Science.gov

Sample records for egg-white lysozyme crystals

  1. Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.

    1997-01-01

    Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.

  2. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1998-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Four different crystal morphologies have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed, Crystals grown at 15 C were generally tetragonal, with space group P43212. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P21212 1. The tetragonal much less than orthorhombic morphology transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 0.8 -1.2M magnesium sulfate at pH 7.6 - 8.0 gave a hexagonal (trigonal) crystal form, space group P3121, which diffracted to 2.8 A. Ammonium sulfate was also found to result in a monoclinic form, space group C2. Small twinned monoclinic crystals of approx. 0.2 mm on edge were grown by dialysis followed by seeded sitting drop crystallization.

  3. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4 C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15 C were generally tetragonal, with space group P4(sub 3)2(sub 1)2. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P2(sub 1)2(sub 1)2(sub 1). The tetragonal reversible reaction orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3(sub 1)2(sub 1), a = b = 87.4, c = 73.7, gamma = 120 deg, which diffracted to 2.8 A. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form. space group C2, a = 65.6, b = 95.0, c = 41.2, beta = 119.2 deg. A crystal of approximately 0.2 x 0.2 x 0.5 mm grown from bulk solution diffracted to approximately 3.5 A.

  4. Crystallization of chicken egg white lysozyme from assorted sulfate salts

    NASA Astrophysics Data System (ADS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4°C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15°C were generally tetragonal, with space group P4 32 12. Crystallization at 20°C typically resulted in the formation of orthorhombic crystals, space group P2 12 12 1. The tetragonal ↔ orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20°C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3 12 1, a= b=87.4, c=73.7, γ=120°, which diffracted to 2.8 Å. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form, space group C2, a=65.6, b=95.0, c=41.2, β=119.2°. A crystal of ˜0.2×0.2×0.5 mm grown from bulk solution diffracted to ˜3.5 Å.

  5. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot

  6. Effects of microheterogeneity in hen egg-white lysozyme crystallization.

    PubMed

    Thomas, B R; Vekilov, P G; Rosenberger, F

    1998-03-01

    In earlier sodium dodecylsulfate-polyacylamide gel electrophoresis (SDS-PAGE) studies it has been found that commonly utilized commercial hen egg-white lysozyme (HEWL) preparations contained 0.2-0.4 mol% covalently bound dimers. Here it is shown, using high-performance capillary electrophoresis (HPCE), that HEWL contains, in addition, two differently charged monomers in comparable amounts. To explore the origin of these microheterogeneous contaminants, purified HEWL (PHEWL) has been oxidized with hydrogen peroxide (0.0026-0.88 M) at various pH levels between 4.5 and 12.0. Optical densitometry of oxidized PHEWL (OHEWL) bands in SDS-PAGE gels shows that hydrogen peroxide at 0.88 M in acetate buffer pH 4.5 increased the amount of dimers about sixfold over that in commercial HEWL. OHEWL had, in addition to one of the two monomer forms found in HEWL and PHEWL, three other differently charged monomer forms, each of them representing about 25% of the preparation. SDS-PAGE analysis of OHEWL yielded two closely spaced dimer bands with Mr = 28000 and 27500. In addition, larger HEWL oligomers with Mr = 1.7 million and 320000 were detected by gel-filtration fast protein liquid chromatography with multiangle laser light scattering detection. Non-dissociating PAGE in large pore size gels at pH 4.5 confirmed the presence of these large oligomers in HEWL and OHEWL. Increased microheterogeneity resulted in substantial effects on crystal growth and nucleation rate. On addition of 10 microgram-1 mg ml-1 OHEWL to 32 mg ml-1 HEWL crystallizing solutions, both the number and size of forming crystals decreased roughly proportionally to the concentration of the added microheterogeneity. The same effect was observed in HEWL solutions on addition of 0.03-0.3 M hydrogen peroxide. Repartitioning of the dimer during crystallization at various temperatures between 277 and 293 K was analyzed by SDS-PAGE. The crystals contained

  7. Effects of Microheterogeneity in Hen Egg-White Lysozyme Crystallization

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    In earlier sodium dodecylsulfate polyacylamide gel electrophoresis (SDS-PAGE) studies it has been found that commonly utilized commercial hen egg-white lysozyme (HEWL) preparations contained 0.2-0.4 mol% covalently bound dimers. Here it is shown, using high-performance capillary electrophoresis (HPCE), that HEWL contains, in addition, two differently charged monomers in comparable amounts. To explore the origin of these microheterogeneous contaminants, purified HEWL (PHEWL) has been oxidized with hydrogen peroxide (0.0026-0.88 M) at various pH levels between 4.5 and 12.0. Optical densitometry of oxidized PHEWL (OHEWL) bands in SDS PAGE gels shows that hydrogen peroxide at 0.88 M in acetate buffer pH 4.5 increased the amount of dimers about sixfold over that in commercial HEWL. OHEWL had, in addition to one of the two monomer forms found in HEWL and PHEWL, three other differently charged monomer forms, each of them representing about 25% of the preparation. SDS-PAGE analysis of OHEWL yielded two closely spaced dimer bands with M(sub r) = 28 000 and 27 500. In addition, larger HEWL oligomers with M, = 1.7 million and 320 000 were detected by gel-filtration fast protein liquid chromatography with multiangle laser light scattering detection. Non-dissociating PAGE in large pore size gels at pH 4.5 confirmed the presence of these large oligomers in HEWL and OHEWL. Increased microheterogeneity resulted in substantial effects on crystal growth and nucleation rate. On addition of 10 microgram(exp -1) mg ml(exp -1) OHEWL to 32 mg ml(exp -1) HEWL crystallizing solutions, both the number and size of forming crystals decreased roughly proportionally to the concentration of the added microheterogeneity. The same effect was observed in HEWL solutions on addition of 0.03-9,3 M Hydrogen peroxide. Repartioning of the dimer during crystallzation aat various temperatures between 277 and 293 K was analyzed by SDS-PAGE. The crystals contained <= 25 % weight by volume of the oligomers in

  8. Control of solvent evaporation in hen egg white lysozyme crystallization

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Suddath, F. L.

    1992-01-01

    An investigation of the role of solvent evaporation in tetragonal lysozyme crystallization was preformed with a device that employs N2(g) to control the evaporation of solvent from a micro-volume crystallization hanging drop. The number of crystals was found to vary with the rate at which the final supersaturation level was achieved. It was found that the more rapid the approach to supersaturation the larger the number of crystals. Accordingly, the crystals reached a smaller terminal size. Elongation of the (110) face parallel to the four-fold axis was observed with the slower evaporation rates.

  9. The effect of protein contaminants on the crystallization of turkey egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Abergel, Chantal; Nesa, Marie P.; Fontecilla-Camps, Juan C.

    1991-03-01

    We report here a series of studies on the controlled contamination of crystallizing solutions of the hexagonal form of turkey egg white lysozyme (TEWL) carried out to understand the effects of impurities on the nucleation and growth of protein crystals. The contamination of TEWL solutions with any of three other avian lysozymes affects both the nucleation and the growth processes. For hen and quail egg white lysozymes, low and medium levels of contamination result in partial inhibition of nucleation and shortening of the c-axis. Further increase of the contaminant concentration leads to detectable co-crystallization. A different effect is obtained when using the pheasant egg white lysozyme. Contamination by an unrelated protein, ribonuclease A, has an effect on the nucleation levels that is similar to those observed with the avian lysozymes. However, no effect on TEWL crystal morphology is observed. Thus, in the case of TEWL crystals, one can distinguish between a specific effect on crystal morphology induced by related proteins and a more general inhibitory effect on the nucleation levels observed in all cases studied here.

  10. Observation of lattice defects in orthorhombic hen-egg white lysozyme crystals with laser scattering tomography

    NASA Astrophysics Data System (ADS)

    Sato, K.; Fukuba, Y.; Mitsuda, T.; Hirai, K.; Moriya, K.

    1992-08-01

    The effectivity of using laser scattering tomography (LST) as a nondestructive technique for finding lattice defects in protein crystals is demonstrated using an orthorhombic egg-white lysozyme crystal grown by a batch method. It was found that LST figures could be observed from the crystal portions where no defects were detectable by the naked eye or optical microscopy; the number of microdefects revealed in the LST patterns increased on approaching the crystal surface. Two types of defects were differentiated by polarization analysis: (1) point-type defects, assumed to be microdefects such as vacancies, precipitates, or impurities, and (2) bulk-type defects, assumed to correspond to inclusions.

  11. Production, crystallization and X-ray characterization of chemically glycosylated hen egg-white lysozyme

    SciTech Connect

    López-Jaramillo, F. J.; Pérez-Banderas, F.; Hernández-Mateo, F.; Santoyo-González, F.

    2005-04-01

    The feasibility of glycosylation post-purification has been demonstrated by introducing glucose into the model protein lysozyme via a novel reaction that is compatible with biological samples. The crystallization of glycoproteins is one of the challenges to be confronted by the crystallographic community in the frame of what is known as glycobiology. The state of the art for the crystallization of glycoproteins is not promising and removal of the carbohydrate chains is generally suggested since they are flexible and a source of heterogeneity. In this paper, the feasibility of introducing glucose into the model protein hen egg-white lysozyme via a post-purification glycosylation reaction that may turn any protein into a model glycoprotein whose carbohydrate fraction can be manipulated is demonstrated.

  12. Dissolution rate of hen egg-white lysozyme crystal under microgravity.

    PubMed

    Niimura, N; Kurihara, K; Ataka, M

    2001-10-01

    Protein crystallization under micro gravity has been already tried many times in the United States and other countries, and it is reported that about 20% of proteins were better crystallized under microgravity than on earth. This verified that microgravity is sometimes effective in protein crystallization. However, if these procedures continued to be carried out without clarifying which processes are effective, improved development of protein crystallization cannot be expected. The most effective way to study the process is to carry out protein crystallization experiments, each elementary stage of which is clearly observed. To this end, the dissolution rate of a single crystal of hen egg-white lysozyme has been measured both under microgravity and on earth in order to study the mechanism of protein crystallization. In May 1997, we had an opportunity to have an experiment on protein crystallization with use of STS-84 space shuttle missions (the time duration of which was 210 hours). The apparatus for protein crystallization by vapor diffusion techniques was available and we have tried to use it for measurement of crystal dissolution rate under microgravity. The barrels of two syringes (20 ml x 2) were filled with unsaturated protein solutions (hen egg-white lysozyme (HEWL): 0.0wt%, 0.1wt%, 0.2wt%, 0.3wt%; NaCl 3wt% aqueous solution) and a crystal (HEWL: tetragonal form; 1 mm +/- 0.2 mm in diameter) was put on the bottom of the one syringe. Dissolution of the crystal was started by extruding the unsaturated solutions onto the syringe tip with the crystal. The crystal dissoluted in 40 ml droplets that are extruded from syringes. The temperature was kept at 20 degrees C. Just before the Space Shuttle begins returning to the earth, the protein solution was withdrawn back into the syringes by the astronaut, and the melting experiment was finished. In the one syringe the incompletely melted crystal was withdrawn as well. The solution concentration in the other syringe was

  13. Preparation and Preliminary Characterization of Crystallizing Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.

    2001-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-i-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are 'buried' within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive five groups have been bound to His(sup 15), located on the 'back side' of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  14. Preparation and Preliminary Characterization of Crystallizing Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John; Forsythe, Elizabeth L.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to His(sup 15), located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  15. AFM observation of the surface morphology and impurity effects on orthorhombic hen egg-white lysozyme crystals

    NASA Astrophysics Data System (ADS)

    Matsuzuki, Y.; Kubota, T.; Liu, X. Y.; Ataka, M.; Takano, K. J.

    2002-07-01

    Cation-exchange high performance liquid chromatography at pH 6, developed originally to purify human lysozyme, was applied to hen egg-white lysozyme. We could remove at least three kinds of impurities from the commercial product. The impurities were considered to be modified lysozyme molecules, mostly based on N-terminal amino acid analyses. Atomic force microscopic observation was made on the crystals both from the purified and non-purified solutions. The (1 1 0) faces of the orthorhombic crystals grown at 40°C from the purified solution contained linear steps, while most of the linear edges became round and rugged on the crystals from non-purified solutions. A similar change in step morphology is known to occur on insulin crystals when two amino acids were mutated from the wild type. On the (0 1 0) face, elongated, round steps became rugged when crystals grew from non-purified solutions.

  16. Characterization of dislocations in monoclinic hen egg-white lysozyme crystals by synchrotron monochromatic-beam X-ray topography

    NASA Astrophysics Data System (ADS)

    Sawaura, Takuya; Fujii, Daiki; Shen, Mengyuan; Yamamoto, Yu; Wako, Kei; Kojima, Kenichi; Tachibana, Masaru

    2011-03-01

    Dislocations in monoclinic hen egg-white lysozyme crystals were investigated by means of synchrotron monochromatic-beam X-ray topography. The loop and curved dislocations were observed to be predominant in the crystals. Almost all the dislocations lay in (1 0 1¯) crystallographic plane, which corresponds to that with smallest slicing energy estimated by macrobond approach. One of the Burgers vectors of the dislocations was determined to be [0 1 0], which corresponds to the smallest lattice translational vector on the (1 0 1¯) plane. It is suggested that the loop and curved dislocations are slip ones introduced by a stress concentration during or after the growth.

  17. Crystal Growth of Hen Egg-White Lysozyme (HEWL) under Various Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Xu, Jin; Tsukamoto, Katsuo; Koizumi, Masako; Yamazaki, Tomoya; Zhou, Ru; Li, Ang; Fu, Yuying

    2013-08-01

    Motivated by the enhancement of protein quality under microgravity condition, the behaviors of crystal growth under various gravity conditions have been monitored via Foton Satellite and parabolic flight. We found that the normal growth rate and the step velocity would be enhanced only at high protein concentration. Although the difference of diffusion between monomer lysozyme molecule and main impurity species in HWEL dimer may be able to explain this enhancement in long period at high protein concentration, it is not valid at low lysozyme concentration and it can't explain the results obtained by parabolic flight, in which microgravity condition maintained only about 20 s. In order to compromise this contradiction, cluster, universal existing in protein solution, has been picked up. The dynamic light scattering technique figured out dimer is served as the seed for cluster formation. Due to its large size, cluster keeps still under microgravity. Via this mechanism, the purification of lysozyme above crystal surface has been achieved. We also found the two supergravity (˜1.5 g) periods immediately before and after microgravity period have different effects on the step velocity. The pre-MG period depresses the step velocity while the post-MG enhances it. This odd phenomenon ascribes to two factors: (1) the flow rate modification and (2) the purity of protein solution immediate above crystal surface.

  18. The solubility of hen egg-white lysozyme

    NASA Technical Reports Server (NTRS)

    Howard, Sandra B.; Twigg, Pamela J.; Baird, James K.; Meehan, Edward J.

    1988-01-01

    The equilibrium solubility of chicken egg-white lysozyme in the presence of crystalline solid state was determined as a function of NaCl concentration, pH, and temperature. The solubility curves obtained represent a region of the lysozyme phase diagram. This diagram makes it possible to determine the supersaturation of a given set of conditions or to achieve identical supersaturations by different combinations of parameters. The temperature dependence of the solubility permits the evaluation of Delta-H of crystallization. The data indicate a negative heat of crystallization for the tetragonal crystal form but a positive heat of crystallization for the high-temperature orthorhombic form.

  19. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  20. Action of egg white lysozyme on Clostridium tyrobutyricum.

    PubMed Central

    Wasserfall, F; Teuber, M

    1979-01-01

    A 500-U ml-1 portion of egg white lysozyme was able to kill 99% of 5 X 10(5) resting vegetative cells of Clostridium tyrobutyricum within 24 h of incubation at 25 degrees C. Spores were completely resistant to lysozyme. Proliferating vegetative cells were severely inhibited, although lysozyme-resistant cells developed in growing cultures in the presence of lysozyme. Whereas early stages of spore germination (loss of optical refractility and heat resistance) were not inhibited by lysozyme, the overall outgrowth of spore cells into vegetative cells was delayed by 1 day in the presence of 500 U of lysosyme ml-1. This delay was independent of the lysozyme sensitivity or resistance of the mother culture of the used spores. It is suggested that this inhibition by lysozyme of the outgrowth of spore cells into vegetative cells of the lactate-fermenting C. tyrobutyricum is the basis for the observation that lysozyme can substitute for nitrate in preventing the "late gas" defect of Edam- and Gouda-type cheeses. PMID:518083

  1. Biochemical characterization of lysozymes present in egg white of selected species of anatid birds.

    PubMed

    D'Surney, S J; deKloet, S R

    1985-01-01

    The isolation of lysozyme from the egg white of several representative species of waterfowl is described. The purified lysozymes were analyzed in order to determine the type and molecular weight of each enzyme. All enzymes found in duck egg whites were found to be of the c-type. In contrast all true geese, the Mute Swan as well as the Northern Blackneck Screamer contain lysozyme g in their egg white. PMID:4085215

  2. Biochemical characterization of lysozymes present in egg white of selected species of anatid birds.

    PubMed

    D'Surney, S J; deKloet, S R

    1985-01-01

    The isolation of lysozyme from the egg white of several representative species of waterfowl is described. The purified lysozymes were analyzed to determine the type and molecular weight of each enzyme. All enzymes found in duck egg whites were found to be of the c-type. In contrast all true geese, and the mute swan species as well as the northern blackneck screamer contain lysozyme g in their egg white. PMID:4042624

  3. High-pressure protein crystallography of hen egg-white lysozyme

    SciTech Connect

    Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa

    2015-04-01

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phase transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.

  4. Molecular dynamics simulation of thionated hen egg white lysozyme

    PubMed Central

    Huang, Wei; Eichenberger, Andreas P; van Gunsteren, Wilfred F

    2012-01-01

    Understanding of the driving forces of protein folding is a complex challenge because different types of interactions play a varying role. To investigate the role of hydrogen bonding involving the backbone, the effect of thio substitutions in a protein, hen egg white lysozyme (HEWL), was investigated through molecular dynamics simulations of native as well as partly (only residues in loops) and fully thionated HEWL using the GROMOS 54A7 force field. The results of the three simulations show that the structural properties of fully thionated HEWL clearly differ from those of the native protein, while for partly thionated HEWL they only changed slightly compared with native HEWL. The analysis of the torsional-angle distributions and hydrogen bonds in the backbone suggests that the α-helical segments of native HEWL tend to show a propensity to convert to 310-helical geometry in fully thionated HEWL. A comparison of the simulated quantities with experimental NMR data such as nuclear overhauser effect (NOE) atom–atom distance bounds and 3JHNHα-couplings measured for native HEWL illustrates that the information content of these quantities with respect to the structural changes induced by thionation of the protein backbone is rather limited. PMID:22653637

  5. Molecular dynamics simulation of thionated hen egg white lysozyme.

    PubMed

    Huang, Wei; Eichenberger, Andreas P; van Gunsteren, Wilfred F

    2012-08-01

    Understanding of the driving forces of protein folding is a complex challenge because different types of interactions play a varying role. To investigate the role of hydrogen bonding involving the backbone, the effect of thio substitutions in a protein, hen egg white lysozyme (HEWL), was investigated through molecular dynamics simulations of native as well as partly (only residues in loops) and fully thionated HEWL using the GROMOS 54A7 force field. The results of the three simulations show that the structural properties of fully thionated HEWL clearly differ from those of the native protein, while for partly thionated HEWL they only changed slightly compared with native HEWL. The analysis of the torsional-angle distributions and hydrogen bonds in the backbone suggests that the α-helical segments of native HEWL tend to show a propensity to convert to 3(10)-helical geometry in fully thionated HEWL. A comparison of the simulated quantities with experimental NMR data such as nuclear overhauser effect (NOE) atom-atom distance bounds and (3)J((H)(N)(H)(α))-couplings measured for native HEWL illustrates that the information content of these quantities with respect to the structural changes induced by thionation of the protein backbone is rather limited. PMID:22653637

  6. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.

    2001-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  7. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  8. Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula J.

    1999-01-01

    The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.

  9. Genetic control of the humoral immune response to avian egg white lysozymes in the chicken

    SciTech Connect

    Flanagan, M.P.

    1987-01-01

    Chickens from two closely related sublines, GHs-B6 and GHs-B13, differing serologically at the major histocompatibility complex, were significantly different in their humoral response to three avian egg white lysozymes. Specific antisera levels were measured by radioimmunoassay using /sup 125/I-labeled lysozymes. Antibodies elicited in response to these lysozymes are assumed to be directed against sites on these lysozymes where their amino acid sequence differs from that of the recipient G. domesticus egg white lysozyme (HEL). GHs-B6 birds produced a high level of antibody in response to immunization of turkey (TEL), pheasant (PhL) and guinea hen (GHL) lysozymes. GHs-B13 birds produced no detectable antibody to TEL, were intermediate in their response to PhL and equaled the antibody production of GHs-B6 birds in response to GHL. Antisera to each lysozyme were examined for crossreactivity with all other lysozymes by use of a competitive binding assay.

  10. Human Interleukin-2 and Hen Egg White Lysozyme: Screening for Bacteriolytic Activity against Various Bacterial Cells

    PubMed Central

    Levashov, P. A.; Ovchinnikova, E. D.; Morozova, O. A.; Matolygina, D. A.; Osipova, H. E.; Cherdyntseva, T. A.; Savin, S. S.; Zakharova, G. S.; Alekseeva, A. A.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.

    2016-01-01

    The bacteriolytic activity of interleukin-2 and hen egg white lysozyme against 34 different species of microorganisms has been studied. It was found that 6 species of microorganisms are lysed in the presence of interleukin-2. All interleukin-2-sensitive microorganisms belong either to the Enterobacteriaceae, Bacillaceae, or the Lactobacillaceae family. It was also found that 12 species of microorganisms are lysed in the presence of lysozyme, and 16 species of microorganisms are lysed in the presence of sodium dodecyl sulfate (SDS). The bacteriolytic activity of interleukin-2 and lysozyme was studied at various pH values. PMID:27099789

  11. Structural consequences of hen egg-white lysozyme orthorhombic crystal growth in a high magnetic field: validation of X-ray diffraction intensity, conformational energy searching and quantitative analysis of B factors and mosaicity.

    PubMed

    Saijo, Shinya; Yamada, Yusuke; Sato, Takao; Tanaka, Nobuo; Matsui, Takuro; Sazaki, Gen; Nakajima, Kazuo; Matsuura, Yoshiki

    2005-03-01

    A novel method has been developed to improve protein-crystal perfection during crystallization in a high magnetic field and structural studies have been undertaken. The three-dimensional structure of orthorhombic hen egg-white (HEW) lysozyme crystals grown in a homogeneous and static magnetic field of 10 T has been determined and refined to a resolution of 1.13 angstroms and an R factor of 17.0%. The 10 T crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 56.54 (3), b = 73.86 (6), c = 30.50 (2) angstroms and one molecule per asymmetric unit. A comparison of the structures of the 0 T and 10 T crystals has been carried out. The magnitude of the structural changes, with a root-mean-square deviation value of 0.75 angstroms for the positions of all protein atoms, is similar to that observed when an identical protein structure is resolved in two different crystalline lattices. The structures remain similar, with the exception of a few residues e.g. Arg68, Arg73, Arg128 and Gln121. The shifts of the arginine residues result in very significant structural fluctuations, which can have large effects on a protein's crystallization properties. The high magnetic field contributed to an improvement in diffraction intensity by (i) the displacement of the charged side chains of Arg68 and Arg73 in the flexible loop and of Arg128 at the C-terminus and (ii) the removal of the alternate conformations of the charged side chains of Arg21, Lys97 or Arg114. The improvement in crystal perfection might arise from the magnetic effect on molecular orientation without structural change and differences in molecular interactions. X-ray diffraction and molecular-modelling studies of lysozyme crystals grown in a 10 T field have indicated that the field contributes to the stability of the dihedral angle. The average difference in conformational energy has a value of -578 kJ mol(-1) per charged residue in favour of the crystal grown in the magnetic field. For most protein

  12. Heterogeneity Determination and Purification of Commercial Hen Egg-White Lysozyme

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    Hen egg-white lysozyme (HEWL) is widely used as a model protein, although its purity has not been adequately characterized by modern biochemical techniques. We have identified and quantified the protein heterogeneities in three commercial HEWL preparations by sodium dodecyl sulfate polyacrylamide gel electrophoresis with enhanced silver staining, reversed-phase fast protein liquid chromatography (FPLC) and immunoblotting with comparison to authentic protein standards. Depending on the source, the contaminating proteins totalled 1-6%(w/w) and consisted of ovotransferrin, ovalbumin, HEWL dimers, and polypeptides with approximate M(sub r) of 39 and 18 kDa. Furthermore, we have obtained gram quantities of electrophoretically homogeneous [> 99.9%(w/w)] HEWL by single-step semi-preparative scale cation-exchange FPLC with a yield of about 50%. Parallel studies of crystal growth kinetics, salt repartitioning and crystal perfection with this highly purified material showed fourfold increases in the growth-step velocities and significant enhancement in the structural homogeneity of HEWL crystals.

  13. Re-refinement of 4xan: hen egg-white lysozyme with carboplatin in sodium bromide solution

    PubMed Central

    Tanley, Simon W. M.; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; Helliwell, John R.

    2016-01-01

    A re-refinement of 4xan, hen egg-white lysozyme (HEWL) with carboplatin crystallized in NaBr solution, has been made and is published here as an addendum to Tanley et al. [(2014), Acta Cryst. F70, 1135–1142]. This follows a previous re-refinement and PDB deposition (4yem) by Shabalin et al. [(2015), Acta Cryst. D71, 1965–1979]. The critical evaluation of the original PDB deposition (4xan), and the subsequent critical examination of the re-refined structure (4yem), has led to an improved model (PDB code 5hmj). PMID:26919531

  14. Protein dynamics in Brillouin light scattering: Termal denaturation of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Svanidze, A. V.; Lushnikov, S. G.; Kojima, S.

    2009-09-01

    Thermal denaturation of hen egg white lysozyme has been investigated by Brillouin light scattering in the temperature range from 297 to 350 K. Anomalies in the temperature dependences of velocity and damping of hypersound and also in the behavior of the intensity of Brillouin components for the lysozyme solution at thermal denaturation have been revealed. These anomalies are attributable to phase transformations of the protein in the high-temperature region. It has been shown that Brillouin light scattering is a suitable tool for studying the structural evolution of proteins.

  15. The Effects of pH on the Growth and Aspect Ratio of Chicken Egg White Lysozyme Crystals Prepared in Different Buffers

    NASA Technical Reports Server (NTRS)

    Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc

    2000-01-01

    We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.

  16. The amino acid sequence of Lady Amherst's pheasant (Chrysolophus amherstiae) and golden pheasant (Chrysolophus pictus) egg-white lysozymes.

    PubMed

    Araki, T; Kuramoto, M; Torikata, T

    1990-09-01

    The amino acids of Lady Amherst's pheasant and golden pheasant egg-white lysozymes have been sequenced. The carboxymethylated lysozymes were digested with trypsin followed by sequencing of the tryptic peptides. Lady Amherst's pheasant lysozyme proved to consist of 129 amino acid residues, and a relative molecular mass of 14,423 Da was calculated. This lysozyme had 6 amino acids substitutions when compared with hen egg-white lysozyme: Phe3 to Tyr, His15 to Leu, Gln41 to His, Asn77 to His, Gln 121 to Asn, and a newly found substitution of Ile124 to Thr. The amino acid sequence of golden pheasant lysozyme was identical to that of Lady Amherst's phesant lysozyme. The phylogenetic tree constructured by the comparison of amino acid sequences of phasianoid birds lysozymes revealed a minimum genetic distance between these pheasants and the turkey-peafowl group. PMID:1368578

  17. Antibacterial activity of hen egg white lysozyme against Listeria monocytogenes Scott A in foods.

    PubMed

    Hughey, V L; Wilger, P A; Johnson, E A

    1989-03-01

    Egg white lysozyme killed or prevented growth of Listeria monocytogenes Scott A in several foods. Lysozyme was more active in vegetables than in animal-derived foods that we tested. For maximum activity in certain foods, EDTA was required in addition to lysozyme. Lysozyme with EDTA effectively killed inoculated populations of 10(4) L. monocytogenes per g in fresh corn, fresh green beans, shredded cabbage, shredded lettuce, and carrots during storage at 5 degrees C. Control incubations without lysozyme supported growth of L. monocytogenes to 10(6) to 10(7)/g. Lysozyme had less activity in animal-derived foods, including fresh pork sausage (bratwurst) and Camembert cheese. In bratwurst, lysozyme with EDTA prevented L. monocytogenes from growing for 2 to 3 weeks but did not kill significant numbers of cells and did not prevent eventual growth. The control sausages not containing lysozyme supported rapid and heavy growth, which indicated that lysozyme was bacteriostatic for 2 to 3 weeks in fresh pork sausage. We also prepared Camembert cheese containing 10(4) L. monocytogenes cells per g and investigated the changes during ripening in cheeses supplemented with lysozyme and EDTA. Cheeses with lysozyme by itself or together with EDTA reduced the L. monocytogenes population by approximately 10-fold over the first 3 to 4 weeks of ripening. In the same period, the control cheese wheels without added lysozyme with and without chelator slowly started to grown and eventually reached 10(6) to 10(7) CFU/g after 55 days of ripening.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2494938

  18. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    SciTech Connect

    Held, Jeanette Smaalen, Sander van

    2014-04-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  19. Rate of Lysozyme Crystallization

    NASA Astrophysics Data System (ADS)

    Baird, J. K.; Clunie, J. C.

    1997-03-01

    We have observed the following: Free solution measurements of the electrophoretic mobility of hen egg-white lysozyme crystals grown in aqueous NaCl at 10 deg C at pH values between 3.6 and 5.7 demonstrate that the crystals are positively charged.(J.K. Baird, A.M. Holmes, and J.C. Clunie, Bull.Am.Phys.Soc. 41, 620 (1996)) (2) When the decaying concentration of uncrystallized lysozyme in the growth solution is monitored as a function of time, the log of the half-life decreases linearly with the square-root of the ionic strength. (3) Acid-base titration shows that lysozyme molecules in solution exist as highly charged cations.(R. Roxby and C. Tanford, Biochemistry 10, 3348 (1971)) These three observations combine to suggest that lysozyme crystallizes by addition of lysozyme cations to positively charged crystal nuclei and that the rate is accelerated by the presence of strong electrolytes.

  20. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  1. [Clinical effects of chewing gum containing egg-white lysozyme and mace extract].

    PubMed

    Yoshinuma, N; Nozawa, T; Okutsu, S; Arai, S; Satoh, S; Fujikawa, K; Ito, K; Murai, S

    1989-09-01

    The purpose of this study was to evaluate the clinical effect of mace extract and egg-white lysozyme in two brands of chewing gum on gingival condition. Ever since mace extract containing dihydroguaiaretic acid was reported to inhibit the growth of Streptococcus mutans, plans were devised to include it in commercially available chewing gum. Before starting this study, two different types of experimental chewing gum containing mace extract or egg-white lysozyme were made up. A control was also prepared containing neither agent. The periodontal condition of 68 patients with gingivitis was determined based on PMA index (PMA), gingival index (GI), gingival bleeding index (GBI) and plaque scoring system (PSS) and randomly classified into three groups. Each group was instructed to use one or the other of the above type chewing gums after every meal. The results were as follows: 1. No clinical changes were observed in the control group during this study. 2. Gingival inflammation (PMA, GI, GBI) significantly improved as a result of using the experimental gums. 3. Plaque reduction was found only in the mece-extract gum group. 4. No clinical side effects were detected during this study. PMID:2489541

  2. Effect on catalysis by replacement of catalytic residue from hen egg white lysozyme to Venerupis philippinarum lysozyme.

    PubMed

    Abe, Yoshito; Kubota, Mitsuru; Takazaki, Shinya; Ito, Yuji; Yamamoto, Hiromi; Kang, Dongchon; Ueda, Tadashi; Imoto, Taiji

    2016-09-01

    Asn46Asp/Asp52Ser or Asn46Glu/Asp52Ser hen egg white lysozyme (HEL) mutant was designed by introducing the substituted catalytic residue Asp46 or Glu46, respectively, based on Venerupis philippinarum (Vp) lysozyme structure as a representative of invertebrate-type (i-type) lyzozyme. These mutations restored the bell-shaped pH-dependency of the enzyme activity from the sigmoidal pH-dependency observed for the Asp52Ser mutant. Furthermore both lysozyme mutants possessed retaining mechanisms like Vp lysozyme and HEL. The Asn46Glu/Asp52Ser mutant, which has a shorter distance between two catalytic residues, formed a glycosyl adduct in the reaction with the N-acetylglucosamine oligomer. Furthermore, we found the accelerated turnover through its glycosyl adduct formation and decomposition. The turnover rate estimated from the glycosyl formation and decomposition rates was only 20% of the observed hydrolysis rate of the substrate. Based on these results, we discussed the catalytic mechanism of lysozymes. PMID:27291073

  3. Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme.

    PubMed

    Vernaglia, Brian A; Huang, Jia; Clark, Eliana D

    2004-01-01

    The formation of amyloid fibrils is an intractable problem in which normally soluble protein polymerizes and forms insoluble ordered aggregates. Such aggregates can range from being a nuisance in vitro to being toxic in vivo. The latter is true for lysozyme, which has been shown to form toxic deposits in humans. In the present study, the effects of partial denaturation of hen egg-white lysozyme via incubation in a concentrated solution of the denaturant guanidine hydrochloride are investigated. Results show that when lysozyme is incubated under moderate guanidine hydrochloride concentrations (i.e., 2-5 M), where lysozyme is partially unfolded, fibrils form rapidly. Thioflavin T, Congo red, X-ray diffraction, transmission electron microscopy, atomic force microscopy, and circular dichroism spectroscopy are all used to verify the production of fibrils under these conditions. Incubation at very low or very high guanidine hydrochloride concentrations fails to produce fibrils. At very low denaturant concentrations, the structure of lysozyme is fully native and very stable. On the other hand, at very high denaturant concentrations, guanidine hydrochloride is capable of dissolving and dis-aggregating fibrils that are formed. Raising the temperature and/or concentration of lysozyme accelerates fibril formation by further adding to the concentration of partially unfolded species. The addition of preformed fibrils also accelerates fibril formation but only under partially unfolding conditions. The results presented here provide further evidence that partial unfolding is a prerequisite to fibril formation. Partial denaturation can accelerate fibril formation in much the same way that mutations have been shown to accelerate fibril formation. PMID:15244452

  4. Preparation and Characterization of Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John; Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow, cascade blue, and 5-(2-aminoethyl)aminonapthalene-l-sulfonic acid (EDANS) have been attached to the side chain carboxyl of asp101 using a carbodiimide coupling procedure. asp101 lies within the active site cleft, and it is believed that the probes are at least partially "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to hisl5, located on the "back side" of the molecule relative to the active site. The fluorescently labeled protein is readily purified from the starting material by cation exchange chromatography. All the derivatives fluoresce in both the solution and the crystalline states. Fluorescence characterization has focused on determining the bound probe quantum yields, lifetimes, absorption and emission spectra, and quenching by added solutes in comparison to the free probe. No appreciable changes are found in the lifetimes of any of the probes except for cascade blue, where Tau(sub free) = 3.52 ns vrs Tau(sub bound) = 2.8 ns. Spectral shifts are found in most cases. Particularly strong quenching upon binding is found in the case of the cascade blue derivative, likely due to probe interactions with the active site cleft. While none of the asp101 bound probes are well quenched by commonly employed solutes, such as potassium and sodium iodide, acrylamide, primuline, the chloride salts of manganese, cesium, and cobalt, trifluoroacetamide, trichloroethanol, and thallium iodide, in those cases where

  5. Effect of temperature on the interaction of cisplatin with the model protein hen egg white lysozyme.

    PubMed

    Ferraro, Giarita; Pica, Andrea; Russo Krauss, Irene; Pane, Francesca; Amoresano, Angela; Merlino, Antonello

    2016-07-01

    The products of the reaction between cisplatin (CDDP) and the model protein hen egg white lysozyme (HEWL) at 20, 37 and 55 °C in pure water were studied by UV-Vis absorption spectroscopy, intrinsic fluorescence and circular dichroism, dynamic and electrophoretic light scattering and inductively coupled plasma mass spectrometry. X-ray structures were also solved for the adducts formed at 20 and 55 °C. Data demonstrate that high temperature facilitates the formation of CDDP-HEWL adducts, where Pt atoms bind ND1 atom of His15 or NE2 atom of His15 and NH1 atom of Arg14. Our study suggests that high human body temperature (fever) could increase the rate of drug binding to proteins thus enhancing possible toxic side effects related to CDDP administration. PMID:27040953

  6. Egg-white-mediated crystallization of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Hu, Yanli; Ma, Yongjun; Zhou, Yong; Nie, Fude; Liu, Xun; Pei, Chonghua

    2012-12-01

    In this paper, shape-controlled crystallization and self-assembly of CaCO3 hierarchical architectures has been successfully synthesized via the gas diffusion method in egg white solution. Stepwise growth and assembly of CaCO3 nanoparticles has been observed from transition of an amorphous CaCO3 to the crystallization and stabilization of platelet-like nanoparticles and eventually, the wool sphere-like CaCO3 hierarchical architectures assembling of nanoparticles. The proteins binding on nanoparticle surfaces proved to regulate the growth of nanoparticles and subsequent assembly into hierarchical superstructures via electrostatic and dipole interactions. The samples were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and nano mechanical Tester. The measured average elastic modulus and the hardness of calcium carbonate hybrid materials were 5.32 GPa and 0.1886 GPa by the nano-indenter test, respectively.

  7. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  8. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate.

    PubMed

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-19

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson-Evans-type polyoxometalate (POM), specifically Na6 [TeW6 O24 ]⋅22 H2 O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid-liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein-protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. PMID:25521080

  9. Hydrogen bond perturbation in hen egg white lysozyme by external electromagnetic fields: A nonequilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Solomentsev, Gleb Y.; English, Niall J.; Mooney, Damian A.

    2010-12-01

    Nonequilibrium molecular dynamics simulations of a charge-neutral mutant of hen egg white lysozyme have been performed at 300 K and 1 bar in the presence of external microwave fields (2.45 to 100 GHz) of an rms electric field intensity of 0.05 V Å-1. A systematic study was carried out of the distributions of persistence times and energies of each intraprotein hydrogen bond in between breakage and reformation, in addition to overall persistence over 20 ns simulations, vis-à-vis equilibrium, zero-field conditions. It was found that localized translational motion for formally charged residues led to greater disruption of associated hydrogen bonds, although induced rotational motion of strongly dipolar residues also led to a degree of hydrogen bond perturbation. These effects were most apparent in the solvent exposed exterior of hen egg white lysozyme, in which the intraprotein hydrogen bonds tend to be weaker.

  10. Preparation of anionic polyelectrolyte modified magnetic nanoparticles for rapid and efficient separation of lysozyme from egg white.

    PubMed

    Chen, Jia; Lin, Yuexin; Jia, Li

    2015-04-01

    Poly(sodium 4-styrenesulfonate) modified magnetic nanoparticles (PSS-MNPs) were successfully synthesized and characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, vibrating sample magnetometry, and Fourier-transform infrared spectrometry. The PSS-MNPs were found to enable effective separation of lysozyme from egg white. The impacts of solution pH, ionic strength, and contact time on the adsorption process were investigated. The adsorption kinetic data were well fitted using a pseudo-second-order kinetic model and the adsorption equilibrium can be reached in 3 min. The adsorption isotherm data could be well described by the Langmuir equation. The maximum adsorption capacity of PSS-MNPs for lysozyme was calculated to be 476.2 mg g(-1) according to the Langmuir adsorption isotherm. The fast and efficient adsorption of lysozyme by PSS-MNPs was mainly based on electrostatic interactions between them. The adsorbed lysozyme can be eluted using 20mM phosphate buffer (pH 7.0) containing 1.0M NaCl with a recovery of 96%. The extracted lysozyme from egg white demonstrated high purity, retaining about 90.7% of total lysozyme activity. PMID:25728660

  11. The solubility of the tetragonal form of hen egg white lysozyme from pH 4.0 to 5.4

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc L.

    1991-01-01

    Hen egg white lysozyme solubilities in the presence of the tetragonal crystal form have been determined. Conditions investigated cover the pH range 4.0 to 5.4, varying from 2.0 to 7.0 percent NaCl concentrations and from 4 to 25 C. In all instances, the solubilities were found to increase with temperature and decrease with increasing salt concentration. The effects of pH were more complex, showing a decreasing solubility with increasing pH at low salt concentration and an increasing solubility with increasing pH at high salt concentration.

  12. Volume properties and spectroscopy: A terahertz Raman investigation of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Sassi, Paola; Perticaroli, Stefania; Comez, Lucia; Giugliarelli, Alessandra; Paolantoni, Marco; Fioretto, Daniele; Morresi, Assunta

    2013-12-01

    The low frequency depolarized Raman spectra of 100 mg/ml aqueous solutions of hen egg white lysozyme (HEWL) have been collected in the 25-85 °C range. Short and long exposures to high temperatures have been used to modulate the competition between the thermally induced reversible and irreversible denaturation processes. A peculiar temperature evolution of spectra is evidenced under prolonged exposure of the protein solution at temperatures higher than 65 °C. This result is connected to the self-assembling of polypeptide chains and testifies the sensitivity of the technique to the properties of both protein molecule and its surrounding. Solvent free spectra have been obtained after subtraction of elastic and solvent components and assigned to a genuine vibrational contribution of hydrated HEWL. A straight similarity is observed between the solvent-free THz Raman feature and the vibrational density of states as obtained by molecular dynamics simulations; according to this, we verify the relation between this spectroscopic observable and the effective protein volume, and distinguish the properties of this latter respect to those of the hydration shell in the pre-melting region.

  13. Low Abundant N-linked Glycosylation in Hen Egg White Lysozyme Is Localized at Nonconsensus Sites.

    PubMed

    Asperger, Arndt; Marx, Kristina; Albers, Christian; Molin, Laura; Pinato, Odra

    2015-06-01

    Although wild-type hen egg white lysozyme (HEL) is lacking the consensus sequence motif NX(S/T), in 1995 Trudel et al. (Biochem. Cell Biol. 1995, 73, 307-309) proposed the existence of a low abundant N-glycosylated form of HEL; however, the identity of active glycosylation sites in HEL remained a matter of speculation. For the first time since Trudel's initial work, we report here a comprehensive characterization by means of mass spectrometry of N-glycosylation in wild-type HEL. Our analytical approach comprised ZIC-HILIC enrichment of N-glycopeptides from HEL trypsin digest, deglycosylation by (18)O/PNGase F as well as by various endoglycosidases, and LC-MS/MS analysis of both intact and deglycosylated N-glycopeptides engaging multiple techniques of ionization and fragmentation. A novel data interpretation workflow based on MS/MS spectra classification and glycan database searching enabled the straightforward identification of the asparagine-rich N-glycopeptide [34-45] FESNFNTQATNR and allowed for compositional profiling of its modifying N-glycans. The overall heterogeneity profile of N-glycans in HEL comprised at least 26 different compositions. Results obtained from deglycosylation experiments provided clear evidence of asparagine residues N44 and N39 representing active glycosylation sites in HEL. Both of these sites do not fall into any known N-glycosylation-specific sequence motif but are localized in rarely observed nonconsensus sequons (NXN, NXQ). PMID:25964011

  14. Size Exclusion Chromatography Studies of the Initial Self-Association Steps of Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia; Donovan, David; Pusey, Marc

    2000-01-01

    Nucleation is one of the least understood aspects of crystallogenesis. In the case of macromolecule nucleation, this understanding is further hampered by uncertainty over what precisely is being discussed. We define the process of solute self-association (aggregation, oligomerization, interaction, clustering, etc.) whereby n-mers (n > or = 2) having a crystallographic or nascent crystallographic arrangement leading to the critical nucleus reversibly form in the solution, to be part of the nucleation process. This reversible self-association process is a fundamental part of the nucleation process, and occurs as a function of the solute concentration. In the case of chicken egg white lysozyme, a considerable body of experimental evidence leads us to the conclusion that it also forms the crystal growth units. Size exclusion chromatography is a simple and direct method for determining the equilibrium constants for the self-association process. A Pharmacia FPLC system was used to provide accurate solution flow rates. The column, injection valve, and sample loop were all mounted within a temperature-controlled chamber. Chromatographically re-purified lysozyme was first dialyzed against the column equilibration buffer, with injection onto the column after several hours pre-incubation at the running temperature. Preliminary experiments, were carried out using a Toyopearl HW-50F column (1 x 50cm), equilibrated with 0.1 M sodium acetate, 5% sodium chloride, pH 4.6, at 15C. Protein concentrations from 0.1 to 4 mg/ml were employed (C(sub sat) = 1.2 mg/ml). The data from several different protein preparations consistently shows a progressively decreasing elution volume with increasing protein concentration, indicating that reversible self-association is occurring. The dotted line indicates the monomeric lysozyme elution volume. However, lysozyme interacts with the column matrix in these experiments, which complicates data analysis.Accordingly, we are testing silica-based HPLC

  15. Preliminary Work in Obtaining Site-Directed Mutants of Hen Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, Leonard D.

    1996-01-01

    Protein crystal growth studies are recognized as a critical endeavor in the field of molecular biotechnology. The scientific applications of this field include the understanding of how enzymes function and the accumulation of accurate information of atomic structures, a key factor in the process of rational drug design. NASA has committed substantial investment and resources to the field of protein crystal growth and has conducted many microgravity protein crystal growth experiments aboard shuttle flights. Crystals grown in space tend to be larger, denser and have a more perfect habit and geometry. These improved properties gained in the microgravity environment of space result largely from the reduction of solutal convection, and the elimination of sedimentation at the growing crystal surface. Shuttle experiments have yielded many large, high quality crystals that are suitable for high resolution X-ray diffraction analysis. Examples of biologically important macromolecules which have been successfully crystallized during shuttle missions include: lysozyme, isocitrate lyase, gamma-interferon, insulin, human serum albumin and canavalin. Numerous other examples are also available. In addition to obtaining high quality crystals, investigators are also interested in learning the mechanisms by which the growth events take place. Crystallization experiments indicate that for the enzyme HEWL, measured growth rates do not follow mathematical models for 2D nucleation and dislocation-led growth of tetragonal protein crystals. As has been suggested by the laboratory of Marc L. Pusey, a possible explanation for the disagreement between observation and data is that HEWL tetraconal crystals form by aggregated units of lysozyme in supersaturated solutions. Surface measurement data was shown to fit very well with a model using an octamer unit cell as the growth unit. According to this model, the aggregation pathway and subsequent crystal growth is described by: monomer

  16. The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Qi, Jian-Xun; Jiang, Fan

    2011-05-01

    The crystallographic temperature factors (B factor) of individual atoms contain important information about the thermal motion of the atoms in a macromolecule. Previously the theory of flexibility of active site has been established based on the observation that the enzyme activity is sensitive to low concentration denaturing agents. It has been found that the loss of enzyme activity occurs well before the disruption of the three-dimensional structural scaffold of the enzyme. To test the theory of conformational flexibility of enzyme active site, crystal structures were perturbed by soaking in low concentration guanidine hydrochloride solutions. It was found that many lysozyme crystals tested could still diffract until the concentration of guanidine hydrochloride reached 3 M. It was also found that the B factors averaged over individually collected data sets were more accurate. Thus it suggested that accurate measurement of crystal temperature factors could be achieved for medium-high or even medium resolution crystals by averaging over multiple data sets. Furthermore, we found that the correctly predicted active sites included not only the more flexible residues, but also some more rigid residues. Both the flexible and the rigid residues in the active site played an important role in forming the active site residue network, covering the majority of the substrate binding residues. Therefore, this experimental prediction method may be useful for characterizing the binding site and the function of a protein, such as drug targeting.

  17. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    PubMed

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms. PMID:25285490

  18. Lysozyme fractionation from egg white at pilot scale by means of tangential flow membrane adsorbers: Investigation of the flow conditions.

    PubMed

    Brand, Janina; Voigt, Katharina; Zochowski, Bianca; Kulozik, Ulrich

    2016-03-18

    The application of membrane adsorbers instead of classical packed bed columns for protein fractionation is still a growing field. In the case of egg white protein fractionation, the application of classical chromatography is additionally limited due to its high viscosity that impairs filtration. By using tangential flow membrane adsorbers as stationary phase this limiting factor can be left out, as they can be loaded with particle containing substrates. The flow conditions existing in tangential flow membrane adsorbers are not fully understood yet. Thus, the aim of the present study was to gain a deeper understanding of the transport mechanisms in tangential flow membrane adsorbers. It was found that loading in recirculation mode instead of single pass mode increased the binding capacity (0.39 vs. 0.52mgcm(-2)). Further, it was shown that either higher flow rates (0.39mgcm(-2) vs. 0.57mgcm(-2) at 1CVmin(-1) or 20CVmin(-1), respectively) or higher amounts of the target protein in the feed (0.24mgcm(-2) vs. 0.85mgcm(-2) for 2.5 or 39.0g lysozyme, respectively) led to more protein binding. These results show that, in contrast to radial flow or flat sheet membrane adsorbers, the transport in tangential flow membrane adsorbers is not purely based on convection, but on a mix of convection and diffusion. Additionally, investigations concerning the influence of fouling formation were performed that can lead to transport limitations. It was found that this impact is neglectable. It can be concluded that the usage of tangential flow membrane adsorbers is very recommendable for egg white protein fractionations, although the transport is partly diffusion-limited. PMID:26898148

  19. Degradation of 14C-labeled streptococcal cell walls by egg white lysozyme and lysosomal enzymes.

    PubMed Central

    Gallis, H A; Miller, S E; Wheat, R W

    1976-01-01

    The resistance of native and trypsin-treated [14C] glucose-labeled cell walls to degradation by lysozyme and human lysosomal enzymes was confirmed. In contrast, chemically N-acetylated cell walls undergo significant degradation by these enzymes in the pH range of 4.5 to 5.5 without prior removal of the group-specific carbohydrate. N-acetylation after removal of the group A carbohydrate by formamide extraction renders the cell walls considerably more susceptible to these enzymes than by formamaide extraction alone. It appears, therefore, that unless N-acetylation can occur in vivo, streptococcal cell walls are minimally degraded, if at all, by human peripheral blood leukocytes or lysozyme. Examination of leukocyte extracts from normal subjects and patients with post-streptococcal syndromes revealed no qualitative differences in ability to dissolve streptococcal cell walls. Images PMID:773836

  20. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis

    NASA Astrophysics Data System (ADS)

    Mariño, Laura; Pauwels, Kris; Casasnovas, Rodrigo; Sanchis, Pilar; Vilanova, Bartolomé; Muñoz, Francisco; Donoso, Josefa; Adrover, Miquel

    2015-07-01

    Protein aggregation with the concomitant formation of amyloid fibrils is related to several neurodegenerative diseases, but also to non-neuropathic amyloidogenic diseases and non-neurophatic systemic amyloidosis. Lysozyme is the protein involved in the latter, and it is widely used as a model system to study the mechanisms underlying fibril formation and its inhibition. Several phenolic compounds have been reported as inhibitors of fibril formation. However, the anti-aggregating capacity of other heteroaromatic compounds has not been studied in any depth. We have screened the capacity of eleven different hydroxypyridines to affect the acid-induced fibrillization of hen lysozyme. Although most of the tested hydroxypyridines alter the fibrillation kinetics of HEWL, only 3-hydroxy-2-methylpyridine, 3-hydroxy-6-methylpyridine and 3-hydroxy-2,6-dimethylpyridine completely abolish fibril formation. Different biophysical techniques and several theoretical approaches are combined to elucidate their mechanism of action. O-methylated 3-hydroxypyridines bind non-cooperatively to two distinct but amyloidogenic regions of monomeric lysozyme. This stabilises the protein structure, as evidenced by enhanced thermal stability, and results in the inhibition of the conformational transition that precedes fibril assembly. Our results point to o-methylated 3-hydroxypyridines as a promising molecular scaffold for the future development of novel fibrillization inhibitors.

  1. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis

    PubMed Central

    Mariño, Laura; Pauwels, Kris; Casasnovas, Rodrigo; Sanchis, Pilar; Vilanova, Bartolomé; Muñoz, Francisco; Donoso, Josefa; Adrover, Miquel

    2015-01-01

    Protein aggregation with the concomitant formation of amyloid fibrils is related to several neurodegenerative diseases, but also to non-neuropathic amyloidogenic diseases and non-neurophatic systemic amyloidosis. Lysozyme is the protein involved in the latter, and it is widely used as a model system to study the mechanisms underlying fibril formation and its inhibition. Several phenolic compounds have been reported as inhibitors of fibril formation. However, the anti-aggregating capacity of other heteroaromatic compounds has not been studied in any depth. We have screened the capacity of eleven different hydroxypyridines to affect the acid-induced fibrillization of hen lysozyme. Although most of the tested hydroxypyridines alter the fibrillation kinetics of HEWL, only 3-hydroxy-2-methylpyridine, 3-hydroxy-6-methylpyridine and 3-hydroxy-2,6-dimethylpyridine completely abolish fibril formation. Different biophysical techniques and several theoretical approaches are combined to elucidate their mechanism of action. O-methylated 3-hydroxypyridines bind non-cooperatively to two distinct but amyloidogenic regions of monomeric lysozyme. This stabilises the protein structure, as evidenced by enhanced thermal stability, and results in the inhibition of the conformational transition that precedes fibril assembly. Our results point to o-methylated 3-hydroxypyridines as a promising molecular scaffold for the future development of novel fibrillization inhibitors. PMID:26169912

  2. Dynamic layer-by-layer self-assembly of multi-walled carbon nanotubes on quartz wool for on-line separation of lysozyme in egg white.

    PubMed

    Du, Zhuo; Zhang, Suling; Zhou, Chanyuan; Liu, Miao; Li, Gongke

    2012-05-30

    The multi-walled carbon nanotubes (MWNTs) coated quartz wool (MWNTs/QW) prepared by dynamic layer-by-layer self-assembly was used as solid-phase extraction (SPE) absorbent for on-line separation and preconcentration of lysozyme in egg white. The coating procedures were performed continuously in a flow system operated by a set of sequential injection devices. The quartz wool was placed in a microcolumn forming a loose packing to guarantee the minimized flow impedance and the intimate contact between proteins and absorbent surface. Various parameters affecting SPE efficiency including the volume, pH, ionic strength and flow rate of sample and eluent were systematically studied. The feasibility of the proposed method was validated by successfully applied to the separation of lysozyme in egg white. PMID:22608421

  3. Ni(II)-Schiff base complex as an enzyme inhibitor of hen egg white lysozyme: a crystallographic and spectroscopic study.

    PubMed

    Koley Seth, Banabithi; Ray, Aurkie; Biswas, Sampa; Basu, Samita

    2014-09-01

    The engineering of protein-small molecule interactions becomes imperative today to recognize the essential biochemical processes in living systems. Here we have investigated the interaction between hen egg white lysozyme (HEWL) and a newly synthesized small, simple nickel Schiff base complex (NSC) {(N(1)E,N(2)E)-N(1),N(2)-bis(pyridine-2-ylmethylene)propane-1,2-diaminenickel(II)} using different spectroscopic techniques. We attempted to determine the exact site of the interaction by crystallography. Absorption spectroscopy reveals that the interaction occurs through the ground state. The complex can quench the intrinsic fluorescence of HEWL through a static quenching method. The fluorescence quenching study along with the determination of thermodynamic parameters reveal that NSC binds HEWL spontaneously with moderate binding affinity. The results have also identified that the spontaneity of this enthalpy guided interaction is mainly governed by some H-bonding and hydrophobic interactions which are also indicated by the crystallographic analyses. Moreover, the crystallographic study shows that NSC makes its way into the active site enzyme cavity of HEWL forming a single covalent adduct between Ni(2+) and the oxygen of the active site Asp 52. The possibility of inhibiting the catalytic activity of HEWL by inclusion of NSC in the enzyme active site observed from crystallographic analyses has also been confirmed by enzyme kinetics experiments. PMID:25042037

  4. A goose-type lysozyme from ostrich (Struthio camelus) egg white: multiple roles of His101 in its enzymatic reaction.

    PubMed

    Somboonpatarakun, Chalermchai; Shinya, Shoko; Kawaguchi, Yuya; Araki, Tomohiro; Fukamizo, Tamo; Klaynongsruang, Sompong

    2016-01-01

    A goose-type lysozyme from ostrich egg white (OEL) was produced by Escherichia coli expression system, and the role of His101 of OEL in the enzymatic reaction was investigated by NMR spectroscopy, thermal unfolding, and theoretical modeling of the enzymatic hydrolysis of hexa-N-acetylchitohexaose, (GlcNAc)6. Although the binding of tri-N-acetylchitotriose, (GlcNAc)3, to OEL perturbed several backbone resonances in the (1)H-(15)N HSQC spectrum, the chemical shift of the backbone resonance of His101 was not significantly affected. However, apparent pKa values of His101 and Lys102 determined from the pH titration curves of the backbone chemical shifts were markedly shifted by (GlcNAc)3 binding. Thermal unfolding experiments and modeling study of (GlcNAc)6 hydrolysis using a His101-mutated OEL (H101A-OEL) revealed that the His101 mutation affected not only sugar residue affinities at subsites -3 and -2 but also the rate constant for bond cleavage. His101 appears to play multiple roles in the substrate binding and the catalytic reaction. PMID:26428437

  5. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of lysozyme contained in hen egg white.

    PubMed

    Smolira, Anna; Hałas, Stanisław

    2016-01-01

    As a natural antibacterial peptide, lysozyme (LZ) is widely used in medicine and the food industry. Despite many years of research on this compound, its new antibacterial properties are still to be determined. The primary aim of this work is to demonstrate the application of the matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometric analysis of LZ directly in hen egg white samples without extraction thereof. The egg white samples were kept over 10 weeks at room temperature and measured every week. The resulting positive and negative ion mass spectra were then compared to determine the intensity of the LZ mass peak. Storage of the egg white for over 10 weeks did not influence the LZ mass peak intensity (both positive and negative). It can be concluded that the LZ concentration in the egg white samples did not vary with time. The effect of the matrix/sample ratio on LZ detection was also examined, and it was found to be different in the case of positive and negative ionization. The mass peaks of LZ oligomeric forms were observed in all mass spectra, so the MALDI method could be used in subsequent studies. PMID:26863071

  6. Location of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.

  7. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis

    SciTech Connect

    Matsumura, Ichiro; Kirsch, J.F.

    1996-02-13

    The chicken and goose egg white lysozymes (ChEWL and GoEWL) are homologues, but differ in substrate specificity. ChEWL catalyzes the hydrolysis of the glycosidic bonds of bacterial peptidoglycans and chitin-derived substrates, while GoEWL is specific for bacterial peptidoglycans. The active-site aspartate 52 residue of ChEWL, which is postulated to stabilize the oxocarbenium ion intermediate, has no counterpart in GoEWL. The substrate specificity of the D52A ChEWL mutant was compared with those of wild-type ChEWL and GoEWL. D52A ChEWL retains approximately 4% of the wild-type catalytic activity in reactions with three different bacterial cell suspensions. Asp52 therefore is not essential to the catalytic mechanism, accounting for only a 2 kcal/mol decrease in AG. The function of Asp52 in D52A ChEWL- and GoEWL-catalyzed cleavage of (carboxymethyl)chitin may be partially fulfilled by an appropriately positioned carboxyl group on the substrate (substrate-assisted catalysis). D52A ChEWL and GoEWL, unlike wild-type ChEWL, exhibit biphasic kinetics in the clearing of Micrococcus luteus cell suspensions, suggesting preferences for subsets of the linkages in the M. luteus peptidoglycan. These subsets do not exist in the peptidoglycans of Escherichia coli or Sarcina lutea, since neither D52A ChEWL nor GoEWL exhibits initial bursts in reactions with suspensions of these bacteria. We propose that substrate-assisted catalysis occurs in reactions of D52A ChEWL and GoEWL with M. luteus peptidoglycans, with the glycine carboxyl group of uncross-linked peptides attached to N-acetylmuramic acid partially substituting the function of the missing Asp52. 52 refs., 6 figs., 1 tab.

  8. Synergistic contributions of asparagine 46 and aspartate 52 to the catalytic mechanism of chicken egg white lysozyme

    SciTech Connect

    Matsumura, Ichiro; Kirsch, J.F.

    1996-02-13

    The X-ray structure of a chicken egg white lysozyme (ChEWL) complex with a peptidoglycan-derived inhibitor suggests that interactions of Asn46 and Asp52 with the D-subsite N-acetylmuramic acid due help to distort that pyranose ring into the reactive half-chair conformation and that a hydrogen bond is formed between Asn46 and Asp52. These hypotheses were investigated through the D52A, N46A, and D52A/N46A mutants of ChEWL. The Michaelis constants of the D52A and D52A/N46A ChEWL complexes with Micrococcus luteus cells are 3- and 4-fold higher, respectively, than the wild-type K{sub M}; the corresponding k{sub cat} values are 25- and 50-fold lower, respectively, than the wild-type k{sub cat}. These results support the proposal of Strynadka and James. The velocities of reactions catalyzed by the N46A and D52A mutants are approximately equal to each other for all classes of substrate, suggesting that the respective roles of Asn46 and Asp52 in transition state stabilization do not vary. The mutation of either Asn46 or Asp52 to Ala apparently disrupts the interactions of the other (nonmutated) residue with the substrate, supporting the crystallographic evidence of a hydrogen-bond interaction between the two residues. The mutations do not change the values of the dissociation constants of complexes with (carboxymethyl)chitin complexes, suggesting that ground state complexes of ChEWL with chitin-derived substrates differ in conformation from complexes with bacterial peptidoglycans. 23 refs., 7 figs., 2 tabs.

  9. Comparison of the kinetics of S-S bond, secondary structure, and active site formation during refolding of reduced denatured hen egg white lysozyme.

    PubMed Central

    Roux, P.; Ruoppolo, M.; Chaffotte, A. F.; Goldberg, M. E.

    1999-01-01

    To investigate the role of some tertiary interactions, the disulfide bonds, in the early stages of refolding of hen lysozyme, we report the kinetics of reoxidation of denatured and reduced lysozyme under the same refolding conditions as those previously used to investigate the kinetics of regain of its circular dichroism (CD), fluorescence, and activity. At different stages of the refolding, the oxidation of the protein was blocked by alkylation of the free cysteines with iodoacetamide and the various oxidation states present in the samples were identified by electrospray-mass spectrometry. Thus, it was possible to monitor the appearance and/or disappearance of the species with 0 to 4 disulfide bonds. Using a simulation program, these kinetics were compared with those of regain of far-UV CD, fluorescence, and enzymatic activity and were discussed in terms of a refined model for the refolding of reduced hen egg white lysozyme. PMID:10631992

  10. Protein crystal growth - Growth kinetics for tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M. L.; Snyder, R. S.; Naumann, R.

    1986-01-01

    Results are reported from theoretical and experimental studies of the growth rate of lysozyme as a function of diffusion in earth-gravity conditions. The investigations were carried out to form a comparison database for future studies of protein crystal growth in the microgravity environment of space. A diffusion-convection model is presented for predicting crystal growth rates in the presence of solutal concentration gradients. Techniques used to grow and monitor the growth of hen egg white lysozyme are detailed. The model calculations and experiment data are employed to discuss the effects of transport and interfacial kinetics in the growth of the crystals, which gradually diminished the free energy in the growth solution. Density gradient-driven convection, caused by presence of the gravity field, was a limiting factor in the growth rate.

  11. Thermodynamic study of the interaction between hen egg white lysozyme and Ce(IV)-Keggin polyoxotungstate as artificial protease.

    PubMed

    Stroobants, K; Saadallah, D; Bruylants, G; Parac-Vogt, T N

    2014-10-21

    The molecular interactions of the Keggin polyoxometalate [Me2NH2]10[Ce(PW11O39)2] (1), which promotes selective hydrolysis of hen egg white lysozyme (HEWL) under physiological conditions, were investigated in detail by isothermal titration calorimetry (ITC), (31)P NMR and circular dichroism (CD) spectroscopy. ITC experiments showed that mixing of 1 and HEWL at pH 7.4 and 25 or 37 °C resulted in complexes having 1 : 1 and 2 : 1 POM : HEWL stoichiometries, respectively, and thermodynamic profiles are in agreement with binding in the vicinity of the Trp28-Val29 and Asn44-Arg45 peptide bonds, which were previously shown to undergo selective hydrolysis by 1. Mixing of HEWL with (NH4)4Ce(SO4)4·4H2O salt indicated the absence of any binding accentuating the importance of the polyoxometalate scaffold for selective interaction with the HEWL surface. In contrast, the lacunary Na9[A-α-PW9O34] polyoxometalate showed an increased binding stoichiometry as compared to 1. Increasing the ionic strength resulted in thermodynamic signatures which indicate preservation of the interaction at the Trp28-Val29 site, while interaction at the Asn44-Arg45 appears disrupted due to competition with the salt ions. Decreasing the pH to 4.4 at 37 °C resulted in energetic contributions which suggest that binding at the Trp28-Val29 site is favored, while more pronounced binding at the Asn44-Arg45 site was anticipated when the pH was increased to 9.2. The absence of binding between 1 and α-lactalbumin (α-LA), a protein which is highly isostructural to HEWL but with an overall negative charge, was confirmed at pH 7.4 and 37 °C. The influence of the pH on the binding between 1 and α-LA was investigated, demonstrating that at lower pH values, where α-LA becomes more positively charged, a 1 : 1 interaction with 1 is observed. PMID:25199500

  12. The influence of low frequency of external electric field on nucleation enhancement of hen egg-white lysozyme (HEWL)

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Xu, Haixing; Zhang, Rui; Xu, Jin; Tsukamoto, Katsuo; Han, Jianzhong; Li, Ang

    2015-10-01

    Protein crystal nucleation processes are drawing increasing interests in both academic and industrial communities. Electric field is a promising means, due to its versatility and easy application, among various external fields that may lead to controllable desired protein crystal nucleation. Different from literature reported experimental and theoretical studies that examined the effects of high frequency electric fields; this work was focused on the low frequency range. For this purpose, Hen-White Lysozyme crystal nucleation from its aqueous solution was used as the model system. We found by experiments that the nucleation rate is non-monotonously dependent on electric field frequency less than 1 kHz, which may be ascribed to the mutual orientation modification between neighbor protein molecules induced by the external low frequency, and is different from the case of high frequencies that influence the intermolecular interactions.

  13. Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Chernov, A. A.

    2000-01-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.

  14. Raman spectroscopic and low-temperature calorimetric investigation of the low-energy vibrational dynamics of hen egg-white lysozyme

    NASA Astrophysics Data System (ADS)

    Crupi, C.; D'Angelo, G.; Wanderlingh, U.; Vasi, C.

    2011-05-01

    The low-frequency vibrational dynamics of chicken hen egg-white lysozyme were investigated using Raman spectroscopy and low-temperature calorimetry. An amorphous-like behaviour of low-frequency dynamics was observed in this protein. By using inelastic light scattering data and resorting to a fitting procedure, the low-temperature specific heat trend was theoretically reproduced, confirming that, as in disordered systems, the same low-energy excitations give rise to the observed anomalies in low-frequency vibrational and low-temperature thermal properties. A further study of polarised and depolarised Raman spectra has allowed us to infer information about the symmetry of these modes. The frequency dependence of the light-vibrational coupling constant has also been analysed.

  15. Locations of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.

  16. Relationship Between Equilibrium Forms of Lysozyme Crystals and Precipitant Anions

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    Molecular forces, such as electrostatic, hydrophobic, van der Waals and steric forces, are known to be important in determining protein interactions. These forces are affected by the solution conditions and changing the pH, temperature or the ionic strength of the solution can sharply affect protein interactions. Several investigations of protein crystallization have shown that this process is also strongly dependent on solution conditions. As the ionic strength of the solution is increased, the initially soluble protein may either crystallize or form an amorphous precipitate at high ionic strengths. Studies done on the model protein hen egg white lysozyme have shown that different crystal forms can be easily and reproducibly obtained, depending primarily on the anion used to desolubilize the protein. In this study we employ pyranine to probe the effect of various anions on the water structure. Additionally, lysozyme crystallization was carried out at these conditions and the crystal form was determined by X-ray crystallography. The goal of the study was to understand the physico-chemical basis for the effect of changing the anion concentration on the equilibrium form of lysozyme crystals. It will also verify the hypothesis that the anions, by altering the bulk water structure in the crystallizing solutions, alter the surface energy of the between the crystal faces and the solution and, consequently, the equilibrium form of the crystals.

  17. Time-dependent X-ray diffraction studies on urea/hen egg white lysozyme complexes reveal structural changes that indicate onset of denaturation

    PubMed Central

    Raskar, Tushar; Khavnekar, Sagar; Hosur, Madhusoodan

    2016-01-01

    Temporal binding of urea to lysozyme was examined using X-ray diffraction of single crystals of urea/lysozyme complexes prepared by soaking native lysozyme crystals in solutions containing 9 M urea. Four different soak times of 2, 4, 7 and 10 hours were used. The five crystal structures (including the native lysozyme), refined to 1.6 Å resolution, reveal that as the soaking time increased, more and more first-shell water molecules are replaced by urea. The number of hydrogen bonds between urea and the protein is similar to that between protein and water molecules replaced by urea. However, the number of van der Waals contacts to protein from urea is almost double that between the protein and the replaced water. The hydrogen bonding and van der Waals interactions are initially greater with the backbone and later with side chains of charged residues. Urea altered the water-water hydrogen bond network both by replacing water solvating hydrophobic residues and by shortening the first-shell intra-water hydrogen bonds by 0.2 Å. These interaction data suggest that urea uses both ‘direct’ and ‘indirect’ mechanisms to unfold lysozyme. Specific structural changes constitute the first steps in lysozyme unfolding by urea. PMID:27573790

  18. Time-dependent X-ray diffraction studies on urea/hen egg white lysozyme complexes reveal structural changes that indicate onset of denaturation.

    PubMed

    Raskar, Tushar; Khavnekar, Sagar; Hosur, Madhusoodan

    2016-01-01

    Temporal binding of urea to lysozyme was examined using X-ray diffraction of single crystals of urea/lysozyme complexes prepared by soaking native lysozyme crystals in solutions containing 9 M urea. Four different soak times of 2, 4, 7 and 10 hours were used. The five crystal structures (including the native lysozyme), refined to 1.6 Å resolution, reveal that as the soaking time increased, more and more first-shell water molecules are replaced by urea. The number of hydrogen bonds between urea and the protein is similar to that between protein and water molecules replaced by urea. However, the number of van der Waals contacts to protein from urea is almost double that between the protein and the replaced water. The hydrogen bonding and van der Waals interactions are initially greater with the backbone and later with side chains of charged residues. Urea altered the water-water hydrogen bond network both by replacing water solvating hydrophobic residues and by shortening the first-shell intra-water hydrogen bonds by 0.2 Å. These interaction data suggest that urea uses both 'direct' and 'indirect' mechanisms to unfold lysozyme. Specific structural changes constitute the first steps in lysozyme unfolding by urea. PMID:27573790

  19. Ruthenium metalation of proteins: the X-ray structure of the complex formed between NAMI-A and hen egg white lysozyme.

    PubMed

    Messori, Luigi; Merlino, Antonello

    2014-04-28

    A crystallographic study of the adduct formed between hen egg white lysozyme (HEWL) and NAMI-A, an established ruthenium(III) anticancer agent in clinical trials, is presented here. The X-ray structure reveals that NAMI-A coordinates the protein, as a naked ruthenium ion, at two distinct sites (namely Asp101 or Asp119) after releasing all its original ligands (DMSO, imidazole and Cl(-)). Structural data of the HEWL/NAMI-A adduct are compared with those previously obtained for the HEWL adduct of AziRu, a NAMI-A analogue bearing a pyridine in place of imidazole. The present results further support the view that NAMI-A exerts its biological effects acting as a classical "prodrug" first undergoing activation and then causing extensive metalation of relevant protein targets. It is also proposed that the original Ru-ligands, although absent in the final adduct, play a major role in directing the ruthenium center to its ultimate anchoring site on the protein surface. PMID:24553967

  20. Structure and potential energy surface studies on 3(10) helices of hen egg white lysozyme and Phaseolus vulgaris arcelin-1 proteins.

    PubMed

    Kolandaivel, P; Selvarengan, P; Gunavathy, K V

    2006-01-01

    Density functional theory studies have been performed for 3(10)-helix oligomers of hen egg white lysozyme and Phaseolus vulgaris Arcelin-1 Proteins. Severe perturbation in the structure has been noted when the fully optimized structural parameters of oligomers are compared with experimental results. The potential energy surfaces have been generated for all the oligomers. It can be found that no change has been observed in the global minimum structure of Tyrosine-Arginine-Glycine (YRG), but each structure of Glycine-Arginine-Tyrosine (GRY) belongs to different positions in the phi-psi space. It can be concluded that due to the floppiness of the considered peptides, the molecule fluctuate or interconvert easily between different conformations with different dipole moments pointing in different directions. The substitution of Tyrosine at the N-terminal played major role for the helix formation due to the presence of strong main chain hydrogen bond interaction with glycine. The molecular properties, such as stabilization energy, ionization energy, electron affinity, were calculated and interpreted. The simulated amide bands of the oligomers coincide well with experimental frequencies. PMID:16330266

  1. Cross-linking of hen egg white lysozyme by microbial transglutaminase under high hydrostatic pressure: localization of reactive amino acid side chains.

    PubMed

    Schuh, Susanne; Schwarzenbolz, Uwe; Henle, Thomas

    2010-12-22

    After incubation of hen egg white lysozyme (HEWL) with microbial transglutaminase (mTG) under high pressure (400-600 MPa for 30 min at 40 °C), the formation of HEWL oligomers was observed via SDS electrophoresis. At atmospheric pressure, HEWL represents no substrate for mTG. Likewise, enzymatic treatment following a pretreatment with high pressure did not lead to oligomerization. Reactive amino acid side chains were identified by peptide mapping after tryptic digestion using RP-HPLC with ESI-TOF-MS. Isopeptide-containing peptide fragments were found only in HEWL samples simultaneously treated with enzyme and pressure. It was found that mTG exclusively cross-links HEWL under high pressure by formation of an isopeptide between lysine at position 1 and glutamine at position 121 in the peptide chain. Therefore, a pressure-induced partial and reversible unfolding of the protein with exposure of lysine and glutamine side chains has to occur, resulting in a site-directed oligomerization of HEWL by mTG. The enzymatic modification of HEWL by mTG under high pressure offers interesting perspectives for further functionalization reactions. PMID:21087031

  2. Mechanistic insight of photo-induced aggregation of chicken egg white lysozyme: the interplay between hydrophobic interactions and formation of intermolecular disulfide bonds.

    PubMed

    Xie, Jinbing; Qin, Meng; Cao, Yi; Wang, Wei

    2011-08-01

    Recently, it was reported that ultraviolet (UV) illumination could trigger the unfolding of proteins by disrupting the buried disulfide bonds. However, the consequence of such unfolding has not been adequately evaluated. Here, we report that unfolded chicken egg white lysozyme (CEWL) triggered by UV illumination can form uniform globular aggregates as confirmed by dynamic light scattering, atomic force microscopy, and transmission electron microscopy. The assembling process of such aggregates was also monitored by several other methods, such as circular dichroism, fluorescence spectroscopy, mass spectrometry based on chymotrypsin digestion, ANS-binding assay, Ellman essay, and SDS-PAGE. Our finding is that due to the dissociation of the native disulfide bonds by UV illumination, CEWL undergoes drastic conformational changes resulting in the exposure of some hydrophobic residues and free thiols. Subsequently, these partially unfolded molecules self-assemble into small granules driven by intermolecular hydrophobic interaction. With longer UV illumination or longer incubation time, these granules can further self-assemble into larger globular aggregates. The combined effects from both the hydrophobic interaction and the formation of intermolecular disulfide bonds dominate this process. Additionally, similar aggregation behavior can also be found in other three typical disulfide-bonded proteins, that is, α-lactalbumin, RNase A, and bovine serum albumin. Thus, we propose that such aggregation behavior might be a general mechanism for some disulfide-bonded proteins under UV irradiation. PMID:21661057

  3. Effect of Cinnamomum Verum Extract on the Amyloid Formation of Hen Egg-white Lysozyme and Study of its Possible Role in Alzheimer’s Disease

    PubMed Central

    Ramshini, Hassan; Ebrahim-Habibi, Azadeh; Aryanejad, Sima; Rad, Abolfazl

    2015-01-01

    Introduction: Diagnosing and treating diseases associated with amyloid fibers remain a great challenge despite of intensive research carried out. One important approach in the development of therapeutics is the use of herbal extracts which are rich in aromatic small molecules. Cinnamomum verum extract (CE) contains proanthocyanidin and cinnamaldehyde, which have been suggested to be capable of directly inhibiting amyloid fibril formation in vitro. This study is aimed at characterizing the inhibitory activity of CE against the fibrillation of hen egg white lysozyme (HEWL). Methods: Acidic pH and high temperatures were used to drive the protein towards amyloid formation. Lysozyme was dissolved at 2 mg/mL in 50mM glycine buffer (pH 2.5), and then incubated at 57 °C for the specified durations while stirred gently by Teflon magnetic bars. Various techniques including thioflavin T, fluorescence, Congo red absorbance assay and AFM micrography were used to characterize the HEWL fibrillation processes. Results: In the absence of CE typical amyloid fibrils (like amyloids formed in Alzheimer disease) became evident after 48 h of incubation. Upon incubation with various extract concentrations in the range of 0.1–1 mg/ml, formation of fibrillar assemblies were significantly inhibited (P<0.05). AFM analysis and MTT assay also confirmed the role of the extract in amyloid inhibition. Our studies showed that the presence of CE did not have any effect on protein stabilization and thus directly interact with amyloid structure and inhibit formation of these structures. Furthermore, a docking experiment showed that a pi-pi interaction may occur between the aromatic component of cinnamaldehyde and W62. Interestingly, W62 is one of the principal aromatic residues that interact with glycine amide, which is an aggregation suppressor of HEWL. Discussion: These observations suggest that aromatic small molecules of CE may directly insert into amyloidogenic core of early aggregates and

  4. Pressure-assisted cold denaturation of hen egg white lysozyme: the influence of co-solvents probed by hydrogen exchange nuclear magnetic resonance.

    PubMed

    Vogtt, K; Winter, R

    2005-08-01

    COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80 degrees C) and under high pressure conditions at low temperature (3.75 kbar, -13 degrees C). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors. PMID:16082458

  5. Anti-fibrillation propensity of a flavonoid baicalein against the fibrils of hen egg white lysozyme: potential therapeutics for lysozyme amyloidosis.

    PubMed

    Fazili, Naveed Ahmad; Bhat, Imtiyaz Ahmad; Bhat, Waseem Feeroze; Naeem, Aabgeena

    2016-10-01

    More than 20 human diseases involve the fibrillation of a specific protein/peptide which forms pathological deposits at various sites. Hereditary lysozyme amyloidosis is a systemic disorder which mostly affects liver, spleen and kidney. This conformational disorder is featured by lysozyme fibril formation. In vivo lysozyme fibrillation was simulated under in vitro conditions using a strong denaturant GdHCl at 3 M concentration. Sharp decline in the ANS fluorescence intensity compared to the partially unfolded states, almost 20-fold increase in ThT fluorescence intensity, increase in absorbance at 450 nm suggesting turbidity, negative ellipticity peak in the far-UVCD at 217 nm, red shift of 50 nm compared to the native state in Congo red assay and appearance of a network of long rope-like fibrils in transmission electron microscope (TEM) analysis suggested HEWL fibrillation. Anti-fibrillation potency of baicalein against the preformed fibrils of HEWL was investigated following ThT assay in which there was a dose-dependent decrease in ThT fluorescence intensity compared to the fibrillar state of HEWL with the maximum effect observed at 150-μM baicalein concentration, loss of negative ellipticity peak in the far-UVCD region, dip in the Rayleigh scattering intensity and absorbance at 350 and 450 nm, respectively, together with a reduction in the density of fibrillar structure in TEM imaging. Thus, it could be suggested that baicalein could prove to be a positive therapeutics for hereditary human lysozyme amyloidosis. PMID:26555198

  6. The binding of platinum hexahalides (Cl, Br and I) to hen egg-white lysozyme and the chemical transformation of the PtI{sub 6} octahedral complex to a PtI{sub 3} moiety bound to His15

    SciTech Connect

    Tanley, Simon W. M.; Starkey, Laurina-Victoria; Lamplough, Lucinda; Kaenket, Surasek; Helliwell, John R.

    2014-08-29

    The platinum hexahalides have an octahedral arrangement of six halogen atoms bound to a Pt centre, thus having an octahedral shape that could prove to be useful in interpreting poor electron-density maps. In a detailed characterization, PtI{sub 6} chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15 of HEWL was also observed, which was not observed for PtBr{sub 6} or PtCl{sub 6}. This study examines the binding and chemical stability of the platinum hexahalides K{sub 2}PtCl{sub 6}, K{sub 2}PtBr{sub 6} and K{sub 2}PtI{sub 6} when soaked into pre-grown hen egg-white lysozyme (HEWL) crystals as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI{sub 6}) or at two sites (PtBr{sub 6} and PtCl{sub 6}). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps as they would be recognisable ‘objects’.

  7. Crystal structure of a ubiquitin-dependent degradation substrate: a three-disulfide form of lysozyme.

    PubMed Central

    Hill, C P; Johnston, N L; Cohen, R E

    1993-01-01

    Covalent attachment of ubiquitin marks substrates for proteolysis, but features that identify ubiquitination targets such as chicken egg white lysozyme are poorly understood. Recognition of lysozyme first requires reduction of Cys-6 Cys-127, one of its four native disulfide bonds, and Cys-6,Cys-127-carboxymethylated (6,127-rcm) lysozyme can mimic this three-disulfide intermediate. The 6,127-rcm form of lysozyme is known to retain a substantially native-like conformation in solution, and we demonstrate that it is this folded structure that is recognized for ubiquitination. Because native lysozyme is not a substrate, differences between the native and three-disulfide structures must include features responsible for selective ubiquitination. The 1.9-A resolution crystal structure of 6,127-rcm-lysozyme, reported here, affords a view of this ubiquitin-dependent degradation substrate. Two conformers of 6,127-rcm-lysozyme were obtained in the crystal. These differ uniquely from crystal forms of native lysozyme by displacement of the C-terminal residues. The structures suggest that localized unfolding at the C terminus of three-disulfide lysozyme allows the complex of E3 alpha (ubiquitin-protein ligase) and E2 (ubiquitin-carrier protein) to bind to a surface that includes Lys-1 and the putative ubiquitination site Lys-13. From this we infer that the N-terminal and internal substrate recognition sites on the E3 alpha.E2 complex are separated by approximately 20 A. Images Fig. 1 Fig. 2 Fig. 5 PMID:8387211

  8. Metal-assisted and microwave accelerated-evaporative crystallization: Application to lysozyme protein

    NASA Astrophysics Data System (ADS)

    Mauge-Lewis, Kevin

    In response to the growing need for new crystallization techniques that afford for rapid processing times along with control over crystal size and distribution, the Aslan Research Group has recently demonstrated the use of Metal-Assisted and Microwave-Accelerated Evaporative Crystallization MA-MAEC technique in conjunction with metal nanoparticles and nanostructures for the crystallization of amino acids and organic small molecules. In this study, we have employed the newly developed MA-MAEC technique to the accelerated crystallization of chicken egg-white lysozyme on circular crystallization platforms in order to demonstrate the proof-of-principle application of the method for protein crystallization. The circular crystallization platforms are constructed in-house from poly (methyl methacrylate) (PMMA) and silver nanoparticle films (SNFs), indium tin oxide (ITO) and iron nano-columns. In this study, we prove the MA-MAEC method to be a more effective technique in the rapid crystallization of macromolecules in comparison to other conventional methods. Furthermore, we demonstrate the use of the novel iCrystal system, which incorporates the use of continuous, low wattage heating to facilitate the rapid crystallization of the lysozyme while still retaining excellent crystal quality. With the incorporation of the iCrystal system, we observe crystallization times that are even shorter than those produced by the MA-MAEC technique using a conventional microwave oven in addition to significantly improved crystal quality.

  9. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.

    PubMed

    Janowski, Pawel A; Liu, Chunmei; Deckman, Jason; Case, David A

    2016-01-01

    Molecular dynamics simulations of crystals can enlighten interpretation of experimental X-ray crystallography data and elucidate structural dynamics and heterogeneity in biomolecular crystals. Furthermore, because of the direct comparison against experimental data, they can inform assessment of molecular dynamics methods and force fields. We present microsecond scale results for triclinic hen egg-white lysozyme in a supercell consisting of 12 independent unit cells using four contemporary force fields (Amber ff99SB, ff14ipq, ff14SB, and CHARMM 36) in crystalline and solvated states (for ff14SB only). We find the crystal simulations consistent across multiple runs of the same force field and robust to various solvent equilibration schemes. However, convergence is slow compared with solvent simulations. All the tested force fields reproduce experimental structural and dynamic properties well, but Amber ff14SB maintains structure and reproduces fluctuations closest to the experimental model: its average backbone structure differs from the deposited structure by 0.37Å; by contrast, the average backbone structure in solution differs from the deposited by 0.65Å. All the simulations are affected by a small progressive deterioration of the crystal lattice, presumably due to imperfect modeling of hydrogen bonding and other crystal contact interactions; this artifact is smallest in ff14SB, with average lattice positions deviating by 0.20Å from ideal. Side-chain disorder is surprisingly low with fewer than 30% of the nonglycine or alanine residues exhibiting significantly populated alternate rotamers. Our results provide helpful insight into the methodology of biomolecular crystal simulations and indicate directions for future work to obtain more accurate energy models for molecular dynamics. PMID:26013419

  10. On accurate calculation of the potential of mean force between antigen and antibody: A case of the HyHEL-10-hen egg white lysozyme system

    NASA Astrophysics Data System (ADS)

    Yamashita, Takefumi; Fujitani, Hideaki

    2014-08-01

    We study several free energy calculation methods in the dissociation process of lysozyme and its antibody. We introduce the multi-step targeted molecular dynamics (mTMD) method to determine the dissociation pathway. The dissociation free energy calculated along the mTMD dissociation pathway is significantly lower than that along the dissociation pathway determined by the steered molecular dynamics (SMD) method. This indicates that SMD leads to a meta-stable dissociation state. While the SMD restrains the distance between the two proteins, the mTMD restrains the internal structures additionally. We discuss the effect of fragility of the protein structures on the free energy calculations.

  11. Ester-linked hen egg white lysozyme shows a compact fold in a molecular dynamics simulation - possible causes and sensitivity of experimentally observable quantities to structural changes maintaining this compact fold.

    PubMed

    Eichenberger, Andreas P; Smith, Lorna J; van Gunsteren, Wilfred F

    2012-01-01

    Prediction and understanding of the folding and stability of the 3D structure of proteins is still a challenge. The different atomic interactions, such as non polar contacts and hydrogen bonding, are known but their exact relative weights and roles when contributing to protein folding and stability are not identified. Initiated by a previous molecular dynamics simulation of fully ester-linked hen egg white lysozyme (HEWL), which showed a more compact fold of the ester-linked molecule compared to the native one, three variants of this protein are analyzed in the present study. These are 129-residue native HEWL, partly ester-linked HEWL, in which only 34 peptide linkages that are not involved in the helical or β-strand parts of native HEWL were replaced by ester linkages, and fully (126 residues) ester-linked HEWL. Native and partly ester-linked HEWL showed comparable behaviour, whereas fully ester-linked HEWL could not maintain the native secondary structure of HEWL in the simulation and adopted a more compact fold. The conformational changes were analyzed by comparing simulation averaged values of quantities that can be measured by NMR, such as (1)H-(15)N backbone order parameters, residual dipolar couplings, proton-proton NOE distances and (3)J-couplings with the corresponding values derived from experimental NMR data for native HEWL. The information content of the latter appeared to be insufficient to detect the local conformational rearrangements upon esterification of the loop regions of the protein. For fully ester-linked HEWL, a significantly reduced agreement was observed. Upon esterification, the backbone-side chain and side chain-side chain hydrogen-bonding pattern of HEWL changes to maintain its compactness and thus the structural stability of the ester-linked lysozymes. PMID:22093234

  12. Succinimidyl residue formation in hen egg-white lysozyme favors the formation of intermolecular covalent bonds without affecting its tertiary structure.

    PubMed

    Desfougères, Yann; Jardin, Julien; Lechevalier, Valérie; Pezennec, Stéphane; Nau, Françoise

    2011-01-10

    Protein chemical degradations occur naturally into living cells as soon as proteins have been synthesized. Among these modifications, deamidation of asparagine or glutamine residues has been extensively studied, whereas the intermediate state, a succinimide derivative, was poorly investigated because of the difficulty of isolating those transient species. We used an indirect method, a limited thermal treatment in the dry state at acidic pH, to produce stable cyclic imide residues in hen lysozyme molecules, enabling us to examine the structural and functional properties of so modified proteins. Five cyclic imide rings have been located at sites directly accessible to solvent and did not lead to any changes in secondary or tertiary structures. However, they altered the catalytic properties of lysozyme and significantly decreased the intrinsic stability of the molecules. Moreover, dimerization occurred during the treatment, and this phenomenon was proportional to the extent of chemical degradation. We propose that succinimide formation could be responsible for covalent bond formation under specific physicochemical conditions that could be found in vivo. PMID:21166442

  13. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  14. Elasticity and Strength of Biomacromolecular Crystals: Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.

    2003-01-01

    The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.

  15. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  16. Egg White Phantoms for HIFU

    SciTech Connect

    Divkovic, Gabriela; Jenne, Juergen W.

    2005-03-28

    We used fresh egg white and polyacrylamide to create a transparent tissue mimicking phantom. Heating of phantoms by HIFU leads to egg white protein denaturation and creation of visible white lesions. We measured the acoustical and thermal properties and investigated the possibility to use such phantoms to study the lesion formation during the HIFU therapy.

  17. In situ study of the state of lysozyme molecules at the very early stage of the crystallization process by small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Marchenkova, M. A.; Volkov, V. V.; Blagov, A. E.; Dyakova, Yu. A.; Ilina, K. B.; Tereschenko, E. Yu.; Timofeev, V. I.; Pisarevsky, Yu. V.; Kovalchuk, M. V.

    2016-01-01

    The molecular state of hen egg white lysozyme in solution has been studied by small-angle X-ray scattering (SAXS) combined with molecular simulation. The addition of a precipitant is shown to change the state of the protein molecules in solution. The SAXS data were processed using the constructed models of different oligomers. Under the crystallization conditions, lysozyme is shown to be present in solution as monomers (96.0%), dimers (1.9%), and octamers (2.1%), whereas tetramers and hexamers are not found. The modeled structure of the octamer is not consistent with the commonly accepted unit cell containing eight lysozyme molecules. Meanwhile, the modeled octamers are well-fitted to the crystal structure and can serve as building blocks in the course of crystal growth.

  18. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  19. Tetragonal Lysozyme, From Monomer to Crystal

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The data now leads us to a comprehensive model for the process by which tetragonal lysozyme crystals are nucleated and subsequently grow. Lysozyme is typically desolubilized by addition of ionic salts. The salt anions bind to basic and other sites on the protein and promote protein-protein interactions, i.e., initiate the nucleation self assembly process. Formation of protein-protein interactions occurs at the expense of the protein-anion interactions, with the anions being released to the solution. The association follows a defined pattern, forming the "head to side" interactions of the crystal 4(3) helix. The presence of the high salt also promotes hydrophobic interactions between the protein molecules, further tightening their interaction. The solute assembly process persists after crystal nucleation, and the 4(3) helical structures form the subsequent growth units. AFM measurements show that the growth units follow the dimensions of these helices, and that those on the surface are more compact about the c-axis than in the bulk crystal, with adjacent helices riot being in contact. This further supports the role of hydrophobic interactions, as the surface is still in contact with the bulk solution. Once buried within the crystal the protein:salt ratio radically changes and the hydrophobic interactions relax to those measured crystallographically. Thus the crystal growth process recapitulates the initial stages of the nucleation process, and the two seamlessly merge. Experimental evidence, based upon face growth rate, AFM, and fluorescence energy transfer data, for a postulated model of the nucleation of tetragonal lysozyme crystals and how it transitions into crystal growth will be presented.

  20. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  1. The effect of protein-precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals.

    PubMed

    Reis, Nuno M; Chirgadze, Dimitri Y; Blundell, Tom L; Mackley, Malcolm R

    2009-11-01

    This paper is concerned with the effect of protein-precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a protein drop and the optical development of the protein-precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable 'fingers' that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography. PMID:19923710

  2. Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Rosenberger, Franz

    1997-08-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (w/v) NaCl at pH=4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  3. Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1997-01-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (wlv) NaCl at pH= 4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  4. Science Study Aids 6: Lysozyme - The Cooperative Enzyme.

    ERIC Educational Resources Information Center

    Boeschen, John; Alderton, Gordon

    This publication is the sixth of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grade levels 10 through 12. It is concerned with the crystallization of an enzyme, lysozyme, from egg white. The first part of this guide…

  5. The effect of protein–precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals

    SciTech Connect

    Reis, Nuno M.; Chirgadze, Dimitri Y.; Blundell, Tom L.; Mackley, Malcolm R.

    2009-11-01

    The nucleation of lysozyme in microbatch experiments was linked to the formation of protein–precipitant interfaces. The use of oscillatory shear allowed decreasing the nucleation rate and extending the growth period for lysozyme crystals, presumably through the control of the number of interfaces and removal of impurities or defects. This paper is concerned with the effect of protein–precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a protein drop and the optical development of the protein–precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable ‘fingers’ that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.

  6. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  7. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  8. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  9. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  10. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  11. Lysozyme mediated calcium carbonate mineralization.

    PubMed

    Wang, Xiaoqiang; Sun, Hailing; Xia, Yongqing; Chen, Cuixia; Xu, Hai; Shan, Honghong; Lu, Jian R

    2009-04-01

    Lysozyme, a major component of egg white proteins, has been speculated to participate in the calcification of avian eggshells. However, its detailed role during the eggshell formation is not well understood. In this work, the influence of lysozyme on the precipitation of CaCO(3) has been investigated using a combined study of FTIR, XRD, and SEM. The precipitation was produced from (NH(4))(2)CO(3) vapor diffusion into CaCl(2) aqueous solution using a specially built chamber. In the absence of lysozyme, hexagonal platelets of vaterite and their spherical aggregates dominated the precipitates during the first 3-12 h crystallization period studied, with the (001) crystal face well expressed in the hexagonal direction. In contrast, calcite was favored to precipitate in the presence of lysozyme during the same period and the effect was found to be proportional to lysozyme concentration. Furthermore, the (110) face of calcite was expressed in addition to the common (104) face, and the morphological modification was also lysozyme concentration dependent. We attributed these phenomena to the selective adsorption of ammonium ions and lysozyme onto different crystal faces. Our findings have clearly revealed the concentration and face dependent role of lysozyme in CaCO(3) precipitation. This, together with the abundance of lysozyme in the uterine fluid, implies its direct contribution to the hierarchical structures of calcite during the initial stage of eggshell formation. PMID:19167007

  12. Droplet hydrodynamics during lysozyme protein crystallization.

    PubMed

    Pradhan, T; Asfer, M; Panigrahi, P K

    2012-11-01

    Various experimental studies in zero gravity have been reported in the literature for generation of superior quality crystals due to the importance of convective transport on protein crystal quality. However, limited experimental and numerical studies are available in the literature for a complete characterization of transport phenomena during the protein crystal growth process. The present investigation reports experimental results on convective motion inside the droplet during protein crystallization by the vapor diffusion method. Lysozyme crystals are grown using a sitting drop method and micro-particle image velocimetry is used for investigating the detailed hydrodynamics inside the droplet. Dynamic evolution of the flow field for the complete crystal growth process, i.e., during the prenucleation, nucleation, and postnucleation stage, is reported. Various flow transitions are observed during the complete cycle of the protein crystal growth process. Significant Marangoni convection is observed during the prenucleation period followed by buoyancy-driven convection during the postnucleation period. The Marangoni convection flow patterns observed during the prenucleation stage match those of evaporating droplets. The postnucleation convection patterns are similar to those of ethanol-water mixture evaporation with high ethanol concentration. PMID:23214788

  13. IgE reactivity to hen egg white allergens in dogs with cutaneous adverse food reactions.

    PubMed

    Shimakura, Hidekatsu; Uchiyama, Jumpei; Saito, Taku; Miyaji, Kazuki; Fujimura, Masato; Masuda, Kenichi; Okamoto, Noriaki; DeBoer, Douglas J; Sakaguchi, Masahiro

    2016-09-01

    Dogs with cutaneous adverse food reactions (CAFR) often have specific IgE to food allergens. Egg white, which is majorly composed of ovomucoid, ovalbumin, ovotransferrin, and lysozyme, is a food allergen in dogs. Information of the IgE reactivity to purified egg white allergens supports accurate diagnosis and efficiency treatment in humans. However, to the best of our knowledge, there have been no studies on the IgE reactivity to purified egg white allergens in dogs. Here, we investigated the IgE reactivity to crude and purified allergens of hen egg white in dogs with CAFR. First, when we examined serum samples from 82 dogs with CAFR for specific IgE to crude egg white by ELISA, 9.8% (8/82) of the dogs with CAFR showed the IgE reactivity to crude egg white. We then used sera from the eight dogs with positive IgE reactivity to crude egg white to examine the IgE reactivity to four purified allergens, ovomucoid, ovalbumin, ovotransferrin, and lysozyme, by ELISA. We found that 75% (6/8) of the dogs showed IgE reactivity to both ovomucoid and ovalbumin, and that 37.5% (3/8) of the dogs showed IgE reactivity to ovotransferrin. None (0/8) showed IgE reactivity to lysozyme. Moreover, validating these results, the immunoblot analyses were performed using the sera of the three dogs showing the highest IgE reactivity to crude egg white. Both anti-ovomucoid and anti-ovalbumin IgE were detected in the sera of these dogs, while anti-ovotransferrin IgE was not detected. Considering these, ovomucoid and ovalbumin appears to be the major egg white allergens in dogs with CAFR. PMID:27436445

  14. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases.

    PubMed Central

    Bode, W; Engh, R; Musil, D; Thiele, U; Huber, R; Karshikov, A; Brzin, J; Kos, J; Turk, V

    1988-01-01

    The crystal structure of chicken egg white cystatin has been solved by X-ray diffraction methods using the multiple isomorphous replacement technique. Its structure has been refined to a crystallographic R value of 0.19 using X-ray data between 6 and 2.0A. The molecule consists mainly of a straight five-turn alpha-helix, a five-stranded antiparallel beta-pleated sheet which is twisted and wrapped around the alpha-helix and an appending segment of partially alpha-helical geometry. The 'highly conserved' region from Gln53I to Gly57I implicated with binding to cysteine proteinases folds into a tight beta-hairpin loop which on opposite sides is flanked by the amino-terminal segment and by a second hairpin loop made up of the similarly conserved segment Pro103I - Trp104I. These loops and the amino-terminal Gly9I - Ala10I form a wedge-shaped 'edge' which is quite complementary to the 'active site cleft' of papain. Docking experiments suggest a unique model for the interaction of cystatin and papain: according to it both hairpin loops of cystatin make major binding interactions with the highly conserved residues Gly23, Gln19, Trp177 and Ala136 of papain in the neighbourhood of the reactive site Cys25; the amino-terminal segment Gly9I - Ala10I of bound cystatin is directed towards the substrate subsite S2, but in an inappropriate conformation and too far away to be attacked by the reactive site Cys25. As a consequence, the mechanism of the interaction between cysteine proteinases and their cystatin-like inhibitors seems to be fundamentally different from the 'standard mechanism' defined for serine proteinases and most of their protein inhibitors. Images PMID:3191914

  15. Egg white versus Salmonella Enteritidis! A harsh medium meets a resilient pathogen.

    PubMed

    Baron, Florence; Nau, Françoise; Guérin-Dubiard, Catherine; Bonnassie, Sylvie; Gautier, Michel; Andrews, Simon C; Jan, Sophie

    2016-02-01

    Salmonella enterica serovar Enteritidis is the prevalent egg-product-related food-borne pathogen. The egg-contamination capacity of S. Enteritidis includes its exceptional survival capability within the harsh conditions provided by egg white. Egg white proteins, such as lysozyme and ovotransferrin, are well known to play important roles in defence against bacterial invaders. Indeed, several additional minor proteins and peptides have recently been found to play known or potential roles in protection against bacterial contamination. However, although such antibacterial proteins are well studied, little is known about their efficacy under the environmental conditions prevalent in egg white. Thus, the influence of factors such as temperature, alkalinity, nutrient restriction, viscosity and cooperative interactions on the activities of antibacterial proteins in egg white remains unclear. This review critically assesses the available evidence on the antimicrobial components of egg white. In addition, mechanisms employed by S. Enteritidis to resist egg white exposure are also considered along with various genetic studies that have shed light upon egg white resistance systems. We also consider how multiple, antibacterial proteins operate in association with specific environmental factors within egg white to generate a lethal protective cocktail that preserves sterility. PMID:26678134

  16. Lysozyme

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity experiments with data from laboratory experiments to study the equilibrium rate of hanging drop experiments in microgravity.

  17. Determination of monomer concentrations in crystallizing lysozyme solutions

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Pusey, Marc L.

    1992-01-01

    We have developed a non-optical technique for the study of aggregation in lysozyme and other protein solutions. By monitoring the rate at which lysozyme traverses a semipermeable membrane it was possible to quantitate the degree of aggregation in supersaturated solutions. Using this technique, we have measured the concentration of monomers and larger aggregates in under- and oversaturated lysozyme solutions, and in the presence of crystals, at pH 4.0 and 3 percent NaCl (0.1M NaAc). Comparison of these concentration profiles with (110) face growth rate data supports the theory that tetragonal lysozyme crystals grow by addition of preformed aggregates and not by monomer addition. The data suggest that a considerable population of aggregates larger than dimers are present at lysozyme concentrations above 22 mg/ml. Determination of dimer concentrations, and equilibrium constants for subsequent aggregation levels, are currently underway.

  18. Porous protein crystals as reaction vessels for controlling magnetic properties of nanoparticles.

    PubMed

    Abe, Satoshi; Tsujimoto, Masahiko; Yoneda, Ko; Ohba, Masaaki; Hikage, Tatsuo; Takano, Mikio; Kitagawa, Susumu; Ueno, Takafumi

    2012-05-01

    Magnetic bimetallic CoPt nanoparticles are synthesized in the solvent channels of hen egg white lysozyme crystals by the reduction of Co(2+) and Pt(2+) ions pre-organized on the interior surface of the solvent channels. By using different lysozyme crystal systems, the magnetic properties of CoPt nanoparticles can be controlled. PMID:22383363

  19. Effects of Purification on the Crystallization of Lysozyme

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.

    1996-01-01

    We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.

  20. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  1. Analysis of Monomer Aggregation and Crystal Growth Rates of Lysozyme

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    This project was originally conceived to analyze the extensive data of tetragonal lysozyme crystal growth rates collected at NASA/MSFC by Dr. Marc L. Pusey's research group. At that time the lack of analysis of the growth rates was hindering progress in understanding the growth mechanism of tetragonal lysozyme and other protein crystals. After the project was initiated our initial analysis revealed unexpected complexities in the growth rate behavior. This resulted in an expansion in the scope of the project to include a comprehensive investigation of the growth mechanisms of tetragonal lysozyme crystals. A discussion of this research is included as well a list of presentations and publications resulting from the research. This project contributed significantly toward the education of several students and fostered extensive collaborations between investigators.

  2. Lysozyme contamination facilitates crystallization of a heterotrimeric cortactin–Arg–lysozyme complex

    PubMed Central

    Liu, Weizhi; MacGrath, Stacey M.; Koleske, Anthony J.; Boggon, Titus J.

    2012-01-01

    Crystallization of contaminating proteins is a frequently encountered problem for macromolecular crystallographers. In this study, an attempt was made to obtain a binary cocrystal structure of the SH3 domain of cortactin and a 17-­residue peptide from the Arg nonreceptor tyrosine kinase encompassing a PxxPxxPxxP (PxxP1) motif. However, cocrystals could only be obtained in the presence of trace amounts of a contaminating protein. A structure solution obtained by molecular replacement followed by ARP/wARP automatic model building allowed a ‘sequence-by-crystallography’ approach to discover that the contaminating protein was lysozyme. This 1.65 Å resolution crystal structure determination of a 1:1:1 heterotrimeric complex of Arg, cortactin and lysozyme thus provides an unusual ‘caveat emptor’ warning of the dangers that underpurified proteins harbor for macromolecular crystallographers. PMID:22297987

  3. A model for water motion in crystals of lysozyme based on an incoherent quasielastic neutron-scattering study.

    PubMed Central

    Bon, C; Dianoux, A J; Ferrand, M; Lehmann, M S

    2002-01-01

    This paper reports an incoherent quasielastic neutron scattering study of the single particle, diffusive motions of water molecules surrounding a globular protein, the hen egg-white lysozyme. For the first time such an analysis has been done on protein crystals. It can thus be directly related and compared with a recent structural study of the same sample. The measurement temperature ranged from 100 to 300 K, but focus was on the room temperature analysis. The very good agreement between the structural and dynamical studies suggested a model for the dynamics of water in triclinic crystals of lysozyme in the time range approximately 330 ps and at 300 K. Herein, the dynamics of all water molecules is affected by the presence of the protein, and the water molecules can be divided into two populations. The first mainly corresponds to the first hydration shell, in which water molecules reorient themselves fivefold to 10-fold slower than in bulk solvent, and diffuse by jumps from hydration site to hydration site. The long-range diffusion coefficient is five to sixfold less than for bulk solvent. The second group corresponds to water molecules further away from the surface of the protein, in a second incomplete hydration layer, confined between hydrated macromolecules. Within the time scale probed they undergo a translational diffusion with a self-diffusion coefficient reduced approximately 50-fold compared with bulk solvent. As protein crystals have a highly crowded arrangement close to the packing of macromolecules in cells, our conclusion can be discussed with respect to solvent behavior in intracellular media: as the mobility is highest next to the surface, it suggests that under some crowding conditions, a two-dimensional motion for the transport of metabolites can be dominant. PMID:12202382

  4. Locations of Halide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Adimurthy, Ganapathi; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions play an important role in the crystallization of lysozyme, and are known to bind to the crystalline protein. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. Studies using other approaches have reported more chloride ion binding sites, but their locations were not known. Knowing the precise location of these anions is also useful in determining the correct electrostatic fields surrounding the protein. In the first part of this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from the lysozyme crystals grown in bromide and chloride solutions under identical conditions. The anion locations were then obtained from standard crystallographic methods and five possible anion binding sites were found in this manner. The sole chloride ion binding site found in previous studies was confirmed. The remaining four sites were new ones for tetragonal lysozyme crystals. However, three of these new sites and the previously found one corresponded to the four unique binding sites found for nitrate ions in monoclinic crystals. This suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed. It is unlikely that there are many more anions in the tetragonal lysozyme crystal structure. Assuming osmotic equilibrium it can be shown that there are at most three more anions in the crystal channels. Some of the new anion binding sites found in this study were, as expected, in pockets containing basic residues. However, some of them were near neutral, but polar, residues. Thus, the study also showed the importance of uncharged, but polar groups, on the protein surface in determining its electrostatic field. This was important for the second part of this study where the electrostatic field

  5. Quantifying Main Trends in Lysozyme Nucleation: The Effects of Precipitant Concentration, Supersaturation and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Leardi, Riccardo; Judge, Russell A.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Full factorial experimental design incorporating multi-linear regression analysis of the experimental data allows quick identification of main trends and effects using a limited number of experiments. In this study these techniques were employed to identify the effect of precipitant concentration, supersaturation, and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal forin of chicken egg white lysozyme. Decreasing precipitant concentration, increasing supers aturation, and increasing impurity, were found to increase crystal numbers. The crystal axial ratio decreased with increasing precipitant concentration, independent of impurity.

  6. Quantifying Main Trends in Lysozyme Nucleation: The Effect of Precipitant Concentration and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Full factorial experiment design incorporating multi-linear regression analysis of the experimental data allows the main trends and effects to be quickly identified while using only a limited number of experiments. These techniques were used to identify the effect of precipitant concentration and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal form of chicken egg white lysozyme. Increasing precipitant concentration was found to decrease crystal numbers, the magnitude of this effect also depending on the supersaturation. The presence of the dimer generally increased nucleation. The crystal axial ratio decreased with increasing precipitant concentration independent of impurity.

  7. Nucleation and convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz (Principal Investigator)

    1996-01-01

    The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.

  8. A new membrane-based crystallization technique: tests on lysozyme

    NASA Astrophysics Data System (ADS)

    Curcio, Efrem; Profio, Gianluca Di; Drioli, Enrico

    2003-01-01

    The great importance of protein science both in industrial and scientific fields, in conjunction with the intrinsic difficulty to grow macromolecular crystals, stimulates the development of new observations and ideas that can be useful in initiating more systematic studies using novel approaches. In this regard, an innovative technique, based on the employment of microporous hydrophobic membranes in order to promote the formation of lysozyme crystals from supersaturated solutions, is introduced in this work. Operational principles and possible advantages, both in terms of controlled extraction of solvent by acting on the concentration of the stripping solution and reduced induction times, are outlined. Theoretical developments and experimental results concerning the mass transfer, in vapour phase, through the membrane are presented, as well as the results from X-ray diffraction to 1.7 Å resolution of obtained lysozyme crystals using NaCl as the crystallizing agent and sodium acetate as the buffer. Crystals were found to be tetragonal with unit cell dimensions of a= b=79.1 Å and c=37.9 Å; the overall Rmerge on intensities in the resolution range from 25 to 1.7 Å was, in the best case, 4.4%.

  9. FUNCTIONALITY OF MEMBRANE SEPARATED EGG WHITE PROTEINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The excellent nutritional and functional properties of liquid egg white (LEW), which is essentially a viscous fat-free protein solution, are exploited in many food preparations. Thermal pasteurization (at 56.6oC for 3.5 min. minimum) is currently used by industry to eliminate the microflora in LEW ...

  10. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species

  11. Physicochemical and nutritional characteristics of preserved duck egg white.

    PubMed

    Zhao, Yan; Tu, Yonggang; Xu, Mingsheng; Li, Jianke; Du, Huaying

    2014-12-01

    In this paper, the physicochemical and nutritional characteristics of preserved duck egg white were analyzed and compared with fresh egg and hard-cooked egg white (n = 3). The data obtained showed that the preserved egg white was rich in essential amino acids and minerals, such as Ca, Mg, Fe, Zn, Cu, K, and Na. After fresh duck eggs were processed into preserved eggs, contents of moisture, CP, amino acid, and water-soluble vitamin of egg white significantly decreased (P < 0.05); however, pH, free amino acid content, and most inorganic elemental contents of egg white significantly increased (P < 0.05). The preserved egg white had higher a* (redness/greenness) and b* values (yellowness/blueness; P < 0.05) and lower L* value (lightness; P < 0.05) than hard-cooked egg white. The gel hardness of preserved egg white was approximately 50% of hard-cooked egg white; however, its springiness and cohesiveness were approximately 1.5 times of hard-cooked egg white. The results indicated that pickling with alkaline and other additives can significantly change physical properties and chemical composition of duck egg white, which make preserved egg white with characteristics of rich elements, brown color, and high springiness, but low vitamin. PMID:25332139

  12. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  13. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  14. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  15. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  16. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  17. A Model for Tetragonal Lysozyme Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Macromolecular crystallization is a complex process, involving a system that typically has 5 or more components (macromolecule, water, buffer + counter ion, and precipitant). Whereas small molecules have only a few contacts in the crystal lattice, macromolecules generally have 10's or even 100's of contacts between molecules. These can range from hydrogen bonds (direct or water-mediated), through van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and require some specificity in the molecular alignment, while the others are weaker, more prevalent, and more promiscuous, i.e., can be readily broken and reformed between other sites. Formation of a consistent, ordered, 3D structure may be difficult or impossible in the absence of any or presence of too many strong interactions. Further complicating the process is the inherent structural asymmetry of monomeric (single chain) macromolecules. The process of crystal nucleation and growth involves the ordered assembly of growth units into a defined 3D lattice. We suggest that for many macromolecules, particularly those that are monomeric, this involves a preliminary solution-phase assembly process into a growth unit having some symmetry prior to addition to the lattice, recapitulating the initial stages of the nucleation process. If this model is correct then fluids and crystal growth models assuming a strictly monodisperse nutrient solution need to be revised. This model has been developed from experimental evidence based upon face growth rate, AFM, and fluorescence energy transfer data for the nucleation and growth of tetragonal lysozyme crystals.

  18. Growth Modes and Energetics of 101 Face Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, L.

    2004-01-01

    From analyses of lysozyme 101 face growth rate data using a 2D nucleation model for layer-by-layer growth, we find the effective barrier for crystal growth to be gamma = 1.0 +/- 0.2 x 10(exp -13) erg/molecule. The magnitude of the effective barrier is 2.4 +/- 0.5 k(sub beta)T, at 22 C. We also find that beyond a critical solution supersaturation, sigma(sub c), crystal growth rates are more accurately described by a kinetic roughening hypothesis. Beyond sigma(sub c), crystals grow by the continuous addition of molecules anywhere on the crystal surface rather than layer-by-layer. The magnitude of the critical supersaturation (sigma(sub c), = 1.7 +/- 0.2) for a crossover from a layer-by-layer to continuous growth is found to be statistically independent of the solution conditions that vary with buffer pH, temperature or precipitant concentration. Using the experimentally determined values for gamma and sigma(sub c), we find the crystal growth unit to be comprised of 7 +/- 3 molecules. The energy barrier, E(sub c), for the continuous addition of the growth Units is 6.2 +/- 0.3 x 10(exp -13) erg/molecule or 15 +/1 1 k(sub beta)T at 22C.

  19. In Vitro Determination of the Allergenic Potential of Egg White in Processed Meat

    PubMed Central

    Hildebrandt, Sabine; Schütte, Larsen; Stoyanov, Stefan; Hammer, Günther; Steinhart, Hans; Paschke, Angelika

    2010-01-01

    Hen's egg white has been reported as a causative agent of allergic reactions, with ovalbumin, conalbumin, ovomucoid, and lysozyme being the major allergens. However, little is known about the effects of processing with heat and high pressure on the allergenicity of egg white proteins as ingredients in meat. For this purpose, the allergenic characteristics of such treated preparations were studied. The IgE-binding capacity was analyzed by EAST inhibition in raw and processed meat preparations using sera from patients with hen's egg specific IgE. Increasing heat treatment as well as the application of high pressure decreased IgE binding, which is a measure of allergenic potential. The combined application of heat (70°C) and high pressure had synergistic effects in reducing the allergenic potential nearly twice as the sum of the single treatments conducted separately. PMID:20948881

  20. Growth Mechanism of the (110) Face of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Meirong; Pusey, Marc L.

    1997-01-01

    The measured macroscopic growth rates of the (110) face of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. In earlier studies it has been shown that an aggregate growth unit could account for experimental growth-rate trends. In particular molecular packing and interactions in the growth of the crystal were favored by completion of the helices along the 4, axes. In this study the molecular orientations of the possible growth units and the molecular growth mechanism were identified. This indicated that growth was a two-step process: aggregate growth units corresponding to the 4, helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds. A more comprehensive analysis of the measured (110) growth rates was also undertaken. They were compared with the predicted growth rates from several dislocation and two-dimensional nucleation growth models, employing tetramer and Octamer growth units in polydisperse solutions and monomer units in monodisperse solutions. The calculations consistently showed that the measured growth rates followed the expected model relations with octamer growth units, in agreement with the predictions from the molecular level analyses.

  1. Crystal structure of low humidity tetragonal lysozyme at 2.1-A resolution. Variability in hydration shell and its structural consequences.

    PubMed

    Kodandapani, R; Suresh, C G; Vijayan, M

    1990-09-25

    Tetragonal crystals of hen egg white lysozyme undergo a reversible transformation, accompanied by loss of water, when the relative humidity of the environment is reduced to about 90%. The structure of the low humidity form has been analyzed, using x-ray data collected at 88% relative humidity, in order to explore the variability in protein hydration caused by a change in the amount of water surrounding the protein molecule and the consequent conformational perturbations in the molecule. The structure has been refined by the restrained least-squares method to an R value of 0.162 for 6269 observed reflections in the 10-2.1-A resolution shell. The refined structure provides interesting examples for the variability in helical parameters, the role of interactions involving side chains and water in the stabilization of secondary structural features, and favorable specific hydration sites. The protein molecule as a whole moves slightly in the low humidity form from its position in the native crystals. The hydration shell tends to move along with the protein. Significant changes, however, occur in the hydration shell. These changes cause structural perturbations in the enzyme molecule, which are most pronounced in regions involved in substrate binding. PMID:2398048

  2. Anodic Oxidative Modification of Egg White for Heat Treatment.

    PubMed

    Takahashi, Masahito; Handa, Akihiro; Yamaguchi, Yusuke; Kodama, Risa; Chiba, Kazuhiro

    2016-08-31

    A new functionalization of egg white was achieved by an electrochemical reaction. The method involves electron transfer from thiol groups of egg white protein to form disulfide bonds. The oxidized egg white produced less hydrogen sulfide during heat treatment; with sufficient application of electricity, almost no hydrogen sulfide was produced. In addition, gels formed by heating electrochemically oxidized egg white exhibited unique properties, such as a lower gelation temperature and a softened texture, presumably due to protein aggregation and electrochemically mediated intramolecular disulfide bond formation. PMID:27518910

  3. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Experimental evidence indicates a dominant role of solution phase interactions in nucleating and growing tetragonal lysozyme crystals. These interactions are extensive, even at saturation, and may be a primary cause of misoriented regions in crystals grown on Earth. Microgravity, by limiting interfacial concentrations to diffusion-controlled levels, may benefit crystal quality by also reducing the extent of associated species present at the interface.

  4. UV inactivation of E. coli in liquid egg white

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An ultraviolet light (UV) system was developed to pasteurize liquid egg white. The system consisted of low-pressure mercury bulbs surrounded by UV transparent tubing. Egg white was inoculated with Escherichia coli K12 and pumped through the UV system at a flow rate of 330 ml/min. The effects of trea...

  5. High-quality crystallization of lysozyme by magneto-Archimedes levitation in a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Oda, Yutaka; Ataka, Mitsuo

    2004-02-01

    By using gadolinium chloride as a crystallizing agent, and by applying a magnetic field of 3.8 T, we could crystallize lysozyme in a floating and containerless state. Optically, these crystals had little injury on the surface. Such flawless crystals were obtained only when they crystallized at the air-solution interface. White X-ray topography also showed that the crystals grown in a floating state contained less strain. As to why the crystals floated, we considered that magneto-Archimedes levitation occurred: lysozyme crystals are diamagnetic and the solution containing the Gd ions is paramagnetic. Owing to the difference in the magnetic property, the upward magnetic buoyancy force acting on the crystals could be enhanced, leading to levitation even in a usual superconducting magnet. This method may be used to manufacture high-quality protein crystals.

  6. Crystallization of insulin and lysozyme under reduced convection condition in a large gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Yin, D. C.; Wakayama, N. I.; Fujiwara, M.; Harata, K.; Xue, X. P.; Fu, Z. X.; Zhang, S. W.; Shang, P.; Tanimoto, Y.

    The crystallization of protein from solution is governed by the process of transport phenomenon Any reason affecting the process of solute transport will impose effects on the crystallization process thus further affects the crystal quality Recent advancement in superconducting magnet technology makes it possible to provide a low cost long-time durable low effective gravity environment for the control of convection which is similar to the environment in the space As an ideal means to damp natural convection in a non-conductive solution on the Earth it may find applications in the field of protein crystallization In this presentation the authors investigated the crystallization of orthorhombic lysozyme crystals tetragonal lysozyme crystals and insulin crystals in a large gradient magnetic field Three effective gravity levels were used milli-gravity around 0G normal gravity 1G and hypergravity 1 8G Comparisons of the crystal quality obtained inside and outside the magnetic field showed that both the magnetic field and the effective gravity could affect the crystal quality But the effect also depends on the crystal and protein type For lysozyme crystals in tetragonal form the magnetic field and effective gravity showed no obvious effect on the quality whereas for the crystals in orthorhombic form both the magnetic field and effective gravity improved the crystal quality For insulin crystal which is highly symmetrical magnetic field and effective gravity showed no strong effect on the crystal quality It is well known that

  7. Crystallization, data collection and phasing of two digestive lysozymes from Musca domestica

    SciTech Connect

    Marana, S. R.; Cançado, F. C.; Valério, A. A.; Ferreira, C.; Terra, W. R.; Barbosa, J. A. R. G.

    2006-08-01

    The digestive lysozymes 1 and 2 from M. domestica were crystallized by vapour diffusion. The crystallographic data were processed to a maximum resolution of 1.9 Å in both cases. Lysozymes are mostly known for their defensive role against bacteria, but in several animals lysozymes have a digestive function. Here, the initial crystallographic characterization of two digestive lysozymes from Musca domestica are presented. The proteins were crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium sulfate or PEG/2-propanol as the precipitant. X-ray diffraction data were collected to a maximum resolution of 1.9 Å using synchrotron radiation. The lysozyme 1 and 2 crystals belong to the monoclinic space group P2{sub 1} (unit-cell parameters a = 36.52, b = 79.44, c = 45.20 Å, β = 102.97°) and the orthorhombic space group P2{sub 1}2{sub 1}2 (unit-cell parameters a = 73.90, b = 96.40, c = 33.27 Å), respectively. The crystal structures were solved by molecular replacement and structure refinement is in progress.

  8. Protein crystallization in a 100 nl solution with new stirring equipment.

    PubMed

    Maki, S; Murai, R; Yoshikawa, H Y; Kitatani, T; Nakata, S; Kawahara, H; Hasenaka, H; Kobayashi, A; Okada, S; Sugiyama, S; Adachi, H; Matsumura, H; Takano, K; Murakami, S; Inoue, T; Sasaki, T; Mori, Y

    2008-05-01

    To investigate quantitatively the effects of stirring on protein crystallization, a new stirring system which can agitate a protein solution, approximately 100 nl, by providing Hagen-Poiseuille flow has been successfully developed. In addition, this new stirring system provides flow with a well defined pattern and velocity. Using this system, hen egg-white lysozyme was crystallized in 100-200 nl solutions while being stirred. The optimum stirring conditions for lysozyme crystals have been explored by evaluating the Reynolds (Re) number and the crystals obtained. Intermittent flow, as well as a low Re number, was found to contribute significantly to the growth of a smaller number of larger crystals. PMID:18421156

  9. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    PubMed Central

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-01-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization. PMID:25760593

  10. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2, 4-pentanediol

    SciTech Connect

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Crystallization of lysozyme with (R)-2-methyl-2, 4-pentanediol produces more ordered crystals and a higher resolution protein structure than crystallization with (S)-2-methyl-2, 4-pentanediol. The results suggest that chiral interactions with chiral additives are important in protein crystal formation. Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2, 4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.

  11. Does Warming a Lysozyme Solution Cook Ones Data?

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Burke, Michael; Judge, Russell

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.

  12. The Effect of Solution Parameters on Lysozyme Nucleation Rates and Crystal Quality

    NASA Technical Reports Server (NTRS)

    Judge, R. A.; Snell, E. H.

    1998-01-01

    In the pursuit of strongly diffracting high quality macromolecule crystals of suitable volume, this study investigates how the formation of macromolecules in solution and their growth characteristics effect crystal volume and diffracting quality. We systematically investigated the effect of solution conditions on lysozyme nucleation rates and the volume of crystals produced. Batch crystallization plates were used in combination with a video microscope system to measure nucleation rates and crystal volume. As expected from classical nucleation theory, crystal numbers were found to increase with increases in temperature and supersaturation. Small changes in solution pH, at constant supersaturation values were found, however, to dramatically effect the number of crystals nucleated in the wells varying from 1000s to 10s in the pH range 4.0 to 5.2. Having optimized the conditions required to produce an appropriate number of crystals of a suitable volume for X-ray analysis, a large number of uniform crystals were produced under exactly the same conditions. In the X-ray analysis of more than 50 such crystals there was found a wide variation in crystal lattice parameters and data quality. The variation in X-ray quality crystal samples is thought to be related to the growth rate variation caused by growth rate dispersion seen in lysozyme crystal growth experiments.

  13. Electron microscopic studies on the initial process of lysozyme crystal growth

    NASA Astrophysics Data System (ADS)

    Michinomae, M.; Mochizuki, M.; Ataka, M.

    1999-02-01

    The initial process of lysozyme crystallization has been investigated by negatively stained electron microscopy. In the initial process of crystallization, two steps were distinguished by the appearance of associating protein molecules. One is the formation of the short threads, and the other the formation of the spherical structure (looks like a rice-ball). From among the mass of the rice-balls, larger structure appears. Some of them show the arrangement of molecules as a crystalline lattice. The spacing between the molecules agrees with one of the lattice constants known for the tetragonal lysozyme crystals. The rice-balls may be taken into crystals as essential growth units. Similarly, the thread-like structures may be the unit to form the rice-balls that appear in the next step.

  14. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  15. Energy Minimization of Molecular Features Observed on the (110) Face of Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Perozzo, Mary A.; Konnert, John H.; Li, Huayu; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    Molecular dynamics and energy minimization have been carried out using the program XPLOR to check the plausibility of a model lysozyme crystal surface. The molecular features of the (110) face of lysozyme were observed using atomic force microscopy (AFM). A model of the crystal surface was constructed using the PDB file 193L, and was used to simulate an AFM image. Molecule translations, van der Waals radii, and assumed AFM tip shape were adjusted to maximize the correlation coefficient between the experimental and simulated images. The highest degree of 0 correlation (0.92) was obtained with the molecules displaced over 6 A from their positions within the bulk of the crystal. The quality of this starting model, the extent of energy minimization, and the correlation coefficient between the final model and the experimental data will be discussed.

  16. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  17. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Astrophysics Data System (ADS)

    Wilson, Lori J.

    1994-10-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  18. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    DOE PAGESBeta

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozymemore » and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less

  19. Lack of Evidence for Prenucleation Aggregate Formation in Lysozyme Crystal Growth Solutions

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1996-01-01

    There have been numerous claims of large concentrations of prenucleation aggregates in supersaturated as well as undersaturated lysozyme solutions at high salt concentrations. The presence of these aggregates was derived from measurements of the light or neutron scattering intensity, ultracentrifugation and dialysis behavior, as well as over-simplified crystal growth kinetics considerations. In all these interpretations it has been assumed that lysozyme solutions are either ideal or that protein interactions are independent of salt concentration. Contrary to these presumptions, our static and dynamic light scattering experiments provide evidence that lysozyme forms highly non-ideal, strongly interacting solutions. At low salt concentrations, the scattering intensities fall well below the values expected for an ideal, monomeric solution at the same protein concentration, while diffusivities increase with increasing protein concentration. Upon increase in salt concentration, these trends are eventually reversed. This enhancement in scattering intensity and decrease in diffusivity was widely interpreted as sign of aggregate formation. Yet, a quantitative interpretation of the scattering behavior over the whole salt concentration range can only be given in terms of a transition from net repulsion to net attraction between lysozyme monomers. Increased salt screening of the electrostatic repulsion among the protein macro-ions, together with attractive protein interactions, such as van der Waals, hydrophobic and hydration forces, provide an unambiguous mechanism for the observed transition and a more physical interpretation of the various observations.

  20. Cell wall substrate specificity of six different lysozymes and lysozyme inhibitory activity of bacterial extracts.

    PubMed

    Nakimbugwe, Dorothy; Masschalck, Barbara; Deckers, Daphne; Callewaert, Lien; Aertsen, Abram; Michiels, Chris W

    2006-06-01

    We have investigated the specificity of six different lysozymes for peptidoglycan substrates obtained by extraction of a number of gram-negative bacteria and Micrococcus lysodeikticus with chloroform/Tris-HCl buffer (chloroform/buffer). The lysozymes included two that are commercially available (hen egg white lysozyme or HEWL, and mutanolysin from Streptomyces globisporus or M1L), and four that were chromatographically purified (bacteriophage lambda lysozyme or LaL, bacteriophage T4 lysozyme or T4L, goose egg white lysozyme or GEWL, and cauliflower lysozyme or CFL). HEWL was much more effective on M. lysodeikticus than on any of the gram-negative cell walls, while the opposite was found for LaL. Also the gram-negative cell walls showed remarkable differences in susceptibility to the different lysozymes, even for closely related species like Escherichia coli and Salmonella Typhimurium. These differences could not be due to the presence of lysozyme inhibitors such as Ivy from E. coli in the cell wall substrates because we showed that chloroform extraction effectively removed this inhibitor. Interestingly, we found strong inhibitory activity to HEWL in the chloroform/buffer extracts of Salmonella Typhimurium, and to LaL in the extracts of Pseudomonas aeruginosa, suggesting that other lysozyme inhibitors than Ivy exist and are probably widespread in gram-negative bacteria. PMID:16684100

  1. Free-energy analysis of lysozyme-triNAG binding modes with all-atom molecular dynamics simulation combined with the solution theory in the energy representation

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Burri, Raghunadha Reddy; Ishikawa, Takeshi; Ishikura, Takakazu; Sakuraba, Shun; Matubayasi, Nobuyuki; Kuwata, Kazuo; Kitao, Akio

    2013-02-01

    We propose a method for calculating the binding free energy of protein-ligand complexes using all-atom molecular dynamics simulation combined with the solution theory in the energy representation. Four distinct modes for the binding of tri-N-acetyl-D-glucosamine (triNAG) to hen egg-white lysozyme were investigated, one from the crystal structure and three generated by docking predictions. The proposed method was demonstrated to be used to distinguish the most plausible binding mode (crystal model) as the lowest binding energy mode.

  2. The Anti-sigma Factor RsiV Is a Bacterial Receptor for Lysozyme: Co-crystal Structure Determination and Demonstration That Binding of Lysozyme to RsiV Is Required for σV Activation.

    PubMed

    Hastie, Jessica L; Williams, Kyle B; Bohr, Lindsey L; Houtman, Jon C; Gakhar, Lokesh; Ellermeier, Craig D

    2016-09-01

    σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF) σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP). In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme. PMID:27602573

  3. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... use under § 173.25 of this chapter shall be used. As a further preliminary step to drying, the glucose... microorganisms. Dried egg whites may be powdered. (b) The optional glucose-removing procedures are: (1) Enzyme procedure. A glucose-oxidase-catalase preparation and hydrogen peroxide solution are added to liquid...

  4. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... use under § 173.25 of this chapter shall be used. As a further preliminary step to drying, the glucose... microorganisms. Dried egg whites may be powdered. (b) The optional glucose-removing procedures are: (1) Enzyme procedure. A glucose-oxidase-catalase preparation and hydrogen peroxide solution are added to liquid...

  5. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process. PMID:26772660

  6. Liquid egg white pasteurization using a centrifugal UV irradiator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies are lacking on UV nonthermal pasteurization of liquid egg white (LEW). The objective of this study was to inactivate Escherichia coli using a UV irradiator that centrifugally formed a thin film of LEW on the inside of a rotating cylinder. The LEW was inoculated with E. coli K12 to approximat...

  7. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the... in the fermentation and the time and temperature of reaction are sufficient to substantially...

  8. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the... in the fermentation and the time and temperature of reaction are sufficient to substantially...

  9. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... fermentation procedures—(i) Yeast procedure. Food-grade baker's yeast (Saccharomyces cerevisiae) is added to the liquid egg whites and controlled fermentation is maintained. The quantity of yeast used and the... in the fermentation and the time and temperature of reaction are sufficient to substantially...

  10. CCD video observation of microgravity crystallization of lysozyme and correlation with accelerometer data.

    PubMed

    Snell, E H; Boggon, T J; Helliwell, J R; Moskowitz, M E; Nadarajah, A

    1997-11-01

    Lysozyme has been crystallized using the ESA Advanced Protein Crystallization Facility onboard the NASA Space Shuttle Orbiter during the IML-2 mission. CCD video monitoring was used to follow the crystallization process and evaluate the growth rate. During the mission some tetragonal crystals were observed moving over distances of up to 200 micrometers. This was correlated with microgravity disturbances caused by firings of vernier jets on the Orbiter. Growth-rate measurement of a stationary crystal (which had nucleated on the growth reactor wall) showed spurts and lulls correlated with an onboard activity: astronaut exercise. The stepped growth rates may be responsible for the residual mosaic block structure seen in crystal mosaicity and topography measurements. PMID:11540584

  11. CCD Video Observation of Microgravity Crystallization of Lysozyme and Correlation with Accelerometer Data

    NASA Technical Reports Server (NTRS)

    Snell, E. H.; Boggon, T. J.; Helliwell, J. R.; Moskowitz, M. E.; Nadarajah, A.

    1997-01-01

    Lysozyme has been crystallized using the ESA Advanced Protein Crystallization Facility onboard the NASA Space Shuttle Orbiter during the IML-2 mission. CCD video monitoring was used to follow the crystallization process and evaluate the growth rate. During the mission some tetragonal crystals were observed moving over distances of up to 200 micrometers. This was correlated with microgravity disturbances caused by firings of vernier jets on the Orbiter. Growth-rate measurement of a stationary crystal (which had nucleated on the growth reactor wall) showed spurts and lulls correlated with an onboard activity; astronaut exercise. The stepped growth rates may be responsible for the residual mosaic block structure seen in crystal mosaicity and topography measurements.

  12. The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  13. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  14. The Solubility of Orthorhombic Lysozyme Crystals Obtained at High pH

    SciTech Connect

    Aldabaibeh, Naser; Jones, Matthew J.; Myerson, Allan S.; Ulrich, Joachim

    2009-07-06

    The high pH region of the phase diagram of lysozyme with NaCl as a precipitant was determined. In this region of the phase diagram, lysozyme crystallizes in one of two different orthorhombic modifications, the low and high temperature orthorhombic modifications. The solubility of two modifications was measured at different temperatures, pH values, and NaCl concentrations. Both modifications show a similar dependence on the solution conditions where solubility increases with temperature and decreases with pH and NaCl concentration. The transition temperature between the two modifications was determined from the solubility curves and was shown to increase with pH and NaCl concentration. At pH values close to the isoelectric point (pH 11), the transition temperature becomes independent of NaCl concentration.

  15. Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.

  16. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  17. On the adsorption of magnetite nanoparticles on lysozyme amyloid fibrils.

    PubMed

    Majorosova, Jozefina; Petrenko, Viktor I; Siposova, Katarina; Timko, Milan; Tomasovicova, Natalia; Garamus, Vasil M; Koralewski, Marceli; Avdeev, Mikhail V; Leszczynski, Błażej; Jurga, Stefan; Gazova, Zuzana; Hayryan, Shura; Hu, Chin-Kun; Kopcansky, Peter

    2016-10-01

    An adsorption of magnetic nanoparticles (MNP) from electrostatically stabilized aqueous ferrofluids on amyloid fibrils of hen egg white lysozyme (HEWL) in 2mg/mL acidic dispersions have been detected for the MNP concentration range of 0.01-0.1vol.%. The association of the MNP with amyloid fibrils has been characterized by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS) and magneto-optical measurements. It has been observed that the extent of adsorption is determined by the MNP concentration. When increasing the MNP concentration the formed aggregates of magnetic particles repeat the general rod-like structure of the fibrils. The effect is not observed when MNP are mixed with the solution of lysozyme monomers. The adsorption has been investigated with the aim to clarify previously found disaggregation activity of MNP in amyloid fibrils dispersions and to get deeper insight into interaction processes between amyloids and MNP. The observed effect is also discussed with respect to potential applications for ordering lysozyme amyloid fibrils in a liquid crystal phase under external magnetic fields. PMID:27451367

  18. Effects of Kinetic Roughening and Liquid-Liquid Phase Transition on Lysozyme Crystal Growth Velocities

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Konnert, John; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We measured the growth velocities of the (110) face of tetragonal lysozyme, V (centimeters per second), at four different concentrations, c (milligrams per milliliter), as the solution temperature, T (Centigrade), was reduced. For a broad range of T dependent on c, we find that the growth velocities increased as the solution temperature was reduced. The initial increase in V is well characterized by the 2D nucleation model for crystal growth, yielding the magnitude of an effective barrier for growth, gamma(sub s) = 1.2 plus or minus 0.1 x 10(exp -13) erg/molecule. Below certain temperatures, T(sub cr), dependent on c, however, a kinetic roughening hypothesis that considers the continuous addition of molecules anywhere on the crystal surface better describes the observed growth velocities. The application of the continuous growth model, up to the solution cloud-point temperatures, T(sub cl), enabled the determinations of the crossover concentration, c(sub r), from estimated values of T(sub cr). For all conditions presented, we find that the crossover from growth by 2D nucleation to continuous addition occurs at a supersaturation, sigma (sub c), = 2.0 plus or minus 0.1. Moreover, we find the energy barrier for the continuous addition, E(sub c), within the temperature range T(sub cl) less than T less than T less than T (sub cr), to be 6 plus or minus 1 x 10(exp -13) erg/molecule. Further reduction of T below approximately 2-3 C of T(sub cl), also revealed a rapid slowing of crystal growth velocities. From quasi-elastic light scattering investigations, we find that the rapid diminishment of crystal growth velocities can be accounted for by the phase behavior of lysozyme solutions. Namely, we find the reversible formation of dense fluid proto-droplets comprised of lysozyme molecules to occur below approximately 0.3 C of T(sub cl). Hence, the rapid slowing of growth velocities may occur as a result of the sudden depletion of "mobile" molecules within crystal growth

  19. Time-dependent Protein-directed Growth of Gold Nanoparticles within a Single Crystal of Lysozyme

    SciTech Connect

    H Wei; Z Wang; J Zhang; S House; Y Gao; L Yang; H Robinson; L Tan; H Xing; C Hou

    2011-12-31

    Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

  20. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme

    SciTech Connect

    Wei, H.; Robinson, H.; Wang, Z.; Zhang, J.; House, S.; Gao, Y.-G.; Yang, L.; Tan, L. H.; Xing, H.; Hou, C.; Robertson, I. M.; Zuo, J.-M.; Lu, Y.

    2011-01-30

    Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

  1. Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure.

    PubMed

    Nakimbugwe, Dorothy; Masschalck, Barbara; Atanassova, Miroslava; Zewdie-Bosüner, Abebetch; Michiels, Chris W

    2006-05-01

    The antibacterial working range of six lysozymes was tested under ambient and high pressure, on a panel of five gram-positive (Enterococcus faecalis, Bacillus subtilis, Listeria innocua, Staphylococcus aureus and Micrococcus lysodeikticus) and five gram-negative bacteria (Yersinia enterocolitica, Shigella flexneri, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella typhimurium). The lysozymes included two that are commercially available (hen egg white lysozyme or HEWL, and mutanolysin from Streptomyces globisporus or M1L), and four that were chromatographically purified (bacteriophage lambda lysozyme or LaL, bacteriophage T4 lysozyme or T4L, goose egg white lysozyme or GEWL, and cauliflower lysozyme or CFL). T4L, LaL and GEWL were highly pure as evaluated by silver staining of SDS-PAGE gels and zymogram analysis while CFL was only partially pure. At ambient pressure each gram-positive test organism displayed a specific pattern of sensitivity to the six lysozymes, but none of the gram-negative bacteria was sensitive to any of the lysozymes. High pressure treatment (130-300 MPa, 25 degrees C, 15 min) sensitised several gram-positive and gram-negative bacteria for one or more lysozymes. M. lysodeikticus and P. aeruginosa became sensitive to all lysozymes under high pressure, S. typhimurium remained completely insensitive to all lysozymes, and the other bacteria showed sensitisation to some of the lysozymes. The possible applications of the different lysozymes as biopreservatives, and the possible reasons for the observed differences in bactericidal specificity are discussed. PMID:16487612

  2. An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides.

    PubMed

    Pokora, M; Zambrowicz, A; Dąbrowska, A; Eckert, E; Setner, B; Szołtysik, M; Szewczuk, Z; Zabłocka, A; Polanowski, A; Trziszka, T; Chrzanowska, J

    2014-05-15

    The aim of this study was to (i) examine how enzymatic hydrolysis with a non-commercially available proteinase of fig-leaf gourd fruit (Cucurbita ficifolia) increased the use value of egg white protein preparations, generated as byproducts in the industrial process of lysozyme and cystatin isolation from egg white, and (ii) evaluate the inhibition of angiotensin I-converting enzyme (ACE) by the obtained hydrolysates. Purification procedures including membrane filtration, gel filtration chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) led to the production of several peptide fractions. Two novel ovalbumin-derived tetrapeptides: SWVE (f 148-151) and DILN (f 86-89) with ACE inhibitory activity were obtained. Study of their inhibitory kinetics revealed a non-competitive binding mode, with an IC50 value against ACE of 33.88 and 73.44 μg for SWVE and DILN, respectively. Synthetic peptides which were designed on the basis of peptide SWVE were examined. A tripeptide sequence of SWV revealed the strongest ACE-inhibitory activity. PMID:24423562

  3. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

    PubMed

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  4. Regulation of Exacerbated Immune Responses in Human Peripheral Blood Cells by Hydrolysed Egg White Proteins

    PubMed Central

    Lozano-Ojalvo, Daniel; Molina, Elena; López-Fandiño, Rosina

    2016-01-01

    The anti-allergic potential of egg white protein hydrolysates (from ovalbumin, lysozyme and ovomucoid) was evaluated as their ability to hinder cytokine and IgE production by Th2-skewed human peripheral blood mononuclear cells (PBMCs), as well as the release of pro-inflammatory factors and generation of reactive oxygen species from Th1-stimulated peripheral blood leukocytes (PBLs). The binding to IgE of egg allergic patients was determined and the peptides present in the hydrolysates were identified. The hydrolysates with alcalase down-regulated the production of Th2-biased cytokines and the secretion of IgE to the culture media of Th2-skewed PBMCs, and they significantly neutralized oxidative stress in PBLs. The hydrolysates of ovalbumin and ovomucoid with pepsin helped to re-establish the Th1/Th2 balance in Th2-biased PBMCs, while they also inhibited the release of pro-inflammatory mediators and reduced oxidative stress in PBLs treated with inflammatory stimuli. The hydrolysates with alcalase, in addition to equilibrating Th2 differentiation, exhibited a low IgE-binding. Therefore, they would elicit mild allergic reactions while retaining T cell-stimulating abilities, which might correlate with an anti-allergic benefit. PMID:27007699

  5. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules

    PubMed Central

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  6. Regulation of Exacerbated Immune Responses in Human Peripheral Blood Cells by Hydrolysed Egg White Proteins.

    PubMed

    Lozano-Ojalvo, Daniel; Molina, Elena; López-Fandiño, Rosina

    2016-01-01

    The anti-allergic potential of egg white protein hydrolysates (from ovalbumin, lysozyme and ovomucoid) was evaluated as their ability to hinder cytokine and IgE production by Th2-skewed human peripheral blood mononuclear cells (PBMCs), as well as the release of pro-inflammatory factors and generation of reactive oxygen species from Th1-stimulated peripheral blood leukocytes (PBLs). The binding to IgE of egg allergic patients was determined and the peptides present in the hydrolysates were identified. The hydrolysates with alcalase down-regulated the production of Th2-biased cytokines and the secretion of IgE to the culture media of Th2-skewed PBMCs, and they significantly neutralized oxidative stress in PBLs. The hydrolysates of ovalbumin and ovomucoid with pepsin helped to re-establish the Th1/Th2 balance in Th2-biased PBMCs, while they also inhibited the release of pro-inflammatory mediators and reduced oxidative stress in PBLs treated with inflammatory stimuli. The hydrolysates with alcalase, in addition to equilibrating Th2 differentiation, exhibited a low IgE-binding. Therefore, they would elicit mild allergic reactions while retaining T cell-stimulating abilities, which might correlate with an anti-allergic benefit. PMID:27007699

  7. Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells.

    PubMed

    Lozano-Ojalvo, Daniel; Molina, Elena; López-Fandiño, Rosina

    2016-02-01

    This work assessed the effects of hydrolysates of ovalbumin (OVA), lysozyme (LYS), ovomucoid (OM) and whole egg white (EW) on cytokine secretion, antibody production, oxidative stress and proliferation of murine spleen and mesenteric lymph node cells stimulated with T- (concanavalin A - ConA) or B-cell mitogens (lipopolysaccharide - LPS). The hydrolysates of OVA, LYS and EW with alcalase reduced ConA-stimulated lymphocyte proliferation and production of Th2-biased cytokines, such as IL-13 and IL-10, and decreased the secretion of the Th1 cytokine TNF-α. In addition, these hydrolysates considerably inhibited IgG1-class switching induced by LPS and counteracted the release of reactive oxygen species. EW peptides modulated the immune responses of murine cells to mitogen stimuli, revealing potential activities that could be used for different purposes as Th1- or Th2-skewing mediators. PMID:26778535

  8. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  9. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Astrophysics Data System (ADS)

    Forsythe, Elizabeth; Lee Pusey, Marc

    1994-05-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22°C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from ˜4 to ˜63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/ Csat to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  10. Diffraction and imaging study of imperfections of crystallized lysozyme with coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Chu, Y. S.; Lai, B.; Thomas, B. R.; Chernov, A. A.

    2004-01-01

    Phase-contrast X-ray diffraction imaging and high-angular-resolution diffraction combined with phase-contrast radiographic imaging were employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in the symmetric Laue case. The full-width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal was approximately 16.7 arcsec and imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <1 1 0> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Inclusions of impurities or formations of foreign particles in the central growth region are resolved in the images with high sensitivity to defects. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in X-ray diffraction images. The details of the observed defects and the significant change in the revealed microstructures with drying provide insight into the nature of imperfections, nucleation and growth, and the properties of protein crystals.

  11. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar

    2002-01-01

    Lysozyme, and most particularly the tetragonal form of the protein, has become the default standard protein for use in macromolecule crystal nucleation and growth studies. There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests this proteins crystal nucleation and growth is by addition of associated species that are preformed by standard reversible concentration-driven self association processes in the bulk solution. The evidence includes high resolution AFM studies of the surface packing and of growth unit size at incorporation, fluorescence resonance energy transfer measurements of intermolecular distances in dilute solution, dialysis kinetics, and modeling of the growth rate data. We have developed a selfassociation model for the proteins crystal nucleation and growth. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. Further, it indicates that nucleation and crystal growth are not distinct mechanistically, but identical, with the primary difference being the probability that the particle will continue to grow or dissolve. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small (M.W. = 14,400), a structured octamer in the 4(sub 3) helix configuration (the proposed average sized growth unit) would have a M.W. = 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm commonly attach to the crystal. These measurements were made at approximately saturation conditions, and they reflect the sizes of species that both added or desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it

  12. Physical Properties of Microencapsulated ¿-3 Salmon oil with Egg White Powder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microencapsulated salmon oil with egg white powders are a good source of high quality protein and amino acids including leucine and omega-3 fatty acids, which may be beneficial for athletes. The study demonstrated that egg white powders containing omega-3 salmon oil can be effectively produced by sp...

  13. Protein Crystal Growth Under Forced Solution Flow: Experimental Setup and General Response of Lysozyme

    NASA Technical Reports Server (NTRS)

    Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    We have experimentally studied the effects of solution flow on the growth kinetics of the protein lysozyme. To this end, we have expanded our interferometry setup by a novel crystallization cell and solution recirculation system. This combination permits monitoring of interface morphology and kinetics with a depth resolution of 200 A at bulk flow rates of up to 2000 micron/s. Particular attention was paid to the prevention of protein denaturation that is often associated with the pumping of protein solutions. We found that at bulk flow rates it less than 250 microns/s the average growth rate and step velocity, R(sub avg) and upsilon(sub avg) increase with increasing it. This can be quantitatively understood in terms of the enhanced, convective solute supply to the interface. With high-purity solutions, it u greater than 250 microns/s lead to growth deceleration, and, at low supersaturations sigma, to growth cessation. When solutions containing approx. 1% of other protein impurities were used, growth deceleration occurred at any u greater than 0 and cessation in the low sigma experiments was reached at about half the it causing cessation with pure solution. The flow-induced changes in R(sub avg) and upsilon(sub avg) including growth cessation, were reversible and reproducible, independent of the direction of the u-changes and solution purity. Hence, we attribute the deceleration to the convection-enhanced supply of impurities to the interface, which at higher flow rates overpowers the effects of enhanced interfacial solute concentration. Most importantly, we found that convective transport leads to a significant reduction in kinetics fluctuations, in agreement with our earlier expectations for the lysozyme system. This supports our hypothesis that these long-term fluctuations represent an intrinsic response feature of the coupled bulk transport-interfacial kinetics system in the mixed growth control regime.

  14. Fractal properties of lysozyme: a neutron scattering study.

    PubMed

    Lushnikov, S G; Svanidze, A V; Gvasaliya, S N; Torok, G; Rosta, L; Sashin, I L

    2009-03-01

    The spatial structure and dynamics of hen egg white lysozyme have been investigated by small-angle and inelastic neutron scattering. Analysis of the results was carried using the fractal approach, which allowed determination of the fractal and fracton dimensions of lysozyme, i.e., consideration of the protein structure and dynamics by using a unified approach. Small-angle neutron scattering studies of thermal denaturation of lysozyme have revealed changes in the fractal dimension in the vicinity of the thermal denaturation temperature that reflect changes in the spatial organization of protein. PMID:19391977

  15. Investigating the Effect of Impurities on Macromolecule Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Judge, Russell A.; Crawford, Lisa; Forsythe, Elizabeth L.; Pusey, Marc L.; Sportiello, Michael; Todd, Paul; Bellamy, Henry; Lovelace, Jeff; Cassanto, John M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Chicken egg-white lysozyme (CEWL) crystals were grown in microgravity and on the ground in the presence of various amounts of a naturally occurring lysozyme dimer impurity. No significant favorable differences in impurity incorporation between microgravity and ground crystal samples were observed. At low impurity concentration the microgravity crystals preferentially incorporated the dimer. The presence of the dimer in the crystallization solutions in microgravity reduced crystal size, increased mosaicity and reduced the signal to noise ratio of the X-ray data. Microgravity samples proved more sensitive to impurity. Accurate indexing of the reflections proved critical to the X-ray analysis. The largest crystals with the best X-ray diffraction properties were grown from pure solution in microgravity.

  16. Colorimetric and fluorometric dual-readout sensor for lysozyme.

    PubMed

    Zheng, Hanye; Qiu, Suyan; Xu, Kefeng; Luo, Linguang; Song, Yibiao; Lin, Zhenyu; Guo, Longhua; Qiu, Bin; Chen, Guonan

    2013-11-01

    A novel, highly sensitive and selective dual-readout sensor (colorimetric and fluorometric) for the detection of lysozyme was proposed. The fluorescence of triazolylcoumarin molecules was quenched by Au nanoparticles (AuNPs) initially through the fluorescence resonance energy transfer (FRET), after the addition of lysozyme, the stronger binding of lysozyme onto the surfaces of AuNPs made triazolylcoumarin molecules remove from the AuNPs surface and led to the recovery of the fluorescence of triazolylcoumarin molecules, and accompanied by the discernable color change of the solution from red to purple. The lowest detectable concentration for lysozyme was 50 ng mL(-1) by the naked eye, and the limit of detection (LOD) was 23 ng mL(-1) by fluorescence measurements. In addition, satisfactory results for lysozyme detection in hen egg white were confirmed in the study. Moreover, the presented sensor provides a reliable option to determine lysozyme with high sensitivity and selectivity. PMID:23978821

  17. A method for rapid liquid-solid phase solubility measurements using the protein lysozyme

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Gernert, Kim

    1988-01-01

    Using hen's egg white lysozyme crystals as the test material, a simple system was developed for rapidly and unambiguously determining solubilities in (aqueous) solutions. The system is based upon a maximization of the solid surface area available for solute transfer to or from the solution, and a minimization of both the solution volume which must be equilibrated and the distance over which diffusive solute exchange occurs. This technique is further enhanced by using duplicate test systems which differ only in that one approaches equilibrium from an oversaturated solution, while the other from an undersaturated solution. Thus, the resulting data pair brackets the solubility value. In practical terms, the data points are found to usually be within 3 percent of each other, and individual solubility data points may usually be made at this resolution within 8-24 h depending upon the temperature change made since the previous determination.

  18. The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.

  19. Protein crystallization in a 100 nl solution with new stirring equipment

    PubMed Central

    Maki, S.; Murai, R.; Yoshikawa, H. Y.; Kitatani, T.; Nakata, S.; Kawahara, H.; Hasenaka, H.; Kobayashi, A.; Okada, S.; Sugiyama, S.; Adachi, H.; Matsumura, H.; Takano, K.; Murakami, S.; Inoue, T.; Sasaki, T.; Mori, Y.

    2008-01-01

    To investigate quantitatively the effects of stirring on protein crystallization, a new stirring system which can agitate a protein solution, ∼100 nl, by providing Hagen–Poiseuille flow has been successfully developed. In addition, this new stirring system provides flow with a well defined pattern and velocity. Using this system, hen egg-white lysozyme was crystallized in 100–200 nl solutions while being stirred. The optimum stirring conditions for lysozyme crystals have been explored by evaluating the Reynolds (Re) number and the crystals obtained. Intermittent flow, as well as a low Re number, was found to contribute significantly to the growth of a smaller number of larger crystals. PMID:18421156

  20. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white.

    PubMed

    Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N

    2016-10-14

    Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad. PMID:27608886

  1. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  2. Synthesis of highly fluorescent gold nanoclusters using egg white proteins.

    PubMed

    Joseph, Dickson; Geckeler, Kurt E

    2014-03-01

    Gold nanoclusters (AuNCs) have gained interest during the recent years because of their low toxicity and finer size for the bioimaging and biolabeling applications in comparison to the semiconductor quantum dot analogues. Diverse materials such as sulfur compounds, peptides, dendrimers, proteins, etc., are exploited for the preparation of AuNCs. Henceforth, highly fluorescent, water-soluble, and few atom-containing gold nanoclusters are created using a rapid, straightforward, and green method. In this regard for the first time chicken egg white (CEW), one of the most unique materials, is utilized in an aqueous solution under basic conditions at physiological temperature for the preparation of AuNCs. Tyrosine and tryptophan amino acid residues are responsible for the conversion of Au ions to Au(0) under alkaline condtions. CEW contains four major proteins of which the main constituent protein, ovalbumin also leads to the formation of the AuNCs with a higher fluorescence emission compared to the CEW. The ratios between the different reaction partners are very crucial, along with temperature and time for the preparation of AuNCs with high photoluminescence emission. The limited vibrational motion of the proteins under alkaline condition and the bulkiness of the proteins help in the formation of AuNCs. PMID:24321847

  3. Anomalous signal of solvent bromides used for phasing of lysozyme.

    PubMed

    Dauter, Z; Dauter, M

    1999-05-28

    The anomalous signal of bromide ions, present in the crystal structure of tetragonal hen egg-white lysozyme through the substitution of NaCl by NaBr in the crystallization medium, was used for phasing of X-ray data collected to 1.7 A resolution with a wavelength near the absorption edge of bromine. Phasing of a single wavelength data set, based purely on anomalous deltaf " contribution, led to easily interpretable electron density, equivalent to the complete multiwavelength anonalous dispersion phasing based on four-wavelength data. The classic small-structure direct methods program SHELXS run against all anomalous differences gave a successful solution of six highest peaks corresponding to six bromide ions in the structure with data limited up to a resolution of 3.5 A. Interpretable maps were obtained at a resolution up to 3.0 A using programs MLPHARE and DM. Bromide ions occupy well ordered positions at the protein surface. Phasing based on the single wavelength signal of anomalous scatterers introduced into the ordered solvent shell can be proposed as a tool for solving structures of well diffracting crystals. PMID:10339408

  4. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    NASA Astrophysics Data System (ADS)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  5. Changes of microstructure characteristics and intermolecular interactions of preserved egg white gel during pickling.

    PubMed

    Zhao, Yan; Chen, Zhangyi; Li, Jianke; Xu, Mingsheng; Shao, Yaoyao; Tu, Yonggang

    2016-07-15

    Changes in gel microstructure characteristics and in intermolecular interactions of preserved egg whites during pickling were investigated. Spin-spin relaxation times of preserved egg whites significantly decreased in the first 8 days and remained unchanged after the 16th day. SEM images revealed a three-dimensional gel network, interwoven with a loose linear fibrous mesh structure. The protein gel mesh structure became more regular, smaller, and compacted with pickling time. Free sulfhydryl contents in the egg whites increased significantly, while total sulfhydryl contents dramatically decreased during pickling. The primary intermolecular forces in the preserved egg white gels were ionic and disulfide bonds. Secondary forces included hydrophobic interaction and relatively few hydrogen bonds. During the first 8 days, the proportion of ionic bonds sharply decreased, and that of disulfide bonds increased over the first 24 days. PMID:26948621

  6. Tandem ion exchange fractionation of chicken egg white reveals the presence of proliferative bioactivity.

    PubMed

    Lee, Albert; Molloy, Mark P; Baker, Mark S; Kapur, Amit

    2013-05-01

    Chicken eggs are recognized for their versatility as a food product and as a model for research in biology and medicine. This study investigated the egg white as a source of bioactive compounds. Egg white was fractionated using tandem ion exchange chromatography (SAX and SCX), and seven fractions were assessed for any associated bioactivity. Four fractions at various protein concentrations were shown to contain proliferative bioactivity that exceeded the FBS control. The most potent fraction (6) was used in an in vitro wound closure assay to demonstrate a positive influence on cell migration and restored scratch wounds more rapidly than the control. LC-MS/MS identified 33 proteins in fraction 6 of egg white, most of which play important roles in cell growth and development, signaling, motility, and proliferation. These candidate bioactives suggest that the egg white contains essential compounds that contribute to the growth of an embryo prior to fertilization. PMID:23574589

  7. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  8. From Egg to Crystal: A Practical on Purification, Characterization, and Crystallization of Lysozyme for Bachelor Students

    ERIC Educational Resources Information Center

    Olieric, Vincent; Schreiber, Angelique; Lorber, Bernard; Putz, Joern

    2007-01-01

    A practical hands-on course encompassing enzyme purification, biochemical characterization, and crystallization that completed the course work of 350 second-year bachelor students enrolled in molecular biology/biochemistry was given at the Universite Louis Pasteur of Strasbourg (France). The experimental part of the practical dealt entirely with…

  9. Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity

    PubMed Central

    Noh, Dong Ouk; Suh, Hyung Joo

    2015-01-01

    In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of α-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of α-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and α-amino nitrogen content after 24 h-hydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products. PMID:26451355

  10. Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity.

    PubMed

    Noh, Dong Ouk; Suh, Hyung Joo

    2015-09-01

    In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of α-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of α-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and α-amino nitrogen content after 24 h-hydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products. PMID:26451355

  11. Spatiotemporal development of soaked protein crystal

    NASA Astrophysics Data System (ADS)

    Mizutani, Ryuta; Shimizu, Yusuke; Saiga, Rino; Ueno, Go; Nakamura, Yuki; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2014-07-01

    Crystal soaking is widely performed in biological crystallography. This paper reports time-resolved X-ray crystallographic and microtomographic analyses of tetragonal crystals of chicken egg-white lysozyme soaked in mother liquor containing potassium hexachloroplatinate. The microtomographic analysis showed that X-ray attenuation spread from the superficial layer of the crystal and then to the crystal core. The crystallographic analyses indicated that platinum sites can be classified into two groups from the temporal development of the electron densities. A soaking process consisting of binding-rate-driven and equilibrium-driven layers is proposed to describe these results. This study suggests that the composition of chemical and structural species resulting from the soaking process varies depending on the position in the crystal.

  12. Oxidative refolding of reduced, denatured lysozyme in AOT reverse micelles.

    PubMed

    Fan, Jun-Bao; Chen, Jie; Liang, Yi

    2008-06-01

    The refolding kinetics of the reduced, denatured hen egg white lysozyme in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-isooctane-water reverse micelles at different water-to-surfactant molar ratios has been investigated by fluorescence spectroscopy and UV spectroscopy. The oxidative refolding of the confined lysozyme is biphasic in AOT reverse micelles. When the water-to-surfactant molar ratio (omega 0) is 12.6, the relative activity of encapsulated lysozyme after refolding for 24 h in AOT reverse micelles increases 46% compared with that in bulk water. Furthermore, aggregation of lysozyme at a higher concentration (0.2 mM) in AOT reverse micelles at omega 0 of 6.3 or 12.6 is not observed; in contrast, the oxidative refolding of lysozyme in bulk water must be at a lower protein concentration (5 microM) in order to avoid a serious aggregation of the protein. For comparison, we have also investigated the effect of AOT on lysozyme activity and found that the residual activity of lysozyme decreases with increasing the concentration of AOT from 1 to 5 mM. When AOT concentration is larger than 2 mM, lysozyme is almost completely inactivated by AOT and most of lysozyme activity is lost. Together, our data demonstrate that AOT reverse micelles with suitable water-to-surfactant molar ratios are favorable to the oxidative refolding of reduced, denatured lysozyme at a higher concentration, compared with bulk water. PMID:18377920

  13. Composite cryogels for lysozyme purification.

    PubMed

    Baydemir, Gözde; Türkoğlu, Emir Alper; Andaç, Müge; Perçin, Işık; Denizli, Adil

    2015-01-01

    Beads-embedded novel composite cryogel was synthesized to purify lysozyme (Lyz) from chicken egg white. The poly(hydroxyethyl methacrylate-N-methacryloyl-L-phenylalanine) (PHEMAPA) beads of smaller than 5 µm size were synthesized by suspension polymerization and then embedded into a poly(hydroxyethyl methacrylate) (PHEMA)-based cryogel column. The PHEMAPA bead-embedded cryogel (BEC) column was characterized by swelling tests, scanning electron microscopy (SEM), surface area measurements by the Brunauer-Emmett-Teller (BET) method, elemental analysis, and flow dynamics. The specific surface area of the PHEMAPA BEC was found as 41.2 m(2) /g using BET measurements. Lyz-binding experiments were performed using aqueous solutions in different conditions such as initial Lyz concentration, pH, flow rate, temperature, and NaCl concentration of an aqueous medium. The PHEMAPA BEC column could be used after 10 adsorption-desorption studies without any significant loss in adsorption capacity of Lyz. The PHEMAPA BEC column was used to purify Lyz from chicken egg white, and gel electrophoresis was used to estimate the purity of Lyz. The chromatographic application of the PHEMAPA BEC column was also performed using fast protein liquid chromatography. PMID:24923509

  14. Rapid and simple purification of lysozyme from the egg shell membrane.

    PubMed

    Kozuka, Miyuki; Murao, Sato; Yamane, Takuya; Inoue, Tsutomu; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-01-01

    Lysozyme (EC 3.2.1.17) is a hydrolytic enzyme that cleaves the β-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, a major bacterial cell wall polymer. In the food industry, lysozyme is used as an additive mainly in the production of wine and beer. Lysozyme was found to be localized in the egg shell membrane. In this study, we found that lysozyme was easily purified from the egg shell membrane and that the enzyme also had antibacterial activity. Furthermore, we found that the antibacterial activity of purified lysozyme from the egg shell membrane was lower than that of purified lysozyme from the egg white at alkaline pH. The method for rapid purification of lysozyme developed in this study should contribute to the food industry. PMID:25994146

  15. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    SciTech Connect

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.

  16. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel J.; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 43 axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to (3)500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 (Registered) PHE or ALA and ASN 113 (Registered) ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 43 helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  17. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel; Pusey, Marc

    1998-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk'solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 4(sub 3) axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to greater than 500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 yields PHE or ALA and ASN 113 yields ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 4(sub 3) helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  18. Optimization of Extraction Parameters for Enhanced Production of Ovotransferrin from Egg White for Antimicrobial Applications

    PubMed Central

    Alshammari, Eyad M. A.; Khan, Saif; Jawed, Arshad; Adnan, Mohd; Khan, Mahvish; Nabi, Gowher; Lohani, Mohtashim; Haque, Shafiul

    2015-01-01

    Ovotransferrin is the second most abundant protein (~12-13% of the total egg protein) in egg white after ovalbumin. Ovotransferrin is a potent natural antimicrobial agent as it possesses antibacterial, antifungal, and antiviral properties and is also the major metal binding protein found in egg, which makes it an industrially important protein. Ovotransferrin was extracted from egg white using its metal (iron) binding properties. In the present study, eggs from two different sources were used (fresh local eggs from domestic household source and poultry eggs from shops) to compare the results and Response Surface Methodology was used for the experiment design and data analysis. The following extraction conditions were optimized so as to maximize the yield of ovotransferrin from egg white: ethanol % (v/v) and pH and volume (mL) of 25 mM FeCl3/50 mL of egg white. A maximum yield of ~85 ± 2.5% was obtained near the optimum extraction conditions. The yield was calculated based on the theoretical value (934 mg) of ovotransferrin in 100 mL of 1.5x diluted egg white solution. Our results suggest that efficient downstream processing may reduce the cost of overall production process of this promising enzyme, making it a natural and cost-effective alternative to the existing chemically synthesized antimicrobial agents. PMID:26640801

  19. Preparation and Characterization of Fluorescent Derivatives of Lysozyme

    NASA Technical Reports Server (NTRS)

    Smith, Lori; Pusey, Marc

    1998-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. However, its use in macromolecular crystal growth studies is hampered by the necessity of preparing fluorescent derivatives where the probe does not markedly affect the crystal packing. Alternatively, one can prepare derivatives of limited utility if it is known that they will not affect the specific goals of a given study. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme, covalently attaching fluorescent probes to two different sites on the protein molecule. The first site is the side chain carboxyl group of ASP 101. Amine containing probes such as lucifer yellow, cascade blue, and 5- (2-aminoethyl) aminonapthalene-l-sulfonic acid (EDANS) have been attached using a carbodiimide coupling procedure. ASP 101 lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. This is supported by the fact that all such derivatives have been found to crystallize, with the crystals being fluorescent. Tetragonal crystals of the lucifer yellow derivative have been found to diffract to at least 1.9 A resolution. X-ray diffraction data has been acquired and we are now working on the structure of this derivative. The second group of derivatives is to the N-terminal amine group. The derivatization reaction is performed by using a succinimidyl ester of the probe to be attached. Fluorescent probes such as pyrene acetic acid, 5-carboxyfluorescein, and Oregon green have been attached to this site. We have had little success in crystallizing these derivatives, probably because this site is part of the contact region between the 43 helix chains. However, these sites do not interfere with formation of the 43 helices and the derivatives are suitable for study of their formation in solution. The derivatives are being characterized by steady state and lifetime fluorescence methods, and the presentation will discuss these

  20. Determination of yolk contamination in liquid egg white using Raman spectroscopy.

    PubMed

    Cluff, K; Konda Naganathan, G; Jonnalagada, D; Mortensen, I; Wehling, R; Subbiah, J

    2016-07-01

    Purified egg white is an important ingredient in a number of baked and confectionary foods because of its foaming properties. However, yolk contamination in amounts as low as 0.01% can impede the foaming ability of egg white. In this study, we used Raman spectroscopy to evaluate the hypothesis that yolk contamination in egg white could be detected based on its molecular optical properties. Yolk contaminated egg white samples (n = 115) with contamination levels ranging from 0% to 0.25% (on weight basis) were prepared. The samples were excited with a 785 nm laser and Raman spectra from 250 to 3,200 cm(-1) were recorded. The Raman spectra were baseline corrected using an optimized piecewise cubic interpolation on each spectrum and then normalized with a standard normal variate transformation. Samples were randomly divided into calibration (n = 77) and validation (n = 38) data sets. A partial least squares regression (PLSR) model was developed to predict yolk contamination levels, based on the Raman spectral fingerprint. Raman spectral peaks, in the spectral region of 1,080 and 1,666 cm(-1), had the largest influence on detecting yolk contamination in egg white. The PLSR model was able to correctly predict yolk contamination levels with an R(2) = 0.90 in the validation data set. These results demonstrate the capability of Raman spectroscopy for detection of yolk contamination at very low levels in egg white and present a strong case for development of an on-line system to be deployed in egg processing plants. PMID:27118861

  1. X-Ray Diffraction and Imaging Study of Imperfections of Crystallized Lysozyme with Coherent X-Rays

    NASA Technical Reports Server (NTRS)

    Hu, Zheng-Wei; Chu, Y. S.; Lai, B.; Cai, Z.; Thomas, B. R.; Chernov, A. A.

    2003-01-01

    Phase-sensitive x-ray diffraction imaging and high angular-resolution diffraction combined with phase contrast radiographic imaging are employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in symmetric Laue case. The fill width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal is approximately 16.7 arcseconds, and defects, which include point defects, line defects, and microscopic domains, have been clearly observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front, and they have been found to originate mostly at a central growth area and occasionally at outer growth regions. Individual point defects trapped at a crystal nucleus are resolved in the images of high sensitivity to defects. Slow dehydration has led to the broadening of the 4 4 0 rocking curve by a factor of approximately 2.4. A significant change of the defect structure and configuration with drying has been revealed, which suggests the dehydration induced migration and evolution of dislocations and lattice rearrangements to reduce overall strain energy. The sufficient details of the observed defects shed light upon perfection, nucleation and growth, and properties of protein crystals.

  2. Purification of Lysozyme by Intrinsically Shielded Hydrogel Beads

    NASA Astrophysics Data System (ADS)

    Li, Cong; Zhang, R.; Wang, L.; Bowyer, A.; Eisenthal, R.; Shen, Yehua; Hubble, J.

    2013-07-01

    Macro-sized intrinsically shielded hydrogel beads have been prepared from BSA and CM-dextran grafted with CB using a technique based on freeze-thawing gelation method. The size of the beads lies in around 500 μm. Isothemal titration calorimetry (ITC) showed that the relative binding affinities of the lysozyme for CB, compared with BSA, at pH 3.0 was stronger than that at pH 7.4. They were employed for the affinity separation of lysozyme using chromatography column. Their adsorption capacity for lysozyme at pH 3.0 is higher than that at pH 9. In a binary mixture of lysozyme and ovalbumin, the beads showed very high selectivity toward lysozyme. Lysozyme of very high purity (> 93%) was obtained from a mixture of lysozyme and ovalbumin, and 85% from egg white solution. The results indicate that the macro-sized bead can be used for the separation, purification, and recovery of lysozyme in a chromatograph column.

  3. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats

    PubMed Central

    Garcés-Rimón, M.; González, C.; Uranga, J. A.; López-Miranda, V.; López-Fandiño, R.; Miguel, M.

    2016-01-01

    The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day) or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day) for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications. PMID:26985993

  4. Effect of egg white on serum cholesterol concentration in young women.

    PubMed

    Asato, L; Wang, M F; Chan, Y C; Yeh, S H; Chung, H M; Chung, S Y; Chida, S; Uezato, T; Suzuki, I; Yamagata, N; Kokubu, T; Yamamoto, S

    1996-04-01

    In a previous study we observed favorable effects of egg white on serum lipids in rats and mice. The present study was designed to elucidate these effects in 24 female university students with moderate hypercholesterolemia. About 30% of total protein was supplied with egg white, tofu or cheese. The experiment was conducted for a complete menstruation cycle of each subject. Lipid intake was about 30% of total energy intake. The energy intake of each subject was constant throughout the experiment. Body weight was measured every morning. Daily activity was measured by a pedometer. Blood was withdrawn after an overnight fast on the first, 15th and last days and serum lipids were measured. Body weight was measured every morning. Daily activity was measured by a pedometer. Blood was withdrawn after an overnight fast on the first, 15th and last days and serum lipids were measured. Body weight and daily activity were maintained in all the groups throughout the experiment. The egg white group showed a similar decrease in the total cholesterol (Total-C) concentration but a greater increase of high-density lipoprotein cholesterol (HDL-C) concentration as compared to the tofu group and a greater decrease in Total-C and low-density lipoprotein cholesterol (LDL-C) concentrations and a greater increase in the HDL-C concentration as compared to the cheese group (p < 0.05). The results indicate the favorable effects of egg white in the control of hypercholesterolemia. PMID:8780967

  5. UV penetration depth in liquid egg white and liquid whole egg

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of penetration depth of UV in liquid egg is crucial in designing nonthermal UV pasteurizers. An experimental method was developed to determine penetration depth of 254 nm UV in liquid whole egg (LWE) and liquid egg white (LEW). An apparatus was assembled consisting of a bank of UV bulbs at...

  6. Performance of Media for Recovery of Salmonella from Thermally-Treated Egg White

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the performance of plating media for supporting resuscitation and colony development by heat-stressed cells of Salmonella from liquid egg white (albumen). A six-strain-composite of Salmonella was added to albumen (pH 9.0) at a population of 7.74 log CFU/ml, heated...

  7. Comparison of supplements to enhance recovery of thermally-injured Salmonella from liquid egg white

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recovery of Salmonella from liquid egg white (LEW) is complicated by thermal and innate LEW antimicrobial-induced injury. Numerous supplements have been reported to promote the recovery of injured bacteria. The purpose of this study was to determine the efficacy of twelve media supplements to ...

  8. Pasteurization of Liquid Egg White using a Centrifugal Ultraviolet Light Device

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A UV device that centrifugally forms a thin film has recently been shown to nonthermally pasteurize grapefruit juice. The effectiveness of this UV device on inactivating bacteria in liquid egg white (LEW) is unknown. The objective of this study was to determine the nonthermal inactivation of Escheri...

  9. Improvement of foaming ability of egg white product by irradiation and its application

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Kim, Binna; Choe, Jun-Ho; Jung, Samooel; Kim, Kyong-Su; Kim, Dong-Ho; Jo, Cheorun

    2009-03-01

    To investigate the enhancement of foaming abilities of liquid egg white (LEW) and egg white powder (EWP) by irradiation and its application for bakery product, LEW and EWP were irradiated at 0, 1, 2, and 5 kGy by Co-60 gamma ray. There was no pH change found among treatments in both LEW and EWP. The viscosity of LEW decreased significantly by irradiation ( P<0.05), whereas that of EWP was not affected by irradiation. The foaming ability of LEW and EWP was significantly increased by irradiation as a dose-dependent manner ( P<0.05). The volume and the height of angel cake baked with irradiated LEW were significantly higher than those of unirradiated control ( P<0.05). For EWP, the volume and the height of angel cake were greater at 2 kGy only than those of control. A significant decrease in hardness, chewiness, and gumminess values and an increase in Hunter L* value were observed in the angel cakes prepared from irradiated egg white products ( P<0.05). Results indicated that irradiation of egg white could offer advantages in increasing foaming ability and improving quality of final bakery products.

  10. Removal of Salmonella Enteritidis from commercial† unpasteurized liquid egg white using pilot scale crossflow tangential microfiltration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of a pilot-scale cross-flow microfiltration (MF) process for removal of Salmonella enteritidis from liquid egg white (LEW) was evaluated. To facilitate MF, 110 L of unpasteurized LEW from a local egg breaking plant was first wedge screened, homogenized and then diluted (1:2 w/w) w...

  11. Removal of Salmonella enteritidis from unpasteurized liquid egg white using a cross flow microfiltration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liquid egg white (LEW) is typically pasteurized to prevent common foodborne illnesses such as salmonellosis; however, heat pasteurization does not eliminate all pathogenic or spoilage microbes. In this study, a novel intervention technology based on cross-flow microfiltration (MF) was evaluated for ...

  12. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  13. Free-falling Crystals: Biological Macromolecular Crystal Growth Studies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, E. H.; Pusey, M. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Spacecraft orbiting the earth experience a reduced acceleration environment due to being in a state of continuous free-fall. This state colloquially termed microgravity, has produced improved X-ray diffraction quality crystals of biological macromolecules. Improvements in X-ray diffraction resolution (detail) or signal to noise, provide greater detail in the three-dimensional molecular structure providing information about the molecule, how it works, how to improve its function or how to impede it. Greater molecular detail obtained by crystallization in microgravity, has important implications for structural biology. In this article we examine the theories behind macromolecule crystal quality improvement in microgravity using results obtained from studies with the model protein, chicken egg white lysozyme.

  14. Functional Characterization of a c-type Lysozyme from Indian Shrimp Fenneropenaeus indicus.

    PubMed

    Karthik, Viswanathan; Kamalakannan, Vijayan; Thomas, Ancy; Sudheer, Naduvilamuriparambu Saidumuhammed; Singh, Issac S Bright; Narayanan, Rangarajan Badri

    2014-06-01

    Lysozyme gene from Fenneropenaeus indicus was cloned, expressed in Escherichia coli and characterized. The cDNA consists of 477 base pairs and encodes amino acid sequence of 159 residues. F. indicus lysozyme had high identity (98%) with Fenneropenaeus merguiensis and Fenneropenaeus chinensis and exhibits low to moderate identities with lysozymes of other invertebrates and vertebrates. This lysozyme is presumed to be chicken types as it possesses two catalytic and eight cysteine residues that are conserved across c-type lysozymes and a c-terminal extension, which is a characteristic of lysozymes from marine invertebrates. Further, the antimicrobial properties of the recombinant lysozyme from F. indicus were determined in comparison with recombinant hen egg white lysozyme. This exhibited high activity against a Gram-negative pathogenic bacterium Salmonella typhimurium and two fungal strains Pichia pastoris and Saccharomyces cerevisiae in turbidimetric assay. Distribution of lysozyme gene and protein in tissues of shrimps infected with white spot syndrome virus revealed that the high levels of lysozyme are correlated with low and high viral load in abdominal muscle and tail, respectively. In conclusion, lysozyme from F. indicus has a broad spectrum of antimicrobial properties, which once again emphasizes its role in shrimp innate immune response. PMID:24676722

  15. Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions

    SciTech Connect

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride over the range pH 2.5--11.5 and for ionic strengths to 2.0 M. The dependence of lysozyme`s net proton charge, z{sub p}, on pH and ionic strength in potassium chloride solution is measured. From the ionic-strength dependence of z{sub p}, interactions of lysozyme with potassium and chloride ions are calculated using the molecular-thermodynamic theory of Fraaije and Lyklema. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electric-double-layer theory. New experimental pK{sub a} data are reported for 11 amino acids in potassium chloride solutions of ionic strength to 3.0 M.

  16. A Proposed Pathway for the Nucleation and Crystal Growth of the Tetragonal Form of Lysozyme

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A number of factors, the shape and charge distribution anisotropy, multiple components in the solution (buffer + counter ion, precipitant, protein, and water), conformational flexibility, and large numbers of intermolecular contacts, all serve as complicating variables in understanding the nucleation and growth mechanism for macromolecules. Intermolecular contacts include hydrogen bonds, van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and give specificity while the others are weaker, more prevalent, and more promiscuous, i.e., can lead to a range of possible molecular interactions. We propose that for tetragonal lysozyme, and by extension many other monomeric proteins, there is a solution-phase assembly process to form 4(sub 3) helix structures that are the basic unit for nucleation. The formation of these structures is continuous and concentration dependent. They subsequently also servc as growth units, with that process then being a recapitulation of the nucleation process. The advantages of solution phase assembly are the immediate burying of the strongest interactions, removing them from subsequent participation in the nucleation and growth process, and the introduction of symmetry into the system, which also assists in the assembly process.

  17. Dependence of nucleation kinetics and crystal morphology of a model protein system on ionic strength

    NASA Astrophysics Data System (ADS)

    Bhamidi, V.; Skrzypczak-Jankun, E.; Schall, C. A.

    2001-11-01

    Nucleation rate data for hen egg-white lysozyme crystallization were obtained using a particle counter. Tetragonal lysozyme crystals were expected to form at the temperature and solution conditions of these experiments: 4°C, pH 4.5 with 0.1 M sodium acetate buffer and 2-6% NaCl (w/v). The rates varied as expected, as smooth monotonic functions of supersaturation at 2%, 3% and 6% NaCl. However, at 5% NaCl, a great deal of scatter in the data was observed. At 2% and 3% NaCl, all the batches contained crystals with tetragonal morphology. At 6% NaCl, almost all of the vials contained the white powder with few or no tetragonal crystals. At 5% NaCl concentration, a mixture of tetragonal crystals and powder formed in varying proportions in all the vials as observed by visual inspection. The powdery material was examined using optical microscopy and was seen to consist of needles with regular structure and sharp, faceted edges. Powder diffraction data from these needles was inconsistent with experimental powder diffraction data from tetragonal lysozyme crystals. It is possible that at high salt and protein concentrations liquid-liquid separation occurred and yielded a crystal polymorph.

  18. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth: A Preliminary Atomic Force Microscopy Investigation

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.

  19. Purification and properties of chicken egg-white cobalamin-binding protein.

    PubMed

    Zaman, K; Zak, Z

    1990-10-01

    A cobalamin-binding protein has been purified from chicken egg-white by using a combination of conventional and high performance ion-exchange chromatography. Following initial purification by DEAE-cellulose, ammonium sulphate precipitation, Sephacryl S-200 CM-cellulose and affinity chromatography, appropriate fractions were further purified using the Pharmacia fast protein liquid chromatography (FPLC) system. Using this method of purification, egg-white CBP has been purified more rapidly and with greater recovery than with conventional column chromatography. The homogeneity of this protein was verified by SDS-PAGE. The Mr was 37,000 by SDS-PAGE and 39,000 by gel filtration, which indicated that it was a glycoprotein. The stokes radius was 4.1 nm and pI was 4.3. The protein bound 57COB12 with a molar ratio of 1/1 and kd of 0.40 microM. The egg-white CBP was composed of 294 amino acid residues. Thiol groups and metal ions were not connected with the Cbl-binding activities. PMID:2078588

  20. Purification of equine neutrophil lysozyme and its antibacterial activity against gram-positive and gram-negative bacteria.

    PubMed

    Pellegrini, A; Waiblinger, S; Von Fellenberg, R

    1991-01-01

    Lysozyme from equine neutrophil granulocytes was isolated in a pure form by fast performance liquid chromatography, i.e. ion-exchange chromatography and reversed-phase chromatography. The lysozyme lysed Micrococcus luteus, Bacillus subtilis and Staphylococcus lentus and was also bactericidal against the Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, Bordetella bronchiseptica, and Serratia marcescens. Staphylococcus aureus and Staphylococcus epidermidis were not lysed. The lysozyme was only very slightly bactericidal for S. epidermidis and S. aureus. Equine neutrophil lysozyme was found to be bactericidal for Gram-positive as well as for Gram-negative bacteria without further treatment. Equine and chicken egg white lysozymes were found to be immunologically related when examined using specific antisera against each of them. Both lysozymes also had very similar specific enzymatic activities against M. luteus membranes. PMID:1803722

  1. Hierarchical Conformational Analysis of Native Lysozyme Based on Sub-Millisecond Molecular Dynamics Simulations

    PubMed Central

    Wang, Kai; Long, Shiyang; Tian, Pu

    2015-01-01

    Hierarchical organization of free energy landscape (FEL) for native globular proteins has been widely accepted by the biophysics community. However, FEL of native proteins is usually projected onto one or a few dimensions. Here we generated collectively 0.2 milli-second molecular dynamics simulation trajectories in explicit solvent for hen egg white lysozyme (HEWL), and carried out detailed conformational analysis based on backbone torsional degrees of freedom (DOF). Our results demonstrated that at micro-second and coarser temporal resolutions, FEL of HEWL exhibits hub-like topology with crystal structures occupying the dominant structural ensemble that serves as the hub of conformational transitions. However, at 100ns and finer temporal resolutions, conformational substates of HEWL exhibit network-like topology, crystal structures are associated with kinetic traps that are important but not dominant ensembles. Backbone torsional state transitions on time scales ranging from nanoseconds to beyond microseconds were found to be associated with various types of molecular interactions. Even at nanoseconds temporal resolution, the number of conformational substates that are of statistical significance is quite limited. These observations suggest that detailed analysis of conformational substates at multiple temporal resolutions is both important and feasible. Transition state ensembles among various conformational substates at microsecond temporal resolution were observed to be considerably disordered. Life times of these transition state ensembles are found to be nearly independent of the time scales of the participating torsional DOFs. PMID:26057625

  2. Effects of alkaline concentration, temperature, and additives on the strength of alkaline-induced egg white gel.

    PubMed

    Zhao, Yan; Tu, Yonggang; Li, Jianke; Xu, Mingsheng; Yang, Youxian; Nie, Xuliang; Yao, Yao; Du, Huaying

    2014-10-01

    Egg whites can undergo gelation at extreme pH. In this paper, the effects of NaOH concentration (1.5, 2, 2.5, and 3%), temperature (10, 20, 30, and 40°C), and additives (metallic compounds, carbohydrates, stabilizers, and coagulants) on the strength of alkaline-induced egg white gel were investigated. Results showed that NaOH concentration and induced temperature significantly affected the rate of formation and peak strength of the egg white gel. Of the 6 metallic compounds used in this experiment, CuSO₄exhibited the optimal effect on the strength of alkaline-induced egg white gel, followed by MgCl₂, ZnSO4, PbO, and CaCl₂. When CuSO₄concentration was 0.2%, the gel strength increased by 31.92%. The effect of Fe₂(SO₄)₃was negligible. Of the 5 carbohydrate additives, xanthan gum (0.2%) caused the highest increase (54.31%) in the strength of alkaline-induced egg white gel, followed by sodium alginate, glucose, starch, and sucrose. Meanwhile, propylene glycol (0.25%) caused the highest improvement (15.78%) in the strength of alkaline-induced egg white gel among the 3 stabilizing agents and coagulants used, followed by Na₂HPO₄and glucono-δ-lactone. PMID:25125561

  3. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  4. Structural and electromagnetic characterization of Cr-substituted Ni-Zn ferrites synthesized via Egg-white route

    NASA Astrophysics Data System (ADS)

    Gabal, M. A.; Bayoumy, W. A.; Saeed, A.; Al Angari, Y. M.

    2015-10-01

    Nano-crystalline ferrites with formula Ni0.8Zn0.2CrxFe2-xO4 (x = 0.0-1.0) was synthesized using Egg-white auto-combustion method. An appropriate mechanism for complexation and ferrite formation was suggested. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and a.c. electrical conductivity measurements were utilized to study the effect of Cr-substitution and its impact on particle size and electro-magnetic properties of the investigated ferrite. X-ray diffraction revealed single-phase cubic structure. The decrease in lattice parameter with increasing chromium was discussed in the view of ionic radii. TEM exhibited cubic agglomerated crystals with sizes between 10 and 20 nm. The decrease in the saturation magnetization and coercivity estimated through VSM measurements with increasing Cr-content indicated the preferential occupation of Cr3+ ions in the octahedral sites. Ac-conductivity measurements revealed semiconducting behavior of the entire investigated samples at high temperature and revealed a magnetic transition from ferromagnetic to paramagnetic for the samples with Cr-content up to 0.2. The conductivity values as well as the conduction activation energies indicated that the Cr3+ ions do not participate in the conduction and thus limit the Fe2+-Fe3+ conduction by blocking up Fe2+-Fe3+ transformation.

  5. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  6. Antioxidant Effect and Functional Properties of Hydrolysates Derived from Egg-White Protein

    PubMed Central

    Cho, Dae-Yeon; Jo, Kyungae; Cho, So Young; Kim, Jin Man; Lim, Kwangsei; Suh, Hyung Joo

    2014-01-01

    This study utilized commercially available proteolytic enzymes to prepare egg-white protein hydrolysates (EPHs) with different degrees of hydrolysis. The antioxidant effect and functionalities of the resultant products were then investigated. Treatment with Neutrase yielded the most α-amino groups (6.52 mg/mL). Alcalase, Flavourzyme, Protamex, and Ficin showed similar degrees of α-amino group liberation (3.19-3.62 mg/mL). Neutrase treatment also resulted in the highest degree of hydrolysis (23.4%). Alcalase and Ficin treatment resulted in similar degrees of hydrolysis. All hydrolysates, except for the Flavourzyme hydrolysate, had greater radical scavenging activity than the control. The Neutrase hydrolysate showed the highest 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity (IC50=3.6mg/mL). Therefore, Neutrase was identified as the optimal enzyme for hydrolyzing egg-white protein to yield antioxidant peptides. During Neutrase hydrolysis, the reaction rate was rapid over the first 4 h, and then subsequently declined. The IC50 value was lowest after the first hour (2.99 mg/mL). The emulsifying activity index (EAI) of EPH treated with Neutrase decreased, as the pH decreased. The EPH foaming capacity was maximal at pH 3.6, and decreased at an alkaline pH. Digestion resulted in significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ABTS radical scavenging activity. The active peptides released from egg-white protein showed antioxidative activities on ABTS and DHHP radical. Thus, this approach may be useful for the preparation of potent antioxidant products. PMID:26761178

  7. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates

    PubMed Central

    Padlan, Camille S.; Malashkevich, Vladimir N.; Almo, Steve C.; Levy, Matthew; Brenowitz, Michael; Girvin, Mark E.

    2014-01-01

    RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid–protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme's catalytic activity. Our 2.0-Å crystal structure of the aptamer–protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein–nucleic acid interface; (1) only 410 Å2 of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na+ stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE–lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four base pairs (Lys1.2minF) without compromising binding affinity, yielding a 45-nucleotide aptamer whose structure may be an adaptable protein binding platform. PMID:24570482

  8. Effects of different heat treatments on lysozyme quantity and antimicrobial activity of jenny milk.

    PubMed

    Cosentino, C; Labella, C; Elshafie, H S; Camele, I; Musto, M; Paolino, R; D'Adamo, C; Freschi, P

    2016-07-01

    Thermal treatments are used to improve milk microbial safety, shelf life, and biological activity of some of its components. However, thermal treatments can reduce the nutritional quality of milk, affecting the molecular structure of milk proteins, such as lysozyme, which is a very important milk component due to its antimicrobial effect against gram-positive bacteria. Jenny milk is characterized by high lysozyme content. For this reason, in the last few years, it has been used as an antimicrobial additive in dairy products as an alternative to hen egg white lysozyme, which can cause allergic reactions. This study aimed to investigate the effect of pasteurization and condensation on the concentration and antimicrobial activity of lysozyme in jenny milk. Furthermore, lysozyme quantity and activity were tested in raw and pasteurized milk after condensation at 40 and 20% of the initial volume. Reversed-phase HPLC was performed under fluorescence detection to monitor lysozyme in milk samples. We evaluated the antimicrobial activity of the tested milk against Bacillus megaterium, Bacillus mojavensis, Clavibacter michiganensis, Clostridium tyrobutyricum, Xanthomonas campestris, and Escherichia coli. Condensation and pasteurization did not affect the concentration or antimicrobial activity of lysozyme in jenny milk, except for B. mojaventis, which showed resistance to lysozyme in milk samples subjected to heat treatments. Moreover, lysozyme in jenny milk showed antimicrobial activity similar to synthetic antibiotics versus some gram-positive strains and also versus the gram-negative strain X. campestris. PMID:27157571

  9. Novelty Preparation, Characterization and Enhancement of Magnetic Properties of MN Nanoferrites Using Safety Binder (egg White)

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Okasha, N.; El-Dek, S. I.

    2013-03-01

    Nanocrystalline MnFe2O4 ferrite was prepared using natural binder; egg white was used as an aqueous medium to extend nanoparticle preparation better than any other interesting materials. X-ray diffraction (XRD) and transmission electron microscope (TEM) showed also that the investigated samples revealed the nanosized structure with crystallite size of 39nm. The magnetic susceptibility measurements give a Curie temperature TC = 613K with effective magnetic moment 23 B. M. The values of magnetic constants as obtained from hysteresis data are, saturation magnetization Ms = 13.71 emu/g, remanent magnetization Mr = 0.1694 emu/g and coercivity Hc = 25.6 Oe.

  10. Unfolding mechanism of lysozyme in various urea solutions: Insights from fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Bang; Zhang, Hongjia; Xi, Wenying; Zhao, Liqing; Liang, Li; Chen, Yantao

    2014-11-01

    Fluorescence spectroscopic technique is very popular in exploring the folding/unfolding process of proteins. In this paper, unfolding process of hen egg-white lysozyme was investigated in various denaturing solutions. Firstly, polymer solution theory was employed to comprehend the dependence of fluorescence quenching effect on protein concentration, and dynamic contact concentration was suggested as a critical value for related fluorescence experiment. Secondly, it was found that urea alone could not completely unfold lysozyme but did when together with DTT or HCl. Lysozyme was destabilized in concentrated urea solution, but still could maintain its spatial structure. Phase diagram of fluorescence intensities revealed that HCl could enhance the denaturing capacity of urea, resulting in the emergence of intermediate state in the thermodynamic unfolding process of lysozyme.