodies and not with the fine antigenic specificity of anti-HA nAbs. Conclusions. Detection of both nAbs and adccAbs may better reflect protective capacity of HA-specific antibodies induced by avian influenza vaccines.

  14. Myelin-reactive antibodies mediate the pathology of MBP-PLP fusion protein MP4-induced EAE.

    PubMed

    Kuerten, Stefanie; Pauly, Robert; Rottlaender, Andrea; Rodi, Michael; Gruppe, Traugott L; Addicks, Klaus; Tary-Lehmann, Magdalena; Lehmann, Paul V

    2011-07-01

    Experimental autoimmune encephalomyelitis (EAE) is frequently used for studies of multiple sclerosis (MS). Because in most EAE models T cells mediate the pathology in the absence of B cells/autoantibodies, the notion has evolved that also MS may be a primarily T cell-mediated disease. We have previously introduced MBP-PLP fusion protein (MP4)-induced EAE in C57BL/6 mice. Here we show that the disease in this model is antibody-dependent. Immunization of B cell-deficient mice did not induce EAE. When such B cell-deficient mice were, however, injected with MBP/PLP-specific antibodies in addition to the immunization with MP4, they developed disease of a severity and course that was similar to the wild-type mice. The deposition of antibodies in demyelinated lesions provided further evidence for the contribution of MBP/PLP-specific antibodies to CNS lesion formation. Based upon these data we suggest a two-stage model for the involvement of MBP/PLP-specific antibodies in autoimmune CNS pathology. PMID:21489887

  15. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes

    SciTech Connect

    Lutz, H.U.; Bussolino, F.; Flepp, R.; Fasler, S.; Stammler, P.; Kazatchkine, M.D.; Arese, P.

    1987-11-01

    Treatment of erythrocytes with the thiol-specific oxidant azodicarboxylic acid bis(dimethylamide) (diamide) enhances their phagocytosis by adherent monocytes. Phagocytosis of diamide-treated erythrocytes required that the cells were opsonized with whole serum, since complement inactivation abolished phagocytosis. Opsonization with whole serum containing 20-100 times the physiological concentration of naturally occurring anti-band-3- antibodies enhanced phagocytosis of diamide-treated erythrocytes. High inputs of anti-band-3 also restored phagocytosis of erythrocytes that had been incubated with complement-inactivated serum. Elevated concentrations of anti-spectrin antibodies were ineffective in whole and complement-inactivated serum. Specific recognition of diamide-treated erythrocytes by anti-band-3 antibodies may be due to generation of anti-band-3 reactive protein oligomers on intact diamide-treated erythrocytes. Generation of such oligomers was dose-dependent with respect to diamide. Bound anti-band-3 alone was not sufficient to mediate phagocytosis. It resulted in deposition of complement component C3b on the cells through activation of the alternative complement pathway in amounts exceeding that of bound antibodies by two orders of magnitude. Thus, anti-band-3 and complement together mediate phagocytosis of oxidatively stressed erythrocytes, which simulate senescent erythrocytes with respect to bound antibody and complement.

  16. A new type of pseudothrombocytopenia: EDTA-mediated agglutination of platelets bearing Fab fragments of a chimaeric antibody.

    PubMed

    Christopoulos, C G; Machin, S J

    1994-07-01

    In vitro agglutination of platelets leading to low automated platelet counts was observed in EDTA-anticoagulated blood from human volunteers receiving infusions of Fab fragments of a chimaeric monoclonal antibody to platelet glycoprotein IIb-IIIa. This pseudothrombocytopenia depended on the presence of chimaeric Fab on the platelet surface and was not seen when sodium citrate was used as anticoagulent. Preliminary evidence suggests that this phenomenon might be mediated by immunoglobulin G reactive with the human component of the chimaeric Fab. It is important to exclude pseudothrombocytopenia when low automated platelet counts are reported in association with the administration of chimaeric anti-platelet antibodies. PMID:7993813

  17. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts.

    PubMed

    Kohei, Naoki; Tanaka, Toshiaki; Tanabe, Kazunari; Masumori, Naoya; Dvorina, Nina; Valujskikh, Anna; Baldwin, William M; Fairchild, Robert L

    2016-06-01

    While the incidence of antibody-mediated kidney graft rejection has increased, the key cellular and molecular participants underlying this graft injury remain unclear. Rejection of kidney allografts in mice lacking the chemokine receptor CCR5 is dependent on production of donor-specific antibody. Here we determine if cells expressing cytotoxic function contributed to antibody-mediated kidney allograft rejection in these recipients. Wild-type C57BL/6, B6.CCR5(-/-), and B6.CD8(-/-)/CCR5(-/-) mice were transplanted with complete MHC-mismatched A/J kidney grafts, and intragraft inflammatory components were followed to rejection. B6.CCR5(-/-) and B6.CD8(-/-)/CCR5(-/-) recipients rejected kidney allografts by day 35, whereas 65% of allografts in wild-type recipients survived past day 80 post-transplant. Rejected allografts in wild-type C57BL/6, B6.CCR5(-/-), and B6.CD8(-/-)/CCR5(-/-) recipients expressed high levels of VCAM-1 and MMP7 mRNA that was associated with high serum titers of donor-specific antibody. High levels of perforin and granzyme B mRNA expression peaked on day 6 post-transplant in allografts in all recipients, but were absent in isografts. Depletion of natural killer cells in B6.CD8(-/-)/CCR5(-/-) recipients reduced this expression to background levels and promoted the long-term survival of 40% of the kidney allografts. Thus, natural killer cells have a role in increased inflammation during antibody-mediated kidney allograft injury and in rejection of the grafts. PMID:27165816

  18. HIV-Specific Functional Antibody Responses in Breast Milk Mirror Those in Plasma and Are Primarily Mediated by IgG Antibodies

    PubMed Central

    Fouda, Genevieve G.; Yates, Nicole L.; Pollara, Justin; Shen, Xiaoying; Overman, Glenn R.; Mahlokozera, Tatenda; Wilks, Andrew B.; Kang, Helen H.; Salazar-Gonzalez, Jesus F.; Salazar, Maria G.; Kalilani, Linda; Meshnick, Steve R.; Hahn, Beatrice H.; Shaw, George M.; Lovingood, Rachel V.; Denny, Thomas N.; Haynes, Barton; Letvin, Norman L.; Ferrari, Guido; Montefiori, David C.; Tomaras, Georgia D.; Permar, Sallie R.

    2011-01-01

    Despite months of mucosal virus exposure, the majority of breastfed infants born to HIV-infected mothers do not become infected, raising the possibility that immune factors in milk inhibit mucosal transmission of HIV. HIV Envelope (Env)-specific antibodies are present in the milk of HIV-infected mothers, but little is known about their virus-specific functions. In this study, HIV Env-specific antibody binding, autologous and heterologous virus neutralization, and antibody-dependent cell cytotoxicity (ADCC) responses were measured in the milk and plasma of 41 HIV-infected lactating women. Although IgA is the predominant antibody isotype in milk, HIV Env-specific IgG responses were higher in magnitude than HIV Env-specific IgA responses in milk. The concentrations of anti-HIV gp120 IgG in milk and plasma were directly correlated (r = 0.75; P < 0.0001), yet the response in milk was 2 logarithm units lower than in plasma. Similarly, heterologous virus neutralization (r = 0.39; P = 0.010) and ADCC activity (r = 0.64; P < 0.0001) in milk were directly correlated with that in the systemic compartment but were 2 log units lower in magnitude. Autologous neutralization was rarely detected in milk. Milk heterologous virus neutralization titers correlated with HIV gp120 Env-binding IgG responses but not with IgA responses (r = 0.71 and P < 0.0001, and r = 0.17 and P = 0.30). Moreover, IgGs purified from milk and plasma had equal neutralizing potencies against a tier 1 virus (r = 0.65; P < 0.0001), whereas only 1 out of 35 tested non-IgG milk fractions had detectable neutralization. These results suggest that plasma-derived IgG antibodies mediate the majority of the low-level HIV neutralization and ADCC activity in breast milk. PMID:21734046

  19. The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: Anew class of adjuvant?a

    PubMed Central

    Ramon, Sesquile; Baker, Steven F.; Sahler, Julie M.; Kim, Nina; Feldsott, Eric A.; Serhan, Charles N.; Martínez-Sobrido, Luis; Topham, David J.; Phipps, Richard P.

    2014-01-01

    Influenza viruses remain a critical global health concern. More efficacious vaccines are needed to protect against influenza virus, yet few adjuvants are approved for routine use. Specialized proresolving mediators (SPMs) are powerful endogenous bioactive regulators of inflammation, with great clinical translational properties. Here, we investigated the ability of the SPM 17-HDHA to enhance the adaptive immune response using an OVA immunization model and a pre-clinical influenza vaccination mouse model. Our findings revealed that mice immunized with OVA plus 17-HDHA or with H1N1-derived HA protein plus 17-HDHA increased antigen-specific antibody titers. 17-HDHA increased the number of antibody-secreting cells in vitro as well as the number of HA-specific antibody secreting cells present in the bone marrow. Importantly, the 17-HDHA-mediated increased antibody production was more protective against live pH1N1 influenza infection in mice. This is the first report on the biological effects of omega-3-derived SPMs on the humoral immune response. These findings illustrate a previously unknown biological link between proresolution signals and the adaptive immune system. Furthermore, this work has important implications for the understanding of B cell biology, as well as the development of new potential vaccine adjuvants. PMID:25392529

  20. Anti-IL-20 monoclonal antibody promotes bone fracture healing through regulating IL-20-mediated osteoblastogenesis

    PubMed Central

    Hsu, Yu-Hsiang; Chiu, Yi-Shu; Chen, Wei-Yu; Huang, Kuo-Yuan; Jou, I-Ming; Wu, Po-Tin; Wu, Chih-Hsing; Chang, Ming-Shi

    2016-01-01

    Bone loss and skeletal fragility in bone fracture are caused by an imbalance in bone remodeling. The current challenge in bone fracture healing is to promote osteoblastogenesis and bone formation. We aimed to explore the role of IL-20 in osteoblastogenesis, osteoblast differentiation and bone fracture. Serum IL-20 was significantly correlated with serum sclerostin in patients with bone fracture. In a mouse model, anti-IL-20 monoclonal antibody (mAb) 7E increased bone formation during fracture healing. In vitro, IL-20 inhibited osteoblastogenesis by upregulating sclerostin, and downregulating osterix (OSX), RUNX2, and osteoprotegerin (OPG). IL-20R1 deficiency attenuated IL-20-mediated inhibition of osteoblast differentiation and maturation and reduced the healing time after a bone fracture. We conclude that IL-20 affects bone formation and downregulates osteoblastogenesis by modulating sclerostin, OSX, RUNX2, and OPG on osteoblasts. Our results demonstrated that IL-20 is involved in osteoregulation and anti-IL-20 mAb is a potential therapeutic for treating bone fracture or metabolic bone diseases. PMID:27075747

  1. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity

    PubMed Central

    Alderson, Kory L.; Sondel, Paul M.

    2011-01-01

    Natural killer (NK) cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs). Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs) designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings. PMID:21660134

  2. Successful Salvage Treatment of Resistant Acute Antibody-Mediated Kidney Transplant Rejection with Eculizumab.

    PubMed

    Khan, Saif A; Al-Riyami, Dawood; Al-Mula Abed, Yasser W; Mohammed, Saja; Al-Riyami, Marwa; Al-Lawati, Nabil M

    2016-08-01

    Antibody-mediated rejection (ABMR) jeopardises short- and long-term transplant survival and remains a challenge in the field of organ transplantation. We report the first use of the anticomplement agent eculizumab in Oman in the treatment of a 61-year-old female patient with ABMR following a living unrelated kidney transplant. The patient was admitted to the Sultan Qaboos University Hospital in Muscat, Oman, in 2013 on the eighth day post-transplantation with serum creatinine (Cr) levels of 400 µmol/L which continued to rise, necessitating haemodialysis. A biopsy indicated ABMR with acute cellular rejection. No improvement was observed following standard ABMR treatment and she continued to require dialysis. Five doses of eculizumab were administered over six weeks with a subsequent dramatic improvement in renal function. The patient became dialysis-free with serum Cr levels of 119 µmol/L within four months. This case report indicates that eculizumab is a promising agent in the treatment of ABMR. PMID:27606122

  3. Successful Salvage Treatment of Resistant Acute Antibody-Mediated Kidney Transplant Rejection with Eculizumab

    PubMed Central

    Khan, Saif A.; Al-Riyami, Dawood; Al-Mula Abed, Yasser W.; Mohammed, Saja; Al-Riyami, Marwa; Al-Lawati, Nabil M.

    2016-01-01

    Antibody-mediated rejection (ABMR) jeopardises short- and long-term transplant survival and remains a challenge in the field of organ transplantation. We report the first use of the anticomplement agent eculizumab in Oman in the treatment of a 61-year-old female patient with ABMR following a living unrelated kidney transplant. The patient was admitted to the Sultan Qaboos University Hospital in Muscat, Oman, in 2013 on the eighth day post-transplantation with serum creatinine (Cr) levels of 400 µmol/L which continued to rise, necessitating haemodialysis. A biopsy indicated ABMR with acute cellular rejection. No improvement was observed following standard ABMR treatment and she continued to require dialysis. Five doses of eculizumab were administered over six weeks with a subsequent dramatic improvement in renal function. The patient became dialysis-free with serum Cr levels of 119 µmol/L within four months. This case report indicates that eculizumab is a promising agent in the treatment of ABMR. PMID:27606122

  4. Osthole prevents anti-Fas antibody-induced hepatitis in mice by affecting the caspase-3-mediated apoptotic pathway.

    PubMed

    Okamoto, Toshihiro; Kawasaki, Toru; Hino, Okio

    2003-02-15

    Fas (Apo-1/CD95) ligand, which is a type II membrane protein, is a major inducer of apoptosis. Osthole is a coumarin derivative present in medicinal plants. The effect of osthole on hepatitis induced by anti-Fas antibody in mice was studied. Pretreatment of mice with osthole (10, 50, and 100 mg/kg, i.p.) prevented the elevation of plasma alanine aminotransferase (ALT) caused by anti-Fas antibody (175 microg/kg, i.v.). Administration of osthole to mice even at a dose of 10 mg/kg significantly inhibited of anti-Fas antibody-induced elevation of plasma ALT. Capase-3 is a cysteine protease, and treatment of mice with anti-Fas antibody caused an elevation of caspase-3 activity at 3.5 and 6 hr. Pretreatment of mice with osthole (100 mg/kg, i.p.) inhibited the elevation of caspase-3 activity caused by anti-Fas antibody. However, the addition of osthole (up to 10(-4)M) to a liver cytosol fraction isolated from mice treated with anti-Fas antibody did not inhibit caspase-3 activity in vitro. Thus, treatment of mice with osthole inhibited caspase-3 activity by an effect upstream of caspase-3 activation. The livers of mice treated with anti-Fas antibody contained apoptotic and dead cells; osthole attenuated the development of this apoptosis and cell death. The present results show that osthole prevented anti-Fas antibody-induced hepatitis by inhibiting the Fas-mediated apoptotic pathway. PMID:12566097

  5. Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1.

    PubMed

    Lewis, George K; Finzi, Andrés; DeVico, Anthony L; Pazgier, Marzena

    2015-09-01

    The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs) show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion) by antibodies that protect only by potent Fc-mediated effector function. PMID:26393642

  6. LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy

    NASA Astrophysics Data System (ADS)

    Popov, Boris V.

    2013-02-01

    Near infrared laser immunotherapy becomes now a new promising research field to cure the patients with cancers. One of the critical limitation in medical application of this treatment is availability of the specific markers for delivery of laser-sensitive nanoparticles. When coupled to antibodies to the cancer stem cells markers these nanoparticles may be delivered to the cancer tissue and mediate the laser induced thermolysis of the cancer stem cells that initiate and drive growth of cancer. This paper addresses the Lgr5 cell surface marker mediating the Wnt/β-catenin signal transduction as a potential target for anti-cancer laser immunotherapy of skin cancers.

  7. Envelope Glycoprotein Internalization Protects Human and Simian Immunodeficiency Virus-Infected Cells from Antibody-Dependent Cell-Mediated Cytotoxicity

    PubMed Central

    von Bredow, Benjamin; Arias, Juan F.; Heyer, Lisa N.; Gardner, Matthew R.; Farzan, Michael; Rakasz, Eva G.

    2015-01-01

    ABSTRACT The cytoplasmic tails of human and simian immunodeficiency virus (HIV and SIV, respectively) envelope glycoproteins contain a highly conserved, membrane-proximal endocytosis motif that prevents the accumulation of Env on the surface of infected cells prior to virus assembly. Using an assay designed to measure the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC), we show that substitutions in this motif increase the susceptibility of HIV-1- and SIV-infected cells to ADCC in a manner that directly correlates with elevated Env levels on the surface of virus-infected cells. In the case of HIV-1, this effect is additive with a deletion in vpu recently shown to enhance the susceptibility of HIV-1-infected cells to ADCC as a result of tetherin-mediated retention of budding virions on the cell surface. These results reveal a previously unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from antibody responses by regulating the amount of Env present on the cell surface. IMPORTANCE This study reveals an unappreciated role for the membrane-proximal endocytosis motif of gp41 in protecting HIV-1- and SIV-infected cells from elimination by Env-specific antibodies. Thus, strategies designed to interfere with this mechanism of Env internalization may improve the efficacy of antibody-based vaccines and antiretroviral therapies designed to enhance the immunological control of HIV-1 replication in chronically infected individuals. PMID:26269175

  8. Coincidence of cellular and antibody mediated rejection in heart transplant recipients - preliminary report.

    PubMed

    Zakliczyński, Michał; Nożyński, Jerzy; Konecka-Mrówka, Dominika; Babińska, Agnieszka; Flak, Bożena; Hrapkowicz, Tomasz; Zembala, Marian

    2014-03-01

    Antibody mediated rejection (AMR) can significantly influence the results of orthotopic heart transplantation (OHT). However, AMR and cellular rejection (CR) coexistence is poorly described. Therefore we performed a prospective pilot study to assess AMR/CR concomitance in endomyocardial biopsies (EMBs) obtained electively in 27 OHT recipients (21 M/6 F, 45.4 ± 14.4 y/o). Biopsy samples were paraffin embedded and processed typically with hematoxylin/eosin staining to assess CR, and, if a sufficient amount of material remained, treated with immunohistochemical methods to localize particles C3d and C4d as markers of antibody dependent complement activation. With this approach 80 EMBs, including 41 (51%) harvested within the first month after OHT, were qualified for the study. Among them 14 (18%) were C3d+, 37 (46%) were C4d+, and 12 (15%) were both C3d and C4d positive. At least one C3d+, C4d+, and C3d/C4d+ EMB was found in 10 (37%), 17 (63%), and 8 (30%) patients, respectively. Among 37 CR0 EMBs C3d was observed in 4 (11%), C4d in 17 (46%), and both C3d/C4d in 3 (8%) cases. Among 28 CR1 EMBs C3d was observed in 3 (11%), C4d in 11 (39%), and C3d/C4d in 3 (11%) cases. Among 15 CR2 EMBs C3d was observed in 7 (47%), C4d in 9 (60%), and C3d/C4d in 6 (40%) cases. Differences in C3d and C3d/C4d occurrence between grouped CR0-1 EMBs and CR2 EMBs (7/65 - 11% vs. 7/15 - 47%; 6/65 - 9% vs. 6/15 - 40%) were significant (p = 0.0035 and p = 0.0091, respectively, χ(2) test). In conclusion, apparently frequent CR and AMR coexistence demonstrated in this preliminary study warrants further investigation in this field. PMID:26336395

  9. Coincidence of cellular and antibody mediated rejection in heart transplant recipients – preliminary report

    PubMed Central

    Nożyński, Jerzy; Konecka-Mrówka, Dominika; Babińska, Agnieszka; Flak, Bożena; Hrapkowicz, Tomasz; Zembala, Marian

    2014-01-01

    Antibody mediated rejection (AMR) can significantly influence the results of orthotopic heart transplantation (OHT). However, AMR and cellular rejection (CR) coexistence is poorly described. Therefore we performed a prospective pilot study to assess AMR/CR concomitance in endomyocardial biopsies (EMBs) obtained electively in 27 OHT recipients (21 M/6 F, 45.4 ± 14.4 y/o). Biopsy samples were paraffin embedded and processed typically with hematoxylin/eosin staining to assess CR, and, if a sufficient amount of material remained, treated with immunohistochemical methods to localize particles C3d and C4d as markers of antibody dependent complement activation. With this approach 80 EMBs, including 41 (51%) harvested within the first month after OHT, were qualified for the study. Among them 14 (18%) were C3d+, 37 (46%) were C4d+, and 12 (15%) were both C3d and C4d positive. At least one C3d+, C4d+, and C3d/C4d+ EMB was found in 10 (37%), 17 (63%), and 8 (30%) patients, respectively. Among 37 CR0 EMBs C3d was observed in 4 (11%), C4d in 17 (46%), and both C3d/C4d in 3 (8%) cases. Among 28 CR1 EMBs C3d was observed in 3 (11%), C4d in 11 (39%), and C3d/C4d in 3 (11%) cases. Among 15 CR2 EMBs C3d was observed in 7 (47%), C4d in 9 (60%), and C3d/C4d in 6 (40%) cases. Differences in C3d and C3d/C4d occurrence between grouped CR0-1 EMBs and CR2 EMBs (7/65 – 11% vs. 7/15 – 47%; 6/65 – 9% vs. 6/15 – 40%) were significant (p = 0.0035 and p = 0.0091, respectively, χ2 test). In conclusion, apparently frequent CR and AMR coexistence demonstrated in this preliminary study warrants further investigation in this field. PMID:26336395

  10. Markers of Endothelial-to-Mesenchymal Transition: Evidence for Antibody-Endothelium Interaction during Antibody-Mediated Rejection in Kidney Recipients.

    PubMed

    Xu-Dubois, Yi-Chun; Peltier, Julie; Brocheriou, Isabelle; Suberbielle-Boissel, Caroline; Djamali, Arjang; Reese, Shannon; Mooney, Nuala; Keuylian, Zela; Lion, Julien; Ouali, Nacéra; Levy, Pierre P; Jouanneau, Chantal; Rondeau, Eric; Hertig, Alexandre

    2016-01-01

    Antibody-mediated rejection (ABMR) is a leading cause of allograft loss. Treatment efficacy depends on accurate diagnosis at an early stage. However, sensitive and reliable markers of antibody-endothelium interaction during ABMR are not available for routine use. Using immunohistochemistry, we retrospectively studied the diagnostic value of three markers of endothelial-to-mesenchymal transition (EndMT), fascin1, vimentin, and heat shock protein 47, for ABMR in 53 renal transplant biopsy specimens, including 20 ABMR specimens, 24 cell-mediated rejection specimens, and nine normal grafts. We validated our results in an independent set of 74 unselected biopsy specimens. Endothelial cells of the peritubular capillaries in grafts with ABMR expressed fascin1, vimentin, and heat shock protein 47 strongly, whereas those from normal renal grafts did not. The level of EndMT marker expression was significantly associated with current ABMR criteria, including capillaritis, glomerulitis, peritubular capillary C4d deposition, and donor-specific antibodies. These markers allowed us to identify C4d-negative ABMR and to predict late occurrence of disease. EndMT markers were more specific than capillaritis for the diagnosis and prognosis of ABMR and predicted late (up to 4 years after biopsy) renal graft dysfunction and proteinuria. In the independent set of 74 renal graft biopsy specimens, the EndMT markers for the diagnosis of ABMR had a sensitivity of 100% and a specificity of 85%. Fascin1 expression in peritubular capillaries was also induced in a rat model of ABMR. In conclusion, EndMT markers are a sensitive and reliable diagnostic tool for detecting endothelial activation during ABMR and predicting late loss of allograft function. PMID:25995444

  11. An Enzyme-Mediated Methodology for the Site-Specific Radiolabeling of Antibodies Based on Catalyst-Free Click Chemistry

    PubMed Central

    Zeglis, Brian M.; Davis, Charles B.; Aggeler, Robert; Kang, Hee Chol; Chen, Aimei; Agnew, Brian J.; Lewis, Jason S.

    2013-01-01

    An enzyme- and click chemistry-mediated methodology for the site-selective radiolabeling of antibodies on the heavy chain glycans has been developed and validated. To this end, a model system based on the prostate specific membrane antigen-targeting antibody J591, the positron-emitting radiometal 89Zr, and the chelator desferrioxamine has been employed. The methodology consists of four steps: (1) the removal of sugars on the heavy chain region of the antibody to expose terminal N-acetylglucosamine residues; (2) the incorporation of azide-modified N-acetylgalactosamine monosaccharides into the glycans of the antibody; (3) the catalyst-free click conjugation of desferrioxamine-modified dibenzocyclooctynes to the azide-bearing sugars; and (4) the radiolabeling of the chelator-modified antibody with 89Zr. The site-selective labeling methodology has proven facile, reproducible, and robust, producing 89Zr-labeled radioimmunoconjguates that display high stability and immunoreactivity in vitro (>95%) in addition to high selective tumor uptake (67.5 ± 5.0 %ID/g) and tumor-to-background contrast in athymic nude mice bearing PSMA-expressing subcutaneous LNCaP xenografts. Ultimately, this strategy could play a critical role in the development of novel well-defined and highly immunoreactive radioimmunoconjugates for both the laboratory and clinic. PMID:23688208

  12. Antibody-Mediated Fcγ Receptor-Based Mechanisms of HIV Inhibition: Recent Findings and New Vaccination Strategies

    PubMed Central

    Holl, Vincent; Peressin, Maryse; Moog, Christiane

    2009-01-01

    The HIV/AIDS pandemic is one of the most devastating pandemics worldwide. Today, the major route of infection by HIV is sexual transmission. One of the most promising strategies for vaccination against HIV sexual infection is the development of a mucosal vaccine, which should be able to induce strong local and systemic protective immunity. It is believed that both humoral and cellular immune responses are needed for inducing a sterilizing protection against HIV. Recently, passive administration of monoclonal neutralizing antibodies in macaques infected by vaginal challenge demonstrated a crucial role of FcγRs in the protection afforded by these antibodies. This questioned about the role of innate and adaptive immune functions, including ADCC, ADCVI, phagocytosis of opsonized HIV particles and the production of inflammatory cytokines and chemokines, in the mechanism of HIV inhibition in vivo. Other monoclonal antibodies - non-neutralizing inhibitory antibodies - which recognize immunogenic epitopes, have been shown to display potent FcγRs-dependent inhibition of HIV replication in vitro. The potential role of these antibodies in protection against sexual transmission of HIV and their biological relevance for the development of an HIV vaccine therefore need to be determined. This review highlights the potential role of FcγRs-mediated innate and adaptive immune functions in the mechanism of HIV protection. PMID:21994593

  13. Rapid Reduction in Donor-Specific Anti-Human Leukocyte Antigen Antibodies and Reversal of Antibody-Mediated Rejection With Bortezomib in Pediatric Heart Transplant Patients

    PubMed Central

    Morrow, William Robert; Frazier, Elizabeth A.; Mahle, William T.; Harville, Terry O.; Pye, Sherry E.; Knecht, Kenneth R.; Howard, Emily L.; Smith, R. Neal; Saylors, Robert L.; Garcia, Xiomara; Jaquiss, Robert D.B.; Woodle, E. Steve

    2013-01-01

    Background High titer donor-specific antibodies (DSA) and positive crossmatch in cardiac transplant recipients is associated with increased mortality from antibody-mediated rejection (AMR). Although treatment to reduce antihuman leukocyte antigen antibodies using plasmapheresis, intravenous immunoglobulin, and rituximab has been reported to be beneficial, in practice these are often ineffective. Moreover, these interventions do not affect the mature antibody producing plasma cell. Bortezomib, a proteasome inhibitor active against plasma cells, has been shown to reduce DSA in renal transplant patients with AMR. We report here the first use of bortezomib for cardiac transplant recipients in four pediatric heart recipients with biopsy-proven AMR, hemodynamic compromise, positive crossmatch, and high titer class I DSA. Methods Patients received four intravenous dose of bortezomib (1.3 mg/m2) over 2 weeks with plasmapheresis and rituximab. DSA specificity and strength (mean fluorescence intensity) was determined with Luminex. All had received previous treatment with plasmapheresis, intravenous immunoglobulin, and rituximab that was ineffective. Results AMR resolved in all patients treated with bortezomib with improvement in systolic function, conversion of biopsy to C4d negative in three patients and IgG negative in one patient, and a prompt, precipitous reduction in DSAs. In three patients who received plasmapheresis before bortezomib, plasmapheresis failed to reduce DSA. In one case, DSA increased after bortezomib but decreased after retreatment. Conclusions Bortezomib reduces DSA and may be an important adjunct to treatment of AMR in cardiac transplant recipients. Bortezomib may also be useful in desensitization protocols and in prevention of AMR in sensitized patients with positive crossmatch and elevated DSA. PMID:22179403

  14. Persistent strong anti-HLA antibody at high titer is complement binding and associated with increased risk of antibody-mediated rejection in heart transplant recipients

    PubMed Central

    Zeevi, Adriana; Lunz, John; Feingold, Brian; Shullo, Michael; Bermudez, Christian; Teuteberg, Jeffery; Webber, Steven

    2013-01-01

    BACKGROUND Sensitized heart transplant candidates are evaluated for donor-specific anti-HLA IgG antibody (DSA) by Luminex single-antigen bead (SAB) testing (SAB-IgG) to determine donor suitability and help predict a positive complement-dependent cytotoxicity crossmatch (CDC-XM) by virtual crossmatching (VXM). However, SAB testing used for VXM does not correlate perfectly with CDC-XM results and individual transplant programs have center-specific permissible thresholds to predict crossmatch positivity. A novel Luminex SAB-based assay detecting C1q-binding HLA antibodies (SAB-C1q) contributes functional information to SAB testing, but the relationship between SAB strength and complement-binding ability is unclear. METHODS In this retrospective study, we identified 15 pediatric and adult heart allograft candidates with calculated panel-reactive antibody (cPRA) >50% by SAB-IgG and compared conventional SAB-IgG results with SAB-C1q testing. RESULTS Pre- and post-transplant DSA by SAB-C1q correlated with DSA by SAB-IgG and also with CDC-XM results and early post-transplant endomyocardial biopsy findings. Individual HLA antibodies by SAB-IgG in undiluted sera correlated poorly with SAB-C1q; however, when sera were diluted 1:16, SAB-IgG results were well correlated with SAB-C1q. In some sera, HLA antibodies with low mean fluorescent intensity (MFI) by SAB-IgG exhibited high SAB-C1q MFIs for the same HLA antigens. Diluting or heat-treating these sera increased SAB-IgG MFI, consistent with SAB-C1q results. In 13 recipients, SAB-C1q–positive DSA was associated with positive CDC-XM and with early clinical post-transplant antibody-mediated rejection (cAMR). CONCLUSIONS Risk assessment for positive CDC-XM and early cAMR in sensitized heart allograft recipients are correlated with SAB-C1q reactivity. PMID:23142561

  15. Acute Liver Allograft Antibody-Mediated Rejection: an inter-institutional study of routine histopathological features

    PubMed Central

    O'Leary, Jacqueline G.; Shiller, S. Michelle; Bellamy, Christopher; Nalesnik, Michael A.; Kaneku, Hugo; Terasaki, Paul I.; Klintmalm, Göran B.; Demetris, Anthony J.

    2015-01-01

    Acute antibody-mediated rejection (AMR) occurs in a minority of sensitized liver transplant recipients. Although histopathologic characteristics have been described, a generalizable scoring system used to trigger a more in-depth analysis is needed to screen for this rare but important finding. Toward this goal, we created a training and validation cohort from 3 high volume liver transplant programs of putative acute AMR and control cases that were evaluated blindly by 4 independent transplant pathologists. The evaluations were performed on H&E sections alone without knowledge of serum DSA results nor C4d stains. Characteristics strongly correlated with acute AMR included portal eosinophilia (OR=4.37, p<0.001), portal vein endothelial cell hypertrophy (OR=2.88, p<0.001), and eosinophilic central venulitis (OR=2.48, p=0.003). These and other characteristics were incorporated into models created from the training cohort alone. The final Acute-AMR (aAMR) score exhibited a strong correlation with acute AMR in the training (OR=2.86, p<0.001) and validation cohort (OR=2.49, p<0.001). SPSS tree classification was used to select 2 cutoffs, one that optimized specificity at a score >1.75 (sensitivity = 34%, specificity = 87%) and a second that optimized sensitivity at a score >1.0 (sensitivity = 81%, specificity = 71%). In conclusion, routine histopathological features of the aAMR score can be used to screen for acute AMR on routine H&E in liver transplant biopsies, a diagnosis that requires substantiation by donor-specific HLA alloantibody testing, C4d staining, and exclusion of other insults. PMID:25045154

  16. DNA-mediated strand displacement facilitates sensitive electronic detection of antibodies in human serums.

    PubMed

    Dou, Baoting; Yang, Jianmei; Shi, Kai; Yuan, Ruo; Xiang, Yun

    2016-09-15

    We describe here the development of a sensitive and convenient electronic sensor for the detection of antibodies in human serums. The sensor is constructed by self-assembly formation of a mixed monolayer containing the small molecule epitope conjugated double stranded DNA probes on gold electrode. The target antibody binds the epitope on the dsDNA probe and lowers the melting temperature of the duplex, which facilitates the displacement of the antibody-linked strand of the duplex probe by an invading methylene blue-tagged single stranded DNA (MB-ssDNA) through the strand displacement reaction and leads to the capture of many MB-ssDNA on the sensor surface. Subsequent electrochemical oxidation of the methylene blue labels results in amplified current response for sensitive monitoring of the antibodies. The antibody assay conditions are optimized and the sensor exhibits a linear range between 1.0 and 25.0nM with a detection limit of 0.67nM for the target antibody. The sensor is also selective and can be employed to detect the target antibodies in human serum samples. With the advantages of using small molecule epitope as the antibody recognition element over traditional antigen, the versatile manipulability of the DNA probes and the unique properties of the electrochemical transduction technique, the developed sensor thus hold great potential for simple and sensitive detection of different antibodies and other proteins in real samples. PMID:27111124

  17. Activation of cytomegalovirus-specific CD8+ T-cell response by antibody-mediated peptide-major histocompatibility class I complexes

    PubMed Central

    Schmittnaegel, Martina; Klein, Christian; Levitsky, Victor; Knoetgen, Hendrik

    2016-01-01

    Imposing antigenicity on tumor cells is a key step toward successful cancer-immunotherapy. A cytomegalovirus-derived peptide recombinantly fused to a major histocompatibility class I complex and a monoclonal antibody can be targeted to tumor cells by antibody-mediated delivery and activate a strong and specific CD8+ T cell response. PMID:26942061

  18. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity.

    PubMed

    Evans, M K; Sauer, S J; Nath, S; Robinson, T J; Morse, M A; Devi, G R

    2016-01-01

    Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy. PMID:26821068

  19. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity

    PubMed Central

    Evans, M K; Sauer, S J; Nath, S; Robinson, T J; Morse, M A; Devi, G R

    2016-01-01

    Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy. PMID:26821068

  20. Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4 + T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity

    PubMed Central

    Richard, Jonathan; Veillette, Maxime; Ding, Shilei; Zoubchenok, Daria; Alsahafi, Nirmin; Coutu, Mathieu; Brassard, Nathalie; Park, Jongwoo; Courter, Joel R.; Melillo, Bruno; Smith, Amos B.; Shaw, George M.; Hahn, Beatrice H.; Sodroski, Joseph; Kaufmann, Daniel E.; Finzi, Andrés

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection causes a progressive depletion of CD4 + T cells. Despite its importance for HIV-1 pathogenesis, the precise mechanisms underlying CD4 + T-cell depletion remain incompletely understood. Here we make the surprising observation that antibody-dependent cell-mediated cytotoxicity (ADCC) mediates the death of uninfected bystander CD4 + T cells in cultures of HIV-1-infected cells. While HIV-1-infected cells are protected from ADCC by the action of the viral Vpu and Nef proteins, uninfected bystander CD4 + T cells bind gp120 shed from productively infected cells and are efficiently recognized by ADCC-mediating antibodies. Thus, gp120 shedding represents a viral mechanism to divert ADCC responses towards uninfected bystander CD4 + T cells. Importantly, CD4-mimetic molecules redirect ADCC responses from uninfected bystander cells to HIV-1-infected cells; therefore, CD4-mimetic compounds might have therapeutic utility in new strategies aimed at specifically eliminating HIV-1-infected cells. PMID:26870823

  1. Anti-huCD20 Antibody Therapy for Antibody-Mediated Rejection of Renal Allografts in a Mouse Model

    PubMed Central

    Abe, Toyofumi; Ishii, Daisuke; Gorbacheva, Victoria; Kohei, Naoki; Tsuda, Hidetoshi; Tanaka, Toshiaki; Dvorina, Nina; Nonomura, Norio; Takahara, Shiro; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.

    2016-01-01

    We have reported that B6.CCR5−/− mice reject renal allografts with high serum donor-specific antibody (DSA) titers and marked C4d deposition in grafts, features consistent with AMR. B6.huCD20/CCR5−/− mice, where human CD20 expression is restricted to B cells, rejected A/J renal allografts by day 26 post-transplant with DSA first detected in serum on day 5 post-transplant and increased thereafter. Recipient treatment with anti-huCD20 mAb prior to the transplant and weekly up to 7 weeks post-transplant promoted long-term allograft survival (> 100 days) with low DSA titers. To investigate the effect of B cell depletion at the time serum DSA was first detected, recipients were treated with anti-huCD20 mAb on days 5, 8 and 12 post-transplant. This regimen significantly reduced DSA titers and graft inflammation on day 15 post-transplant and prolonged allograft survival > 60 days. However, DSA returned to the titers observed in control treated recipients by day 30 post-transplant and histological analyses on day 60 post-transplant indicated severe interstitial fibrosis. These results indicate that anti-huCD20 mAb had the greatest effect as a prophylactic treatment and that the distinct kinetics of DSA responses accounts for acute renal allograft failure versus the development of fibrosis. PMID:25731734

  2. Impact of ABO Incompatibility on the Development of Acute Antibody-Mediated Rejection in Kidney Transplant Recipients Presensitized to HLA

    PubMed Central

    Chung, Byung Ha; Joo, Yu Young; Lee, Jaesin; Kim, Hyung Duk; Kim, Ji-Il; Moon, In Sung; Choi, Bum Soon; Oh, Eun-Jee; Park, Cheol Whee; Kim, Yong-Soo; Yang, Chul Woo

    2015-01-01

    Whether the coexistence of anti-A/B antibody and donor specific anti-HLA antibody (HLA-DSA) has a synergistic impact on the development of acute antibody-mediated rejection (AAMR) in kidney transplant recipients (KTRs) is unclear. This study includes 92 KTRs who received a kidney from an ABO-incompatible (ABOi) donor or were presensitized to donor HLA (HLAs) and 292 controls (CONT). HLAs was defined as a crossmatch positivity or the presence of HLA-DSA. We compared the incidence of AAMR among ABOi (n = 58), ABOi+HLAs (n = 12), HLAs (n = 22), and CONT (n = 292) groups and evaluated the risk factors and antibody type (anti-A/B vs. HLA-DSA) responsible for AAMR. AAMR developed less frequently in ABOi and CONT than in the ABOi+HLAs or HLAs (P < 0.05 for all); however, there was no difference between the ABOi+HLAs and HLAs groups. AAMR developed more frequently with strong HLA-DSA at baseline; however, high baseline anti-A/B titer did not affect AAMR development. Strong baseline HLA-DSA was an independent predictor for AAMR, however the baseline anti-A/B titer was not. All four AAMR episodes in ABOi+HLAs were positive to HLA-DSA but not to anti-A/B. In conclusion, ABO incompatibility does not increase the risk for AAMR in HLAs KTRs. PMID:25897756

  3. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  4. Bispecific Antibodies that Mediate Killing of Cells Infected with Human Immunodeficiency Virus of Any Strain

    NASA Astrophysics Data System (ADS)

    Berg, Jorg; Lotscher, Erika; Steimer, Kathelyn S.; Capon, Daniel J.; Baenziger, Jurg; Jack, Hans-Martin; Wabl, Matthias

    1991-06-01

    Although AIDS patients lose human immunodeficiency virus (HIV)-specific cytotoxic T cells, their remaining CD8-positive T lymphocytes maintain cytotoxic function. To exploit this fact we have constructed bispecific antibodies that direct cytotoxic T lymphocytes of any specificity to cells that express gp120 of HIV. These bispecific antibodies comprise one heavy/light chain pair from an antibody to CD3, linked to a heavy chain whose variable region has been replaced with sequences from CD4 plus a second light chain. CD3 is part of the antigen receptor on T cells and is responsible for signal transduction. In the presence of these bispecific antibodies, T cells of irrelevant specificity effectively lyse HIV-infected cells in vitro.

  5. Hormone Conjugated with Antibody to CD3 Mediates Cytotoxic T Cell Lysis of Human Melanoma Cells

    NASA Astrophysics Data System (ADS)

    Liu, Margaret Ann; Nussbaum, Samuel R.; Eisen, Herman N.

    1988-01-01

    Cytotoxic T lymphocytes can be activated by antibodies to their antigen-specific receptor complex (TCR-CD3) to destroy target cells, regardless of the specificity of the cytotoxic T cells. A novel hormone-antibody conjugate, consisting of an analog of melanocyte-stimulating hormone chemically coupled to a monoclonal antibody to CD3, the invariant component of the T cell receptor complex, was used to target human melanoma cells for destruction by human cytotoxic T lymphocytes that bear no specificity for the tumor cells. As targeting components of such anti-CD3 conjugates, hormones or growth factors are expected to prove more effective than antibodies to tumor-associated antigens in focusing the destructive activity of cytotoxic T cells on tumor target cells.

  6. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia

    NASA Astrophysics Data System (ADS)

    Shingai, Masashi; Nishimura, Yoshiaki; Klein, Florian; Mouquet, Hugo; Donau, Olivia K.; Plishka, Ronald; Buckler-White, Alicia; Seaman, Michael; Piatak, Michael; Lifson, Jeffrey D.; Dimitrov, Dimiter; Nussenzweig, Michel C.; Martin, Malcolm A.

    2013-11-01

    Neutralizing antibodies can confer immunity to primate lentiviruses by blocking infection in macaque models of AIDS. However, earlier studies of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies administered to infected individuals or humanized mice reported poor control of virus replication and the rapid emergence of resistant variants. A new generation of anti-HIV-1 monoclonal antibodies, possessing extraordinary potency and breadth of neutralizing activity, has recently been isolated from infected individuals. These neutralizing antibodies target different regions of the HIV-1 envelope glycoprotein including the CD4-binding site, glycans located in the V1/V2, V3 and V4 regions, and the membrane proximal external region of gp41 (refs 9, 10, 11, 12, 13, 14). Here we have examined two of the new antibodies, directed to the CD4-binding site and the V3 region (3BNC117 and 10-1074, respectively), for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian-human immunodeficiency virus (SHIV)-AD8, which emulates many of the pathogenic and immunogenic properties of HIV-1 during infections of rhesus macaques. Either antibody alone can potently block virus acquisition. When administered individually to recently infected macaques, the 10-1074 antibody caused a rapid decline in virus load to undetectable levels for 4-7days, followed by virus rebound during which neutralization-resistant variants became detectable. When administered together, a single treatment rapidly suppressed plasma viraemia for 3-5weeks in some long-term chronically SHIV-infected animals with low CD4+ T-cell levels. A second cycle of anti-HIV-1 monoclonal antibody therapy, administered to two previously treated animals, successfully controlled virus rebound. These results indicate that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected

  7. Anti-Glycine Receptor Antibody Mediated Progressive Encephalomyelitis with Rigidity and Myoclonus Associated with Breast Cancer

    PubMed Central

    De Blauwe, Sofie N.; Santens, Patrick

    2013-01-01

    We describe a 66-year-old woman who presented with a dramatic course of PERM. Anti-glycine receptor antibodies were found. She stabilized after plasma-exchange and partly recovered. Eighteen months later, a diagnosis of smouldering breast cancer with bone marrow metastasis was made. There are indications that this tumor was already present at first presentation. An overview of PERM and anti-glycine receptor antibodies is given. PMID:23936697

  8. Antisperm antibody-mediated alterations in the cellular activity of human trophoblast cells in culture.

    PubMed

    Sinha, D; Chattopadhyay, S

    1994-04-01

    Immune recognition of the fetus is well documented, yet the immunological basis of pregnancy loss awaits elucidation. Identification of trophoblast membrane epitopes as non-self either by preformed immunoglobulins or by circulating immunocompetent cells would lead to immunological rejection of the tissue. Such an event may occur in cases of cross-reacting antibodies developed as a consequence of exposure of sperm surface antigens. This hypothesis was tested by developing specific antibodies in rabbits against intact sperm surface antigens. These were subjected to different schedules of IgG purification and characterization. By means of nuclide precursor incorporation, the effect of antisperm antibody on DNA, RNA and protein synthesis of trophoblast cells in culture were studied. The results showed that the antibody inhibits incorporation into cells but after a delay of 72 hours some cells gradually recover. The interaction also led to a reduced rate of hCG production. Lysosomal enzyme activity was inhibited in the spent medium of antibody-treated cells but lysosome rich fractions showed no effect. This indicated that the major effect of the antibody was growth inhibitory rather than cytolytic. PMID:7520885

  9. Antibody-Mediated Immobilization of Cryptococcus neoformans Promotes Biofilm Formation▿ †

    PubMed Central

    Robertson, Emma J.; Casadevall, Arturo

    2009-01-01

    Most microbes, including the fungal pathogen Cryptococcus neoformans, can grow as biofilms. Biofilms confer upon microbes a range of characteristics, including an ability to colonize materials such as shunts and catheters and increased resistance to antibiotics. Here, we provide evidence that coating surfaces with a monoclonal antibody to glucuronoxylomannan, the major component of the fungal capsular polysaccharide, immobilizes cryptococcal cells to a surface support and, subsequently, promotes biofilm formation. We used time-lapse microscopy to visualize the growth of cryptococcal biofilms, generating the first movies of fungal biofilm growth. We show that when fungal cells are immobilized using surface-attached specific antibody to the capsule, the initial stages of biofilm formation are significantly faster than those on surfaces with no antibody coating or surfaces coated with unspecific monoclonal antibody. Time-lapse microscopy revealed that biofilm growth was a dynamic process in which cells shuffled position during budding and was accompanied by emergence of planktonic variant cells that left the attached biofilm community. The planktonic variant cells exhibited mobility, presumably by Brownian motion. Our results indicate that microbial immobilization by antibody capture hastens biofilm formation and suggest that antibody coating of medical devices with immunoglobulins must exclude binding to common pathogenic microbes and the possibility that this effect could be exploited in industrial microbiology. PMID:19251903

  10. Development of an edema factor-mediated cAMP-induction bioassay for detecting antibody-mediated neutralization of anthrax protective antigen.

    PubMed

    Zmuda, Jonathan F; Zhang, Linyi; Richards, Terri; Pham, Quyen; Zukauskas, David; Pierre, Jennifer L; Laird, Michael W; Askins, Janine; Choi, Gil H

    2005-03-01

    Intoxication of mammalian cells by Bacillus anthracis requires the coordinate activity of three distinct bacterial proteins: protective antigen (PA), edema factor (EF), and lethal factor (LF). Among these proteins, PA has become the major focus of work on monoclonal antibodies and vaccines designed to treat or prevent anthrax infection since neither EF nor LF is capable of inducing cellular toxicity in its absence. Here, we present the development of a sensitive, precise, and biologically relevant bioassay platform capable of quantifying antibody-mediated PA neutralization. This bioassay is based on the ability of PA to bind and shuttle EF, a bacterial adenylate cyclase, into mammalian cells leading to an increase in cAMP that can be quantified using a sensitive chemiluminescent ELISA. The results of this study indicate that the cAMP-induction assay possesses the necessary performance characteristics for use as both a potency-indicating release assay in a quality control setting and as a surrogate pharmacodynamic marker for ensuring the continued bioactivity of therapeutic antibodies against PA during clinical trials. PMID:15847796

  11. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody.

    PubMed

    Iwama, Shintaro; De Remigis, Alessandra; Callahan, Margaret K; Slovin, Susan F; Wolchok, Jedd D; Caturegli, Patrizio

    2014-04-01

    Hypophysitis is a chronic inflammation of the pituitary gland of unknown (primary forms) or recognizable (secondary forms) etiology, such as the use of ipilimumab in cancer immunotherapy. Ipilimumab, which blocks the T cell inhibitory molecule CTLA-4 (cytotoxic T lymphocyte antigen-4), induces hypophysitis in about 4% of patients through unknown mechanisms. We first established a model of secondary hypophysitis by repeated injections of a CTLA-4 blocking antibody into SJL/J or C57BL/6J mice, and showed that they developed lymphocytic infiltration of the pituitary gland and circulating pituitary antibodies. We next assessed the prevalence of pituitary antibodies in a cohort of 20 patients with advanced melanoma or prostate cancer, 7 with a clinical diagnosis of hypophysitis, before and after ipilimumab administration. Pituitary antibodies, negative at baseline, developed in the 7 patients with hypophysitis but not in the 13 without it; these antibodies predominantly recognized thyrotropin-, follicle-stimulating hormone-, and corticotropin-secreting cells. We then hypothesized that the injected CTLA-4 antibody could cause pituitary toxicity if bound to CTLA-4 antigen expressed "ectopically" on pituitary endocrine cells. Pituitary glands indeed expressed CTLA-4 at both RNA and protein levels, particularly in a subset of prolactin- and thyrotropin-secreting cells. Notably, these cells became the site of complement activation, featuring deposition of C3d and C4d components and an inflammatory cascade akin to that seen in type II hypersensitivity. In summary, the study offers a mechanism to explain the pituitary toxicity observed in patients receiving ipilimumab, and highlights the utility of measuring pituitary antibodies in this form of secondary hypophysitis. PMID:24695685

  12. A Human Anti-M2 Antibody Mediates Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) and Cytokine Secretion by Resting and Cytokine-Preactivated Natural Killer (NK) Cells

    PubMed Central

    Simhadri, Venkateswara R.; Dimitrova, Milena; Mariano, John L.; Zenarruzabeitia, Olatz; Zhong, Weimin; Ozawa, Tatsuhiko; Muraguchi, Atsushi; Kishi, Hiroyuki; Eichelberger, Maryna C.; Borrego, Francisco

    2015-01-01

    The highly conserved matrix protein 2 (M2) is a good candidate for the development of a broadly protective influenza vaccine that induces long-lasting immunity. In animal models, natural killer (NK) cells have been proposed to play an important role in the protection provided by M2-based vaccines through a mechanism of antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated the ability of the human anti-M2 Ab1-10 monoclonal antibody (mAb) to activate human NK cells. They mediated ADCC against M2-expressing cells in the presence of Ab1-10 mAb. Furthermore, NK cell pro-inflammatory cytokine and chemokine secretion is also enhanced when Ab1-10 mAb is present. We also generated cytokine-preactivated NK cells and showed that they still displayed increased effector functions in the presence of Ab1-10 mAb. Thus, our study has demonstrated that human resting and cytokine-preactivated NK cells may have a very important role in the protection provided by anti-M2 Abs. PMID:25915748

  13. Control of Toll-like Receptor-mediated T Cell-independent Type 1 Antibody Responses by the Inducible Nuclear Protein IκB-ζ*

    PubMed Central

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-01-01

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses. PMID:25124037

  14. Control of Toll-like receptor-mediated T cell-independent type 1 antibody responses by the inducible nuclear protein IκB-ζ.

    PubMed

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-11-01

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses. PMID:25124037

  15. Prospective Evaluation of Cetuximab-Mediated Antibody-Dependent Cell Cytotoxicity in Metastatic Colorectal Cancer Patients Predicts Treatment Efficacy.

    PubMed

    Trotta, Anna Maria; Ottaiano, Alessandro; Romano, Carmela; Nasti, Guglielmo; Nappi, Anna; De Divitiis, Chiara; Napolitano, Maria; Zanotta, Serena; Casaretti, Rossana; D'Alterio, Crescenzo; Avallone, Antonio; Califano, Daniela; Iaffaioli, Rosario Vincenzo; Scala, Stefania

    2016-04-01

    Cetuximab is a monoclonal antibody to the EGFR that induces antibody-dependent cell cytotoxicity (ADCC) through Fcγ receptors on immune cells. Although SNPs in genes encoding Fcγ receptors are functionally relevant to cetuximab-mediated ADCC in colorectal cancer, a direct correlation betweenin vitroADCC and clinical response to cetuximab is not defined. We therefore enrolled 96 consecutive metastatic colorectal cancer (mCRC) patients at diagnosis in a study that assessed FcγR status and cetuximab-mediated ADCC. Patients carrying the FcγRIIaHalleles 131H/Hand 131H/Rhad significantly higher ADCC compared with patients with the 131R/Ralleles (P= 0.013). Patients carrying FcγRIIIa genotypes with theValleles 158V/Vand 158V/Fdisplayed higher ADCC compared with patients carrying the 158F/Fgenotype (P= 0.001). Progression-free survival of patients with an FcγRIIIa 158Vallele was significantly longer compared with patients carrying 158F/F(P= 0.05), whereas no significant difference was observed for overall survival. Twenty-eight of 50 mCRC patients with wild-type KRAS received cetuximab. The average ADCC-mediated killing was 30% of assay targets for patients who experienced cetuximab complete or partial response, 21% in patients with stable disease and 9% in patients with progressive disease. To characterize basal natural killer (NK) activity, cytotoxicity was evaluated in 39 of 96 mCRC patients. Patients who responded to first-line treatment had higher NK-cell cytotoxicity. Thus, although limited to this cohort of patients,in vitrocetuximab-mediated ADCC correlated with FcγR polymorphisms and predicted cetuximab responsiveness.Cancer Immunol Res; 4(4); 366-74. ©2016 AACR. PMID:26817995

  16. HER2-specific immunoligands engaging NKp30 or NKp80 trigger NK-cell-mediated lysis of tumor cells and enhance antibody-dependent cell-mediated cytotoxicity

    PubMed Central

    Peipp, Matthias; Derer, Stefanie; Lohse, Stefan; Staudinger, Matthias; Klausz, Katja; Valerius, Thomas; Gramatzki, Martin; Kellner, Christian

    2015-01-01

    NK cells detect tumors through activating surface receptors, which bind self-antigens that are frequently expressed upon malignant transformation. To increase the recognition of tumor cells, the extracellular domains of ligands of the activating NK cell receptors NKp30, NKp80 and DNAM-1 (i.e. B7-H6, AICL and PVR, respectively) were fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2), which is displayed by various solid tumors. The resulting immunoligands, designated B7-H6:HER2-scFv, AICL:HER2-scFv, and PVR:HER2-scFv, respectively, bound HER2 and the addressed NK cell receptor. However, whereas B7-H6:HER2-scFv and AICL:HER2-scFv triggered NK cells to kill HER2-positive breast cancer cells at nanomolar concentrations, PVR:HER2-scFv was not efficacious. Moreover, NK cell cytotoxicity was enhanced synergistically when B7-H6:HER2-scFv or AICL:HER2-scFv were applied in combination with another HER2-specific immunoligand engaging the stimulatory receptor NKG2D. In contrast, no improvements were achieved by combining B7-H6:HER2-scFv with AICL:HER2-scFv. Additionally, B7-H6:HER2-scFv and AICL:HER2-scFv enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by the therapeutic antibodies trastuzumab and cetuximab synergistically, with B7-H6:HER2-scFv exhibiting a higher efficacy. In summary, antibody-derived proteins engaging NKp30 or NKp80 may represent attractive biologics to further enhance anti-tumor NK cell responses and may provide an innovative approach to sensitize tumor cells for antibody-based immunotherapy. PMID:26392331

  17. HER2-specific immunoligands engaging NKp30 or NKp80 trigger NK-cell-mediated lysis of tumor cells and enhance antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Peipp, Matthias; Derer, Stefanie; Lohse, Stefan; Staudinger, Matthias; Klausz, Katja; Valerius, Thomas; Gramatzki, Martin; Kellner, Christian

    2015-10-13

    NK cells detect tumors through activating surface receptors, which bind self-antigens that are frequently expressed upon malignant transformation. To increase the recognition of tumor cells, the extracellular domains of ligands of the activating NK cell receptors NKp30, NKp80 and DNAM-1 (i.e. B7-H6, AICL and PVR, respectively) were fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2), which is displayed by various solid tumors. The resulting immunoligands, designated B7-H6:HER2-scFv, AICL:HER2-scFv, and PVR:HER2-scFv, respectively, bound HER2 and the addressed NK cell receptor. However, whereas B7-H6:HER2-scFv and AICL:HER2-scFv triggered NK cells to kill HER2-positive breast cancer cells at nanomolar concentrations, PVR:HER2-scFv was not efficacious. Moreover, NK cell cytotoxicity was enhanced synergistically when B7-H6:HER2-scFv or AICL:HER2-scFv were applied in combination with another HER2-specific immunoligand engaging the stimulatory receptor NKG2D. In contrast, no improvements were achieved by combining B7-H6:HER2-scFv with AICL:HER2-scFv. Additionally, B7-H6:HER2-scFv and AICL:HER2-scFv enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by the therapeutic antibodies trastuzumab and cetuximab synergistically, with B7-H6:HER2-scFv exhibiting a higher efficacy. In summary, antibody-derived proteins engaging NKp30 or NKp80 may represent attractive biologics to further enhance anti-tumor NK cell responses and may provide an innovative approach to sensitize tumor cells for antibody-based immunotherapy. PMID:26392331

  18. Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity

    PubMed Central

    Shen, Yang; Zeng, Lin; Zhu, Aiping; Blanc, Tim; Patel, Dipa; Pennello, Anthony; Bari, Amtul; Ng, Stanley; Persaud, Kris; Kang, Yun (Kenneth); Balderes, Paul; Surguladze, David; Hindi, Sagit; Zhou, Qinwei; Ludwig, Dale L.; Snavely, Marshall

    2013-01-01

    Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies. PMID:23567210

  19. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma.

    PubMed

    Xiao, Zhenyu; Chung, Haniee; Banan, Babak; Manning, Pamela T; Ott, Katherine C; Lin, Shin; Capoccia, Benjamin J; Subramanian, Vijay; Hiebsch, Ronald R; Upadhya, Gundumi A; Mohanakumar, Thalachallour; Frazier, William A; Lin, Yiing; Chapman, William C

    2015-05-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival times. The efficacy of current systemic therapies for HCC is limited. In this study, we used xenograft tumor models to investigate the use of antibodies that block CD47 and inhibit HCC tumor growth. Immunostaining of tumor tissue and HCC cell lines demonstrated CD47 over-expression in HCC as compared to normal hepatocytes. Macrophage phagocytosis of HCC cells was increased after treatment with CD47 antibodies (CD47mAbs) that block CD47 binding to SIRPα. Further, CD47 blockade inhibited tumor growth in both heterotopic and orthotopic models of HCC, and promoted the migration of macrophages into the tumor mass. Our results demonstrate that targeting CD47 by specific antibodies has potential immunotherapeutic efficacy in human HCC. PMID:25721088

  20. Dashboard systems: Pharmacokinetic/pharmacodynamic mediated dose optimization for monoclonal antibodies.

    PubMed

    Mould, Diane R; Dubinsky, Marla C

    2015-03-01

    Many marketed drugs exhibit high variability in exposure and response. While these drugs are efficacious in their approved indications, finding appropriate dose regimens for individual patients is not straightforward. Similar dose adjustment problems are also seen with drugs that have a complex relationship between exposure and response and/or a narrow therapeutic window. This is particularly true for monoclonal antibodies, where prolonged dosing at a sub-therapeutic dose can also elicit anti-drug antibodies which will further compromise safety and efficacy. Thus, finding appropriate doses quickly would represent a substantial improvement in healthcare. Dashboard systems, which are decision-support tools, offer an improved, convenient means of tailoring treatment for individual patients. This article reviews the clinical need for this approach, particularly with monoclonal antibodies, the design, development, and testing of such systems, and the likely benefits of dashboard systems in clinical practice. We focus on infliximab for reference. PMID:25707964

  1. Antibody-Mediated Neutralization of the Exotoxin Mycolactone, the Main Virulence Factor Produced by Mycobacterium ulcerans

    PubMed Central

    Gersbach, Philipp; Hug, Melanie N.; Bieri, Raphael; Bomio, Claudio; Li, Jun; Huber, Sylwia; Altmann, Karl-Heinz; Pluschke, Gerd

    2016-01-01

    Background Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, causes extensive tissue destruction by inducing apoptosis of host cells. In this study, we aimed at the production of antibodies that could neutralize the cytotoxic activities of mycolactone. Methodology/Principal Findings Using the B cell hybridoma technology, we generated a series of monoclonal antibodies with specificity for mycolactone from spleen cells of mice immunized with the protein conjugate of a truncated synthetic mycolactone derivative. L929 fibroblasts were used as a model system to investigate whether these antibodies can inhibit the biological effects of mycolactone. By measuring the metabolic activity of the fibroblasts, we found that anti-mycolactone mAbs can completely neutralize the cytotoxic activity of mycolactone. Conclusions/Significance The toxin neutralizing capacity of anti-mycolactone mAbs supports the concept of evaluating the macrolide toxin as vaccine target. PMID:27351976

  2. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma

    PubMed Central

    Xiao, Zhenyu; Chung, Haniee; Banan, Babak; Manning, Pamela T.; Ott, Katherine C.; Lin, Shin; Capoccia, Benjamin J.; Subramanian, Vijay; Hiebsch, Ronald R.; Upadhya, Gundumi A.; Mohanakumar, Thalachallour; Frazier, William A.; Lin, Yiing; Chapman, William C.

    2016-01-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival times. The efficacy of current systemic therapies for HCC is limited. In this study, we used xenograft tumor models to investigate the use of antibodies that block CD47 and inhibit HCC tumor growth. Immunostaining of tumor tissue and HCC cell lines demonstrated CD47 over-expression in HCC as compared to normal hepatocytes. Macrophage phagocytosis of HCC cells was increased after treatment with CD47 antibodies (CD47mAbs) that block CD47 binding to SIRPα. Further, CD47 blockade inhibited tumor growth in both heterotopic and orthotopic models of HCC, and promoted the migration of macrophages into the tumor mass. Our results demonstrate that targeting CD47 by specific antibodies has potential immunotherapeutic efficacy in human HCC. PMID:25721088

  3. Specific antibody-mediated detection of Brochothrix thermosphacta in situ in British fresh sausage.

    PubMed

    Stringer, S C; Chaffey, B J; Dodd, C E; Morgan, M R; Waites, W M

    1995-04-01

    A rabbit polyclonal antibody-linked probe was developed which detected 76% of 800 food isolates of the spoilage bacterium Brochothrix thermosphacta when cells were bound to nitrocellulose. In slide cross-reaction tests all six environmental isolates tested were stained but the type strain was not. The antibody did not cross-react with Listeria grayi, L. monocytogenes, Lactobacillus plantarum, Lactococcus lactis, Streptococcus mutans, Bacillus cereus or B. subtilis. The antibody-linked probe detected Br. thermosphacta in thin sections of British fresh sausage when the viable count was greater than 10(6) g-1. Cells were detected mainly within 1 or 2 mm of the surface on the loose starchy material. They were not detected within muscle blocks or in the centre of the sausage. Such results suggest that growth of this organism occurs close to the surface of the sausage. PMID:7538105

  4. Eculizumab Salvage Therapy for Antibody-Mediated Rejection in a Desensitization-Resistant Intestinal Re-Transplant Patient.

    PubMed

    Fan, J; Tryphonopoulos, P; Tekin, A; Nishida, S; Selvaggi, G; Amador, A; Jebrock, J; Weppler, D; Levi, D; Vianna, R; Ruiz, P; Tzakis, A

    2015-07-01

    The presence of elevated calculated panel reactive antibody (cPRA) and anti-HLA donor specific antibodies (DSA) are high risk factors for acute antibody-mediated rejection (AAMR) in intestinal transplantation that may lead to graft loss. Eculizumab has been used for the treatment of AAMR in kidney transplantation of sensitized patients that do not respond to other treatment. Here, we report a case where eculizumab was used to treat AAMR in a desensitization-resistant intestinal re-transplant patient. A male patient lost his intestinal graft to AAMR 8.14 years after his primary transplant. He received a second intestinal graft that had to be explanted a month later due to refractory AAMR. The patient remained highly sensitized despite multiple treatments. He received a multivisceral graft and presented with severe AAMR on day 3 posttransplantation. The AAMR was successfully treated with eculizumab. The patient presently maintains an elevated cPRA level above 90% but his DSAs have decreased from 18 000 MFI (mean fluorescent intensity) to below the positive cut-off value of 3000 MFI and remains rejection free with a 2-year follow-up since his multivisceral transplant. Eculizumab offers an alternative to treat AAMR in intestinal transplantation in desensitization-resistant patients. PMID:25649227

  5. Everolimus inhibits anti-HLA I antibody-mediated endothelial cell signaling, migration and proliferation more potently than sirolimus.

    PubMed

    Jin, Y-P; Valenzuela, N M; Ziegler, M E; Rozengurt, E; Reed, E F

    2014-04-01

    Antibody (Ab) crosslinking of HLA I molecules on the surface of endothelial cells triggers proliferative and pro-survival intracellular signaling, which is implicated in the process of chronic allograft rejection, also known as transplant vasculopathy (TV). The purpose of this study was to investigate the role of mammalian target of rapamycin (mTOR) in HLA I Ab-induced signaling cascades. Everolimus provides a tool to establish how the mTOR signal network regulates HLA I-mediated migration, proliferation and survival. We found that everolimus inhibits mTOR complex 1 (mTORC1) by disassociating Raptor from mTOR, thereby preventing class I-induced phosphorylation of mTOR, p70S6K, S6RP and 4E-BP1, and resultant class I-stimulated cell migration and proliferation. Furthermore, we found that everolimus inhibits class I-mediated mTORC2 activation (1) by disassociating Rictor and Sin1 from mTOR; (2) by preventing class I-stimulated Akt phosphorylation and (3) by preventing class I-mediated ERK phosphorylation. These results suggest that everolimus is more effective than sirolimus at antagonizing both mTORC1 and mTORC2, the latter of which is critical in endothelial cell functional changes leading to TV in solid organ transplantation after HLA I crosslinking. Our findings point to a potential therapeutic effect of everolimus in prevention of chronic Ab-mediated rejection. PMID:24580843

  6. Phosphorylated S6 Kinase and S6 Ribosomal Protein are Diagnostic Markers of Antibody Mediated Rejection in Heart Allografts

    PubMed Central

    Valenzuela, Nicole M.; Lai, Chi; Zhang, Qiuheng; Gjertson, David; Fishbein, Michael C; Kobashigawa, Jon A; Deng, Mario; Reed, Elaine F.

    2014-01-01

    Background Anti-MHC class I alloantibodies have been implicated in the processes of acute and chronic rejection. These antibodies (Ab) bind to endothelial cells (EC) and transduce signals leading to the activation of cell survival and proliferation pathways, including Src, FAK, mTOR, and downstream targets ERK, S6 kinase (S6K) and S6 ribosomal protein (S6RP). We tested the hypothesis that phosphorylation of S6K, S6RP and ERK in capillary endothelium may serve as an adjunct diagnostic tool for antibody mediated rejection (AMR) in heart allografts. Methods Diagnosis of AMR was based on histology or immunoperoxidase staining of paraffin-embedded tissue consistent with 2013 ISHLT criteria. Diagnosis of acute cellular rejection (ACR) was based on ISHLT criteria. Endomyocardial biopsies from 67 heart transplant recipients diagnosed with acute rejection [33 with pAMR, 18 with ACR (15 with grade 1R, 3 with grade >2R), 16 with pAMR+ACR (13 with 1R and 3 with >2R)] and 40 age- and gender-matched recipients without rejection were tested for the presence of phosphorylated forms of ERK, S6RP and S6K by immunohistochemistry. Results Immunostaining of endomyocardial biopsies with evidence of pAMR showed significant increase in expression of p-S6K and p-S6RP in capillary EC compared to controls. A weaker association was observed between pAMR and p-ERK. Conclusions Biopsies diagnosed with pAMR often showed phosphorylation of S6K and S6RP, indicating that staining for p-S6K and p-S6RP is useful for the diagnosis of AMR. Our findings support a role for antibody-mediated HLA signaling in the process of graft injury. PMID:25511749

  7. Identification of Staphylococcus aureus Proteins Recognized by the Antibody-Mediated Immune Response to a Biofilm Infection

    PubMed Central

    Brady, Rebecca A.; Leid, Jeff G.; Camper, Anne K.; Costerton, J. William; Shirtliff, Mark E.

    2006-01-01

    Staphylococcus aureus causes persistent, recurrent infections (e.g., osteomyelitis) by forming biofilms. To survey the antibody-mediated immune response and identify those proteins that are immunogenic in an S. aureus biofilm infection, the tibias of rabbits were infected with methicillin-resistant S. aureus to produce chronic osteomyelitis. Sera were collected prior to infection and at 14, 28, and 42 days postinfection. The sera were used to perform Western blot assays on total protein from biofilm grown in vitro and separated by two-dimensional gel electrophoresis. Those proteins recognized by host antibodies in the harvested sera were identified via matrix-assisted laser desorption ionization-time of flight analysis. Using protein from mechanically disrupted total and fractionated biofilm protein samples, we identified 26 and 22 immunogens, respectively. These included a cell surface-associated β-lactamase, lipoprotein, lipase, autolysin, and an ABC transporter lipoprotein. Studies were also performed using microarray analyses and confirmed the biofilm-specific up-regulation of most of these genes. Therefore, although the biofilm antigens are recognized by the immune system, the biofilm infection can persist. However, these proteins, when delivered as vaccines, may be important in directing the immune system toward an early and effective antibody-mediated response to prevent chronic S. aureus infections. Previous works have identified S. aureus proteins that are immunogenic during acute infections, such as sepsis. However, this is the first work to identify these immunogens during chronic S. aureus biofilm infections and to simultaneously show the global relationship between the antigens expressed during an in vivo infection and the corresponding in vitro transcriptomic and proteomic gene expression levels. PMID:16714572

  8. The strong in vivo anti-tumor effect of the UIC2 monoclonal antibody is the combined result of Pgp inhibition and antibody dependent cell-mediated cytotoxicity.

    PubMed

    Szalóki, Gábor; Krasznai, Zoárd T; Tóth, Ágnes; Vízkeleti, Laura; Szöllősi, Attila G; Trencsényi, György; Lajtos, Imre; Juhász, István; Krasznai, Zoltán; Márián, Teréz; Balázs, Margit; Szabó, Gábor; Goda, Katalin

    2014-01-01

    P-glycoprotein (Pgp) extrudes a large variety of chemotherapeutic drugs from the cells, causing multidrug resistance (MDR). The UIC2 monoclonal antibody recognizes human Pgp and inhibits its drug transport activity. However, this inhibition is partial, since UIC2 binds only to 10-40% of cell surface Pgps, while the rest becomes accessible to this antibody only in the presence of certain substrates or modulators (e.g. cyclosporine A (CsA)). The combined addition of UIC2 and 10 times lower concentrations of CsA than what is necessary for Pgp inhibition when the modulator is applied alone, decreased the EC50 of doxorubicin (DOX) in KB-V1 (Pgp+) cells in vitro almost to the level of KB-3-1 (Pgp-) cells. At the same time, UIC2 alone did not affect the EC50 value of DOX significantly. In xenotransplanted severe combined immunodeficient (SCID) mice co-treated with DOX, UIC2 and CsA, the average weight of Pgp+ tumors was only ∼10% of the untreated control and in 52% of these animals we could not detect tumors at all, while DOX treatment alone did not decrease the weight of Pgp+ tumors. These data were confirmed by visualizing the tumors in vivo by positron emission tomography (PET) based on their increased 18FDG accumulation. Unexpectedly, UIC2+DOX treatment also decreased the size of tumors compared to the DOX only treated animals, as opposed to the results of our in vitro cytotoxicity assays, suggesting that immunological factors are also involved in the antitumor effect of in vivo UIC2 treatment. Since UIC2 binding itself did not affect the viability of Pgp expressing cells, but it triggered in vitro cell killing by peripheral blood mononuclear cells (PBMCs), it is concluded that the impressive in vivo anti-tumor effect of the DOX-UIC2-CsA treatment is the combined result of Pgp inhibition and antibody dependent cell-mediated cytotoxicity (ADCC). PMID:25238617

  9. Antibody-mediated inhibition of Nogo-A signaling promotes neurite growth in PC-12 cells

    PubMed Central

    Yazdi, Iman K; Taghipour, Nima; Hmaidan, Sarah; Palomba, Roberto; Scaria, Shilpa; Munoz, Alvaro; Boone, Timothy B; Tasciotti, Ennio

    2016-01-01

    The use of a monoclonal antibody to block the neurite outgrowth inhibitor Nogo-A has been of great interest for promoting axonal recovery as a treatment for spinal cord injury. While several cellular and non-cellular assays have been developed to quantify the bioactive effects of Nogo-A signaling, demand still exists for the development of a reliable approach to characterize the effectiveness of the anti-Nogo-A antibody. In this study, we developed and validated a novel cell-based approach to facilitate the biological quantification of a Nogo-A antibody using PC-12 cells as an in vitro neuronal cell model. Changes in the mRNA levels of the neuronal differentiation markers, growth-associated protein 43 and neurofilament light-polypeptide, suggest that activation of the Nogo-A pathway suppresses axonal growth and dendrite formation in the tested cell line. We found that application of anti-Nogo-A monoclonal antibody can significantly enhance the neuronal maturity of PC-12 cells by blocking the Nogo-A inhibitory effects, providing enhanced effects on neural maturity at the molecular level. No adverse effects were observed on cell viability. PMID:27027860

  10. Opsonization of Treponema pallidum is mediated by immunoglobulin G antibodies induced only by pathogenic treponemes.

    PubMed Central

    Shaffer, J M; Baker-Zander, S A; Lukehart, S A

    1993-01-01

    Rabbit antisera to Leptospira interrogans, Borrelia hermsii, and Treponema phagedenis biotype Reiter, reactive to shared spirochetal antigens, failed to enhance phagocytosis of Treponema pallidum by macrophages, while immunoglobulin G to Treponema pallidum subsp. pertenue and Treponema paraluiscuniculi promoted phagocytosis. Opsonic antibodies are directed to pathogen-restricted, not shared spirochetal, antigens. PMID:8423106

  11. Antibody-mediated inhibition of Aedes aegypti midgut trypsins blocks sporogonic development of Plasmodium gallinaceum.

    PubMed Central

    Shahabuddin, M; Lemos, F J; Kaslow, D C; Jacobs-Lorena, M

    1996-01-01

    The peritrophic matrix (PM) that forms around a blood meal is a potential barrier of Plasmodium development in mosquitoes. Previously, we have shown that to traverse the PM, Plasmodium ookinetes secrete a prochitinase and that an inhibitor of chitinase blocks further parasite development. Here we report that it is the mosquito trypsin that activates the Plasmodium prochitinase. Trypsin was identified as the chitinase-activating enzyme by two criteria: (i) trypsin activity and activating activity comigrated on one-dimensional gels, and (ii) activating activity and penetration of the PM by Plasmodium parasites were both hindered by trypsin-specific inhibitors. Subsequently, we examined the effect of antitrypsin antibodies on the parasite life cycle. Antibodies prepared against a recombinant blackfly trypsin effectively and specifically inhibited mosquito trypsin activity. Moreover, when incorporated into an infective blood meal, the antitrypsin antibodies blocked infectivity of Aedes aegypti mosquitoes by Plasmodium gallinaceum. This block of infectivity could be reversed by exogenously provided chitinase, strongly suggesting that the antibodies act by inhibiting prochitinase activation and not on the parasite itself. This work led to the identification of a mosquito antigen, i.e., midgut trypsin, as a novel target for blocking malaria transmission. PMID:8641775

  12. Hapten mediated display and pairing of recombinant antibodies accelerates assay assembly for biothreat countermeasures.

    PubMed

    Sherwood, Laura J; Hayhurst, Andrew

    2012-01-01

    A bottle-neck in recombinant antibody sandwich immunoassay development is pairing, demanding protein purification and modification to distinguish captor from tracer. We developed a simple pairing scheme using microliter amounts of E. coli osmotic shockates bearing site-specific biotinylated antibodies and demonstrated proof of principle with a single domain antibody (sdAb) that is both captor and tracer for polyvalent Marburgvirus nucleoprotein. The system could also host pairs of different sdAb specific for the 7 botulinum neurotoxin (BoNT) serotypes, enabling recognition of the cognate serotype. Inducible supE co-expression enabled sdAb populations to be propagated as either phage for more panning from repertoires or expressed as soluble sdAb for screening within a single host strain. When combined with streptavidin-g3p fusions, a novel transdisplay system was formulated to retrofit a semi-synthetic sdAb library which was mined for an anti-Ebolavirus sdAb which was immediately immunoassay ready, thereby speeding up the recombinant antibody discovery and utilization processes. PMID:23150778

  13. Hapten Mediated Display and Pairing of Recombinant Antibodies Accelerates Assay Assembly for Biothreat Countermeasures

    PubMed Central

    Sherwood, Laura J.; Hayhurst, Andrew

    2012-01-01

    A bottle-neck in recombinant antibody sandwich immunoassay development is pairing, demanding protein purification and modification to distinguish captor from tracer. We developed a simple pairing scheme using microliter amounts of E. coli osmotic shockates bearing site-specific biotinylated antibodies and demonstrated proof of principle with a single domain antibody (sdAb) that is both captor and tracer for polyvalent Marburgvirus nucleoprotein. The system could also host pairs of different sdAb specific for the 7 botulinum neurotoxin (BoNT) serotypes, enabling recognition of the cognate serotype. Inducible supE co-expression enabled sdAb populations to be propagated as either phage for more panning from repertoires or expressed as soluble sdAb for screening within a single host strain. When combined with streptavidin-g3p fusions, a novel transdisplay system was formulated to retrofit a semi-synthetic sdAb library which was mined for an anti-Ebolavirus sdAb which was immediately immunoassay ready, thereby speeding up the recombinant antibody discovery and utilization processes. PMID:23150778

  14. Investigation of anti-WI-1 adhesin antibody-mediated protection in experimental pulmonary blastomycosis.

    PubMed

    Wüthrich, M; Klein, B S

    2000-05-01

    Infection with Blastomyces dermatitidis elicits strong antibody responses to the surface adhesin WI-1. The antibodies are directed chiefly against the adhesive domain, a 25-amino-acid repeat. Tandem-repeat-specific monoclonal antibodies (mAbs) were studied for their opsonic activity in vitro and their capacity to adoptively transfer protection in murine experimental blastomycosis. mAbs to WI-1 enhanced binding and entry of B. dermatitidis yeasts into J774. 16 cells but did not enhance killing or growth inhibition of the yeast. Passive transfer of 8 mAbs to WI-1 into 3 different inbred strains of mice also did not improve the course of experimental infection and sometimes worsened it. mu-deficient mice were more resistant to experimental blastomycosis than were intact littermates, and passive transfer of the mAbs into these mice did not protect them against experimental infection. Thus, antibody to WI-1 does not appear to improve the outcome of murine blastomycosis and may enhance the infection. PMID:10823774

  15. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients

    PubMed Central

    2013-01-01

    Background Monoclonal antibodies (mAb), such as trastuzumab are a valuable addition to breast cancer therapy. Data obtained from neoadjuvant settings revealed that antibody-dependent cell-mediated cytotoxicity (ADCC) is a major mechanism of action for the mAb trastuzumab. Conflicting results still call into question whether disease progression, prolonged treatment or concomitant chemotherapy influences ADCC and related immunological phenomena. Methods We analyzed the activity of ADCC and antibody-dependent cell-mediated phagocytosis (ADCP) of peripheral blood mononuclear cells (PBMCs) from human epidermal growth factor receptor 2 (HER2/neu) positive breast cancer patients receiving trastuzumab therapy either in an adjuvant (n = 13) or metastatic (n = 15) setting as well as from trastuzumab treatment-naive (t-naive) HER2/neu negative patients (n = 15). PBMCs from healthy volunteers (n = 24) were used as controls. ADCC and ADCP activity was correlated with the expression of antibody binding Fc-gamma receptor (FcγR)I (CD64), FcγRII (CD32) and FcγRIII (CD16) on CD14+ (monocytes) and CD56+ (NK) cells, as well as the expression of CD107a+ (LAMP-1) on CD56+ cells and the total amount of CD4+CD25+FOXP3+ (Treg) cells. In metastatic patients, markers were correlated with progression-free survival (PFS). Results ADCC activity was significantly down regulated in metastatic, adjuvant and t-naive patient cohorts as compared to healthy controls. Reduced ADCC activity was inversely correlated with the expression of CD107a on CD56+ cells in adjuvant patients. ADCC and ADCP activity of the patient cohorts were similar, regardless of treatment duration or additional chemotherapy. PFS in metastatic patients inversely correlated with the number of peripheral Treg cells. Conclusion The reduction of ADCC in patients as compared to healthy controls calls for adjuvant strategies, such as immune-enhancing agents, to improve the activity of trastuzumab. However, efficacy of trastuzumab

  16. A novel pathway of cellular activation mediated by antiphospholipid antibody-induced extracellular vesicles

    PubMed Central

    WU, M.; BARNARD, J.; KUNDU, S.; MCCRAE, K. R.

    2016-01-01

    Summary Background Elevated levels of endothelial cell (EC)-derived extracellular vesicles (EVs) circulate in patients with antiphospholipid antibodies (APLAs), and APLAs, particularly those against β2-glycoprotein I (β2GPI), stimulate EV release from ECs. However, the effects of EC-derived EVs have not been characterized. Objective To determine the mechanism by which EVs released from ECs by anti-β2GPI antibodies activate unstimulated ECs. Patients/methods We used interleukin (IL)-1 receptor inhibitors, small interfering RNA (siRNA) against Toll-like receptors (TLRs) and microRNA (miRNA) profiling to assess the mechanism(s) by which EVs released from ECs exposed to anti-β2GPI antibodies activated unstimulated ECs. Results and conclusions Anti-β2GPI antibodies caused formation of an EC inflammasome and the release of EVs that were enriched in mature IL-1β, had a distinct miRNA profile, and caused endothelial activation. However, activation was not inhibited by an IL-1β antibody, an IL-1 receptor antagonist, or IL-1 receptor siRNA. EC activation by EVs required IL-1 receptor-associated kinase 4 phosphorylation, and was inhibited by pretreatment of cells with TLR7 siRNA or RNase A, which degrades ssRNA. Profiling of miRNA in EVs released from ECs incubated with β2GPI and either control IgG or anti-β2GPI antibodies revealed numerous differences in the content of specific miRNAs, including a significant decrease in mIR126. These observations demonstrate that, although anti-β2GPI-derived endothelial EVs contain IL-1β, they activate unstimulated ECs through a TLR7-dependent and ssRNA-dependent pathway. Alterations in miRNA content may contribute to the ability of EVs derived from ECs exposed to anti-β2GPI antibodies to activate unstimulated ECs in an autocrine or paracrine manner. PMID:26264622

  17. Comparing high-throughput methods to measure NK cell-mediated antibody dependent cellular cytotoxicity during HIV-infection.

    PubMed

    Konstantinus, Iyaloo N; Gamieldien, Hoyam; Mkhize, Nonhlanhla N; Kriek, Jean-Mari; Passmore, Jo-Ann S

    2016-07-01

    HIV-specific binding antibody responses, including those mediating antibody-dependent cellular cytotoxicity (ADCC), provided the best functional correlate of lower risk of infection in the RV144 HIV-1 vaccine clinical trial. The aim of this study was to compare two high-throughput flow cytometry based methods to measure HIV-specific ADCC responses, the GranToxilux and PanToxilux assays. Plasma from nine HIV-1 seropositive individuals was screened for binding antibody titres against HIV-1 subtype C gp120 by ELISA and western blot. Plasma from six HIV-negative individuals was included as controls. Both ADCC assays used subtype C gp120-coated CEM.NKRCCR5 cells as targets. The PanToxilux assay (which measured both granzyme B and caspase activity) measured higher levels of direct natural killer (NK) cell killing of K562 tumour cells than the GranToxilux assay (granzyme B alone; p<0.05). In ADCC assays in which NK cell killing was directed against gp120-coated CEM.NKRCCR5 cells in an antibody-dependent manner, plasma from HIV-positive individuals yielded significantly higher levels of ADCC activity than the HIV-negative controls. In contrast to direct killing, the GranToxilux assay measured similar levels of ADCC killing as the PanToxilux assay but had significantly lower background cytotoxicity against target cells coated with HIV negative serum. In conclusion, the PanToxilux assay was more sensitive for detecting direct NK cell killing of K562 cells than the GranToxilux assay, although the GranToxilux assay performed better at detecting HIV-specific ADCC activity, because of lower background cytotoxicity from HIV-negative serum. This is the first study to compare GranToxilux and PanToxilux ability to detect ADCC during HIV infection. PMID:27094485

  18. Glycoepitopes of Staphylococcal Wall Teichoic Acid Govern Complement-mediated Opsonophagocytosis via Human Serum Antibody and Mannose-binding Lectin*

    PubMed Central

    Kurokawa, Kenji; Jung, Dong-Jun; An, Jang-Hyun; Fuchs, Katharina; Jeon, Yu-Jin; Kim, Na-Hyang; Li, Xuehua; Tateishi, Koichiro; Park, Ji Ae; Xia, Guoqing; Matsushita, Misao; Takahashi, Kazue; Park, Hee-Ju; Peschel, Andreas; Lee, Bok Luel

    2013-01-01

    Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection. PMID:24045948

  19. C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity

    PubMed Central

    Wiersma, Valerie R; de Bruyn, Marco; Shi, Ce; Gooden, Marloes JM; Wouters, Maartje CA; Samplonius, Douwe F; Hendriks, Djoke; Nijman, Hans W; Wei, Yunwei; Zhou, Jin; Helfrich, Wijnand; Bremer, Edwin

    2015-01-01

    The therapeutic effect of anti-cancer monoclonal antibodies stems from their capacity to opsonize targeted cancer cells with subsequent phagocytic removal, induction of antibody-dependent cell-mediated cytotoxicity (ADCC) or induction of complement-mediated cytotoxicity (CDC). The major immune effector cells involved in these processes are natural killer (NK) cells and granulocytes. The latter and most prevalent blood cell population contributes to phagocytosis, but is not effective in inducing ADCC. Here, we report that targeted delivery of the tumoricidal protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to granulocyte marker C-type lectin-like molecule-1 (CLL1), using fusion protein CLL1:TRAIL, equips granulocytes with high levels of TRAIL. Upon CLL1-selective binding of this fusion protein, granulocytes acquire additional TRAIL-mediated cytotoxic activity that, importantly, potentiates antibody-mediated cytotoxicity of clinically used therapeutic antibodies (e.g., rituximab, cetuximab). Thus, CLL1:TRAIL could be used as an adjuvant to optimize the clinical potential of anticancer antibody therapy by augmenting tumoricidal activity of granulocytes. PMID:25760768

  20. Banff 2013 meeting report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions.

    PubMed

    Haas, M; Sis, B; Racusen, L C; Solez, K; Glotz, D; Colvin, R B; Castro, M C R; David, D S R; David-Neto, E; Bagnasco, S M; Cendales, L C; Cornell, L D; Demetris, A J; Drachenberg, C B; Farver, C F; Farris, A B; Gibson, I W; Kraus, E; Liapis, H; Loupy, A; Nickeleit, V; Randhawa, P; Rodriguez, E R; Rush, D; Smith, R N; Tan, C D; Wallace, W D; Mengel, M

    2014-02-01

    The 12th Banff Conference on Allograft Pathology was held in Comandatuba, Brazil, from August 19-23, 2013, and was preceded by a 2-day Latin American Symposium on Transplant Immunobiology and Immunopathology. The meeting was highlighted by the presentation of the findings of several working groups formed at the 2009 and 2011 Banff meetings to: (1) establish consensus criteria for diagnosing antibody-mediated rejection (ABMR) in the presence and absence of detectable C4d deposition; (2) develop consensus definitions and thresholds for glomerulitis (g score) and chronic glomerulopathy (cg score), associated with improved inter-observer agreement and correlation with clinical, molecular and serological data; (3) determine whether isolated lesions of intimal arteritis ("isolated v") represent acute rejection similar to intimal arteritis in the presence of tubulointerstitial inflammation; (4) compare different methodologies for evaluating interstitial fibrosis and for performing/evaluating implantation biopsies of renal allografts with regard to reproducibility and prediction of subsequent graft function; and (5) define clinically and prognostically significant morphologic criteria for subclassifying polyoma virus nephropathy. The key outcome of the 2013 conference is defining criteria for diagnosis of C4d-negative ABMR and respective modification of the Banff classification. In addition, three new Banff Working Groups were initiated. PMID:24472190

  1. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms

    SciTech Connect

    Shedlock, Devon J.; Bailey, Michael A.; Popernack, Paul M.; Cunningham, James M.; Burton, Dennis R.; Sullivan, Nancy J.

    2010-06-05

    Human Ebola virus causes severe hemorrhagic fever disease with high mortality and there is no vaccine or treatment. Antibodies in survivors occur early, are sustained, and can delay infection when transferred into nonhuman primates. Monoclonal antibodies (mAbs) from survivors exhibit potent neutralizing activity in vitro and are protective in rodents. To better understand targets and mechanisms of neutralization, we investigated a panel of mAbs shown previously to react with the envelope glycoprotein (GP). While one non-neutralizing mAb recognized a GP epitope in the nonessential mucin-like domain, the rest were specific for GP1, were neutralizing, and could be further distinguished by reactivity with secreted GP. We show that survivor antibodies, human KZ52 and monkey JP3K11, were specific for conformation-dependent epitopes comprising residues in GP1 and GP2 and that neutralization occurred by two distinct mechanisms; KZ52 inhibited cathepsin cleavage of GP whereas JP3K11 recognized the cleaved, fusion-active form of GP.

  2. Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding.

    PubMed

    Borrok, M Jack; Luheshi, Nadia M; Beyaz, Nurten; Davies, Gareth C; Legg, James W; Wu, Herren; Dall'Acqua, William F; Tsui, Ping

    2015-01-01

    Fc effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP) are crucial to the efficacy of many antibody therapeutics. In addition to IgG, antibodies of the IgA isotype can also promote cell killing through engagement of myeloid lineage cells via interactions between the IgA-Fc and FcαRI (CD89). Herein, we describe a unique, tandem IgG1/IgA2 antibody format in the context of a trastuzumab variable domain that exhibits enhanced ADCC and ADCP capabilities. The IgG1/IgA2 tandem Fc format retains IgG1 FcγR binding as well as FcRn-mediated serum persistence, yet is augmented with myeloid cell-mediated effector functions via FcαRI/IgA Fc interactions. In this work, we demonstrate anti-human epidermal growth factor receptor-2 antibodies with the unique tandem IgG1/IgA2 Fc can better recruit and engage cytotoxic polymorphonuclear (PMN) cells than either the parental IgG1 or IgA2. Pharmacokinetics of IgG1/IgA2 in BALB/c mice are similar to the parental IgG, and far surpass the poor serum persistence of IgA2. The IgG1/IgA2 format is expressed at similar levels and with similar thermal stability to IgG1, and can be purified via standard protein A chromatography. The tandem IgG1/IgA2 format could potentially augment IgG-based immunotherapeutics with enhanced PMN-mediated cytotoxicity while avoiding many of the problems associated with developing IgAs. PMID:25970007

  3. Multi-Dimensional Measurement of Antibody-Mediated Heterosubtypic Immunity to Influenza

    PubMed Central

    Wang, Jiong; Hilchey, Shannon P.; Hyrien, Ollivier; Huertas, Nelson; Perry, Sheldon; Ramanunninair, Manojkumar; Bucher, Doris; Zand, Martin S.

    2015-01-01

    The human immune response to influenza vaccination depends in part on preexisting cross-reactive (heterosubtypic) immunity from previous infection by, and/or vaccination with, influenza strains that share antigenic determinants with the vaccine strains. However, current methods for assessing heterosubtypic antibody responses against influenza, including the hemagglutination-inhibition (HAI) assay and ELISA, are time and labor intensive, and require moderate amounts of serum and reagents. To address these issues we have developed a fluorescent multiplex assay, mPlex-Flu, that rapidly and simultaneously measures strain specific IgG, IgA, and IgM antibodies against influenza hemagglutinin (HA) from multiple viral strains. We cloned, expressed and purified HA proteins from 12 influenza strains, and coupled them to multiplex beads. Assay validation showed that minimal sample volumes (<5 μl of serum) were needed, and the assay had a linear response over a four Log10 range. The assay detected nanogram levels of anti-influenza specific antibodies, had high accuracy and reproducibility, with an average percentage coefficient of variation (%CV) of 9.06 for intra-assay and 12.94 for inter-assay variability. Pre- and post-intramuscular trivalent influenza vaccination levels of virus specific Ig were consistent with HAI titer and ELISA measurements. A significant advantage of the mPLEX-Flu assay over the HAI assay is the ability to perform antigenic cartography, determining the antigenic distances between influenza HA’s, without mathematical correction for HAI data issues. For validation we performed antigenic cartography on 14 different post-influenza infection ferret sera assayed against 12 different influenza HA’s. Results were in good agreement with a phylogenetic tree generated from hierarchical clustering of the genomic HA sequences. This is the first report of the use of a multiplex method for antigenic cartography using ferret sera. Overall, the mPlex-Flu assay

  4. Human neutrophil Fcγ receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases

    PubMed Central

    Tsuboi, Naotake; Asano, Kenichi; Lauterbach, Michael; Mayadas, Tanya N.

    2008-01-01

    Summary Antibody-antigen complex mediated inflammation is integral to the pathogenesis of many autoimmune diseases. Mice deficient in the γ-chain of Fc-receptors are protected in IgG-mediated glomerulonephritis and the Arthus reaction and FcR-bearing mast cells and macrophages have been assigned primary roles in these processes. Here we demonstrate that neutrophil selective transgenic expression of the two uniquely human activating FcγRs, FcγRIIA and FcγRIIIB was sufficient to restore susceptibility to progressive anti-glomerular basement membrane (GBM) nephritis and the cutaneous Reverse Passive Arthus (RPA) reaction in γ-chain deficient mice. Both FcγRIIA and FcγRIIIB mediated robust neutrophil accumulation in tissues suggesting direct roles for these human receptors in IC-induced neutrophil recruitment, while FcγRIIA alone mediated organ injury. In an acute model of anti-GBM nephritis, both FcγRIIIB and FcγRIIA promoted initial neutrophil recruitment to glomerular immune-complexes (ICs) accessible to circulating cells, while FcγRIIA further sustained accumulation. In a model of soluble ICs deposited strictly within the post-capillary venules of the cremaster muscle, FcγRIIIB was solely responsible for converting initial selectin-dependent tethers to slow rolling and adhesion. However, in the cremaster RPA reaction, dependent on vascular and tissue accumulation of soluble ICs, FcγRIIA predominated in neutrophil recruitment that was dependent on G-protein coupled receptor activation. Thus, human FcγRs on neutrophils serve as the primary molecular links between ICs and immunological disease with FcγRIIA promoting tissue injury, and FcγRIIIB and FcγRIIA displaying specialized context-dependent functions in IC-induced neutrophil recruitment. PMID:18538590

  5. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    PubMed Central

    Ramakrishna, Venky; Vasilakos, John P; Tario, Joseph D; Berger, Marc A; Wallace, Paul K; Keler, Tibor

    2007-01-01

    Previously, we have successfully targeted the mannose receptor (MR) expressed on monocyte-derived dendritic cells (DCs) using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ). Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR)-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C) and DC TLR 7/8 with Resiquimod (R-848), respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs. PMID:17254349

  6. 2013 Banff Criteria for Chronic Active Antibody-Mediated Rejection: Assessment in a Real-Life Setting.

    PubMed

    De Serres, S A; Noël, R; Côté, I; Lapointe, I; Wagner, E; Riopel, J; Latulippe, E; Agharazii, M; Houde, I

    2016-05-01

    Significant changes in the criteria for chronic active antibody-mediated rejection (CAABMR) were made in the Banff 2013 classification. These modifications expanded the number of patients diagnosed with CAABMR, with undetermined clinical significance. We compared the 2007 and 2013 criteria for the composite end point of death-censored graft failure or doubling of serum creatinine in 123 patients meeting the criterion related to the morphologic evidence of chronic tissue injury. In all, 18% and 36% of the patients met the 2007 and 2013 criteria, respectively. For the criterion related to antibody interaction with endothelium, only 25% were positive based on the 2007 definition compared with 82% using the 2013 definition. Cox modeling revealed that a 2013 but not a 2007 diagnosis was associated with the composite end point (adjusted hazard ratio 2.5 [95% confidence interval (CI) 1.2-5.2] vs. 1.6 [95% CI 0.7-3.8], respectively). The 2013 criterion based on both the C4d score and the glomerulitis plus peritubular capillaritis score (g+ptc) was more strongly associated with the end point than the 2007 criterion based only on C4d; however, when dissected by component, only the C4d component was significant. The association with clinical outcomes improved with the 2013 criteria. This is related to the new C4d threshold but not to the g+ptc ≥2 component. PMID:26602055

  7. GPRC6A mediates Alum-induced Nlrp3 inflammasome activation but limits Th2 type antibody responses

    PubMed Central

    Quandt, Dagmar; Rothe, Kathrin; Baerwald, Christoph; Rossol, Manuela

    2015-01-01

    Alum adjuvanticity is still an unknown mechanism despite the frequent use as vaccine adjuvant in humans. Here we show that Alum-induced inflammasome activation in vitro and in vivo is mediated by the G protein-coupled receptor GPRC6A. The Alum-induced humoral response in vivo was independent of the inflammasome because Nlrp3−/− and ASC−/− mice responded normally to Alum and blockade of IL-1 had no effect on antibody production. In contrast, Alum adjuvanticity was increased in GPRC6A−/− mice resulting in increased antibody responses and increased Th2 cytokine concentrations compared to wildtype mice. In vitro activation of GPRC6A−/− splenic B cells also induced increased IgG1 concentrations compared to wildtype B cells. For the first time, we show GPRC6A expression in B cells, contributing to the direct effects of Alum on those cells. B cell produced immunostimulatory IL-10 is elevated in GPRC6A−/− B cells in vitro and in vivo. Our results demonstrate a dual role of GPRC6A in Alum adjuvanticity. GPCR6A activation by Alum leads to the initiation of innate inflammatory responses whereas it is an important signal for the limitation of adaptive immune responses induced by Alum, partially explained by B cell IL-10. PMID:26602597

  8. MP-4 Contributes to Snake Venom Neutralization by Mucuna pruriens Seeds through an Indirect Antibody-mediated Mechanism.

    PubMed

    Kumar, Ashish; Gupta, Chitra; Nair, Deepak T; Salunke, Dinakar M

    2016-05-20

    Mortality due to snakebite is a serious public health problem, and available therapeutics are known to induce debilitating side effects. Traditional medicine suggests that seeds of Mucuna pruriens can provide protection against the effects of snakebite. Our aim is to identify the protein(s) that may be important for snake venom neutralization and elucidate its mechanism of action. To this end, we have identified and purified a protein from M. pruriens, which we have named MP-4. The full-length polypeptide sequence of MP-4 was obtained through N-terminal sequencing of peptide fragments. Sequence analysis suggested that the protein may belong to the Kunitz-type protease inhibitor family and therefore may potentially neutralize the proteases present in snake venom. Using various structural and biochemical tools coupled with in vivo assays, we are able to show that MP-4 does not afford direct protection against snake venom because it is actually a poor inhibitor of serine proteases. Further experiments showed that antibodies generated against MP-4 cross-react with the whole venom and provide protection to mice against Echis carinatus snake venom. This study shows that the MP-4 contributes significantly to the snake venom neutralization activity of M. pruriens seeds through an indirect antibody-mediated mechanism. PMID:26987900

  9. Eculizumab for Treatment of Refractory Antibody-Mediated Rejection in Kidney Transplant Patients: A Single-Center Experience.

    PubMed

    Yelken, B; Arpalı, E; Görcin, S; Kocak, B; Karatas, C; Demiralp, E; Turkmen, A

    2015-01-01

    Antibody-mediated rejection (AMR) is responsible for up to 20%-30% of acute rejection episodes after kidney transplantation. In several cases, conventional therapies including plasmapheresis, intravenous immunoglobulin, and anti-CD20 therapy can resolve AMR successfully. But in some cases the load of immunoglobulins that can activate complement cascade may submerge the routine desensitization therapy and result in the formation of membrane attack complexes. Eculizumab, a monoclonal antibody against C5, was reported to be an option in cases with severe AMR that are resistant to conventional therapy. Here, we present 8 cases that were resistant to conventional therapy and in which eculizumab was given as a salvage treatment. Given the bad prognosis for renal transplants displaying acute injury progressing rapidly to cortical necrosis on the biopsy, the prompt use of eculizumab could have the advantage of immediate effects by stopping cellular injury. This can provide a therapeutic window to allow conventional treatment modalities to be effective and prevent early graft loss. PMID:26293046

  10. Effector-mediated eradication of precursor B acute lymphoblastic leukemia with a novel Fc engineered monoclonal antibody targeting the BAFF-R

    PubMed Central

    Parameswaran, Reshmi; Lim, Min; Fei, Fei; Abdel-Azim, Hisham; Arutyunyan, Anna; Schiffer, Isabelle; McLaughlin, Margaret E.; Gram, Hermann; Huet, Heather; Groffen, John; Heisterkamp, Nora

    2014-01-01

    B-cell activating factor receptor (BAFF-R) is expressed on precursor B acute lymphoblastic leukemia ALL (pre-B ALL) cells but not on their pre-B normal counterparts. Thus, selective killing of ALL cells is possible by targeting this receptor. Here we have further examined therapeutic targeting of pre-B ALL based on the presence of the BAFF-R. Mouse pre-B ALL cells lacking BAFF-R function had comparable viability and proliferation to wild type cells but were more sensitive to drug treatment. Viability of human pre-B ALL cells was further reduced when antibodies to the BAFF-R were combined with other drugs, even in the presence of stromal protection. This indicates that inhibition of BAFF-R function reduces fitness of stressed pre-B ALL cells. We tested a novel humanized anti-BAFF-R monoclonal antibody optimalized for FcRγIII mediated, antibody-dependent cell killing by effector cells. Antibody binding to human ALL cells was inhibitable, in a dose-dependent manner, by recombinant human BAFF. There was no evidence for internalization of the antibodies. The antibodies significantly stimulated NK cell-mediated killing of different human patient-derived ALL cells. Moreover, incubation of such ALL cells with these antibodies stimulated phagocytosis by macrophages. When this was tested in an immunodeficient transplant model, mice that were treated with the antibody had a significantly decreased leukemia burden in bone marrow and spleen. In view of the restricted expression of the BAFF-R on normal cells and the multiple anti-pre-B ALL activities stimulated by this antibody, a further examination of its use for treatment of pre-B ALL is warranted. PMID:24825858

  11. Antibody-mediated red blood cell agglutination resulting in spontaneous echocardiographic contrast.

    PubMed

    Miller, M R; Thompson, W R; Casella, J F; Spevak, P J

    1999-01-01

    Spontaneous echocardiographic contrast is well reported in states of low flow and low shear stress, and the primary blood component involved has been reported as red blood cells via rouleaux formation. This report describes the occurrence of spontaneous echocardiographic contrast from a unique mechanism of IgM-mediated red blood cell agglutination and describes the clinical sequelae. PMID:10368455

  12. Long antibody HCDR3s from HIV-naïve donors presented on a PG9 neutralizing antibody background mediate HIV neutralization.

    PubMed

    Willis, Jordan R; Finn, Jessica A; Briney, Bryan; Sapparapu, Gopal; Singh, Vidisha; King, Hannah; LaBranche, Celia C; Montefiori, David C; Meiler, Jens; Crowe, James E

    2016-04-19

    Development of broadly neutralizing antibodies (bnAbs) against HIV-1 usually requires prolonged infection and induction of Abs with unusual features, such as long heavy-chain complementarity-determining region 3 (HCDR3) loops. Here we sought to determine whether the repertoires of HIV-1-naïve individuals contain Abs with long HCDR3 loops that could mediate HIV-1 neutralization. We interrogated at massive scale the structural properties of long Ab HCDR3 loops in HIV-1-naïve donors, searching for structured HCDR3s similar to those of the HIV-1 bnAb PG9. We determined the nucleotide sequences encoding 2.3 × 10(7)unique HCDR3 amino acid regions from 70 different HIV-1-naïve donors. Of the 26,917 HCDR3 loops with 30-amino acid length identified, we tested 30 for further study that were predicted to have PG9-like structure when chimerized onto PG9. Three of these 30 PG9 chimeras bound to the HIV-1 gp120 monomer, and two were neutralizing. In addition, we found 14 naturally occurring HCDR3 sequences that acquired the ability to bind to the HIV-1 gp120 monomer when adding 2- to 7-amino acid mutations via computational design. Of those 14 designed Abs, 8 neutralized HIV-1, with IC50values ranging from 0.7 to 98 µg/mL. These data suggest that the repertoire of HIV-1-naïve individuals contains rare B cells that encode HCDR3 loops that bind or neutralize HIV-1 when presented on a PG9 background with relatively few or no additional mutations. Long HCDR3 sequences are present in the HIV-naïve B-cell repertoire, suggesting that this class of bnAbs is a favorable target for rationally designed preventative vaccine efforts. PMID:27044078

  13. Photothermolysis mediated by gold nanorods modified with EGFR monoclonal antibody induces Hep-2 cells apoptosis in vitro and in vivo

    PubMed Central

    Zhang, Shiwen; Li, Yunlong; He, Xiaoguang; Dong, Shouan; Huang, Yunchao; Li, Xiaojiang; Li, Yuxiao; Jin, Congguo; Zhang, Yingying; Wang, Yuanling

    2014-01-01

    Gold nanorods (AuNRs) have been used in plasmonic photothermal therapy (PPTT), which is thought to be more efficient and selective than conventional photothermal therapy. The efficiency and safety of PPTT can be improved by functionally modifying the gold nanorods with proteins or biomolecules. In this study, AuNRs were modified with anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb), and the apoptotic potential of EGFRmAb-AuNR was assessed in Hep-2 cells in vitro and in vivo. The EGFRmAb modification had no obvious influence on the original optical property of the AuNRs, but it significantly increased the entry of AuNRs into Hep-2 cells. EGFRmAb-AuNRs, with appropriate laser irradiation, resulted in higher Hep-2 cells apoptosis than AuNRs did alone, in vitro, and was accompanied by alteration of reactive oxygen species (ROS) production, Ca2+ release, change in mitochondrial membrane potential (ΔΨm), cytochrome c (Cyt-c) release, active caspase-3 expression, and level of B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma 2 protein-associated X protein (Bax). EGFRmAb-AuNR-mediated apoptosis in Hep-2 cells was also observed in vivo and had an inhibitive effect on growth of Hep-2 tumor xenografts. Our data suggest that the EGFRmAb modification improves AuNR-mediated apoptosis and may have the potential to be used clinically. PMID:24790435

  14. Comparison of the effectiveness of antibody and cell-mediated immunity against inhaled and instilled influenza virus challenge

    PubMed Central

    2013-01-01

    Background To evaluate immunity against influenza, mouse challenge studies are typically performed by intranasal instillation of a virus suspension to anesthetized animals. This results in an unnatural environment in the lower respiratory tract during infection, and therefore there is some concern that immune mechanisms identified in this model may not reflect those that protect against infectious virus particles delivered directly to the lower respiratory tract as an aerosol. Method To evaluate differences in protection against instilled and inhaled virus, mice were immunized with influenza antigens known to induce antibody or cell-mediated responses and then challenged with 100 LD50 A/PR/8/34 (PR8) in the form of aerosol (inhaled) or liquid suspension (instilled). Results Mice immunized with recombinant adenovirus (Ad) expressing hemagglutinin were protected against weight loss and death in both challenge models, however immunization with Ad expressing nucleoprotein of influenza A (NPA) or M2 resulted in greater protection against inhaled aerosolized virus than virus instilled in liquid suspension. Ad-M2, but not Ad-NPA-immunized mice were protected against a lower instillation challenge dose. Conclusions These results demonstrate differences in protection that are dependent on challenge method, and suggest that cell-mediated immunity may be more accurately demonstrated in mouse inhalation studies. Furthermore, the data suggest immune mechanisms generally characterized as incomplete or weak in mouse models using liquid intranasal challenge may offer greater immunity against influenza infection than previously thought. PMID:23777453

  15. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen.

    PubMed

    Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S

    2016-07-01

    In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders. PMID:27022743

  16. Quantum dot-antibody conjugates via carbodiimide-mediated coupling for cellular imaging.

    PubMed

    East, Daniel Alistair; Todd, Michael; Bruce, Ian James

    2014-01-01

    This chapter describes the processes of antibody (Ab) production, purification, conjugation to quantum dots (QDs), and the use of the conjugates produced in intracellular imaging of cell components and structures. Specifically, information is provided on the conjugation of carboxyl surface-terminated QDs to Abs via a one-step reaction using the water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The chapter details the process of conjugate optimization in terms of its final fluorescence and biological activity. The method described should guarantee the production of QD-Ab conjugates, which outperform classic organic fluorophore-Ab conjugates in terms of both image definition produced and the longevity of the imaging agent. PMID:25103800

  17. A single domain of human prostatic acid phosphatase shows antibody-mediated restoration of catalytic activity.

    PubMed Central

    Choe, B K; Dong, M K; Walz, D; Gleason, S; Rose, N R

    1982-01-01

    By limited proteolysis with mouse submaxillaris protease, human prostatic acid phosphatase (EC 3.1.3.2) was cleaved into three fragments, Sp1, Sp2, and Sp3, which individually had no enzymatic activity. One of the fragments, Sp3, regained enzymatic activity after interaction with rabbit antibody to prostatic acid phosphatase. The Sp3 fragment was purified and characterized as to its molecular weight, amino acid composition, and carbohydrate content. The Sp3 fragment behaved like the parent molecule in L(+)-tartrate affinity and in trapping of a phosphoryl intermediate. The same Sp3 fragment also bears the most prominent antigenic determinants. This evidence suggest that Sp3 is the enzymatically active domain of prostatic acid phosphatase. Images PMID:6193513

  18. Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies

    PubMed Central

    Andersen, Kasper Krogh; Strokappe, Nika M.; Hultberg, Anna; Truusalu, Kai; Smidt, Imbi; Mikelsaar, Raik-Hiio; Mikelsaar, Marika; Verrips, Theo; Hammarström, Lennart

    2015-01-01

    Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA− TcdB+ strain of C. difficile (P < 0.05). Half of the hamsters in the treated group survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients. PMID:26573738

  19. Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies.

    PubMed

    Andersen, Kasper Krogh; Strokappe, Nika M; Hultberg, Anna; Truusalu, Kai; Smidt, Imbi; Mikelsaar, Raik-Hiio; Mikelsaar, Marika; Verrips, Theo; Hammarström, Lennart; Marcotte, Harold

    2016-02-01

    Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA(-) TcdB(+) strain of C. difficile (P < 0.05). Half of the hamsters in the treated group survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients. PMID:26573738

  20. Combining three antibodies nullifies feedback-mediated resistance to erlotinib in lung cancer.

    PubMed

    Mancini, Maicol; Gaborit, Nadège; Lindzen, Moshit; Salame, Tomer Meir; Dall'Ora, Massimiliano; Sevilla-Sharon, Michal; Abdul-Hai, Ali; Downward, Julian; Yarden, Yosef

    2015-06-01

    Despite initial responses to targeted kinase inhibitors, lung cancer patients presenting with primary epidermal growth factor receptor (EGFR) mutations acquire resistance, often due to a second-site mutation (T790M). However, clinical trials found no survival benefits in patients treated with a monoclonal antibody (mAb) to EGFR that should block activation of the mutated receptor and thus bypass resistance to molecules that target the catalytic or ATP-binding site. Using cell lines with the T790M mutation, we discovered that prolonged exposure to mAbs against only the EGFR triggered network rewiring by (i) stimulating the extracellular signal-regulated kinase (ERK) pathway; (ii) inducing the transcription of HER2 (human epidermal growth factor receptor 2) and HER3, which encode other members of the EGFR family, and the gene encoding HGF, which is the ligand for the receptor tyrosine kinase MET; and (iii) stimulating the interaction between MET and HER3, which promoted MET activity. Supplementing the EGFR-specific mAb with those targeting HER2 and HER3 suppressed these compensatory feedback loops in cultured lung cancer cells. The triple mAb combination targeting all three receptors prevented the activation of ERK, accelerated the degradation of the receptors, inhibited the proliferation of tumor cells but not of normal cells, and markedly reduced the growth of tumors in mice xenografted with cells that were resistant to combined treatment with erlotinib and the single function-blocking EGFR mAb. These findings uncovered feedback loops that enable resistance to treatment paradigms that use a single antibody and indicate a new strategy for the treatment of lung cancer patients. PMID:26038598

  1. Rebmab200, a humanized monoclonal antibody targeting the sodium phosphate transporter NaPi2b displays strong immune mediated cytotoxicity against cancer: a novel reagent for targeted antibody therapy of cancer.

    PubMed

    Lopes dos Santos, Mariana; Yeda, Fernanda Perez; Tsuruta, Lilian Rumi; Horta, Bruno Brasil; Pimenta, Alécio A; Degaki, Theri Leica; Soares, Ibere C; Tuma, Maria Carolina; Okamoto, Oswaldo Keith; Alves, Venancio A F; Old, Lloyd J; Ritter, Gerd; Moro, Ana Maria

    2013-01-01

    NaPi2b, a sodium-dependent phosphate transporter, is highly expressed in ovarian carcinomas and is recognized by the murine monoclonal antibody MX35. The antibody had shown excellent targeting to ovarian cancer in several early phase clinical trials but being murine the antibody's full therapeutic potential could not be explored. To overcome this impediment we developed a humanized antibody version named Rebmab200, expressed in human PER.C6® cells and cloned by limiting dilution. In order to select a clone with high therapeutic potential clones were characterized using a series of physicochemical assays, flow cytometry, real-time surface plasmon resonance, glycosylation analyses, immunohistochemistry, antibody-dependent cell-mediated cytotoxicity, complement-dependent-cytotoxicity assays and quantitative PCR. Comparative analyses of Rebmab200 and MX35 monoclonal antibodies demonstrated that the two antibodies had similar specificity for NaPi2b by flow cytometry with a panel of 30 cell lines and maintained similar kinetic parameters. Robust and high producer cell clones potentially suitable for use in manufacturing were obtained. Rebmab200 antibodies were assessed by immunohistochemistry using a large panel of tissues including human carcinomas of ovarian, lung, kidney and breast origin. An assessment of its binding towards 33 normal human organs was performed as well. Rebmab200 showed selected strong reactivity with the tested tumor types but little or no reactivity with the normal tissues tested confirming its potential for targeted therapeutics strategies. The remarkable cytotoxicity shown by Rebmab200 in OVCAR-3 cells is a significant addition to the traits of stability and productivity displayed by the top clones of Rebmab200. Antibody-dependent cell-mediated toxicity functionality was confirmed in repeated assays using cancer cell lines derived from ovary, kidney and lung as targets. To explore use of this antibody in clinical trials, GMP production of Rebmab

  2. Complement-mediated bactericidal activity of human antibodies to poly alpha 2-->8 N-acetylneuraminic acid, the capsular polysaccharide of Neisseria meningitidis serogroup B.

    PubMed

    Mandrell, R E; Azmi, F H; Granoff, D M

    1995-11-01

    Serum antibodies to Neisseria meningitidis group B (MenB) polysaccharide are reported not to elicit bacteriolysis in the presence of human complement. To reexamine this question, we evaluated the ability of two human IgM anti-MenB polysaccharide monoclonal antibodies (MAbs) and seven human MenB polysaccharide-reactive human IgM paraproteins to elicit bacteriolysis. In the presence of human complement, both MAbs and five of the seven paraproteins were bactericidal at antibody concentrations of 0.25-9.6 micrograms/mL (50% killing). Activity of the respective antibodies was enhanced 200- to > 10,000-fold when rabbit complement was used instead of human complement. With rabbit complement, the bactericidal activity of human IgM polyclonal antibody or MAb to Haemophilus influenzae type b (Hib) polysaccharide but not human IgG polyclonal antibody or MAb to Hib polysaccharide was similarly augmented. Thus, for both MenB and Hib, IgM antipolysaccharide antibodies elicit complement-mediated bactericidal activity in the presence of human complement, and the use of rabbit complement yields spuriously high activity. PMID:7594665

  3. Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice.

    PubMed

    Fu, Xiaoyan; Ju, Jiyu; Lin, Zhijuan; Xiao, Weiling; Li, Xiaofang; Zhuang, Baoxiang; Zhang, Tingting; Ma, Xiaojun; Li, Xiangyu; Ma, Chao; Su, Weiliang; Wang, Yuqi; Qin, Xuebin; Liang, Shujuan

    2016-01-01

    Terminal complement membrane attack complex (MAC) formation is induced initially by C5b, followed by the sequential condensation of the C6, C7, C8. Polymerization of C9 to the C5b-8 complex forms the C5b-9 (or MAC). The C5b-9 forms lytic or non lytic pores in the cell membrane destroys membrane integrity. The biological functionalities of MAC has been previously investigated by using either the mice deficient in C5 and C6, or MAC's regulator CD59. However, there is no available C9 deficient mice (mC9(-/-)) for directly dissecting the role of C5b-9 in the pathogenesis of human diseases. Further, since C5b-7 and C5b-8 complexes form non lytic pore, it may also plays biological functionality. To better understand the role of terminal complement cascades, here we report a successful generation of mC9(-/-). We demonstrated that lack of C9 attenuates anti-erythrocyte antibody-mediated hemolysis or LPS-induced acute shock. Further, the rescuing effect on the acute shock correlates with the less release of IL-1β in mC9(-/-), which is associated with suppression of MAC-mediated inflammasome activation in mC9(-/-). Taken together, these results not only confirm the critical role of C5b-9 in complement-mediated hemolysis and but also highlight the critical role of C5b-9 in inflammasome activation. PMID:27444648

  4. Limitations of Murine Models for Assessment of Antibody-Mediated Therapies or Vaccine Candidates against Staphylococcus epidermidis Bloodstream Infection.

    PubMed

    Cole, Leah E; Zhang, Jinrong; Kesselly, Augustus; Anosova, Natalie G; Lam, Hubert; Kleanthous, Harry; Yethon, Jeremy A

    2016-04-01

    Staphylococcus epidermidis is normally a commensal colonizer of human skin and mucus membranes, but, due to its ability to form biofilms on indwelling medical devices, it has emerged as a leading cause of nosocomial infections. Bacteremia or bloodstream infection is a frequent and costly complication resulting from biofilm fouling of medical devices. Our goal was to develop a murine model of S. epidermidis infection to identify potential vaccine targets for the prevention of S. epidermidis bacteremia. However, assessing the contribution of adaptive immunity to protection against S. epidermidis challenge was complicated by a highly efficacious innate immune response in mice. Naive mice rapidly cleared S. epidermidis infections from blood and solid organs, even when the animals were immunocompromised. Cyclophosphamide-mediated leukopenia reduced the size of the bacterial challenge dose required to cause lethality but did not impair clearance after a nonlethal challenge. Nonspecific innate immune stimulation, such as treatment with a Toll-like receptor 4 (TLR4) agonist, enhanced bacterial clearance. TLR2 signaling was confirmed to accelerate the clearance of S. epidermidis bacteremia, but TLR2(-/-)mice could still resolve a bloodstream infection. Furthermore, TLR2 signaling played no role in the clearance of bacteria from the spleen. In conclusion, these data suggest that S. epidermidis bloodstream infection is cleared in a highly efficient manner that is mediated by both TLR2-dependent and -independent innate immune mechanisms. The inability to establish a persistent infection in mice, even in immunocompromised animals, rendered these murine models unsuitable for meaningful assessment of antibody-mediated therapies or vaccine candidates. PMID:26857577

  5. Limitations of Murine Models for Assessment of Antibody-Mediated Therapies or Vaccine Candidates against Staphylococcus epidermidis Bloodstream Infection

    PubMed Central

    Zhang, Jinrong; Kesselly, Augustus; Lam, Hubert; Kleanthous, Harry; Yethon, Jeremy A.

    2016-01-01

    Staphylococcus epidermidis is normally a commensal colonizer of human skin and mucus membranes, but, due to its ability to form biofilms on indwelling medical devices, it has emerged as a leading cause of nosocomial infections. Bacteremia or bloodstream infection is a frequent and costly complication resulting from biofilm fouling of medical devices. Our goal was to develop a murine model of S. epidermidis infection to identify potential vaccine targets for the prevention of S. epidermidis bacteremia. However, assessing the contribution of adaptive immunity to protection against S. epidermidis challenge was complicated by a highly efficacious innate immune response in mice. Naive mice rapidly cleared S. epidermidis infections from blood and solid organs, even when the animals were immunocompromised. Cyclophosphamide-mediated leukopenia reduced the size of the bacterial challenge dose required to cause lethality but did not impair clearance after a nonlethal challenge. Nonspecific innate immune stimulation, such as treatment with a Toll-like receptor 4 (TLR4) agonist, enhanced bacterial clearance. TLR2 signaling was confirmed to accelerate the clearance of S. epidermidis bacteremia, but TLR2−/− mice could still resolve a bloodstream infection. Furthermore, TLR2 signaling played no role in the clearance of bacteria from the spleen. In conclusion, these data suggest that S. epidermidis bloodstream infection is cleared in a highly efficient manner that is mediated by both TLR2-dependent and -independent innate immune mechanisms. The inability to establish a persistent infection in mice, even in immunocompromised animals, rendered these murine models unsuitable for meaningful assessment of antibody-mediated therapies or vaccine candidates. PMID:26857577

  6. Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice

    PubMed Central

    Fu, Xiaoyan; Ju, Jiyu; Lin, Zhijuan; Xiao, Weiling; Li, Xiaofang; Zhuang, Baoxiang; Zhang, Tingting; Ma, Xiaojun; Li, Xiangyu; Ma, Chao; Su, Weiliang; Wang, Yuqi; Qin, Xuebin; Liang, Shujuan

    2016-01-01

    Terminal complement membrane attack complex (MAC) formation is induced initially by C5b, followed by the sequential condensation of the C6, C7, C8. Polymerization of C9 to the C5b-8 complex forms the C5b-9 (or MAC). The C5b-9 forms lytic or non lytic pores in the cell membrane destroys membrane integrity. The biological functionalities of MAC has been previously investigated by using either the mice deficient in C5 and C6, or MAC’s regulator CD59. However, there is no available C9 deficient mice (mC9−/−) for directly dissecting the role of C5b-9 in the pathogenesis of human diseases. Further, since C5b-7 and C5b-8 complexes form non lytic pore, it may also plays biological functionality. To better understand the role of terminal complement cascades, here we report a successful generation of mC9−/−. We demonstrated that lack of C9 attenuates anti-erythrocyte antibody-mediated hemolysis or LPS-induced acute shock. Further, the rescuing effect on the acute shock correlates with the less release of IL-1β in mC9−/−, which is associated with suppression of MAC-mediated inflammasome activation in mC9−/−. Taken together, these results not only confirm the critical role of C5b-9 in complement-mediated hemolysis and but also highlight the critical role of C5b-9 in inflammasome activation. PMID:27444648

  7. Anti-4-1BB monoclonal antibodies attenuate concanavalin A-induced immune-mediated liver injury in mice

    PubMed Central

    Xia, Guangtao; Wu, Sensen; Zhang, Yuanchao

    2016-01-01

    Effective therapies for the treatment of immune-mediated liver disease are currently lacking. As a member of the tumor necrosis factor receptor superfamily, 4-1BB has a key role in T-cell activation and has been implicated in the development of autoimmune disorders. The purpose of the present study was to evaluate the potential therapeutic or preventive function of an anti-4-1BB monoclonal antibody (mAb) in a mouse model of concanavalin (Con) A-induced immune-mediated liver injury. A mouse model of immune-mediated liver injury was established by tail vein injection of Con A (20 mg/kg). 4-1BB mAb (100 µg), with or without methylprednisolone (MEP; 3 mg/kg), was intraperitoneally injected into the tail vein 2 h prior to or 2 h following Con A injection. Con A induced marked hepatocyte necrosis, significantly reduced CD 4+/CD25+ T-cell levels, and increased the serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), in addition to the percentage of 4-1BB+ T-cells, compared with the control (all P<0.05). The administration of 4-1BB mAb prior to or following Con A injection was able to attenuate Con A-induced liver tissue damage and significantly reduce serum AST and ALT levels (P<0.05). A combination of MEP and 4-1BB mAb further reduced serum AST and ALT levels, compared with either treatment alone. In addition, administration of 4-1BB mAb and MEP alone or in combination significantly increased CD4+/CD25+ T-cell levels, compared with the control (P<0.05). These results suggested that 4-1BB mAb was able to attenuate liver injury and preserve liver function in a mouse model of Con A-induced immune-mediated liver injury by promoting the expansion of CD4+/CD25+ T-cells. Furthermore, a combination of 4-1BB mAb with MEP was associated with greater beneficial effects than either treatment alone. The clinical significance of 4-1BB mAb in immune-mediated liver disease remains to be elucidated in future studies. PMID:27588047

  8. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    SciTech Connect

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael; Wood, David W.

    2011-02-25

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.

  9. Removal of terminal alpha-galactosyl residues from xenogeneic porcine endothelial cells. Decrease in complement-mediated cytotoxicity but persistence of IgG1-mediated antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Watier, H; Guillaumin, J M; Piller, F; Lacord, M; Thibault, G; Lebranchu, Y; Monsigny, M; Bardos, P

    1996-07-15

    To determine the role of the terminal alpha-galactosyl residue in the endothelial damage mediated by human xenoreactive natural antibodies (IgM and IgG), we treated porcine endothelial cells in culture with green coffee bean alpha-galactosidase. A practically complete removal of terminal alpha-Gal residues (as evaluated by flow cytometry with Bandeiraea simplicifolia isolectin B4) and concomitant exposure of N-acetyllactosamine were obtained without altering cell viability. A dramatic decrease in IgM and IgG binding (from a pool of human sera) was observed, confirming the key role of the alpha-galactosyl residues. The enzyme treatment did not induce any nonspecific immunoglobulin binding sites, but led to the exposure of new epitopes for a minor fraction of IgM. The main residual IgM and IgG binding could be due to xenoantigens other than the alpha-galactosyl residues. When alpha-galactosidase-treated endothelial cells were used as targets in cytotoxicity experiments, they were less susceptible than untreated cells to complement-mediated cytotoxicity induced by fresh human serum. In contrast, they did not acquire resistance to human IgG-dependent cellular cytotoxicity, despite the decrease in IgG binding. Because it is known that antibody-dependent cytotoxicity mediated by CD16+ NK cells is dependent on IgG1 and IgG3, and not on IgG2 or IgG4, which was confirmed by blocking experiments, we studied the binding of all four subclasses to intact and alpha-galactosidase-treated endothelial cells. Two major subclasses, IgG1 and IgG2, bound to untreated endothelial cells, whereas IgG3 binding was low and IgG4 binding was negligible. A decrease in IgG1, IgG2, and IgG3 binding was observed upon alpha-galactosidase treatment, indicating that antibodies belonging to these three subclasses recognize alpha-galactosyl residues. The decrease in IgG2 binding was more pronounced than the decrease in IgG1 binding. Collectively, these data indicate that IgG1 xenoreactive natural

  10. In vivo gene targeting of IL-3 into immature hematopoietic cells through CD117 receptor mediated antibody gene delivery

    PubMed Central

    Chapel, Alain; Deas, Olivier; Bensidhoum, Morad; François, Sabine; Mouiseddine, Moubarak; Poncet, Pascal; Dürrbach, Antoine; Aigueperse, Jocelyne; Gourmelon, Patrick; Gorin, Norbert C; Hirsch, François; Thierry, Dominique

    2004-01-01

    Background Targeted gene transfection remains a crucial issue to permit the real development of genetic therapy. As such, in vivo targeted transfection of specific subsets of hematopoietic stem cells might help to sustain hematopoietic recovery from bone marrow aplasia by providing local production of growth factors. Methods Balb/C mice were injected intravenously, with an anti-mouse c-kit (CD117) monoclonal antibody chemically coupled to a human IL-3 gene-containing plasmid DNA. Mice were sacrificed for tissue analyses at various days after injection of the conjugates. Results By ELISA, the production of human IL-3 was evidenced in the sera of animals 5 days after treatment. Cytofluorometric analysis after in vivo transfection of a reporter gene eGFP demonstrated transfection of CD117+/Sca1+ hematopoietic immature cells. By PCR analysis of genomic DNA and RNA using primer specific pIL3 sequences, presence and expression of the human IL-3-transgene were detected in the bone marrow up to 10 days in transfected mice but not in control animals. Conclusions These data clearly indicate that antibody-mediated endocytosis gene transfer allows the expression of the IL-3 transgene into hematopoietic immature cells, in vivo. While availability of marketed recombinant growth factors is restricted, this targeting strategy should permit delivery of therapeutic genes to tissues of interest through systemic delivery. In particular, the ability to specifically target growth factor expression into repopulating hematopoietic stem cells may create new opportunities for the treatment of primary or radiation-induced marrow failures. PMID:15509303

  11. Antiphospholipid antibody-mediated effects in an arterial model of thrombosis are dependent on Toll-like receptor 4.

    PubMed

    Laplante, P; Fuentes, R; Salem, D; Subang, R; Gillis, M-A; Hachem, A; Farhat, N; Qureshi, S T; Fletcher, C A; Roubey, R A S; Merhi, Y; Thorin, É; Levine, J S; Mackman, N; Rauch, J

    2016-02-01

    Patients with antiphospholipid syndrome (APS) produce antiphospholipid antibodies (aPL) and develop vascular thrombosis that may occur in large or small vessels in the arterial or venous beds. On the other hand, many individuals produce aPL and yet never develop thrombotic events. Toll-like receptor 4 (TLR4) appears to be necessary for aPL-mediated prothrombotic effects in venous and microvascular models of thrombosis, but its role in arterial thrombosis has not been studied. Here, we propose that aPL alone are insufficient to cause thrombotic events in an arterial model of APS, and that a concomitant trigger of innate immunity (e.g. TLR4 activation) is required. We show specifically that anti-β2-glycoprotein I (anti-β2GPI) antibodies, a subset of aPL, accelerated thrombus formation in C57BL/6 wild-type, but not TLR4-deficient, mice in a ferric chloride-induced carotid artery injury model. These aPL bound to arterial and venous endothelial cells, particularly in the presence of β2GPI, and to human TLR4 by enzyme-linked immunoassay. Arterial endothelium from aPL-treated mice had enhanced leukocyte adhesion, compared to control IgG-treated mice. In addition, aPL treatment of mice enhanced expression of tissue factor (TF) in leukocytes induced by the TLR4 ligand lipopolysaccharide (LPS). aPL also enhanced LPS-induced TF expression in human leukocytes in vitro. Our findings support a mechanism in which aPL enhance TF expression by leukocytes, as well as augment adhesion of leukocytes to the arterial endothelium. The activation of TLR4 in aPL-positive individuals may be required to trigger thrombotic events. PMID:26391610

  12. Characterization of the susceptibility of Pseudomonas aeruginosa to complement-mediated killing: role of antibodies to the rough lipopolysaccharide on serum-sensitive strains.

    PubMed Central

    Schiller, N L

    1988-01-01

    The mechanism of complement-mediated killing of seven serum-sensitive Pseudomonas aeruginosa strains was examined. All seven strains were sensitive to the bactericidal activity of 20% pooled normal human serum (PNHS) containing magnesium EGTA, which blocks the classical complement pathway (CCP), or 20% PNHS preheated to 50 degrees C for 20 min, which inactivates the alternative complement pathway, suggesting that either pathway was effective against these strains. However, for four of these strains, optimal killing required the function of both pathways. Preabsorption of PNHS with serum-sensitive strains dramatically reduced the killing activity of serum for the homologous strains when a concentration of 10% serum was used, implying a role for antibody in the activation of complement via the CCP. Affinity purification of antibodies to the rough lipopolysaccharide (LPS) on strain 144M resulted in a pool of antibodies which could restore all of the bactericidal activity and most of the C3 activation-deposition activity of serum which had been lost by preabsorption with 144M. Confirmation that the LPS was the target for these bactericidal antibodies was provided by demonstrating that exogenously added 144M LPS inhibited the killing activity of PNHS. These anti-144M LPS-specific antibodies were also bactericidal for the six other serum-sensitive strains examined, suggesting that all seven strains shared an antigenic determinant recognized by these anti-144M LPS-specific antibodies. Results from cross-absorption studies imply that there are bactericidal antibodies in PNHS directed to additional bacterial targets. These studies suggest that part of the bactericidal activity of PNHS is due to binding of antibodies to the rough LPS on serum-sensitive strains, initiating activation of the CCP, and that all seven strains examined shared this bactericidal antibody-binding site. PMID:3125110

  13. Clinical Significance of HLA-DQ Antibodies in the Development of Chronic Antibody-Mediated Rejection and Allograft Failure in Kidney Transplant Recipients

    PubMed Central

    Lee, Hyeyoung; Min, Ji Won; Kim, Ji-Il; Moon, In-Sung; Park, Ki-Hyun; Yang, Chul Woo; Chung, Byung Ha; Oh, Eun-Jee

    2016-01-01

    Abstract With the development of the single antigen beads assay, the role of donor specific alloantibody (DSA) against human leukocyte antigens in kidney transplantation (KT) has been highlighted. This study aimed to investigate the clinical significance of DQ-DSA detected at renal allograft biopsy. We evaluated 263 KT recipients who underwent allograft biopsy and DSA detection at the same time. Among them, 155 patients who were nonsensitized before transplantation were selected to investigate the role of de-novo DQ-DSA. Both the total and nonsensitized subgroup was categorized into 4 groups each according to DSA results as: DQ only, DQ + non-DQ, non-DQ, and no DSA. In the total patient group, post-KT DSA was positive in 79 (30.0%) patients and DQ-DSA was most prevalent (64.6%). In the nonsensitized subgroup, de-novo DSAs were detected in 45 (29.0%) patients and DQ-DSA was also most prevalent (73.3%). The DQ only group showed a significantly longer post-KT duration compared to the other groups (P < 0.05). The overall incidence of antibody-mediated rejection (AMR) was 17.9%. B-DSA, DR-DSA, and DQ-DSA were associated with AMR (P < 0.05), but in the analysis for chronic AMR, only DQ-DSA showed significance in both the total and the nonsensitized subgroup (P < 0.05). On comparison of Banff scores among groups, those representing humoral immunity were significantly dominant in all DSA positive groups compared to the no DSA group (P < 0.05), and higher scores of markers representing chronic tissue injury were more frequently detected in the groups with DQ-DSA. The worst postbiopsy survival was seen in the DQ + non-DQ group of the total patient group, and patients with de-novo DQ-DSA showed poorer graft survival in the nonsensitized subgroup compared to the no DSA group (P < 0.05). In the multivariate analysis, de-novo DQ-DSA was the only significant risk factor associated with late allograft failure (P < 0.05). Our study is the first to

  14. Clinical Significance of HLA-DQ Antibodies in the Development of Chronic Antibody-Mediated Rejection and Allograft Failure in Kidney Transplant Recipients.

    PubMed

    Lee, Hyeyoung; Min, Ji Won; Kim, Ji-Il; Moon, In-Sung; Park, Ki-Hyun; Yang, Chul Woo; Chung, Byung Ha; Oh, Eun-Jee

    2016-03-01

    With the development of the single antigen beads assay, the role of donor specific alloantibody (DSA) against human leukocyte antigens in kidney transplantation (KT) has been highlighted. This study aimed to investigate the clinical significance of DQ-DSA detected at renal allograft biopsy. We evaluated 263 KT recipients who underwent allograft biopsy and DSA detection at the same time. Among them, 155 patients who were nonsensitized before transplantation were selected to investigate the role of de-novo DQ-DSA. Both the total and nonsensitized subgroup was categorized into 4 groups each according to DSA results as: DQ only, DQ + non-DQ, non-DQ, and no DSA. In the total patient group, post-KT DSA was positive in 79 (30.0%) patients and DQ-DSA was most prevalent (64.6%). In the nonsensitized subgroup, de-novo DSAs were detected in 45 (29.0%) patients and DQ-DSA was also most prevalent (73.3%). The DQ only group showed a significantly longer post-KT duration compared to the other groups (P < 0.05). The overall incidence of antibody-mediated rejection (AMR) was 17.9%. B-DSA, DR-DSA, and DQ-DSA were associated with AMR (P < 0.05), but in the analysis for chronic AMR, only DQ-DSA showed significance in both the total and the nonsensitized subgroup (P < 0.05). On comparison of Banff scores among groups, those representing humoral immunity were significantly dominant in all DSA positive groups compared to the no DSA group (P < 0.05), and higher scores of markers representing chronic tissue injury were more frequently detected in the groups with DQ-DSA. The worst postbiopsy survival was seen in the DQ + non-DQ group of the total patient group, and patients with de-novo DQ-DSA showed poorer graft survival in the nonsensitized subgroup compared to the no DSA group (P < 0.05). In the multivariate analysis, de-novo DQ-DSA was the only significant risk factor associated with late allograft failure (P < 0.05). Our study is the first to demonstrate

  15. Maternal Antibody-Mediated Disease Enhancement in Type I Interferon-Deficient Mice Leads to Lethal Disease Associated with Liver Damage

    PubMed Central

    Lam, Jian Hang; Binte Aman, Siti Amanlina; Libau, Eshele Anak; Lee, Pei Xuan; St. John, Ashley L.; Alonso, Sylvie

    2016-01-01

    Epidemiological studies have reported that most of the severe dengue cases occur upon a secondary heterologous infection. Furthermore, babies born to dengue immune mothers are at greater risk of developing severe disease upon primary infection with a heterologous or homologous dengue virus (DENV) serotype when maternal antibodies reach sub-neutralizing concentrations. These observations have been explained by the antibody mediated disease enhancement (ADE) phenomenon whereby heterologous antibodies or sub-neutralizing homologous antibodies bind to but fail to neutralize DENV particles, allowing Fc-receptor mediated entry of the virus-antibody complexes into host cells. This eventually results in enhanced viral replication and heightened inflammatory responses. In an attempt to replicate this ADE phenomenon in a mouse model, we previously reported that upon DENV2 infection 5-week old type I and II interferon (IFN) receptors-deficient mice (AG129) born to DENV1-immune mothers displayed enhancement of disease severity characterized by increased virus titers and extensive vascular leakage which eventually led to the animals’ death. However, as dengue occurs in immune competent individuals, we sought to reproduce this mouse model in a less immunocompromised background. Here, we report an ADE model that is mediated by maternal antibodies in type I IFN receptor-deficient A129 mice. We show that 5-week old A129 mice born to DENV1-immune mothers succumbed to a DENV2 infection within 4 days that was sub-lethal in mice born to naïve mothers. Clinical manifestations included extensive hepatocyte vacuolation, moderate vascular leakage, lymphopenia, and thrombocytopenia. Anti-TNFα therapy totally protected the mice and correlated with healthy hepatocytes. In contrast, blocking IL-6 did not impact the virus titers or disease outcome. This A129 mouse model of ADE may help dissecting the mechanisms involved in dengue pathogenesis and evaluate the efficacy of vaccine and

  16. Development of IgG Mediated Antibody Dependent Cell-mediated Cytotoxicity (ADCC) in the Serum and Genital Mucosa of HIV Seroconverters

    PubMed Central

    Aziz, Mariam; Mahmood, Fareeha; Mata, Mariana; Durkin, Helen G; Liu, Chenglong; Greenblatt, Ruth M; Nowicki, Marek; Golub, Elizabeth T; Anastos, Kathryn; French, Audrey L; Baum, Linda L

    2015-01-01

    Background We measured antibody-dependent cell mediated cytotoxicity (ADCC) activity in serum and genital fluids of heterosexually exposed women during HIV seroconversion. Methods Plasma and cervico-vaginal lavage (CVL) fluid from 11 seroconverters (SC) were analyzed biannually from one year pre- to 6 year post-seroconversion using a 51Cr-release assay to measure HIV-1 gp120 specific ADCC. Results No SC had significant HIV specific CVL ADCC activity before seroconversion or until 1.5 yr after seroconversion. One individual had a %Specific Release (SR) of 25.4 at 2 years, 26.7 at 3 years and 21.0 at 4 years after seroconversion in CVL. Another sample had 4.7% SR at 2 years, 5.3 at 3 years, 10.9 at 4 years, and 8.4 at 5 years after seroconversion in CVL. A third had no activity until 17% SR 5 years after seroconversion in CVL. A fourth showed activity of 36.5% SR at 6.5 years after seroconversion. Seven women had no ADCC activity in their CVL. Paired serum samples showed HIV specific ADCC activity prior to the appearance of CVL ADCC activity. Conclusions HIV specific ADCC activity in CVL rose 2 years after seroconversion; ADCC was present in the serum prior to this time. These data suggest that genital tract ADCC activity is not present until well after acute infection. PMID:26798561

  17. Mechanisms Mediating Enhanced Neutralization Efficacy of Staphylococcal Enterotoxin B by Combinations of Monoclonal Antibodies*

    PubMed Central

    Dutta, Kaushik; Varshney, Avanish K.; Franklin, Matthew C.; Goger, Michael; Wang, Xiaobo; Fries, Bettina C.

    2015-01-01

    Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations. PMID:25572397

  18. Human FcγRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection.

    PubMed

    Boonnak, Kobporn; Slike, Bonnie M; Donofrio, Gina C; Marovich, Mary A

    2013-06-01

    Ab-dependent enhancement (ADE) of dengue virus (DENV) infection is mediated through the interaction of viral immune complexes with FcγRs, with notable efficiency of FcγRII. Most human dengue target cells coexpress activating (FcγRIIa) and inhibitory (FcγRIIb) isoforms, but their relative roles in ADE are not well understood. We studied the effects of FcγRIIa and FcγRIIb by transfecting cells to express each individual receptor isoform or through coexpression of both isoforms. We showed that although both isoforms similarly bind dengue-immune complexes, FcγRIIa efficiently internalized virus leading to productive cellular infection, unlike FcγRIIb. We next focused on the main discriminating feature of these isoforms: their distinct intracytoplasmic tails (FcγRIIa with an immunoreceptor tyrosine-based activation motif [ITAM] and FcγRIIb with an immunoreceptor tyrosine-based inhibitory motif [ITIM]). We engineered cells to express "swapped" versions of their FcγRII by switching the cytoplasmic tails containing the ITAM/ITIM motifs, leaving the remainder of the receptor intact. Our data show that both FcγRIIa and FcγRIIb comparably bind dengue immune complexes. However, wild type FcγRIIa facilitates DENV entry by virtue of the ITAM motif, whereas the swapped version FcγRIIa-ITIM significantly inhibited ADE. Similarly, replacing the inhibitory motif in FcγRIIb with an ITAM (FcγRIIb-ITAM) reconstituted ADE capacity to levels of the wild type activating counterpart, FcγRIIa. Our data suggest that FcγRIIa and FcγRIIb isoforms, as the most abundantly distributed class II Fcγ receptors, differentially influence Ab-mediated DENV infection under ADE conditions both at the level of cellular infection and viral production. PMID:23616574

  19. Human FcγRII Cytoplasmic Domains Differentially Influence Antibody-Mediated Dengue Virus Infection

    PubMed Central

    Boonnak, Kobporn; Slike, Bonnie M.; Donofrio, Gina C.

    2013-01-01

    Ab-dependent enhancement (ADE) of dengue virus (DENV) infection is mediated through the interaction of viral immune complexes with FcγRs, with notable efficiency of FcγRII. Most human dengue target cells coexpress activating (FcγRIIa) and inhibitory (FcγRIIb) isoforms, but their relative roles in ADE are not well understood. We studied the effects of FcγRIIa and FcγRIIb by transfecting cells to express each individual receptor isoform or through coexpression of both isoforms. We showed that although both isoforms similarly bind dengue-immune complexes, FcγRIIa efficiently internalized virus leading to productive cellular infection, unlike FcγRIIb. We next focused on the main discriminating feature of these isoforms: their distinct intracytoplasmic tails (FcγRIIa with an immunoreceptor tyrosine-based activation motif [ITAM] and FcγRIIb with an immunoreceptor tyrosine-based inhibitory motif [ITIM]). We engineered cells to express “swapped” versions of their FcγRII by switching the cytoplasmic tails containing the ITAM/ITIM motifs, leaving the remainder of the receptor intact. Our data show that both FcγRIIa and FcγRIIb comparably bind dengue immune complexes. However, wild type FcγRIIa facilitates DENV entry by virtue of the ITAM motif, whereas the swapped version FcγRIIa-ITIM significantly inhibited ADE. Similarly, replacing the inhibitory motif in FcγRIIb with an ITAM (FcγRIIb-ITAM) reconstituted ADE capacity to levels of the wild type activating counterpart, FcγRIIa. Our data suggest that FcγRIIa and FcγRIIb isoforms, as the most abundantly distributed class II Fcγ receptors, differentially influence Ab-mediated DENV infection under ADE conditions both at the level of cellular infection and viral production. PMID:23616574

  20. Mechanisms mediating enhanced neutralization efficacy of staphylococcal enterotoxin B by combinations of monoclonal antibodies.

    PubMed

    Dutta, Kaushik; Varshney, Avanish K; Franklin, Matthew C; Goger, Michael; Wang, Xiaobo; Fries, Bettina C

    2015-03-13

    Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations. PMID:25572397

  1. Antibody-mediated response of NKG2Cbright NK cells against human cytomegalovirus.

    PubMed

    Costa-Garcia, Marcel; Vera, Andrea; Moraru, Manuela; Vilches, Carlos; López-Botet, Miguel; Muntasell, Aura

    2015-03-15

    Human CMV (HCMV) infection promotes a variable and persistent expansion of functionally mature NKG2C(bright) NK cells. We analyzed NKG2C(bright) NK cell responses triggered by Abs from HCMV(+) sera against HCMV-infected MRC5 fibroblasts. Specific Abs promoted the degranulation (i.e., CD107a expression) and the production of cytokines (TNF-α and IFN-γ) by a significant fraction of NK cells, exceeding the low natural cytotoxicity against HCMV-infected targets. NK cell-mediated Ab-dependent cell-mediated cytotoxicity was limited by viral Ag availability and HLA class I expression on infected cells early postinfection and increased at late stages, overcoming viral immunoevasion strategies. Moreover, the presence of specific IgG triggered the activation of NK cells against Ab-opsonized cell-free HCMV virions. As compared with NKG2A(+) NK cells, a significant proportion of NKG2C(bright) NK cells was FcεR γ-chain defective and highly responsive to Ab-driven activation, being particularly efficient in the production of antiviral cytokines, mainly TNF-α. Remarkably, the expansion of NKG2C(bright) NK cells in HCMV(+) subjects was related to the overall magnitude of TNF-α and IFN-γ cytokine secretion upon Ab-dependent and -independent activation. We show the power and sensitivity of the anti-HCMV response resulting from the cooperation between specific Abs and the NKG2C(bright) NK-cell subset. Furthermore, we disclose the proinflammatory potential of NKG2C(bright) NK cells, a variable that could influence the individual responses to other pathogens and tumors. PMID:25667418

  2. Combination of Antibody Targeting and PTD-Mediated Intracellular Toxin Delivery for Colorectal Cancer Therapy

    PubMed Central

    Ah Min, Kyoung; Lee, Kyuri; Moon, Cheol; Balthasar, Joseph P.; Yang, Victor C.

    2014-01-01

    The bottlenecks of current chemotherapy in the treatment of colorectal cancer lie in the ineffectiveness of the existing anti-cancer small molecule drugs as well as the dose-limiting toxicity caused by the nonselective action on normal tissues by such drugs. To address these problems, we introduce a novel therapeutic strategy based on tumor targeting using a non-internalizing anti-carcinoembryonic antigen (CEA) monoclonal antibody (mAb) and intracellular delivery of the extremely potent yet cell-impermeable protein toxin gelonin via the aid of a cell-penetrating peptide (also termed as protein transduction domain; PTD). A chimeric TAT-gelonin fusion protein was genetically engineered, and it displayed remarkably enhanced anti-cancer activity against human colorectal cancer cells, with IC50 values being several orders of magnitude lower than the unmodified gelonin. On the other hand, a chemically synthesized conjugate of heparin and a murine anti-CEA mAb, T84.66 (termed T84.66-Hep) was found able to bind highly specifically to CEA over-expressing LS174T colorectal cancer cells. When mixing together, TAT-gelonin and T84.66-Hep could associate tightly and automatically through an electrostatic interaction between the cationic TAT and anionic heparin. In preliminary in vivo studies using LS174T s.c. xenograft tumor bearing mouse, selective and significantly augmented (58-fold) delivery of TAT-gelonin to the tumor target was observed, when compared with administration of TAT-gelonin alone. More importantly, efficacy studies also revealed that only the TAT-gelonin/T84.66-Hep complex yielded a significant inhibition of tumor growth (46%) without causing gelonin-induced systemic toxicity. Overall, this study suggested a generic strategy to effectively yet safely deliver potent PTD-modified protein toxins to the tumor. PMID:25204286

  3. Bortezomib in late antibody-mediated kidney transplant rejection (BORTEJECT Study): study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Despite major advances in transplant medicine, improvements in long-term kidney allograft survival have not been commensurate with those observed shortly after transplantation. The formation of donor-specific antibodies (DSA) and ongoing antibody-mediated rejection (AMR) processes may critically contribute to late graft loss. However, appropriate treatment for late AMR has not yet been defined. There is accumulating evidence that the proteasome inhibitor bortezomib may substantially affect the function and integrity of alloantibody-secreting plasma cells. The impact of this agent on the course of late AMR has not so far been systematically investigated. Methods/design The BORTEJECT Study is a randomized controlled trial designed to clarify the impact of intravenous bortezomib on the course of late AMR. In this single-center study (nephrological outpatient service, Medical University Vienna) we plan an initial cross-sectional DSA screening of 1,000 kidney transplant recipients (functioning graft at ≥180 days; estimated glomerular filtration rate (eGFR) >20 ml/minute/1.73 m2). DSA-positive recipients will be subjected to kidney allograft biopsy to detect morphological features consistent with AMR. Forty-four patients with biopsy-proven AMR will then be included in a double-blind placebo-controlled intervention trial (1:1 randomization stratified for eGFR and the presence of T-cell-mediated rejection). Patients in the active group will receive two cycles of bortezomib (4 × 1.3 mg/m2 over 2 weeks; 3-month interval between cycles). The primary end point will be the course of eGFR over 24 months (intention-to-treat analysis). The sample size was calculated according to the assumption of a 5 ml/minute/1.73 m2 difference in eGFR slope (per year) between the two groups (alpha: 0.05; power: 0.8). Secondary endpoints will be DSA levels, protein excretion, measured glomerular filtration rate, transplant and patient survival, and the development of

  4. Neutrophil-mediated killing of Dipetalonema viteae microfilariae: simultaneous presence of IgE, IgG antibodies and complement is required.

    PubMed Central

    Aime, N; Haque, A; Bonnel, B; Torpier, G; Capron, A

    1984-01-01

    Neutrophils from the peripheral washings of normal rats in the presence of sera obtained from rats immune to circulating microfilariae adhered to and killed the microfilariae of Dipetalonema viteae in vitro within 16-24 hr. No significant adherence or cytotoxicity was mediated by sera collected from animals with a high microfilaraemia or from normal rats. Ultrastructural studies show that neutrophils, which are bigger than microfilariae, can easily internalize the small larvae resulting in the disintegration of the parasite. Immunoadsorption and inhibition experiments showed that the adherence-promoting activity resides both in IgG and IgE classes of antibody. However, the mere participation of these two antibodies is not sufficient to effect neutrophil adherence towards microfilariae, the presence of complement is also required. Samples of fresh immune rat serum (fIRS) depleted in alternative pathway components of complement by treatment with zymosan A failed to mediate cell adherence to the parasite. fIRS inactivated for the classical pathway of complement by the chelating agent EGTA partially retains its activity in mediating cytotoxicity to microfilariae. The striking antigenic specificity of D. viteae antibodies was shown by their ability to mediate cytotoxicity only to D. viteae but not towards Brugia malayi microfilariae. Images Figure 2 PMID:6538183

  5. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide

    PubMed Central

    Nijhof, Inger S.; van Bueren, Jeroen J. Lammerts; van Kessel, Berris; Andre, Pascale; Morel, Yannis; Lokhorst, Henk M.; van de Donk, Niels W.C.J.; Parren, Paul W.H.I.; Mutis, Tuna

    2015-01-01

    Despite recent treatment improvements, multiple myeloma remains an incurable disease. Since antibody-dependent cell-mediated cytotoxicity is an important effector mechanism of daratumumab, we explored the possibility of improving daratumumab-mediated cell-mediated cytotoxicity by blocking natural killer cell inhibitory receptors with the human monoclonal anti-KIR antibody IPH2102, next to activation of natural killer cells with the immune modulatory drug lenalidomide. In 4-hour antibody-dependent cell-mediated cytotoxicity assays, IPH2102 did not induce lysis of multiple myeloma cell lines, but it did significantly augment daratumumab-induced myeloma cell lysis. Also in an ex vivo setting, IPH2102 synergistically improved daratumumab-dependent lysis of primary myeloma cells in bone marrow mononuclear cells (n=21), especially in patients carrying the FcγRIIIa-158F allele or the FcγRIIa-131R allele, who bind IgG1 with lower affinity than patients carrying the FcγRIIIa-158V allele or the FcγRIIa-131H allele. Finally, a further synergistically improved myeloma cell lysis with the daratumumab-IPH2102 combination was observed by adding lenalidomide, which suggests that more effective treatment strategies can be designed for multiple myeloma by combining daratumumab with agents that independently modulate natural killer cell function. PMID:25510242

  6. Diminished lymphocyte adhesion and alleviation of allergic responses by small-molecule- or antibody-mediated inhibition of L-selectin functions.

    PubMed

    Oostingh, Gertie J; Ludwig, Ralf J; Enders, Sven; Grüner, Sabine; Harms, Gesche; Boehncke, W Henning; Nieswandt, Bernhard; Tauber, Rudolf; Schön, Michael P

    2007-01-01

    Selectins are attractive targets for specific anti-inflammatory therapies. Using human lymphocytes as well as an L-selectin-transfected pre-B-cell line in dynamic flow chamber experiments, we could demonstrate that the small-molecule compound efomycine M blocks L-selectin-mediated lymphocyte rolling on sialylated Lewis(X), an action that was confirmed by plasmon resonance spectroscopy. Recruitment of naive lymphocytes to peripheral lymph nodes depends on L-selectin-mediated adhesion to high endothelial venules. We performed intravital microscopy studying lymphocyte rolling in peripheral lymph nodes and showed a 53% reduction (P=0.0006) of lymphocyte rolling in mice treated with efomycine M or a function-blocking antibody against L-selectin. In addition, the number of lymph node-homing T cells was reduced by >60% using either efomycine M or L-selectin-blocking antibodies. As recruitment of naive lymphocytes is a prerequisite for sensitization in T-cell-mediated immune reactions and allergic responses, mice were treated with efomycine M or an L-selectin-specific antibody during contact sensitization with DNFB. After adoptive transfer of corresponding T cells into non-sensitized recipient mice, the capacity of these cells to induce contact hypersensitivity was significantly reduced (P=0.0002 and P=0.0001, respectively). Our data demonstrate that it is possible, in principle, to diminish T-cell-mediated allergic reactions through interference with L-selectin functions during the early sensitization phase. PMID:16902419

  7. Complement-Mediated Virus Infectivity Neutralisation by HLA Antibodies Is Associated with Sterilising Immunity to SIV Challenge in the Macaque Model for HIV/AIDS

    PubMed Central

    Robinson, Mark; Hassall, Mark; Cranage, Martin; Stott, James; Almond, Neil

    2014-01-01

    Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed. PMID:24551145

  8. Early membrane rupture events during neutrophil-mediated antibody-dependent tumor cell cytolysis.

    PubMed

    Kindzelskii, A L; Petty, H R

    1999-03-15

    Although cell-mediated cytolysis is a fundamental immune effector response, its mechanism remains poorly understood at the cellular level. In this report, we image for the first time transient ruptures, as inferred by cytoplasmic marker release, in tumor cell membranes during Ab-dependent cellular cytolysis. The cytosol of IgG-opsonized YAC tumor cells was labeled with tetra-methylrhodamine diacetate followed by the formation of tumor cell-neutrophil conjugates. We hypothesized that tumor cell cytolysis proceeds via a series of discrete membrane rupture/resealing events that contribute to marker release. To test this hypothesis, we occluded the fluorescence image of the labeled tumor cells by passing an opaque disk into a field-conjugated plane between the light source and the sample. Multiple small bursts of fluorescent label release from tumor cells could be detected using a photomultiplier tube. Similarly, multiple fluorescent plumes were observed at various sites around the perimeter of a target. These findings support a multihit model of target cytolysis and suggest that cytolytic release is not focused at specific sites. Cytolytic bursts were generally observed at 20-s intervals, which match the previously described reduced nicotinamide-adenine dinucleotide phosphate and superoxide release oscillation periods for neutrophils; we speculate that metabolic oscillations of the effector cell drive the membrane damage of the target. PMID:10092769

  9. IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines.

    PubMed

    Ho, Steven C L; Bardor, Muriel; Feng, Huatao; Mariati; Tong, Yen Wah; Song, Zhiwei; Yap, Miranda G S; Yang, Yuansheng

    2012-01-01

    A Tricistronic vector utilizing internal ribosome entry site (IRES) elements to express the light chain (LC), heavy chain (HC), and a neomycin phosphotransferase (NPT) selection marker from one transcript is designed for generation of mAb expressing CHO cell lines. As compared to the commonly used vectors, benefits of this design include: (1) minimized non-expressing clones, (2) enhanced stable mAb productivity without gene amplification, (3) control of LC and HC expression at defined ratios, and (4) consistent product quality. After optimization of the LC and HC arrangement and increasing selection stringency by weakening the NPT selection marker, this Tricistronic vector is able to generate stably transfected pools with specific productivity (qmAb) greater than 5pg/cell/day (pcd) and titers over 150mg/L. 5% of clones from these pools have qmAb greater than 20pcd and titers ranging from 300 to more than 500mg/L under non-optimized shake flask batch cultures using commercially available protein-free medium. The mAb produced by these clones have low aggregation and consistent glycosylation profiles. The entire process of transfection to high-expressing clones requires only 6 months. The IRES-mediated Tricistronic vector provides an attractive alternative to commonly used vectors for fast generation of mAb CHO cell lines with high productivity. PMID:22024589

  10. Engineered antibody domains with significantly increased transcytosis and half-life in macaques mediated by FcRn

    PubMed Central

    Ying, Tianlei; Wang, Yanping; Feng, Yang; Prabakaran, Ponraj; Gong, Rui; Wang, Lili; Crowder, Karalyne; Dimitrov, Dimiter S

    2015-01-01

    Engineered antibody domains (eAds) are promising candidate therapeutics but their half-life is relatively short partly due to weak or absent binding to the neonatal Fc receptor (FcRn). We developed a novel approach to increase the eAd binding to FcRn based on a combination of structure-based design, computational modeling and phage display methodologies. By using this approach, we identified 2 IgG1 CH2-derived eAds fused to a short FcRn-binding motif derived from IgG1 CH3 that exhibited greatly enhanced FcRn binding with strict pH dependency. Importantly, the increased affinity resulted in significantly enhanced FcRn-mediated epithelial transcytosis and prolonged elimination half-life (mean 44.1 hours) in cynomolgus macaques. These results demonstrate for the first time that the half-life of isolated eAds can be prolonged (optimized) by increasing their binding to FcRn while maintaining their small size, which has important implications for development of therapeutics, including eAd-drug conjugates with enhanced penetration in solid tissues. PMID:26179052

  11. Treatment of Antibody-Mediated Rejection After Kidney Transplantation - 10 Years' Experience With Apheresis at a Single Center.

    PubMed

    Gubensek, Jakob; Buturovic-Ponikvar, Jadranka; Kandus, Aljosa; Arnol, Miha; Lindic, Jelka; Kovac, Damjan; Rigler, Andreja Ales; Romozi, Karmen; Ponikvar, Rafael

    2016-06-01

    Antibody-mediated rejection (AMR) is a major cause of kidney graft failure. We aimed to analyze treatment and outcome of AMR in a national cohort of 75 biopsy-proven acute (43 patients, 57%) or chronic active (32 patients, 43%) AMR episodes between 2000 and 2015. The mean patients' age was 46 ± 16 years, the majority was treated with plasma exchange, 4% received immunoadsorption and 7% received both. The majority received pulse methylprednisolone and low-dose CMV hyperimmune globulin, 20% received bortezomib and 13% rituximab. Concomitant infection was treated in 40% of patients. The immediate treatment outcome was successful in 91%, the 1- and 3-year graft survival rates were 71% and 57%, while 3-year patient survival was 97%. Chronic active AMR was associated with worse graft survival than acute AMR (log rank P = 0.06). To conclude, intensive treatment with apheresis and additional immunosuppression was effective in reversing AMR, but long-term graft survival remains markedly decreased, especially in chronic active AMR. PMID:27312908

  12. High-Multiplicity HIV-1 Infection and Neutralizing Antibody Evasion Mediated by the Macrophage-T Cell Virological Synapse

    PubMed Central

    Duncan, Christopher J. A.; Williams, James P.; Schiffner, Torben; Gärtner, Kathleen; Ochsenbauer, Christina; Kappes, John; Russell, Rebecca A.; Frater, John

    2014-01-01

    ABSTRACT Macrophage infection is considered to play an important role in HIV-1 pathogenesis and persistence. Using a primary cell-based coculture model, we show that monocyte-derived macrophages (MDM) efficiently transmit a high-multiplicity HIV-1 infection to autologous CD4+ T cells through a viral envelope glycoprotein (Env) receptor- and actin-dependent virological synapse (VS), facilitated by interactions between ICAM-1 and LFA-1. Virological synapse (VS)-mediated transmission by MDM results in high levels of T cell HIV-1 integration and is 1 to 2 orders of magnitude more efficient than cell-free infection. This mode of cell-to-cell transmission is broadly susceptible to the activity of CD4 binding site (CD4bs) and glycan or glycopeptide epitope-specific broadly neutralizing monoclonal antibodies (bNMAbs) but shows resistance to bNMAbs targeting the Env gp41 subunit membrane-proximal external region (MPER). These data define for the first time the structure and function of the macrophage-to-T cell VS and have important implications for bNMAb activity in HIV-1 prophylaxis and therapy. IMPORTANCE in vivo PMID:24307588

  13. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography.

    PubMed

    He, Wanzhong; Ladinsky, Mark S; Huey-Tubman, Kathryn E; Jensen, Grant J; McIntosh, J Richard; Björkman, Pamela J

    2008-09-25

    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rats, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates the efficient unidirectional transport of IgG, because FcRn binds IgG at pH 6.0-6.5 but not at pH 7 or more. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum and jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum). Here we use electron tomography to make jejunal transcytosis visible directly in space and time, developing new labelling and detection methods to map individual nanogold-labelled Fc within transport vesicles and simultaneously to characterize these vesicles by immunolabelling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine whether a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moves through networks of entangled tubular and irregular vesicles, only some of which are microtubule-associated, as it migrates to the basolateral surface. New features of transcytosis are elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis through clathrin-coated pits. Markers for early, late and recycling endosomes each labelled vesicles in different and overlapping morphological classes, revealing spatial complexity in endo-lysosomal trafficking. PMID:18818657

  14. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography

    PubMed Central

    He, Wanzhong; Ladinsky, Mark S.; Huey-Tubman, Kathryn E.; Jensen, Grant J.; McIntosh, J. Richard; Björkman, Pamela J.

    2009-01-01

    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers1,2, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rodents, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates efficient unidirectional transport of IgG, since FcRn binds IgG at pH 6.0-6.5 but not pH ≥7 1,2. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum, jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum)3-6. We used electron tomography to directly visualize jejunal transcytosis in space and time, developing new labeling and detection methods to map individual nanogold-labeled Fc within transport vesicles7 and to simultaneously characterize these vesicles by immunolabeling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine if a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moved through networks of entangled tubular and irregular vesicles, only some of which were microtubule-associated, as it migrated to the basolateral surface. New features of transcytosis were elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis via clathrin-coated pits. Markers for early, late, and recycling endosomes each labeled vesicles in different and overlapping morphological classes, revealing unexpected spatial complexity in endo-lysosomal trafficking. PMID:18818657

  15. ApoE Receptor 2 mediates trophoblast dysfunction and pregnancy complications induced by antiphospholipid antibodies in mice

    PubMed Central

    Ulrich, Victoria; Gelber, Shari E.; Vukelic, Milena; Sacharidou, Anastasia; Herz, Joachim; Urbanus, Rolf T.; de Groot, Philip G.; Natale, David R.; Harihara, Anirudha; Redecha, Patricia; Abrahams, Vikki M.; Shaul, Philip W.

    2015-01-01

    Objective Pregnancies in women with the antiphospholipid syndrome (APS) are frequently complicated by fetal loss and intrauterine growth restriction (IUGR). How circulating antiphospholipid antibodies (aPL) cause pregnancy complications in APS is poorly understood. We sought to determine if the LDL receptor family member apoE receptor 2 (apoER2) mediates trophoblast dysfunction and pregnancy complications induced by aPL. Methods Placental and trophoblast apoER2 expression was evaluated by immunohistochemistry and immunoblotting. Normal human IgG (NHIgG) and aPL were purified from healthy individuals and APS patients, respectively. The role of apoER2 in aPL-induced changes in trophoblast proliferation, migration and kinase activation was assessed using RNA interference in HTR-8/SVneo cells. The participation of apoER2 in aPL-induced pregnancy loss and IUGR was evaluated in pregnant apoER2+/+ and apoER2−/− mice injected with aPL or NHIgG. Results We found that apoER2 is abundant in human and mouse placental trophoblasts, and in multiple trophoblast-derived cell lines including HTR-8/SVneo cells. ApoER2 and its interaction with the cell surface protein β2-glycoprotein I were required for aPL-induced inhibition of cultured trophoblast proliferation and migration. In parallel, aPL antagonism of Akt kinase activation by EGF in trophoblasts was mediated by apoER2. Furthermore, in a murine passive transfer model of pregnancy complications of APS, apoER2−/− mice were protected from both aPL-induced fetal loss and aPL-induced IUGR. Conclusion ApoER2 plays a major role in the attenuation of trophoblast function by aPL, and the receptor mediates aPL-induced pregnancy complications in vivo in mice. ApoER2-directed interventions can now potentially be developed to combat the pregnancy complications associated with APS. PMID:26474194

  16. Enhancing natural killer cell-mediated lysis of lymphoma cells by combining therapeutic antibodies with CD20-specific immunoligands engaging NKG2D or NKp30

    PubMed Central

    Kellner, Christian; Günther, Andreas; Humpe, Andreas; Repp, Roland; Klausz, Katja; Derer, Stefanie; Valerius, Thomas; Ritgen, Matthias; Brüggemann, Monika; van de Winkel, Jan GJ; Parren, Paul WHI; Kneba, Michael; Gramatzki, Martin; Peipp, Matthias

    2016-01-01

    Antibody-dependent cell-mediated cytotoxicity (ADCC) mediated through the IgG Fc receptor FcγRIIIa represents a major effector function of many therapeutic antibodies. In an attempt to further enhance natural killer (NK) cell-mediated ADCC, we combined therapeutic antibodies against CD20 and CD38 with recombinant immunoligands against the stimulatory NK cell receptors NKG2D or NKp30. These immunoligands, respectively designated as ULBP2:7D8 and B7-H6:7D8, contained the CD20 scFv 7D8 as a targeting moiety and a cognate ligand for either NKG2D or NKp30 (i.e. ULBP2 and B7-H6, respectively). Both the immunoligands synergistically augmented ADCC in combination with the CD20 antibody rituximab and the CD38 antibody daratumumab. Combinations with ULBP2:7D8 resulted in higher cytotoxicity compared to combinations with B7-H6:7D8, suggesting that coligation of FcγRIIIa with NKG2D triggered NK cells more efficiently than with NKp30. Addition of B7-H6:7D8 to ULBP2:7D8 and rituximab in a triple combination did not further increase the extent of tumor cell lysis. Importantly, immunoligand-mediated enhancement of ADCC was also observed for tumor cells and autologous NK cells from patients with hematologic malignancies, in which, again, ULBP2:7D8 was particularly active. In summary, co-targeting of NKG2D was more effective in promoting rituximab or daratumumab-mediated ADCC by NK cells than co-ligation of NKp30. The observed increase in the ADCC activity of these therapeutic antibodies suggests promise for a ‘dual-dual-targeting’ approach in which tumor cell surface antigens are targeted in concert with two distinct activating NK cell receptors (i.e. FcγRIIIa and NKG2D or B7-H6). PMID:26942070

  17. Antibody-dependent cell-mediated cytotoxicity against IBR-infected bovine kidney cells by ruminant neutrophils: the role of lysosomal cationic protein.

    PubMed Central

    Thorne, K J; Norman, J M; Haydock, S F; Lammas, D A; Duffus, P H

    1984-01-01

    Antibody-dependent cell-mediated cytotoxicity (ADCC) of infectious bovine rhinotracheitis (IBR)-infected bovine kidney cells (MDBK) by neutrophils was demonstrated. Neutrophils from bovine and sheep mammary exudate and peripheral blood, and also from human peripheral blood, were all active in the presence of anti-IBR antibody. The component of the ruminant neutrophil granules which was responsible for cytotoxicity appeared to be cationic protein since purified cationic protein lysed the virus-infected cells and heparin inhibited cytotoxicity. Human neutrophil cytotoxicity to herpes simplex virus (HSV)-infected human Chang liver cells was also inhibited by heparin. Human neutrophil cytotoxicity to IBR-infected bovine kidney cells did not appear to be mediated by cationic protein since it was inhibited by the chelators of oxidative intermediates DMSO, thiourea, tryptophane, benzoate and mannitol, and not by heparin. PMID:6092270

  18. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  19. A role for natural antibody in the pathogenesis of leprosy: antibody in nonimmune serum mediates C3 fixation to the Mycobacterium leprae surface and hence phagocytosis by human mononuclear phagocytes.

    PubMed Central

    Schlesinger, L S; Horwitz, M A

    1994-01-01

    We have previously determined that complement receptors on human mononuclear phagocytes and complement component C3 in nonimmune serum mediate phagocytosis of the intracellular bacterial pathogen Mycobacterium leprae, the agent of leprosy. We have also determined that C3 fixes selectively to the major surface glycolipid of M. leprae, phenolic glycolipid 1 (PGL-1). In this study, we have explored the role of natural antibody in nonimmune serum in C3 fixation and C1q binding to M. leprae and PGL-1. At serum concentrations within the range at which phagocytosis of M. leprae is maximal, C3 fixation was mediated by both the classical and the alternative complement pathways. At the low end of this serum concentration range (2.5%), C3 fixation was mediated predominantly by the classical pathway. Consistent with a role for both pathways, C3 fixation to M. leprae was enhanced by the addition of either pure C1q to C1q-depleted serum or pure factor B to factor B-depleted serum. C3 fixation to M. leprae was strictly antibody dependent regardless of the serum concentration used. C3 fixation to M. leprae occurred in nonimmune serum but not in agammaglobulinemic serum unless heat-inactivated nonimmune serum or small amounts of pure immunoglobulin G (IgG) or IgM were added. C3 fixation by both the alternative and the classical complement pathways was mediated by antibody, and the antigen-binding portion of the antibody molecule was required. C3, IgG, IgM, and C1q were readily detected on the surface of M. leprae. Consistent with the previously demonstrated exclusive role of the classical complement pathway in C3 fixation to PGL-1, C1q bound to PGL-1 in a dose-dependent fashion; C1q binding was evident in > 1.25% nonimmune serum. C1q binding to PGL-1 was strictly antibody dependent. When PGL-1 was incubated with pure C1q, little or no C1q bound to PGL-1 unless heat-inactivated nonimmune serum or pure IgG or IgM was added. When PGL-1 was incubated in nonimmune serum, C3 bound

  20. C1 Inhibitor in Acute Antibody-Mediated Rejection Nonresponsive to Conventional Therapy in Kidney Transplant Recipients: A Pilot Study.

    PubMed

    Viglietti, D; Gosset, C; Loupy, A; Deville, L; Verine, J; Zeevi, A; Glotz, D; Lefaucheur, C

    2016-05-01

    Complement inhibitors have not been thoroughly evaluated in the treatment of acute antibody-mediated rejection (ABMR). We performed a prospective, single-arm pilot study to investigate the potential effects and safety of C1 inhibitor (C1-INH) Berinert added to high-dose intravenous immunoglobulin (IVIG) for the treatment of acute ABMR that is nonresponsive to conventional therapy. Kidney recipients with nonresponsive active ABMR and acute allograft dysfunction were enrolled between April 2013 and July 2014 and received C1-INH and IVIG for 6 months (six patients). The primary end point was the change in eGFR at 6 months after inclusion (M+6). Secondary end points included the changes in histology and DSA characteristics and adverse events as evaluated at M+6. All patients showed an improvement in eGFR between inclusion and M+6: from 38.7 ± 17.9 to 45.2 ± 21.3 mL/min/1.73 m(2) (p = 0.0277). There was no change in histological features, except a decrease in the C4d deposition rate from 5/6 to 1/6 (p = 0.0455). There was a change in DSA C1q status from 6/6 to 1/6 positive (p = 0.0253). One deep venous thrombosis was observed. In a secondary analysis, C1-INH patients were compared with a similar historical control group (21 patients). C1-INH added to IVIG is safe and may improve allograft function in kidney recipients with nonresponsive acute ABMR. PMID:26693703

  1. Antitherapeutic antibody-mediated hepatotoxicity of recombinant human Apo2L/TRAIL in the cynomolgus monkey.

    PubMed

    Zuch de Zafra, Christina L; Ashkenazi, Avi; Darbonne, Walter C; Cheu, Melissa; Totpal, Klara; Ortega, Shirley; Flores, Heather; Walker, Mark D; Kabakoff, Bruce; Lum, Bert L; Mounho-Zamora, Barbara J; Marsters, Scot A; Dybdal, Noël O

    2016-01-01

    Apo2L/TRAIL is a member of the tumor necrosis factor superfamily and an important inducer of apoptosis. Recombinant human (rhu) Apo2L/TRAIL has been attractive as a potential cancer therapeutic because many types of tumor cells are sensitive to its apoptosis-inducing effects. Nonclinical toxicology studies were conducted to evaluate the safety of rhuApo2L/TRAIL for possible use in humans. The cynomolgus monkey was chosen for this safety assessment based on high protein sequence homology between human and cynomolgus Apo2L/TRAIL and comparable expression of their receptors. Although hepatotoxicity was observed in repeat-dose monkey studies with rhuApo2L/TRAIL, all animals that displayed hepatotoxicity had developed antitherapeutic antibodies (ATAs). The cynomolgus ATAs augmented the cytotoxicity of rhuApo2L/TRAIL but not of its cynomolgus counterpart. Of note, human and cynomolgus Apo2L/TRAIL differ by four amino acids, three of which are surface-exposed. In vivo studies comparing human and cynomolgus Apo2L/TRAIL supported the conclusion that these distinct amino acids served as epitopes for cross-species ATAs, capable of crosslinking rhuApo2L/TRAIL and thus triggering hepatocyte apoptosis. We describe a hapten-independent mechanism of immune-mediated, drug-related hepatotoxicity - in this case - associated with the administration of a human recombinant protein in monkeys. The elucidation of this mechanism enabled successful transition of rhuApo2L/TRAIL into human clinical trials. PMID:27512959

  2. Dextrose-mediated aggregation of therapeutic monoclonal antibodies in human plasma: Implication of isoelectric precipitation of complement proteins

    PubMed Central

    Luo, Shen; Zhang, Baolin

    2015-01-01

    Many therapeutic monoclonal antibodies (mAbs) are clinically administered through intravenous infusion after mixing with a diluent, e.g., saline, 5% dextrose. Such a clinical setting increases the likelihood of interactions among mAb molecules, diluent, and plasma components, which may adversely affect product safety and efficacy. Avastin® (bevacizumab) and Herceptin® (trastuzumab), but not Remicade® (infliximab), were shown to undergo rapid aggregation upon dilution into 5% dextrose when mixed with human plasma in vitro; however, the biochemical pathways leading to the aggregation were not clearly defined. Here, we show that dextrose-mediated aggregation of Avastin or Herceptin in plasma involves isoelectric precipitation of complement proteins. Using mass spectrometry, we found that dextrose-induced insoluble aggregates were composed of mAb itself and multiple abundant plasma proteins, namely complement proteins C3, C4, factor H, fibronectin, and apolipoprotein. These plasma proteins, which are characterized by an isoelectronic point of 5.5–6.7, lost solubility at the resulting pH in the mixture with formulated Avastin (pH 6.2) and Herceptin (pH 6.0). Notably, switching formulation buffers for Avastin (pH 6.2) and Remicade (pH 7.2) reversed their aggregation profiles. Avastin formed little, if any, insoluble aggregates in dextrose-plasma upon raising the buffer pH to 7.2 or above. Furthermore, dextrose induced pH-dependent precipitation of plasma proteins, with massive insoluble aggregates being detected at pH 6.5–6.8. These data show that isoelectric precipitation of complement proteins is a prerequisite of dextrose-induced aggregation of mAb in human plasma. This finding highlights the importance of assessing the compatibility of a therapeutic mAb with diluent and human plasma during product development. PMID:26338058

  3. Effectiveness of Intravenous Immunoglobulin Plus Plasmapheresis on Antibody-mediated Rejection or Thrombotic Microangiopathy in Iranian Kidney Transplant Recipient

    PubMed Central

    Dashti-Khavidaki, Simin; Shojaie, Lida; Hosni, Amin; Khatami, Mohammad Reza; Jafari, Atefeh

    2015-01-01

    Background: Antibody mediated rejection (AMR) and thrombotic microangiopathy (TMA) after kidney transplantation are difficult to differentiate most of the times and both play important roles in kidney allograft loss. Common treatment strategies of these two conditions include plasmapheresis, intravenous immunoglobulin (IVIG) and rituximab. Objectives: This study was designed to assess the efficacy of routine treatment of AMR/TMA in Iranian kidney transplant recipients, which comprises of plasmapheresis and IVIG. Patients and Methods: This one-year cross-sectional study was performed in the Kidney Transplantation Ward of Imam-Khomeini Hospital Complex, Tehran, Iran. All kidney transplant recipients who were administered plasmapheresis and IVIG to treat definite or suggested AMR or TMA were assessed clinically and also evaluated on laboratory data. Results: During 2014, we encountered five patients with suspicious AMR or TMA at our kidney transplant center. Renal biopsy was performed for two of them, suggesting AMR for one patient and TMA for another patient. All patients were treated with plasmapheresis plus IVIG. In this center, as a routine practice, the cumulative dose of 2 g/kg of IVIG was divided to 300 - 400 mg/kg after each plasmapheresis. Only one out of the five patients showed response, albeit not completely. Conclusions: Due to daily plasmapheresis within the first several days after AMR or TMA, administering high amounts of the cumulative dose of IVIG after plasmapheresis may result in high amounts of IVIG withdrawal by plasmapheresis and response failure. Our suggestion is to reduce the IVIG dose after each plasmapheresis to 100 mg/kg (i.e. replacement dose) to reach a cumulative dose of 2 g/Kg. If plasmapheresis treatment is initiated sooner than the completion of the IVIG cumulative dose of 2 g/kg, the remaining dose can be administered during one injection. PMID:26034746

  4. γδ T Cell-Mediated Antibody-Dependent Cellular Cytotoxicity with CD19 Antibodies Assessed by an Impedance-Based Label-Free Real-Time Cytotoxicity Assay.

    PubMed

    Seidel, Ursula Jördis Eva; Vogt, Fabian; Grosse-Hovest, Ludger; Jung, Gundram; Handgretinger, Rupert; Lang, Peter

    2014-01-01

    γδ T cells are not MHC restricted, elicit cytotoxicity against various malignancies, are present in early post-transplant phases in novel stem cell transplantation strategies and have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) with monoclonal antibodies (mAbs). These features make γδ T cells promising effector cells for antibody-based immunotherapy in pediatric patients with B-lineage acute lymphoblastic leukemia (ALL). To evaluate combination of human γδ T cells with CD19 antibodies for immunotherapy of B-lineage ALL, γδ T cells were expanded after a GMP-compliant protocol and ADCC of both primary and expanded γδ T cells with an Fc-optimized CD19 antibody (4G7SDIE) and a bi-specific antibody with the specificities CD19 and CD16 (N19-C16) was evaluated in CD107a-degranulation assays and intracellular cytokine staining. CD107a, TNFα, and IFNγ expression of primary γδ T cells were significantly increased and correlated with CD16-expression of γδ T cells. γδ T cells highly expressed CD107a after expansion and no further increased expression by 4G7SDIE and N19-C16 was measured. Cytotoxicity of purified expanded γδ T cells targeting CD19-expressing cells was assessed in both europium-TDA release and in an impedance-based label-free method (using the xCELLigence system) measuring γδ T cell lysis in real-time. Albeit in the 2 h end-point europium-TDA release assay no increased lysis was observed, in real-time xCELLigence assays both significant antibody-independent cytotoxicity and ADCC of γδ T cells were observed. The xCELLigence system outperformed the end-point europium-TDA release assay in sensitivity and allows drawing of conclusions to lysis kinetics of γδ T cells over prolonged periods of time periods. Combination of CD19 antibodies with primary as well as expanded γδ T cells exhibits a promising approach, which may enhance clinical outcome of patients with pediatric B-lineage ALL and requires clinical

  5. ANTIBODY-MEDIATED PROTECTION AGAINST GENITAL HERPES SIMPLEX VIRUS TYPE 2 DISEASE IN MICE BY FC GAMMA RECEPTOR -DEPENDENT AND -INDEPENDENT MECHANISMS

    PubMed Central

    Chu, Chin-Fun; Meador, Michael G.; Young, Christal G.; Strasser, Jane E.; Bourne, Nigel; Milligan, Gregg N.

    2008-01-01

    The ability of antibody (Ab) to modulate HSV pathogenesis is well recognized but the mechanisms by which HSV-specific IgG antibodies protect against genital HSV-2 disease are not well understood. The requirement for Ab interactions with Fcγ receptors (FcγR) in protection was examined using a murine model of genital HSV-2 infection. IgG antibodies isolated from the serum of HSV-immune mice protected normal mice against HSV-2 disease when administered prior to genital HSV-2 inoculation. However, protection was significantly diminished in recipient mice lacking the gamma chain subunit utilized in FcγRI, FcγRIII, FcγRIV and FcepsilonRI receptors and in normal mice depleted of Gr-1+ immune cell populations known to express FcγR, suggesting protection was largely mediated by an FcγR-dependent mechanism. To test whether neutralizing Ab might provide superior protection, a highly neutralizing HSV glycoprotein D (gD)- specific monoclonal antibody (mAb) was utilized. Similar to results with HSV-specific polyclonal IgG, administration of the gD-specific mAb did not prevent initial infection of the genital tract but resulted in lower virus loads in the vaginal epithelium and provided significant protection against disease and acute infection of the sensory ganglia; however, this protection was independent of host FcγR expression and was manifest in mice depleted of Gr-1+ immune cells. Together, these data demonstrate that substantial Ab-mediated protection against genital HSV-2 disease could be achieved by either FcγR-dependent or -independent mechanisms. These studies suggest that HSV vaccines might need to elicit multiple, diverse antibody effector mechanisms to achieve optimal protection. PMID:17950908

  6. On the Meaning of Affinity Limits in B-Cell Epitope Prediction for Antipeptide Antibody-Mediated Immunity

    PubMed Central

    Caoili, Salvador Eugenio C.

    2012-01-01

    B-cell epitope prediction aims to aid the design of peptide-based immunogens (e.g., vaccines) for eliciting antipeptide antibodies that protect against disease, but such antibodies fail to confer protection and even promote disease if they bind with low affinity. Hence, the Immune Epitope Database (IEDB) was searched to obtain published thermodynamic and kinetic data on binding interactions of antipeptide antibodies. The data suggest that the affinity of the antibodies for their immunizing peptides appears to be limited in a manner consistent with previously proposed kinetic constraints on affinity maturation in vivo and that cross-reaction of the antibodies with proteins tends to occur with lower affinity than the corresponding reaction of the antibodies with their immunizing peptides. These observations better inform B-cell epitope prediction to avoid overestimating the affinity for both active and passive immunization; whereas active immunization is subject to limitations of affinity maturation in vivo and of the capacity to accumulate endogenous antibodies, passive immunization may transcend such limitations, possibly with the aid of artificial affinity-selection processes and of protein engineering. Additionally, protein disorder warrants further investigation as a possible supplementary criterion for B-cell epitope prediction, where such disorder obviates thermodynamically unfavorable protein structural adjustments in cross-reactions between antipeptide antibodies and proteins. PMID:23209458

  7. Preclinical characterization of 1-7F9, a novel human anti–KIR receptor therapeutic antibody that augments natural killer–mediated killing of tumor cells

    PubMed Central

    André, Pascale; Spee, Pieter; Zahn, Stefan; Anfossi, Nicolas; Gauthier, Laurent; Capanni, Marusca; Ruggeri, Loredana; Benson, Don M.; Blaser, Bradley W.; Della Chiesa, Mariella; Moretta, Alessandro; Vivier, Eric; Caligiuri, Michael A.; Velardi, Andrea

    2009-01-01

    Inhibitory-cell killer immunoglobulin-like receptors (KIR) negatively regulate natural killer (NK) cell–mediated killing of HLA class I–expressing tumors. Lack of KIR-HLA class I interactions has been associated with potent NK-mediated antitumor efficacy and increased survival in acute myeloid leukemia (AML) patients upon haploidentical stem cell transplantation from KIR-mismatched donors. To exploit this pathway pharmacologically, we generated a fully human monoclonal antibody, 1-7F9, which cross-reacts with KIR2DL1, -2, and -3 receptors, and prevents their inhibitory signaling. The 1-7F9 monoclonal antibody augmented NK cell–mediated lysis of HLA-C–expressing tumor cells, including autologous AML blasts, but did not induce killing of normal peripheral blood mononuclear cells, suggesting a therapeutic window for preferential enhancement of NK-cell cytotoxicity against malignant target cells. Administration of 1-7F9 to KIR2DL3-transgenic mice resulted in dose-dependent rejection of HLA-Cw3–positive target cells. In an immunodeficient mouse model in which inoculation of human NK cells alone was unable to protect against lethal, autologous AML, preadministration of 1-7F9 resulted in long-term survival. These data show that 1-7F9 confers specific, stable blockade of KIR, boosting NK-mediated killing of HLA-matched AML blasts in vitro and in vivo, providing a preclinical basis for initiating phase 1 clinical trials with this candidate therapeutic antibody. PMID:19553639

  8. Increased infectivity in human cells and resistance to antibody-mediated neutralization by truncation of the SIV gp41 cytoplasmic tail.

    PubMed

    Kuwata, Takeo; Kaori, Takaki; Enomoto, Ikumi; Yoshimura, Kazuhisa; Matsushita, Shuzo

    2013-01-01

    The role of antibodies in protecting the host from human immunodeficiency virus type 1 (HIV-1) infection is of considerable interest, particularly because the RV144 trial results suggest that antibodies contribute to protection. Although infection of non-human primates with simian immunodeficiency virus (SIV) is commonly used as an animal model of HIV-1 infection, the viral epitopes that elicit potent and broad neutralizing antibodies to SIV have not been identified. We isolated a monoclonal antibody (MAb) B404 that potently and broadly neutralizes various SIV strains. B404 targets a conformational epitope comprising the V3 and V4 loops of Env that intensely exposed when Env binds CD4. B404-resistant variants were obtained by passaging viruses in the presence of increasing concentration of B404 in PM1/CCR5 cells. Genetic analysis revealed that the Q733stop mutation, which truncates the cytoplasmic tail of gp41, was the first major substitution in Env during passage. The maximal inhibition by B404 and other MAbs were significantly decreased against a recombinant virus with a gp41 truncation compared with the parental SIVmac316. This indicates that the gp41 truncation was associated with resistance to antibody-mediated neutralization. The infectivities of the recombinant virus with the gp41 truncation were 7,900-, 1,000-, and 140-fold higher than those of SIVmac316 in PM1, PM1/CCR5, and TZM-bl cells, respectively. Immunoblotting analysis revealed that the gp41 truncation enhanced the incorporation of Env into virions. The effect of the gp41 truncation on infectivity was not obvious in the HSC-F macaque cell line, although the resistance of viruses harboring the gp41 truncation to neutralization was maintained. These results suggest that viruses with a truncated gp41 cytoplasmic tail were selected by increased infectivity in human cells and by acquiring resistance to neutralizing antibody. PMID:23717307

  9. Antibody-Mediated and Cellular Immune Responses Induced in Naive Volunteers by Vaccination with Long Synthetic Peptides Derived from the Plasmodium vivax Circumsporozoite Protein

    PubMed Central

    Arévalo-Herrera, Myriam; Soto, Liliana; Perlaza, Blanca Liliana; Céspedes, Nora; Vera, Omaira; Lenis, Ana Milena; Bonelo, Anilza; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate. We describe the characterization of specific immune responses induced in 21 malaria-naive volunteers vaccinated with long synthetic peptides derived from the CS protein formulated in Montanide ISA 720. Both antibody- and cell-mediated immune responses were analyzed. Antibodies were predominantly of IgG1 and IgG3 isotypes, recognized parasite proteins on the immunofluorescent antibody test, and partially blocked sporozoite invasion of hepatoma cell lines in vitro. Peripheral blood mononuclear cells from most volunteers (94%) showed IFN-γ production in vitro upon stimulation with both long signal peptide and short peptides containing CD8+ T-cell epitopes. The relatively limited sample size did not allow conclusions about HLA associations with the immune responses observed. In summary, the inherent safety and tolerability together with strong antibody responses, invasion blocking activity, and the IFN-γ production induced by these vaccine candidates warrants further testing in a phase II clinical trial. PMID:21292876

  10. Antibody-Mediated Enhancement of HIV-1 and HIV-2 Production from BST-2/Tetherin-Positive Cells▿

    PubMed Central

    Miyagi, Eri; Andrew, Amy; Kao, Sandra; Yoshida, Takeshi; Strebel, Klaus

    2011-01-01

    BST-2/CD317/HM1.24/tetherin is a B-cell antigen overexpressed on the surface of myeloma cell lines and on neoplastic plasma cells of patients with multiple myeloma. Antibodies to BST-2 are in clinical trial for the treatment of multiple myeloma and are considered for the treatment of solid tumors with high BST-2 antigen levels. Functionally, BST-2 restricts the secretion of retroviruses, including human immunodeficiency virus type 1, as well as members of the herpesvirus, filovirus, and arenavirus families, presumably by tethering nascent virions to the cell surface. Here we report that BST-2 antibody treatment facilitates virus release from BST-2+ cells by interfering with the tethering activity of BST-2. BST-2 antibodies were unable to release already tethered virions and were most effective when added early during virus production. BST-2 antibody treatment did not affect BST-2 dimerization and did not reduce the cell surface expression of BST-2. Interestingly, BST-2 antibody treatment reduced the nonspecific shedding of BST-2 and limited the encapsidation of BST-2 into virions. Finally, flotation analyses indicate that BST-2 antibodies affect the distribution of BST-2 within membrane rafts. Our data suggest that BST-2 antibody treatment may enhance virus release by inducing a redistribution of BST-2 at the cell surface, thus preventing it from accumulating at the sites of virus budding. PMID:21917971