These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Promoting Active Involvement in Classrooms  

ERIC Educational Resources Information Center

This article presents a rationale for using active involvement techniques, describes large- and small-group methods based on their documented effectiveness and applicability to K-12 classrooms, and illustrates their use. These approaches include ways of engaging students in large groups (e.g., unison responses, response cards, dry-erase boards,…

Conderman, Greg; Bresnahan, Val; Hedin, Laura

2012-01-01

2

Promoting Active Involvement in Today's Classrooms  

ERIC Educational Resources Information Center

In today's diverse classrooms and age of accountability, teachers need to use efficient, research-based instructional approaches that engage all students, promote interest and variety in learning and teaching, and provide immediate and continuous informal assessment data. This article presents a rationale for using active involvement techniques,…

Conderman, Greg; Bresnahan, Val; Hedin, Laura

2011-01-01

3

Caspase activation is involved in chronic periodontitis.  

PubMed

Periodontitis, a common infectious disease, is initiated by various gram-negative bacteria and characterized by the destruction of the periodontal tissue. Here, we investigated the role of caspases, intracellular proteases that are the key mediators of apoptosis. We show that activation of caspase-3 and caspase-7 is considerably enhanced in gingival tissue from patients with periodontitis. We also demonstrate in in vitro experiments that various periodontopathic bacteria exert a direct growth-suppressing effect and, moreover, can trigger a host-mediated cytotoxic activity involving the CD95 death receptor. Our data suggest that caspase activation is a prominent feature in periodontitis-associated tissue injury. PMID:16213496

Bantel, Heike; Beikler, Thomas; Flemmig, Thomas F; Schulze-Osthoff, Klaus

2005-10-24

4

ERK activation upon hypoxia: involvement in HIF-1 activation  

Microsoft Academic Search

Hypoxia-inducible factor-1 (HIF-1) is a transcription factor activated by hypoxia. The HIF-1 activation transduction pathway is poorly understood. In this report, we investigated the activation of extracellular regulated kinases (ERK) in hypoxia and their involvement in HIF-1 activation. We demonstrated that in human microvascular endothelial cells-1 (HMEC-1), ERK kinases are activated during hypoxia. Using dominant negative mutants, we showed that

E Minet; T Arnould; G Michel; I Roland; D Mottet; M Raes; J Remacle; C Michiels

2000-01-01

5

DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS (PRESENTATION)  

EPA Science Inventory

When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

6

DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS  

EPA Science Inventory

When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

7

The Director of Physical Activity and Staff Involvement  

ERIC Educational Resources Information Center

Faculty and staff involvement in the Comprehensive School Physical Activity Program (CSPAP) begins with the Director of Physical Activity (DPA) motivating them to "buy in" to the need for a CSPAP. The DPA will need to train staff to develop and integrate physical activity throughout the school day, encourage them to be involved in the before- and…

Heidorn, Brent; Centeio, Erin

2012-01-01

8

Caspase activation is involved in chronic periodontitis  

Microsoft Academic Search

Periodontitis, a common infectious disease, is initiated by various gram-negative bacteria and characterized by the destruction of the periodontal tissue. Here, we investigated the role of caspases, intracellular proteases that are the key mediators of apoptosis. We show that activation of caspase-3 and caspase-7 is considerably enhanced in gingival tissue from patients with periodontitis. We also demonstrate in in vitro

Heike Bantel; Thomas Beikler; Thomas F. Flemmig; Klaus Schulze-Osthoff

2005-01-01

9

Social Workers' Current and Desired Involvement in Various Practice Activities  

Microsoft Academic Search

Human service employees (N = 214) who held either the BASW\\/BSW or MSW as their highest degree rated 13 practice activities for both the degree of current involvement (CI) and desired involvement (DI). The activity working with disadvantaged was the highest rated for CI, but was fourth in DI, a significant (p < .01) CI-DI difference. Working with voluntary clients,

Gary F. Koeske; Sara Lichtenwalter; Randi Daimon Koeske

2005-01-01

10

A Profile of Latino School-Based Extracurricular Activity Involvement  

ERIC Educational Resources Information Center

Participation in school-based extracurricular activities influences educational success. Thus, it is important to depict a profile of school-based extracurricular activity involvement for a Latino student population that is marginalized in schools. This research uses the Educational Longitudinal Study of 2002 and logistic regression analyses to…

Peguero, Anthony A.

2010-01-01

11

Promoting Physical Activity through Physical Education: Increasing Parental Involvement  

ERIC Educational Resources Information Center

This article describes how quality physical education can promote lifelong physical activity. One strategy for motivating students to be active is to get parents involved. Of the many possible sources of social support for children, parents are the most powerful. And, this remains true regardless of the age. This article provides strategies and…

Hager, Lisa; Beighle, Aaron

2006-01-01

12

Involvement in 12-step Activities and Treatment Outcomes  

PubMed Central

Background This study addresses the relative importance of specific 12-step activities to recovery, and how treatment affects participation in those activities. Method Data were from a clinical trial testing a 12-step facilitation intervention called MAAEZ. Participants (N=508) were recruited at treatment entry. Analyses examined 8 activities measured at baseline, 7 weeks, 6 months, and 12 months. Results In simultaneous equations, meeting attendance and having a sponsor were the only strong and consistent predictors of abstinence across time points, though other activities (i.e., use of a home group, befriending members, service work, and reading the literature) were significant in some analyses. Treatment involvement had mixed effects on activity participation over time. Conclusions Contradicting research suggesting that meeting attendance contributes little beyond other 12-step activities, results highlight the importance of consistent meeting attendance and sponsorship in recovery. Results suggest a need for enhanced facilitation of key activities even in typical 12-step-oriented treatment. PMID:23327505

Zemore, S. E.; Subbaraman, M.; Tonigan, J. S.

2012-01-01

13

Adolescent Involvement in Extracurricular Activities: Influences on Leadership Skills  

ERIC Educational Resources Information Center

Study examined adolescents' participation in sports, school, and community extracurricular activities to assess the influence of different involvement roles and adult support on leadership skills. The study found that males and females who perceived their adult support more positively had more positive perceptions of their leadership skills.…

Hancock, Donna; Dyk, Patricia Hyjer; Jones, Kenneth

2012-01-01

14

Pontine respiratory activity involved in inspiratory/expiratory phase transition  

PubMed Central

Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can habituate in vivo. Thus, habituation reduces sensory feedback, so the role of the pons, and specifically the KF, for IE phase transition may increase dramatically. Pontine-mediated control of the IE phase transition is not completely understood. In the present review, we discuss existing models for ponto-medullary interaction that may be involved in the control of inspiratory duration and IE transition. We also present intracellular recordings of pontine respiratory units derived from an in situ intra-arterially perfused brainstem preparation of rats. With the absence of lung inflation, this preparation generates a normal respiratory pattern and many of the recorded pontine units demonstrated phasic respiratory-related activity. The analysis of changes in membrane potentials of pontine respiratory neurons has allowed us to propose a number of pontine-medullary interactions not considered before. The involvement of these putative interactions in pontine-mediated control of IE phase transitions is discussed. PMID:19651653

Mörschel, Michael; Dutschmann, Mathias

2009-01-01

15

HIPAA Procedure 5032 PR.1 Determining Whether "Human Subject Research" Activity Involves Use/Disclosure  

E-print Network

HIPAA Procedure 5032 PR.1 Determining Whether "Human Subject Research" Activity Involves Use ............................................................................................................................ 2 Purpose To determine which "human subject research" activities involve Protected Health or disclosed as part of a human subject research activity, no HIPAA research authorization, waiver

16

Time window for cognitive activity involved in emotional processing  

PubMed Central

Background From previous studies it is becoming evident that the processing of unpleasant stimuli occurs early (0 to 300 ms); however, it is not clear how cognitive processing related to pleasant/unpleasant emotions occurs at later time windows (?300 ms). On the other hand, as evident from the previous reports, BIS and BAS personality traits are strongly associated with unpleasant and pleasant responses, respectively. Therefore, in the present study, we aim to identify the time window involved in human pleasant/unpleasant emotional processing by investigating ERP components correlated with BIS/BAS personality traits. Methods Twenty-nine men took part in the study and recording ERP during presented sounds. BIS/BAS score was calculated using the Japanese edition of the BIS/BAS questionnaire. Results Significant correlation was not observed between BIS and BAS scores. A significant and positive correlation was observed between N100 amplitude and BIS score. A positive correlation was found between BAS fun seeking subscale score and LPP amplitude. Our findings did not contradict previous study results. Conclusions Our results suggest that the processing of unpleasant emotions takes place early on, since N100 response was larger in high BIS subjects who are known to be sensitive to unpleasant emotions. LPP was larger in high BAS subjects who are known to be sensitive to pleasant emotions. The LPP was considered to be augmented because the ACC activity level during pleasant emotions reflected on LPP. PMID:25056735

2014-01-01

17

[Health management of Saipem workers with projects involving abroad activities].  

PubMed

In remote areas and in developing countries, where adequate health-care structures are few and sparse, Occupational Medicine contributes to guaranteeing workers' health. Companies like Saipem, involved in activities that are carried out in remote, inhospitable areas must ensure the safety and guarantee the health conditions of workers in relation to the risk factors connected with the job as well as with the environment in which it is performed. In such situations, Occupational Medicine addresses both the health aspects of the workplace and of the community, and is the pivot around which revolves the health-care support of workers employed abroad in the sense of protection and enhancement of health. The risks connected with work abroad are of three main types: 1) job-related risks; 2) risks connected with the environment; 3) risks related to the organization of work and the changes in the worker's daily life. The job-related risks are similar to those connected with analogous jobs performed elsewhere. The risks connected with the environment are related to adverse climatic conditions, extreme temperatures and unknown and often dangerous flora and fauna. The occupational physician is called upon to assess the suitability of workers for jobs that are based in remote areas. The main clinical conditions that can prevent issue of the Medical Fitness Certificate to workers for long-stay jobs abroad are discussed. PMID:18409664

Nicosia, V; De Sanctis, S; Mika, F; Consentino, M; Mascheroni, G

2007-01-01

18

45 CFR 1177.4 - Claims involving criminal activity or misconduct.  

Code of Federal Regulations, 2010 CFR

...Claims involving criminal activity or misconduct...Continued) NATIONAL FOUNDATION ON THE ARTS AND...Claims involving criminal activity or misconduct...indebtedness involves criminal activity such as...theft, or misuse of government...the Department of Justice is authorized...

2010-10-01

19

45 CFR 1177.4 - Claims involving criminal activity or misconduct.  

Code of Federal Regulations, 2014 CFR

...Claims involving criminal activity or misconduct...Continued) NATIONAL FOUNDATION ON THE ARTS AND...Claims involving criminal activity or misconduct...indebtedness involves criminal activity such as...theft, or misuse of government...the Department of Justice is authorized...

2014-10-01

20

45 CFR 1177.4 - Claims involving criminal activity or misconduct.  

Code of Federal Regulations, 2011 CFR

...Claims involving criminal activity or misconduct...Continued) NATIONAL FOUNDATION ON THE ARTS AND...Claims involving criminal activity or misconduct...indebtedness involves criminal activity such as...theft, or misuse of government...the Department of Justice is authorized...

2011-10-01

21

45 CFR 1177.4 - Claims involving criminal activity or misconduct.  

Code of Federal Regulations, 2012 CFR

...Claims involving criminal activity or misconduct...Continued) NATIONAL FOUNDATION ON THE ARTS AND...Claims involving criminal activity or misconduct...indebtedness involves criminal activity such as...theft, or misuse of government...the Department of Justice is authorized...

2012-10-01

22

45 CFR 1177.4 - Claims involving criminal activity or misconduct.  

Code of Federal Regulations, 2013 CFR

...Claims involving criminal activity or misconduct...Continued) NATIONAL FOUNDATION ON THE ARTS AND...Claims involving criminal activity or misconduct...indebtedness involves criminal activity such as...theft, or misuse of government...the Department of Justice is authorized...

2013-10-01

23

Organized Activity Involvement among Rural Youth: Gender Differences in Associations between Activity Type and Developmental Outcomes  

ERIC Educational Resources Information Center

The current study examined associations between organized activity involvement, academic achievement, and problem behavior in a sample of youth from a non-agricultural based rural community (M[subscript age] = 15.26, Age range = 11-19 years, N = 456). Analyses examined whether associations varied as a function of adolescent gender and age.…

Ferris, Kaitlyn A.; Oosterhoff, Benjamin; Metzger, Aaron

2013-01-01

24

Extracurricular Activity Involvement and Adolescent Self-Esteem  

ERIC Educational Resources Information Center

Structured extracurricular activity participation has been linked to self-esteem and other indicators of positive youth development. This article describes the theoretical basis for this relationship, centering on extracurricular activities as a location for identity development. A summary of the empirical evidence points to the importance of…

Kort-Butler, Lisa A.

2012-01-01

25

Antioxidant activity evaluation involving hemoglobin-related free radical reactivity.  

PubMed

Two methods for the measurement of antioxidant capacity are described: one based on a chronometric variation of a hemoglobin ascorbate peroxidase assay and the other based on electron paramagnetic resonance (EPR) spectra collected upon alkaline treatment of ethanolic samples. The involved chemical mechanisms are discussed, alongside the most important benefits and shortcomings; the assays offer new qualitative and quantitative information on samples of biological as well as synthetic origin. PMID:25323512

Mot, Augustin C; Bischin, Cristina; Damian, Grigore; Silaghi-Dumitrescu, Radu

2015-01-01

26

Diabetes-induced Coronary Vascular Dysfunction Involves Increased Arginase Activity  

PubMed Central

Increases in arginase activity have been reported in a variety of disease conditions characterized by vascular dysfunction. Arginase competes with NO synthase for their common substrate arginine, suggesting a cause and effect relationship. We tested this concept by experiments with streptozotocin diabetic rats and high glucose (HG)-treated bovine coronary endothelial cells (BCECs). Our studies showed that diabetes-induced impairment of vasorelaxation to acetylcholine was correlated with increases in reactive oxygen species and arginase activity and arginase I expression in aorta and liver. Treatment of diabetic rats with simvastatin (5 mg/kg per day, subcutaneously) or l-citrulline (50 mg/kg per day, orally) blunted these effects. Acute treatment of diabetic coronary arteries with arginase inhibitors also reversed the impaired vasodilation to acetylcholine. Treatment of BCECs with HG (25 mmol/L, 24 hours) also increased arginase activity. This effect was blocked by treatment with simvastatin (0.1 ?mol/L), the Rho kinase inhibitor Y-27632 (10 ?mol/L), or l-citrulline (1 mmol/L). Superoxide and active RhoA levels also were elevated in HG-treated BCECs. Furthermore, HG significantly diminished NO production in BCECs. Transfection of BCECs with arginase I small interfering RNA prevented the rise in arginase activity in HG-treated cells and normalized NO production, suggesting a role for arginase I in reduced NO production with HG. These results indicate that increased arginase activity in diabetes contributes to vascular endothelial dysfunction by decreasing l-arginine availability to NO synthase. PMID:17967788

Romero, Maritza J.; Platt, Daniel H.; Tawfik, Huda E.; Labazi, Mohamed; El-Remessy, Azza B.; Bartoli, Manuela; Caldwell, Ruth B.; Caldwell, Robert W.

2010-01-01

27

Diabetes-induced coronary vascular dysfunction involves increased arginase activity.  

PubMed

Increases in arginase activity have been reported in a variety of disease conditions characterized by vascular dysfunction. Arginase competes with NO synthase for their common substrate arginine, suggesting a cause and effect relationship. We tested this concept by experiments with streptozotocin diabetic rats and high glucose (HG)-treated bovine coronary endothelial cells (BCECs). Our studies showed that diabetes-induced impairment of vasorelaxation to acetylcholine was correlated with increases in reactive oxygen species and arginase activity and arginase I expression in aorta and liver. Treatment of diabetic rats with simvastatin (5 mg/kg per day, subcutaneously) or L-citrulline (50 mg/kg per day, orally) blunted these effects. Acute treatment of diabetic coronary arteries with arginase inhibitors also reversed the impaired vasodilation to acetylcholine. Treatment of BCECs with HG (25 mmol/L, 24 hours) also increased arginase activity. This effect was blocked by treatment with simvastatin (0.1 micromol/L), the Rho kinase inhibitor Y-27632 (10 micromol/L), or L-citrulline (1 mmol/L). Superoxide and active RhoA levels also were elevated in HG-treated BCECs. Furthermore, HG significantly diminished NO production in BCECs. Transfection of BCECs with arginase I small interfering RNA prevented the rise in arginase activity in HG-treated cells and normalized NO production, suggesting a role for arginase I in reduced NO production with HG. These results indicate that increased arginase activity in diabetes contributes to vascular endothelial dysfunction by decreasing L-arginine availability to NO synthase. PMID:17967788

Romero, Maritza J; Platt, Daniel H; Tawfik, Huda E; Labazi, Mohamed; El-Remessy, Azza B; Bartoli, Manuela; Caldwell, Ruth B; Caldwell, Robert W

2008-01-01

28

Artificial masculinization in tilapia involves androgen receptor activation.  

PubMed

Estrogens have a pivotal role in natural female sexual differentiation of tilapia while lack of steroids results in testicular development. Despite the fact that androgens do not participate in natural sex differentiation, synthetic androgens, mainly 17-?-methyltestosterone (MT) are effective in the production of all-male fish in aquaculture. The sex inversion potency of synthetic androgens may arise from their androgenic activity or else as inhibitors of aromatase activity. The current study is an attempt to differentiate between the two alleged activities in order to evaluate their contribution to the sex inversion process and aid the search for novel sex inversion agents. In the present study, MT inhibited aromatase activity, when applied in vitro as did the non-aromatizable androgen dihydrotestosterone (DHT). In comparison, exposure to fadrozole, a specific aromatase inhibitor, was considerably more effective. Androgenic activity of MT was evaluated by exposure of Sciaenochromis fryeri fry to the substance and testing for the appearance of blue color. Flutamide, an androgen antagonist, administered concomitantly with MT, reduced the appearance of the blue color and the sex inversion potency of MT in a dose-dependent manner. In tilapia, administration of MT, fadrozole or DHT resulted in efficient sex inversion while flutamide reduced the sex inversion potency of all three compounds. In the case of MT and DHT the decrease in sex inversion efficiency caused by flutamide is most likely due to the direct blocking of the androgen binding to its cognate receptor. The negative effect of flutamide on the efficiency of the fadrozole treatment may indicate that the masculinizing activity of fadrozole may be attributed to excess, un-aromatized, androgens accumulated in the differentiating gonad. The present study shows that when androgen receptors are blocked, there is a reduction in the efficiency of sex inversion treatments. Our results suggest that in contrast to natural sex differentiation, during sex inversion treatments, androgens, either endogenous or exogenous, participate in inducing testicular differentiation. PMID:24815887

Golan, Matan; Levavi-Sivan, Berta

2014-10-01

29

Activation and Involvement of Ral GTPases in Colorectal Cancer  

PubMed Central

Current approaches to block KRAS oncogene function focus on inhibition of K-Ras downstream effector signaling. We evaluated the anti-tumor activity of selumetinib (AZD6244, ARRY-142886), a potent and selective MEK1/2 inhibitor, on a panel of colorectal carcinoma (CRC) cells and found no inhibition of KRAS mutant CRC cell anchorage-independent growth. While AKT activity was elevated in KRAS mutant cells, and PI3K inhibition did impair the growth of MEK inhibitor-insensitive CRC cell lines, concurrent treatment with selumetinib did not provide additional anti-tumor activity. Therefore, we speculated that inhibition of the Ral guanine exchange factor (RalGEF) effector pathway may be a more effective approach for blocking CRC growth. RalGEFs are activators of the related RalA and RalB small GTPases and we found activation of both in CRC cell lines and patient tumors. Interfering RNA stable suppression of RalA expression reduced CRC tumor cell anchorage-independent growth, but surprisingly, stable suppression of RalB greatly enhanced soft agar colony size and formation frequency. Despite their opposing activities, both RalA and RalB regulation of anchorage-independent growth required interaction with RalBP1/RLIP76 and components of the exocyst complex. Interestingly, RalA interaction with the Exo84 but not Sec5 exocyst component was necessary for supporting anchorage-independent growth, whereas RalB interaction with Sec5 but not Exo84 was necessary for inhibition of anchorage-independent growth. We suggest that anti-RalA-selective therapies may provide an effective approach for KRAS mutant CRC. PMID:21199803

Martin, Timothy D.; Samuel, Jonathan C.; Routh, Elizabeth D.; Der, Channing J.; Yeh, Jen Jen

2010-01-01

30

MECHANISMS INVOLVED IN THE ANTIMYCOBACTERIAL ACTIVITY OF CERTAIN BASIC PEPTIDES  

PubMed Central

The antimycobacterial activity of thymus peptide under certain conditions in vitro can be partially neutralized by increasing the concentration of sulfate ions in the medium, and to a lesser extent by the addition of certain organic compounds which contain sulfur. It is suggested that thymus peptide suppresses the growth of tubercle bacilli by interfering with the normal sulfur metabolism of these microorganisms. Polylysine peptide and pituitary adrenocorticotropic hormone, other basic peptides derived from animal tissues, also inhibit the multiplication of tubercle bacilli in vitro, and their antimycobacterial activity is also antagonized by sulfate ions. Basic peptide hormones prepared from the posterior pituitary gland do not affect the growth of acid-fast bacteria under the conditions of the test. PMID:13118065

Hirsch, James G.

1954-01-01

31

Laboratory activities involving transmissible spongiform encephalopathy causing agents  

PubMed Central

Since the appearance in 1986 of epidemic of bovine spongiform encephalopathy (BSE), a new form of neurological disease in cattle which also affected human beings, many diagnostic and research activities have been performed to develop detection and therapeutic tools. A lot of progress was made in better identifying, understanding and controlling the spread of the disease by appropriate monitoring and control programs in European countries. This paper reviews the recent knowledge on pathogenesis, transmission and persistence outside the host of prion, the causative agent of transmissible spongiform encephalopathies (TSE) in mammals with a particular focus on risk (re)assessment and management of biosafety measures to be implemented in diagnostic and research laboratories in Belgium. Also, in response to the need of an increasing number of European diagnostic laboratories stopping TSE diagnosis due to a decreasing number of TSE cases reported in the last years, decontamination procedures and a protocol for decommissioning TSE diagnostic laboratories is proposed. PMID:24055928

Leunda, Amaya; Van Vaerenbergh, Bernadette; Baldo, Aline; Roels, Stefan; Herman, Philippe

2013-01-01

32

Breadth and Intensity: Salient, Separable, and Developmentally Significant Dimensions of Structured Youth Activity Involvement  

ERIC Educational Resources Information Center

In recent years, an impressive volume of evidence has accumulated demonstrating that youth involvement in structured, organized activities (e.g. school sports, community clubs) may facilitate positive youth development. We present a theory-based framework for studying structured activity involvement (SAI) as a context for positive youth…

Busseri, Michael A.; Rose-Krasnor, Linda

2009-01-01

33

A Longitudinal Study of Breadth and Intensity of Activity Involvement and the Transition to University  

ERIC Educational Resources Information Center

We examined prospective relations between activity involvement and successful transitioning to university. A sample of 656 students from 6 Canadian universities completed questionnaires before beginning university and at the end of their first year. Breadth (number of different activity domains) and intensity (mean frequency) of activity

Busseri, Michael A.; Rose-Krasnor, Linda; Pancer, S. Mark; Pratt, Michael W.; Adams, Gerald R.; Birnie-Lefcovitch, Shelly; Polivy, Janet; Wintre, Maxine Gallander

2011-01-01

34

Nicotinic mechanisms involved in the dopamine activating and reinforcing properties of ethanol  

Microsoft Academic Search

Ethanol shares with all major dependence producing drugs the ability to activate brain mesocorticolimbic dopamine neurons, an important part of the brain reward systems. This dopamine activation may be involved in mediating the positive reinforcing effects of ethanol. The mechanisms of action of ethanol in its activation of this dopamine system remain, however, to be elucidated. A selective pharmacological interference

Bo Söderpalm; Mia Ericson; Peter Olausson; Ola Blomqvist; Jörgen A Engel

2000-01-01

35

Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal in mice  

E-print Network

Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal to stress responsivity during cocaine withdrawal (WD). Recent studies suggest that tissue plasminogen activator (tPA) in the CeA is a downstream effector protein for CRF after acute "binge" cocaine

36

15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.  

Code of Federal Regulations, 2010 CFR

...to activities involving Schedule 1 chemicals. 712.1 Section 712.1 Commerce...SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to zero...

2010-01-01

37

15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.  

Code of Federal Regulations, 2012 CFR

...to activities involving Schedule 1 chemicals. 712.1 Section 712.1 Commerce...SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to zero...

2012-01-01

38

15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.  

Code of Federal Regulations, 2014 CFR

...to activities involving Schedule 1 chemicals. 712.1 Section 712.1 Commerce...SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to zero...

2014-01-01

39

15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.  

Code of Federal Regulations, 2011 CFR

...to activities involving Schedule 1 chemicals. 712.1 Section 712.1 Commerce...SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to zero...

2011-01-01

40

15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.  

Code of Federal Regulations, 2013 CFR

...to activities involving Schedule 1 chemicals. 712.1 Section 712.1 Commerce...SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to zero...

2013-01-01

41

22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...  

Code of Federal Regulations, 2013 CFR

...aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25...aliens involved in serious criminal activity who have asserted immunity from prosecution....

2013-04-01

42

22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...  

Code of Federal Regulations, 2011 CFR

...aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25...aliens involved in serious criminal activity who have asserted immunity from prosecution....

2011-04-01

43

22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...  

Code of Federal Regulations, 2014 CFR

...aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25...aliens involved in serious criminal activity who have asserted immunity from prosecution....

2014-04-01

44

22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...  

Code of Federal Regulations, 2012 CFR

...aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25...aliens involved in serious criminal activity who have asserted immunity from prosecution....

2012-04-01

45

22 CFR 40.25 - Certain aliens involved in serious criminal activity who have asserted immunity from prosecution...  

Code of Federal Regulations, 2010 CFR

...aliens involved in serious criminal activity who have asserted immunity from prosecution. [Reserved] 40.25 Section 40.25...aliens involved in serious criminal activity who have asserted immunity from prosecution....

2010-04-01

46

Activities involving aeronautical, space science, and technology support for minority institutions  

NASA Technical Reports Server (NTRS)

The Final Report addressed the activities with which the Interracial Council for Business Opportunity (ICBO) was involved over the past 12 months. ICBO was involved in the design and development of a CARES Student Tracking System Software (CARES). Cares is intended to provide an effective means of maintaining relevant current and historical information on NASA-funded students through a range of educational program initiatives. ICBP was extensively involved in the formation of a minority university consortium amd implementation of collaborative research activities by the consortium as part of NASA's Mission to Planet Earth/Earth Observing System. ICBO was involved in the formation of an HBCU/MI Consortium to facilitate technology transfer efforts to the small and minority business community in their respective regions.

1993-01-01

47

An Experiment with Active Involvement in the Teaching of General Physics  

NASA Astrophysics Data System (ADS)

This is a report on an experiment using several active involvement teaching techniques in a general physics course involving some 250 students in two semesters. Included were peer instruction, collaborative worksheets, web-based practice tests, web-based notes, homework submitted on the web, and conceptual emphasis. Student performance was measured with and without the techniques using the Force Concept Inventory and the Mechanics Baseline Test. Results will be reported along with student reaction.

Miner, George

2001-10-01

48

Curcumin-induced recovery from hepatic injury involves induction of apoptosis of activated hepatic stellate cells.  

PubMed

Hepatic stellate cells (HSCs) undergo activation and transdifferentiation to myofibroblast like cells in liver injury, leading to liver fibrosis. During recovery from injury, activated HSCs may either revert back to quiescent state or undergo apoptosis or both. In the present study, we have examined whether recovery from hepatic injury involves apoptosis of activated HSCs and tested whether curcumin (the yellow pigment from Curcuma longa Linn.) promotes recovery from hepatic injury by inducing apoptosis of these cells. Hepatic injury was induced by CCl4 and apoptosis was studied in HSCs isolated from liver by MTT assay, DNA fragmentation, and DAPI and annexin staining. Hepatic recovery was assessed by measuring hepatic marker activities, such as serum GOT, GPT and protein. Hepatic recovery occurred within 4 weeks after inducing injury in untreated control, whereas curcumin treatment caused hepatic recovery within 2 weeks, as evidenced by the reduction of hepatic marker activities to near normal levels. HSCs isolated from liver of animals treated with curcumin showed maximum apoptotic marker activities in 2nd week, whereas in HSCs from untreated control recovering from injury, maximum apoptosis was observed in 4th week. Induction of apoptosis in vivo during hepatic recovery was also suggested by increase in caspase-3 activity. Treatment of isolated HSCs in culture with curcumin caused apoptosis during later stages confirming that curcumin induced apoptosis of activated HSCs and not in unactivated quiescent HSCs. These results suggested that hepatoprotective effect of curcumin causing recovery from injury involved apoptosis of activated HSCs. PMID:19069843

Priya, S; Sudhakaran, P R

2008-10-01

49

An Emergent Language Program Framework: Actively Involving Learners in Needs Analysis.  

ERIC Educational Resources Information Center

Relates the experience of the staff of an aquaculture outreach program in Northeast Thailand in implementing an English for special purposes program. By actively involving learners in both the needs analysis and program design, teachers were able to adapt the program content to the requirements of the students. (15 references) (JL)

Savage, William; Storer, Graeme

1992-01-01

50

Extracurricular Activity and Parental Involvement Predict Positive Outcomes in Elementary School Children  

ERIC Educational Resources Information Center

The main goal of this study was to explore if parental involvement and extracurricular activity participation could predict well-being and academic competence in elementary school children. Seventy-two children (mean age = 10.9 years, SD = 0.85) and their parents participated. Results revealed that parental pressure and support, when paired with…

Lagace-Seguin, Daniel G.; Case, Emily

2010-01-01

51

Switching loss characteristics of sequences involving active state division in space vector based PWM  

Microsoft Academic Search

This paper analyzes the switching loss characteristics of sequences involving division of active state duration in space vector based PWM. This analysis, together with the THD performance of the different sequences, reported recently, is used to design new hybrid PWM techniques for induction motor drives, which result in simultaneous reduction in both THD as well as inverter switching losses. Experimental

Di Zhao; G. Narayanan; Raja Ayyanar

2004-01-01

52

Involving Your Child or Teen with ASD in Integrated Community Activities  

ERIC Educational Resources Information Center

Participating in outside activities and community-based endeavors can be tricky for people with special needs, like Autism Spectrum Disorder (ASD). Families meet more than a few obstacles attempting to integrate their children or teens who have special needs like ASD. Most typical children are highly involved in sports, clubs and camps. If a…

McKee, Rebecca

2011-01-01

53

Beyond Participation: The Association between School Extracurricular Activities and Involvement in Violence across Generations of Immigration  

ERIC Educational Resources Information Center

Participation in extracurricular activities is purported to protect the broad spectrum of youth from a host of behavioral risks. Yet, empirical research on the extent to which this assumption holds for involvement in violence by immigrant youth is limited. Thus, using data for 13,236 (51.8% female) adolescents from the National Longitudinal Study…

Jiang, Xin; Peterson, Ruth D.

2012-01-01

54

Partners at School: A Handbook on How To Involve Indian and Metis Parents in School Activities.  

ERIC Educational Resources Information Center

This handbook provides activities and methods that educators can use to encourage Indian and Metis parents to become more involved in the education of their children and in the provincial school system as a whole. Chapter 1 includes exercises and quizzes to help teachers understand their own views on cultural awareness, racism, and values. Chapter…

Davis, Sydney, Ed.

55

Regrouping: organized activity involvement and social adjustment across the transition to high school.  

PubMed

Although organized activities (OAs) have been established as important contexts of development, limited work has examined the role of OAs across the high school transition in buffering adolescents' social adjustment by providing opportunities for visibility and peer affiliation. The transition to high school is characterized by numerous changes and OAs may provide an important setting for establishing and maintaining peer relationships during this tumultuous time. This study included 151 8th grade U.S. students (58% male) who were assessed across the transition to high school (spring of 8th and 9th grade). Continuous involvement in academic activities across the transition and becoming involved (i.e., initiation) in community/service activities following the transition was associated with fewer depressive symptoms in the spring of 9th grade. Continuous involvement in sports and initiation of academic activities was associated with having more friendships. In addition, links between OAs and loneliness were only evident among females. There appear to be significant social benefits for OA involvement. PMID:23766096

Bohnert, Amy M; Aikins, Julie Wargo; Arola, Nicole T

2013-01-01

56

1 Introduction The occurrence of terrorism activities involves various social, political, and economic  

E-print Network

1 Introduction The occurrence of terrorism activities involves various social, political of such terror acts, including the specific tactics, weapons, target types, or fatalities inflicted, also change that will assist analysts, policymakers, and practitioners who are attempting to understand the trends of terrorism

57

Magnesium Ion-dependent Activation of the RecA Protein Involves the C Terminus*  

E-print Network

Magnesium Ion-dependent Activation of the RecA Protein Involves the C Terminus* Received with ATP. We provide evi- dence that the free magnesium ion is required to medi- ate a conformational at low magnesium ion concentrations. The RecA protein of Escherichia coli plays a central role

Cox, Michael M.

58

Signal Transducers and Activators of Transcription 3 Activation Is Involved in Nuclear Accumulation of B-Catenin in Colorectal Cancer  

Microsoft Academic Search

Nuclear accumulation of B-catenin is a key event for the development of colorectal cancer. Little is known, however, about the mechanisms underlying translocation of B-catenin from the cytoplasm or the membrane to the nucleus. The present study examined whether signal transducers and activators of transcription 3 (STAT3) activation is involved in the nuclear accumulation of B-catenin in colorectal cancer cells.

Mayumi Kawada; Hiroshi Seno; Yoshito Uenoyama; Tateo Sawabu; Naoki Kanda; Hirokazu Fukui; Yasuyuki Shimahara; Tsutomu Chiba

59

Active demethylation in mouse zygotes involves cytosine deamination and base excision repair  

PubMed Central

Background DNA methylation in mammals is an epigenetic mark necessary for normal embryogenesis. During development active loss of methylation occurs in the male pronucleus during the first cell cycle after fertilisation. This is accompanied by major chromatin remodelling and generates a marked asymmetry between the paternal and maternal genomes. The mechanism(s) by which this is achieved implicate, among others, base excision repair (BER) components and more recently a major role for TET3 hydroxylase. To investigate these methylation dynamics further we have analysed DNA methylation and hydroxymethylation in fertilised mouse oocytes by indirect immunofluorescence (IF) and evaluated the relative contribution of different candidate factors for active demethylation in knock-out zygotes by three-dimensional imaging and IF semi-quantification. Results We find two distinct phases of loss of paternal methylation in the zygote, one prior to and another coincident with, but not dependent on, DNA replication. TET3-mediated hydroxymethylation is limited to the replication associated second phase of demethylation. Analysis of cytosine deaminase (AID) null fertilised oocytes revealed a role for this enzyme in the second phase of loss of paternal methylation, which is independent from hydroxymethylation. Investigation into the possible repair pathways involved supports a role for AID-mediated cytosine deamination with subsequent U-G mismatch long-patch BER by UNG2 while no evidence could be found for an involvement of TDG. Conclusions There are two observable phases of DNA demethylation in the mouse zygote, before and coincident with DNA replication. TET3 is only involved in the second phase of loss of methylation. Cytosine deamination and long-patch BER mediated by UNG2 appear to independently contribute to this second phase of active demethylation. Further work will be necessary to elucidate the mechanism(s) involved in the first phase of active demethylation that will potentially involve activities required for early sperm chromatin remodelling. PMID:24279473

2013-01-01

60

Calanquinone A induces anti-glioblastoma activity through glutathione-involved DNA damage and AMPK activation  

PubMed Central

Glioblastoma, a highly malignant glioma, is resistant to both radiation and chemotherapy and is an intractable problem in clinical treatment. New therapeutic approaches are in urgent need. Calanquinone A, an herbal constituent, displayed anti-proliferative activity against glioblastoma cells, including A172, T98 and U87. Flow cytometric analysis showed an S phase arrest and a subsequent apoptosis to calanquinone A action. Further identification demonstrated a rapid increase of ?H2A.X formation at S phase. The data together with comet tail formation and Chk1 activation indicated DNA damage response. N-acetyl cysteine (an antioxidant and a glutathione precursor) and exogenously applied glutathione, but not trolox (an antioxidant), completely abolished calanquinone A-induced effects. Immunofluorescence assay revealed that calanquinone A decreased the intracellular glutathione levels in both A172 and T98 cells. However, calanquinone A, by itself, did not conjugate glutathione. The data suggested that the decrease of cellular glutathione predominantly contributed to the anticancer mechanism. Furthermore, calanquinone A induced the activation of AMP-activated protein kinase (AMPK) and the inhibition of p70S6K activity. Rhodamine efflux assay showed that calanquinone A did not block efflux activity, indicating that calanquinone A was not a P-glycoprotein substrate. In summary, the data suggest that calanquinone A displays anti-glioblastoma activity through a decrease of cellular glutathione levels that subsequently induces DNA damage stress and AMPK activation, leading to cell cycle arrest at S-phase and apoptotic cell death. Furthermore, calanquinone A does not serve as a P-glycoprotein substrate, suggesting a potential for further development in anti-glioblastoma therapy. PMID:24607408

Liu, Fan-Lun; Hsu, Jui-Ling; Lee, Yean-Jang; Dong, Yu-Shun; Kung, Fan-Lu; Chen, Ching-Shih; Guh, Jih-Hwa

2014-01-01

61

Mechanism of IL-1? Modulation of Intestinal Epithelial Barrier Involves p38 Kinase and Activating Transcription Factor-2 Activation  

PubMed Central

The defective intestinal epithelial tight junction (TJ) barrier has been postulated to be an important pathogenic factor contributing to intestinal inflammation. It has been shown that the proinflammatory cytokine IL-1? causes an increase in intestinal permeability; however, the signaling pathways and the molecular mechanisms involved remain unclear. The major purpose of this study was to investigate the role of the p38 kinase pathway and the molecular processes involved. In these studies, the in vitro intestinal epithelial model system (Caco-2 monolayers) was used to delineate the cellular and molecular mechanisms, and a complementary in vivo mouse model system (intestinal perfusion) was used to assess the in vivo relevance of the in vitro findings. Our data indicated that the IL-1? increase in Caco-2 TJ permeability correlated with an activation of p38 kinase. The activation of p38 kinase caused phosphorylation and activation of p38 kinase substrate, activating transcription factor (ATF)-2. The activated ATF-2 translocated to the nucleus where it attached to its binding motif on the myosin L chain kinase (MLCK) promoter region, leading to the activation of MLCK promoter activity and gene transcription. Small interfering RNA induced silencing of ATF-2, or mutation of the ATF-2 binding motif prevented the activation of MLCK promoter and MLCK mRNA transcription. Additionally, in vivo intestinal perfusion studies also indicated that the IL-1? increase in mouse intestinal permeability required p38 kinase–dependent activation of ATF-2. In conclusion, these studies show that the IL-1?–induced increase in intestinal TJ permeability in vitro and in vivo was regulated by p38 kinase activation of ATF-2 and by ATF-2 regulation of MLCK gene activity. PMID:23656735

Al-Sadi, Rana; Guo, Shuhong; Ye, Dongmei; Dokladny, Karol; Alhmoud, Tarik; Ereifej, Lisa; Said, Hamid M.

2013-01-01

62

Cellular Activation, Phagocytosis, and Bactericidal Activity Against Group B Streptococcus Involve Parallel Myeloid Differentiation  

E-print Network

Parallel Myeloid Differentiation Factor 88-Dependent and Independent Signaling Pathways1 Philipp Henneke phagocytes via Toll-like receptor (TLR)2 and TLR6, but that GBS cell walls activate cells independently, uptake, and elim- ination of bacteria, occur through a coordinated engagement of TLRs, along

Nizet, Victor

63

Oclacitinib (APOQUEL®) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy  

PubMed Central

Janus kinase (JAK) enzymes are involved in cell signaling pathways activated by various cytokines dysregulated in allergy. The objective of this study was to determine whether the novel JAK inhibitor oclacitinib could reduce the activity of cytokines implicated in canine allergic skin disease. Using isolated enzyme systems and in vitro human or canine cell models, potency and selectivity of oclacitinib was determined against JAK family members and cytokines that trigger JAK activation in cells. Oclacitinib inhibited JAK family members by 50% at concentrations (IC50's) ranging from 10 to 99 nm and did not inhibit a panel of 38 non-JAK kinases (IC50's > 1000 nm). Oclacitinib was most potent at inhibiting JAK1 (IC50 = 10 nm). Oclacitinib also inhibited the function of JAK1-dependent cytokines involved in allergy and inflammation (IL-2, IL-4, IL-6, and IL-13) as well as pruritus (IL-31) at IC50's ranging from 36 to 249 nm. Oclacitinib had minimal effects on cytokines that did not activate the JAK1 enzyme in cells (erythropoietin, granulocyte/macrophage colony-stimulating factor, IL-12, IL-23; IC50's > 1000 nm). These results demonstrate that oclacitinib is a targeted therapy that selectively inhibits JAK1-dependent cytokines involved in allergy, inflammation, and pruritus and suggests these are the mechanisms by which oclacitinib effectively controls clinical signs associated with allergic skin disease in dogs. PMID:24495176

Gonzales, A J; Bowman, J W; Fici, G J; Zhang, M; Mann, D W; Mitton-Fry, M

2014-01-01

64

Oclacitinib (APOQUEL(®)) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy.  

PubMed

Janus kinase (JAK) enzymes are involved in cell signaling pathways activated by various cytokines dysregulated in allergy. The objective of this study was to determine whether the novel JAK inhibitor oclacitinib could reduce the activity of cytokines implicated in canine allergic skin disease. Using isolated enzyme systems and in vitro human or canine cell models, potency and selectivity of oclacitinib was determined against JAK family members and cytokines that trigger JAK activation in cells. Oclacitinib inhibited JAK family members by 50% at concentrations (IC50 's) ranging from 10 to 99 nm and did not inhibit a panel of 38 non-JAK kinases (IC50 's > 1000 nM). Oclacitinib was most potent at inhibiting JAK1 (IC50 = 10 nM). Oclacitinib also inhibited the function of JAK1-dependent cytokines involved in allergy and inflammation (IL-2, IL-4, IL-6, and IL-13) as well as pruritus (IL-31) at IC50 's ranging from 36 to 249 nM. Oclacitinib had minimal effects on cytokines that did not activate the JAK1 enzyme in cells (erythropoietin, granulocyte/macrophage colony-stimulating factor, IL-12, IL-23; IC50 's > 1000 nM). These results demonstrate that oclacitinib is a targeted therapy that selectively inhibits JAK1-dependent cytokines involved in allergy, inflammation, and pruritus and suggests these are the mechanisms by which oclacitinib effectively controls clinical signs associated with allergic skin disease in dogs. PMID:24495176

Gonzales, A J; Bowman, J W; Fici, G J; Zhang, M; Mann, D W; Mitton-Fry, M

2014-08-01

65

Differential involvement of amygdala and cortical NMDA receptors activation upon encoding in odor fear memory.  

PubMed

Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptors in the BLA and olfactory cortex at discrete moments of an odor fear conditioning session. We showed that NMDA receptors in BLA are critically involved in odor fear acquisition during the first association but not during the next ones. In the cortex, NMDA receptor activation at encoding is not necessary for recent odor fear memory while its role in remote memory storage needs further investigation. PMID:25403452

Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guillaume; Mouly, Anne-Marie

2014-12-01

66

Acoustic input and efferent activity regulate the expression of molecules involved in cochlear micromechanics.  

PubMed

Electromotile activity in auditory outer hair cells (OHCs) is essential for sound amplification. It relies on the highly specialized membrane motor protein prestin, and its interactions with the cytoskeleton. It is believed that the expression of prestin and related molecules involved in OHC electromotility may be dynamically regulated by signals from the acoustic environment. However little is known about the nature of such signals and how they affect the expression of molecules involved in electromotility in OHCs. We show evidence that prestin oligomerization is regulated, both at short and relatively long term, by acoustic input and descending efferent activity originating in the cortex, likely acting in concert. Unilateral removal of the middle ear ossicular chain reduces levels of trimeric prestin, particularly in the cochlea from the side of the lesion, whereas monomeric and dimeric forms are maintained or even increased in particular in the contralateral side, as shown in Western blots. Unilateral removal of the auditory cortex (AC), which likely causes an imbalance in descending efferent activity on the cochlea, also reduces levels of trimeric and tetrameric forms of prestin in the side ipsilateral to the lesion, whereas in the contralateral side prestin remains unaffected, or even increased in the case of trimeric and tetrameric forms. As far as efferent inputs are concerned, unilateral ablation of the AC up-regulates the expression of ?10 nicotinic Ach receptor (nAChR) transcripts in the cochlea, as shown by RT-Quantitative real-time PCR (qPCR). This suggests that homeostatic synaptic scaling mechanisms may be involved in dynamically regulating OHC electromotility by medial olivocochlear efferents. Limited, unbalanced efferent activity after unilateral AC removal, also affects prestin and ?-actin mRNA levels. These findings support that the concerted action of acoustic and efferent inputs to the cochlea is needed to regulate the expression of major molecules involved in OHC electromotility, both at the transcriptional and posttranscriptional levels. PMID:25653600

Lamas, Veronica; Arévalo, Juan C; Juiz, José M; Merchán, Miguel A

2014-01-01

67

Acoustic input and efferent activity regulate the expression of molecules involved in cochlear micromechanics  

PubMed Central

Electromotile activity in auditory outer hair cells (OHCs) is essential for sound amplification. It relies on the highly specialized membrane motor protein prestin, and its interactions with the cytoskeleton. It is believed that the expression of prestin and related molecules involved in OHC electromotility may be dynamically regulated by signals from the acoustic environment. However little is known about the nature of such signals and how they affect the expression of molecules involved in electromotility in OHCs. We show evidence that prestin oligomerization is regulated, both at short and relatively long term, by acoustic input and descending efferent activity originating in the cortex, likely acting in concert. Unilateral removal of the middle ear ossicular chain reduces levels of trimeric prestin, particularly in the cochlea from the side of the lesion, whereas monomeric and dimeric forms are maintained or even increased in particular in the contralateral side, as shown in Western blots. Unilateral removal of the auditory cortex (AC), which likely causes an imbalance in descending efferent activity on the cochlea, also reduces levels of trimeric and tetrameric forms of prestin in the side ipsilateral to the lesion, whereas in the contralateral side prestin remains unaffected, or even increased in the case of trimeric and tetrameric forms. As far as efferent inputs are concerned, unilateral ablation of the AC up-regulates the expression of ?10 nicotinic Ach receptor (nAChR) transcripts in the cochlea, as shown by RT-Quantitative real-time PCR (qPCR). This suggests that homeostatic synaptic scaling mechanisms may be involved in dynamically regulating OHC electromotility by medial olivocochlear efferents. Limited, unbalanced efferent activity after unilateral AC removal, also affects prestin and ?-actin mRNA levels. These findings support that the concerted action of acoustic and efferent inputs to the cochlea is needed to regulate the expression of major molecules involved in OHC electromotility, both at the transcriptional and posttranscriptional levels. PMID:25653600

Lamas, Veronica; Arévalo, Juan C.; Juiz, José M.; Merchán, Miguel A.

2015-01-01

68

Structural parts involved in activation and inactivation of the sodium channel  

Microsoft Academic Search

Structure-function relationships of the sodium channel expressed inXenopus oocytes have been investigated by the combined use of site-directed mutagenesis and patch-clamp recording. This study provides evidence that the positive charges in segment S4 are involved in the voltage-sensing mechanism for activation of the channel and that the region between repeats III and IV is important for its inactivation.

Walter Stühmer; Franco Conti; Harukazu Suzuki; Xiaodong Wang; Masaharu Noda; Naoki Yahagi; Hideo Kubo; Shosaku Numa

1989-01-01

69

Involvement of ribonucleotide reductase activity in the senescence of normal human diploid fibroblasts.  

PubMed

The levels of intracellular ribonucleotide reductase activity, a highly regulated rate-limiting step in DNA synthesis, were investigated during serial subculture of normal human diploid fibroblasts in vitro. This key enzyme activity was found to decline significantly during cellular senescence. This observation along with previous findings of a mutator gene associated with mammalian ribonucleotide reductase suggests a possible mutation mechanism for aging which involves changes in reductase activity during cellular senescence. Furthermore, in keeping with the decrease in enzyme activity, we show that cell resistance to the antitumor agent hydroxyurea, whose site of action is ribonucleotide reductase, decreases progressively with increasing passage numbers. This indicates that an important factor to be considered in drug therapy aimed at the reductase is the increased sensitivity of normal cells to drug with cell age, due to a decline in enzyme activity. Much remains to be determined about age-dependent factors involved in drug therapy; cultured normal human diploid fibroblasts provide a useful system in which to investigate these important parameters. PMID:6757589

Dick, J E; Wright, J A

1982-10-01

70

Horse gammaglobulin-induced thrombocytopenia in anaphylaxis involving sequestration and activation of platelets.  

PubMed

Thrombocytopenia as well as hemoconcentration and leukopenia followed by leukocytosis were induced after HoGG challenge on HoGG-sensitized mice. Thrombocytopenia was induced within 2 min and sustained for 1 day. HoGG-induced thrombocytopenia was not observed until day 10 after sensitization; mice challenged with HoGG dose > or = 10 micrograms developed thrombocytopenia. Two types of thrombocytopenia were observed in appropriately sensitized mice. HoGG induced thrombocytopenia at 2 min and 60 min, whereas, alpha-macroglobulin induced thrombocytopenia at 2 min, the platelet count of which returned to normal within 60 min. Poly (Glu60Ala30Tyr10) did not induce thrombocytopenia at 2 min or 60 min. The tracing study by 3H-serotonin labelled platelets demonstrated the 2 min-sequestration of platelets in lungs or livers. The HoGG-induced sequestration of platelets at 2 min was blocked by high dose heparin or Cobra Venom factor. Platelet activation at 60 min was partially inhibited by dexamethasone, rhodostomin synthetic peptide 45-59, or platelet activation factor antagonist (WEB 2086). Furthermore, the thrombocytopenia could be transferred by heat (56 degrees C, 4h) treated immune sera. This suggests that HoGG-induced, non-IgE-mediated thrombocytopenia in anaphylaxis involves sequestration and activation of platelets. The sequestion in lungs occurs within 2 min and can be inhibited by high dose heparin or Cobra Venom factor. The activation of platelets involves platelet activation factor, and fibrinogen receptor. PMID:7540500

Leir, S H; Chen, S H; Lei, H Y

1995-03-01

71

HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein  

SciTech Connect

Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-{kappa}B activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-{kappa}B-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax.

Yu Qingsheng; Minoda, Yasumasa; Yoshida, Ryoko; Yoshida, Hideyuki [Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan); Iha, Hidekatsu [Department of Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Oita 879-5593 (Japan); Kobayashi, Takashi; Yoshimura, Akihiko [Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan); Takaesu, Giichi [Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan)], E-mail: takaesug@bioreg.kyushu-u.ac.jp

2008-01-04

72

Involvement of the SATB1/F-actin complex in chromatin reorganization during active cell death.  

PubMed

Over the past years, confirmations on the presence of actin and/or its polymerized form, F-actin, in the cell nucleus are progressively accumulating. Nevertheless, the function and localization of F-actin in the nucleus is still not fully characterized. Thus, the aim of the present study was to evaluate the association between F-actin and sequence-binding protein 1 (SATB1) and their involvement in chromatin remodeling associated with active cell death. Both SATB1 and F-actin were colocalized in the transcriptional active regions of the cell nucleus and a functional interaction was observed between SATB1 and higher-organized nuclear F-actin structures at the border between condensed and decondensed chromatin. These results extend the knowledge on the role of SATB1 and nuclear F-actin in three-dimensional chromatin organization and their functions during active cell death. Additionally, this study opens the discussion on the involvement of the SATB1/F-actin functional complex in active cell death; further studies are required to fully elucidate these issues. PMID:24676287

Grzanka, Dariusz; Gagat, Maciej; Izdebska, Magdalena

2014-06-01

73

Involvement of the SATB1/F-actin complex in chromatin reorganization during active cell death  

PubMed Central

Over the past years, confirmations on the presence of actin and/or its polymerized form, F-actin, in the cell nucleus are progressively accumulating. Nevertheless, the function and localization of F-actin in the nucleus is still not fully characterized. Thus, the aim of the present study was to evaluate the association between F-actin and sequence-binding protein 1 (SATB1) and their involvement in chromatin remodeling associated with active cell death. Both SATB1 and F-actin were colocalized in the transcriptional active regions of the cell nucleus and a functional interaction was observed between SATB1 and higher-organized nuclear F-actin structures at the border between condensed and decondensed chromatin. These results extend the knowledge on the role of SATB1 and nuclear F-actin in three-dimensional chromatin organization and their functions during active cell death. Additionally, this study opens the discussion on the involvement of the SATB1/F-actin functional complex in active cell death; further studies are required to fully elucidate these issues. PMID:24676287

GRZANKA, DARIUSZ; GAGAT, MACIEJ; IZDEBSKA, MAGDALENA

2014-01-01

74

Psychosocial factors associated with youth involvement in community activities promoting heart health.  

PubMed

This study examined factors that influence youth participation in heart disease prevention activities among 2,609 ninth graders in six inner-city public high schools. Constructs derived from social cognitive, empowerment, and community development theories informed the conceptual framework employed. Study participants were diverse with respect to gender, ethnicity, parent education, acculturation, and academic achievement. Perceived incentive value, self-efficacy, outcome expectancies, sense of community, and perceived policy control were all significantly associated with participation in community activities promoting heart health. In multivariate analyses, perceived incentive value, defined as the extent to which participants valued a heart-healthy environment, was most strongly associated with community participation, accounting for 11.9% of the total variance. These findings have implications for designing school curricula and after-school and community programs targeting adolescents' involvement in health advocacy activities. PMID:9690106

Altman, D G; Feighery, E; Robinson, T N; Haydel, K F; Strausberg, L; Lorig, K; Killen, J D

1998-08-01

75

The multidisciplinary treatment plan: a format for enhancing activity therapy department involvement.  

PubMed

A structured, goal-oriented format for enhancing the involvement of activity therapy disciplines in the multidisciplinary treatment planning process has been developed in a large private psychiatric teaching hospital. The format, an adaptation of the problem-oriented record, encompasses formal procedures for identifying and recording relevant problems, goals, methods, and objectives for activity therapy treatment. The benefits of this approach include the development of specific, measurable, attainable functional goals; increased accountability in treatment planning and delivery; less time spent in documentation; and education of other staff about the role and function of activities therapy. Patients have a better understanding of their goals and the steps needed to achieve them and show increased participation in the therapy process. PMID:3967876

Lang, E; Mattson, M

1985-01-01

76

An Initial Investigation of Sexual Minority Youth Involvement in School-Based Extracurricular Activities  

PubMed Central

Sexual minority youth are at risk for negative school-based experiences and poor academic outcomes. Yet, little is known about their experiences in positive school-based contexts. Using the National Longitudinal Study of Adolescent Health (1,214 sexual minority and 11,427 heterosexual participants), this study compared participation rates in, predictors of, and outcomes associated with three types of school-based extracurricular activities - sports, arts, and school clubs - by sexual orientation and gender. Findings revealed several significant sexual orientation and gender differences in participation rates in school-based sports, clubs, and arts activities. Further, findings suggested that the outcomes associated with extracurricular activity involvement do not differ by sexual orientation and gender; however, predictors of participation in these domains varied across groups. PMID:24187476

Russell, Stephen T.

2012-01-01

77

Anticancer Activities of Pterostilbene-Isothiocyanate Conjugate in Breast Cancer Cells: Involvement of PPAR?  

PubMed Central

Trans-3,5-dimethoxy-4?-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor ? (PPAR?), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPAR? involvement in PTER-ITC action. Our results showed that when pre-treated with PPAR? antagonists or PPAR? siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPAR? mRNA and protein levels in a dose-dependent manner and modulated expression of PPAR?-related genes in both breast cancer cell lines. This increase in PPAR? activity was prevented by a PPAR?-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPAR? activator. PTER-ITC-mediated upregulation of PPAR? was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPAR? ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPAR? activation pathway. PMID:25119466

Nikhil, Kumar; Sharan, Shruti; Singh, Abhimanyu K.; Chakraborty, Ajanta; Roy, Partha

2014-01-01

78

The benefits of in-group contact through physical activity involvement for health and well-being among Korean immigrants  

PubMed Central

This qualitative study is designed to examine the benefits of physical activity involvement with members of the same ethnic group. For this study, Korean immigrants who were members of Korean physical activity clubs such as badminton and tennis were selected as participants. Using a constructive grounded theory methodology, three themes were identified as benefits of physical activity involvement: (1) the experience of psychological well-being, (2) the creation of a unique cultural world, and (3) the facilitation of physical activity involvement. The findings of this study suggest that Korean immigrant participants gained various social, cultural, and psychological benefits by engaging in activities with other Korean immigrants. PMID:24875239

Kim, Junhyoung; Heo, Jinmoo; Kim, Jun

2014-01-01

79

Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells.  

PubMed Central

Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants. PMID:9343406

Martínez-Martínez, S; Gómez del Arco, P; Armesilla, A L; Aramburu, J; Luo, C; Rao, A; Redondo, J M

1997-01-01

80

Activated Hair Follicle Stem Cells and Wnt/?-catenin Signaling Involve in Pathnogenesis of Sebaceous Neoplasms  

PubMed Central

Sebaceous glands (SGs) undergo cyclic renewal independent of hair follicle stem cells (HFSCs) activation while HFSCs have the potential to differentiate into sebaceous gland cells, hair follicle and epidermal keratinocytes. Abnormalities of sebaceous gland progenitor cells contribute to the development of sebaceous neoplasms, but little is known about the role of HFSCs during sebaceous neoplasm development. Here, using dimethylbenzanthracene (DMBA) plus 12-o-tetradecanoyl phorbol-13-acetate (TPA) treatment developing sebaceous neoplasms (SNs) were identified with H&E and Oil red O staining. And then the molecular expression and activation of HFSCs and was characterized by immunostaining. Wnt10b/?-catenin signaling molecular which is important for activation of HFSCs were detected by immunostaining. We found hair follicle and epidermal cell markers were expressed in sebaceous neoplasms. Furthermore, SOX-9 and CD34-positive HFSCs were located in the basal layer of sebaceous lobules within the sebaceous neoplasms. Many appear to be in an active state. Finally, Wnt10b/?-catenin signaling was activated within the basal cells of sebaceous lobules in the sebaceous neoplasms. Collectively, our findings suggest that the abnormal activation of both HFSCs and Wnt10b/?-catenin signaling involves in the development of sebaceous neoplasms. PMID:25076848

Qiu, Weiming; Lei, Mingxing; Li, Jin; Wang, Ning; Lian, Xiaohua

2014-01-01

81

Norcantharidin induces apoptosis of breast cancer cells: Involvement of activities of mitogen activated protein kinases and signal transducers and activators of transcription  

Microsoft Academic Search

Involvement of activities of mitogen-activated protein kinases (MAPKs) and signal transducers and activators of transcription (STATs) remains unsolved in norcantharidin-associated breast cancer cell apoptosis. This study investigated the anti-cancer effect of norcantharidin and its underlying mechanism in two human breast cancer cell lines, estrogen receptor (ER)? HS-578T and ER+ MCF-7 cells. Norcantharidin induced potent cytotoxicity and arrested cell growth through

Pei-Yu Yang; Ming-Feng Chen; Ying-Hsien Kao; Dan-Ning Hu; Fang-Rong Chang; Yang-Chang Wu

2011-01-01

82

Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer  

PubMed Central

Pancreatic adenocarcinoma, one of the worst malignancies of the exocrine pancreas, is a solid tumor with increasing incidence and mortality in industrialized countries. This condition is usually driven by oncogenic KRAS point mutations and evolves into a highly aggressive metastatic carcinoma due to secondary gene mutations and unbalanced expression of genes involved in the specific signaling pathways. To examine in vivo the effects of KRASG12D during pancreatic cancer progression and time correlation with cancer signaling pathway activities, we have generated a zebrafish model of pancreatic adenocarcinoma in which eGFP-KRASG12D expression was specifically driven to the pancreatic tissue by using the GAL4/UAS conditional expression system. Outcrossing the inducible oncogenic KRASG12D line with transgenic zebrafish reporters, harboring specific signaling responsive elements of transcriptional effectors, we were able to follow TGF?, Notch, Bmp and Shh activities during tumor development. Zebrafish transgenic lines expressing eGFP-KRASG12D showed normal exocrine pancreas development until 3 weeks post fertilization (wpf). From 4 to 24 wpf we observed several degrees of acinar lesions, characterized by an increase in mesenchymal cells and mixed acinar/ductal features, followed by progressive bowel and liver infiltrations and, finally, highly aggressive carcinoma. Moreover, live imaging analysis of the exocrine pancreatic tissue revealed an increasing number of KRAS-positive cells and progressive activation of TGF? and Notch pathways. Increase in TGF?, following KRASG12D activation, was confirmed in a concomitant model of medulloblastoma (MDB). Notch and Shh signaling activities during tumor onset were different between MDB and pancreatic adenocarcinoma, indicating a tissue-specific regulation of cell signaling pathways. Moreover, our results show that a living model of pancreatic adenocarcinoma joined with cell signaling reporters is a suitable tool for describing in vivo the signaling cascades and molecular mechanisms involved in tumor development and a potential platform to screen for novel oncostatic drugs. PMID:24878567

Schiavone, Marco; Rampazzo, Elena; Casari, Alessandro; Battilana, Giusy; Persano, Luca; Moro, Enrico; Liu, Shu; Leach, Steve D.; Tiso, Natascia; Argenton, Francesco

2014-01-01

83

Longitudinal relationships between perceived stress, exercise self-regulation and exercise involvement among physically active adolescents.  

PubMed

Abstract Stress exposure may undermine exercisers' capability to self-regulate their exercise behaviour. This longitudinal study examined the interplay between perceived stress, exercise self-regulation (assessment of action and coping planning) and participation in vigorous exercise in vocational students. Moreover, this study examined whether high exercise self-regulation moderates the assumed negative relationship between stress and exercise. A sample of 580 physically active vocational students ([Formula: see text] ± s 17.8 ± 1.3 years, 33.8% girls) was assessed. All participants completed two identical validated questionnaires assessing stress, exercise self-regulation and exercise with a span of 10 months in between survey completion periods. The cross-sectional analyses show that high exercise self-regulation attenuated the assumed negative relationship between stress and exercise. In the longitudinal analyses, however, only a non-significant trend was found. Significant longitudinal relationships existed between exercise self-regulation and exercise involvement. Latent difference score models revealed that a drop in the exercise self-regulation was associated with a concurrent decrease in exercise participation. Cross-lagged panel analyses showed that high exercise self-regulation levels positively predicted exercise behaviour, but an inverse relationship was not supported. The findings suggested that higher exercise self-regulation levels were positively associated with future exercise involvement in currently active adolescents. While partial support was found that exercise self-regulation moderated the influence of stress on exercise, the findings demonstrated that higher exercise self-regulation levels had a positive impact on future exercise involvement in already active individuals. PMID:25098842

Gerber, Markus; Lindwall, Magnus; Brand, Serge; Lang, Christin; Elliot, Catherine; Pühse, Uwe

2015-02-01

84

Lipopolysaccharide-induced lung injury involves the nitration-mediated activation of RhoA.  

PubMed

Acute lung injury (ALI) is characterized by increased endothelial hyperpermeability. Protein nitration is involved in the endothelial barrier dysfunction in LPS-exposed mice. However, the nitrated proteins involved in this process have not been identified. The activation of the small GTPase RhoA is a critical event in the barrier disruption associated with LPS. Thus, in this study we evaluated the possible role of RhoA nitration in this process. Mass spectroscopy identified a single nitration site, located at Tyr(34) in RhoA. Tyr(34) is located within the switch I region adjacent to the nucleotide-binding site. Utilizing this structure, we developed a peptide designated NipR1 (nitration inhibitory peptide for RhoA 1) to shield Tyr(34) against nitration. TAT-fused NipR1 attenuated RhoA nitration and barrier disruption in LPS-challenged human lung microvascular endothelial cells. Further, treatment of mice with NipR1 attenuated vessel leakage and inflammatory cell infiltration and preserved lung function in a mouse model of ALI. Molecular dynamics simulations suggested that the mechanism by which Tyr(34) nitration stimulates RhoA activity was through a decrease in GDP binding to the protein caused by a conformational change within a region of Switch I, mimicking the conformational shift observed when RhoA is bound to a guanine nucleotide exchange factor. Stopped flow kinetic analysis was used to confirm this prediction. Thus, we have identified a new mechanism of nitration-mediated RhoA activation involved in LPS-mediated endothelial barrier dysfunction and show the potential utility of "shielding" peptides to prevent RhoA nitration in the management of ALI. PMID:24398689

Rafikov, Ruslan; Dimitropoulou, Christiana; Aggarwal, Saurabh; Kangath, Archana; Gross, Christine; Pardo, Daniel; Sharma, Shruti; Jezierska-Drutel, Agnieszka; Patel, Vijay; Snead, Connie; Lucas, Rudolf; Verin, Alexander; Fulton, David; Catravas, John D; Black, Stephen M

2014-02-21

85

Spinal CCL2 and microglial activation are involved in paclitaxel-evoked cold hyperalgesia.  

PubMed

The antineoplastic paclitaxel induces a sensory neuropathy that involves the spinal release of neuroinflammatory mediators and activation of glial cells. Although the chemokine CCL2 can evoke glial activation and its participation in neuropathic pain has been demonstrated in other models, its involvement in paclitaxel-evoked neuropathy has not been previously explored. Paclitaxel-evoked cold hypernociception was assessed in mice by the unilateral cold plate test and the effects on cold hyperalgesia of the CCR2 antagonist RS 504393, the CCR1 antagonist J113863, the microglial inhibitor minocycline or an anti-CCL2 antibody were tested. Furthermore, ELISA measurements of CCL2 concentration and immunohistochemical assays of Iba-1 and GFAP, markers of microglial and astroglial cells respectively, were performed in the lumbar spinal cord. Cold hypernociception measured 3 days after the administration of paclitaxel (10mg/kg) was inhibited by the s.c. (0.3-3mg/kg) or i.t. (1-10 ?g) administration of RS 504393 but not of J113863 (3-30 mg/kg). CCL2 levels measured by ELISA in the lumbar spinal cord were augmented in mice treated with paclitaxel and the i.t. administration of an anti-CCL2 antibody completely suppressed paclitaxel-evoked cold hyperalgesia, strongly suggesting that CCL2 is involved in the hypernociception evoked by this taxane. Besides, the implication of microglial activation is supported by the increase in the immunolabelling of Iba-1, but not GFAP, in the spinal cord of paclitaxel-treated mice and by the inhibition of cold hyperalgesia produced by the i.t. administration of the microglial inhibitor minocycline (1-10 nmol). Finally, the neutralization of spinal CCL2 by the i.t. administration of a selective antibody for 3 days almost totally inhibited paclitaxel-evoked microglial activation. In conclusion, our results indicate that paclitaxel-evoked cold hypernociception depends on the activation of CCR2 due to the spinal release of CCL2 and the subsequent microglial activation. PMID:23562605

Pevida, Marta; Lastra, Ana; Hidalgo, Agustín; Baamonde, Ana; Menéndez, Luis

2013-06-01

86

Signaling pathways involved in atrial natriuretic factor and dopamine regulation of renal Na+, K+ -ATPase activity.  

PubMed

Dopamine (DA) and atrial natriuretic factor (ANF) share a number of physiological effects. We hypothesized that ANF and the renal dopaminergic system could interact and enhance the natriuretic and diuretic effects of the peptide. We have previously reported that the ANF-stimulated DA uptake in renal tubular cells is mediated by the natriuretic peptide type-A receptor (NPR-A). Our aim was to investigate the signaling pathways that mediate ANF effects on renal 3H-DA uptake. Methylene blue (10 microM), an unspecific inhibitor of guanylate cyclase (GC), blunted ANF elicited increase of DA uptake. ODQ (10 microM) a specific inhibitor of soluble GC, did not modify DA uptake and did not reverse ANF-induced increase of DA uptake; then the participation of nitric oxide-dependent pathways must be discarded. The second messenger was the cGMP since the analogous 125 microM 8-Br-cGMP mimicked ANF effects. The specific inhibitor of the protein kinase G (PKG), KT 5823 (1 microM) blocked ANF effects indicating that PKG is involved. We examined if ANF effects on DA uptake were able to modify Na+, K+ -adenosine triphosphatase (Na+, K+ -ATPase) activity. The experiments were designed by means of inhibition of renal DA synthesis by carbidopa and neuronal DA uptake blocked by nomifensine. In these conditions renal Na+, K+ -ATPase activity was increased, in agreement with the decrease of DA availability. When in similar conditions, exogenous DA was added to the incubation medium, the activity of the enzyme tended to decrease, following to the restored availability of DA. The addition of ANF alone had similar effects to the addition of DA on the sodium pump, but when both were added together, the activity of Na(+), K(+)-ATPase was decreased. Moreover, the extraneuronal uptake blocker, hydrocortisone, inhibited the latter effect. In conclusion, ANF stimulates extraneuronal DA uptake in external cortex tissues by activation of NPR-A receptors coupled to GC and it signals through cGMP as second messenger and PKG. Dopamine and ANF may achieve their effects through a common pathway that involves reversible deactivation of renal tubular Na+, K+ -ATPase activity. This mechanism demonstrates a DA-ANF relationship involved in the modulation of both decreased sodium reabsorption and increased natriuresis. PMID:17005263

Correa, Alicia H; Choi, Marcelo R; Gironacci, Mariela; Valera, María S; Fernández, Belisario E

2007-01-10

87

GSK3? signaling is involved in ultraviolet B-induced activation of autophagy in epidermal cells  

PubMed Central

Ultraviolet B (UVB) exposure causes damage to skin and represents the primary etiological agent for skin cancer formation. UVB induces DNA damage and apoptosis in epidermal cells. In this study, we demonstrated that UVB activated autophagy in JB6 epidermal cells, which was evident by the formation of LC3 puncta, the induction of LC3 lipidation, the increase in beclin 1 expression, and the decrease in the levels of p62. Autophagy appeared to be a protective response to UVB-induced damage because inhibition of autophagy exacerbated UVB-induced cell death, and stimulation of autophagy offered protection. Furthermore, we demonstrated that glycogen synthase kinase 3? (GSK3?) was involved in UVB-induced autophagy. UVB inhibited GSK3? activation by simultaneously enhancing phosphorylation at Ser9 and suppressing Tyr216 phosphorylation. GSK3? negatively regulated autophagy; overexpression of wild-type or S9A (constitutive-active) GSK3? mutant inhibited UVB-mediated autophagy, while overexpression of a dominant-negative K85R mutant enhanced UVB-mediated autophagy. Inhibition of GSK3? also offered protection against UVB-mediated damage. UVB activated AMP-activated protein kinase (AMPK), an important regulator of autophagy through the inhibition of GSK3?. Taken together, our results suggest that UVB-stimulated autophagy is a protective response for epidermal cells and is mediated by the GSK3?/AMPK pathway. PMID:22961228

YANG, YANG; WANG, HAIPING; WANG, SIYING; XU, MEI; LIU, MEI; LIAO, MINGJUN; FRANK, JACQUELINE A.; ADHIKARI, SABAL; BOWER, KIMBERLY A.; SHI, XIANGLIN; MA, CUILING; LUO, JIA

2012-01-01

88

BimL involvement in Bax activation during UV irradiation-induced apoptosis  

SciTech Connect

Bax, a proapoptotic member of the Bcl-2 family, localizes largely in the cytoplasm but translocates to mitochondria and undergoes oligomerization to induce the release of apoptogenic factors in response to apoptotic stimuli. However, the molecular mechanism of Bax activation is not fully understood. We show here the role of BimL in Bax activation during UV irradiation-induced apoptosis. In this study, GFP-BimL plasmid was constructed. The dynamic interaction between BimL and Bax during UV irradiation-induced apoptosis was observed using fluorescence resonance energy transfer (FRET) technique. Our experimental results showed that BimL translocation to mitochondria occurred before Bax translocation, and that BimL activated Bax indirectly. Moreover, inhibition of c-Jun N-terminal protein kinase (JNK) activation blocked BimL translocation, delayed and attenuated Bax translocation and subsequent apoptosis. These results demonstrate that BimL is involved in UV irradiation-induced apoptosis by indirectly activating Bax.

Chen, Miaojuan [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China); Xing, Da [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)]. E-mail: xingda@scnu.edu.cn; Chen, Tongsheng [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China); Zhang, Lan [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

2007-06-29

89

Involvement of ERK pathway in interferon alpha-mediated antiviral activity against hepatitis C virus.  

PubMed

Interferon alpha (IFN-?) is the key component of the therapy for hepatitis C virus (HCV) infection. IFN-? exerts anti-HCV activity by targeting certain signaling pathways. Using infectious HCV culture system in human hepatoma Huh7.5.1 cells, we analyzed functional relevance of extracellular signal-regulated kinase (ERK) pathway for IFN-?-mediated anti-HCV activity. IFN-? treatment resulted in activation of ERK pathway by increasing phosphorylation of c-Raf, MEK, and ERK1/2 in Huh7.5.1 cells, whereas HCV impaired such activation. IFN-?-dependent ERK1/2 phosphorylation was blocked by MEK inhibitor U0126. Pharmacological inhibition of ERK1/2 by U0126 or siRNA-mediated knockdown of ERK1/2 resulted in suppressive effects on HCV RNA levels and expression of HCV nonstructural protein 3 and envelope protein 2, establishing an important role for ERK pathway in HCV replication. Moreover, induction of a set of antiviral genes by IFN-? was enhanced in HCV-infected Huh7.5.1 cells due to the ERK1/2 knockdown, suggesting that impairment of ERK signaling may potentiate HCV inhibition by IFN-?. These results demonstrate that ERK pathway is involved in IFN-?-mediated antiviral activity against HCV. PMID:25544181

Zhao, Lan-Juan; Wang, Wen; Wang, Wen-Bo; Ren, Hao; Qi, Zhong-Tian

2015-03-01

90

Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase  

PubMed Central

Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS. PMID:23776455

Morfini, Gerardo A.; Bosco, Daryl A.; Brown, Hannah; Gatto, Rodolfo; Kaminska, Agnieszka; Song, Yuyu; Molla, Linda; Baker, Lisa; Marangoni, M. Natalia; Berth, Sarah; Tavassoli, Ehsan; Bagnato, Carolina; Tiwari, Ashutosh; Hayward, Lawrence J.; Pigino, Gustavo F.; Watterson, D. Martin; Huang, Chun-Fang; Banker, Gary; Brown, Robert H.; Brady, Scott T.

2013-01-01

91

Pathways Involved in the Synergistic Activation of Macrophages by Lipoteichoic Acid and Hemoglobin  

PubMed Central

Lipoteichoic acid (LTA) is a Gram-positive cell surface molecule that is found in both a cell-bound form and cell-free form in the host during an infection. Hemoglobin (Hb) can synergize with LTA, a TLR2 ligand, to potently activate macrophage innate immune responses in a TLR2- and TLR4-dependent way. At low levels of LTA, the presence of Hb can result in a 200-fold increase in the secretion of IL-6 following macrophage activation. Six hours after activation, the macrophage genes that are most highly up-regulated by LTA plus Hb activation compared to LTA alone are cytokines, chemokines, receptors and interferon-regulated genes. Several of these genes exhibit a unique TLR4-dependent increase in mRNA levels that continued to rise more than eight hours after stimulation. This prolonged increase in mRNA levels could be the result of an extended period of NF-?B nuclear localization and the concurrent absence of the NF-?B inhibitor, I?B?, after stimulation with LTA plus Hb. Dynasore inhibition experiments indicate that an endocytosis-dependent pathway is required for the TLR4-dependent up-regulation of IL-6 secretion following activation with LTA plus Hb. In addition, interferon-? mRNA is present after activation with LTA plus Hb, suggesting that the TRIF/TRAM-dependent pathway may be involved. Hb alone can elicit the TLR4-dependent secretion of TNF-? from macrophages, so it may be the TLR4 ligand. Hb also led to secretion of high mobility group box 1 protein (HMGB1), which synergized with LTA to increase secretion of IL-6. The activation of both the TLR2 and TLR4 pathways by LTA plus Hb leads to an enhanced innate immune response. PMID:23071790

Cox, Kathleen H.; Cox, Michelle E.; Woo-Rasberry, Virginia; Hasty, David L.

2012-01-01

92

Oxidized LDL activates STAT1 and STAT3 transcription factors: possible involvement of reactive oxygen species.  

PubMed

The effect of cupric ion-oxidized low density lipoprotein (Cu-LDL) or endothelial cell-oxidized LDL (E-LDL) on STAT1 and STAT3 (signal transducers and activators of transcription) DNA binding activity was investigated by electrophoretic mobility shift assay in human endothelial cells. Both oxidized LDL enhanced STAT1 and STAT3 binding to their respective consensus binding sites. Furthermore, the activation of STATs was proportional to the oxidation degree of LDL in that the highly oxidized Cu-LDL exhibited a more marked effect than E-LDL. Oxidized LDL induced an intracellular oxidative stress, as shown by the increase in the intracellular level of lipid peroxidation products (thiobarbituric acid-reactive substances) and in the level of reactive oxygen species, measured by the fluorescence of dichlorofluorescein diacetate. The binding activity of STAT1 and STAT3 paralleled these two parameters, which suggests that it is dependent upon the redox state of the cell. The activation of STATs by oxidized LDL was almost completely inhibited by the lipophilic antioxidant vitamin E, and partially antagonized by the hydrophilic thiol-containing compound N-acetylcysteine, suggesting that the oxidative stress induced by oxidized LDL is involved in the observed phenomenon. Furthermore, the lipid extract of Cu-LDL also activated STAT1 and STAT3. Since the STAT pathway plays a key role in cytokine and growth factor signal transduction, the activation of STATs by oxidized LDL might be related to their proinflammatory and fibroproliferative effect in the atherosclerotic plaque. PMID:10217408

Mazière, C; Alimardani, G; Dantin, F; Dubois, F; Conte, M A; Mazière, J C

1999-04-01

93

NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells  

SciTech Connect

During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 ?g/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ? Endothelial HO1 is upregulated by ozonated plasma ? This activation is induced by NRF2 and it is ERK independent. ? 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ? Ozonated plasma induced a hormetic effect ? Combination of orthodox medicine and ozonated plasma can be a useful treatment.

Pecorelli, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Child Neuropsychiatry Unit, University Hospital, AOUS, Siena (Italy); Bocci, Velio [Department of Physiology, University of Siena (Italy); Acquaviva, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Belmonte, Giuseppe [Department of Biomedical Sciences, University of Siena (Italy); Gardi, Concetta [Department of Molecular and Developmental Medicine, University of Siena (Italy); Virgili, Fabio [INRAN, Rome (Italy); Ciccoli, Lucia [Department of Molecular and Developmental Medicine, University of Siena (Italy); Valacchi, Giuseppe, E-mail: giuseppe.valacchi@unife.it [Department of Life Sciences and Biotechnology, University of Ferrara (Italy); Department of Food and Nutrition, Kyung Hee University, Seoul (Korea, Republic of)

2013-02-15

94

Antidepressant-like activity of dehydrozingerone: Involvement of the serotonergic and noradrenergic systems.  

PubMed

Dehydrozingerone (DHZ) is a phenolic compound isolated from ginger rhizomes (Zingiber officinale). It is known for its diverse spectrum of biological activities as an antioxidant, anti-inflammatory and antitumor compound. The present study was designed to assess the antidepressant effect of DHZ and the involvement of the monoaminergic system and to evaluate its in vitro antioxidant activity in the hippocampus, cortex and cerebellum of mice. For this study, the tail suspension test (TST), forced swim test (FST) and yohimbine lethality test were performed. DHZ administered orally 30min prior to testing reduced the immobility time in the TST (1-40mg/kg) and the FST (10-40mg/kg), with no change in locomotor activity in the open field test. The antidepressant-like effect of DHZ (1mg/kg) was prevented by ketanserin (1mg/kg, i.p.; a 5-HT2A/2C receptor antagonist), ondansetron (1mg/kg, i.p.; a 5-HT3 receptor antagonist), prazosin (1mg/kg, i.p., an ?1-adrenoceptor antagonist) and yohimbine (1mg/kg, i.p., an ?2-adrenoceptor antagonist) pretreatments. Furthermore, DHZ administered at doses of 10 and 20mg/kg increased the lethality of yohimbine (35mg/kg, i.p.). DHZ had antioxidant activity on in vitro lipid peroxidation induced by sodium nitroprusside in all brain regions tested. The results revealed that DHZ has a potent antidepressant effect, which seems to involve the serotonergic and noradrenergic systems. PMID:25449795

Martinez, Débora M; Barcellos, Angelita; Casaril, Angela M; Savegnago, Lucielli; Lernardão, Eder J

2014-10-31

95

Identification of genes potentially involved in the biocontrol activity of Pseudozyma flocculosa.  

PubMed

Flocculosin is an antifungal cellobiose lipid linked to the biocontrol activity of Pseudozyma flocculosa and whose structure is very similar to that of ustilagic acid produced by Ustilago maydis. In this work, homologs of the U. maydis cyp1 gene, involved in the biosynthesis of ustilagic acid, were isolated and sequenced from P. flocculosa and P. fusiformata, the latter species being also known to produce ustilagic acid. Interestingly, no homologs were found in four other closely related Pseudozyma spp. from which no evidence of ustilagic acid production has ever been obtained, thus supporting the specificity of cyp1 with ustilagic acid synthesis. In addition, a homolog of the U. maydis uat1 gene involved in the acetylation of the molecule and located next to the cyp1 gene was partially sequenced from P. flocculosa. All three newly sequenced genes showed strong sequence similarity to their counterparts in U. maydis. Cyp1 expression was monitored in conditions that were either conducive or repressive to flocculosin production. Expression increased markedly (>100x) when P. flocculosa was inoculated in a growth medium conducive to flocculosin production but was rapidly downregulated in a repressive medium (in vitro) or on powdery mildew-infected cucumber leaves (in vivo). This suggests that the molecule was preferentially synthesized early in the process of searching for a growth substrate. This study provides the first identification of genes involved in the production of flocculosin, a molecule potentially associated with the biocontrol properties of P. flocculosa. PMID:19740027

Marchand, G; Rémus-Borel, W; Chain, F; Hammami, W; Belzile, F; Bélanger, R R

2009-10-01

96

A review of two recent occurrences at the Advanced Test Reactor involving subcontractor activities  

SciTech Connect

This report documents the results of a brief, unofficial investigation into two incidents at the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR) facility, reported on October 25 and 31, 1997. The first event was an unanticipated breach of confinement. The second involved reactor operation with an inoperable seismic scram subsystem, violating the reactor`s Technical Specifications. These two incidents have been found to be unrelated. A third event that occurred on December 16, 1996, is also discussed because of its similarities to the first event listed above. Both of these incidents were unanticipated breaches of confinement, and both involved the work of construction subcontractor personnel. The cause for the subcontractor related occurrences is a work control process that fails to effectively interface with LMITCO management. ATR Construction Project managers work sufficient close with construction subcontractor personnel to understand planned day-to-day activities. They also have sufficient training and understanding of reactor operations to ensure adherence to applicable administrative requirements. However, they may not be sufficiently involved in the work authorization and control process to bridge an apparent communications gap between subcontractor employees and Facility Operations/functional support personnel for work inside the reactor facility. The cause for the inoperable seismic scram switch (resulting from a disconnected lead) is still under investigation. It does not appear to be subcontractor related.

Dahlke, H.J.; Jensen, N.C.; Vail, J.A.

1997-11-01

97

Histamine innervation and activation of septohippocampal GABAergic neurones: involvement of local ACh release  

PubMed Central

Recent studies indicate that the histaminergic system, which is critical for wakefulness, also influences learning and memory by interacting with cholinergic systems in the brain. Histamine-containing neurones of the tuberomammillary nucleus densely innervate the cholinergic and GABAergic nucleus of the medial septum/diagonal band of Broca (MSDB) which projects to the hippocampus and sustains hippocampal theta rhythm and associated learning and memory functions. Here we demonstrate that histamine, acting via H1 and/or H2 receptor subtypes, utilizes direct and indirect mechanisms to excite septohippocampal GABA-type neurones in a reversible, reproducible and concentration-dependent manner. The indirect mechanism involves local ACh release, is potentiated by acetylcholinesterase inhibitors and blocked by atropine methylbromide and 4-DAMP mustard, an M3 muscarinic receptor selective antagonist. This indirect effect, presumably, results from a direct histamine-induced activation of septohippocampal cholinergic neurones and a subsequent indirect activation of the septohippocampal GABAergic neurones. In double-immunolabelling studies, histamine fibres were found in the vicinity of both septohippocampal cholinergic and GABAergic cell types. These findings have significance for Alzheimer's disease and other neurodegenerative disorders involving a loss of septohippocampal cholinergic neurones as such a loss would also obtund histamine effects on septohippocampal cholinergic and GABAergic functions and further compromise hippocampal arousal and associated cognitive functions. PMID:15486020

Xu, Changqing; Michelsen, Kimmo A; Wu, Min; Morozova, Elena; Panula, Pertti; Alreja, Meenakshi

2004-01-01

98

Involvement of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens  

PubMed Central

Background Pseudomonas fluorescens is a ubiquitous Gram-negative bacterium frequently encountered in hospitals as a contaminant of injectable material and surfaces. This psychrotrophic bacterium, commonly described as unable to grow at temperatures above 32°C, is now considered non pathogenic. We studied a recently identified clinical strain of P. fluorescens biovar I, MFN1032, which is considered to cause human lung infection and can grow at 37°C in laboratory conditions. Results We found that MFN1032 secreted extracellular factors with a lytic potential at least as high as that of MF37, a psychrotrophic strain of P. fluorescens or the mesophilic opportunistic pathogen, Pseudomonas aeruginosa PAO1. We demonstrated the direct, and indirect – through increases in biosurfactant release – involvement of a phospholipase C in the hemolytic activity of this bacterium. Sequence analysis assigned this phospholipase C to a new group of phospholipases C different from those produced by P. aeruginosa. We show that changes in PlcC production have pleiotropic effects and that plcC overexpression and plcC extinction increase MFN1032 toxicity and colonization, respectively. Conclusion This study provides the first demonstration that a PLC is involved in the secreted hemolytic activity of a clinical strain of Pseudomonas fluorescens. Moreover, this phospholipase C seems to belong to a complex biological network associated with the biosurfactant production. PMID:18973676

Rossignol, Gaelle; Merieau, Annabelle; Guerillon, Josette; Veron, Wilfried; Lesouhaitier, Olivier; Feuilloley, Marc GJ; Orange, Nicole

2008-01-01

99

Vimentin Is Involved in Peptidylarginine Deiminase 2-Induced Apoptosis of Activated Jurkat Cells  

PubMed Central

Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a Ca2+-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system. PMID:24850148

Hsu, Pei-Chen; Liao, Ya-Fan; Lin, Chin-Li; Lin, Wen-Hao; Liu, Guang-Yaw; Hung, Hui-Chih

2014-01-01

100

The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process  

SciTech Connect

Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

Gemelli, Claudia, E-mail: claudia.gemelli@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy); Center for Regenerative Medicine, University of Modena and Reggio Emilia, Via Gottardi 100, 41125 Modena (Italy); Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy)

2013-12-10

101

atRA-induced apoptosis of mouse embryonic palate mesenchymal cells involves activation of MAPK pathway  

SciTech Connect

Our previous studies have shown that atRA treatment resulted in cell-cycle block and growth inhibition in mouse embryonic palatal mesenchymal (MEPM). In the current study, gestation day (GD) 13 MEPM cells were used to test the hypothesis that the growth inhibition by atRA is due to apoptosis. The effects of atRA on apoptosis were assessed by performing MTT assay, Cell Death Detection ELISA and flow cytometry, respectively. Data analysis confirmed that atRA treatment induced apoptosis-like cell death, as shown by decreased cell viability and increased fragmented DNA and sub-G1 fraction. atRA-induced apoptosis was associated with upregulation of bcl-2, translocation of bax protein to the mitochondria from the cytosol, activation of caspase-3 and cytochrome c release into cytosol. atRA-induced apoptosis was abrogated by z-DEVD-fmk, a caspase-3 specific inhibitor, and z-VAD-fmk, a general caspase inhibitor, suggesting that the atRA-induced cell death of MEPM cells occurs through the cytochrome c- and caspase-3-dependent pathways. In addition, atRA treatment caused a strong and sustained activation of c-Jun N-terminal kinase (JNK) and p38 kinase (p38), as well as an early but transient activation of extracellular signal-regulated kinase (ERK). Importantly, atRA-induced DNA fragmentation and capase-3 activation were prevented by pretreatment with the JNK inhibitor (SP600125) and the p38 MAPK inhibitor (SB202190), but not by pretreatment with MEK inhibitor (U0126). From these results, we suggest that mitogen-activated protein kinase-dependent pathways is involved in the atRA-induced apoptosis of MEPM cells.

Yu Zengli [Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052 (China)]. E-mail: yuzengli@263.net; Xing Ying [Stem Cell Research Center, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052 (China)]. E-mail: xingy@zzu.edu.cn

2006-08-15

102

A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors.  

PubMed Central

1. We have undertaken a theoretical analysis of the steps contributing to the phototransduction cascade in vertebrate photoreceptors. We have explicitly considered only the activation steps, i.e. we have not dealt with the inactivation reactions. 2. From the theoretical analysis we conclude that a single photoisomerization leads to activation of the phosphodiesterase (PDE) with a time course which approximates a delayed ramp; the delay is contributed by several short first-order delay stages. 3. We derive a method for extracting the time course of PDE activation from the measured electrical response, and we apply this method to recordings of the photoresponse from salamander rods. The results confirm the prediction that the time course of PDE activation is a delayed ramp, with slope proportional to light intensity; the initial delay is about 10-20 ms. 4. We derive approximate analytical solutions for the electrical response of the photoreceptor to light, both for bright flashes (isotropic conditions) and for single photons (involving longitudinal diffusion of cyclic GMP in the outer segment). The response to a brief flash is predicted to follow a delayed Gaussian function of time, i.e. after an initial short delay the response should begin rising in proportion to t2. Further, the response-intensity relation is predicted to obey an exponential saturation. 5. These predictions are compared with experiment, and it is shown that the rising phase of the flash response is accurately described over a very wide range of intensities. We conclude that the model provides a comprehensive description of the activation steps of phototransduction at a molecular level. Images Fig. 1 PMID:1326052

Lamb, T D; Pugh, E N

1992-01-01

103

The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling.  

PubMed

Chinese fir (Cunninghamia lanceolata), a commercially important tree for the timber and pulp industry, is widely distributed in southern China and northern Vietnam, but its large and complex genome has hindered the development of genomic resources. Few efforts have focused on analysis of the modulation of transcriptional networks in vascular cambium during the transition from active growth to dormancy in conifers. Here, we used Illumina sequencing to analyze the global transcriptome alterations at the different stages of vascular cambium development in Chinese fir. By analyzing dynamic changes in the transcriptome of vascular cambium based on our RNA sequencing (RNA-Seq) data at the dormant, reactivating and active stages, many potentially interesting genes were identified that encoded putative regulators of cambial activity, cell division, cell expansion and cell wall biosynthesis and modification. In particular, the genes involved in transcriptional regulation and hormone signaling were highlighted to reveal their biological importance in the cambium development and wood formation. Our results reveal the dynamics of transcriptional networks and identify potential key components in the regulation of vascular cambium development in Chinese fir, which will contribute to the in-depth study of cambial differentiation and wood-forming candidate genes in conifers. PMID:23638988

Qiu, Zongbo; Wan, Lichuan; Chen, Tong; Wan, Yinglang; He, Xinqiang; Lu, Shanfa; Wang, Yanwei; Lin, Jinxing

2013-08-01

104

Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing.  

PubMed Central

We reported that interstitial collagenase is produced by keratinocytes at the edge of ulcers in pyogenic granuloma, and in this report, we assessed if production of this metalloproteinase is a common feature of the epidermal response in a variety of wounds. In all samples of chronic ulcers, regardless of etiology, and in incision wounds, collagenase mRNA, localized by in situ hybridization, was prominently expressed by basal keratinocytes bordering the sites of active re-epithelialization indicating that collagenolytic activity is a characteristic response of the epidermis to wounding. No expression of mRNAs for 72- and 92-kD gelatinases or matrilysin was seen in keratinocytes, and no signal for any metalloproteinase was detected in normal epidermis. Immunostaining for type IV collagen showed that collagenase-positive keratinocytes were not in contact with an intact basement membrane and, unlike normal keratinocytes, expressed alpha 5 beta 1 receptors. These observations suggest that cell-matrix interactions influence collagenase expression by epidermal cells. Indeed, as determined by ELISA, primary cultures of human keratinocytes grown on basement membrane proteins (Matrigel; Collaborative Research Inc., Bedford, MA) did not express significant levels of collagenase, whereas cells grown on type I collagen produced markedly increased levels. These results suggest that migrating keratinocytes actively involved in re-epithelialization acquire a collagenolytic phenotype upon contact with the dermal matrix. Images PMID:8254040

Saarialho-Kere, U K; Kovacs, S O; Pentland, A P; Olerud, J E; Welgus, H G; Parks, W C

1993-01-01

105

ICOS-LICOS interaction is critically involved in TGN1412-mediated T-cell activation.  

PubMed

TGN1412, a superagonistic CD28-specific antibody, was shown to require Fc-cross-linking or immobilization as a prerequisite to mediate T-cell proliferation and cytokine release in vitro. We used primary human umbilical vein endothelial cells (HUVECs) to study their ability to induce activation of TGN1412-treated T cells. We confirmed that peripheral primary human T cells do not show activation upon stimulation with soluble TGN1412 alone. Nevertheless, cocultivation of TGN1412-treated T cells with HUVECs induced T-cell activation that was further enhanced using cytokine prestimulated HUVECs. Unexpectedly, Fc-Fc?R interaction was dispensable for endothelial cell-mediated proliferation of TGN1412-treated T cells. Transwell-culture assays showed that TGN1412-treated T cells need direct cell-to-cell contact to HUVECs to induce proliferation. We found that costimulatory ICOS-LICOS interaction between T cells and endothelial cells is critically involved in TGN1412-mediated effects. Blocking LICOS reduced TGN1412-mediated T-cell proliferation significantly, whereas recombinant LICOS fully conferred TGN1412-mediated T-cell proliferation. Of note, cytokine stimulation enhanced LICOS expression on HUVECs and ICOS-LICOS interaction up-regulated ICOS expression on TGN1412-treated T cells. Hence, we provide a model of positive feedback conferred by ICOS-LICOS interaction between TGN1412-treated T cells and endothelial cells. PMID:22577174

Weissmüller, Sabrina; Semmler, Linda Y; Kalinke, Ulrich; Christians, Stefan; Müller-Berghaus, Jan; Waibler, Zoe

2012-06-28

106

Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities  

PubMed Central

Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1?, TNSF10 and TNF?) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNF? in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNF? are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure. PMID:24086524

Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

2013-01-01

107

Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress  

PubMed Central

Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells. PMID:24281104

Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

2010-01-01

108

Mechanisms involved in morphine-induced activation of synaptosomal Na+,K+-ATPase.  

PubMed

Morphine through mu-opioid receptors and G(i/o) proteins modulates several cellular effector systems; however, the mechanisms involved in the regulation of Na(+),K(+)-ATPase are not well known. We evaluated the effect of two mu-opioid receptor agonists on ouabain-sensitive Na(+),K(+)-ATPase activity in mice forebrain synaptosomes, and examined the modulation of this effect by antagonists of opioid receptors and a blocker of G(i/o) proteins. Incubation of synaptosomes with morphine (10(-9) to 10(-4) M) or buprenorphine (10(-10) to 10(-5) M) concentration-dependently stimulated Na(+),K(+)-ATPase activity, morphine being less potent but more efficacious than buprenorphine. Morphine did not displace [3H]ouabain from its binding site (Na(+),K(+)-ATPase) to forebrain membranes, whereas ouabain did so in a concentration-dependent manner. Naloxone, an opioid antagonist (10(-6) M), added to the synaptosomal medium, antagonized the enhancement of Na(+),K(+)-ATPase activity induced by morphine, producing a parallel shift to the right of the morphine concentration-response curve. Treatment with beta-funaltrexamine, a mu antagonist (2.5 and 10 microg/mouse, i.c.v.) and naloxonazine, a mu1 antagonist (35 mg/kg, s.c.), 24 h before the synaptosomes were obtained, produced a dose-dependent reduction in the E(max) of the morphine-induced increase in Na(+),K(+)-ATPase activity in vitro, but did not significantly modify its EC(50). Pertussis toxin (G(i/o) protein blocker) treatment at a dose of 0.5 microg/mouse, administered i.c.v. 5 days before the synaptosomes were obtained, completely abolished the enhancement of Na(+),K(+)-ATPase activity induced by morphine. A lower dose (0.25 microg/mouse) decreased the E(max) of morphine by 50% but did not significantly affect its EC(50). These results suggest that morphine indirectly enhances Na(+),K(+)-ATPase activity in the brain by activating mu-opioid receptors and G(i/o) proteins. PMID:12445973

Masocha, Willias; González, Luis Gerardo; Baeyens, José Manuel; Agil, Ahmad

2002-12-13

109

A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments  

PubMed Central

Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ?-citraurin (3-hydroxy-?-apo-8?-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ?-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ?-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ?-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7?,8? double bond in zeaxanthin and ?-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7?,8? double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. PMID:24006419

Rodrigo, María J.; Alquézar, Berta; Al-Babili, Salim

2013-01-01

110

Vascular neurobehcet disease: correlation with current disease activity forum and systemic vascular involvement.  

PubMed

Behcet's syndrome (BS) is a chronic relapsing vascular inflammatory disease of unknown etiology with high morbidity and mortality. This research aims to study the clinical patterns of CNS disease in a group of patients with BS as well as the frequency and type of the associated radiographic findings suggestive of structural cerebral vascular disease. The findings were studied in relation to disease activity and features of systemic vascular involvement. Forty patients fulfilling the diagnostic criteria of the International Study Group for Behcet's Disease, mean age of 33.56 ± 9.7 years, were enrolled. Patients were subjected to magnetic resonance imaging with conjugate survey of cerebral blood vessels' flow pattern abnormalities by transcranial Doppler study. Thirty healthy controls were included. Behcet's Disease Current Activity Form Score was used. Neuro-Behcet's syndrome (NBS) was diagnosed in 37.5% with headache being the most common (86.6% of cases), pyramidal affection (signs of upper motor neuron lesions/hemiplegia) was reported in 33.3%, attacks of disturbed conscious level in 26.6%, and cranial nerve affection in 6.5%. Of the patients, 66.6% with clinical features of NBS had statistically significant radiographic evidences of cerebrovascular disease (p = 0.01). Patients with NBS had significantly higher disease activity index score (r = 0.69, p = 0.0001). Radiographic findings and flow abnormalities were significantly less in patients on immune suppressants and antiplatelet drugs (p = 0.003, 0.04). BS patients with clinical neurologic disease were found to have radiographic findings suggestive of cerebral vascular disease with high disease activity index score. Drugs like immunosuppressants and oral antiplatelets might retard cerebral vascular disease progression and flow abnormalities, respectively. PMID:22415466

Mohammed, Reem H A; Nasef, Amr; Kewan, Hanady H; Al Shaar, Mohammed

2012-07-01

111

Mothers' and Fathers' Involvement in Home Activities with Their Children: Psychosocial Factors and the Role of Parental Self-Efficacy  

ERIC Educational Resources Information Center

Parent involvement in play, learning, and everyday home activities is important for promoting children's cognitive and language development. The aims of the study were to (a) examine differences between mothers' and fathers' self-reported involvement with their children, (b) explore the relationship between child, parent and family factors, and…

Giallo, Rebecca; Treyvaud, Karli; Cooklin, Amanda; Wade, Catherine

2013-01-01

112

Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment.  

PubMed

Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling. PMID:25044599

Orruño, Maite; Garaizabal, Idoia; Bravo, Zaloa; Parada, Claudia; Barcina, Isabel; Arana, Inés

2014-10-01

113

Involvement of Autophagy in Antitumor Activity of Folate-appended Methyl-?-cyclodextrin  

PubMed Central

Autophagy, the major lysosomal pathway for recycling intracellular components including organelles, is emerging as a key process regulating tumorigenesis and cancer therapy. Most recently, we newly synthesized folate-appended methyl-?-cyclodextrin (FA-M-?-CyD), and demonstrated the potential of FA-M-?-CyD as a new antitumor drug. In this study, we investigated whether anticancer activity of FA-M-?-CyD in folate receptor-? (FR-?)-positive tumor cells is involved in autophagy. In contrast to methyl-?-cyclodextrin (M-?-CyD), FA-M-?-CyD entered KB cells (FR-? (+)) through CLIC/GEEC endocytosis. No significant depression in the DNA content was observed in KB cells after treatment with FA-M-?-CyD. Additionally, the transmembrane potential of mitochondria after treatment with FA-M-?-CyD was drastically elevated. Meanwhile, FA-M-?-CyD induced the formation of autophagic vacuoles, which were partially colocalized with mitochondria, in KB cells. Taken together, these results suggest that FR-?-expressing cell-selective cytotoxic activity of FA-M-?-CyD could be mediated by the regulation of autophagy, rather than the induction of apoptosis. PMID:24646866

Onodera, Risako; Motoyama, Keiichi; Tanaka, Nao; Ohyama, Ayumu; Okamatsu, Ayaka; Higashi, Taishi; Kariya, Ryusho; Okada, Seiji; Arima, Hidetoshi

2014-01-01

114

Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment  

PubMed Central

Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling. PMID:25044599

Orruño, Maite; Garaizabal, Idoia; Bravo, Zaloa; Parada, Claudia; Barcina, Isabel; Arana, Inés

2014-01-01

115

Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity.  

PubMed

Cooling the ischemic heart by just a few degrees protects it from infarction without affecting its mechanical function, but the mechanism of this protection is unknown. We investigated whether signal transduction pathways might be involved in the anti-infarct effect of mild hypothermia (35°C). Isolated rabbit hearts underwent 30 min of coronary artery occlusion/2 h of reperfusion. They were either maintained at 38.5°C or cooled to 35°C just before and only during ischemia. Infarct size was measured. The effects of the protein kinase C inhibitor chelerythrine, the nitric oxide synthase inhibitor N (?)-nitro-L: -arginine methyl ester (L: -NAME), the phosphatidylinositol 3-kinase antagonist wortmannin, or either of the mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitors PD98059 or U0126 on cooling's protection were examined. Myocardial ATP assays were performed and the level of phosphorylation of extracellular signal-regulated kinase (ERK) and MEK was examined by western blotting. To investigate an effect of cooling on protein phosphatase (PPase), a PPase inhibitor cantharidin was tested in the infarct model and the effect of mild hypothermia on PP2A activity in vitro was measured. Infarct size was 34.4 ± 2.2% of the ischemic zone in normothermic (38.5°C) hearts, but only 15.6 ± 8.7% in hearts cooled to 35°C during ischemia. Mechanical function was unaffected. Neither chelerythrine, L: -NAME, nor wortmannin had any effect, but both PD98059 and U0126 completely eliminated protection. Ischemia rather than reperfusion was the critical time when ERK had to be active to realize protection. Phosphorylation of ERK and MEK fell during normothermic ischemia, but during hypothermic ischemia phosphorylation of ERK remained high while that of MEK was increased. Cooling only slightly delayed the rate at which ATP fell during ischemia, and ERK inhibition did not affect that attenuation suggesting ATP preservation was unrelated to protection. Cantharidin, like cooling, also protected during ischemia but not at reperfusion, and its protection was dependent on ERK phosphorylation. However, mild hypothermia had a negligible effect on PP2A activity in an in vitro assay. Hence, mild hypothermia preserves ERK and MEK activity during ischemia which somehow protects the heart. While a PPase inhibitor mimicked cooling's protection, a direct effect of cooling on PP2A could not be demonstrated. PMID:21399968

Yang, Xiulan; Liu, Yanping; Yang, Xi-Ming; Hu, Fangdi; Cui, Lin; Swingle, Mark R; Honkanen, Richard E; Soltani, Peyman; Tissier, Renaud; Cohen, Michael V; Downey, James M

2011-05-01

116

GSE is a maternal factor involved in active DNA demethylation in zygotes.  

PubMed

After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote. PMID:23560077

Hatanaka, Yuki; Shimizu, Natsumi; Nishikawa, Satoshi; Tokoro, Mikiko; Shin, Seung-Wook; Nishihara, Takuji; Amano, Tomoko; Anzai, Masayuki; Kato, Hiromi; Mitani, Tasuku; Hosoi, Yoshihiko; Kishigami, Satoshi; Matsumoto, Kazuya

2013-01-01

117

Norcantharidin induces apoptosis of breast cancer cells: involvement of activities of mitogen activated protein kinases and signal transducers and activators of transcription.  

PubMed

Involvement of activities of mitogen-activated protein kinases (MAPKs) and signal transducers and activators of transcription (STATs) remains unsolved in norcantharidin-associated breast cancer cell apoptosis. This study investigated the anti-cancer effect of norcantharidin and its underlying mechanism in two human breast cancer cell lines, estrogen receptor (ER)- HS-578T and ER+ MCF-7 cells. Norcantharidin induced potent cytotoxicity and arrested cell growth through increasing phosphorylation of Chk1, Chk2 and total p21(Waf1/Cip1) and reducing cyclin B and cdc25c expression. It also induced apoptosis through extrinsic death receptor and intrinsic mitochondrial pathways by cytochrome c release, caspase activation, oligonucleosome appearance, PARP cleavage, and aberration of Bcl-2 family protein expression and phosphorylation. Although norcantharidin did not affect STAT1, STAT3, and STAT5 protein expression, it suppressed STAT3 and STAT5 phosphorylation in HS-578T cells, whereas it up-regulated STAT1 phosphorylation and down-regulated STAT5 phosphorylation in MCF-7 cells. Moreover, norcantharidin activated MAPK family member proteins, extracellular signal-regulated kinase (ERK), p38(MAPK) and c-Jun N-terminal kinase (JNK), were all phosphorylated by treatment. Pretreatment with selective kinase inhibitors significantly attenuated the norcantharidin-induced cytotoxicity in breast cancer cells. These findings suggest the potential involvement of MAPK and STAT pathways in norcantharidin-induced apoptogenesis. Norcantharidin may be an effective anti-cancer drug against breast cancer. PMID:21266192

Yang, Pei-Yu; Chen, Ming-Feng; Kao, Ying-Hsien; Hu, Dan-Ning; Chang, Fang-Rong; Wu, Yang-Chang

2011-04-01

118

Caspase-1 activator Ipaf is a p53-inducible gene involved in apoptosis.  

PubMed

The tumor suppressor protein p53 regulates transcription of many genes that mediate cell cycle arrest, apoptosis, DNA repair and other cellular responses. Here we show that Ipaf, a human CED-4 homologue and an activator of caspase-1, is induced by p53. Overexpression of p53 by transfection in U2OS and A549 cells increased Ipaf mRNA levels. Treatment of p53-positive cell lines U2OS and MCF-7 with the DNA damaging drug, doxorubicin, which increases p53 protein level, induced expression of Ipaf mRNA but similar treatment of MCF-7-mp53 (a clone of MCF-7 cells expressing mutant p53) and p53-negative K562 cells showed much less induction of Ipaf gene expression. Expression analysis for Ipaf mRNA in doxorubicin-treated human tumor cell lines suggests that p53-dependent as well as p53-independent mechanisms are involved in the regulation of Ipaf gene expression in a cell-type-specific manner. The Ipaf promoter was activated by normal p53 but not by His(273) mutant of p53. A functional p53-binding site was identified in the Ipaf promoter. A dominant-negative mutant of Ipaf inhibited p53-induced and doxorubicin-induced apoptosis by about 50%. Ipaf-directed small hairpin RNA downregulated p53-induced Ipaf gene expression and also reduced p53-induced apoptosis. Doxorubicin-induced apoptosis was also inhibited by Ipaf-directed small hairpin RNA. Our results show that p53 can directly induce Ipaf gene transcription, which contributes to p53-dependent apoptosis in at least some human cells. PMID:15580302

Sadasivam, Subhashini; Gupta, Sanjeev; Radha, Vegesna; Batta, Kiran; Kundu, Tapas K; Swarup, Ghanshyam

2005-01-20

119

Lack of Involvement of CEP Adducts in TLR Activation and in Angiogenesis  

PubMed Central

Proteins that are post-translationally adducted with 2-(?-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others. PMID:25343517

Gounarides, John; Cobb, Jennifer S.; Zhou, Jing; Cook, Frank; Yang, Xuemei; Yin, Hong; Meredith, Erik; Rao, Chang; Huang, Qian; Xu, YongYao; Anderson, Karen; De Erkenez, Andrea; Liao, Sha-Mei; Crowley, Maura; Buchanan, Natasha; Poor, Stephen; Qiu, Yubin; Fassbender, Elizabeth; Shen, Siyuan; Woolfenden, Amber; Jensen, Amy; Cepeda, Rosemarie; Etemad-Gilbertson, Bijan; Giza, Shelby; Mogi, Muneto; Jaffee, Bruce; Azarian, Sassan

2014-01-01

120

Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations  

PubMed Central

Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

2014-01-01

121

Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes.  

PubMed

Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a genomic organization differing from that of the Fusarium tri clusters. Here we describe the isolation of Trichoderma arundinaceum IBT 40837 transformants which have a disrupted or silenced tri4 gene, a gene encoding a cytochrome P450 monooxygenase that oxygenates trichodiene to give rise to isotrichodiol, and the effect of tri4 gene disruption and silencing on the expression of other tri genes. Our results indicate that the tri4 gene disruption resulted in a reduced antifungal activity against Botrytis cinerea and Rhizoctonia solani and also in a reduced ability to induce the expression of tomato plant defense-related genes belonging to the salicylic acid (SA) and jasmonate (JA) pathways against B. cinerea, in comparison to the wild-type strain, indicating that HA plays an important function in the sensitization of Trichoderma-pretreated plants against this fungal pathogen. Additionally, the effect of the interaction of T. arundinaceum with B. cinerea or R. solani and with tomato seedlings on the expressions of the tri genes was studied. PMID:22562989

Malmierca, M G; Cardoza, R E; Alexander, N J; McCormick, S P; Hermosa, R; Monte, E; Gutiérrez, S

2012-07-01

122

Involvement of Platelet-Activating Factor in Ultraviolet B-Induced Hyperalgesia  

PubMed Central

Ultraviolet B (UVB) radiation causes cutaneous inflammation. One important clinical consequence of UVB-induced inflammation is increased pain or hyperalgesia, which is likely mediated by enhanced sensitivity of cutaneous sensory neurons. Previous studies have demonstrated that UVB radiation generates the lipid mediator, platelet-activating factor (PAF), as well as oxidized phospholipids that act as PAF-mimetics. These substances exert effects through the PAF receptor (PAF-R). This study was designed to assess whether PAF-R is involved in UVB-induced hyperalgesia. Intradermal injection of carbamoyl PAF (CPAF; 1-hexadecyl-2-N-methylcarbamoyl glycerophosphocholine) resulted in an enhanced response to mechanical stimuli in wild-type mice but not in PAF-R knockout (KO) mice. There was no significant change in paw withdrawal to noxious thermal stimuli in either genotype after intradermal injection of CPAF. Exposure of the hind paw to 1,500 J m?2 UVB radiation caused an increased sensitivity to both mechanical and thermal stimulation in wild-type mice but not in PAF-R KO mice. The thermal hyperalgesia caused by UVB irradiation was inhibited in mice that lacked PAF-R in bone marrow-derived cells. These data demonstrate that the PAF-R is important for UVB-induced hyperalgesia. Further investigation of the role of PAF-R signaling in UVB-induced hyperalgesia could provide better understanding of the pathological processes initiated by UVB-induced skin damage. PMID:18580961

Zhang, Qiwei; Sitzman, Leslie A.; Al-Hassani, Mohammad; Cai, Shanbao; Pollok, Karen E.; Travers, Jeffrey B.; Hingtgen, Cynthia M.

2009-01-01

123

Residues involved in the pore-forming activity of the Clostridium perfringens iota toxin.  

PubMed

Clostridium perfringens iota toxin is a binary toxin that is organized into enzyme (Ia) and binding (Ib) components. Ib forms channels in lipid bilayers and mediates the transport of Ia into the target cells. Here we show that Ib residues 334-359 contain a conserved pattern of alternating hydrophobic and hydrophilic residues forming two amphipathic ?-strands involved in membrane insertion and channel formation. This stretch of amino acids shows remarkable structural and functional analogies with the ?-pore-forming domain of C.?perfringens epsilon toxin. Several mutations within the two amphipathic ?-strands affected pore formation, single-channel conductance and ion selectivity (S339E-S341E, Q345H N346E) confirming their involvement in channel formation. F454 of Ib corresponds to the ?-clamp F427 of anthrax protective antigen and F428 of C2II binary toxins. The mutation F454A resulted in a loss of cytotoxicity and strong increase in single-channel conductance (500?pS as compared with 85?pS in 1?M KCl) with a slight decrease in cation selectivity, indicating that the ?-clamp is highly conserved and crucial for binary toxin activity. In contrast, the mutants Q367D, N430D, L443E had no or only minor effects on Ib properties, while T360I, T360A and T360W caused a dramatic effect on ion selectivity and single-channel conductance, indicating gross disturbance of the oligomer structure. This suggests that, at least in the iota toxin family, T360 has a structural role in the pore organization. Moreover, introduction of charged residues within the channel (S339E-S341E) or in the vestibule (Q367D, N430D and L443E) had virtually no effect on chloroquine or Ia binding, whereas F454A, T360I, T360A and T360W strongly decreased the chloroquine and Ia affinity to Ib. These results support that distinct residues within the vestibule interact with chloroquine and Ia or are responsible for channel structure, while the channel lining amino acids play a less important role. PMID:25266274

Knapp, Oliver; Maier, Elke; Waltenberger, Eva; Mazuet, Christelle; Benz, Roland; Popoff, Michel R

2015-02-01

124

The Theory of Active Involvement: Processes Underlying Interventions that Engage Adolescents in Message Planning and/or Production  

PubMed Central

Adolescence is a time of increased risk-taking and recent intervention strategies have included adolescents planning or producing anti-risk messages for their peers. Although these projects may generate enthusiasm, we know little about message planning or production as a strategy for changing adolescent decision-making and behavior. The paper articulates the Theory of Active Involvement (TAI) to describe and explain the processes through which these active involvement interventions influence adolescents. TAI is based on social cognitive theory’s notion of self-regulation and examines multiple perspective-taking and activating the self-reflection processes. The theory specifically describes the process of cognitive changes experienced by participants in active involvement interventions. The sequence is conceptualized as starting when engagement with the intervention (arousal and involvement) produces skill and knowledge gains (immediate outcomes) that lead to reflection (perceived discrepancy) and then other cognitions (expectancies, norms, intentions), with the ultimate outcome being behavior change. Engaging the target audience in a process of self-reflection is conceptualized as the crucial ingredient for meaningful and sustainable change in cognitions and behavior. This paper provides valuable insight into how active involvement strategies function and how to best design these interventions, particularly those targeting adolescents. PMID:23980581

Greene, Kathryn

2013-01-01

125

Dexamethasone enhances necrosis-like neuronal death in ischemic rat hippocampus involving ?-calpain activation.  

PubMed

Transient forebrain ischemia (TFI) leads to hippocampal CA1 pyramidal cell death which is aggravated by glucocorticoids (GC). It is unknown how GC affect apoptosis and necrosis in cerebral ischemia. We therefore investigated the co-localization of activated caspase-3 (casp-3) with apoptosis- and necrosis-like cell death morphologies in CA1 of rats treated with dexamethasone prior to TFI (DPTI). In addition, apoptosis- (casp-9, casp-3, casp-3-cleaved PARP and cleaved ?-spectrin 145/150 and 120kDa) and necrosis-related (calpain-specific casp-9 cleavage, ?-calpain upregulation and cleaved ?-spectrin 145/150kDa) cell death mechanisms were investigated by Western blot analysis. DPTI expedited CA1 neuronal death from day 4 to day 1 and increased the magnitude of CA1 neuronal death from 66.2% to 91.3% at day 7. Furthermore, DPTI decreased the overall (days 1-7) percentage of dying neurons displaying apoptosis-like morphology from 4.7% to 0.3% and, conversely, increased the percentage of neurons with necrosis-like morphology from 95.3% to 99.7%. In animals subjected to TFI without dexamethasone (ischemia-only), 7.4% of all dying CA1 neurons were casp-3-immunoreactive (IR), of which 3.1% co-localized with apoptosis-like and 4.3% with necrosis-like changes. By contrast, DPTI decreased the percentage of dying neurons with casp-3 IR to 1.4%, of which 0.3% co-localized with apoptosis-like changes and 1.1% with necrosis-like changes. Western blot analysis from DPTI animals showed a significant elevation of ?-calpain, a calpain-produced necrosis-related casp-9 fragment (25kDa) and cleavage of ?-spectrin into 145/150kDa fragments at day 4, whereas in ischemia-only animals a significant increase of casp-3-cleaved PARP, cleavage of ?-spectrin into 145/150 and 120kDa fragments was detected at day 7. We conclude that DPTI, in addition to augmenting and expediting CA1 neuronal death, causes a shift from apoptosis-like cell death to necrosis involving ?-calpain activation. PMID:25135859

Müller, Georg Johannes; Hasseldam, Henrik; Rasmussen, Rune Skovgaard; Johansen, Flemming Fryd

2014-11-01

126

Self-definitions of Gang Membership and Involvement in Delinquent Activities  

Microsoft Academic Search

There is significant disagreement among researchers as to the appropriate concep- tual and operational definitions of gang membership. One of the key issues involves the validity of allowing respondents to identify themselves as gang members. This re- search examines the construct validity of gang membership by examining the relation- ship between various methods of operationalizing gang membership and delinquent involvement.

BETH BJERREGAARD

2002-01-01

127

Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory  

ERIC Educational Resources Information Center

Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

2014-01-01

128

76 FR 76935 - Impact of Implementing the Chemical Weapons Convention (CWC) on Commercial Activities Involving...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Schedule 1'' Chemicals Through Calendar Year 2011; Impact of Adding Salts of...involving ``Schedule 1'' chemicals during calendar year 2011. Additionally, BIS seeks...Schedule 1'' Chemicals Through Calendar Year 2011 In providing its advice...

2011-12-09

129

75 FR 69630 - Impact of Implementation of the Chemical Weapons Convention on Commercial Activities Involving...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Chemicals as Intermediates, Through Calendar Year 2010 AGENCY: Bureau of Industry...involving ``Schedule 1'' chemicals during calendar year 2010. BIS reminds the public that...in excess of 100 grams aggregate per calendar year (i.e., declared...

2010-11-15

130

TRANCE, a TNF Family Member, Activates Akt\\/PKB through a Signaling Complex Involving TRAF6 and c-Src  

Microsoft Academic Search

TRANCE, a TNF family member, and its receptor, TRANCE-R, are critical regulators of dendritic cell and osteoclast function. Here, we demonstrate that TRANCE activates the antiapoptotic serine\\/threonine kinase Akt\\/PKB through a signaling complex involving c-Src and TRAF6. A deficiency in c-Src or addition of Src family kinase inhibitors blocks TRANCE-mediated PKB activation in osteoclasts. c-Src and TRAF6 interact with each

Brian R Wong; Daniel Besser; Nacksung Kim; Joseph R Arron; Masha Vologodskaia; Hidesaburo Hanafusa; Yongwon Choi

1999-01-01

131

Parental Involvement in Active Transport to School Initiatives: A Multi-Site Case Study  

ERIC Educational Resources Information Center

Background: Increasing physical activity in youth is a recommended approach to curbing the childhood obesity epidemic. One way to help increase children's daily activity is to promote active transportation to and from school (ATS). Purpose: The purpose of this case study was to explore parental perception of, and participation in, ATS initiatives.…

Eyler, Amy; Baldwin, Julie; Carnoske, Cheryl; Nickelson, Jan; Troped, Philip; Steinman, Lesley; Pluto, Delores; Litt, Jill; Evenson, Kelly; Terpstra, Jennifer; Brownson, Ross; Schmid, Thomas

2008-01-01

132

DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf1  

Microsoft Academic Search

The transcription regulation activity of p53 controls cellular response to a variety of stress conditions, leading to growth arrest and apoptosis. Despite major progress in the understanding of the global effects of p53 on cellular function the pathways by which p53 activates apoptosis are not well defined. To study genes activated in the p53 induced apoptotic process, we used a

Karuppiah Kannan; Naftali Kaminski; Gideon Rechavi; Jasmine Jakob-Hirsch; Ninette Amariglio; David Givol

2001-01-01

133

Atmospheric science is the study of short-term weather and long-term climate, involving activities such as weather  

E-print Network

Atmospheric science is the study of short-term weather and long-term climate, involving activities such as weather forecasting, climate projections, air quality modeling, data analysis, and basic and applied. The program maintains strong ties with regional employers in both the private sector and the National Weather

Saldin, Dilano

134

162 Electrical and Computer Engineering 163 Courses and projects that actively involve them in their own education and  

E-print Network

162 Electrical and Computer Engineering 163 · Courses and projects that actively involve them · A broad education outside of engineering and science that emphasizes the role of electrical and computer of technology Graduate and undergraduate programs in electrical and computer engineering offer concentrations

Richards-Kortum, Rebecca

135

77 FR 49835 - Order Prohibiting Involvement in NRC-Licensed Activities; In the Matter of Mr. Joseph Quintanilla  

Federal Register 2010, 2011, 2012, 2013, 2014

...Prohibiting Involvement in NRC-Licensed Activities; In the Matter of Mr. Joseph Quintanilla I Mr. Joseph Quintanilla is a radiographer...Quintanilla indicated that he was aware the camera was outside of the dark room and did not contest that apparent violation. Mr....

2012-08-17

136

Mitogen-Activated Protein Kinases and NF-B Are Involved in TNF Responses to Group B Streptococci1  

Microsoft Academic Search

TNF- is a mediator of lethality in experimental infections by group B streptococcus (GBS), an important human pathogen. Little is known of signal transduction pathways involved in GBS-induced TNF- production. Here we investigate the role of mitogen- activated protein kinases (MAPKs) and NF-B in TNF- production by human monocytes stimulated with GBS or LPS, used as a positive control. Western

Giuseppe Mancuso; Angelina Midiri; Concetta Beninati; Giovanna Piraino; Andrea Valenti; Giacomo Nicocia; Diana Teti; James Cook; Giuseppe Teti

137

Relaxin Activates Peroxisome Proliferator-Activated Receptor ? (PPAR?) Through a Pathway Involving PPAR? Coactivator 1? (PGC1?).  

PubMed

Relaxin activation of its receptor RXFP1 triggers multiple signaling pathways. Previously, we have shown that relaxin activates PPAR? transcriptional activity in a ligand-independent manner, but the mechanism for this effect was unknown. In this study, we examined the signaling pathways of downstream of RXFP1 leading to PPAR? activation. Using cells stably expressing RXFP1, we found that relaxin regulation of PPAR? activity requires accumulation of cAMP and subsequent activation of cAMP-dependent protein kinase (PKA). The activated PKA subsequently phosphorylated cAMP response element binding protein (CREB) at Ser 133 to activate it directly, as well as indirectly through mitogen activated protein kinase p38 MAPK. Activated CREB was required for relaxin stimulation of PPAR? activity, while there was no evidence for a role of the nitric oxide or ERK MAPK pathways. Relaxin increased the mRNA and protein levels of the coactivator protein PGC1?, and this effect was dependent on PKA, and was completely abrogated by a dominant-negative form of CREB. This mechanism was confirmed in a hepatic stellate cell line stably that endogenously expresses RXFP1. Reduction of PGC1? levels using siRNA diminished the regulation of PPAR? by relaxin. These results suggest that relaxin activates the cAMP/PKA and p38 MAPK pathways to phosphorylate CREB, resulting in increased PGC1? levels. This provides a mechanism for the ligand-independent activation of PPAR? in response to relaxin. PMID:25389293

Singh, Sudhir; Simpson, Ronda L; Bennett, Robert G

2014-11-11

138

Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis  

SciTech Connect

Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-?-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

2013-07-19

139

Activity-Dependent Dendritic Spine Shrinkage and Growth Involve Downregulation of Cofilin via Distinct Mechanisms  

PubMed Central

A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage, and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However, the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely, during activity-dependent spine growth, LIM kinase stimulates cofilin phosphorylation, which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity. PMID:24740405

Calabrese, Barbara; Saffin, Jean-Michel; Halpain, Shelley

2014-01-01

140

Interrogating Signaling Nodes Involved in Cellular Transformations Using Kinase Activity Probes  

E-print Network

Protein kinases catalyze protein phosphorylation and thereby control the flow of information through signaling cascades. Currently available methods for concomitant assessment of the enzymatic activities of multiple kinases ...

Stains, Cliff I.

141

Activated spinal astrocytes are involved in the maintenance of chronic widespread mechanical hyperalgesia after cast immobilization  

PubMed Central

Background In the present study, we examined spinal glial cell activation as a central nervous system mechanism of widespread mechanical hyperalgesia in rats that experienced chronic post-cast pain (CPCP) 2 weeks after cast immobilization. Activated spinal microglia and astrocytes were investigated immunohistologically in lumbar and coccygeal spinal cord segments 1 day, 5 weeks, and 13 weeks following cast removal. Results In the lumbar cord, astrocytes were activated after microglia. Astrocytes also were activated after microglia in the coccygeal cord, but with a delay that was longer than that observed in the lumbar cord. This activation pattern paralleled the observation that mechanical hyperalgesia occurred in the hindleg or the hindpaw before the tail. The activating transcription factor 3 (ATF3) immune response in dorsal root ganglia (DRG) on the last day of cast immobilization suggested that nerve damage might not occur in CPCP rats. The neural activation assessed by the phosphorylated extracellular signal-regulated kinase (pERK) immune response in DRG arose 1 day after cast removal. In addition, L-?-aminoadipate (L-?-AA), an inhibitor of astrocyte activation administered intrathecally 5 weeks after cast removal, inhibited mechanical hyperalgesia in several body parts including the lower leg skin and muscles bilaterally, hindpaws, and tail. Conclusions These findings suggest that activation of lumbar cord astrocytes is an important factor in widespread mechanical hyperalgesia in CPCP. PMID:24456903

2014-01-01

142

Undergraduate Involvement in Extracurricular Activities and Leadership Development in College of Agriculture and Life Sciences Students  

ERIC Educational Resources Information Center

The purpose of this study was to identify and describe experiences of undergraduate extracurricular involvement that result in increased leadership development. Senior students in the College of Agriculture and Life Sciences at Iowa State University completed an online questionnaire about their extracurricular experiences. Leadership development…

Foreman, Elizabeth A.; Retallick, Michael S.

2012-01-01

143

Activation of legumain involves proteolytic and conformational events, resulting in a context- and substrate-dependent activity profile.  

PubMed

Localized mainly to endo/lysosomes, legumain plays an important role in exogenous antigen processing and presentation. The cysteine protease legumain, also known as asparaginyl endopepetidase AEP, is synthesized as a zymogen and is known to undergo pH-dependent autoproteolytic activation whereby N-terminal and C-terminal propeptides are released. However, important mechanistic details of this pH-dependent activation as well as the characteristic pH activity profile remain unclear. Here, it is shown that all but one of the autocatalytic cleavage events occur in trans, with only the release of the C-terminal propeptide being relevant to enzymatic activity. An intriguing super-activation event that appears to be exclusively conformational in nature and enhances the enzymatic activity of proteolytically fully processed legumain by about twofold was also found. Accepting asparagines and, to lesser extent, aspartic acid in P1, super-activated legumain exhibits a marked pH dependence that is governed by the P1 residue of its substrate and conformationally stabilizing factors such as temperature or ligands. The crystallization and preliminary diffraction data analysis of active legumain are presented, which form an important basis for further studies that should clarify fundamental aspects of activation, activity and inactivation of legumain, which is a key target in (auto-)immunity and cancer. PMID:22232165

Dall, Elfriede; Brandstetter, Hans

2012-01-01

144

Activation of legumain involves proteolytic and conformational events, resulting in a context- and substrate-dependent activity profile  

PubMed Central

Localized mainly to endo/lysosomes, legumain plays an important role in exogenous antigen processing and presentation. The cysteine protease legumain, also known as asparaginyl endopepetidase AEP, is synthesized as a zymogen and is known to undergo pH-dependent autoproteolytic activation whereby N-terminal and C-terminal propeptides are released. However, important mechanistic details of this pH-dependent activation as well as the characteristic pH activity profile remain unclear. Here, it is shown that all but one of the autocatalytic cleavage events occur in trans, with only the release of the C-terminal propeptide being relevant to enzymatic activity. An intriguing super-activation event that appears to be exclusively conformational in nature and enhances the enzymatic activity of proteolytically fully processed legumain by about twofold was also found. Accepting asparagines and, to lesser extent, aspartic acid in P1, super-activated legumain exhibits a marked pH dependence that is governed by the P1 residue of its substrate and conformationally stabilizing factors such as temperature or ligands. The crystallization and preliminary diffraction data analysis of active legumain are presented, which form an important basis for further studies that should clarify fundamental aspects of activation, activity and inactivation of legumain, which is a key target in (auto-)immunity and cancer. PMID:22232165

Dall, Elfriede; Brandstetter, Hans

2012-01-01

145

High Inorganic Triphosphatase Activities in Bacteria and Mammalian Cells: Identification of the Enzymes Involved  

PubMed Central

Background We recently characterized a specific inorganic triphosphatase (PPPase) from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. Methodology/Principal Findings Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPPi) is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPPi but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. Conclusions and General Significance We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPPi in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPPi, which could be cytotoxic because of its high affinity for Ca2+, thereby interfering with Ca2+ signaling. PMID:22984449

Lakaye, Bernard; Servais, Anne-Catherine; Scholer, Georges; Fillet, Marianne; Elias, Benjamin; Derochette, Jean-Michel; Crommen, Jacques; Wins, Pierre; Bettendorff, Lucien

2012-01-01

146

Mutational analysis of the major soybean UreF paralogue involved in urease activation  

Technology Transfer Automated Retrieval System (TEKTRAN)

In soybean, mutation at Eu2 or Eu3 eliminates the urease activities of both the embryo-specific and the tissue-ubiquitous (assimilatory) isozymes, encoded by Eu1 and Eu4, respectively. Eu3 encodes UreG, a GTP’ase necessary for proper emplacement of Ni and carbon dioxide in the urease active site. ...

147

Family and Community Involvement in the Comprehensive School Physical Activity Program  

ERIC Educational Resources Information Center

Engaging families and communities in physical activities for the benefit of children is an extension of the role of a physical education instructor. Although it is possible for a physical educator to generate ideas that encourage families and communities to move, a certified director of physical activity (C-DPA) would be better trained to…

Cipriani, Kristin; Richardson, Cheryl; Roberts, Georgi

2012-01-01

148

How does conformational flexibility influence key structural features involved in activation of anaplastic lymphoma kinase?  

PubMed

Anaplastic Lymphoma Kinase (ALK) plays a major role in developing tumor processes and therefore has emerged as a validated therapeutic target. Applying atomistic molecular dynamics simulations on the wild type enzyme and the nine most frequently occurring and clinically important activation mutants we revealed important conformational effects on key interactions responsible for the activation of the enzyme. PMID:24675991

Karabencheva, Tatyana G; Lee, Christian C; Black, Gary W; Donev, Rossen; Christov, Christo Z

2014-06-01

149

Discovering the Thermodynamics of Simultaneous Equilibria: An Entropy Analysis Activity Involving Consecutive Equilibria  

ERIC Educational Resources Information Center

An activity is presented in which the thermodynamics of simultaneous, consecutive equilibria are explored. The activity is appropriate for second-year high school or AP chemistry. Students discover that a reactant-favored (entropy-diminishing or endergonic) reaction can be caused to happen if it is coupled with a product-favored reaction of…

Bindel, Thomas H.

2007-01-01

150

Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling  

PubMed Central

Oncogenic Ras transforms immortal rodent cells to a tumorigenic state, in part, by constitutively transmitting mitogenic signals through the mitogen-activated protein kinase (MAPK) cascade. In primary cells, Ras is initially mitogenic but eventually induces premature senescence involving the p53 and p16INK4a tumor suppressors. Constitutive activation of MEK (a component of the MAPK cascade) induces both p53 and p16, and is required for Ras-induced senescence of normal human fibroblasts. Furthermore, activated MEK permanently arrests primary murine fibroblasts but forces uncontrolled mitogenesis and transformation in cells lacking either p53 or INK4a. The precisely opposite response of normal and immortalized cells to constitutive activation of the MAPK cascade implies that premature senescence acts as a fail-safe mechanism to limit the transforming potential of excessive Ras mitogenic signaling. Consequently, constitutive MAPK signaling activates p53 and p16 as tumor suppressors. PMID:9765203

Lin, Athena W.; Barradas, Marta; Stone, James C.; van Aelst, Linda; Serrano, Manuel; Lowe, Scott W.

1998-01-01

151

Codeine induces human mast cell chemokine and cytokine production: involvement of G-protein activation  

PubMed Central

Background Activation of mast cells and the systemic release of histamine are common side effects of opiates such as codeine and morphine. In some individuals, codeine not only elicits a sizable early response due to mast cell degranulation, but can also lead to late cutaneous allergic inflammation possibly through the production of chemokines. However, individuals who exhibit a late phase reaction to codeine often do not react to its synthetic analog, meperidine. The goal of this study was to test whether codeine and meperidine induce secretion of inflammatory mediators in human mast cells. Methods To characterize opiate activation of human mast cells, we stimulated cultured human (LAD2 cell line and CD34+-derived) mast cells with codeine and meperidine and measured degranulation and chemokine production. Results Codeine, but not meperidine, activated human mast cell degranulation within 30 min in a dose-dependent manner. Degranulation was blocked by the phosphoinositol-3 kinase (PI3K) inhibitor, wortmannin, and pertussis toxin but not by Ro-31-8220, a PKC inhibitor or forskolin, a cyclic adenylyl cyclase activator. After 3 and 8 h of stimulation, codeine, but not meperidine, activated human mast cells to release monocyte chemoattractant protein-1 (CCL2), regulated on activation, normal T expressed and secreted (RANTES, CCL5) and interleukin-8 (CXCL 8) but not inducible protein-10 (CXCL10). Conclusions Codeine activates human mast cell degranulation and chemokine production by activating protein kinase A and PI3 kinase, possibly leading to NF-?B activation. Therefore, opiates may regulate late phase allergic inflammation by activating chemokine production by human mast cells. PMID:17441793

Sheen, C. H.; Schleimer, R. P.; Kulka, M.

2007-01-01

152

NIK is involved in constitutive activation of the alternative NF-{kappa}B pathway and proliferation of pancreatic cancer cells  

SciTech Connect

Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-{kappa}B is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-{kappa}B activation. Here, we show that the alternative pathway is constitutively activated and NF-{kappa}B-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

Nishina, Takashi [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)] [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Yamaguchi, Noritaka [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan) [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Gohda, Jin [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)] [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Semba, Kentaro [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan) [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan); Inoue, Jun-ichiro, E-mail: jun-i@ims.u-tokyo.ac.jp [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)] [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

2009-10-09

153

The Role of Disease Activity Score 28 in the Evaluation of Articular Involvement in Systemic Lupus Erythematosus  

PubMed Central

Objectives. To evaluate the application of Disease Activity Score 28 (DAS28) to assess joint involvement in Systemic Lupus Erythematosus (SLE). Methods. Sixty-nine SLE patients, complaining of joint symptoms, and 44 rheumatoid arthritis (RA) patients were enrolled. In SLE patients disease activity was assessed with SLEDAI-2K. DAS28 was calculated in all the patients. Results. Thirty SLE patients (43.5%) showed clinical signs of arthritis. Mean DAS28 was 4.0 ± 1.4, 22 patients (31.9%) had low disease activity, 29 (42.0%) moderate, and 18 (26.1%) high. We dichotomized SLE patients according to the presence (Group 1) or absence (Group 2) of articular involvement according to SLEDAI-2K: 56.3% of the patients of the second group had a moderate/high activity according to DAS28. We compared SLE patients with 44 RA patients (M/F 9/35, mean age 55.6 ± 14.5 years; mean disease duration 140.4 ± 105.6 months). No significant differences were found regarding the values of DAS28 between SLE and RA patients. On the contrary, the values of tender and swollen joint count were significantly higher in RA compared to SLE patients (P = 0.0002 and P = 0.0001, resp.). Conclusions. We suggest the use of the DAS28 in the assessment of joint involvement in SLE patients.

Massaro, Laura; Pacucci, Viviana Antonella; Cipriano, Enrica; Truglia, Simona; Miranda, Francesca; Alessandri, Cristiano; Valesini, Guido; Conti, Fabrizio

2014-01-01

154

Involvement of proteolytic activation of protein kinase R in the apoptosis of PC12 pheochromocytoma cells.  

PubMed

Protein kinase R (PKR) is a serine/threonine-specific protein kinase implicated in the control of cell growth, differentiation, interferon-induced antiviral response, and induction of apoptosis. It is activated by various stress signals and growth factors. Activated PKR phosphorylates the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha), thereby inhibiting the initiation of translation. PKR also mediates the activation of several transcription factors (STAT1, p53, and NFkappaB) regulating both pro- and antiapoptotic mechanisms. In the present work, we studied the signaling pathways leading to PKR activation and apoptosis in PC12 rat pheochromocytoma cells, a model system of neuronal differentiation and cell death. We found that administration of various apoptosis inducing agents and conditions (serum starvation, anisomycin, LY294002, etoposide, and cisplatin) led to the proteolytic cleavage of PKR in PC12 cells. This cleavage was in strong correlation with the time kinetics of DNA fragmentation and morphological alterations characteristic of apoptosis. PKR was activated by the proteolytic cleavage: increased phosphorylation of eIF2alpha was found to run parallel with PKR cleavage. The activation of caspase-3 and caspase-9 was stimulated by all apoptosis inducing agents used in this study. The activation of caspase-3 preceded the cleavage of PKR after serum withdrawal, anisomycin and etoposide treatment, while coincided with it in cells treated with LY294002 or cisplatin. These observations suggest that early activation of caspase-3 is upstream of PKR proteolysis and that proteolytic activation of PKR may play a general role in the apoptosis of PC12 cells induced by various forms of cellular stress. PMID:18080832

Pap, Marianna; Szeberényi, József

2008-05-01

155

S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control  

Microsoft Academic Search

A dynamic cycle exists in which haemoglobin is S-nitrosylated in the lung when red blood cells are oxygenated, and the NO group is released during arterial-venous transit. The vasoactivity of S-nitrosohaemoglobin is promoted by the erythrocytic export of S-nitrosothiols. These findings highlight newly discovered allosteric and electronic properties of haemoglobin that appear to be involved in the control of blood

Li Jia; Celia Bonaventura; Joseph Bonaventura; Jonathan S. Stamler

1996-01-01

156

Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels  

Microsoft Academic Search

THE endocrine part of the pancreas plays a central role in blood-glucose regulation. It is well established that an elevation of glucose concentration reduces secretion of the hyperglycaemia-associated hormone glucagon from pancreatic alpha2 cells. The mechanisms involved, however, remain unknown. Electrophysio-logical studies have demonstrated that alpha2 cells generate Ca2+-dependent action potentials. The frequency of these action poten-tials, which increases under

Patrik Rorsman; Per-Olof Berggren; Krister Bokvist; Hans Ericson; Hanns Möhler; Claes-Göran Östenson; Paul A. Smith

1989-01-01

157

Mechanism of Heparin Activation of Antithrombin: Evidence for an Induced-Fit Model of Allosteric Activation Involving Two Interaction Subsites  

E-print Network

Mechanism of Heparin Activation of Antithrombin: Evidence for an Induced-Fit Model of Allosteric ABSTRACT: The anticoagulant activation of the serpin antithrombin by heparin pentasaccharide DEFGH such inhibitors in requiring the glycosami- noglycan, heparin, as a cofactor. The reaction of antithrom- bin

Desai, Umesh R

158

Phospholipase A{sub 2} is involved in the mechanism of activation of neutrophils by polychlorinated biphenyls  

SciTech Connect

Aroclor 1242, a mixture of polychlorinated biphenyls (PCBs), activates neutrophils to produce superoxide anion (O{sub 2}{sup {minus}}) by a mechanism that involves phospholipase C-dependent hydrolysis of membrane phosphoinositides; however, subsequent signal transduction mechanisms are unknown. This study determines whether phospholipase A{sub 2}-dependent release of arachidonic acid is involved in PCB-induced O{sub 2}{sup {minus}} production. O{sub 2}{sup {minus}} production was measured in vitro in glycogen-elicited, rat neutrophils in the presence and absence of the inhibitors of phospholipase A{sub 2}: quinacrine, 4-bromophenacyl bromide (BPB), and manoalide. All three agents significantly decreased the amount of O{sub 2}{sup {minus}} detected during stimulation of neutrophils with Aroclor 1242. Similar inhibition occurred when neutrophils were activated with the classical stimuli, formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate. The effects of BPB and manoalide were not a result of cytotoxicity or other nonspecific effects. Significant release of {sup 3}H-arachidonic acid preceded O{sub 2}{sup {minus}} production in neutrophils stimulated with Aroclor 1242 or fMLP. Manoalide, at a concentration that abolished O{sub 2}{sup {minus}} production, also inhibited the release of {sup 3}H-arachidonate. Aspirin, zileuton, or WEB 2086 did not affect Aroclor 1242-induced O{sub 2}{sup {minus}} production, suggesting that eicosanoids and platelet-activating factor are not needed for neutrophil activation by PCBs. Activation of phos-pholipase A{sub 2} and O{sub 2}{sup {minus}} production do not appear to involve the Ah receptor. These data suggest that Aroclor 1242 stimulates neutrophils to produce O{sub 2}{sup {minus}} by a mechanism that involves phospholipase A{sub 2}-dependent release of arachiodonic acid. 49 refs., 6 figs., 2 tabs.

Tithof, P.K.; Schiamberg, E.; Ganey, P.E. [Univ. of Michigan, Ann Arbor, MI (United States); Peters-Golden, M. [Michigan State Univ., East Lansing, MI (United States)

1996-01-01

159

Directory of DOE and contractor personnel involved in non-government standards activities  

SciTech Connect

This document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity. Additional names were added from rosters supplied by non-Government standards bodies.

NONE

1995-08-01

160

Selective Localization of Arc mRNA in Dendrites Involves Activity- and Translation-Dependent mRNA Degradation  

PubMed Central

Arc is an immediate early gene that is unique among neuronal mRNAs because its transcripts are transported into dendrites and accumulate near activated synapses, presumably to be translated locally. These qualities pose Arc as playing an important, yet not fully understood, role in the activity-dependent modifications of synapses that are thought to underlie memory storage. Here we show in vivo in rats that newly synthesized Arc mRNA accumulates at activated synapses and that synaptic activity simultaneously triggers mRNA decay that eliminates Arc mRNA from inactive dendritic domains. Arc mRNA degradation occurs throughout the dendrite and requires both NMDA receptor activation and active translation. Synaptic activation did not lead to decreases in another dendritic mRNA (?CaMKII), indicating that there is not a general activation of mRNA degradation in dendrites. These data reveal a novel mechanism for controlling mRNA distribution within dendrites and highlight activity-dependent mRNA degradation as a regulatory process involved in synaptic plasticity. PMID:24671994

Farris, Shannon; Lewandowski, Gail; Cox, Conor D.

2014-01-01

161

Possible involvement of nitric oxide and reactive oxygen species in glucose deprivation-induced activation of transcription factor rst2.  

PubMed

Glucose is one of the most important sources of cellular nutrition and glucose deprivation induces various cellular responses. In Schizosaccharomyces pombe, zinc finger protein Rst2 is activated upon glucose deprivation, and regulates gene expression via the STREP (stress response element of Schizosaccharomyces pombe) motif. However, the activation mechanism of Rst2 is not fully understood. We monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system. Hydrogen peroxide (H2O2) enhanced Rst2 transcriptional activity upon glucose deprivation and free radical scavenger inhibited Rst2 transcriptional activity upon glucose deprivation. In addition, deletion of the trx2 (+) gene encoding mitochondrial thioredoxin enhanced Rst2 transcriptional activity. Notably, nitric oxide (NO) generators enhanced Rst2 transcriptional activity upon glucose deprivation as well as under glucose-rich conditions. Furthermore, NO specific scavenger inhibited Rst2 transcriptional activity upon glucose deprivation. Altogether, our data suggest that NO and reactive oxygen species may be involved in the activation of transcription factor Rst2. PMID:24155978

Kato, Toshiaki; Zhou, Xin; Ma, Yan

2013-01-01

162

Possible Involvement of Nitric Oxide and Reactive Oxygen Species in Glucose Deprivation-Induced Activation of Transcription Factor Rst2  

PubMed Central

Glucose is one of the most important sources of cellular nutrition and glucose deprivation induces various cellular responses. In Schizosaccharomyces pombe, zinc finger protein Rst2 is activated upon glucose deprivation, and regulates gene expression via the STREP (stress response element of Schizosaccharomyces pombe) motif. However, the activation mechanism of Rst2 is not fully understood. We monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system. Hydrogen peroxide (H2O2) enhanced Rst2 transcriptional activity upon glucose deprivation and free radical scavenger inhibited Rst2 transcriptional activity upon glucose deprivation. In addition, deletion of the trx2+ gene encoding mitochondrial thioredoxin enhanced Rst2 transcriptional activity. Notably, nitric oxide (NO) generators enhanced Rst2 transcriptional activity upon glucose deprivation as well as under glucose-rich conditions. Furthermore, NO specific scavenger inhibited Rst2 transcriptional activity upon glucose deprivation. Altogether, our data suggest that NO and reactive oxygen species may be involved in the activation of transcription factor Rst2. PMID:24155978

Kato, Toshiaki; Zhou, Xin; Ma, Yan

2013-01-01

163

Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells.  

PubMed

Albuminuria contributes to the progression of tubulointerstitial fibrosis. Although it has been demonstrated that ongoing albuminuria leads to tubular injury manifested by the overexpression of numerous proinflammatory cytokines, the mechanism remains largely unknown. In this study, we found that the inflammasome activation which has been recognized as one of the cornerstones of intracellular surveillance system was associated with the severity of albuminuria in the renal biopsies specimens. In vitro, bovine serum albumin (BSA) could also induce the activation of NLRP3 inflammasome in the cultured kidney epithelial cells (NRK-52E). Since there was a significant overlap of NLRP3 with the ER marker calreticulin, the ER stress provoked by BSA seemed to play a crucial role in the activation of inflammasome. Here, we demonstrated that the chemical chaperone taurine-conjugated ursodeoxycholic acid (TUDCA) which was proved to be an enhancer for the adaptive capacity of ER could attenuate the inflammasome activation induced by albuminuria not only in vitro but also in diabetic nephropathy. Taken together, these data suggested that ER stress seemed to play an important role in albuminuria-induced inflammasome activation, elimination of ER stress via TUDCA might hold promise as a novel avenue for preventing inflammasome activation ameliorating kidney epithelial cells injury induced by albuminuria. PMID:23977286

Fang, Li; Xie, Da; Wu, Xian; Cao, Hongdi; Su, Weifang; Yang, Junwei

2013-01-01

164

Involvement of CD244 in regulating CD4+ T cell immunity in patients with active tuberculosis.  

PubMed

CD244 (2B4) is a member of the signaling lymphocyte activation molecule (SLAM) family of immune cell receptors and it plays an important role in modulating NK cell and CD8(+) T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4(+) T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4(+) T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4(+) T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4(+) T cells, CD244/2B4-bright CD4(+) T cell subset had significantly reduced expression of IFN-?, suggesting that CD244/2B4 expression may modulate IFN-? production in M. tuberculosis antigen-responsive CD4(+) T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-?. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-?, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4(+) T cell function. PMID:23638187

Yang, Bingfen; Wang, Xinjing; Jiang, Jing; Cheng, Xiaoxing

2013-01-01

165

Involvement of CD244 in Regulating CD4+ T Cell Immunity in Patients with Active Tuberculosis  

PubMed Central

CD244 (2B4) is a member of the signaling lymphocyte activation molecule (SLAM) family of immune cell receptors and it plays an important role in modulating NK cell and CD8+ T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4+ T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4+ T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4+ T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4+ T cells, CD244/2B4-bright CD4+ T cell subset had significantly reduced expression of IFN-?, suggesting that CD244/2B4 expression may modulate IFN-? production in M. tuberculosis antigen-responsive CD4+ T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-?. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-?, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4+ T cell function. PMID:23638187

Yang, Bingfen; Wang, Xinjing; Jiang, Jing; Cheng, Xiaoxing

2013-01-01

166

Anticonvulsant activity of Citrus aurantium blossom essential oil (neroli): involvment of the GABAergic system.  

PubMed

Citrus aurantium L. blossoms are an important medicinal plant part in Iran and some other countries. It is used in traditional medicine as an antiseizure and anticonvulsant natural agent. Early in vitro research of the anticonvulsant activity of the blossom extracts were done but there has been no investigation focused on the blossom essential oil and its anticonvulsant activity. The anticonvulsant activity of the essential oil of C. aurantium blossoms (neroli) was investigated. The anticonvulsant activity of neroli was assessed in pentylenetetrazole (PTZ)-induced convulsion by i.v. and i.p. methods and maximal electroshock (MES) in mice, with diazepam as the standard drug. While mechanistic studies were conducted using flumazenil, a GABA A-benzodiazepine receptor complex site antagonist. Neroli produced protection against clonic by i.v adminiatration of PTZ at 20 and 40 mg/kg, compared with protection with benzodiazepine. The mean onset and percentage protection against convulsion in neroli-treated mice were reduced by flumazenil. Intraperitonaeal PTZ also decreased the latency of clonic seizure in the neroli (40 mg/kg) treated group. We also showed that neroli (20 and 40 mg/kg), exhibited inhibition of the tonic convulsion induced by MES and decreased the mortality rate. Neroli was analyzed by GC and GC-MS and twenty three constituents, representing 91.0 % of the chromatographical oil were identified. The major components of neroli were characterized as linalool (28.5%), linalyl acetate (19.6%), nerolidol (9.1%) E,E-farnesol (9.1%), ?-terpineol (4.9%) and limonene (4.6%) which might be responsible for the anticonvulsant activity. The results suggest that neroli possesses biologically active constituent(s) that have anticonvulsant activity which supports the ethnomedicinal claims of the use of the plant in the management of seizure. PMID:25532295

Azanchi, Taravat; Shafaroodi, Hamed; Asgarpanah, Jinous

2014-11-01

167

Factors Involved in Iranian Women Heads of Household’s Health Promotion Activities: A Grounded Theory Study  

PubMed Central

We aimed to explore and describe the factors involved in Iranian women heads of household’s health promotion activities. Grounded theory was used as the method. Sixteen women heads of household were recruited. Data were generated by semi structured interviews. Our findings indicated that remainder of resources (money, time and energy) alongside perceived severity of health risk were two main factors whereas women’s personal and socio-economic characteristics were two contextual factors involved in these women's health promotion activities. To help these women improve their health status, we recommended that the government, non-governmental organizations and health care professionals provide them with required resources and increase their knowledge by holding training sessions. PMID:24039645

Rafii, Forough; Seyedfatemi, Naima; Rezaei, Mahboubeh

2013-01-01

168

Oncogene activation in human benign tumors of the skin (keratoacanthomas): Is HRAS involved in differentiation as well as proliferation  

SciTech Connect

In vitro DNA amplification followed by oligonucleotide mismatch hybridization was used to study the frequency of HRAS mutations in the benign self-regressing skin tumors keratoacanthomas and in squamous cell carcinomas. The authors used freshly obtained keratoacanthomas as well as Formalin-fixed paraffin-embedded tissues from both types of tumors. DNA from 50 samples of each tumor type was analyzed for activating mutations involving codons 12 and 61. A relatively high percentage (30%) of HRAS mutations was found in the keratoacanthomas compared with 13% in the squamous cell carcinomas. The most frequent mutation identified is the A{center dot}T-to-T{center dot}A transversion in the second position of codon 61. The present findings demonstrate the involvement of the HRAS oncogene in human benign tumors. Moreover, they indicate that an activated HRAS oncogene is not sufficient to maintain a neoplastic phenotype and argue against a role of HRAS in the progression of skin tumorigenesis.

Corominas, M.; Kamino, Hideko; Leon, J.; Pellicer, A. (New York Univ. Medical Center, New York, NY (USA))

1989-08-01

169

Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc.  

PubMed

Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2. PMID:15928461

Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu

2005-05-01

170

Facilitation handlings induce increase in electromyographic activity of muscles involved in head control of Cerebral Palsy children.  

PubMed

This study aimed to investigate the electromyographic (EMG) activation of the main cervical muscles involved in the head control during two postures widely used for the facilitation of head control in children with Cerebral Palsy (CP). A crossover trial involving 31 children with clinical diagnosis of CP and spastic quadriplegia was conducted. Electromyography was used to measure muscular activity in randomized postures. Three positions were at rest: (a) lateral decubitus, (b) ventral decubitus on the floor and (c) ventral decubitus on the wedge. Handlings for facilitating the head control were performed using the hip joint as key point of control in two postures: (a) lateral decubitus and (b) ventral decubitus on wedge. All children underwent standardized handlings, performed by the same researcher with experience in the neurodevelopmental treatment. EMG signal was recorded from muscles involved in the head control (paraspinal and sternocleidomastoid muscles) in sagittal, frontal and transverse planes, at the fourth cervical vertebra (C4), tenth thoracic vertebra (T10) and sternocleidomastoid muscle (SCM) levels. The results showed a significant increase in muscle activation when handling was performed in the lateral decubitus at C4 (P<0.001), T10 (P<0.001) and SCM (P=0.02) levels. A significant higher muscle activation was observed when handling was performed in lateral decubitus when compared to ventral decubitus at C4 level (P<0.001). Handling in ventral decubitus also induced an increase in EMG activation at T10 (P=0.018) and SCM (P=0.004) levels but not at C4 level (P=0.38). In conclusion, handlings performed in both positions may induce the facilitation of head control, as evaluated by the activity of cervical and upper trunk muscles. Handling performed in lateral decubitus may induce a slightly better facilitation of head control. These findings contribute to evidence-based physiotherapy practice for the rehabilitation of severely spastic quadriplegic CP children. PMID:25010566

Simon, Anelise de Saldanha; do Pinho, Alexandre Severo; Grazziotin Dos Santos, Camila; Pagnussat, Aline de Souza

2014-10-01

171

Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation.  

PubMed

Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation. PMID:12062184

Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

2002-05-01

172

Involvement of human internal globus pallidus in the early modulation of cortical error-related activity.  

PubMed

The detection and assessment of errors are a prerequisite to adapt behavior and improve future performance. Error monitoring is afforded by the interplay between cortical and subcortical neural systems. Ample evidence has pointed to a specific cortical error-related evoked potential, the error-related negativity (ERN), during the detection and evaluation of response errors. Recent models of reinforcement learning implicate the basal ganglia (BG) in early error detection following the learning of stimulus-response associations and in the modulation of the cortical ERN. To investigate the influence of the human BG motor output activity on the cortical ERN during response errors, we recorded local field potentials from the sensorimotor area of the internal globus pallidus and scalp electroencephalogram representing activity from the posterior medial frontal cortex in patients with idiopathic dystonia (hands not affected) during a flanker task. In error trials, a specific pallidal error-related potential arose 60 ms prior to the cortical ERN. The error-related changes in pallidal activity-characterized by theta oscillations-were predictive of the cortical error-related activity as assessed by Granger causality analysis. Our findings show an early modulation of error-related activity in the human pallidum, suggesting that pallidal output influences the cortex at an early stage of error detection. PMID:23349222

Herrojo Ruiz, María; Huebl, Julius; Schönecker, Thomas; Kupsch, Andreas; Yarrow, Kielan; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

2014-06-01

173

Activity involvement as an ecological asset: profiles of participation and youth outcomes.  

PubMed

Prior research has demonstrated that participation in out-of-school time activities is associated with positive and healthy development among adolescents. However, fewer studies have examined how trajectories of participation across multiple activities can impact developmental outcomes. Using data from Wave 3 (approximately Grade 7) through Wave 8 (approximately Grade 12) of the 4-H Study of Positive Youth Development, this study examined patterns of breadth in out-of-school time participation in activities and associated outcomes in positive youth development (PYD), Contribution to self and community, risk behaviors, and depressive symptoms. We assessed 927 students (on average across waves, 65.4% female) from a relatively racially and ethnically homogeneous sample (about 74% European American, across waves) with a mean age in Wave 3 of 12.98 years (SD = 0.52). The results indicated that high likelihood of participation in activities was consistently associated with fewer negative outcomes and higher scores on PYD and Contribution, as compared to low likelihood of participation in activities. Changes in the breadth of participation (in particular, moving from a high to a low likelihood of participation) were associated with increased substance use, depressive symptoms, and risk behaviors. Limitations of the current study, implications for future research, and applications to youth programs are discussed. PMID:24510166

Agans, Jennifer P; Champine, Robey B; DeSouza, Lisette M; Mueller, Megan Kiely; Johnson, Sara Kassie; Lerner, Richard M

2014-06-01

174

Involvement of Cot activity in the proliferation of ALCL lymphoma cells.  

PubMed

Anaplastic large-cell lymphoma (ALCL) cells overexpress CD30 on their cell surface, show increased levels of activated Erk1/2 and of JunB; participating JunB in the proliferative capacity of these lymphomas. Here, we show that ALCL lymphoma cells also present high expression levels of the proto-oncogenic Cot (MAP3K8). Using pharmacological drugs as well as the RNA interference technique we show that Cot protein is responsible for the constitutive Erk1/2 activation in the ALCL lymphoma cells, SUDHL-1. Besides, inhibition of Cot activity reduces the number of cell divisions which is achieved, at least in part, by the control that Cot exercises on the activation state of p70 S6K and on the expression levels of JunB. Since Cot represents an alternative mode, independently of RAF, to activate Erk1/2, all these data strongly suggest that molecular targeting of Cot may be a potential new specific strategy for ALCL lymphomas therapy, without the fully disturbance of the Erk1/2 function. PMID:21741362

Fernández, Margarita; Manso, Rebeca; Bernaldo de Quirós, Flavia; Bernáldez, Flavia; López, Pilar; Martín-Duce, Antonio; Alemany, Susana

2011-08-12

175

Novel orexigenic pathway prostaglandin D2-NPY system--involvement in orally active orexigenic ? opioid peptide.  

PubMed

Prostaglandin (PG) D(2), the most abundant PG in the central nervous system (CNS), is a bioactive lipid having various central actions including sleep induction, hypothermia and modulation of the pain response. We found that centrally administered PGD(2) stimulates food intake via the DP(1) among the two receptor subtypes for PGD(2) in mice. Hypothalamic mRNA expression of lipocalin-type PGD synthase (L-PGDS), which catalyzes production of PGD(2) from arachidonic acid via PGH(2) in the CNS, was increased after fasting. Central administration of antagonist and antisense ODN for the DP(1) receptor remarkably decreased food intake, body weight and fat mass. The orexigenic activity of PGD(2) was also blocked by an antagonist of Y(1) receptor for NPY, the most potent orexigenic peptide in the hypothalamus. Thus, the central PGD(2)-NPY system may play a critical role in food intake regulation under normal physiological conditions. We also found that orally active orexigenic peptide derived from food protein activates the PGD(2)-NPY system, downstream of ? opioid receptor. We revealed that the ? agonist peptide, rubiscolin-6-induced orexigenic activity was mediated by L-PGDS in the leptomeninges but not parenchyma using conditional knockout mice. In this review, we discuss the PGD(2)-NPY system itself, and orexigenic signals to activate it. PMID:23141054

Kaneko, Kentaro; Yoshikawa, Masaaki; Ohinata, Kousaku

2012-12-01

176

Spinal astrocytic activation is involved in a virally-induced rat model of neuropathic pain.  

PubMed

Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-?-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1? expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and "NO-Astrocyte-Cytokine-NMDAR-Neuron" pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN. PMID:21969850

Zhang, Gui-He; Lv, Miao-Miao; Wang, Shuang; Chen, Lei; Qian, Nian-Song; Tang, Yu; Zhang, Xu-Dong; Ren, Peng-Cheng; Gao, Chang-Jun; Sun, Xu-De; Xu, Li-Xian

2011-01-01

177

Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells  

Microsoft Academic Search

BACKGROUND: Stat3 has been classified as a proto-oncogene and constitutive Stat3 signaling appears to be involved in oncogenesis of human cancers. However, whether constitutive Stat3 signaling plays a role in the survival and growth of osteosarcomas, rhabdomyosarcomas, and soft-tissue sarcomas is still unclear. METHODS: To examine whether Stat3 is activated in osteosarcomas, rhabdomyosarcomas and other soft-tissue sarcomas we analyzed sarcoma

Chun-Liang Chen; Abbey Loy; Ling Cen; Christina Chan; Fu-Chuan Hsieh; Gong Cheng; Bryant Wu; Stephen J Qualman; Keita Kunisada; Keiko Yamauchi-Takihara; Jiayuh Lin

2007-01-01

178

Parent-adolescent joint projects involving leisure time and activities during the transition to high school.  

PubMed

Leisure research to date has generally overlooked planning and organizing of leisure time and activities between parents and adolescents. This investigation examined how a sample of Canadian adolescents and their parents jointly constructed and acted on goals related to adolescents' leisure time during the move from elementary to high school. Using the Qualitative Action-Project Method, data were collected over an 8-10 month period from 26 parent-adolescent dyads located in two urban sites, through video-taped conversations about leisure time, video recall interviews, and telephone monitoring interviews. Analysis of the data revealed that the joint projects of the 26 dyads could be grouped into three clusters: a) governance transfer or attempts to shift, from parent to adolescent, responsibility over academic demands, organizing leisure time, and safety with peers, b) balancing extra-curricular activities with family life, academics, and social activities, and c) relationship adjustment or maintenance. PMID:25134071

Marshall, Sheila K; Young, Richard A; Wozniak, Agnieszka; Lollis, Susan; Tilton-Weaver, Lauree; Nelson, Margo; Goessling, Kristen

2014-10-01

179

Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit.  

PubMed

Blue light irradiation was applied to postharvest strawberry fruit to explore its influence on anthocyanin content and anthocyanin biosynthetic enzyme activities. Strawberry fruit was irradiated with blue light at 40 ?mol m(-2) s(-1) for 12 days at 5 °C. The results indicated that blue light treatment improved total anthocyanin content in strawberry fruit during storage. Meanwhile, the treatment increased the activities of glucose-6-phosphate, shikimate dehydrogenase, tyrosine ammonia-lyase, phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, 4-coumarate/coenzyme A ligase, dihydroflavonol-4-reductase, chalcone synthase, flavanone-3-?-hydroxylase, anthocyanin synthase, and UDP-glycose flavonoid-3-O-glycosyltranferase, which suggested that the enhancement of anthocyanin concentration by blue light might result from the activation of its related enzymes. Blue light might be proposed as a supplemental light source in the storage of strawberry fruit to improve its anthocyanin content. PMID:24783962

Xu, Feng; Cao, Shifeng; Shi, Liyu; Chen, Wei; Su, Xinguo; Yang, Zhenfeng

2014-05-21

180

Mechanism for fetal hemoglobin induction by histone deacetylase inhibitors involves ?-globin activation by CREB1 and ATF-2  

PubMed Central

The histone deacetylase inhibitors (HDA-CIs) butyrate and trichostatin A activate ?-globin expression via a p38 mitogen-activating protein kinase (MAPK)-dependent mechanism. We hypothesized that down-stream effectors of p38 MAPK, namely activating transcription factor-2 (ATF-2) and cyclic AMP response element (CRE) binding protein (CREB), are intimately involved in fetal hemoglobin induction by these agents. In this study, we observed increased ATF-2 and CREB1 phosphorylation mediated by the HDACIs in K562 cells, in conjunction with histone H4 hyperacetylation. Moreover, enhanced DNA-protein interactions occurred in the CRE in the G?-globin promoter (G-CRE) in vitro after drug treatments; subsequent chromatin immunoprecipitation assay confirmed ATF-2 and CREB1 binding to the G-CRE in vivo. Enforced expression of ATF-2 and CREB produced G?-promoter trans-activation which was abolished by a 2-base pair mutation in the putative G-CRE. The data presented herein demonstrate that ?-gene induction by butyrate and trichostatin A involves ATF-2 and CREB1 activation via p38 MAPK signaling. PMID:16896160

Sangerman, Jose; Lee, Moo Seung; Yao, Xiao; Oteng, Eugene; Hsiao, Cheng-Hui; Li, Wei; Zein, Sima; Ofori-Acquah, Solomon F.; Pace, Betty S.

2006-01-01

181

Involvement of a membrane potassium channel in heparan sulphate-induced activation of macrophages.  

PubMed

Increasing evidence has demonstrated that Toll-like receptor 4 (TLR4) -mediated systemic inflammatory response syndrome accompanied by multiple organ failure, is one of the most common causes of death in patients with severe acute pancreatitis. Recent reports have revealed that heparan sulphate (HS) proteoglycan, a component of extracellular matrices, potentiates the activation of intracellular pro-inflammatory responses via TLR4, contributing to the aggravation of acute pancreatitis. However, little is known about the participants in the HS/TLR4-mediated inflammatory cascades. Our previous work provided a clue that a membrane potassium channel (MaxiK) is responsible for HS-induced production of inflammatory cytokines. Therefore, in this report we attempted to reveal the roles of MaxiK in the activation of macrophages stimulated by HS. Our results showed that incubation of RAW264.7 cells with HS up-regulated MaxiK and TLR4 expression levels. HS could also activate MaxiK channels to promote the efflux of potassium ions from cells, as measured by the elevated activity of caspase-1, whereas this was significantly abolished by treatment with paxilline, a specific blocker of the MaxiK channel. Moreover, it was found that paxilline substantially inhibited HS-induced activation of several different transcription factors in macrophages, including nuclear factor-?B, p38 and interferon regulatory factor-3, followed by decreased production of tumour necrosis factor-? and interferon-?. Taken together, our investigation provides evidence that the HS/TLR4-mediated intracellular inflammatory cascade depends on the activation of MaxiK, which may offer an important opportunity for a new approach in therapeutic strategies of severe acute pancreatitis. PMID:24138091

Ren, Jian-Dong; Fan, Li; Tian, Fu-Zhou; Fan, Kai-Hua; Yu, Bo-Tao; Jin, Wei-Hua; Tan, Yong-Hong; Cheng, Long

2014-03-01

182

Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes.  

PubMed

Listeria monocytogenes invades the cytoplasm of macrophages and induces the activation of caspase-1 and the subsequent maturation of IL-1beta and IL-18. Although apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain (ASC), an adaptor protein of nucleotide-binding oligomerization domain (Nod)-like receptors, has been shown to play an essential role in inducing this cellular response to L. monocytogenes, the mechanism has not been fully elucidated. In this study, we demonstrate the role of absent in melanoma 2 (AIM2), a recently described receptor of cytosolic DNA, in the activation of caspase-1 upon infection with L. monocytogenes. Secretion of IL-1beta and IL-18 from Nod-like receptor family, pyrin domain containing 3 (NLRP3) and Nod-like receptor family, caspase-activating and recruitment domain containing 4 (NLRC4) knockout macrophages in response to L. monocytogenes was only slightly decreased compared with the levels secreted from wild-type macrophages, whereas secretion from ASC knockout macrophages was completely impaired, suggesting that receptors other than NLRP3 and NLRC4 also take part in inflammasome activation in an ASC-dependent manner. To identify such receptors, the abilities of several receptor candidates (NLRP2, NLRP6, NLRP12, and AIM2) to induce the secretion of IL-1beta in response to L. monocytogenes were compared using the inflammasome system reconstructed in HEK293 cells. Among these receptor candidates, AIM2 conferred the highest responsiveness to the bacterium on HEK293 cells. Knockdown of AIM2 significantly decreased the secretion of IL-1beta and IL-18 from L. monocytogenes-infected macrophages. These results suggest that AIM2, in cooperation with NLRP3 and NLRC4, plays an important role in the activation of caspase-1 during L. monocytogenes infection. PMID:20566831

Tsuchiya, Kohsuke; Hara, Hideki; Kawamura, Ikuo; Nomura, Takamasa; Yamamoto, Takeshi; Daim, Sylvia; Dewamitta, Sita R; Shen, Yanna; Fang, Rendong; Mitsuyama, Masao

2010-07-15

183

Regions Involved in the Oligomerization and Activity of the Spiral Forming Nitrilase Cyanide Dihydratase  

E-print Network

byproducts are avoided. The native enzyme does, however, require pre-activation by benzonitrile to induce oligomer formation (Nagasawa et al. 2000). Environmental concerns can be raised by the substrate used in a process. Nicotinic acid (or vitamin B3... referred to as the A-surface (Sewell et al. 2003). From the nitrilase branch of the superfamily, the R. rhodochrous J1 nitrilase can be purified as inactive dimers, which are the building blocks for their larger active structure(Nagasawa 10 et al. 2000...

Park, Jason M

2014-05-22

184

Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure  

SciTech Connect

To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.).

Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M. (Kurume Univ. School of Medicine (Japan))

1991-07-01

185

Regulation of ERK1/2 activity by ghrelin-activated growth hormone secretagogue receptor 1A involves a PLC/PKC? pathway  

PubMed Central

The growth hormone secretagogue receptor 1a (GHSR-1a) is a G-protein coupled receptor, involved in the biological actions of ghrelin by triggering inositol phosphates and calcium intracellular second messengers. It has also been reported that ghrelin could activate the 44- and 42-kDa extracellular signal-regulated protein kinases (ERK1/2) in different cell lines, but it is not clear whether this regulation is GHSR-1a dependent or not. To provide direct evidence for the coupling of GHSR-1a to ERK1/2 activation, this pathway has been studied in a heterologous expression system. Thus, in Chinese hamster ovary (CHO) cells we showed that ghrelin induced, via the human GHSR-1a, a transient and dose-dep endent activation of ERK1/2 leading to activation of the transcriptional factor Elk1. We then investigated the precise mechanisms involved in GHSR-1a-mediated ERK1/2 activation using various specific inhibitors and dominant-negative mutants and found that internalization of GHSR-1a was not necessary. Our results also indicate that phospholipase C (PLC) was involved in GHSR-1a-mediated ERK1/2 activation, however, pathways like tyrosine kinases, including Src, and phosphoinositide 3-kinases were not found to be involved. GHSR-1a-mediated ERK1/2 activation was abolished both by a general protein kinase C (PKC) inhibitor, Gö6983, and by PKC depletion using overnight pretreatment with phorbol ester. Moreover, the calcium chelator, BAPTA-AM, and the inhibitor of conventional PKCs, Gö6976, had no effect on the GHSR-1a-mediated ERK1/2 activation, suggesting the involvement of novel PKC isoforms (?, ?), but not conventional or atypical PKCs. Further analyses suggest that PKC? is required for the activation of ERK1/2. Taken together, these data suggest that ghrelin, through GHSR-1a, activates the Elk1 transcriptional factor and ERK1/2 by a PLC- and PKC?-dependent pathway. PMID:16582936

Mousseaux, Delphine; Le Gallic, Lionel; Ryan, Joanne; Oiry, Catherine; Gagne, Didier; Fehrentz, Jean-Alain; Galleyrand, Jean-Claude; Martinez, Jean

2006-01-01

186

Hypnosis Modulates Activity in Brain Structures Involved in the Regulation of Consciousness  

Microsoft Academic Search

The notion of consciousness is at the core of an ongoing debate on the existence and nature of hypnotic states. Previously, we have described changes in brain activity associated with hypnosis (Rainville, Hofbauer, Paus, Duncan, Bushnell, & Price, 1999). Here, we replicate and extend those findings using positron emission tomography (PET) in 10 normal volunteers. Immediately after each of 8

Pierre Rainville; Robert K. Hofbauer; M. Catherine Bushnell; Gary H. Duncan; Donald D. Price

2002-01-01

187

TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion  

PubMed Central

There are eight thermosensitive TRP (transient receptor potential) channels in mammals, and there might be other TRP channels sensitive to temperature stimuli. Here, we demonstrate that TRPM2 can be activated by exposure to warm temperatures (>35°C) apparently via direct heat-evoked channel gating. ?-NAD+- or ADP-ribose-evoked TRPM2 activity is robustly potentiated at elevated temperatures. We also show that, even though cyclic ADP-ribose (cADPR) does not activate TRPM2 at 25°C, co-application of heat and intracellular cADPR dramatically potentiates TRPM2 activity. Heat and cADPR evoke similar responses in rat insulinoma RIN-5F cells, which express TRPM2 endogenously. In pancreatic islets, TRPM2 is coexpressed with insulin, and mild heating of these cells evokes increases in both cytosolic Ca2+ and insulin release, which is KATP channel-independent and protein kinase A-mediated. Heat-evoked responses in both RIN-5F cells and pancreatic islets are significantly diminished by treatment with TRPM2-specific siRNA. These results identify TRPM2 as a potential molecular target for cADPR, and suggest that TRPM2 regulates Ca2+ entry into pancreatic ?-cells at body temperature depending on the production of cADPR-related molecules, thereby regulating insulin secretion. PMID:16601673

Togashi, Kazuya; Hara, Yuji; Tominaga, Tomoko; Higashi, Tomohiro; Konishi, Yasunobu; Mori, Yasuo; Tominaga, Makoto

2006-01-01

188

Predictors of condom use among sexually active persons involved in compulsory national service in Ibadan, Nigeria  

Microsoft Academic Search

Migration is known to increase the risk of heterosexual transmission of human immuno- deficiency virus (HIV) in sub-Saharan Africa, but little attention has been paid to fresh graduates of tertiary institutions who are on migration for compulsory national assignment in Nigeria. In July and August 2004, a survey was conducted on sexually active men (n 5 344) and women (n

Adegbenga M. Sunmola; Benjamin O. Olley; Grace E. Oso

2006-01-01

189

GBA2-encoded ?-glucosidase activity is involved in the inflammatory response to Pseudomonas aeruginosa.  

PubMed

Current anti-inflammatory strategies for the treatment of pulmonary disease in cystic fibrosis (CF) are limited; thus, there is continued interest in identifying additional molecular targets for therapeutic intervention. Given the emerging role of sphingolipids (SLs) in various respiratory disorders, including CF, drugs that selectively target the enzymes associated with SL metabolism are under development. Miglustat, a well-characterized iminosugar-based inhibitor of ?-glucosidase 2 (GBA2), has shown promise in CF treatment because it reduces the inflammatory response to infection by P. aeruginosa and restores F508del-CFTR chloride channel activity. This study aimed to probe the molecular basis for the anti-inflammatory activity of miglustat by examining specifically the role of GBA2 following the infection of CF bronchial epithelial cells by P. aeruginosa. We also report the anti-inflammatory activity of another potent inhibitor of GBA2 activity, namely N-(5-adamantane-1-yl-methoxy)pentyl)-deoxynojirimycin (Genz-529648). In CF bronchial cells, inhibition of GBA2 by miglustat or Genz-529648 significantly reduced the induction of IL-8 mRNA levels and protein release following infection by P. aeruginosa. Hence, the present data demonstrate that the anti-inflammatory effects of miglustat and Genz-529648 are likely exerted through inhibition of GBA2. PMID:25141135

Loberto, Nicoletta; Tebon, Maela; Lampronti, Ilaria; Marchetti, Nicola; Aureli, Massimo; Bassi, Rosaria; Giri, Maria Grazia; Bezzerri, Valentino; Lovato, Valentina; Cantù, Cinzia; Munari, Silvia; Cheng, Seng H; Cavazzini, Alberto; Gambari, Roberto; Sonnino, Sandro; Cabrini, Giulio; Dechecchi, Maria Cristina

2014-01-01

190

Oxidative stress-mediated iNKT-cell activation is involved in COPD pathogenesis  

PubMed Central

Chronic obstructive pulmonary disease (COPD) is a major clinical challenge mostly due to cigarette smoke (CS) exposure. Invariant natural killer T (iNKT) cells are potent immunoregulatory cells that have a crucial role in inflammation. In the current study, we investigate the role of iNKT cells in COPD pathogenesis. The frequency of activated NKT cells was found to be increased in peripheral blood of COPD patients relative to controls. In mice chronically exposed to CS, activated iNKT cells accumulated in the lungs and strongly contributed to the pathogenesis. The detrimental role of iNKT cells was confirmed in an acute model of oxidative stress, an effect that depended on interleukin (IL)-17. CS extracts directly activated mouse and human dendritic cells (DC) and airway epithelial cells (AECs) to trigger interferon? and/or IL-17 production by iNKT cells, an effect ablated by the anti-oxidant N-acetylcystein. In mice, this treatment abrogates iNKT-cell accumulation in the lung and abolished the development of COPD. Together, activation of iNKT cells by oxidative stress in DC and AECs participates in the development of experimental COPD, a finding that might be exploited at a therapeutic level. PMID:24172846

Pichavant, M; Rémy, G; Bekaert, S; Le Rouzic, O; Kervoaze, G; Vilain, E; Just, N; Tillie-Leblond, I; Trottein, F; Cataldo, D; Gosset, P

2014-01-01

191

Marketing Informal Education Institutions in Israel: The Centrality of Customers' Active Involvement in Service Development  

ERIC Educational Resources Information Center

The current paper outlines a unique marketing perspective that prevails in some informal education institutions in Israel parallel with "traditional modes of marketing", such as promotion, public relations and the like. Based on a case study research in five community centres, a service development based on active participation of the potential…

Oplatka, Izhar

2004-01-01

192

Lipoarabinomannan-Induced Cell Signaling Involves Ceramide and Mitogen-Activated Protein Kinase  

Microsoft Academic Search

Lipoarabinomannan (LAM) is a major cell wall-associated lipoglycan, produced in large amounts (15 mg\\/g of bacteria) in different species of mycobacteria. Our laboratory has previously reported that LAM from Mycobacterium smegmatis exerts its cytotoxic activity via inhibition of protein kinase C, a key signaling molecule inside the mononuclear cells (S. Ghosh, S. Pal, S. Das, S. K. Dasgupta, and S.

Madhumita Sirkar; Subrata Majumdar

2002-01-01

193

Temporal-order judgment of audiovisual events involves network activity between parietal and prefrontal cortices.  

PubMed

Our perception of the temporal order of everyday external events depends on the integrated sensory information in the brain. Our understanding of the brain mechanism for temporal-order judgment (TOJ) of unisensory events, particularly in the visual domain, is advanced. In case of multisensory events, however, there are unanswered questions. Here, by using physically synchronous and asynchronous auditory-visual events in functional magnetic resonance imaging (fMRI) experiments, we identified the brain network that is associated with the perception of the temporal order of multisensory events. The activation in the right temporo-parietal junction was modulated by the perception of asynchronous audiovisual events. During this perception of temporal order, the right dorsolateral prefrontal cortex coordinated activity with the right temporo-parietal and the left inferior parietal cortices. These results suggest that the TOJ in the multisensory domain underlies a network activity between parietal and prefrontal cortices unlike the regional activity in the right temporo-parietal junction in the unisensory visual domain. PMID:23988147

Adhikari, Bhim Mani; Goshorn, Eli S; Lamichhane, Bidhan; Dhamala, Mukesh

2013-01-01

194

Temporal-Order Judgment of Audiovisual Events Involves Network Activity Between Parietal and Prefrontal Cortices  

PubMed Central

Abstract Our perception of the temporal order of everyday external events depends on the integrated sensory information in the brain. Our understanding of the brain mechanism for temporal-order judgment (TOJ) of unisensory events, particularly in the visual domain, is advanced. In case of multisensory events, however, there are unanswered questions. Here, by using physically synchronous and asynchronous auditory–visual events in functional magnetic resonance imaging (fMRI) experiments, we identified the brain network that is associated with the perception of the temporal order of multisensory events. The activation in the right temporo-parietal junction was modulated by the perception of asynchronous audiovisual events. During this perception of temporal order, the right dorsolateral prefrontal cortex coordinated activity with the right temporo-parietal and the left inferior parietal cortices. These results suggest that the TOJ in the multisensory domain underlies a network activity between parietal and prefrontal cortices unlike the regional activity in the right temporo-parietal junction in the unisensory visual domain. PMID:23988147

Goshorn, Eli S.; Lamichhane, Bidhan; Dhamala, Mukesh

2013-01-01

195

A directed screen for genes involved in Drosophila blood cell activation  

Microsoft Academic Search

An attack by a parasitic wasp activates a vigorous cellular immune response in Drosophila larvae. This response is manifested by an increased number of circulating cells, the hemocytes, and by the appearance of a specialized class of hemocyte, the lamellocytes, which participate in the encapsulation and killing of the parasite. To study the molecular mechanisms of this response, we have

Carl-Johan Zettervall; Ines Anderl; Michael J. Williams; Ruth Palmer; Eva Kurucz; Istvan Ando; Dan Hultmark

2004-01-01

196

Fantasy Activity and the Televiewing Event: Considerations for an Information Processing Construct of Involvement.  

ERIC Educational Resources Information Center

The similarities between television viewing and fantasy activity (daydreaming, reverie, mind-wandering, internal dialogue) more than warrant the building of a theoretical construct, especially in the context of recent empirical research on television viewing consequences. A construct of the television viewing process, based on cognitive theories…

Lindlof, Thomas R.

197

The Effect of the New Copyright Law on the Interlibrary Loan Activity Involving Periodicals.  

ERIC Educational Resources Information Center

Since 1954 when Congress authorized the Copyright Office to prepare a series of studies to serve as background for revision hearings, copyright has been one of the major issues in librarianship. Although the impact that the New Copyright Law will have on interlibrary loan activity is yet to be determined, there is a need to know whether present…

Steuben, John

198

Involvement of deoxygenation-induced increase in tyrosine kinase activity in sickle cell dehydration.  

PubMed

Deoxygenation of sickle (SS) cells causes cationic alterations leading to cell dehydration by various mechanisms, including activation of Ca2+-sensitive K channels and possibly of K-Cl cotransport. Since an abnormal tyrosine kinase (TK) activity exists in SS cells we investigated the possible role of tyrosine phosphorylation in SS cell dehydration. In density-fractionated SS reticulocytes and discocytes, but not in normal red cells, deoxygenation increased membrane and cytosolic TK activities and tyrosine phosphorylation of band 3, independently of external Ca2+. These effects were abolished by the TK inhibitors methyl 2, 5-dihydroxycinnamate (DiOH) or tyrphostin 47 (T47). Deoxygenation-induced Ca2+ uptake was not affected by the inhibitors and Na+ gain was reduced by T47 and not by DiOH. Both inhibitors decreased the loss of K+ and cellular dehydration. The effect of the inhibitors on K+ efflux was still observed in the absence of external Ca2+. These data indicate that the TK inhibitors do not interfere with deoxygenation-induced membrane permeabilization, but affect Ca2+-independent K+ efflux. It cannot be excluded, however, that the TK inhibitors also attenuate Ca2+-sensitive K+ efflux. Based on recent evidence from the literature, it is suggested that the diminution of K+ efflux results in part from inhibition of K-Cl cotransport activity. PMID:9644211

Merciris, P; Hardy-Dessources, M D; Sauvage, M; Giraud, F

1998-08-01

199

Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels.  

PubMed

Hydrogen sulphide (H2S) has been recently hypothesized to be an endogenous adipocyte-derived relaxing factor, evoking vasorelaxation of conductance and resistance vessels. Although the activation of ATP-sensitive potassium channels is known to play a central role in H2S-induced vasorelaxation, activation of vascular Kv7 voltage-gated potassium channels has also been suggested. To investigate this possibility, the ability of selective activators and blockers of distinct classes of potassium channels to affect vasodilation induced by the H2S-donor NaHS, as well as NaHS-induced Rb(+) efflux in endothelium-denuded rat aortic rings, was investigated. NaHS-induced changes of membrane potential were fluorimetrically assessed on human vascular smooth muscle (VSM) cells. Modulation of Kv7.4 channels by NaHS was assessed by electrophysiological studies, upon their heterologous expression in CHO cells. In isolated aortic rings, NaHS evoked vasorelaxing responses associated with an increase of Rb(+)-efflux. NaHS promoted membrane hyperpolarization of human VSM cells. These effects were antagonized by selective blockers of Kv7 channels. The H2S-donor caused a left-shift of current activation threshold of Kv7.4 channels expressed in CHO cells. Altogether, these results suggest that the activation of Kv7.4 channels is a key mechanism in the vascular effects of H2S. Given the relevant roles played by Kv7.4 channels in VSM contractility and by H2S in circulatory homeostasis regulation, these findings provide interesting insights to improve our understanding of H2S pathophysiology and to focus on Kv7.4 channels as novel targets for therapeutic approaches via the "H2S-system". PMID:23287425

Martelli, A; Testai, L; Breschi, M C; Lawson, K; McKay, N G; Miceli, F; Taglialatela, M; Calderone, V

2013-04-01

200

5?-AMP Activated Protein Kinase is Involved in the Regulation of Myocardial ?-Oxidative Capacity in Mice  

PubMed Central

5?-adenosine monophosphate-activated protein kinase (AMPK) is considered central in regulation of energy status and substrate utilization within cells. In heart failure the energetic state is compromised and substrate metabolism is altered. We hypothesized that this could be linked to changes in AMPK activity and we therefore investigated mitochondrial oxidative phosphorylation capacity from the oxidation of long- and medium-chain fatty acids (LCFA and MCFA) in cardiomyocytes from young and old mice expressing a dominant negative AMPK?2 (AMPK?2-KD) construct and their wildtype (WT) littermates. We found a 35–45% (P?activity (14/21%, P?activity or progressing age. Expression of regulatory proteins of glycolysis and glycogen breakdown showed equivocal effects of age and genotype. These results illustrate that AMPK is necessary for normal mitochondrial function in the heart and that decreased AMPK activity may lead to an altered energetic state as a consequence of reduced capacity to oxidize MCFA. We did not identify any clear aging effects on mitochondrial function. PMID:22371704

Stride, Nis; Larsen, Steen; Treebak, Jonas Thue; Hansen, Christina Neigaard; Hey-Mogensen, Martin; Speerschneider, Tobias; Jensen, Thomas E.; Jeppesen, Jacob; Wojtaszewski, Jørgen F. P.; Richter, Erik A.; Køber, Lars; Dela, Flemming

2012-01-01

201

Involvement of p53 in specific anti-neuroectodermal tumor activity of aloe-emodin.  

PubMed

Previously, we have identified aloe-emodin (AE) as a new type of anticancer agent, with activity that is based on apoptotic cell death promoted by a neuroectodermal tumor-specific drug uptake. We attempt to clarify the intracellular target of AE and the apoptosis-signaling pathway activated by AE in neuroblastoma cell lines. Two-photon excitation microscopy and spectroscopic titrations documented that AE is highly concentrated in susceptible cells and binds to DNA. One of the most important mediators of apoptotic response to genotoxic stimuli, such as anticancer agents, is the p53 tumor suppressor gene. To evaluate the role played by p53 in AE-induced apoptosis a p53 mutant cell line, which lacks transcriptional activity of p53 targeted genes, was tested. AE displayed a reduced growth inhibitory and pro-apoptotic activity in p53 mutant cells (SK-N-BE(2c)) with respect to the p53 wild-type line (SJ-N-KP). This effect was not caused by a reduced drug uptake in the mutant neuroblastoma cell line but was related to a different apoptotic cell phenotype. Whereas SJ-N-KP cells were susceptible to a p53 transcription-dependent pathway of apoptosis, SK-N-BE(2c) cells underwent apoptosis with up-regulation of p53 expression but not of p53-target genes. After AE treatment p53 translocates to the mitochondria inter-membrane space in both neuroblastoma cell lines. Due to its high accumulation in neuroectodermal tumor cells AE could also kill tumor cells harboring p53 mutant genes. This property would further contribute to AE specific anti-tumor activity and might be exploitable in the clinic. PMID:12918060

Pecere, Teresa; Sarinella, Federica; Salata, Cristiano; Gatto, Barbara; Bet, Alessandra; Dalla Vecchia, Francesca; Diaspro, Alberto; Carli, Modesto; Palumbo, Manlio; Palù, Giorgio

2003-10-10

202

Purification and characterization of the Mycobacterium smegmatis catalase-peroxidase involved in isoniazid activation.  

PubMed

The unique antitubercular activity of isoniazid requires that the drug be oxidized by the katG-encoded mycobacterial catalase-peroxidase to an activated drug form. In order to quantitatively assess the catalytic capabilities of the enzyme, the native catalase-peroxidase from Mycobacterium smegmatis was purified over 200-fold to homogeneity. The enzyme was shown to exhibit both catalase and peroxidase activities, and in the presence of either hydrogen peroxide or t-butyl peroxide, was found to catalyze the oxidation of the reduced pyridine nucleotides, NADH and NADPH, as well as artificial peroxidase substrates, at rates between 2.7 and 20 s-1. The homogeneous enzyme exhibited a visible absorbance spectrum typical of ferric heme-containing catalase-peroxidases, with a Soret maximum at 406 nm. Low temperature (10 K) electron paramagnetic resonance spectra in the presence of ethylene glycol revealed a high spin Fe(III) signal with g values of 5.9 and 5.6. The enzyme was very slowly (t1/2 = approximately 20 min) reduced by dithionite, and the reduced form showed typical spectral changes when either KCN or CO were subsequently added. The M. smegmatis catalase-peroxidase was found to contain 2 heme molecules per tetramer, which were identified as iron protoporphyrin IX by the pyridine hemochromogen assay. The peroxidatic activity was inhibited by KCN, NaN3, isoniazid (isonicotinic acid hydrazide), and its isomer, nicotinic acid hydrazide, but not by 3-amino-1,2,4-triazole. The role of mycobacterial catalase-peroxidases in the oxidative activation of the antitubercular prodrug isoniazid is discussed. PMID:7673210

Marcinkeviciene, J A; Magliozzo, R S; Blanchard, J S

1995-09-22

203

Designing active flutter suppression for high-dimensional aeroelastic systems involving a control delay  

NASA Astrophysics Data System (ADS)

Many linear control laws, such as optimal controllers and classical controllers, have seen their applications to suppressing the aeroelastic vibrations of the high-dimensional aeroelastic system. However, those conventional control laws may not work effectively if the high-dimensional aeroelastic system involves a control delay. The paper reveals the effect of input time delay on the stability of a controlled high-dimensional aeroelastic system in an incompressible flow field and presents a new optimal control law to suppress the flutter of the high-dimensional aeroelastic system with an input time delay in the control loop. The procedure of designing the proposed control law includes three steps as follows. The first step is to convert the system described by a set of differential equations with a time delay into a set of difference equations involving discrete delay terms by using zero-order holder. The second step, exhibiting the novelty of the study, is to transform the difference equations with delay terms into a set of delay-free difference equations via a state transformation. The third step is to use the theory of linear control, say, the theory of Linear Quadratic Gaussian (LQG), to complete the design of controller by solving an equivalent Riccati equation. The paper demonstrates the efficacy of proposed method in designing the flutter suppression controller for a wind-tunnel model of Multiple-Actuated Wing. The new method works much better than classical feedback and conventional LQG controllers, both of which do not take the input time delay into account and may induce instability, when the input time delay becomes significant.

Huang, Rui; Hu, Haiyan; Zhao, Yonghui

2012-10-01

204

C1q complement component and -antibodies reflect SLE activity and kidney involvement.  

PubMed

The role of the complement system in the pathogenesis of systemic diseases is very ambivalent. In systemic lupus erythematosus (SLE), many abnormalities in the activation of the complement system have been reported. The most important antibodies formed against the complement system in SLE are the ones associated with the C1q component. The aim of this study was to assess separately the anti-C1q antibodies and C1q component in the serum from 65 patients with SLE, then in individuals with (n=33) and without (n=32) lupus nephritis and with active (n=36) and nonactive (n=29) form of the disease (European Consensus Lupus Activity Measurement, ECLAM>3, ECLAMactive and nonactive SLE (154.6+/-115 IU/ml vs. 50.6+/-73, p=0.001). C1q complement component was statistically lower in patients with lupus nephritis (144+/-30 mg/l vs. 175+/-50 mg/ml, p=0.002) and in active patients (138+/-40 mg/l vs. 202+/-20 mg/l, p=0.001). If the two parameters are measured together, they seem to have a mirror-like pattern of serum concentration, and they are potential markers of SLE activity and of the presence of lupus nephritis. PMID:16311713

Horák, P; Hermanová, Z; Zadrazil, J; Ciferská, H; Ordeltová, M; Kusá, L; Zurek, M; Tichý, T

2006-07-01

205

Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study  

PubMed Central

Malformations of cortical development (MCDs) are commonly complicated by intractable focal epilepsy. Epileptogenesis in these disorders is not well understood and may depend on the type of MCD. The cellular mechanisms involved in interictal and ictal events are notably different, and could be influenced independently by the type of pathology. We evaluated the relationship between interictal and ictal zones in eight patients with different types of MCD in order to better understand the generation of these activities: four had nodular heterotopia, two focal cortical dysplasia and two subcortical band heterotopia (double-cortex). We used the non-invasive EEG-fMRI technique to record simultaneously all cerebral structures with a high spatio-temporal resolution. We recorded interictal and ictal events during the same session. Ictal events were either electrical only or clinical with minimal motion. BOLD changes were found in the focal cortical dysplasia during interictal and ictal epileptiform events in the two patients with this disorder. Heterotopic and normal cortices were involved in BOLD changes during interictal and ictal events in the two patients with double cortex, but the maximum BOLD response was in the heterotopic band in both patients. Only two of the four patients with nodular heterotopia showed involvement of a nodule during interictal activity. During seizures, although BOLD changes affected the lesion in two patients, the maximum was always in the overlying cortex and never in the heterotopia. For two patients intracranial recordings were available and confirm our findings. The dysplastic cortex and the heterotopic cortex of band heterotopia were involved in interictal and seizure processes. Even if the nodular gray matter heterotopia may have the cellular substrate to produce interictal events, the often abnormal overlying cortex is more likely to be involved during the seizures. The non-invasive BOLD study of interictal and ictal events in MCD patients may help to understand the role of the lesion in epileptogenesis and also determine the potential surgical target. PMID:18669486

Tyvaert, L.; Hawco, C.; Kobayashi, E.; LeVan, P.; Dubeau, F.; Gotman, J.

2013-01-01

206

Activism and Leadership Development: Examining the Relationship between College Student Activism Involvement and Socially Responsible Leadership Capacity  

ERIC Educational Resources Information Center

The purpose of this study was to examine the relationship between participation in student activism and leadership development among college students. This study applied the social change model of leadership development (SCM) as the theoretical model used to measure socially responsible leadership capacity in students. The study utilized data…

Page, Jeremy Dale

2010-01-01

207

Killing of staphylococci by ?-defensins involves membrane impairment and activation of autolytic enzymes  

PubMed Central

?-Defensins are cyclic antimicrobial peptides expressed in leukocytes of Old world monkeys. To get insight into their antibacterial mode of action, we studied the activity of RTDs (rhesus macaque ?-defensins) against staphylococci. We found that in contrast to other defensins, RTDs do not interfere with peptidoglycan biosynthesis, but rather induce bacterial lysis in staphylococci by interaction with the bacterial membrane and/or release of cell wall lytic enzymes. Potassium efflux experiments and membrane potential measurements revealed that the membrane impairment by RTDs strongly depends on the energization of the membrane. In addition, RTD treatment caused the release of Atl-derived cell wall lytic enzymes probably by interaction with membrane-bound lipoteichoic acid. Thus, the premature and uncontrolled activity of these enzymes contributes strongly to the overall killing by ?-defensins. Interestingly, a similar mode of action has been described for Pep5, an antimicrobial peptide of bacterial origin.

Wilmes, Miriam; Stockem, Marina; Bierbaum, Gabriele; Schlag, Martin; Götz, Friedrich; Tran, Dat Q.; Schaal, Justin B.; Ouellette, André J.; Selsted, Michael E.; Sahl, Hans-Georg

2015-01-01

208

Bone Mineral Density of 704 Amateur Sportsmen Involved in Different Physical Activities  

Microsoft Academic Search

:   The aim of the study was to analyze the relation between sports and bone mass. Seven hundred and four men with no history\\u000a of chronic disease were questioned on their adolescent and adult sporting activities. Their total body (TB) and regional (head,\\u000a spine, arms and legs) bone mineral density (BMD) were measured by dual-energy X-ray absorptiometry. BMD measurements and

J. Morel; B. Combe; J. Francisco; J. Bernard

2001-01-01

209

Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation.  

PubMed

The effects of chloride anion (Cl-) (up to 1.0 mol/L) on the decolorization of a model compound, azo dye Acid Orange 7 (AO7), by sulfate radical (SO4-*) based-peroxydisulfate (PS) or peroxymonosulfate (PMS) oxidation under various activated conditions (UV254 nm/PS, Thermal (70 degrees C/PS, UV254 nm/PMS, Co2+/PMS) were investigated. Methanol and NH4+ were used as quenching reagents to determine the contributions of active chlorine species (dichloride radical (Cl2-*) and hypochlorous acid (HClO)). The results indicated that the effects of Cl- on the reaction mechanism were different under various activated conditions. For UV/PS and Thermal/PS, the inhibition tendency became more clear as the Cl- concentration increased, probably due to the reaction between Cl- and SO4-* and the generation of Cl2-* or HCIO. For UV/PMS, Cl- did not exhibit inhibition when the concentration was below 0.1 mol/L. As Cl- concentration reached to 1.0 mol/L, the decolorization rate of AO7 was, however, accelerated, possibly because PMS directly reacts with Cl- to form HClO. For Co2+/PMS, Cl- exhibited a significant inhibiting effect even at low concentration (< or = 0.01 mol/L). When Cl- concentration exceeded 0.1 mol/L, the activation of PMS by Co2+ was almost completely inhibited. Under this condition, HClO maybe played a major role in decolorization of AO7. The results implicated that chloride ion is an important factor in SO4(-*) -based degradation of organic contamination in chloride-containing water. PMID:22432303

Wang, Ping; Yang, Shiying; Shan, Liang; Niu, Rui; Shao, Xueting

2011-01-01

210

Edwardsiella ictaluri LuxS: activity, expression, and involvement in pathogenicity.  

PubMed

Edwardsiella ictaluri is a Gram-negative bacterium and the causative agent of enteric septicemia of catfish. In this study, we examined the expression and function of the LuxS from a pathogenic E. ictaluri strain, 1901. J901 was found to produce autoinducer 2 (AI-2) activity that maximized at mid-logarithmic phase and was enhanced by glucose and repressed by high temperature. Consistently, a luxS gene (luxSEi) was identified in J901, whose expression was regulated by cell density, glucose, and temperature in a manner similar to that observed with AI-2 activity. Further analysis showed that LuxSEi is a biologically active AI-2 synthase that was able to complement the luxS-defective phenotype of Escherichia coli DH5alpha. To examine the functional importance of LuxSEi, a genetically modified variant of J901, J901Ri, was constructed, in which luxSEi, expression was blocked by RNA interference. Compared to the wild type, J901Ri was (i) reduced in AI-2 activity to a level of 59% of that of the wild type; (ii) impaired in both planktonic and biofilm growth; (iii) significantly attenuated in the ability to infect cultured fish cells and to cause mortality in infected fish; (iv) unable to induce the expression of certain virulence-associated genes. Addition of exogenous AI-2 failed to rescue the growth defect of J901Ri as free-living cells but restored biofilm production and the expression of virulence genes to levels comparable to those of the wild type. Taken together, these results indicate that LuxSEi is a functional AI-2 synthase that is required for optimal cellular growth and host infection. PMID:23484409

Zhang, Min; Sun, Li

2012-01-01

211

GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement  

PubMed Central

Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of ?-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433

Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei

2011-01-01

212

Endoplasmic reticulum stress-induced PCD and caspase-like activities involved  

PubMed Central

Plant cells, like cells from other kingdoms, have the ability to self-destruct in a genetically controlled manner. This process is defined as Programmed cell death (PCD). PCD can be triggered by various stimuli in plants including by endoplasmic reticulum (ER) stress. Research in the past two decades discovered that disruption of protein homeostasis in the ER could cause ER stress, which when prolonged/unresolved leads cells into PCD. ER stress-induced PCD is part of several plant processes, for instance, drought and heat stress have been found to elicit ER stress-induced PCD. Despite the importance of ER stress-induced PCD in plants, its regulation remains largely unknown, when compared with its counterpart in animal cells. In mammalian cells, several pro-apoptotic proteases called caspases were found to play a crucial role in ER stress-induced PCD. Over the past decade, several key proteases with caspase-like enzymatic activity have been discovered in plants and implicated in PCD regulation. This review covers what is known about caspase-like enzymatic activities during plant ER stress-induced PCD and discusses possible regulation pathways leading to the activation of relevant proteases in plants. PMID:24592269

Cai, Yao-Min; Yu, Jia; Gallois, Patrick

2014-01-01

213

The role of intentional self regulation, lower neighborhood ecological assets, and activity involvement in youth developmental outcomes.  

PubMed

Extracurricular activities provide a key context for youth development, and participation has been linked with positive developmental outcomes. Using data from the 4-H Study of Positive Youth Development (PYD), this study explored how the intentional self regulation ability of youth interacted with participation in extracurricular activities to affect PYD among adolescents living in neighborhoods with relatively low ecological assets. In total, 545 youth were included in the study (50.3% female). Most of the youth were European American (41%) or Latino (37%; African American, 10%; Asian American, 7%; Native American, 4%; and other, 1%). In general, youth with the greatest capacity to self regulate benefitted the most, as compared to their peers with less capacity to self regulate, from involvement in extracurricular activities. Consistent with a developmental systems perspective, and specifically with bioecological theory, the findings from this study confirmed that, within lower asset settings, children with the most positive person-level factors (intentional self regulation) benefit the most from proximal processes such as extracurricular activity involvement. PMID:20495856

Urban, Jennifer Brown; Lewin-Bizan, Selva; Lerner, Richard M

2010-07-01

214

Regulation of Human CYP2C9 Expression by Electrophilic Stress Involves Activator Protein 1 Activation and DNA Looping  

PubMed Central

Cytochrome P450 (CYP)2C9 and CYP2C19 are important human enzymes that metabolize therapeutic drugs, environmental chemicals, and physiologically important endogenous compounds. Initial studies using primary human hepatocytes showed induction of both the CYP2C9 and CYP2C19 genes by tert-butylhydroquinone (tBHQ). As a pro-oxidant, tBHQ regulates the expression of cytoprotective genes by activation of redox-sensing transcription factors, such as the nuclear factor E2-related factor 2 (Nrf2) and members of the activator protein 1 (AP-1) family of proteins. The promoter region of CYP2C9 contains two putative AP-1 sites (TGAGTCA) at positions ?2201 and ?1930, which are also highly conserved in CYP2C19. The CYP2C9 promoter is activated by ectopic expression of cFos and JunD, whereas Nrf2 had no effect. Using specific kinase inhibitors for mitogen-activated protein kinase, we showed that extracellular signal-regulated kinase and Jun N-terminal kinase are essential for tBHQ-induced expression of CYP2C9. Electrophoretic mobility shift assays demonstrate that cFos distinctly interacts with the distal AP-1 site and JunD with the proximal site. Because cFos regulates target genes as heterodimers with Jun proteins, we hypothesized that DNA looping might be required to bring the distal and proximal AP-1 sites together to activate the CYP2C9 promoter. Chromosome conformation capture analyses confirmed the formation of a DNA loop in the CYP2C9 promoter, possibly allowing interaction between cFos at the distal site and JunD at the proximal site to activate CYP2C9 transcription in response to electrophiles. These results indicate that oxidative stress generated by exposure to electrophilic xenobiotics and metabolites induces the expression of CYP2C9 and CYP2C19 in human hepatocytes. PMID:24830941

Makia, Ngome L.; Surapureddi, Sailesh; Monostory, Katalin; Prough, Russell A.

2014-01-01

215

Current Nitrogen Fixation Is Involved in the Regulation of Nitrogenase Activity in White Clover (Trifolium repens L.).  

PubMed Central

Previous studies have shown that nitrogenase activity decreases dramatically after defoliation, presumably because of an increase in the O2 diffusion resistance in the infected nodules. It is not known how this O2 diffusion resistance is regulated. The aim of this study was to test the hypothesis that current N2 fixation (ongoing flux of N2 through nitrogenase) is involved in the regulation of nitrogenase activity in white clover (Trifolium repens L. cv Ladino) nodules. We compared the nitrogenase activity of plants that were prevented from fixing N2 (by continuous exposure of their nodulated root system to an Ar:O2 [80:20] atmosphere) with that of plants allowed to fix N2 (those exposed to N2:O2, 80:20). Nitrogenase activity was determined as the amount of H2 evolved under Ar:O2. An open flow system was used. In experiment I, 6 h after complete defoliation and the continuous prevention of N2 fixation, nitrogenase activity was higher by a factor of 2 compared with that in plants allowed to fix N2 after leaf removal. This higher nitrogenase activity was associated with a lower O2 limitation (measured as the partial pressure of O2 required for highest nitrogenase activity). In experiment II, the nitrogenase activity of plants prevented from fixing N2 for 2 h before leaf removal showed no response to defoliation. The extent to which nitrogenase activity responded to defoliation was different in plants allowed to fix N2 and those that were prevented from doing so in both experiments. This leads to the conclusion that current N2 fixation is directly involved in the regulation of nitrogenase activity. It is suggested that an N feedback mechanism triggers such a response as a result of the loss of the plant's N sink strength after defoliation. This concept offers an alternative to other hypotheses (e.g. interruption of current photosynthesis, carbohydrate deprivation) that have been proposed to explain the immediate decrease in nitrogenase activity after defoliation. PMID:12231997

Heim, I.; Hartwig, U. A.; Nosberger, J.

1993-01-01

216

Fnr Is Involved in Oxygen Control of Herbaspirillum seropedicae N-Truncated NifA Protein Activity in Escherichia coli  

PubMed Central

Herbaspirillum seropedicae is an endophytic diazotroph belonging to the ?-subclass of the class Proteobacteria, which colonizes many members of the Gramineae. The activity of the NifA protein, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through its N-terminal domain and by oxygen through mechanisms that are not well understood. Here we report that the NifA protein of H. seropedicae is inactive and more susceptible to degradation in an fnr Escherichia coli background. Both effects correlate with oxygen exposure and iron deprivation. Our results suggest that the oxygen sensitivity and iron requirement for H. seropedicae NifA activity involve the Fnr protein. PMID:12620839

Monteiro, Rose A.; de Souza, Emanuel M.; Yates, M. Geoffrey; Pedrosa, Fabio O.; Chubatsu, Leda S.

2003-01-01

217

Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism.  

PubMed

Plant responses to abiotic stress significantly affect the development of cells, tissues and organs. However, no studies correlating Pb-induced mitotic inhibition and DNA damage and the alterations in redox homeostasis during root division per se were found in the literature. Therefore, an experiment was conducted to evaluate the impact of Pb on mitotic activity and the associated changes in the oxidative metabolism in onion roots. The cytotoxic effect of Pb on cell division was assessed in the root meristems of Allium cepa (onion). The mitotic index (MI) was calculated and chromosomal abnormalities were sought. Pb-treatment induced a dose-dependent decrease in MI in the onion root tips and caused mitotic abnormalities such as distorted metaphase, fragments, sticky chromosomes, laggards, vagrant chromosomes and bridges. Single Cell Gel Electrophoresis was also performed to evaluate Pb induced genotoxicity. It was accompanied by altered oxidative metabolism in the onion root tips suggesting the interference of Pb with the redox homeostasis during cell division. There was a higher accumulation of malondialdehyde, conjugated dienes and hydrogen peroxide, and a significant increase in the activities of superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases in Pb-treated onion roots, whereas catalases activity exhibited a decreasing pattern upon Pb exposure. The study concludes that Pb-induced cytotoxicity and genotoxicity in the onion roots is mediated through ROS and is also tightly linked to the cell cycle. The exposure to higher concentrations arrested cell cycle leading to cell death, whereas different repair responses are generated at lower concentrations, thereby allowing the cell to complete the cell cycle. PMID:25023386

Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

2014-09-01

218

Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis.  

PubMed

Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. PMID:20937380

Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M; Chandel, Navdeep S; Vanden Hoek, Terry L; Schumacker, Paul T

2010-12-15

219

Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway.  

PubMed

Unconjugated bilirubin (UCB) is responsible for neonatal jaundice and high level of free bilirubin (Bf) can lead to kernicterus. Previous studies suggest that oxidative stress is a critical component of UCB-induced neurotoxicity. The Nrf2 pathway is a powerful sensor for cellular redox state and is activated directly by oxidative stress and/or indirectly by stress response protein kinases. Activated Nrf2 translocates to nucleus, binds to Antioxidant Response Element (ARE), and enhances the up-regulation of cytoprotective genes that mediate cell survival. The aim of the present study was to investigate the role of Nrf2 pathway in cell response to bilirubin mediated oxidative stress in the neuroblastoma SH-SY5Y cell line. Cells exposed to a toxic concentration of UCB (140 nM Bf) showed an increased intracellular ROS levels and enhanced nuclear accumulation of Nrf2 protein. UCB stimulated transcriptional induction of ARE-GFP reporter gene and induced mRNA expression of multiple antioxidant response genes as: xCT, Gly1, ?GCL-m, ?GCL-c, HO-1, NQO1, FTH, ME1, and ATF3. Nrf2 siRNA decreased UCB induced mRNA expression of HO1 (75%), NQO1 (54%), and FTH (40%). The Nrf2-related HO-1 induction was reduced to 60% in cells pre-treated with antioxidant (NAC) or specific signaling pathway inhibitors for PKC, P38? and MEK1/2 (80, 40 and 25%, respectively). In conclusion, we demonstrated that SH-SY5Y cells undergo an adaptive response against UCB-mediated oxidative stress by activation of multiple antioxidant response, in part through Nrf2 pathway. PMID:24308969

Qaisiya, Mohammed; Coda Zabetta, Carlos Daniel; Bellarosa, Cristina; Tiribelli, Claudio

2014-03-01

220

Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion  

PubMed Central

Objective To evaluate the significance of the JAK-STAT pathway in insulin-induced cardioprotection from reperfusion injury. Methods In isolated perfused rat hearts subjected to insulin therapy (0.3 mU/ml) ± AG490 (5 ?M, JAK-STAT inhibitor), the phosphorylation state of STAT3 and Akt was determined after 15 min of reperfusion. Infarct size was measured after 120 min of reperfusion. Isolated cardiac myocytes from wild type (WT) and cardiac specific STAT3 deficient mice were treated with insulin at reoxygenation following simulated ischemia (SI, 26 h). Cell viability was measured after 120 min of reoxygenation following SI, whereas phosphorylation state of Akt was measured after 15 min of reoxygenation following SI. Results Insulin given at reperfusion led to phosphorylation of STAT3 and Akt both of which were inhibited by AG490. AG490 also blocked the insulin-dependent decrease in infarct size, supporting a role for JAK-STAT in cardioprotection. In addition, insulin protection from SI was blocked in myocytes from the STAT3 deficient mice, or in WT mice treated with AG490. Furthermore, insulin failed to phosphorylate Akt in the STAT3 deficient cardiomyocytes. Conclusion Insulin-induced cardioprotection at reperfusion occurs through activation of STAT3. Inhibiting STAT3 by AG490, or STAT3 depletion in cardiac myocytes affects activation of Akt, suggesting close interaction between STAT3 and Akt in the cardioprotective signalling pathway activated by insulin treatment at reperfusion. PMID:18500485

Suleman, Naushaad; Tiron, Crina; Kanhema, Tambuzai; Lacerda, Lydia; Andreasen, Thomas V.; Sack, Michael N.; Jonassen, Anne K.; Mjøs, Ole D.; Opie, Lionel H.; Lecour, Sandrine

2012-01-01

221

CD147 contains different bioactive epitopes involving the regulation of cell adhesion and lymphocyte activation  

Microsoft Academic Search

CD147 is a leukocyte surface molecule which belongs to the immunoglobulin superfamily. It is broadly expressed on various cell types and is a lymphocyte activation-associated molecule. In order to study the function of CD147, five CD147 monoclonal antibodies (mAbs) were generated: M6-2F9; M6-1D4; M6-1F3; M6-1B9; and M6-1E9. Biochemical characterizations and cross-blocking experiments indicated that M6-1B9 and M6-1E9 recognize the same

Sawitree Chiampanichayakul; Pakorn Peng-in; Panida Khunkaewla; Hannes Stockinger; Watchara Kasinrerk

2006-01-01

222

Activation of the mu opioid receptor involves conformational rearrangements of multiple transmembrane domains.  

PubMed

We previously demonstrated that D3.49(164)Y or T6.34(279)K mutation in the rat mu opioid receptor (MOPR) resulted in agonist-independent activation. Here, we identified the cysteine(s) within the transmembrane domains (TMs) of the D3.49(164)Y mutant that became accessible in the binding-site crevice by use of methanethiosulfonate ethylammonium (MTSEA) and inferred conformational changes associated with receptor activation. While the C7.38(321)S mutant was insensitive to MTSEA, the D3.49(164)Y/C7.38(321)S mutant showed similar sensitivity as the D3.49(164)Y, suggesting that, in the D3.49(164)Y mutant, C7.38(321) becomes inaccessible while other cysteines are accessible in the binding-site crevice. Each of the other seven cysteines in the TMs was mutated to serine on the background of D3.49(164)Y/C7.38(321)S, and the resulting triple mutants were evaluated for [3H]diprenorphine and [d-Ala2,NMe-Phe4,Gly5-ol]-enkephalin (DAMGO) binding and effect of MTSEA on [3H]diprenorphine binding. The D3.49(164)Y/C7.38(321)S mutant and the triple mutants, except the C6.47(292)S triple mutant, retained similar affinities for [3H]diprenorphine and DAMGO as the D3.49(164)Y mutant. The second-order rate constants for MTSEA reactions showed that C3.44(159)S, C4.48(190)S, C5.41(235)S, and C7.47(330)S significantly reduced sensitivity to MTSEA, compared with the D3.49(164)Y/C7.38(321)S. These results suggest that the four cysteines may be rotated and/or tilted to become accessible. While the D3.49(164)Y/C7.38(321)S was similarly sensitive to MTSEA as the D3.49(164)Y mutant, the T6.34(279)K/C7.38(321)S was much less sensitive to MTSEA than the T6.34(279)K mutant, suggesting that the two constitutively active mutants assume different conformations and/or possess different dynamic properties. Molecular models of the MOPR monomer and homodimer, using the crystal structures of rhodopsin, the beta2-adrenergic receptor, and the ligand-free opsin, which contains several features characteristic of the active state, were employed to analyze these experimental results in a structural context. PMID:18778083

Xu, Wei; Sanz, Arantxa; Pardo, Leonardo; Liu-Chen, Lee-Yuan

2008-10-01

223

Phage Orf Family Recombinases: Conservation of Activities and Involvement of the Central Channel in DNA Binding  

PubMed Central

Genetic and biochemical evidence suggests that ? Orf is a recombination mediator, promoting nucleation of either bacterial RecA or phage Red? recombinases onto single-stranded DNA (ssDNA) bound by SSB protein. We have identified a diverse family of Orf proteins that includes representatives implicated in DNA base flipping and those fused to an HNH endonuclease domain. To confirm a functional relationship with the Orf family, a distantly-related homolog, YbcN, from Escherichia coli cryptic prophage DLP12 was purified and characterized. As with its ? relative, YbcN showed a preference for binding ssDNA over duplex. Neither Orf nor YbcN displayed a significant preference for duplex DNA containing mismatches or 1-3 nucleotide bulges. YbcN also bound E. coli SSB, although unlike Orf, it failed to associate with an SSB mutant lacking the flexible C-terminal tail involved in coordinating heterologous protein-protein interactions. Residues conserved in the Orf family that flank the central cavity in the ? Orf crystal structure were targeted for mutagenesis to help determine the mode of DNA binding. Several of these mutant proteins showed significant defects in DNA binding consistent with the central aperture being important for substrate recognition. The widespread conservation of Orf-like proteins highlights the importance of targeting SSB coated ssDNA during lambdoid phage recombination. PMID:25083707

Curtis, Fiona A.; Malay, Ali D.; Trotter, Alexander J.; Wilson, Lindsay A.; Barradell-Black, Michael M. H.; Bowers, Laura Y.; Reed, Patricia; Hillyar, Christopher R. T.; Yeo, Robert P.; Sanderson, John M.; Heddle, Jonathan G.; Sharples, Gary J.

2014-01-01

224

Two-step mechanism involving active-site conformational changes regulates human telomerase DNA binding.  

PubMed

The ribonucleoprotein enzyme telomerase maintains telomeres and is essential for cellular immortality in most cancers. Insight into the telomerase mechanism can be gained from syndromes such as dyskeratosis congenita, in which mutation of telomerase components manifests in telomere dysfunction. We carried out detailed kinetic and thermodynamic analyses of wild-type telomerase and two disease-associated mutations in the reverse transcriptase domain. Differences in dissociation rates between primers with different 3' ends were independent of DNA affinities, revealing that initial binding of telomerase to telomeric DNA occurs through a previously undescribed two-step mechanism involving enzyme conformational changes. Both mutations affected DNA binding, but through different mechanisms: P704S specifically affected protein conformational changes during DNA binding, whereas R865H showed defects in binding to the 3' region of the DNA. To gain further insight at the structural level, we generated the first homology model of the human telomerase reverse transcriptase domain; the positions of P704S and R865H corroborate their observed mechanistic defects, providing validation for the structural model. Our data reveal the importance of protein interactions with the 3' end of telomeric DNA and the role of protein conformational change in telomerase DNA binding, and highlight naturally occurring disease mutations as a rich source of mechanistic insight. PMID:25365545

Tomlinson, Christopher G; Moye, Aaron L; Holien, Jessica K; Parker, Michael W; Cohen, Scott B; Bryan, Tracy M

2015-01-15

225

PhosphoTyrosyl phosphatase activator of Plasmodium falciparum: identification of its residues involved in binding to and activation of PP2A.  

PubMed

In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V(283), G(292) and M(296)) of PfPTPA are indispensable for the interaction and that the G(292) residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity. PMID:24521882

Vandomme, Audrey; Fréville, Aline; Cailliau, Katia; Kalamou, Hadidjatou; Bodart, Jean-François; Khalife, Jamal; Pierrot, Christine

2014-01-01

226

Somatotropin-induced amino acid conservation in pigs involves differential regulation of liver and gut urea cycle enzyme activity.  

PubMed

Somatotropin (ST) treatment promotes animal growth and allows for the conservation of amino acids by increasing nitrogen retention and reducing ureagenesis and amino acid oxidation. To determine whether the improvement in amino acid conservation with ST treatment involves regulation of urea cycle enzyme activities in both liver and intestine, growing swine were treated with either ST (150 microg x kg(-1) x d(-1)) or saline for 7 d. Fully fed pigs (n = 20) were infused intravenously for 2 h with NaH(13)CO(3) followed by a 4-h intraduodenal infusion of [1-(13)C]phenylalanine. Arterial and portal venous blood and breath samples were obtained at baseline and steady-state conditions for measurement of amino acid and blood urea nitrogen (BUN) concentrations and whole-body phenylalanine oxidation. Urea cycle enzyme activities were determined in liver and jejunum. ST decreased BUN (-46%), arterial (-34%) and portal venous (-43%) amino acid concentrations and whole-body phenylalanine oxidation (-30%). The activities of carbamoylphosphate synthase-I (-45%), argininosuccinate synthase (-38%), argininosuccinate lyase (-23%), arginase (-27%), and glutaminase (-18%), but not of ornithine carbamoyltransferase, ornithine aminotransferase, or glutamate dehydrogenase were reduced in liver of ST-treated pigs. ST slightly increased intestinal activity of glutaminase (+9%) but did not affect that of any other enzymes. ST decreased hepatic, but increased jejunal, N-acetylglutamate (an essential allosteric activator of carbamoylphosphate synthase-I; -26% and +32%, respectively) and carbamoylphosphate (a substrate for ornithine carbamoyltransferase; -20% and +28%, respectively) content. These results demonstrate that the reduced amino acid catabolism with ST treatment in growing pigs involves a reduction in hepatic urea cycle enzyme activities. The effect of ST treatment on porcine urea cycle enzymes is tissue-specific and is associated with a reduction in substrate availability for hepatic ureagenesis. PMID:11773509

Bush, Jill A; Wu, Guoyao; Suryawan, Agus; Nguyen, Hanh V; Davis, Teresa A

2002-01-01

227

Rapid host defense against Aspergillus fumigatus involves alveolar macrophages with a predominance of alternatively activated phenotype.  

PubMed

The ubiquitous fungus Aspergillus fumigatus is associated with chronic diseases such as invasive pulmonary aspergillosis in immunosuppressed patients and allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis or severe asthma. Because of constant exposure to this fungus, it is critical for the host to exercise an immediate and decisive immune response to clear fungal spores to ward off disease. In this study, we observed that rapidly after infection by A. fumigatus, alveolar macrophages predominantly express Arginase 1 (Arg1), a key marker of alternatively activated macrophages (AAMs). The macrophages were also found to express Ym1 and CD206 that are also expressed by AAMs but not NOS2, which is expressed by classically activated macrophages. The expression of Arg1 was reduced in the absence of the known signaling axis, IL-4R?/STAT6, for AAM development. While both Dectin-1 and TLR expressed on the cell surface have been shown to sense A. fumigatus, fungus-induced Arg1 expression in CD11c(+) alveolar macrophages was not dependent on either Dectin-1 or the adaptor MyD88 that mediates intracellular signaling by most TLRs. Alveolar macrophages from WT mice efficiently phagocytosed fungal conidia, but those from mice deficient in Dectin-1 showed impaired fungal uptake. Depletion of macrophages with clodronate-filled liposomes increased fungal burden in infected mice. Collectively, our studies suggest that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus infection, have a protective role in defense against this fungus. PMID:21246055

Bhatia, Shikha; Fei, Mingjian; Yarlagadda, Manohar; Qi, Zengbiao; Akira, Shizuo; Saijo, Shinobu; Iwakura, Yoichiro; van Rooijen, Nico; Gibson, Gregory A; St Croix, Claudette M; Ray, Anuradha; Ray, Prabir

2011-01-01

228

Involvement of CK2 in activation of electrophilic genes in endothelial cells by oxidized phospholipids.  

PubMed

Oxidized phospholipids (OxPLs) are increasingly recognized as pleiotropic lipid mediators demonstrating a variety of biological activities. In particular, OxPLs induce electrophilic stress response and stimulate expression of NF-E2-related factor 2 (NRF2)-dependent genes. The mechanisms of NRF2 upregulation in response to OxPLs, however, are incompletely understood. Here we show that upregulation of NRF2 by OxPLs depends on the activity of the CK2 protein kinase. Inactivation of CK2 by chemical inhibitors or gene silencing resulted in diminished accumulation of NRF2 and its target genes, GCLM, HMOX1, and NQO1, downstream in response to OxPLs. Furthermore, inhibition of CK2 suppressed NRF2-dependent induction of ATF4 and its downstream gene VEGF. Thus, inactivation of CK2 in OxPL-treated endothelial cells results in inhibition of the NRF2-ATF4-VEGF axis and is likely to produce antiangiogenic effects. This work characterizes novel cross-talk between CK2 and cellular stress pathways, which may provide additional insights into the mechanisms of beneficial action and side-effects of CK2 inhibitors. PMID:20934988

Afonyushkin, Taras; Oskolkova, Olga V; Binder, Bernd R; Bochkov, Valery N

2011-01-01

229

Involvement of caspase and MAPK activities in norcantharidin-induced colorectal cancer cell apoptosis.  

PubMed

Norcantharidin exhibits cytotoxicity in many cancer cell lines, including colorectal cancer (CRC) cells. Its cytotoxic potency on primary CRC cells and other normal constituent cells of the human body remains elusive. This study investigates whether norcantharidin differentially exhibits cytotoxicity on primarily isolated CRC cells and dermal fibroblasts. The in vitro chemosensitivity of norcantharidin was measured using a MTT tetrazolium assay and compared with 73 primary tumor cells from surgically excised colorectal tumors, six human CRC cell lines and dermal fibroblasts. Observations of cytotoxicity to primary tumor cells reveal significant differences among genders and histological types; however, drug-induced chemosensitivity was not correlated with age or clinical stages of CRC patients. Norcantharidin had a similar cytotoxic effect on primary tumor cells and CRC cell lines in a dose-dependent manner. In contrast, normal fibroblasts were more resistant to norcantharidin-induced cytotoxicity than CRC cells. DAPI staining results demonstrated that norcantharidin caused CRC cell apoptosis by nuclear fragmentation and chromatin condensation. The release of cytochrome c and the triggering of caspase-3, -8 and -9 activation mediated apoptotic induction. Conversely, pretreatment with caspases or mitogen-activated protein kinase (MAPK) inhibitors significantly suppressed norcantharidin-induced CRC cytotoxicity. These in vitro results suggest that norcantharidin may be a safe and effective anti-cancer drug for CRC. PMID:20040369

Yang, Pei-Yu; Chen, Ming-Feng; Tsai, Chi-Hong; Hu, Dan-Ning; Chang, Fang-Rong; Wu, Yang-Chang

2010-04-01

230

Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers.  

PubMed

Transcription factors (TFs) bind specifically to discrete regions of mammalian genomes called cis-regulatory elements. Among those are enhancers, which play key roles in regulation of gene expression during development and differentiation. Despite the recognized central regulatory role exerted by chromatin in control of TF functions, much remains to be learned regarding the chromatin structure of enhancers and how it is established. Here, we have analyzed on a genomic-scale enhancers that recruit FOXA1, a pioneer transcription factor that triggers transcriptional competency of these cis-regulatory sites. Importantly, we found that FOXA1 binds to genomic regions showing local DNA hypomethylation and that its cell-type-specific recruitment to chromatin is linked to differential DNA methylation levels of its binding sites. Using neural differentiation as a model, we showed that induction of FOXA1 expression and its subsequent recruitment to enhancers is associated with DNA demethylation. Concomitantly, histone H3 lysine 4 methylation is induced at these enhancers. These epigenetic changes may both stabilize FOXA1 binding and allow for subsequent recruitment of transcriptional regulatory effectors. Interestingly, when cloned into reporter constructs, FOXA1-dependent enhancers were able to recapitulate their cell type specificity. However, their activities were inhibited by DNA methylation. Hence, these enhancers are intrinsic cell-type-specific regulatory regions of which activities have to be potentiated by FOXA1 through induction of an epigenetic switch that includes notably DNA demethylation. PMID:21233399

Sérandour, Aurélien A; Avner, Stéphane; Percevault, Frédéric; Demay, Florence; Bizot, Maud; Lucchetti-Miganeh, Céline; Barloy-Hubler, Frédérique; Brown, Myles; Lupien, Mathieu; Métivier, Raphaël; Salbert, Gilles; Eeckhoute, Jérôme

2011-04-01

231

A HCO3(-)-dependent mechanism involving soluble adenylyl cyclase for the activation of Ca(2+) currents in locus coeruleus neurons.  

PubMed

Hypercapnic acidosis activates Ca(2+) channels and increases intracellular Ca(2+) levels in neurons of the locus coeruleus, a known chemosensitive region involved in respiratory control. We have also shown that large conductance Ca(2+)-activated K(+) channels, in conjunction with this pathway, limits the hypercapnic-induced increase in firing rate in locus coeruleus neurons. Here, we present evidence that the Ca(2+) current is activated by a HCO3(-)-sensitive pathway. The increase in HCO3(-) associated with hypercapnia activates HCO3(-)-sensitive adenylyl cyclase (soluble adenylyl cyclase). This results in an increase in cyclic adenosine monophosphate levels and activation of Ca(2+) channels via cyclic adenosine monophosphate-activated protein kinase A. We also show the presence of soluble adenylyl cyclase in the cytoplasm of locus coeruleus neurons, and that the cyclic adenosine monophosphate analogue db-cyclic adenosine monophosphate increases Ca(2+)i. Disrupting this pathway by decreasing HCO3(-) levels during acidification or inhibiting either soluble adenylyl cyclase or protein kinase A, but not transmembrane adenylyl cyclase, can increase the magnitude of the firing rate response to hypercapnia in locus coeruleus neurons from older neonates to the same extent as inhibition of K(+) channels. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. PMID:25092170

Imber, Ann N; Santin, Joseph M; Graham, Cathy D; Putnam, Robert W

2014-12-01

232

Involvement of protein kinase C in 5-HT-stimulated ciliary activity in Helisoma trivolvis embryos  

PubMed Central

During development, embryos of the pulmonate gastropod, Helisoma trivolvis, undergo a rotation behaviour due to the co-ordinated beating of three bands of ciliated epithelial cells. This behaviour is in part mediated by the neurotransmitter serotonin (5-HT) released from a pair of identified embryonic neurons. Using time-lapse videomicroscopy to measure ciliary beat frequency (CBF) in response to pharmacological manipulations, we determined whether protein kinase C (PKC) is involved in mediating 5-HT-stimulated ciliary beating.Diacylglycerol (DAG) analogues sn-1,2-dioctanoyl glycerol (DiC8; 100 ?M) and 1-oleoyl-2-acetyl-sn-glycerol (OAG; 100 ?M), partially mimicked the 5-HT-induced increase in CBF. In contrast, application of OAG in the absence of extracellular Ca2+ did not result in an increase in CBF.5-HT-stimulated CBF was effectively blocked by PKC inhibitors bisindolylmaleimide (10 and 100 nM) and calphostin C (10 nM). In addition, bisindolylmaleimide (100 nM) inhibited DiC8-induced increases in CBF. At a higher concentration (200 nM), bisindolylmaleimide did not significantly reduce 5-HT-stimulated cilio-excitation.Two different phorbol esters, phorbol 12-myristate 13-acetate (TPA; 0.1, 10 or 1000 nM) and phorbol 12?, 13?-dibenzoate (PDBn; 10 ?M) did not alter basal CBF. TPA (1 ?M) did not alter 5-HT-stimulated CBF. Likewise, the synthetic form of phosphatidylserine, N-(6-phenylhexyl)-5-chloro-1-naphthalenesulphonamide (SC-9; 10 ?M), did not increase CBF, whereas a strong increase in CBF was observed upon exposure to 5-HT.The results suggest that a DAG-dependent, phorbol ester-insensitive isoform of PKC mediates 5-HT-stimulated CBF in ciliated epithelial cells from embryos of Helisoma trivolvis. PMID:10050017

Christopher, Kimberley J; Young, Kevin G; Chang, John P; Goldberg, Jeffrey I

1999-01-01

233

Using Long-Distance Scientist Involvement to Enhance NASA Volunteer Network Educational Activities  

NASA Astrophysics Data System (ADS)

Since 1999, the NASA/JPL Solar System Ambassadors (SSA) and Solar System Educators (SSEP) programs have used specially-trained volunteers to expand education and public outreach beyond the immediate NASA center regions. Integrating nationwide volunteers in these highly effective programs has helped optimize agency funding set aside for education. Since these volunteers were trained by NASA scientists and engineers, they acted as "stand-ins" for the mission team members in communities across the country. Through the efforts of these enthusiastic volunteers, students gained an increased awareness of NASA's space exploration missions through Solar System Ambassador classroom visits, and teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials through Solar System Educator workshops; however the scientist was still distant. In 2003, NASA started the Digital Learning Network (DLN) to bring scientists into the classroom via videoconferencing. The first equipment was expensive and only schools that could afford the expenditure were able to benefit; however, recent advancements in software allow classrooms to connect to the DLN via personal computers and an internet connection. Through collaboration with the DLN at NASA's Jet Propulsion Laboratory and the Goddard Spaceflight Center, Solar System Ambassadors and Solar System Educators in remote parts of the country are able to bring scientists into their classroom visits or workshops as guest speakers. The goals of this collaboration are to provide special elements to the volunteers' event, allow scientists opportunities for education involvement with minimal effort, acquaint teachers with DLN services and enrich student's classroom learning experience.;

Ferrari, K.

2012-12-01

234

Characterization of Streptococcal Platelet-Activating Factor Acetylhydrolase Variants That Are Involved in Innate Immune Evasion  

PubMed Central

Human pathogen group A streptococcus (GAS) has developed mechanisms to subvert innate immunity. We recently reported that the secreted esterase produced by serotype M1 GAS (SsEM1) reduces neutrophil recruitment by targeting platelet-activating factor (PAF). SsEM1 and SsE produced by serotype M28 GAS (SsEM28) have a 37% sequence difference. This study aims at determining whether SsEM28 is also a PAF acetylhydrolase and participates in innate immune evasion. We also examined whether SsE evolved to target PAF by characterizing the PAF acetylhydrolase (PAF-AH) activity and substrate specificity of SsEM1, SsEM28, SeE, the SsE homologue in Streptococcus equi, and human plasma PAF-AH (hpPAF-AH). PAF incubated with SsEM28 or SeE was converted into lyso-PAF. SsEM1 and SsEM28 had kcat values of 373 s?1 and 467 s?1, respectively, that were ?30-fold greater than that of hpPAF-AH (12 s?1). The comparison of SsEM1, SsEM28, and hpPAF-AH in kcat and Km in hydrolyzing triglycerides, acetyl esters, and PAF indicates that the SsE proteins are more potent hydrolases against PAF and have high affinity for PAF. SsEM28 possesses much lower esterase activities against triglycerides and other esters than SsEM1 but have similar potency with SsEM1 in PAF hydrolysis. Deletion of sseM28 in a covS deletion mutant of GAS increased neutrophil recruitment and reduced skin infection, whereas in trans expression of SsEM28 in GAS reduced neutrophil infiltration and increased skin invasion in subcutaneous infection of mice. These results suggest that the SsE proteins evolved to target PAF for enhancing innate immune evasion and skin invasion. PMID:23774595

Liu, Guanghui; Liu, Mengyao; Xie, Gang

2013-01-01

235

Involvement of P2Y receptors in myocardial contractile activity of rats during postnatal ontogeny.  

PubMed

We studied the effect of uridine 5'-triphosphate in concentrations of 10(-10)-10(-6) M on myocardial contractile activity in 7-100-day-old rats. Analysis of isometric contraction of myocardial strips showed that uridine 5'-triphosphate reduced the strength of myocardial contraction in rats of all age groups. In 21- and 100-day-old rat pups, exogenous uridine 5'-triphosphate produced a stronger inhibitory effect than in 7-day-old animals. The negative inotropic effect of UTP was abolished under conditions of P2Y(4) purinoceptor blockade with reagent blue-2. These data indicate that the effect of UTP on the myocardium is realized via P2Y(4) purinoceptors. PMID:22803161

Anikina, T A; Anisimova, I N; Sitdikov, F G

2012-04-01

236

Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3.  

PubMed

Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However, molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GSC subtypes with distinct dysregulated signaling pathways. Analysis of mRNA profiles distinguished proneural (PN) from mesenchymal (Mes) GSCs and revealed a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further, Mes GSCs were markedly resistant to radiation compared with PN GSCs. The glycolytic pathway, comprising aldehyde dehydrogenase (ALDH) family genes and in particular ALDH1A3, were enriched in Mes GSCs. Glycolytic activity and ALDH activity were significantly elevated in Mes GSCs but not in PN GSCs. Expression of ALDH1A3 was also increased in clinical HGG compared with low-grade glioma or normal brain tissue. Moreover, inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs. Last, radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers, whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs. Taken together, our data suggest that two subtypes of GSCs, harboring distinct metabolic signaling pathways, represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature. PMID:23650391

Mao, Ping; Joshi, Kaushal; Li, Jianfeng; Kim, Sung-Hak; Li, Peipei; Santana-Santos, Lucas; Luthra, Soumya; Chandran, Uma R; Benos, Panayiotis V; Smith, Luke; Wang, Maode; Hu, Bo; Cheng, Shi-Yuan; Sobol, Robert W; Nakano, Ichiro

2013-05-21

237

Memory of arterial receptor activation involves reduced [Ca2+]i and desensitization of cross bridges to [Ca2+]i.  

PubMed

Rabbit femoral arteries retain a memory of previous maximum receptor activation for up to 3-4 h after complete cessation of the stimulus, as reflected by a reduction in the steady-state contraction produced by a subsequent exposure to KCl. The present study examined the hypothesis that this modulatory effect involves alterations in postreceptor signal transduction. To quantify the degree of cellular downregulation induced by an episode of alpha 1-adrenoceptor stimulation, tissues were pretreated for 30 min with 10(-5) M phenylephrine (PE), washed for 10 min to cause complete relaxation, and activated with increasing concentrations of KCl. Pretreatment of tissues with PE resulted in a large reduction compared with control tissues in the ability of 20-60 mM KCl to increase stress and myosin light-chain phosphorylation. However, only at low (20 and 26 mM), not high (> 26 mM), KCl concentrations did PE pretreatment reduce the ability of KCl to increase intracellular free Ca2+ concentration ([Ca2+]i). These data support the hypothesis that memory of receptor activation involves reductions in both Ca2+ mobilization and the sensitivity of contractile proteins to [Ca2+]i. PMID:8572169

Ratz, P H; Lattanzio, F A; Salomonsky, P M

1995-12-01

238

Unbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola destructor in Wheat  

PubMed Central

Glutathione, ?-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72?hours following attack by the gall midge Mayetiola destructor, the Hessian fly. The increase in total glutathione abundance, however, is coupled with an unbalanced activation of glutathione metabolic pathways. The activity and transcript abundance of glutathione peroxidases, which convert reduced glutathione (GSH) to oxidized glutathione (GSSG), increased in infested resistant plants. However, the enzymatic activity and transcript abundance of glutathione reductases, which convert GSSG back to GSH, did not change. This unbalanced regulation of the glutathione oxidation/reduction cycle indicates the existence of an alternative pathway to regenerate GSH from GSSG to maintain a stable GSSG/GSH ratio. Our data suggest the possibility that GSSG is transported from cytosol to apoplast to serve as an oxidant for class III peroxidases to generate reactive oxygen species for plant defense against Hessian fly larvae. Our results provide a foundation for elucidating the molecular processes involved in glutathione-mediated plant resistance to Hessian fly and potentially other pests as well. PMID:25627558

Liu, Xuming; Zhang, Shize; Whitworth, R. Jeff; Stuart, Jeffrey J.; Chen, Ming-Shun

2015-01-01

239

Peroxidase Activity and Involvement in the Oxidative Stress Response of Roseobacter denitrificans Truncated Hemoglobin  

PubMed Central

Roseobacter denitrificans is a member of the widespread marine Roseobacter genus. We report the first characterization of a truncated hemoglobin from R. denitrificans (Rd. trHb) that was purified in the heme-bound form from heterologous expression of the protein in Escherichia coli. Rd. trHb exhibits predominantly alpha-helical secondary structure and absorbs light at 412, 538 and 572 nm. The phylogenetic classification suggests that Rd. trHb falls into group II trHbs, whereas sequence alignments indicate that it shares certain important heme pocket residues with group I trHbs in addition to those of group II trHbs. The resonance Raman spectra indicate that the isolated Rd. trHb contains a ferric heme that is mostly 6-coordinate low-spin and that the heme of the ferrous form displays a mixture of 5- and 6-coordinate states. Two Fe-His stretching modes were detected, notably one at 248 cm-1, which has been reported in peroxidases and some flavohemoglobins that contain an Fe-His-Asp (or Glu) catalytic triad, but was never reported before in a trHb. We show that Rd. trHb exhibits a significant peroxidase activity with a (kcat/Km) value three orders of magnitude higher than that of bovine Hb and only one order lower than that of horseradish peroxidase. This enzymatic activity is pH-dependent with a pKa value ~6.8. Homology modeling suggests that residues known to be important for interactions with heme-bound ligands in group II trHbs from Mycobacterium tuberculosis and Bacillus subtilis are pointing toward to heme in Rd. trHb. Genomic organization and gene expression profiles imply possible functions for detoxification of reactive oxygen and nitrogen species in vivo. Altogether, Rd. trHb exhibits some distinctive features and appears equipped to help the bacterium to cope with reactive oxygen/nitrogen species and/or to operate redox biochemistry. PMID:25658318

Wang, Yaya; Barbeau, Xavier; Bilimoria, Astha; Lagüe, Patrick; Couture, Manon; Tang, Joseph Kuo-Hsiang

2015-01-01

240

Public involvement in the priority setting activities of a wait time management initiative: a qualitative case study  

PubMed Central

Background As no health system can afford to provide all possible services and treatments for the people it serves, each system must set priorities. Priority setting decision makers are increasingly involving the public in policy making. This study focuses on public engagement in a key priority setting context that plagues every health system around the world: wait list management. The purpose of this study is to describe and evaluate priority setting for the Ontario Wait Time Strategy, with special attention to public engagement. Methods This study was conducted at the Ontario Wait Time Strategy in Ontario, Canada which is part of a Federal-Territorial-Provincial initiative to improve access and reduce wait times in five areas: cancer, cardiac, sight restoration, joint replacements, and diagnostic imaging. There were two sources of data: (1) over 25 documents (e.g. strategic planning reports, public updates), and (2) 28 one-on-one interviews with informants (e.g. OWTS participants, MOHLTC representatives, clinicians, patient advocates). Analysis used a modified thematic technique in three phases: open coding, axial coding, and evaluation. Results The Ontario Wait Time Strategy partially meets the four conditions of 'accountability for reasonableness'. The public was not directly involved in the priority setting activities of the Ontario Wait Time Strategy. Study participants identified both benefits (supporting the initiative, experts of the lived experience, a publicly funded system and sustainability of the healthcare system) and concerns (personal biases, lack of interest to be involved, time constraints, and level of technicality) for public involvement in the Ontario Wait Time Strategy. Additionally, the participants identified concern for the consequences (sustainability, cannibalism, and a class system) resulting from the Ontario Wait Times Strategy. Conclusion We described and evaluated a wait time management initiative (the Ontario Wait Time Strategy) with special attention to public engagement, and provided a concrete plan to operationalize a strategy for improving public involvement in this, and other, wait time initiatives. PMID:18021393

Bruni, Rebecca A; Laupacis, Andreas; Levinson, Wendy; Martin, Douglas K

2007-01-01

241

The C-terminal domain of Escherichia coli MutY is involved in DNA binding and glycosylase activities.  

PubMed

Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxo-guanine (8-oxoG). The C-terminal domain of MutY is required for 8-oxoG recognition and is critical for mutation avoidance of oxidative damage. To determine which residues of this domain are involved in 8-oxoG recognition, we constructed four MutY mutants based on similarities to MutT, which hydrolyzes specifically 8-oxo-dGTP to 8-oxo-dGMP. F294A-MutY has a slightly reduced binding affinity to A/G mismatch but has a severe defect in A/8-oxoG binding at 20 degrees C. The catalytic activity of F294A-MutY is much weaker than that of the wild-type MutY. The DNA binding activity of R249A-MutY is comparable to that of the wild-type enzyme but the catalytic activity is reduced with both A/G and A/8-oxoG mismatches. The biochemical activities of F261A-MutY are nearly similar to those of the wild-type enzyme. The solubility of P262A-MutY was improved as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. The binding of GB1-P262A-MutY with both A/G and A/8-oxoG mismatches are slightly weaker than those of the wild-type protein. The catalytic activity of GB1-P262A-MutY is weaker than that of the wild-type enzyme at lower enzyme concentrations. Importantly, all four mutants can complement mutY mutants in vivo when expressed at high levels; however, F294A, R249A and P262A, but not F261A, are partially defective in vivo when they are expressed at low levels. These results strongly support that the C-terminal domain of MutY is involved not only in 8-oxoG recognition, but also affects the binding and catalytic activities toward A/G mismatches. PMID:12799430

Li, Lina; Lu, A-Lien

2003-06-15

242

The C-terminal domain of Escherichia coli MutY is involved in DNA binding and glycosylase activities  

PubMed Central

Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxo-guanine (8-oxoG). The C-terminal domain of MutY is required for 8-oxoG recognition and is critical for mutation avoidance of oxidative damage. To determine which residues of this domain are involved in 8-oxoG recognition, we constructed four MutY mutants based on similarities to MutT, which hydrolyzes specifically 8-oxo-dGTP to 8-oxo-dGMP. F294A-MutY has a slightly reduced binding affinity to A/G mismatch but has a severe defect in A/8-oxoG binding at 20°C. The catalytic activity of F294A-MutY is much weaker than that of the wild-type MutY. The DNA binding activity of R249A-MutY is comparable to that of the wild-type enzyme but the catalytic activity is reduced with both A/G and A/8-oxoG mismatches. The biochemical activities of F261A-MutY are nearly similar to those of the wild-type enzyme. The solubility of P262A-MutY was improved as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. The binding of GB1-P262A-MutY with both A/G and A/8-oxoG mismatches are slightly weaker than those of the wild-type protein. The catalytic activity of GB1-P262A-MutY is weaker than that of the wild-type enzyme at lower enzyme concentrations. Importantly, all four mutants can complement mutY mutants in vivo when expressed at high levels; however, F294A, R249A and P262A, but not F261A, are partially defective in vivo when they are expressed at low levels. These results strongly support that the C-terminal domain of MutY is involved not only in 8-oxoG recognition, but also affects the binding and catalytic activities toward A/G mismatches. PMID:12799430

Li, Lina; Lu, A-Lien

2003-01-01

243

Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen.  

PubMed

Fungal biodeterioration of ivory was investigated with in vitro inoculation of samples obtained from boar and walrus tusks with the fungi Aspergillus niger and Serpula himantioides, species of known geoactive abilities. A combination of light and scanning electron microscopy together with associated analytical techniques was used to characterize fungal interactions with the ivory, including changes in ivory composition, dissolution and tunnelling, and the formation of new biominerals. The research was aimed at providing further understanding of the potential roles of fungi in the colonization and deterioration of ivory in terrestrial environments, but also contributes to our knowledge regarding the possible origins of the surface damage observed on early medieval sculptures made largely from walrus tusks, referred to as 'the Lewis hoard of gaming pieces', that were presumably produced for playing chess. The experiments have shown that the possibility of damage to ivory being caused by fungi is realistic. Scanning electron microscopy revealed penetration of fungal hyphae within cracks in the walrus tusk that showed also widespread tunnelling by fungal hyphae as well as 'fungal footprints' where the surface was etched as a consequence of mycelial colonization. Similar phenomena were observed with boar tusk ivory, while production of metabolites could lead to complete dissolution of the sample. Colonization of ivory and/or exposure to fungal activity lead to extensive secondary biomineral formation, and this was identified as calcium oxalate, mainly as the monohydrate, whewellite. PMID:23157656

Pinzari, Flavia; Tate, James; Bicchieri, Marina; Rhee, Young Joon; Gadd, Geoffrey Michael

2013-04-01

244

Photosynthetic activity influences cellulose biosynthesis and phosphorylation of proteins involved therein in Arabidopsis leaves.  

PubMed

Cellulose is one of the most important organic compounds in terrestrial ecosystems and represents a major plant structural polymer. However, knowledge of the regulation of cellulose biosynthesis is still rather limited. Recent studies have shown that the phosphorylation of cellulose synthases (CESAs) may represent a key regulatory event in cellulose production. However, the impact of environmental conditions on the carbon flux of cellulose deposition and on phosphorylation levels of CESAs has not been fully elucidated. Here, we took advantage of gas exchange measurements, isotopic techniques, metabolomics, and quantitative phosphoproteomics to investigate the regulation of cellulose production in Arabidopsis rosette leaves in different photosynthetic contexts (different CO2 mole fractions) or upon light/dark transition. We show that the carbon flux to cellulose production increased with photosynthesis, but not proportionally. The phosphorylation level of several phosphopeptides associated with CESA1 and 3, and several enzymes of sugar metabolism was higher in the light and/or increased with photosynthesis. By contrast, a phosphopeptide (Ser126) associated with CESA5 seemed to be more phosphorylated in the dark. Our data suggest that photosynthetic activity affects cellulose deposition through the control of both sucrose metabolism and cellulose synthesis complexes themselves by protein phosphorylation. PMID:25039072

Boex-Fontvieille, Edouard; Davanture, Marlène; Jossier, Mathieu; Zivy, Michel; Hodges, Michael; Tcherkez, Guillaume

2014-09-01

245

Growth hormone activity in mitochondria depends on GH receptor Box 1 and involves caveolar pathway targeting  

SciTech Connect

Growth hormone (GH) binding to its receptor (GHR) initiates GH-dependent signal transduction and internalization pathways to generate the biological effects. The precise role and way of action of GH on mitochondrial function are not yet fully understood. We show here that GH can stimulate cellular oxygen consumption in CHO cells transfected with cDNA coding for the full-length GHR. By using different GHR cDNA constructs, we succeeded in determining the different parts of the GHR implicated in the mitochondrial response to GH. Polarography and two-photon excitation fluorescence microscopy analysis showed that the Box 1 of the GHR intracellular domain was required for an activation of the mitochondrial respiration in response to a GH exposure. However, confocal laser scanning microscopy demonstrated that cells lacking the GHR Box 1 could efficiently internalize the hormone. We demonstrated that internalization mediated either by clathrin-coated pits or by caveolae was able to regulate GH mitochondrial effect: these two pathways are both essential to obtain the GH stimulatory action on mitochondrial function. Moreover, electron microscopic and biochemical approaches allowed us to identify the caveolar pathway as essential for targeting GH and GHR to mitochondria.

Perret-Vivancos, Cecile [CNRS UMR 5123, Bat. R. Dubois, Universite Claude Bernard-Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex (France); Abbate, Aude [CNRS UMR 5123, Bat. R. Dubois, Universite Claude Bernard-Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex (France); Ardail, Dominique [INSERM U189-Faculte de medecine Lyon Sud, 69921 Oullins cedex (France); Raccurt, Mireille [CNRS UMR 5123, Bat. R. Dubois, Universite Claude Bernard-Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex (France); Usson, Yves [UMR 5525 CNRS, Institut de l'Ingenierie de l'Information de Sante (IN3S) Domaine de la Merci, Universite Joseph Fourier, 38706 La Tronche cedex (France); Lobie, Peter E. [Liggins Institute, University of Aukland, 2-6 Park Avenue, Private Bag, Aukland 92019 (New Zealand); Morel, Gerard [CNRS UMR 5123, Bat. R. Dubois, Universite Claude Bernard-Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex (France)]. E-mail: gerard.morel@univ-lyon1.fr

2006-02-01

246

Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis.  

PubMed

Defining the function of the genes that, like RUNX1, are deregulated in blood cell malignancies represents an important challenge. Myeloid leukemia factors (MLFs) constitute a poorly characterized family of conserved proteins whose founding member, MLF1, has been associated with acute myeloid leukemia in humans. To gain insight into the functions of this family, we investigated the role of the Drosophila MLF homolog during blood cell development. Here we report that mlf controls the homeostasis of the Drosophila hematopoietic system. Notably, mlf participates in a positive feedback loop to fine tune the activity of the RUNX transcription factor Lozenge (LZ) during development of the crystal cells, one of the two main blood cell lineages in Drosophila. At the molecular level, our data in cell cultures and in vivo strongly suggest that MLF controls the number of crystal cells by protecting LZ from degradation. Remarkably, it appears that the human MLF1 protein can substitute for MLF in the crystal cell lineage. In addition, MLF stabilizes the human oncogenic fusion protein RUNX1-ETO and is required for RUNX1-ETO-induced blood cell disorders in a Drosophila model of leukemia. Finally, using the human leukemic blood cell line Kasumi-1, we show that MLF1 depletion impairs RUNX1-ETO accumulation and reduces RUNX1-ETO-dependent proliferation. Thus, we propose that the regulation of RUNX protein levels is a conserved feature of MLF family members that could be critical for normal and pathological blood cell development. PMID:22411814

Bras, Stéphanie; Martin-Lannerée, Séverine; Gobert, Vanessa; Augé, Benoît; Breig, Osman; Sanial, Matthieu; Yamaguchi, Masamitsu; Haenlin, Marc; Plessis, Anne; Waltzer, Lucas

2012-03-27

247

Fluid involvement in the active Helike normal Fault, Gulf of Corinth, Greece  

NASA Astrophysics Data System (ADS)

Rock fabric and mineralogical composition from the fault core and the unaffected protolith have been used to define the role of the segmented Helike Fault to fluid flow. Sixty samples were investigated by XRD, SEM observation and SEM-EDS microanalyses. Detrital smectite, calcite, and quartz represent the mineral assemblage at the crest of the footwall block in Foniskaria sampling site. In this site smectite is enriched at the rims of the fault core. All other sampling sites located at the base of the fault scarp are characterized by detrital and newly formed minerals. Detrital minerals include plagioclase, quartz, calcite and illite in Nikolaiika sampling site, and smectite, illite, kaolinite, quartz, calcite in Selinous sampling site. In the latter sampling site erionite and cerussite are newly formed minerals with erionite considered as the hydrothermal alteration product of fluids at 80-100 °C. At the eastern fault segment illite, quartz and calcite (T13 site) corresponds to detrital minerals. Mineralogy in the fault core reflects its high permeability to down-flowing meteoric water and weak hydrothermal alteration. The rock fabric suggests mineral alignment parallel to the fault plane. Mineralogy indicates that the Aigion, Helike and Pyrgaki Faults in the Gulf of Corinth host hydrothermal activity at shallow levels.

Koukouvelas, Ioannis K.; Papoulis, Dimitris

2009-03-01

248

Involvement of tissue plasminogen activator "tPA" in ethanol-induced locomotor sensitization and conditioned-place preference.  

PubMed

Ethanol is one of the most abused drugs in the western societies. It is well established that mesolimbic dopaminergic neurons mediate the rewarding properties of ethanol. In our previous studies we have shown that the serine protease tissue plasminogen activator (tPA) is involved in the rewarding properties of morphine and amphetamine. In the current study, we investigated the role of tPA in ethanol-induced behavioral sensitization and conditioned-place preference (CPP). Ethanol treatment dose-dependently induced tPA enzymatic activity in the nucleus accumbens (NAc). In addition, ethanol-induced increase in tPA activity was completely inhibited by pre-treatment with the dopamine D1 and D2 receptor antagonists SCH23390 and raclopride respectively. Furthermore, ethanol-induced locomotor stimulation, behavioral sensitization and conditioned-place preference were enhanced following tPA over-expression in the NAc using a lentiviral vector. In contrast, tPA knock down in the NAc with specific shRNA blocked the rewarding properties of ethanol. The defect of locomotor stimulation in shRNA-injected mice was reversed by microinjections of exogenous recombinant tPA into the nucleus accumbens. Collectively, these results indicate, for the first time, that activation of tPA is effective in enhancing the rewarding effects of ethanol. Targeting the tissue plasminogen activator system would provide new therapeutic approaches to the treatment of alcoholism. PMID:21945298

Bahi, Amine; Dreyer, Jean-Luc

2012-01-01

249

Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities.  

PubMed

Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction. PMID:25418535

Yegutkin, Gennady G

2014-01-01

250

Involvement of histaminergic system in the anxiolytic-like activities of Morus alba leaves in mice.  

PubMed

The aim of this study was to identify the effects of 85% methanolic extract of Morus alba leaves (EMA), which is a traditional herb, in mice. The effects of EMA on the anxiolytic-like behaviour were studied using the elevated plus maze (EPM) and hole-board test. To elucidate the mode of action of the anxiolytic-like effects of EMA, the mice were subjected to the co-administration of EMA (200?mg/kg, per os (p.o.)) and either antagonist. EMA (at 200 or 400?mg/kg) significantly increased the percentages of time-spent in the open arms and entries into the open arms of the EPM versus vehicle-treated control group (p<0.05). Moreover, in the hole-board test, EMA (200 and 400?mg/kg) significantly increased the number of head-dips versus vehicle-treated control group (p<0.05). However, there were no changes in the locomotor activity and myorelaxant effects in any group compared with the vehicle-treated control group. In addition, the anxiolytic-like effects of EMA were abolished by thioperamide (10?mg/kg, intraperitoneally (i.p.)), which is a histamine H3 receptor antagonist. Moreover, results from reverse transcription polymerase chain reaction (RT-PCR) also revealed that the amygdalal histidine decarboxylase mRNA expression levels in EMA (200?mg/kg)-treated group were significantly higher than those in the vehicle-treated controls (p<0.05). These results suggest that EMA might prove to be an effective anxiolytic agent and that EMA acts via the histaminergic system in central nerve system. PMID:23965748

Lee, Seungheon; Kim, Dong Hyun; Lee, Ji Hye; Ko, Eun Seong; Oh, Won Bo; Seo, Yong Taek; Jang, Young Pyo; Ryu, Jong Hoon; Jung, Ji Wook

2013-01-01

251

The Beyond Einstein Explorers' Program (BEEP) Getting Astronomers Involved in Afterschool Activities  

NASA Astrophysics Data System (ADS)

There is tremendous potential for astronomers to engage afterschool programs in their local areas. Afterschool programs reach a diverse population of students and allow for learning experiences different from those in a classroom. We offer an astronomy afterschool program that scientists can easily adopt, adapt, and run in their local areas. BEEP is targeted at middle school students and introduces basic astronomical tools and the Universe beyond the solar system. The primary goal of the program is to spark curiosity and excitement about the Universe in both program leaders (who often don’t have a science background) and students. A promising model for training leaders and maintaining oversight of the programs is to have a team consisting of a scientist and 1-2 astronomy graduate students partnering with local afterschool program(s). BEEP’s structure is flexible enough to be split into modules and run in a variety of settings, from “astronomy days” to summer camps to year-long afterschool programming. We also welcome the opportunity to work with astronomers running this program to add new modules. This program was developed in close collaboration with afterschool programs in the Washington, DC area. The sessions were developed by adapting well-tested existing formal education materials and activities for the afterschool environment. The program was piloted in summer 2006 and evaluations showed that it was successful and met our primary goal of engaging the students (and preparing the leaders). We are currently refining this program to reflect feedback from the pilot, and it will be ready for wider dissemination by summer 2007.

Krishnamurthi, Anita; Barbier, B.; Mitchell, S.; Lochner, J.

2006-12-01

252

Peroxiredoxin 2 is involved in vasculogenic mimicry formation by targeting VEGFR2 activation in colorectal cancer.  

PubMed

The mammalian peroxiredoxin 2 (Prdx2) is a member of thiol-dependent antioxidant proteins and plays an important role in the progression of colorectal cancer (CRC). The aim of this study was to confirm the role of Prdx2 in formation of VM and progression of CRC. Immunohistochemistry and CD34/periodic acid Schiff double staining were performed to explore the expression of Prdx2 and VM formation in 70 CRC tissues, and there was a positive correlation between Prdx2 expression and VM formation by the Pearson correlation coefficient (r = 0.282, p < 0.05). Prdx2 was suppressed in poorly differentiated HCT116 cells by Prdx2-siRNA-LV transduction. The expression of Prdx2 at both mRNA and protein levels in HCT116 cells transfected with the Prdx2 siRNA was significantly lower than that of negative control siRNA as confirmed by quantitative real-time PCR and Western blotting analysis, respectively (p < 0.05). The well-established in vitro 3D culture model was chosen to investigate the VM formation of HCT116 cells. The numbers of the tubular structures were significantly fewer in Prdx2 siRNA explants than those of negative control siRNA explants after VEGF induction (p < 0.05). Although VEGFR2 expressions had no change after VEGF induction, we found that VEGFR2 phosphorylation levels were markedly reduced in cells of siPrdx2 over time compared with those of negative control siRNA by Western blotting analysis (p < 0.05, p < 0.01). The effects of Prdx2 siRNA on the invasive capabilities of HCT116 cells with VEGF induction were examined by using Matrigel invasion chamber assay. The invasive capabilities of HCT116 cells were significantly declined in Prdx2 siRNA explants than those of negative control siRNA explants (p < 0.05). The effects of Prdx2 siRNA on pathological tumor growth were examined by using a tumor xenograft model in vivo. After implant of HCT116 cells that transduced with Prdx2 siRNA and negative control siRNA as xenografts into nude mice, the growth of xenograft tumors with Prdx2 siRNA was much slower than that of negative control siRNA, and the volumes of tumor xenografts with Prdx2 siRNA were smaller than those of negative control siRNA after 5 weeks (p < 0.05). Further conclusion showed that Prdx2 regulates VM formation by targeting VEGFR2 activation, which now represents as a therapeutic target for RC. PMID:25471788

Zhang, Shouru; Fu, Zhongxue; Wei, Jinlai; Guo, Jinbao; Liu, Maoxi; Du, Kunli

2015-01-01

253

The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration  

PubMed Central

Mutations in the adenomatous polyposis coli (APC) gene are linked to polyp formation in familial and sporadic colon cancer, but the functions of the protein are not known. We show that APC protein localizes mainly to clusters of puncta near the ends of microtubules that extend into actively migrating regions of epithelial cell membranes. This subcellular distribution of APC protein requires microtubules, but not actin filaments. APC protein-containing membranes are actively involved in cell migration in response to wounding epithelial monolayers, addition of the motorgen hepatocyte growth factor, and during the formation of cell-cell contacts. In the intestine, APC protein levels increase at the crypt/villus boundary, where cell migration is crucial for enterocyte exit from the crypt and where cells accumulate during polyp formation that is linked to mutations in the microtubule-binding domain of APC protein. Together, these data indicate that APC protein has a role in directed cell migration. PMID:8698812

1996-01-01

254

Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.  

PubMed

Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 ?g/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit. PMID:25234465

Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

2014-09-01

255

Ginseng Gintonin Activates the Human Cardiac Delayed Rectifier K+ Channel: Involvement of Ca2+/Calmodulin Binding Sites  

PubMed Central

Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca2+]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K+ (IKs) channel is a cardiac K+ channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating IKs channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human IKs channel activity by expressing human IKs channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the IKs channel was 0.05 ± 0.01 ?g/ml. Gintonin-mediated activation of the IKs channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the IKs channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca2+]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on IKs channel. However, gintonin had no effect on hERG K+ channel activity. These results show that gintonin-mediated enhancement of IKs channel currents is achieved through binding of the [Ca2+]i/CaM complex to the C terminus of KCNQ1 subunit. PMID:25234465

Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

2014-01-01

256

Activation of the ubiquitin-proteasome system against arsenic trioxide cardiotoxicity involves ubiquitin ligase Parkin for mitochondrial homeostasis.  

PubMed

Parkin is an E3 ubiquitin ligase involved in the elimination of damaged mitochondria. Ubiquitination of mitochondrial substrates by Parkin results in proteasomal as well as lysosomal degradation of mitochondria, the latter of which is executed by the autophagy machinery and is called as mitophagy (mitochondrial autophagy). The aim of this study is to examine the possible role of Parkin against cardiotoxicity elicited by arsenic trioxide (ATO) exposure in HL-1 mouse atrial cardiomyocytes. HL-1 cells were administered 1-10?M ATO for up to 24h, and the involvements of apoptosis, and the ubiquitin-proteasome and autophagy-lysosome systems (UPS and ALS) were examined. ATO dose-dependently reduced mitochondrial membrane potentials (??m) in HL-1 cells, indicating that ATO works as a mitochondrial toxin in these cells. Apoptosis was evident in cells exposed to more than 6?M ATO for 24h. Levels of Parkin in mitochondria-rich fractions were increased, suggesting the recruitment of Parkin to mitochondria. Ubiquitination of the voltage-dependent anion channel1 (VDAC1), a substrate of Parkin, was also proved by immunoprecipitation. Accumulation of ubiquitinated proteins including both K48- and K63-lineages was observed in HL-1 cells after ATO exposure, implying an increased demand for proteasomal as well as lysosomal degradation of cellular proteins. Although UPS was activated by ATO as proved by increased proteasomal activity, only slight activation of the ALS marker LC3 was observed, suggesting differential reactions of UPS and ALS to ATO toxicity. The abrogation of UPS by the proteasome inhibitor bortezomib significantly sensitized HL-1 cells to ATO toxicity, showing the contribution of UPS to the maintenance of cellular homeostasis during ATO exposure. Taken together, our results reveal the activation of Parkin as well as UPS during ATO exposure in HL-1 cardiomyocytes, which contributes to the maintenance of mitochondrial as well as cellular homeostasis. PMID:24801902

Watanabe, Mayumi; Funakoshi, Takeshi; Unuma, Kana; Aki, Toshihiko; Uemura, Koichi

2014-08-01

257

Involvement of fish signal transducer and activator of transcription 3 (STAT3) in nodavirus infection induced cell death.  

PubMed

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway is an important signaling pathway activated by interferons in response to virus infection. Fish STAT3 has been demonstrated to be involved in Singapore grouper iridovirus (SGIV) infection and virus induced paraptosis, but its effects on the replication of other fish viruses still remained uncertain. Here, the roles of grouper STAT3 (Ec-STAT3) in red spotted grouper nervous necrosis virus (RGNNV) infection were investigated. The present data showed that the distribution of phosphorylated Ec-STAT3 was altered in RGNNV infected fish cells, and the promoter activity of STAT3 was significantly increased during virus infection, suggesting that STAT3 activation was involved in RGNNV infection. Using STAT3 specific inhibitor, we found that inhibition of Ec-STAT3 in vitro did not affect the transcription and protein synthesis of RGNNV coat protein (CP), however, the severity of RGNNV induced vacuolation and autophagy was significantly increased. Meanwhile, at the late stage of virus infection, RGNNV induced necrotic cell death was significantly decreased after inhibition of Ec-STAT3. Further studies indicated that Ec-STAT3 inhibition significantly increased the transcript level of autophagy related genes, including UNC-51-like kinase 2 (ULK2) and microtubule-associated protein 1 light chain 3-II (LC3-II) induced by RGNNV infection. Moreover, the expression of several pro-inflammatory factors, including TNF?, IL-1? and IL-8 were mediated by Ec-STAT3 during RGNNV infection. Together, our results not only firstly revealed that STAT3 exerted novel roles in response to fish virus infection, but also provided new insights into understanding the roles of STAT3 in different forms of programmed cell death. PMID:25555814

Huang, Youhua; Huang, Xiaohong; Yang, Ying; Wang, Wei; Yu, Yepin; Qin, Qiwei

2015-03-01

258

Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation.  

PubMed

The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor. PMID:24795366

Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E; Gong, Yunchen; Hug, Laura A; Raskin, Lutgarde; Edwards, Elizabeth A

2014-07-01

259

Metatranscriptome of an Anaerobic Benzene-Degrading, Nitrate-Reducing Enrichment Culture Reveals Involvement of Carboxylation in Benzene Ring Activation  

PubMed Central

The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor. PMID:24795366

Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E.; Gong, Yunchen; Hug, Laura A.; Raskin, Lutgarde

2014-01-01

260

Characterisation of two novel CYP4 genes from the marine polychaete Nereis virens and their involvement in pyrene hydroxylase activity.  

PubMed

Cytochrome P450 enzymes (CYP enzymes) catalyse the initial step in biotransformation of xenobiotics like polycyclic aromatic hydrocarbons (PAHs). The marine polychaete Nereis virens has a high capacity for biotransformation of PAHs. In the present study, the complete cDNA sequences of two novel CYP genes isolated from N. virens gut tissue are reported. One named CYP342A1, the first member of a new family and the other named CYP4BB1, the first member of a new subfamily. This is the first investigation of specific CYP enzymes from marine polychaetes in which catalytic activity has been determined. Both CYP enzymes had monooxygenase activity and catalysed hydroxylation of pyrene to 1-hydroxypyrene. Based on the present results it is likely that both CYP4BB1 and CYP342A1 are involved in xenobiotic biotransformation. Furthermore, site-directed mutagenesis of the conserved cysteine residue of the heme binding domain resulted in complete loss of monooxygenase activity of both CYP enzymes, indicating that this cysteine residue is indispensable for monooxygenase activity of invertebrate CYP enzymes, as has been well documented in vertebrates. Considering the important role of CYP enzymes in biotransformation of xenobiotics and the presence of N. virens in estuarine environments that accumulates organic xenobiotics, our results are important in understanding the molecular mechanism of biotransformation in marine polychaetes. PMID:16154110

Jørgensen, Anne; Rasmussen, Lene Juel; Andersen, Ole

2005-10-28

261

Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62.  

PubMed Central

A role for redox regulation in activation of the NF-kappa B transcription factor was suggested by the observation that DNA binding activity of free protein, but not preformed DNA-protein complex, is inhibited by -SH modifying agents but enhanced by reducing agents. Mutagenesis of conserved cysteine residues in the p50 subunit identified amino acid 62 as being important for DNA binding, as a serine substitution at this position reduces DNA binding affinity, but renders the protein insensitive to -SH modifying agents. DNA binding activity of the wild type protein but not the amino acid 62 mutant was also stimulated by thioredoxin while detection of disulphide cross linked dimers in p50 but not the amino acid 62 mutant suggests that thioredoxin stimulates DNA binding by reduction of a disulphide bond involving cysteine 62. The physiological relevance of these findings was supported by the observation that cotransfection of a plasmid expressing human thioredoxin and an HIV LTR driven reporter construct resulted in an NF-kappa B dependent increase in expression of the reporter gene. Thus modification of p50 by thioredoxin, a gene induced by stimulation of T-lymphocytes in parallel with NF-kappa B translocation, is a likely step in the cascade of events leading to full NF-kappa B activation. Images PMID:1508666

Matthews, J R; Wakasugi, N; Virelizier, J L; Yodoi, J; Hay, R T

1992-01-01

262

Involvement of A20 in the molecular switch that activates the non-canonical NF-?B pathway.  

PubMed

The non-canonical NF-?B pathway is crucial for the immune system. A critical event in activation of the non-canonical pathway is the attenuation of NF-?B-inducing kinase (NIK) degradation, which is promoted by continuous polyubiquitination of NIK catalyzed by the NIK ubiquitin-ligase complex composed of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2), TNF receptor-associated factor 2 (TRAF2), and TRAF3. However, the molecular mechanism of stimulation-dependent NIK stabilization remains poorly understood. Here, we show that A20, a ubiquitin-editing enzyme, promotes efficient activation of the non-canonical pathway independent of its catalytic activity. A20 directly binds to cIAP1 through the seventh zinc finger of A20, resulting in dissociation of the TRAF2/TRAF3 interaction, thereby inactivating the ligase complex to stabilize NIK. Given that A20 negatively regulates the canonical pathway, A20 is likely involved in the molecular switch that promotes the transition from canonical to non-canonical activation for proper control of the immune system. PMID:24008839

Yamaguchi, Noritaka; Oyama, Masaaki; Kozuka-Hata, Hiroko; Inoue, Jun-ichiro

2013-01-01

263

Hemin inhibits NLRP3 inflammasome activation in sepsis-induced acute lung injury, involving heme oxygenase-1.  

PubMed

NLRP3 inflammasome activation contributes to acute lung injury (ALI), accelerating caspase-1 maturation, and resulting in IL-1? and IL-18 over-production. Heme oxygenase-1 (HO-1) plays a protective role in ALI. This study investigated the effect of hemin (a potent HO-1 inducer) on NLRP3 inflammasome in sepsis-induced ALI. The sepsis model of cecal ligation and puncture (CLP) was used in C57BL6 mice. In vivo induction and suppression of HO-1 were performed by pretreatment with hemin and zinc protoporphyrin IX (ZnPP, a HO-1 competitive inhibitor) respectively. CLP triggered significant pulmonary damage, neutrophil infiltration, increased levels of IL-1? and IL-18, and edema formation in the lung. Hemin pretreatment exerted inhibitory effect on lung injury and attenuated IL-1? and IL-18 secretion in serum and lung tissue. In lung tissues, hemin down-regulated mRNA and protein levels of NLRP3, ASC and caspase-1. Moreover, hemin reduced malondialdehyde and reactive oxygen species production, and inhibited NF-?B and NLRP3 inflammasome activity. Meanwhile, hemin significantly increased HO-1 mRNA and protein expression and HO-1 enzymatic activity. In contrast, no significant differences were observed between the CLP and ZnPP groups. Our study suggests that hemin-inhibited NLRP3 inflammasome activation involved HO-1, reducing IL-1? and IL-18 secretion and limiting the inflammatory response. PMID:24583148

Luo, Yun-peng; Jiang, Lei; Kang, Kai; Fei, Dong-sheng; Meng, Xiang-lin; Nan, Chuan-chuan; Pan, Shang-ha; Zhao, Ming-ran; Zhao, Ming-yan

2014-05-01

264

Involvement of protein kinase D in Fc gamma-receptor activation of the NADPH oxidase in neutrophils.  

PubMed Central

Protein kinases involved in the activation of the NADPH oxidase by Fc gamma receptors in neutrophils were studied. Of three different protein kinase C (PKC) inhibitors, Gö 6976 inhibited the NADPH oxidase completely, whereas bisindolylmaleimide I and Ro 31-8220 caused a 70-80% inhibition. Thus a Gö 6976-sensitive, bisindolylmaleimide I/Ro 31-8220-insensitive component contributes to NADPH oxidase activation induced by Fc gamma receptors. Down-regulation of PKC isotypes resulted in inhibition of Fc gamma-receptor-activated NADPH oxidase, but a down-regulation-insensitive component was still present. This component was sensitive to Gö 6976, but insensitive to Ro 31-8220. It has been shown previously that protein kinase D/PKC-mu (PKD) shows this same pharmacology in vitro. We show that PKD is present in neutrophils and that, in contrast with PKC isotypes, PKD is not down-regulated. Therefore PKD may participate in NADPH oxidase activation. To obtain direct evidence for this we adopted an antisense approach. Antisense PKD inhibited NADPH oxidase induced by Fc gamma-receptor stimulation by 50% and the Ro 31-8220-insensitive component in the activation was inhibited by antisense PKD. In vitro kinase assays showed that PKD is activated by presenting IgG-opsonized particles to neutrophils. Furthermore, PKD localizes to the area of particle intake in the cell and phosphorylates two of the three cytosolic components of the NADPH oxidase, p40(phox) and p47(phox). Taken together, these data indicate that Fc gamma receptors engage PKD in the regulation of the NADPH oxidase. PMID:11903052

Davidson-Moncada, Jan K; Lopez-Lluch, Guillermo; Segal, Anthony W; Dekker, Lodewijk V

2002-01-01

265

PmPPAF is a pro-phenoloxidase activating factor involved in innate immunity response of the shrimp Penaeus monodon.  

PubMed

One of the major steps in the innate immune response of shrimp includes the activation of serine proteinases of the pro-phenoloxidase pathway by the prophenoloxidase activation enzyme (PPAF). In this study, the cDNA encoding a serine proteinase homologue (SPH) with prophenoloxidase activating activity of Penaeus monodon (PmPPAF) was cloned and characterized. PmPPAF cDNA consists of 1444 nucleotides encoding a protein with 394 amino acid residues. The estimated molecular weight of PmPPAF is 43.5 kDa with an isoelectric point of 5.19. PmPPAF consists of a signal peptide, a CLIP domain and a carboxyl-terminal trypsin-like serine protease domain. It is highly similar to the masquerade-like protein 2A (61% similarity) of the crayfish Pacifastacus leniusculus, other serine proteases (42.9-67% identity) of P. monodon, and the PPAF of the crab (61% similarity). Unlike other SPH of P. monodon, which express mainly in the hemocytes, PmPPAF transcripts were detected in the hemocytes, eyestalk, hypodermis, gill, swimming leg and brain. Similar to the crab PPAF, PmPPAF transcript level is high in shrimp at the premolt stages and PmPPAF expression is up-regulated in shrimp infected with white spot syndrome virus (WSSV). Gene silencing of PmPPAF decreased expression of a prophenoloxidase-like gene and injection of Anti-PmPPAF antibody causes a decrease in PO activity. Taken together, these results provided evidence that PmPPAF is a serine proteinase homologue, and is involved in the pro-PO activation pathway of the shrimp innate immune system. PMID:24345607

Ma, Tracy H T; Benzie, John A H; He, Jian-Guo; Sun, Cheng-Bo; Chan, Siuming F

2014-05-01

266

Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay.  

PubMed

The currative properties of aromatic and medicinal plants have been recognized since ancient times and, more recently, the antimicrobial activity of plant essential oils has been used in several applications, including food preservation. The purpose of this study was to create directly comparable, quantitative data on the antimicrobial activity of some plant essential oils prepared in the National Institute of Research-Development for Chemistry and Petrochemistry, Bucharest to be used for the further development of food packaging technology, based on their antibacterial and antifungal activity. The essential oils extracted from thyme (Thymus vulgaris L.), basil (Ocimum basilicum L.), coriander (Coriandrum sativum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), fennel (Foeniculum vulgare L.), spearmint (Mentha spicata L.) and carraway (Carum carvi L.) were investigated for their antimicrobial activity against eleven different bacterial and three fungal strains belonging to species reported to be involved in food poisoning and/or food decay: S. aureus ATCC 25923, S. aureus ATCC 6538, S. aureus ATCC 25913, E. coli ATCC 25922, E. coli ATCC 35218, Salmonella enterica serovar Enteritidis Cantacuzino Institute Culture Collection (CICC) 10878, Listeria monocytogenes ATCC 19112, Bacillus cereus CIP 5127, Bacillus cereus ATCC 11778, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, Penicillium spp. CICC 251 and two E. coli and Salmonella enterica serovar Enteritidis clinical isolates. The majority of the tested essential oils exibited considerable inhibitory capacity against all the organisms tested, as supported by growth inhibition zone diameters, MICs and MBC's. Thyme, coriander and basil oils proved the best antibacterial activity, while thyme and spearmint oils better inhibited the fungal species. PMID:21462837

Lixandru, Brîndu?a-Elena; Dr?cea, Nicoleta Olgu?a; Dragomirescu, Cristiana Cerasella; Dr?gulescu, Elena Carmina; Coldea, Ileana Lumini?a; Anton, Liliana; Dobre, Elena; Rovinaru, Camelia; Codi??, Irina

2010-01-01

267

The involvement of platelet activating factor in endotoxin-induced pulmonary platelet recruitment in the guinea-pig.  

PubMed Central

1 Exposure of conscious guinea-pigs to an aerosol of endotoxin (25-100 micrograms ml-1) resulted in a dose-related, progressive accumulation of platelets in the thoracic region. Accumulation of 111indium oxine labelled erythrocytes was not observed following exposure to an aerosol of endotoxin (50 micrograms ml-1). 2 Pretreatment of guinea-pigs with the selective platelet activating factor (Paf)-antagonists. CV-3988 or brotizolam resulted in a dose-related inhibition of endotoxin-induced pulmonary platelet recruitment. Pretreatment of guinea-pigs with the selective Paf-antagonist BN 52021 resulted in significant inhibition of endotoxin-induced pulmonary platelet recruitment, although the effects of BN 52021 were not dose-related. 3 Pretreatment of guinea-pigs with indomethacin at doses known to inhibit cyclo-oxygenase did not inhibit endotoxin-induced pulmonary platelet recruitment, whereas higher doses of indomethacin produced a reduction in platelet recruitment in the lung. 4 Pretreatment of guinea-pigs with the anticoagulant heparin and the prostacyclin analogue ZK 36374 inhibited endotoxin-induced platelet recruitment. 5 These observations suggest that endotoxin-induced pulmonary platelet recruitment in the guinea-pig is secondary to the release of platelet activating factor, but not to cyclo-oxygenase products of arachidonic acid and may also involve activation of the coagulation cascade. PMID:2447993

Beijer, L.; Botting, J.; Crook, P.; Oyekan, A. O.; Page, C. P.; Rylander, R.

1987-01-01

268

A zebrafish (Danio rerio) bloodthirsty member 20 with E3 ubiquitin ligase activity involved in immune response against bacterial infection.  

PubMed

The tripartite motif (TRIM)-containing proteins exhibit various activities and play important roles in the immune system through regulating signaling pathways. Bloodthirsty gene is a multigene subset of TRIM genes. In this study we identified and characterized a new member of the bloodthirsty subset of TRIM genes, btr20, in zebrafish (Danio rerio). The gene is located on chromosome 19 and forms a cluster with btr18, btr21, btr22 and an E3 ubiquitin ligase TRIM39-like gene. Deduced btr20 represents a RBCC-B30.2 TRIM protein containing 544 amino acids. The mRNA expression level of btr20 was highest in intestine and gill, followed by in spleen and kidney. Challenge experiment with Aeromonas hydrophila strain NJ-1 showed that the levels of btr20 and NF-?B mRNA were remarkably upregulated in the four tissues mentioned above. btr20 was localized in the cytoplasm and formed aggregate in human embryonic kidney cell line 293T. In vitro self-ubiquitylation experiment demonstrated that btr20 has E3 ubiquitin ligase activity that can be self-ubiquitylated with most E2 enzymes, especially UbcH6. The results suggested that btr20 may involve in the anti-microbial activity in the immune system as an E3 ubiquitin ligase. PMID:25542153

Zhang, Xinshang; Zhao, Heng; Chen, Yeyu; Luo, Huiying; Yang, Peilong; Yao, Bin

2015-01-30

269

ASTROGLIOSIS INVOLVES ACTIVATION OF RIG-LIKE SIGNALING IN THE INNATE IMMUNE RESPONSE AFTER SPINAL CORD INJURY  

PubMed Central

Spinal cord injury (SCI) induces a glial response in which astrocytes become activated and produce inflammatory mediators. The molecular basis for regulation of glial-innate immune responses remains poorly understood. Here, we examined the activation of retinoic acid inducible gene (RIG)-like receptors (RLRs) and their involvement in regulating inflammation following SCI. We show that astrocytes express two intracellular RLRs: RIG-I and melanoma differentiation-associated gene 5 (MDA5). SCI and stretch injury of cultured astrocytes stimulated RLR signaling as determined by phosphorylation of IRF3 leading to production of type I interferons (IFNs). RLR signaling stimulation with synthetic RNA resulted in RLR activation, phosphorylation of interferon regulatory factor 3 (IRF3), and increased expression of glial fibrillary acidic protein and vimentin, two hallmarks of reactive astrocytes. Moreover, mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an RLR inhibitor, decreased production of glial fibrillary acidic protein (GFAP) and vimentin following RIG-I signaling stimulation. Our findings identify a role for RLR signaling and type I IFN in regulating astrocyte innate immune responses after SCI. PMID:22161971

de Rivero Vaccari, Juan Pablo; Minkiewicz, Julia; Wang, Xiaoliang; de Rivero Vaccari, Juan Carlos; German, Ramon; Marcillo, Alex E.; Dietrich, W. Dalton; Keane, Robert W.

2011-01-01

270

A short-type peptidoglycan recognition protein from the silkworm: expression, characterization and involvement in the prophenoloxidase activation pathway.  

PubMed

Recognition of invading microbes as non-self is the first step of immune responses. In insects, peptidoglycan recognition proteins (PGRPs) detect peptidoglycans (PGs) of bacterial cell wall, leading to the activation of defense responses. Twelve PGRPs have been identified in the silkworm, Bombyx mori, through bioinformatics analysis. However, their biochemical functions are mostly uncharacterized. In this study, we found PGRP-S5 transcript levels were up-regulated in fat body and midgut after bacterial infection. Using recombinant protein isolated from Escherichia coli, we showed that PGRP-S5 binds to PGs from certain bacterial strains and induces bacteria agglutination. Enzyme activity assay confirmed PGRP-S5 is an amidase; we also showed it is an antibacterial protein effective against both Gram-positive and -negative bacteria. Additionally, we demonstrated that specific recognition of PGs by PGRP-S5 is involved in the prophenoloxidase activation pathway. Together, these data suggest the silkworm PGRP-S5 functions as a pattern recognition receptor for the prophenoloxidase pathway initiation and as an effecter to inhibit bacterial growth as well. We finally discussed possible roles of PGRP-S5 as a receptor for antimicrobial peptide gene induction and as an immune modulator in the midgut. PMID:24508981

Chen, Kangkang; Liu, Chen; He, Yan; Jiang, Haobo; Lu, Zhiqiang

2014-07-01

271

Characterization of ATPase activity of a hepatitis C virus NS3 helicase domain, and analysis involving mercuric reagents.  

PubMed

The C-terminal two-thirds of nonstructural protein 3 (NS3) of hepatitis C virus (HCV) exhibits RNA-dependent NTPase/helicase activity. This enzyme is considered to be involved in viral replication and is expected to be one of the target molecules of anti-HCV drugs. In a search for NTPase inhibitors specific to HCV, we expressed and purified the truncated NS3 NTPase/helicase domain. Here, we report the characterization of its RNA-dependent ATPase activity. This enzyme preferred Mg(2+) and the optimal pH was 7.0. We further investigated the effects of heavy metal ions on the ATPase activity. The mercuric ion inhibited it significantly, the 50% inhibitory concentration being 49 nM. The fact that the inhibitory profile was competitive and that this inhibition was blocked in the presence of a large excess of cysteine or dithiothreitol, suggested that a cysteine residue in the DECH box was the main target site of mercury. PMID:14607976

Kyono, Kiyoshi; Miyashiro, Masahiko; Taguchi, Ikuhiko

2003-10-01

272

Activation of the LicT transcriptional antiterminator involves a domain swing/lock mechanism provoking massive structural changes.  

PubMed

The transcriptional antiterminator protein LicT regulates the expression of Bacillus subtilis operons involved in beta-glucoside metabolism. It consists of an N-terminal RNA-binding domain (co-antiterminator (CAT)) and two phosphorylatable phosphotransferase system regulation domains (PRD1 and PRD2). In the activated state, each PRD forms a dimeric unit with the phosphorylation sites totally buried at the dimer interface. Here we present the 1.95 A resolution structure of the inactive LicT PRDs as well as the molecular solution structure of the full-length protein deduced from small angle x-ray scattering. Comparison of native (inactive) and mutant (constitutively active) PRD crystal structures shows massive tertiary and quaternary rearrangements of the entire regulatory domain. In the inactive state, a wide swing movement of PRD2 results in dimer opening and brings the phosphorylation sites to the protein surface. This movement is accompanied by additional structural rearrangements of both the PRD1-PRD1 ' interface and the CAT-PRD1 linker. Small angle x-ray scattering experiments indicate that the amplitude of the PRD2 swing might even be wider in solution than in the crystals. Our results suggest that PRD2 is highly mobile in the native protein, whereas it is locked upon activation by phosphorylation. PMID:15699035

Graille, Marc; Zhou, Cong-Zhao; Receveur-Bréchot, Véronique; Collinet, Bruno; Declerck, Nathalie; van Tilbeurgh, Herman

2005-04-15

273

Platelet-activating factor-induced contraction of guinea-pig lung parenchymal strips: possible involvement of arachidonate metabolites.  

PubMed

The identification of the mediators possibly involved in platelet-activating factor (PAF)-induced contraction of guinea-pig lung parenchymal strips (GPLP) was attempted by means of antagonists and inhibitors. Histamine, serotonin, acetylcholine (ACh) or other transmitters released from the nerve terminals are not likely to play a role in this response, since specific antagonists and tetrodotoxin did not affect the contraction. PAF antagonists (brotizolam and WEB 2086) produced a concentration-dependent inhibition of the contraction. Inhibitors of TXA2 synthesis (dazoxiben) and of 5-lipoxygenase (nordihydroguaiaretic acid and AA 861) and antagonists of TXA2 (ICI 159995) and peptidoleukotrienes (L 649923 and LY 171883, but not FPL 55712) produced a significant inhibition of the PAF-induced response at concentrations which did not reduce the ACh-induced response. These results suggest that arachidonate metabolites, both of the cyclo-oxygenase and of the lipoxygenase pathway, are determinants of the PAF-induced contraction of GPLP. PMID:3149718

Del Monte, M; Subissi, A

1988-10-01

274

Development of the parents' perception of their involvement in their child's tennis activity questionnaire (Q-PPICTA).  

PubMed

The purpose of this study was to develop and validate a questionnaire for assessing parents' perception of their involvement in their children's tennis activity (Q-PPICTA). The validation required four successive studies. In study 1, a preliminary version of the questionnaire was formulated after selecting and adapting items taken from existing questionnaires and interviews conducted with the parents of 36 young tennis players. Three factors for measuring parental involvement in sport were identified and retained: emotional, logistic, and informational supports. In study 2, exploratory factor analyses were performed on data collected from 214 parents of tennis players. Results attested the questionnaire's three-factor structure and ascertained its internal consistency. In study 3, a confirmatory factor analysis as well as tests on convergent and discriminant validity were carried out on data gathered from a different sample of 220 parents of tennis players. Statistics confirmed the questionnaire's three-factor structure and reliability. In study 4, the questionnaire's external construct validity was compared with another sample consisting of 192 parents and their children. Overall, results underlined satisfactory psychometric properties for the Q-PPICTA. Nevertheless, further studies are required to confirm the questionnaire's accuracy, reliability, and temporal validity. PMID:23438202

Hurtel, V; Lacassagne, M-F

2013-08-01

275

A potential Kazal-type serine protease inhibitor involves in kinetics of protease inhibition and bacteriostatic activity.  

PubMed

Kazal-type serine protease inhibitor (KSPI) is a pancreatic secretary trypsin inhibitor which involves in various cellular component regulations including development and defense process. In this study, we have characterized a KSPI cDNA sequence of freshwater striped murrel fish Channa striatus (Cs) at molecular level. Cellular location analysis predicted that the CsKSPI was an extracellular protein. The domain analysis showed that the CsKSPI contains a Kazal domain at 47-103 along with its family signature between 61 and 83. Phylogenetically, CsKSPI is closely related to KSPI from Maylandia zebra and formed a sister group with mammals. The 2D structure of CsKSPI showed three ?-helical regions which are connected with random coils, one helix at signal sequence and two at the Kazal domain region. The relative gene expression showed that the CsKSPI was highly expressed in gills and its expression was induced upon fungus (Aphanomyces invadans), bacteria (Aeromonas hydrophila) and poly I:C (a viral analogue) challenge. The CsKSPI recombinant protein was produced to characterize and study the CsKSPI gene specific functions. The recombinant CsKSPI strongly inhibited trypsin compared to other tested proteases. The results of the kinetic activity of CsKSPI against trypsin was Vmaxs = 1.62 nmol/min, KMs = 0.21 mM and Kis = 15.37 nM. Moreover, the recombinant CsKSPI inhibited the growth of Gram-negative bacteria A. hydrophila at 20 ?M and Gram-positive bacteria Bacillus subtilis at the MIC50 of 15 ?M. Overall, the study indicated that the CsKSPI was a potential trypsin inhibitor which involves in antimicrobial activity. PMID:25433138

Kumaresan, Venkatesh; Harikrishnan, Ramaswamy; Arockiaraj, Jesu

2015-02-01

276

Selenoglycoproteins attenuate adhesion of tumor cells to the brain microvascular endothelium via a process involving NF-?B activation.  

PubMed

Selenium-containing compounds and selenized yeast have anticancer properties. In order to address possible mechanisms involved in these effects, selenoglycoproteins (SGPs) were extracted from selenium-enriched yeast at pH 4.0 and 6.5 (the fractions are called SGP40 and SGP65, respectively), followed by evaluation of their impact on the interactions of lung and breast tumor cells with human brain microvascular endothelial cells (HBMECs). Extracted SGPs, especially SGP40, significantly inhibited adhesion of tumor cells to HBMECs and their transendothelial migration. Because the active components of SGPs are unknown, small selenium-containing compounds [leucyl-valyl-selenomethionyl-arginine (LVSe-MR) and methylselenoadenosine (M-Se-A)], which are normally present in selenized yeast, were introduced as additional treatment groups. Treatment of HBMECs with SGP40, LVSe-MR and M-Se-A induced changes in gene signatures, which suggested a central involvement of nuclear factor (NF)-?B-dependent pathway. These observations were confirmed in the subsequent analysis of NF-?B DNA binding activity, quantitative measurements of the expression of selected genes and proteins, and tumor cell adhesion assay with a specific NF-?B inhibitor as the additional treatment factor. These findings indicate that specific organic selenium-containing compounds have the ability to inhibit tumor cell adhesion to brain endothelial cells via down-regulation of NF-?B. SGPs appear to be more effective than small selenium-containing compounds, suggesting the role of not only selenium but also the glycoprotein component in the observed protective impact. PMID:25465156

Wrobel, Jagoda K; Choi, Jeong June; Xiao, Rijin; Eum, Sung Yong; Kwiatkowski, Stefan; Wolff, Gretchen; Spangler, Leya; Power, Ronan F; Toborek, Michal

2015-02-01

277

Estradiol activates methylating enzyme(s) involved in the conversion of phosphatidylethanolamine to phosphatidylcholine in rat pituitary membranes.  

PubMed

17 beta-Estradiol (E2) affects the sensitivity of pituitary cells to several neurohormones as LHRH, TRH, or dopamine, presumably by modulating receptor coupling mechanisms. We attempted to pinpoint the membrane processes underlying this modulation and studied the effect of E2 on pituitary membrane phospholipid methylation. Anterior pituitary membranes prepared from ovariectomized (ovx) or ovx plus E2-treated rats were assayed for phospholipid methylation. Methylated phospholipids were separated by TLC. Incorporation of [3H]methyl groups into phospholipids increased with membrane concentration and incubation time with S-adenosyl-L-methyl [3H]methionine; it was not Mg2+ dependent and was inhibited in a dose-dependent manner by S-adenosyl-L-homocysteine, methyltransferase inhibitor. pH was found to be critical. Formation of phosphatidyl-monoethanolamine, phosphatidyl-dimethylethanolamine, and phosphatidylcholine was markedly stimulated by treatment with E2. The effect increased progressively when animals were killed 15 h to 5 days after E2 implantation. The response involved a shift in the maximum velocity (Vmax) although there was no change in the available substrate for the methylating enzyme. This change in Vmax probably reflects changes in the amount of the methylating enzyme itself. Administration of 17 alpha-estradiol, an inactive stereoisomer of E2 was ineffective, pointing to a stereospecific interaction. After differential centrifugation of pituitary membranes, the highest specific methyltransferase activity was found in light mitochondrial (L) and microsomal (P) fractions and the lowest in nuclei (N) and the heavy mitochondrial (M) fractions. After sucrose density gradient centrifugation, methylated phospholipids were preferentially recovered from fractions corresponding to the endoplasmic reticulum and/or secretory granules. E2 treatment for 5 days did not modify the subcellular distribution of methyltransferase activity but stimulated it in all fractions; in contrast, it did not modify the activity of the other enzymes measured as fraction markers. Under the same experimental conditions, phospholipid methylation in membranes prepared from cortex, and anterior and mediobasal hypothalamic structures was not affected by the steroid, with the exception of a slight increment of [3H]methyl incorporation into mediobasal hypothalamic membrane phospholipids after 5 days of E2 treatment. These results indicate that E2-induced changes in pituitary responsiveness might be concomitant with selective effects of the steroid on specific membrane enzymatic activities involved in coupling mechanisms. PMID:3780543

Drouva, S V; LaPlante, E; Leblanc, P; Bechet, J J; Clauser, H; Kordon, C

1986-12-01

278

GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms  

PubMed Central

Aim: Gambogic acid (GA) is the major active ingredient of gamboge, which is secreted from a Chinese traditional medicine, Garcinia hanburyi, which possesses potent antitumor activity. GA3, a new GA derivative, has been shown to possess better water solubility than GA. The aim of the present study was to examine the antitumor activity of GA3 and the mechanism underlying it. Methods: The growth inhibition of cancer cell lines induced by GA3 was assessed using the SRB assay. DAPI staining, flow cytometry, a DNA fragment assay, and Western blot analysis were used to study the apoptotic mechanisms of GA3. Results: GA3 displayed wide cytotoxicity in diversified human cancer cell lines with a mean IC50 value of 2.15 ?mol/L. GA3 was also effective against multidrug resistant cells, with an average resistance factor (RF) that was much lower than that of the reference drug, doxorubicin. Mechanistic studies revealed that GA3-induced apoptosis in HL-60 cells proceeded via both extrinsic and intrinsic pathways, with caspase-8 functioning upstream of caspase-9. In addition, GA3-driven apoptotic events were associated with up-regulation of Bax, down-regulation of Bcl-2 and cleavage of Bid. Moreover, GA3 triggered cytochrome c release from the mitochondria, in particular bypassing the involvement of the mitochondrial membrane potential. Conclusion: Better solubility and a potential anti-MDR activity, combined with a comparable antitumor efficacy, make GA3 a potential drug candidate in cancer therapy that deserves further investigation. PMID:19262558

Xie, Hua; Qin, Yu-xin; Zhou, Yun-long; Tong, Lin-jiang; Lin, Li-ping; Geng, Mei-yu; Duan, Wen-hu; Ding, Jian

2009-01-01

279

Involvement of the Serine Protease Inhibitor, SERPINE2, and the Urokinase Plasminogen Activator in Cumulus Expansion and Oocyte Maturation  

PubMed Central

The serpin peptidase inhibitor, clade E, member 2 (SERPINE2) inhibits urokinase-type plasminogen activator (PLAU) and tissue-type plasminogen activator. Higher SERPINE2 expression levels were detected in cumulus cells of human immature oocytes than in those of mature oocytes. The objective of this study was to evaluate whether high SERPINE2 levels in cumulus cells are associated with oocyte immaturity. Using the mouse cumulus–oocyte complex as an experimental model, the effects of elimination and overexpression of SERPINE2 in cumulus cells on cumulus expansion and oocyte maturation were assayed by in vitro maturation. Serpine2 and PLAU transcripts were the most highly expressed serpins and plasminogen activators, respectively. Their expression was coordinately regulated in cumulus cells during gonadotropin-induced oocyte maturation. Silencing of Serpine2 expression using small interfering RNAs or blockage of SERPINE2 protein using a specific antibody had no effect on oocyte maturation. However, overexpression of Serpine2 or exogenous supplementation with high levels of SERPINE2 impaired cumulus expansion and oocyte maturation, probably by decreasing hyaluronan synthase 2 (Has2) and versican (Vcan) mRNA expression. Amiloride, a specific PLAU inhibitor, also suppressed these processes. PLAU supplementation of the oocyte in vitro maturation medium caused earlier and more extensive expansion of cumulus cells and oocyte maturation that may be mediated by increased Has2 mRNA expression. However, these effects were neutralized by coincubation with SERPINE2 or amiloride and PLAU. In conclusion, SERPINE2 and PLAU are involved in cumulus expansion and oocyte maturation. High SERPINE2 levels impair these processes, probably by decreasing cumulus matrix gene expression as well as reducing cumulus hyaluronan contents and inhibiting PLAU activity. These findings may explain why cumulus cells surrounding immature human oocytes express high SERPINE2 levels. PMID:24023701

Hwu, Yuh-Ming; Lin, Ming-Huei; Yeh, Ling-Yu; Chen, Ying-Jie; Lin, Shau-Ping; Li, Sheng-Hsiang

2013-01-01

280

Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana.  

PubMed

Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. To date few studies have been performed to elucidate the signaling networks involved on adaptive responses to (CrVI) toxicity in plants. In this work, we report that depending upon its concentration, Cr(VI) alters in different ways the architecture of the root system in Arabidopsis thaliana seedlings. Low concentrations of Cr (20-40 µM) promoted primary root growth, while concentrations higher than 60 µM Cr repressed growth and increased formation of root hairs, lateral root primordia and adventitious roots. We analyzed global gene expression changes in seedlings grown in media supplied with 20 or 140 µM Cr. The level of 731 transcripts was significantly modified in response to Cr treatment with only five genes common to both Cr concentrations. Interestingly, 23 genes related to iron (Fe) acquisition were up-regulated including IRT1, YSL2, FRO5, BHLH100, BHLH101 and BHLH039 and the master controllers of Fe deficiency responses PYE and BTS were specifically activated in pericycle cells. It was also found that increasing concentration of Cr in the plant correlated with a decrease in Fe content, but increased both acidification of the rhizosphere and activity of the ferric chelate reductase. Supply of Fe to Cr-treated Arabidopsis allowed primary root to resume growth and alleviated toxicity symptoms, indicating that Fe nutrition is a major target of Cr stress in plants. Our results show that low Cr levels are beneficial to plants and that toxic Cr concentrations activate a low-Fe rescue system. PMID:24928490

Martínez-Trujillo, Miguel; Méndez-Bravo, Alfonso; Ortiz-Castro, Randy; Hernández-Madrigal, Fátima; Ibarra-Laclette, Enrique; Ruiz-Herrera, León Francisco; Long, Terri A; Cervantes, Carlos; Herrera-Estrella, Luis; López-Bucio, José

2014-09-01

281

Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling  

PubMed Central

Background Morus alba has long been used in traditional Chinese medicine to treat inflammatory diseases; however, the scientific basis for such usage and the mechanism of action are not well understood. This study investigated the action of M. alba on leukocyte migration, one key step in inflammation. Methods Gas chromatography-mass spectrometry (GC-MS) and cluster analyses of supercritical CO2 extracts of three Morus species were performed for chemotaxonomy-aided plant authentication. Phytochemistry and CXCR4-mediated chemotaxis assays were used to characterize the chemical and biological properties of M. alba and its active compound, oxyresveratrol. fluorescence-activated cell sorting (FACS) and Western blot analyses were conducted to determine the mode of action of oxyresveratrol. Results Chemotaxonomy was used to help authenticate M. alba. Chemotaxis-based isolation identified oxyresveratrol as an active component in M. alba. Phytochemical and chemotaxis assays showed that the crude extract, ethyl acetate fraction and oxyresveratrol from M. alba suppressed cell migration of Jurkat T cells in response to SDF-1. Mechanistic study indicated that oxyresveratrol diminished CXCR4-mediated T-cell migration via inhibition of the MEK/ERK signaling cascade. Conclusions A combination of GC-MS and cluster analysis techniques are applicable for authentication of the Morus species. Anti-inflammatory benefits of M. alba and its active compound, oxyresveratrol, may involve the inhibition of CXCR-4-mediated chemotaxis and MEK/ERK pathway in T and other immune cells. PMID:23433072

2013-01-01

282

OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.).  

PubMed

Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice. PMID:25089296

Huang, Xi; Duan, Min; Liao, Jiakai; Yuan, Xi; Chen, Hui; Feng, Jiejie; Huang, Ji; Zhang, Hong-Sheng

2014-01-01

283

The D14 and R138 ion pair is involved in dimeric arginine kinase activity, structural stability and folding.  

PubMed

Arginine kinase (AK) is a key enzyme in cellular energy metabolism of invertebrates. There are two conserved amino acid residues D14 and R138 in dimeric AK which form inter-subunit hydrogen bond. In Stichopus japonicus AK, mutations in these residues caused pronounced loss of activity, conformational changes and distinct substrate synergism alteration. Mutations (R138G, R138A and D14G) abolished D14 and R138 interaction disrupted the structure or conformation of S. japonicus AK. These R138G, R138A and D14G mutations changed their native assembles of dimeric AK and caused them in a partially unfolded state. The partially unfolded state of these mutant AKs made them prone to aggregate under environmental stress. The D14E/R138K and R138K mutant AKs showed similar characteristics to those of WT AK for forming the interaction which could replacement roles of D14 and R138 interaction. These results suggested that D14 and R138 interaction is involved in AK's activity, substrate synergism and structural stability. PMID:24582938

Geng, Hong-Li; Bian, Mei-Ru; Liu, Yang; Cao, Jiang; Chen, Chong; Wang, Zhi-Yuan; Li, Zhen-Yu; Zeng, Ling-Yu; Wang, Xiao-Yun; Wu, Qing-Yun; Xu, Kai-Lin

2014-05-01

284

Muscovy duck reovirus infection rapidly activates host innate immune signaling and induces an effective antiviral immune response involving critical interferons.  

PubMed

Muscovy duck reovirus (MDRV) is a highly pathogenic virus in waterfowl and causes significant economic loss in the poultry industry worldwide. Because the host innate immunity plays a key role in defending against virus invasion, more and more attentions have been paid to the immune response triggered by viral infection. Here we found that the genomic RNA of MDRV was able to rapidly induce the production of interferons (IFNs) in host. Mechanistically, MDRV infection induced robust expression of IFNs in host mainly through RIG-I, MDA5 and TLR3-dependent signaling pathways. In addition, we observed that silencing VISA expression in 293T cells could significantly inhibit the secretion of IFNs. Remarkably, the production of IFNs was reduced by inhibiting the activation of NF-?B or knocking down the expression of IRF-7. Furthermore, our study showed that treatment of 293T cells and Muscovy duck embryo fibroblasts with IFNs markedly impaired MDRV replication, suggesting that these IFNs play an important role in antiviral response during the MDRV infection. Importantly, we also detected the induced expression of RIG-I, MDA5, TLR3 and type I IFN in Muscovy ducks infected with MDRV at different time points post infection. The results from in vivo studies were consistent with those in 293T cells infected with MDRV. Taken together, our findings reveal that the host can resist MDRV invasion by activating innate immune response involving RIG-I, MDA5 and TLR3-dependent signaling pathways that govern IFN production. PMID:25554243

Chen, Zhilong; Luo, Guifeng; Wang, Quanxi; Wang, Song; Chi, Xiaojuan; Huang, Yifan; Wei, Haitao; Wu, Baocheng; Huang, Shile; Chen, Ji-Long

2015-02-25

285

Rhizobium Meliloti Genes Involved in Sulfate Activation: The Two Copies of Nodpq and a New Locus, Saa  

PubMed Central

The nitrogen-fixing symbiont Rhizobium meliloti establishes nodules on leguminous host plants. Nodulation (nod) genes used for this process are located in a cluster on the pSym-a megaplasmid of R. meliloti. These genes include nodP and nodQ (here termed nodPQ), which encode ATP sulfurylase and APS kinase, enzymes that catalyze the conversion of ATP and SO(4)(2-) into the activated sulfate form 3'-phosphoadenosine 5'-phosphosulfate (PAPS), an intermediate in cysteine synthesis. In Rhizobium, PAPS is also a precursor for sulfated and N-acylated oligosaccharide Nod-factor signals that cause symbiotic responses on specific host plants such as alfalfa. We previously found a highly conserved second copy of nodPQ in R. meliloti. We report here the mapping and cloning of this second copy, and its location on the second megaplasmid, pSym-b. The function of nodP(2)Q(2) is equivalent to that of nodP(1)Q(1) in complementation tests of R. meliloti and Escherichia coli mutants in ATP sulfurylase and adenosine 5'-phosphosulfate (APS) kinase. Mutations in nodP(2)Q(2) do not have as severe an effect on symbiosis or plant host range as do those in nodP(1)Q(1), however, possibly reflecting differences in expression and/or channeling of metabolities to specific enzymes involved in sulfate transfer. Strains mutated or deleted for both copies of nodQ are severely defective in symbiotic phenotypes, but remain prototrophic. This suggests the existence in R. meliloti of a third locus for ATP sulfurylase and APS kinase activities. We have found a new locus saa (sulfur amino acid), which may also encode these activities. PMID:1459442

Schwedock, J. S.; Long, S. R.

1992-01-01

286

Autophagy Activation Is Involved in 3,4-Methylenedioxymethamphetamine (‘Ecstasy’)—Induced Neurotoxicity in Cultured Cortical Neurons  

PubMed Central

Autophagic (type II) cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I) and necrotic (type III) cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker) using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC)- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA) pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK) and its downstream unc-51-like kinase 1 (ULK1), suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation. PMID:25551657

Li, I-Hsun; Ma, Kuo-Hsing; Weng, Shao-Ju; Huang, Shiang-Suo; Liang, Chang-Min; Huang, Yuahn-Sieh

2014-01-01

287

Activation of reciprocal pathways between arcuate nucleus and ventrolateral periaqueductal gray during electroacupuncture: involvement of VGLUT3  

PubMed Central

Electroacupuncture (EA) at the Jianshi-Neiguan acupoints (P5-P6, overlying the median nerve) attenuates sympathoexcitatory responses through activation of the arcuate nucleus (ARC) and ventrolateral periaqueductal gray (vlPAG). Activation of the ARC or vlPAG respectively leads to neuronal excitation of the both nuclei during EA. However, direct projections between these two nuclei that could participate in central neural processing during EA have not been identified. The vesicular glutamate transporter 3 (VGLUT3) marks glutamatergic neurons. Thus, the present study evaluated direct neuronal projections between the ARC and vlPAG during EA, focusing on neurons containing VGLUT3. Seven to ten days after unilateral microinjection of a rodamine-conjugated microsphere retrograde tracer (100 nl) into the vlPAG or ARC, rats were subjected to EA or served as a sham-operated control. Low frequency (2 Hz) EA was performed bilaterally for 30 min at the P5-P6 acupoints. Perikarya containing the microsphere tracer were found in the ARC and vlPAG of both groups. Compared to controls (needle placement without electrical stimulation), c-Fos immunoreactivity and neurons double-labeled with c-Fos, an immediate early gene and the tracer were increased significantly in the ARC and vlPAG of EA-treated rats (both P<0.01). Moreover, some neurons were triple-labeled with c-Fos, the retrograde tracer and VGLUT3 in the two nuclei following EA stimulation (P<0.01, both nuclei). These results suggest that direct reciprocal projections between the ARC and vlPAG are available to participate in prolonged modulation by EA of sympathetic activity and that VGLUT3-containing neurons are an important neuronal phenotype involved in this process. PMID:20836994

Guo, Zhi-Ling; Longhurst, John C.

2010-01-01

288

Transcriptional Activation of Multiple Operons Involved in para-Nitrophenol Degradation by Pseudomonas sp. Strain WBC-3.  

PubMed

Pseudomonas sp. strain WBC-3 utilizes para-nitrophenol (PNP) as a sole carbon and energy source. The genes involved in PNP degradation are organized in the following three operons: pnpA, pnpB, and pnpCDEFG. How the expression of the genes is regulated is unknown. In this study, an LysR-type transcriptional regulator (LTTR) is identified to activate the expression of the genes in response to the specific inducer PNP. While the LTTR coding gene pnpR was found to be not physically linked to any of the three catabolic operons, it was shown to be essential for the growth of strain WBC-3 on PNP. Furthermore, PnpR positively regulated its own expression, which is different from the function of classical LTTRs. A regulatory binding site (RBS) with a 17-bp imperfect palindromic sequence (GTT-N11-AAC) was identified in all pnpA, pnpB, pnpC, and pnpR promoters. Through electrophoretic mobility shift assays and mutagenic analyses, this motif was proven to be necessary for PnpR binding. This consensus motif is centered at positions approximately -55 bp relative to the four transcriptional start sites (TSSs). RBS integrity was required for both high-affinity PnpR binding and transcriptional activation of pnpA, pnpB, and pnpR. However, this integrity was essential only for high-affinity PnpR binding to the promoter of pnpCDEFG and not for its activation. Intriguingly, unlike other LTTRs studied, no changes in lengths of the PnpR binding regions of the pnpA and pnpB promoters were observed after the addition of the inducer PNP in DNase I footprinting. PMID:25326309

Zhang, Wen-Mao; Zhang, Jun-Jie; Jiang, Xuan; Chao, Hongjun; Zhou, Ning-Yi

2015-01-01

289

Characterization of evolutionarily conserved motifs involved in activity and regulation of the ABA-INSENSITIVE (ABI) 4 transcription factor.  

PubMed

In recent years, the transcription factor ABI4 has emerged as an important node of integration for external and internal signals such as nutrient status and hormone signaling that modulates critical transitions during the growth and development of plants. For this reason, understanding the mechanism of action and regulation of this protein represents an important step towards the elucidation of crosstalk mechanisms in plants. However, this understanding has been hindered due to the negligible levels of this protein as a result of multiple posttranscriptional regulations. To better understand the function and regulation of the ABI4 protein in this work, we performed a functional analysis of several evolutionarily conserved motifs. Based on these conserved motifs, we identified ortholog genes of ABI4 in different plant species. The functionality of the putative ortholog from Theobroma cacao was demonstrated in transient expression assays and in complementation studies in plants. The function of the highly conserved motifs was analyzed after their deletion or mutagenesis in the Arabidopsis ABI4 sequence using mesophyll protoplasts. This approach permitted us to immunologically detect the ABI4 protein and identify some of the mechanisms involved in its regulation. We identified sequences required for the nuclear localization (AP2-associated motif) as well as those for transcriptional activation function (LRP motif). Moreover, this approach showed that the protein stability of this transcription factor is controlled through protein degradation and subcellular localization and involves the AP2-associated and the PEST motifs. We demonstrated that the degradation of ABI4 protein through the PEST motif is mediated by the 26S proteasome in response to changes in the sugar levels. PMID:24046063

Gregorio, Josefat; Hernández-Bernal, Alma Fabiola; Cordoba, Elizabeth; León, Patricia

2014-02-01

290

Two receptor systems are involved in the plasma clearance of tissue-type plasminogen activator (t-PA) in vivo.  

PubMed Central

Tissue-type plasminogen activator (t-PA) is a serine protease, catalyzing the initial step in the fibrinolytic process. Intravenously administered t-PA is rapidly cleared from the circulation by the liver. Two distinct clearance mechanisms, which are mediated by the low density lipoprotein receptor-related protein (LRP) on liver parenchymal cells and by the mannose receptor on liver endothelial cells, have been described. Using competitors and inhibitors of the receptors, we investigated the role of LRP and carbohydrate receptors in t-PA clearance in vivo. To inhibit LRP, the 39-kD protein, which is a potent inhibitor of LRP activity, was overexpressed in the liver of mice using an adenoviral gene transfer technique. Expression of the 39-kD protein resulted in a sustained plasma concentration and an increase in the plasma half-life of 125I-t-PA from less than 1 min to 4-5 min. Blockade of the mannose receptor by intravenous administration of ovalbumin also prolonged the plasma half-life of 125I-t-PA to 3-4 min. The same degree of inhibition of t-PA clearance was also observed after administration of an inhibitor of the fucose receptor, fucosyl-BSA. However, under the conditions established for the complete blockade of the mannose receptor, no additional inhibition of t-PA clearance was observed using fucosyl-BSA, suggesting little or no role for the fucose receptor in the clearance of t-PA. Furthermore, a dramatic increase of the plasma half-life of 125I-t-PA (>> 20 min) was observed in mice overexpressing 39-kD protein and administered ovalbumin +/- fucosyl-BSA. Our results clearly demonstrate that two independent receptor systems, LRP and the mannose receptor, are involved in the hepatic clearance of t-PA. Images PMID:7635954

Narita, M; Bu, G; Herz, J; Schwartz, A L

1995-01-01

291

Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism.  

PubMed

LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich ? stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine-VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine-VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases. PMID:23548202

Miki, Yuta; Pogni, Rebecca; Acebes, Sandra; Lucas, Fátima; Fernández-Fueyo, Elena; Baratto, Maria Camilla; Fernández, María I; de los Ríos, Vivian; Ruiz-Dueñas, Francisco J; Sinicropi, Adalgisa; Basosi, Riccardo; Hammel, Kenneth E; Guallar, Victor; Martínez, Angel T

2013-06-15

292

DNA breakage by tannic acid and Cu(II): sequence specificity of the reaction and involvement of active oxygen species.  

PubMed

Tannic acid has numerous chemical, food and pharmacological applications. In the presence of Cu(II) and molecular oxygen it was found to cause breakage of calf thymus DNA and supercoiled plasmid DNA. Treatment of lambda phage DNA with tannic acid protected cleavage with restriction endonucleases DraI and EcoRI* but not with SmaI and HaeIII. The results indicate that under the conditions used tannic acid preferably binds to AT base pairs. Restriction analysis of open circular form II plasmid DNA generated by tannic acid-Cu(II) treatment further showed that the strand breakage is caused at specific sites or sequences. In this reaction Cu(I) was shown to be an essential intermediate by using the Cu(I) sequestering reagents neocuproine and bathocuproine. By using job plots, we established that in the absence of DNA, six Cu(II) ions can be reduced by one tannic acid molecule. The involvement of active oxygen species in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, thiourea, mannitol, formate and catalase. PMID:7519309

Bhat, R; Hadi, S M

1994-08-01

293

Toluene biodegradation in a solid/liquid system involving immobilized activated sludge and silicone oil as pollutant reservoir.  

PubMed

A solid/liquid system involving activated sludge immobilized in an agar medium and a non-aqueous phase liquid containing the target pollutant has been considered to treat a model hydrophobic volatile organic compound, toluene. The positive impact of the use of a multiphase bioreactor is that the organic phase constitutes a pollutant reservoir and also helps to overcome possible pollutant toxicity. In addition and to overcome the drawbacks of the use of a solid organic phase (high pressure drop and low mass transfer) instead of a liquid organic phase, the considered solid phase was the aqueous. Consequently, silicone oil (polydimethylsiloxane) which showed its relevance for implementation in multiphase bioreactors was used. Promising results were observed from the analysis of toluene in the gaseous phase; for an initial amount of 2?g?L(-1) related to the organic phase, a v/v ratio of 0.5 of the organic phase to the aqueous agar phase, total toluene consumption was observed in about 9 days, leading to a global biodegradation rate of approximately 3.1?mg?L(-1)?h(-1), namely in the range of values previously observed in liquid/liquid systems. PMID:25187471

Diz Castro, Manuel; Gómez-Díaz, Diego; Amrane, Abdeltif; Couvert, Annabelle

2015-02-01

294

Kallikrein-kinin system activation by Lonomia obliqua caterpillar bristles: involvement in edema and hypotension responses to envenomation.  

PubMed

Lonomia obliqua envenomation induces an intense burning sensation at the site of contact and severe hemorrhage followed by edema and hypotension, and after few days death can occur usually due to acute renal failure. In order to understand more about the envenomation syndrome, the present study investigates the role played by kallikrein-kinin system (KKS) in edematogenic and hypotensive responses to the envenomation by L. obliqua. The incubation of L. obliqua caterpillar bristles extract (LOCBE) with plasma results in kallikrein activation, measured by cromogenic assay using the kallikrein synthetic substrate S-2302 (H-D-Pro-Phe-Arg-pNA). It was also showed that LOCBE was able to release kinins from low-molecular weight kininogen (LMWK). Moreover, it was demonstrated that previous administration of a kallikrein inhibitor (aprotinin) or bradykinin B2 receptor antagonist (HOE-140) significantly reduces the edema and hypotension in response to LOCBE, using mouse paw edema bioassay and mean arterial blood pressure analysis, respectively. The results demonstrate a direct involvement of the KKS in the edema formation and in the fall of arterial pressure that occur in the L. obliqua envenomation syndrome. PMID:17188732

Bohrer, C B; Reck Junior, J; Fernandes, D; Sordi, R; Guimarães, J A; Assreuy, J; Termignoni, C

2007-04-01

295

Activation of alternative pathways of angiogenesis and involvement of stem cells following anti-angiogenesis treatment in glioma.  

PubMed

Malignant gliomas are hypervascular tumors that are highly resistant to all the currently available multimodal treatments. Therefore, anti-angiogenic therapies targeting VEGF or VEGF receptors (VEGFRs) were designed and thought to be an effective tool for controlling the growth of malignant gliomas. However, recent results of early clinical trials using humanized monoclonal antibodies against VEGF (Bevacizumab), as well as small-molecule tyrosine kinase inhibitors that target different VEGF receptors (VEGFRs) (Vatalanib, Vandetanib, Sunitinib, Sorafenib, etc) alone or in combination with other therapeutic agents demonstrated differing outcomes, with the majority of reports indicating that glioma developed resistance to the employed anti-angiogenic treatments. It has been noted that continued anti-angiogenic therapy targeting only the VEGF-VEGFR system might affect pro-angiogenic factors other than VEGF, such as basic fibroblast growth factor (bFGF), stromal derived factor 1 (SDF-1) and Tie-2. These factors may in turn stimulate angiogenesis by mobilizing bone marrow derived precursor cells, such as endothelial progenitor cells (EPCs), which are known to promote angiogenesis and vasculogenesis. In this short review, the current antiangiogenic treatments, possible mechanisms of activation of alternative pathways of angiogenesis, and possible involvement of bone marrow derived progenitor cells in the failure of anti-angiogenic treatments are discussed. PMID:22419019

Arbab, Ali S

2012-05-01

296

Gonadotropin regulation of testosterone production by primary cultured theca and granulosa cells of Atlantic croaker: II. Involvement of a mitogen-activated protein kinase pathway  

Microsoft Academic Search

Previous investigations in Atlantic croaker ovaries and primary co-cultured theca and granulosa cells have identified multiple signal transduction pathways involved in the control of gonadotropin-induced steroidogenesis, including adenylyl cyclase- and calcium-dependent signaling pathways. In the present study, evidence was obtained for an involvement of a third signal transduction pathway, a mitogen-activated protein kinase (MAP kinase) signaling cascade, in the regulation

Abby D. Benninghoff; Peter Thomas

2006-01-01

297

Involving patients in HTA activities at local level: a study protocol based on the collaboration between researchers and knowledge users  

PubMed Central

Background The literature recognizes a need for greater patient involvement in health technology assessment (HTA), but few studies have been reported, especially at the local level. Following the decentralisation of HTA in Quebec, Canada, the last few years have seen the creation of HTA units in many Quebec university hospital centres. These units represent a unique opportunity for increased patient involvement in HTA at the local level. Our project will engage patients in an assessment being carried out by a local HTA team to assess alternatives to isolation and restraint for hospitalized or institutionalized adults. Our objectives are to: 1) validate a reference framework for exploring the relevance and applicability of various models of patient involvement in HTA, 2) implement strategies that involve patients (including close relatives and representatives) at different stages of the HTA process, 3) evaluate intervention processes, and 4) explore the impact of these interventions on a) the applicability and acceptability of recommendations arising from the assessment, b) patient satisfaction, and c) the sustainability of this approach in HTA. Methods For Objective 1, we will conduct individual interviews with various stakeholders affected by the use of alternatives to isolation and restraint for hospitalized or institutionalized adults. For Objective 2, we will implement three specific strategies for patient involvement in HTA: a) direct participation in the HTA process, b) consultation of patients or their close relatives through data collection, and c) patient involvement in the dissemination of HTA results. For Objectives 3 and 4, we will evaluate the intervention processes and the impact of patient involvement strategies on the recommendations arising from the HTA and the understanding of the ethical and social implications of the HTA. Discussion This project is likely to influence future HTA practices because it directly targets knowledge users' need for strategies that increase patient involvement in HTA. By documenting the processes and outcomes of these involvement strategies, the project will contribute to the knowledge base related to patient involvement in HTA. PMID:22248231

2012-01-01

298

TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling.  

PubMed

The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John's wort extract. PMID:23875811

Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina

2013-11-01

299

Possible involvement of p38 MAP kinase in prostaglandin E1-induced ALP activity in osteoblast-like cells  

Microsoft Academic Search

Prostaglandins are now recognized to be important regulators for both bone formation and resorption. Among them, prostaglandin E1 (PGE1) has been reported to stimulate cAMP accumulation and to induce alkaline phosphatase (ALP) activity, a marker of differentiation, in osteoblast-like cells. Recently, we have shown that p38 mitogen-activated protein (MAP) kinase pathway regulates ALP activity in response to activation of Gi

Ayako Kakita; Atsushi Suzuki; Yasunaga Ono; Yoshitaka Miura; Mitsuyasu Itoh; Yutaka Oiso

2004-01-01

300

Involving Latino Parents.  

ERIC Educational Resources Information Center

Describes barriers to Latino parent involvement in educational activities, factors to consider when involving Latino parents, and two examples of Latino involvement programs in California: Family Literacy Workshop at James Monroe Elementary School, Madera Unified School District, and Parents Take P.A.R.T. (Parent Assisted Reading Training) at…

Quezada, Reyes L.; Diaz, Delia M.; Sanchez, Maria

2003-01-01

301

Direct left ventricular wall stretch activates GATA4 binding in perfused rat heart: involvement of autocrine\\/paracrine pathways  

Microsoft Academic Search

The signaling cascades that activate transcription factors during cardiac hypertrophy are largely unknown. To evaluate the mechanisms for GATA4 and activator protein-1 (AP-1) activation, isolated perfused rat hearts were exposed to elevated wall stretch by inflating a left ventricular balloon. Gel mobility shift assays were used to analyze the transacting factors that interact with the GATA or the AP-1 motifs

Nina Hautala; Olli Tenhunen; Istvan Szokodi; Heikki Ruskoaho

2002-01-01

302

The naval Research Laboratory has been actively involved in research in unmanned and autonomous systems since its opening in 1923. From one of the first unmanned  

E-print Network

by piloted aircraft, so NRL developed the radio-control system for an unmanned aircraft that, in demThe naval Research Laboratory has been actively involved in research in unmanned and autonomous systems since its opening in 1923. From one of the first unmanned ground vehicles to the development

303

Spanish-Speaking Mexican-American Families' Involvement in School-Based Activities and Their Children's Literacy: The Implications of Having Teachers Who Speak Spanish and English  

ERIC Educational Resources Information Center

For a sample of low-income, Spanish-speaking Mexican-American families (n = 72), we investigated associations between family involvement in school-based activities and children's literacy in their preferred language (English or Spanish) during early elementary school. We gave special attention to the potential moderating role of teacher fluency in…

Tang, Sandra; Dearing, Eric; Weiss, Heather B.

2012-01-01

304

IL-4 inhibition of IL-1 induced Matrix Metalloproteinase-3 (MMP-3) expression in human fibroblasts involves decreased AP-1 activation via negative crosstalk involving of Jun N-terminal Kinase (JNK)  

PubMed Central

Matrix metalloproteinase-3 (MMP-3) over-expression is associated with tissue destruction in the context of chronic inflammation. Previous studies showed that IL-4 inhibits induction of MMP-3 by IL-1?, and suggested that AP-1 might be involved. Here we show that IL-1 induced binding of transcription factor AP-1 to the MMP-3 promoter consists primarily of c-Jun, JunB, and c-Fos and that binding of c-Jun and c-Fos is inhibited by the combination of cytokines while binding of Jun B is not. Mutation of the AP-1 site in the MMP-3 promoter decreased the ability of IL-4 to inhibit its transcription in transfected MG-63 cells. Western blotting showed that both cytokines activate Jun N-terminal kinase (JNK), but with somewhat different kinetics, and that activation of JNK by both cytokines individually is inhibited by the combination. These results indicate that IL-4 inhibition of MMP-3 expression is associated with reduction of IL-1 induced binding of active forms of the AP-1 dimer, while less active JunB-containing dimers remain, and suggest that these changes are associated with decreased activation of JNK. PMID:23608488

Chambers, Mariah; Kirkpatrick, Garrett; Evans, Michel; Gorski, Grzegorz; Foster, Sara; Borghaei, Ruth C.

2013-01-01

305

Activation of NKCC1 by hyperosmotic stress in human tracheal epithelial cells involves PKC-delta and ERK.  

PubMed

Hyperosmotic stress activates Na+-K+-2Cl- cotransport (NKCC1) in secretory epithelia of the airways. NKCC1 activation was studied as uptake of 36Cl or 86Rb in human tracheal epithelial cells (HTEC). Application of hypertonic sucrose or NaCl increased bumetanide-sensitive ion uptake but did not affect Na+/H+ and Cl-/OH-(HCO3-) exchange carriers. Hyperosmolarity decreased intracellular volume (Vi) after 10 min from 7.8 to 5.4 microl/mg protein and increased intracellular Cl- (Cl-i) from 353 to 532 nmol/mg protein. Treatment with an alpha-adrenergic agent rapidly increased Cl-i and Vi in a bumetanide-sensitive manner, indicating uptake of ions by NKCC1 followed by osmotically obligated water. These results indicate that HTEC act as osmometers but lose intracellular water slowly. Hyperosmotic stress also increased the activity of PKC-delta and of the extracellular signal-regulated kinase ERK subgroup of the MAPK family. Activity of stress-activated protein kinase JNK was not affected by hyperosmolarity. PD-98059, an inhibitor of the ERK cascade, reduced ERK activity and bumetanide-sensitive 36Cl uptake. PKC inhibitors blocked activation of ERK indicating that PKC may be a downstream activator of ERK. The results indicate that hyperosmotic stress activates NKCC1 and this activation is regulated by PKC-delta and ERK. PMID:11909643

Liedtke, Carole M; Cole, Thomas S

2002-02-13

306

[Family Involvement.  

ERIC Educational Resources Information Center

This theme issue provides four articles that address family involvement in the transition of youth with disabilities from school to work. The first article, "Family Involvement" by Marge Goldberg and Shauna McDonald, offers evidence of the importance of family involvement at this stage of the individual's life, reports on families' experiences,…

Alliance: The Newsletter of the National Transition Alliance, 1996

1996-01-01

307

Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota  

PubMed Central

We conducted a placebo-controlled, cross-over trial to examine the effect of Lactobacillus casei Shirota (LcS) on natural killer (NK) cell activity in humans. NK cell activity exhibited a declining trend during the period of placebo ingestion, but NK cell activity increased after intake for 3 weeks of fermented milk containing 4 × 1010 live LcS. When human peripheral blood mononuclear cells were cultured in the presence of heat-killed LcS, NK cell activity was enhanced. The ability of LcS to enhance NK cell activity and induce interleukin (IL)-12 production was correlated, and the addition of anti-IL-12 monoclonal antibody reduced the enhancement of NK cell activity triggered by LcS. In addition, separation of NK cells from LcS-stimulated monocytes with membrane filter reduced NK cell activity to the intermediate level and almost deprived monocytes of the ability to produce IL-12. These results demonstrate that LcS can enhance NK cell activity in vivo and in vitro in humans, and IL-12 may be responsible for enhancement of NK cell activity triggered by LcS. PMID:16968405

Takeda, K; Suzuki, T; Shimada, S-I; Shida, K; Nanno, M; Okumura, K

2006-01-01

308

Relationship between communication competence and involvement in extra-curricular activities, internships, jobs, and study abroad programs.  

E-print Network

??This study explored the impact of extra-curricular activities on the communication competence of undergraduate students. The study surveyed 122 undergraduate students enrolled in select classes… (more)

Kane, Sarah Michelle

2012-01-01

309

Critical Pedagogy, Experiential Learning and Active Citizenship: A Freirean Perspective on Tenant Involvement in Housing Stock Transfers  

ERIC Educational Resources Information Center

A key feature of housing policy in the UK is the transfer of affordable housing stock owned by local authorities to not-for-profit registered social landlords. Such transfers involve local authority tenants to varying degrees in the development and implementation of the transfer proposals. Reporting the findings of a series of interviews with…

McCormack, John

2008-01-01

310

The Memory-Impairing Effects of Septal GABA Receptor Activation Involve GABAergic Septo-Hippocampal Projection Neurons  

ERIC Educational Resources Information Center

Septal infusions of the [gamma]-aminobutyric acid (GABA)[subscript A] agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA[subscript A] receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are…

Krebs-Kraft, Desiree L.; Wheeler, Marina G.; Parent, Marise B.

2007-01-01

311

Involvement of Trichoderma trichothecenes in the biocontrol activity and in the induction of plant defense related genes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality, compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a...

312

Public involvement in the priority setting activities of a wait time management initiative: a qualitative case study  

Microsoft Academic Search

BACKGROUND: As no health system can afford to provide all possible services and treatments for the people it serves, each system must set priorities. Priority setting decision makers are increasingly involving the public in policy making. This study focuses on public engagement in a key priority setting context that plagues every health system around the world: wait list management. The

Rebecca A Bruni; Andreas Laupacis; Wendy Levinson; Douglas K Martin

2007-01-01

313

Preterm birth is a multifactorial disease involving acti-vation of uterine contractions or decreased cervical com-  

E-print Network

1051 Preterm birth is a multifactorial disease involving acti- vation of uterine contractions to the uteroplacental bar- rier.1 Preterm labor distinguished by uterine contractions or preterm premature rupture- mented, accelerating the subsequent events leading to birth. Pre-B-cell colony-enhancing factor (PBEF

Bryant-Greenwood, Gillian D.

314

The relationship between serious leisure characteristics and recreation involvement: a case study of Taiwan’s surfing activities  

Microsoft Academic Search

This study explores the relationship between serious leisure and recreation involvement by treating the former as a type of personal characteristic. Questionnaires were distributed to 434 Taiwanese surfers, and a structural equation model was used to examine the causal relationships among the variables. Research results show that a higher level of serious leisure characteristics leads to higher levels of recreation

Tien-Ming Cheng; Sheng-Hshiung Tsaur

2012-01-01

315

The relationship between serious leisure characteristics and recreation involvement: a case study of Taiwan’s surfing activities  

Microsoft Academic Search

This study explores the relationship between serious leisure and recreation involvement by treating the former as a type of personal characteristic. Questionnaires were distributed to 434 Taiwanese surfers, and a structural equation model was used to examine the causal relationships among the variables. Research results show that a higher level of serious leisure characteristics leads to higher levels of recreation

Tien-Ming Cheng; Sheng-Hshiung Tsaur

2011-01-01

316

Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells  

SciTech Connect

CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

Wu Weidong [Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)]|[Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)], E-mail: Weidong_Wu@med.unc.edu; Alexis, Neil E. [Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)]|[Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Chen Xian [Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)]|[Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Bromberg, Philip A. [Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)]|[Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Peden, David B. [Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)]|[Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)]|[Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

2008-04-15

317

HIV-1 reactivation induced by the periodontal pathogens Fusobacterium nucleatum and Porphyromonas gingivalis involves Toll-like receptor 2 [corrected] and 9 activation in monocytes/macrophages.  

PubMed

Although oral coinfections (e.g., periodontal disease) are highly prevalent in human immunodeficiency virus type 1-positive (HIV-1(+)) patients and appear to positively correlate with viral load levels, the potential for oral bacteria to induce HIV-1 reactivation in latently infected cells has received little attention. We showed that HIV-1 long terminal repeat (LTR) promoter activation can be induced by periodontopathogens in monocytes/macrophages; nevertheless, the mechanisms involved in this response remain undetermined. Since Toll-like receptor 2 (TLR2), TLR4, and TLR9 activation have been involved in HIV-1 recrudescence, we sought to determine the role of these TLRs in HIV-1 reactivation induced by the periodontal pathogens Fusobacterium nucleatum and Porphyromonas gingivalis using BF24 monocytes/macrophages stably transfected with the HIV-1 promoter driving chloramphenicol acetyltransferase (CAT) expression and THP89GFP cells, a model of HIV-1 latency. We demonstrated that TLR9 activation by F. nucleatum and TLR2 activation by both bacteria appear to be involved in HIV-1 reactivation; however, TLR4 activation had no effect. Moreover, the autocrine activity of tumor necrosis factor alpha (TNF-alpha) but not interleukin-1beta (IL-1beta) produced in response to bacteria could impact viral reactivation. The transcription factors NF-kappaB and Sp1 appear to be positively regulating HIV-1 reactivation induced by these oral pathogens. These results suggest that oral Gram-negative bacteria (F. nucleatum and P. gingivalis) associated with oral and systemic chronic inflammatory disorders enhance HIV-1 reactivation in monocytes/macrophages through TLR2 and TLR9 activation in a mechanism that appears to be transcriptionally regulated. Increased bacterial growth and emergence of these bacteria or their products accompanying chronic oral inflammatory diseases could be risk modifiers for viral replication, systemic immune activation, and AIDS progression in HIV-1(+) patients. PMID:20610663

González, Octavio A; Li, Mengtao; Ebersole, Jeffrey L; Huang, Chifu B

2010-09-01

318

Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis.  

PubMed

Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-?-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells. PMID:23743198

Wang, Bing; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

2013-07-19

319

Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion.  

PubMed

In pancreatic ?-cells, closure of the ATP-sensitive K(+) (K(ATP)) channel is an initial process triggering glucose-stimulated insulin secretion. In addition, constitutive opening of background nonselective cation channels (NSCCs) is essentially required to effectively evoke depolarization as a consequence of K(ATP) channel closure. Thus, it is hypothesized that further opening of NSCC facilitates membrane excitability. We identified a class of NSCC that was activated by exendin (ex)-4, GLP-1, and its analog liraglutide at picomolar levels. This NSCC was also activated by increasing the glucose concentration. NSCC activation by glucose and GLP-1 was a consequence of the activated cAMP/EPAC-mediated pathway and was attenuated in TRPM2-deficient mice. The NSCC was not activated by protein kinase A (PKA) activators and was activated by ex-4 in the presence of PKA inhibitors. These results suggest that glucose- and incretin-activated NSCC (TRPM2) works in concert with closure of the KATP channel to effectively induce membrane depolarization to initiate insulin secretion. The current study reveals a new mechanism for regulating electrical excitability in ?-cells and for mediating the action of glucose and incretin to evoke insulin secretion, thereby providing an innovative target for the treatment of type 2 diabetes. PMID:24824430

Yosida, Masashi; Dezaki, Katsuya; Uchida, Kunitoshi; Kodera, Shiho; Lam, Nien V; Ito, Kiyonori; Rita, Rauza S; Yamada, Hodaka; Shimomura, Kenju; Ishikawa, San-e; Sugawara, Hitoshi; Kawakami, Masanobu; Tominaga, Makoto; Yada, Toshihiko; Kakei, Masafumi

2014-10-01

320

GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets  

Technology Transfer Automated Retrieval System (TEKTRAN)

We previously demonstrated the dose-dependent glucagon-like peptide (GLP)-2 activation of intracellular signals associated with increased epithelial cell survival and proliferation in the neonatal intestine. Our current aim was to quantify the acute, temporal GLP-2 activation of these key intracellu...

321

Peroxisomal localization and activation by bivalent metal ions of ureidoglycolate lyase, the enzyme involved in urate degradation in Candida tropicalis  

SciTech Connect

Ureidoglycolate lyase was found only in the peroxisomes in urate-induced Candida tropicalis. The enzyme was markedly activated by the bivalent metal ions Mn/sup 2 +/, Fe/sup 2 +/, and Ni/sup 2 +/. The activation by Mn/sup 2 +/ was suggested to be the result of its binding to the apoenzyme.

Takada, Y.; Tsukiji, N.

1987-05-01

322

Physical Activity and Reduced Risk of Incident Sporadic Colorectal Adenomas: Observational Support for Mechanisms Involving Energy Balance and Inflammation Modulation  

Microsoft Academic Search

To investigate the role of physical activity, energy balance, and inflammation on the risk of incident sporadic colorectal adenoma, the authors conducted a community- and colonoscopy-based case-control study (n = 177 cases, n = 228 controls) in Winston-Salem and Charlotte, North Carolina, from 1995 to 1997. Participants reported energy intake by a semiquantitative food frequency questionnaire, daily physical activity levels

Keith G. Hauret; Roberd M. Bostick; Charles E. Matthews; James R. Hussey

323

Cocoa protective effects against abnormal fat storage and oxidative stress induced by a high-fat diet involve PPAR? signalling activation.  

PubMed

A high-fat (HF) diet increases lipid storage and oxidative stress in mouse liver and this process seems to be mediated by Peroxisome Proliferator-Activated Receptor ? (PPAR?). In this study we evaluated the protective effect of cocoa against hepatic steatosis induced by a HF diet. The HF diet down-regulated PPAR? expression and turned off PPAR?-signalling, deregulated the ?-oxidation (?-Ox) system and catalase (CAT) activity, increased fat storage, reduced expression of enzymatic activity involved in oxidative defence in the liver and doubled the weight gain per calorie consumed compared to animals under the normal diet. In contrast, cocoa improved hepatic ?-Ox, activated PPAR?-signalling and up-regulated both gene and protein expression of SOD1. Moreover, when co-administered with the HF diet, cocoa treatment counteracted lipid storage in the liver, improved the lipid-metabolizing activity and oxidative stress defences and normalized the weight gain per calorie consumed. PMID:25214316

Fidaleo, Marco; Fracassi, Anna; Zuorro, Antonio; Lavecchia, Roberto; Moreno, Sandra; Sartori, Claudia

2014-11-01

324

Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro  

SciTech Connect

Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

Pei, Ying, E-mail: peiying-19802@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China)] [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Chen, Zhen-Ping, E-mail: 530670663@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China)] [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Ju, Huai-Qiang, E-mail: 344464448@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China)] [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613 (Japan)] [Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613 (Japan); Ji, Yu-hua, E-mail: tjyh@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China)] [Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Liu, Ge, E-mail: lggege_15@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)] [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Guo, Chao-wan, E-mail: chaovan_kwok@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)] [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Zhang, Ying-Jun, E-mail: zhangyj@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China)] [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Yang, Chong-Ren, E-mail: cryang@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China)] [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Wang, Yi-Fei, E-mail: twang-yf@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China)] [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Kitazato, Kaio, E-mail: kkholi@msn.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)] [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)

2011-02-11

325

Inhibition of p38 mitogen-activated protein kinase attenuates experimental autoimmune hepatitis: Involvement of nuclear factor kappa B  

PubMed Central

AIM: To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH). METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57Bl/6 mice. Liver injury was assessed by serum ALT and liver histology. The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition, DNA binding activities of nuclear factor kappa B (NF-?B) were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-?, IL-12, IL-1? and TNF-?) were observed. RESULTS: The activity of p38 MAPK and NF-?B was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-?B and the expression of proinflammatory cytokines. Moreover, hepatic injuries were improved significantly after SB203580 administration. CONCLUSION: p38 MAPK and NF-?B play an important role in an animal model of autoimmune hepatitis (AIH) induced by autoantigens. PMID:17696256

Ma, Xiong; Jia, Yi-Tao; Qiu, De-Kai

2007-01-01

326

NKp44, A Triggering Receptor Involved in Tumor Cell Lysis by Activated Human Natural Killer Cells, Is a Novel Member of the Immunoglobulin Superfamily  

PubMed Central

Surface receptors involved in natural killer (NK) cell triggering during the process of tumor cell lysis have recently been identified. Of these receptors, NKp44 is selectively expressed by IL-2– activated NK cells and may contribute to the increased efficiency of activated NK cells to mediate tumor cell lysis. Here we describe the molecular cloning of NKp44. Analysis of the cloned cDNA indicated that NKp44 is a novel transmembrane glycoprotein belonging to the Immunoglobulin superfamily characterized by a single extracellular V-type domain. The charged amino acid lysine in the transmembrane region may be involved in the association of NKp44 with the signal transducing molecule killer activating receptor–associated polypeptide (KARAP)/DAP12. These molecules were found to be crucial for the surface expression of NKp44. In agreement with data of NKp44 surface expression, the NKp44 transcripts were strictly confined to activated NK cells and to a minor subset of TCR-?/?+ T lymphocytes. Unlike genes coding for other receptors involved in NK cell triggering or inhibition, the NKp44 gene is on human chromosome 6. PMID:10049942

Cantoni, Claudia; Bottino, Cristina; Vitale, Massimo; Pessino, Anna; Augugliaro, Raffaella; Malaspina, Angela; Parolini, Silvia; Moretta, Lorenzo; Moretta, Alessandro; Biassoni, Roberto

1999-01-01

327

Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus  

SciTech Connect

We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

Banerjee, Chaitali [Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007 (India); Goswami, Ramansu [Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007 (India); Centre for Environmental Studies, Visva-Bharati University, Santiniketan 731 235 (India); Datta, Soma [Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007 (India); Rajagopal, R. [Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007 (India); Mazumder, Shibnath, E-mail: shibnath1@yahoo.co.in [Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007 (India)

2011-10-01

328

Active compound of Zingiber cassumunar Roxb. down-regulates the expression of genes involved in joint erosion in a human synovial fibroblast cell line.  

PubMed

Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovium. It is involved in up-regulation of pro-inflammatory cytokines and matrix metalloproteinases (MMPs), resulting in joint inflammation and erosion. Zingiber cassumunar Roxb. has long been used to reduce joint pain and inflammation. This study aimed to investigate the inhibitory activities of an active compound of Z. cassumunar, (E)-4-(3',4'-dimethoxyphenyl)but-3-en-1-ol (compound D), against cytokine-induced up-regulation of catabolic genes involved in cartilage degradation in RA. Synovial fibroblast cell line, SW982, was cultured in media containing interleukin-1? (IL-1?), in the presence or absence of compound D at the concentration range of 1 to 100 µM. After 24 hours, the cells were analyzed for the expressions of MMPs, IL-1? and interleukin-1?-converting enzyme (ICE) by RT-PCR. MMPs activities in the culture media were analyzed by zymographic techniques. Dexamethasone was used as the positive control. It was found that compound D at the concentration of 10 - 100 µM significantly decreased the mRNA expressions of MMP-1, -2, -3, and -13 which was induced by IL-1? (P<0.05) concomitantly with a decrease in activities of these MMPs in the culture media. An increase in the mRNA expression of IL-1? and ICE was also suppressed by compound D. The results suggest that the potent activities of this compound may be involved in the reduction of IL-1? protein synthesis in both pro-form and active form which played an important role in up-regulation of MMPs. This study first revealed the chondroprotective activity of Z. cassumunar in the transcriptional level by suppressing cytokine-induced catabolic genes which caused cartilage erosion in RA. PMID:24082324

Chaiwongsa, Rujirek; Ongchai, Siriwan; Boonsing, Phorani; Kongtawelert, Prachya; Panthong, Ampai; Reutrakul, Vichai

2012-01-01

329

Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes  

Microsoft Academic Search

To shed light on the origin of adaptive immunity, a cDNA library was prepared from purified lymphocyte-like cells of a jawless vertebrate, the sea lamprey (Petromyzon marinus). Randomly selected cDNA clones were sequenced, and their homologies to proteins in the databases were determined. Of the sequences homologous to proteins involved in immune responses, five were selected for further characterization. Their

Tatiana Uinuk-Ool; Werner E. Mayer; Akie Sato; Roman Dongak; Max D. Cooper; Jan Klein

2002-01-01

330

Release of an acid phosphatase activity during lily pollen tube growth involves components of the secretory pathway  

Microsoft Academic Search

Summary.   An acid phosphatase (acPAse) activity was released during germination and tube growth of pollen of Lilium longiflorum Thunb. By inhibiting components of the secretory pathway, the export of the acPase activity was affected and tube growth\\u000a stopped. Brefeldin A (1??M) and cytochalasin D (1??M), which block the production and transport of secretory vesicles, respectively,\\u000a inhibited the acPase secretion. The

Hala Ibrahim; Heidi Pertl; Klaus Pittertschatscher; Ezzat Fadl-Allah; Ahmed El-Shahed; Friedrich-Wilhelm Bentrup; Gerhard Obermeyer

2002-01-01

331

Anti-inflammatory effects of ?-galactosylceramide analogs in activated microglia: involvement of the p38 MAPK signaling pathway.  

PubMed

Microglial activation plays a pivotal role in the development and progression of neurodegenerative diseases. Thus, anti-inflammatory agents that control microglial activation can serve as potential therapeutic agents for neurodegenerative diseases. Here, we designed and synthesized ?-galactosylceramide (?-GalCer) analogs to exert anti-inflammatory effects in activated microglia. We performed biological evaluations of 25 ?-GalCer analogs and observed an interesting preliminary structure-activity relationship in their inhibitory influence on NO release and TNF-? production in LPS-stimulated BV2 microglial cells. After identification of 4d and 4e as hit compounds, we further investigated the underlying mechanism of their anti-inflammatory effects using RT-PCR analysis. We confirmed that 4d and 4e regulate the expression of iNOS, COX-2, IL-1?, and IL-6 at the mRNA level and the expression of TNF-? at the post-transcriptional level. In addition, both 4d and 4e inhibited LPS-induced DNA binding activities of NF-?B and AP-1 and phosphorylation of p38 MAPK without affecting other MAP kinases. When we examined the anti-inflammatory effect of a p38 MAPK-specific inhibitor, SB203580, on microglial activation, we observed an identical inhibitory pattern as that of 4d and 4e, not only on NO and TNF-? production but also on the DNA binding activities of NF-?B and AP-1. Taken together, these results suggest that p38 MAPK plays an important role in the anti-inflammatory effects of 4d and 4e via the modulation of NF-?B and AP-1 activities. PMID:24523867

Jeong, Yeon-Hui; Kim, Yongju; Song, Heebum; Chung, Young Sun; Park, Seung Bum; Kim, Hee-Sun

2014-01-01

332

Neural and sympathetic activity associated with exploration in decision-making: further evidence for involvement of insula  

PubMed Central

We previously reported that sympathetic activity was associated with exploration in decision-making indexed by entropy, which is a concept in information theory and indexes randomness of choices or the degree of deviation from sticking to recent experiences of gains and losses, and that activation of the anterior insula mediated this association. The current study aims to replicate and to expand these findings in a situation where contingency between options and outcomes is manipulated. Sixteen participants performed a stochastic decision-making task in which we manipulated a condition with low uncertainty of gain/loss (contingent-reward condition) and a condition with high uncertainty of gain/loss (random-reward condition). Regional cerebral blood flow was measured by 15O-water positron emission tomography (PET), and cardiovascular parameters and catecholamine in the peripheral blood were measured, during the task. In the contingent-reward condition, norepinephrine as an index of sympathetic activity was positively correlated with entropy indicating exploration in decision-making. Norepinephrine was negatively correlated with neural activity in the right posterior insula, rostral anterior cingulate cortex, and dorsal pons, suggesting neural bases for detecting changes of bodily states. Furthermore, right anterior insular activity was negatively correlated with entropy, suggesting influences on exploration in decision-making. By contrast, in the random-reward condition, entropy correlated with activity in the dorsolateral prefrontal and parietal cortices but not with sympathetic activity. These findings suggest that influences of sympathetic activity on exploration in decision-making and its underlying neural mechanisms might be dependent on the degree of uncertainty of situations. PMID:25426038

Ohira, Hideki; Ichikawa, Naho; Kimura, Kenta; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro

2014-01-01

333

Protein Kinase Modulation of Dendritic K Channels in Hippocampus Involves a Mitogen-Activated Protein Kinase Pathway  

Microsoft Academic Search

We investigated mitogen-activated protein kinase (MAPK) mod- ulation of dendritic, A-type K channels in CA1 pyramidal neurons in the hippocampus. Activation of cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC) leads to an increase in the amplitude of backpropagating action potentials in distal dendrites through downregulation of transient K channels in CA1 pyramidal neurons in the hippocampus. We

Li-Lian Yuan; J. Paige Adams; Michael Swank; J. David Sweatt; Daniel Johnston

2002-01-01

334

Transcriptional Activation by Gcn4p Involves Independent Interactions with the SWI\\/SNF Complex and the SRB\\/Mediator  

Microsoft Academic Search

Mutations in three subunits of the SWI\\/SNF complex and in the Med2p subunit of the SRB\\/mediator of pol II holoenzyme impaired Gcn4p-activated transcription of HIS3 without reducing Gcn4p-independent transcription of this gene. Recombinant Gcn4p interacted with SWI\\/SNF and SRB\\/mediator subunits in cell extracts in a manner dependent on the same hydrophobic clusters in the Gcn4p activation domain; however, higher concentrations

Krishnamurthy Natarajan; Belinda M Jackson; Heng Zhou; Fred Winston; Alan G Hinnebusch

1999-01-01

335

The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll-pathway activation function.  

PubMed

The Drosophila Toll-signaling pathway controls the systemic antifungal host response. Gram-negative binding protein 3 (GNBP3), a member of the beta-glucan recognition protein family senses fungal infections and activates this pathway. A second detection system perceives the activity of proteolytic fungal virulence factors and redundantly activates Toll. GNBP3(hades) mutant flies succumb more rapidly to Candida albicans and to entomopathogenic fungal infections than WT flies, despite normal triggering of the Toll pathway via the virulence detection system. These observations suggest that GNBP3 triggers antifungal defenses that are not dependent on activation of the Toll pathway. Here, we show that GNBP3 agglutinates fungal cells. Furthermore, it can activate melanization in a Toll-independent manner. Melanization is likely to be an essential defense against some fungal infections given that the entomopathogenic fungus Beauveria bassiana inhibits the activity of the main melanization enzymes, the phenol oxidases. Finally, we show that GNBP3 assembles "attack complexes", which comprise phenoloxidase and the necrotic serpin. We propose that Drosophila GNBP3 targets fungi immediately at the inception of the infection by bringing effector molecules in direct contact with the invading microorganisms. PMID:20201042

Matskevich, Alexey A; Quintin, Jessica; Ferrandon, Dominique

2010-05-01

336

The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll pathway activation function  

PubMed Central

Summary The Drosophila Toll signalling pathway controls the systemic antifungal host response. Gram-negative binding protein 3 (GNBP3), a member of the ?-Glucan recognition protein (?GRP) family, senses fungal infections and activates this pathway. A second detection system perceives the activity of proteolytic fungal virulence factors and redundantly activates Toll. GNBP3hades mutant flies succumb more rapidly to Candida albicans and to entomopathogenic fungal infections than wild type (WT) flies, despite normal triggering of the Toll pathway via the virulence detection system. These observations suggest that GNBP3 triggers antifungal defenses that are not dependent on activation of the Toll pathway. Here, we show that GNBP3 agglutinates fungal cells. Furthermore, it can activate melanization in a Toll-independent manner. Melanization is likely to be an essential defense against some fungal infections since the entomopathogenic fungus B. bassiana inhibits the activity of the main melanization enzymes, the phenol oxidases. Finally, we show that GNBP3 assembles “attack complexes”, which comprise PO and the serpin NEC. We propose that Drosophila GNBP3 targets fungi immediately at the inception of the infection by bringing effector molecules in direct contact with the invading microorganisms. PMID:20201042

Matskevich, Alexey A.; Quintin, Jessica; Ferrandon, Dominique

2010-01-01

337

The FGL2/fibroleukin prothrombinase is involved in alveolar macrophage activation in COPD through the MAPK pathway  

SciTech Connect

Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of 'immune coagulation' and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.

Liu, Yanling; Xu, Sanpeng; Xiao, Fei; Xiong, Yan; Wang, Xiaojin; Gao, Sui; Yan, Weiming [Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)] [Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Ning, Qin, E-mail: qning@tjh.tjmu.edu.cn [Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)] [Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

2010-05-28

338

Identification of the mechanism for the inhibition of Na+,K(+)-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2.  

PubMed Central

Inhibition of Na+,K(+)-ATPase activity by hyperglycemia could be an important etiological factor of chronic complications in diabetic patients. The biochemical mechanism underlying hyperglycemia's inhibitory effects has been thought to involve the alteration of the protein kinase C (PKC) pathway since agonists of PKC can normalize hyperglycemia-induced inhibition of Na+,K(+)-ATPase activity. Paradoxically, elevated glucose levels and diabetes have been shown to increase PKC activities in vascular cells. The present study tested the hypothesis that the inhibition of Na+,K(+)-ATPase activity is mediated by the sequential activation of PKC and cytosolic phospholipase A2 (cPLA2). In cultured rat vascular smooth muscle cells (VSMC), increasing glucose levels in the medium from 5.5 to 22 mM elevated cPLA2 activity and increased [3H]arachidonic acid release and PGE2 production by 2.3-, 1.7- and 2-fold, respectively. Similar increases in cPLA2 activity were also induced by elevated glucose levels in human VSMC and rat capillary endothelial cells. The activation of cPLA2 was mediated by PKC since the increases in cPLA2 phosphorylation and enzymatic activity were inhibited by the PKC inhibitor GFX. In contrast, elevation of glucose levels decreased Na+,K(+)-ATPase activity as measured by ouabain-sensitive 86Rb uptake by twofold in rat VSMC. Surprisingly, both PMA, a PKC agonist, and GFX, a PKC inhibitor, were able to prevent glucose-induced decreases in 86Rb uptake. Further, the PLA2 inhibitor AACOCF3 abolished both glucose-induced activation of cPLA2 and the decrease in 86Rb uptake. These data indicated that hyperglycemia is inhibiting Na+,K(+)-ATPase activity by the sequential activation of PKC and cPLA2, resulting in the liberation of arachidonic acid and increased the production of PGE2, which are known inhibitors of Na+,K(+)-ATPase. Images PMID:7635966

Xia, P; Kramer, R M; King, G L

1995-01-01

339

Kallikrein-related Peptidase-8 (KLK8) Is an Active Serine Protease in Human Epidermis and Sweat and Is Involved in a Skin Barrier Proteolytic Cascade  

PubMed Central

Kallikrein-related peptidase-8 (KLK8) is a relatively uncharacterized epidermal protease. Although proposed to regulate skin-barrier desquamation and recovery, the catalytic activity of KLK8 was never demonstrated in human epidermis, and its regulators and targets remain unknown. Herein, we elucidated for the first time KLK8 activity in human non-palmoplantar stratum corneum and sweat ex vivo. The majority of stratum corneum and sweat KLK8 was catalytically active, displaying optimal activity at pH 8.5 and considerable activity at pH 5. We also showed that KLK8 is a keratinocyte-specific protease, not secreted by human melanocytes or dermal fibroblasts. KLK8 secretion increased significantly upon calcium induction of terminal keratinocyte differentiation, suggesting an active role for this protease in upper epidermis. Potential activators, regulators, and targets of KLK8 activity were identified by in vitro kinetic assays using pro-KLK8 and mature KLK8 recombinant proteins produced in Pichia pastoris. Mature KLK8 activity was enhanced by calcium and magnesium ions and attenuated by zinc ions and by autocleavage after Arg164. Upon screening KLK8 cleavage of a library of FRET-quenched peptides, trypsin-like specificity was observed with the highest preference for (R/K)(S/T)(A/V) at P1-P1?-P2?. We also demonstrated that KLK5 and lysyl endopeptidase activate latent pro-KLK8, whereas active KLK8 targets pro-KLK11, pro-KLK1, and LL-37 antimicrobial peptide activation in vitro. Together, our data identify KLK8 as a new active serine protease in human stratum corneum and sweat, and we propose regulators and targets that augment its involvement in a skin barrier proteolytic cascade. The implications of KLK8 elevation and hyperactivity in desquamatory and inflammatory skin disease conditions remain to be studied. PMID:20940292

Eissa, Azza; Amodeo, Vanessa; Smith, Christopher R.; Diamandis, Eleftherios P.

2011-01-01

340

Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K+ current  

PubMed Central

At surgical depths of anesthesia, inhalational anesthetics cause a loss of motor response to painful stimuli (i.e., immobilization) that is characterized by profound inhibition of spinal motor circuits. Yet, although clearly depressed, the respiratory motor system continues to provide adequate ventilation under these same conditions. Here, we show that isoflurane causes robust activation of CO2/pH-sensitive, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) of the rodent brainstem, in vitro and in vivo. In brainstem slices from Phox2b-eGFP mice, the firing of pH-sensitive RTN neurons was strongly increased by isoflurane, independent of prevailing pH conditions. At least two ionic mechanisms contributed to anesthetic activation of RTN neurons: activation of a Na+-dependent cationic current and inhibition of a background K+ current. Single cell RT-PCR analysis of dissociated GFP-labeled RTN neurons revealed expression of THIK-1 (K2P13.1), a channel that shares key properties with the native RTN current (i.e., suppression by inhalational anesthetics, weak rectification, inhibition by extracellular Na+, and pH-insensitivity). Isoflurane also increased firing rate of RTN chemosensitive neurons in urethane-anesthetized rats, again independent of CO2 levels. In these animals, isoflurane transiently enhanced activity of the respiratory system, an effect that was most prominent at low levels of respiratory drive and mediated largely by an increase in respiratory frequency. These data indicate that inhalational anesthetics cause activation of RTN neurons, which serve an important integrative role in respiratory control; the increased drive provided by enhanced RTN neuronal activity may contribute, in part, to maintaining respiratory motor activity under immobilizing anesthetic conditions. PMID:20610767

Lazarenko, Roman M.; Fortuna, Michal G.; Shi, Yingtang; Mulkey, Daniel K.; Takakura, Ana C.; Moreira, Thiago S.; Guyenet, Patrice G.; Bayliss, Douglas A.

2010-01-01

341

Maternal recasts and activity variations: a comparison of mother-child dyads involving children with and without SLI.  

PubMed

This study investigated maternal recast and the children's responses comparing dyads made up of a mother and a child with typical language development (TD) or a child with specific language impairment (SLI). More specifically, this article deals with the influence of the type of activity being carried out on the number and types of maternal recasts. A sample of 17 French-speaking children with SLI (age 5 to 7 years) matched with 17 TD same-age peers was observed in interaction with their mother during four different activities (joint reading, symbolic play, question guessing game and clue guessing game). The results showed that group and activity had an impact on the number and type of recasts. Mothers of children with SLI offered more recasts than mothers of TD children. The former preferred phonological recasts whereas the latter preferred lexical ones. Moreover, recasts were more frequently used in joint reading than in other activities. Regarding the children's responses, no significant difference was observed between the two groups. Children with SLI took up the maternal proposition more frequently after a lexical recast than after a recast of another type. The findings provide evidence for considering the features of the activities in clinical settings. PMID:23819678

Rezzonico, Stefano; de Weck, Geneviève; Salazar Orvig, Anne; da Silva Genest, Christine; Rahmati, Somayeh

2014-04-01

342

Promotion of Testa Rupture during Garden Cress Germination Involves Seed Compartment-Specific Expression and Activity of Pectin Methylesterases.  

PubMed

Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination. PMID:25429110

Scheler, Claudia; Weitbrecht, Karin; Pearce, Simon P; Hampstead, Anthony; Büttner-Mainik, Annette; Lee, Kieran J D; Voegele, Antje; Oracz, Krystyna; Dekkers, Bas J W; Wang, Xiaofeng; Wood, Andrew T A; Bentsink, Leónie; King, John R; Knox, J Paul; Holdsworth, Michael J; Müller, Kerstin; Leubner-Metzger, Gerhard

2015-01-01

343

Activation of Rac1-dependent redox signaling is critically involved in staurosporine-induced neurite outgrowth in PC12 cells.  

PubMed

Staurosporine, a non-specific protein kinase inhibitor, has been shown to induce neurite outgrowth in PC12 cells, but the mechanism by which staurosporine induces neurite outgrowth is still obscure. In the present study, we investigated whether the activation of Rac1 was responsible for the neurite outgrowth triggered by staurosporine. Staurosporine caused rapid neurite outgrowth independent of the ERK signaling pathways. In contrast, neurite outgrowth in response to staurosporine was accompanied by activation of Rac1, and the Rac1 inhibitor NSC23766 attenuated the staurosporine-induced neurite outgrowth in a concentration-dependent manner. In addition, suppression of Rac1 activity by expression of the dominant negative mutant Rac1N17 also blocked the staurosporine-induced morphological differentiation of PC12 cells. Staurosporine caused an activation of NADPH oxidase and increased the production of reactive oxygen species (ROS), which was prevented by NSC23766 and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor. Staurosporine-induced neurite outgrowth was attenuated by pretreatment with DPI and exogenous addition of sublethal concentration of H2O2 accelerated neurite outgrowth triggered by staurosporine. These results indicate that activation of Rac1, which leads to ROS generation, is required for neurite outgrowth induced by staurosporine in PC12 cells. PMID:23153365

Kim, Du Sik; An, Jeong Mi; Lee, Han Gil; Seo, Su Ryeon; Kim, Seon Sook; Kim, Ju Yeon; Kang, Jeong Wan; Bae, Yun Soo; Seo, Jeong Taeg

2013-02-01

344

Apoptosis signaling by the novel compound 3-Cl-AHPC involves increased EGFR proteolysis and accompanying decreased phosphatidylinositol 3-kinase and AKT kinase activities  

Microsoft Academic Search

The threonine and serine protein kinase AKT plays a major role in inhibiting apoptosis in a number of malignant cell types including prostate and breast carcinoma. Activation of AKT is a complex process involving translocation to the plasma membrane and phosphorylation of serine and threonine amino-acid residues. We now report that the novel compound 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC), induces apoptosis in

Lulu Farhana; Marcia I Dawson; Ying Huang; Yuxiang Zhang; Arun K Rishi; Kaladhar B Reddy; Robert S Freeman; Joseph A Fontana

2004-01-01

345

Lack of evidence for Litopenaeus vannamei Toll receptor (lToll) involvement in activation of sequence-independent antiviral immunity in shrimp  

Microsoft Academic Search

Injection of non-specific dsRNA initiates a broad-spectrum innate antiviral immune response in the Pacific white shrimp, Litopenaeus vannamei, however, the receptor involved in recognition of this by-product of viral infections remains unknown. In vertebrates, dsRNA sensing is mediated by a class of Toll-like receptors (TLRs) and results in activation of the interferon system. Because a TLR (lToll) was recently characterized

Yannick Labreuche; Nuala A. O’Leary; Enrique de la Vega; Artur Veloso; Paul S. Gross; Robert W. Chapman; Craig L. Browdy; Gregory W. Warr

2009-01-01

346

Suppression of survivin promoter activity by YM155 involves disruption of Sp1-DNA interaction in the survivin core promoter  

PubMed Central

YM155, a novel survivin suppressant, shows potent antitumor activity against various human cancers and is currently in phase II clinical trials. In this study, we investigated whether YM155 selectively inhibits survivin transcription. We hypothesize that inhibition of survivin transcription plays a role in YM155-mediated survivin inhibition. We found that YM155 inhibited survivin promoter activity, while it showed minimal inhibitory effect on four control gene promoters in transfection and luciferase activity assay experiments, indicating its selectivity. Transfection of various survivin promoter-luciferase constructs followed by luciferase assays revealed that the survivin core promoter (269 bp) plays a major role in YM155-mediated inhibitory effects. However, flow cytometry analysis indicated that inhibition of survivin promoter activity by YM155 is cell cycle-independent without G1 cell arrests. Electrophoretic mobility shift assays (EMSA) identified that YM155 abrogates nuclear proteins binding to the region of -149 to -71, in which Sp1 is a major candidate, and that YM155 treatment induces Sp1 re-subcellular localization without inhibiting its expression. Forced expression of Sp1 neutralized YM155-mediated downregulation of survivin promoter activity. Consistently, mutation of the identified Sp1 sites in the oligonucleotide probe diminished DNA-protein interactions in EMSA experiments, and mutation of the Sp1 sites in the survivin promoter-luciferase construct diminished survivin promoter activity. These findings indicate that YM155 inhibition of survivin expression is at least in part through its inhibition of survivin transcription by disruption of Sp1 interaction with the region of -149 to -71 in the survivin core promoter. PMID:22773958

Cheng, Qiuying; Ling, Xiang; Haller, Andrew; Nakahara, Takahito; Yamanaka, Kentaro; Kita, Aya; Koutoku, Hiroshi; Takeuchi, Masahiro; Brattain, Michael G; Li, Fengzhi

2012-01-01

347

Microcystin-LR-Caused ROS generation involved in p38 activation and tau hyperphosphorylation in neuroendocrine (PC12) cells.  

PubMed

Microcystin-LR (MC-LR), a potent specific hepatotoxin produced by cyanobacteria, has recently been reported to show neurotoxicity. Our previous study demonstrated that MC-LR caused the reorganization of cytoskeleton architectures and hyperphosphorylation of the cytoskeletal-associated proteins tau and HSP27 in neuroendocrine PC12 cell line by direct PP2A inhibition and indirect p38 mitogen-activated protein kinase (MAPK) activation. It has been shown that oxidative stress is extensively associated with MC-LR toxicity, mainly resulting from an excessive production of reactive oxygen species (ROS). However, the mechanisms by which ROS mediates the cytotoxic action of MC-LR are unclear. In the present study, we investigated whether ROS might play a critical role in MC-LR-induced hyperphosphorylation of microtubule-associated protein tau and the activation of the MAPKs in PC12 cell line. The results showed that MC-LR had time- and concentration-dependent effects on ROS generation, p38-MAPK activation and tau phosphorylation. The time-course studies indicated similar biphasic changes in ROS generation and tau hyperphosphorylation, which started to increase within 1 h and reached the maximum level at 3 h followed by a decrease after prolonged treatment. Furthermore, pretreatment with the antioxidants, N-acetylcysteine and vitamin C, significantly decreased MC-LR-induced ROS generation and effectively attenuated p38-MAPK activation as well as tau hyperphosphorylation. Taken together, these findings suggest that ROS generation triggered by MC-LR is a key intracellular event that contributes to an induction of p38-MAPK activation and tau phosphorylation, and that blockade of this ROS-mediated redox-sensitive signal cascades may attenuate the toxic effects of MC-LR. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 366-374, 2015. PMID:24142891

Meng, Guanmin; Liu, Jinghui; Lin, Shuyan; Guo, Zonglou; Xu, Lihong

2015-03-01

348

Involvement of protein kinase C in C5a-primed neutrophils for ANCA-mediated activation.  

PubMed

C5a and the neutrophil C5a receptor play a central role in antineutrophil cytoplasmic antibody (ANCA)-mediated neutrophil recruitment and activation. Our recent study found that activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK) and phosphoinositol 3-kinase (PI3K) are all important steps in the translocation of ANCA antigens by C5a-mediated priming and activation of neutrophils. The current study further investigated the protein kinase C (PKC) pathway of C5a-mediated neutrophils for ANCA-induced activation. The effect of the PKC inhibitor (bisindolylmaleimide I, BIS) was tested on respiratory burst and degranulation of C5a-primed neutrophils activated with ANCA, as well as on C5a-induced increase in expression of PR3 and MPO. For C5a-primed neutrophils for MPO-ANCA-induced respiratory burst, the mean fluorescence intensity (MFI) value was 369.8±18.8, which decreased to 308.3±14.2 upon pre-incubation with BIS (P<0.001). For PR3-ANCA-positive IgG, the MFI value increased in C5a-primed neutrophils, which decreased upon pre-incubation with BIS. The lactoferrin concentration increased from 414.8±26.9 ng/ml in the non-primed neutrophils supernatant to 1099.8±80.7 ng/ml in C5a-primed neutrophils induced by MPO-ANCA-positive IgG supernatant (P<0.001), and decreased to 814.5±45.3 ng/ml upon pre-incubation with BIS (P<0.01). The lactoferrin concentration also increased in C5a-primed neutrophils induced by PR3-ANCA-positive IgG supernatant and decreased upon pre-incubation with BIS. Membrane expression of PR3 (mPR3) expression increased from 788.0±87.5 in untreated cells to 1071.3±81.3 after C5a treatment and decreased to 827.3±48.1 by BIS (P<0.05). Activation of PKC is an important step in the translocation of ANCA antigens and C5a-induced activation of neutrophils by ANCA. PMID:23201854

Hao, Jian; Chen, Min; Zhao, Ming-Hui

2013-05-01

349

Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis  

SciTech Connect

NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3{beta} inhibitors (Li{sup +} or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNF{alpha}-induced rates of lipolysis by 50%. Adipocytes preincubated with Li{sup +} or TZDZ-8 prior to CsA and/or TNF{alpha}, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPAR{gamma}, ACS and Adn), compared with control or TNF{alpha}-treatment, whereas Li{sup +} pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPAR{gamma}, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li{sup +} treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis.

Holowachuk, Eugene W. [Mary Imogene Bassett Hospital, Research Institute, 1 Atwell Road, Cooperstown, NY 13326 (United States)]. E-mail: geneh@telenet.net

2007-09-21

350

OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice  

PubMed Central

Selenite is a predominant form of selenium (Se) available to plants, especially in anaerobic soils, but the molecular mechanism of selenite uptake by plants is not well understood. ltn1, a rice mutant previously shown to have increased phosphate (Pi) uptake, was found to exhibit higher selenite uptake than the wild-type in both concentration- and time-dependent selenite uptake assays. Respiratory inhibitors significantly inhibited selenite uptake in the wildtype and the ltn1 mutant, indicating that selenite uptake was coupled with H+ and energy-dependent. Selenite uptake was greatly enhanced under Pi-starvation conditions, suggesting that Pi transporters are involved in selenite uptake. OsPT2, the most abundantly expressed Pi transporter in the roots, is also significantly up-regulated in ltn1 and dramatically induced by Pi starvation. OsPT2-overexpressing and knockdown plants displayed significantly increased and decreased rates of selenite uptake, respectively, suggesting that OsPT2 plays a crucial role in selenite uptake. Se content in rice grains also increased significantly in OsPT2-overexpressing plants. These data strongly demonstrate that selenite and Pi share similar uptake mechanisms and that OsPT2 is involved in selenite uptake, which provides a potential strategy for breeding Se-enriched rice varieties. PMID:24491113

Zhang, Lianhe; Hu, Bin; Li, Wei; Che, Ronghui; Deng, Kun; Li, Hua; Yu, Feiyan; Ling, Hongqing; Li, Youjun; Chu, Chengcai

2014-01-01

351

TLR9 and NF-?B Are Partially Involved in Activation of Human Neutrophils by Helicobacter pylori and Its Purified DNA  

PubMed Central

Helicobacter pylori infection represents one of the most common bacterial infections worldwide. The inflammatory response to this bacterium involves a large influx of neutrophils to the lamina propria of the gastric mucosa. However, little is known about the receptors and molecular mechanisms involved in activation of these neutrophils. In this study, we aimed to determine the role of toll-like receptor 9 (TLR9) in the response of human neutrophils to H. pylori and purified H. pylori DNA (Hp-DNA). Neutrophils were isolated from the blood of adult volunteers and challenged with either H. pylori or Hp-DNA. We found that both, H. pylori and Hp-DNA induced increased expression and release of IL-8. Furthermore, we showed that TLR9 is involved in the induction of IL-8 production by H. pylori and Hp-DNA. IL-8 production induced by H. pylori but not by Hp-DNA was partially mediated by NF-?B. In conclusion, this study showed for first time that both, H. pylori and Hp-DNA activate TLR9 and induce a different inflammatory response that leads to activation of neutrophils. PMID:24987851

Alvarez-Arellano, Lourdes; Cortés-Reynosa, Pedro; Sánchez-Zauco, Norma; Salazar, Eduardo; Torres, Javier; Maldonado-Bernal, Carmen

2014-01-01

352

The NOP receptor involvement in both withdrawal- and CCk-8-induced contracture responses of guinea pig isolated ileum after acute activation of ?-opioid receptor.  

PubMed

In isolated guinea-pig ileum (GPI), the ?-opioid acute withdrawal response is under the control of several neuronal signaling systems, including the ?-opioid, the A(1)-adenosine and the CB(1) receptors, which are involved in the inhibitory control of the ?-withdrawal response. After ?-opioid system stimulation, indirect activation of ?-opioid, A(1)-adenosine and CB(1) systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated whether the NOP system is also involved in the regulation of the acute ?-withdrawal response. Interestingly, we found that in GPI preparation, the NOP system is not indirectly activated by the ?-opioid receptor stimulation, but instead this system is able by itself to directly regulate the acute ?-withdrawal response. Specifically, our results clearly highlight first the existence of an endogenous tone of the NOP system in GPI, and second that it behaves as a functional anti-opioid system. We also found that, the NOP receptor system is involved in the regulation of the CCk-8-induced contracture intensity, only when in the presence of the ?-opioid receptor stimulation. This effect seems to be regulated by an activation threshold mechanism. In conclusion, the NOP system could act as neuromodulatory system, whose action is strictly related to the modulation of both excitatory and inhibitory neurotransmitters released in GPI enteric nervous system. PMID:23059394

Marini, Pietro; Romanelli, Luca; Valeri, Daniela; Cascio, Maria Grazia; Tucci, Paolo; Valeri, Pacifico; Palmery, Maura

2012-12-01

353

Calcium-independent CaMKII activity is involved in ginsenoside Rb1-mediated neuronal recovery after hypoxic damage  

Microsoft Academic Search

Recent studies have indicated that Ginsenoside Rb1, one of the major components of ginseng root, may play an important role in protecting cells from damage. Here, we investigated the neuroprotective activity of Rb1 after hypoxic injury in young rats. About 50% animals were dead by exposing hypoxic condition three times in three consecutive days. Then, the pretreatment with Rb1 prior

Jin Kyu Park; Chang Joong Lee; Jong Oh Park; Sung-Ha Jin; Oh-Bin Kwon; Sung Ryong Ko; Sang Won Kim; Eun Jung Kang; Ji Hun Ko; Sang Myung Lee; Dong Hee Kim; Moo Ho Won

2005-01-01

354

D1 cap region involved in the receptor recognition and neural cell survival activity of human ciliary neurotrophic factor.  

PubMed Central

Human ciliary neurotrophic factor (hCNTF), which promotes the cell survival and differentiation of motor and other neurons, is a protein belonging structurally to the alpha-helical cytokine family. hCNTF was subjected to three-dimensional structure modeling and site-directed mutagenesis to analyze its structure-function relationship. The replacement of Lys-155 with any other amino acid residue resulted in abolishment of neural cell survival activity, and some of the Glu-153 mutant proteins had 5- to 10-fold higher biological activity. The D1 cap region (around the boundary between the CD loop and helix D) of hCNTF, including both Glu-153 and Lys-155, was shown to play a key role in the biological activity of hCNTF as one of the putative receptor-recognition sites. In this article, the D1 cap region of the 4-helix-bundle proteins is proposed to be important in receptor recognition and biological activity common to alpha-helical cytokine proteins reactive with gp130, a component protein of the receptors. Images Fig. 4 PMID:7567978

Inoue, M; Nakayama, C; Kikuchi, K; Kimura, T; Ishige, Y; Ito, A; Kanaoka, M; Noguchi, H

1995-01-01

355

Depletion of Luminal Pyridine Nucleotides in the Endoplasmic Reticulum Activates Autophagy with the Involvement of mTOR Pathway  

PubMed Central

It has been recently shown that redox imbalance of luminal pyridine nucleotides in the endoplasmic reticulum (ER) together with oxidative stress results in the activation of autophagy. In the present study we demonstrated that decrease of luminal NADPH/NADP+ ratio alone by metyrapone was sufficient to promote the mechanism of “self-eating” detected by the activation of LC3. Depletion of luminal NADPH had also significant effect on the key proteins of mTOR pathway, which got inactivated by dephosphorylation. These findings were also confirmed by silencing the proteins (glucose-6-phosphate transporter and hexose-6-phosphate dehydrogenase) responsible for NADPH generation in the ER lumen. However, silencing the key components and addition of metyrapone had different effects on downstream substrates 4EBP1 and p70S6K of mTOR. The applied treatments did not compromise the viability of the cells. Our data suggest that ER stress caused by luminal NADPH depletion activates a pro-survival autophagic mechanism firmly coupled to the activation of mTOR pathway. PMID:24350295

Bánhegyi, Gábor

2013-01-01

356

Multiple signaling pathways involved in stimulation of osteoblast differentiation by N-methyl-D-aspartate receptors activation in vitro  

PubMed Central

Aim: Glutamate receptors are expressed in osteoblastic cells. The present study was undertaken to investigate the mechanisms underlying the stimulation of osteoblast differentiation by N-methyl-D-aspartate (NMDA) receptor activation in vitro. Methods: Primary culture of osteoblasts was prepared from SD rats. Microarray was used to detect the changes of gene expression. The effect of NMDA receptor agonist or antagonist on individual gene was examined using RT-PCR. The activity of alkaloid phosphotase (ALP) was assessed using a commercial ALP staining kit. Results: Microarray analyses revealed that 10 genes were up-regulated by NMDA (0.5 mmol/L) and down-regulated by MK801 (100 ?mol/L), while 13 genes down-regulated by NMDA (0.5 mmol/L) and up-regulated by MK801 (100 ?mol/L). Pretreatment of osteoblasts with the specific PKC inhibitor Calphostin C (0.05 ?mol/L), the PKA inhibitor H-89 (20 nmol/L), or the PI3K inhibitor wortmannin (100 nmol/L) blocked the ALP activity increase caused by NMDA (0.5 mmol/L). Furthermore, NMDA (0.5 mmol/L) rapidly increased PI3K phosphorylation, which could be blocked by pretreatment of wortmannin (100 nmol/L). Conclusion: The results suggest that activation of NMDA receptors stimulates osteoblasts differentiation through PKA, PKC, and PI3K signaling pathways, which is a new role for glutamate in regulating bone remodeling. PMID:21685927

Li, Jie-li; Zhao, Lin; Cui, Bin; Deng, Lian-fu; Ning, Guang; Liu, Jian-min

2011-01-01

357

The Use of Parent Involved Take-Home Science Activities during Student Teaching: Understanding the Challenges of Implementation  

ERIC Educational Resources Information Center

The purpose of this study was to identify student teachers use and implementation of "Science in a Bag" when it was no longer a required course-based assessment. This take-home science activity acted as the elaboration component of the 5Es lesson teacher candidates designed and taught in the classroom, utilized household items, and directly…

Zarazinski, Jill

2010-01-01

358

Fiber composition, fiber size and enzyme activities in vastus lateralis of elite athletes involved in high intensity exercise  

Microsoft Academic Search

Summary  In order to determine the influence of an extensive history of participation in high intensity activity on muscle fiber type, fiber size, and metabolic profile, elite ice hockey players were selected for investigation from three different leagues. Biopsy samples from the vastus lateralis muscle were obtained from different groups of players prior to and following the season and compared with

H. J. Green; J. A. Thomson; W. D. Daub; M. E. Houston; D. A. Ranney

1979-01-01

359

Cyclophilin-A is involved in excitotoxin-induced caspase activation in rat neuronal B50 cells.  

PubMed Central

Glutamate and the NO donor, nitroprusside, synergistically induced the death of B50 cells from a rat CNS-derived neuroblastoma cell line. With low [nitroprusside] (10 microM) both nitroprusside and glutamate were required. Under these conditions, nuclei became pyknotic and caspases were activated. The activities of caspase-3 and caspase-6 (effector caspases) were higher than those of caspase-8 and caspase-9 (initiator caspases). The activation of all four caspases was inhibited by cyclosporin A, with the order of susceptibility caspase-8=caspase-9=caspase-6>caspase-3. To identify the possible locus of cyclosporin A action, we used an antisense oligodeoxynucleotide to suppress the level of cyclophilin-A to<5% of its control value. Cyclophilin-A suppression largely reproduced the inhibitory effects of cyclosporin A. These results provide the first indication that cyclophilin-A participates in the activation of the caspase cascade in neuronal cells, in particular in the form of cascade elicited by excitotoxic stimuli. It is concluded that neuroprotection by cyclosporin A against excitotoxin-induced apoptosis is, at least partly, due to inhibition of cyclophilin-A. PMID:11903043

Capano, Michela; Virji, Sukaina; Crompton, Martin

2002-01-01

360

30 CFR 57.4660 - Work in shafts, raises, or winzes and other activities involving hazard areas.  

Code of Federal Regulations, 2013 CFR

...STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Welding/cutting/compressed Gases § 57.4660 Work in shafts...fire. Table C-2 Activity Distance Fire hazard Welding or cutting with an electric arc or open flame More...

2013-07-01

361

30 CFR 57.4660 - Work in shafts, raises, or winzes and other activities involving hazard areas.  

Code of Federal Regulations, 2014 CFR

...STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Welding/cutting/compressed Gases § 57.4660 Work in shafts...fire. Table C-2 Activity Distance Fire hazard Welding or cutting with an electric arc or open flame More...

2014-07-01

362

30 CFR 57.4660 - Work in shafts, raises, or winzes and other activities involving hazard areas.  

Code of Federal Regulations, 2012 CFR

...STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Welding/cutting/compressed Gases § 57.4660 Work in shafts...fire. Table C-2 Activity Distance Fire hazard Welding or cutting with an electric arc or open flame More...

2012-07-01

363

30 CFR 57.4660 - Work in shafts, raises, or winzes and other activities involving hazard areas.  

Code of Federal Regulations, 2011 CFR

...STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Welding/cutting/compressed Gases § 57.4660 Work in shafts...fire. Table C-2 Activity Distance Fire hazard Welding or cutting with an electric arc or open flame More...

2011-07-01

364

Involvement of the activated form of RecA protein in SOS mutagenesis and stable DNA replication in Escherichia coli.  

PubMed Central

DNA damage activates RecA protein of E. coli to a form (RecA*) that promotes proteolytic cleavage of LexA protein, the repressor of at least 17 DNA damage-inducible genes, resulting in expression of the SOS response. In addition to this known role, RecA* performs another function necessary for expression of SOS mutagenesis [Blanco, M., Herrera, G., Collado, P., Rebollo, J. & Botella, L. M. (1982) Biochimie 64, 633-636]. The additional role of RecA* could be (i) cleavage of another repressor, (ii) proteolytic processing of one or more proteins, or (iii) mechanistic interaction with DNA or with one or more other proteins. We describe experiments designed to test the first possibility. Our results suggest that neither SOS mutator activity nor ultraviolet mutagenesis requires induction by RecA* of any gene(s) outside the LexA regulon and that the additional role of RecA* is not cleavage of another repressor. We show that stable DNA replication, another DNA damage-inducible function [Kogoma, T., Torrey, T. A. & Connaughton, M. J. (1979) Mol. Gen. Genet. 176, 1-9], shares with SOS mutagenesis the requirement for RecA* activity, even in a strain constitutively expressing all LexA-controlled genes. In this strain, conditions that activate RecA initiate expression of stable DNA replication in the presence of chloramphenicol, without an intervening period of protein synthesis. We conclude that the additional function of RecA* in stable DNA replication is not another antirepressor activity. PMID:6390441

Witkin, E M; Kogoma, T

1984-01-01

365

Evaluation of the Antimicrobial Activities of Plant Oxylipins Supports Their Involvement in Defense against Pathogens1[W  

PubMed Central

Plant oxylipins are a large family of metabolites derived from polyunsaturated fatty acids. The characterization of mutants or transgenic plants affected in the biosynthesis or perception of oxylipins has recently emphasized the role of the so-called oxylipin pathway in plant defense against pests and pathogens. In this context, presumed functions of oxylipins include direct antimicrobial effect, stimulation of plant defense gene expression, and regulation of plant cell death. However, the precise contribution of individual oxylipins to plant defense remains essentially unknown. To get a better insight into the biological activities of oxylipins, in vitro growth inhibition assays were used to investigate the direct antimicrobial activities of 43 natural oxylipins against a set of 13 plant pathogenic microorganisms including bacteria, oomycetes, and fungi. This study showed unequivocally that most oxylipins are able to impair growth of some plant microbial pathogens, with only two out of 43 oxylipins being completely inactive against all the tested organisms, and 26 oxylipins showing inhibitory activity toward at least three different microbes. Six oxylipins strongly inhibited mycelial growth and spore germination of eukaryotic microbes, including compounds that had not previously been ascribed an antimicrobial activity, such as 13-keto-9(Z),11(E),15(Z)-octadecatrienoic acid and 12-oxo-10,15(Z)-phytodienoic acid. Interestingly, this first large-scale comparative assessment of the antimicrobial effects of oxylipins reveals that regulators of plant defense responses are also the most active oxylipins against eukaryotic microorganisms, suggesting that such oxylipins might contribute to plant defense through their effects both on the plant and on pathogens, possibly through related mechanisms. PMID:16299186

Prost, Isabelle; Dhondt, Sandrine; Rothe, Grit; Vicente, Jorge; Rodriguez, Maria José; Kift, Neil; Carbonne, Francis; Griffiths, Gareth; Esquerré-Tugayé, Marie-Thérèse; Rosahl, Sabine; Castresana, Carmen; Hamberg, Mats; Fournier, Joëlle

2005-01-01

366

Response of Na(+)-dependent ATPase activities to the contaminant ammonia nitrogen in Tapes philippinarum: possible atpase involvement in ammonium transport.  

PubMed

In vivo and in vitro experiments elicited different responses to ammonia nitrogen (ammonia-N) of gill and mantle Na,K-ATPase and ouabain-insensitive Na-ATPase activities in the Philippine clam Tapes philippinarum. Short-term (120 h) exposed clams to sublethal ammonia-N (NH(3)+NH (4) (+) ) concentrations (1.5 and 3.0 mg/L ammonia-N) showed enhanced gill and mantle ouabain-insensitive ATPase activity and decreased mantle Na,K-ATPase activity with respect to unexposed clams, while gill Na,K-ATPase was unaffected. In vitro experiments showed that NH (4) (+) could efficiently replace Na(+) in ouabain-insensitive ATPase activation and K(+), but not Na(+), in Na, K-ATPase activation. Simple saturation kinetics was constantly followed with similar K (0.5) values to that of the substituted cation. The same maximal ouabain-insensitive ATPase activation was obtained at 80 mM Na(+) or NH (4) (+) in the gills and at 50 mM Na(+) or NH (4) (+ ) in the mantle and that of Na,K-ATPase at 10 mM K(+) or NH (4) (+) in the presence of 100 mM Na(+) in both tissues. The two coexistent ATPase activities maintained their typical response to ouabain also when stimulated by NH (4) (+) : when activated by Na(+)+K(+) or by Na(+)+NH (4) (+) the ATPase activity was completely suppressed by 10(-3 )M ouabain, whereas the Na(+)- or NH (4) (+) -stimulated ATPase activity was unaffected by up to 10(-2 )M ouabain. The whole of the data suggests a possible involvement of the two ATPase activities in NH (4) (+) transmembrane transport. PMID:18175160

Pagliarani, Alessandra; Bandiera, Patrizia; Ventrella, Vittoria; Trombetti, Fabiana; Manuzzi, Maria Pia; Pirini, Maurizio; Borgatti, Anna Rosa

2008-07-01

367

Transcriptional reporters for genes activated by cell wall stress through a non-catalytic mechanism involving Mpk1 and SBF.  

PubMed

The Mpk1 MAP kinase of the cell wall integrity (CWI) signalling pathway induces transcription of the FKS2 gene in response to cell wall stress through a non-catalytic mechanism that involves stable association of Mpk1 with the Swi4 transcription factor. This dimeric complex binds to a Swi4 recognition site in the FKS2 promoter. The Swi6 transcription factor is also required to bind this ternary complex for transcription initiation to ensue. In this context, the Mlp1 pseudokinase serves a redundant function with Mpk1. We have identified three additional genes, CHA1, YLR042c and YKR013w, that are induced by cell wall stress through the same mechanism. We report on the behaviour of several promoter-lacZ reporter plasmids designed to detect cell wall stress transcription through this pathway. PMID:20641022

Kim, Ki-Young; Levin, David E

2010-08-01

368

Gender and grade level differences in interest, perceived personal capacity, and involvement in technology and engineering-related activities  

NASA Astrophysics Data System (ADS)

Society has become increasingly technological, demanding that all citizens have a level of technological literacy. In order for this to occur, both males and females must participate in technology-related activities to achieve an adequate level of technological literacy. Despite individual and organizational efforts, females continue to be underrepresented in STEM-related occupations. This is especially true in many engineering-related fields. Jolly, Campbell and Perlman (2004) devised the Engagement, Capacity, and Continuity (ECC) Trilogy. With each factor of the trilogy in place, Jolly et al. found that female representation increased in STEM. The purpose of this study was to identify whether Jolly, Campbell, and Perlman's (2004) Engagement, Capacity, and Continuity Trilogy could be utilized by teachers in technology and engineering program settings to examine their students' interest (engagement), perceived personal capacity (capacity), as well as participation in technology and engineering-related activities (continuity). This descriptive study surveyed 556 female and male middle school and high school students enrolled in Technology and Engineering classes. The results of this study revealed that when students indicated a high interest and a high perceived personal capacity, and when they participated in technology and engineering-related activities, they also indicated an interest in pursuing a career in engineering. The results also revealed that the male students continued to be encouraged by technology and engineering teachers, parents, and counselors to pursue a career in engineering more than female students. This startling finding should draw some concern; both males and females should be equally encouraged to consider engineering as a career. Technology and engineering teachers should implement activities that appeal to both males and females. Parents should encourage their daughters to participate in informal learning opportunities to nurture their daughters' interest in STEM-related areas. Counselors should gain an awareness of the scope and diversity of different engineering fields so they can advise both male and female students to consider careers in engineering. In order for the United States to be competitive and innovative at the global level, female representation and contributions in STEM fields must increase. Key Words: GENDER, ENGAGEMENT, INTEREST, PERCEIVED PERSONAL CAPACITY, TECHNOLOGY AND ENGINEERING ACTIVITIES, WISCONSIN, STEM, AFTERSCHOOL ACTIVITIES.

Weber, Katherine

369

The Hypoxia-Inducible Transcription Factor ZNF395 Is Controlled by I?B Kinase-Signaling and Activates Genes Involved in the Innate Immune Response and Cancer  

PubMed Central

Activation of the hypoxia inducible transcription factor HIF and the NF-?B pathway promotes inflammation-mediated tumor progression. The cellular transcription factor ZNF395 has repeatedly been found overexpressed in various human cancers, particularly in response to hypoxia, implying a functional relevance. To understand the biological activity of ZNF395, we identified target genes of ZNF395 through a genome-wide expression screen. Induced ZNF395 expression led to the upregulation of genes known to play a role in cancer as well as a subset of interferon (IFN)-stimulated genes (ISG) involved in antiviral responses such as IFIT1/ISG56, IFI44 and IFI16. In cells that lack ZNF395, the IFN-?-mediated stimulation of these factors was impaired, demonstrating that ZNF395 is required for the full induction of these antiviral genes. Transient transfections revealed that ZNF395-mediated activation of the IFIT1/ISG56 promoter depends on the two IFN-stimulated response elements within the promoter and on the DNA-binding domain of ZNF395, a so-called C-clamp. We also show that I?B? kinase (IKK)-signaling is necessary to allow ZNF395 to activate transcription and simultaneously enhances its proteolytic degradation. Thus, ZNF395 becomes activated at the level of protein modification by IKK. Moreover, we confirm that the expression of ZNF395 is induced by hypoxia. Our results characterize ZNF395 as a novel factor that contributes to the maximal stimulation of a subset of ISGs. This transcriptional activity depends on IKK signaling further supporting a role of ZNF395 in the innate immune response. Given these results it is possible that under hypoxic conditions, elevated levels of ZNF395 may support inflammation and cancer progression by activating the target genes involved in the innate immune response and cancer. PMID:24086395

Jordanovski, Darko; Herwartz, Christine; Pawlowski, Anna; Taute, Stefanie; Frommolt, Peter; Steger, Gertrud

2013-01-01

370

Structure of Ddn, the Deazaflavin-Dependent Nitroreductase from Mycobacterium tuberculosis Involved in Bioreductive Activation of PA-824  

PubMed Central

Summary Tuberculosis continues to be a global health threat, making bicyclic nitroimidazoles an important new class of therapeutics. A deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis catalyzes the reduction of nitroimidazoles such as PA-824, resulting in intracellular release of lethal reactive nitrogen species. The N-terminal 30 residues of Ddn are functionally important but are flexible or access multiple conformations, preventing structural characterization of the full-length, enzymatically active enzyme. Several structures were determined of a truncated, inactive Ddn protein core with and without bound F420 deazaflavin coenzyme as well as of a catalytically competent homolog from Nocardia farcinica. Mutagenesis studies based on these structures identified residues important for binding of F420 and PA-824. The proposed orientation of the tail of PA-824 toward the N terminus of Ddn is consistent with current structure-activity relationship data. PMID:22244759

Cellitti, Susan E.; Shaffer, Jennifer; Jones, David H.; Mukherjee, Tathagata; Gurumurthy, Meera; Bursulaya, Badry; Boshoff, Helena I.; Choi, Inhee; Nayyar, Amit; Lee, Yong Sok; Cherian, Joseph; Niyomrattanakit, Pornwaratt; Dick, Thomas; Manjunatha, Ujjini H.; Barry, Clifton E.; Spraggon, Glen; Geierstanger, Bernhard H.

2012-01-01

371

DOE technical standards list: Directory of DOE and contractor personnel involved in non-government standards activities  

SciTech Connect

The body of this document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity, which is attached to the end of this document and to DOE Order 1300.2A. Additional names were added from rosters supplied by non-Government standards bodies. The committees or governing bodies in which the person participates is listed after each name. An asterisk preceding the committee notation indicates that the person has identified himself or herself as the DOE representative on that committee. Appendices to this document are also provided to sort the information by the parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees. DOE employees and contractors listed in this TSL are those recorded as of July 1, 1996.

NONE

1996-08-01

372

Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center.  

PubMed

Deoxyhypusine hydroxylase is the key enzyme in the biosynthesis of hypusine containing eukaryotic translation initiation factor 5A (eIF5A), which plays an essential role in the regulation of cell proliferation. Recombinant human deoxyhypusine hydroxylase (hDOHH) has been reported to have oxygen- and iron-dependent activity, an estimated iron/holoprotein stoichiometry of 2, and a visible band at 630 nm responsible for the blue color of the as-isolated protein. EPR, Mössbauer, and XAS spectroscopic results presented herein provide direct spectroscopic evidence that hDOHH has an antiferromagnetically coupled diiron center with histidines and carboxylates as likely ligands, as suggested by mutagenesis experiments. Resonance Raman experiments show that its blue chromophore arises from a (mu-1,2-peroxo)diiron(III) center that forms in the reaction of the reduced enzyme with O2, so the peroxo form of hDOHH is unusually stable. Nevertheless we demonstrate that it can carry out the hydroxylation of the deoxyhypusine residue present in the elF5A substrate. Despite a lack of sequence similarity, hDOHH has a nonheme diiron active site that resembles both in structure and function those found in methane and toluene monooxygenases, bacterial and mammalian ribonucleotide reductases, and stearoyl acyl carrier protein Delta9-desaturase from plants, suggesting that the oxygen-activating diiron motif is a solution arrived at by convergent evolution. Notably, hDOHH is the only example thus far of a human hydroxylase with such a diiron active site. PMID:19706422

Vu, Van V; Emerson, Joseph P; Martinho, Marlène; Kim, Yeon Sook; Münck, Eckard; Park, Myung Hee; Que, Lawrence

2009-09-01

373

JNK pathway is involved in the inhibition of inflammatory target gene expression and NF-kappaB activation by melittin  

Microsoft Academic Search

BACKGROUND: Bee venom therapy has been used to treat inflammatory diseases including rheumatoid arthritis in humans and in experimental animals. We previously found that bee venom and melittin (a major component of bee venom) have anti-inflammatory effect by reacting with the sulfhydryl group of p50 of nuclear factor-kappa B (NF-?B) and I?B kinases (IKKs). Since mitogen activated protein (MAP) kinase

Hye Ji Park; Hwa Jeong Lee; Myung Sook Choi; Dong Ju Son; Ho Sueb Song; Min Jong Song; Jeong Min Lee; Sang Bae Han; Youngsoo Kim; Jin Tae Hong

2008-01-01

374

The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK  

SciTech Connect

The cytokine TNF activates multiple signaling pathways leading to cellular responses ranging from proliferation and survival to apoptosis. While most of these pathways have been elucidated in detail over the past few years, the molecular mechanism leading to the activation of the MAP kinases ERK remains ill defined and is controversially discussed. Therefore, we have analyzed TNF-induced ERK activation in various human and murine cell lines and show that it occurs in a cell-type-specific manner. In addition, we provide evidence for the involvement of the signaling components Fas-associated death domain protein (FADD), caspase-8, and c-FLIP in the pathway activating ERK in response to TNF. This conclusion is based on the following observations: (I) Overexpression of FADD, caspase-8, or a c-FLIP protein containing the death effector domains only leads to enhanced and prolonged ERK activation after TNF treatment. (II) TNF-induced ERK activation is strongly diminished in the absence of FADD. Interestingly, the enzymatic function of caspase-8 is not required for TNF-induced ERK activation. Additional evidence suggests a role for this pathway in the proliferative response of murine fibroblasts to TNF.

Lueschen, Silke [Institut fuer Immunologie, Universitaetsklinikum Schleswig-Holstein Campus Kiel, Michaelisstrasse 5, 24105 Kiel (Germany); Falk, Markus [Institut fuer Immunologie, Universitaetsklinikum Schleswig-Holstein Campus Kiel, Michaelisstrasse 5, 24105 Kiel (Germany); Scherer, Gudrun [Institut fuer Immunologie, Universitaetsklinikum Schleswig-Holstein Campus Kiel, Michaelisstrasse 5, 24105 Kiel (Germany); Ussat, Sandra [Institut fuer Immunologie, Universitaetsklinikum Schleswig-Holstein Campus Kiel, Michaelisstrasse 5, 24105 Kiel (Germany); Paulsen, Maren [Institut fuer Immunologie, Universitaetsklinikum Schleswig-Holstein Campus Kiel, Michaelisstrasse 5, 24105 Kiel (Germany); Adam-Klages, Sabine [Institut fuer Immunologie, Universitaetsklinikum Schleswig-Holstein Campus Kiel, Michaelisstrasse 5, 24105 Kiel (Germany)]. E-mail: sadam@email.uni-kiel.de

2005-10-15

375

CD39 is highly involved in mediating the suppression activity of tumor-infiltrating CD8+ T regulatory lymphocytes.  

PubMed

CD39 is an ectoenzyme, present on different immune cell subsets, which mediates immunosuppressive functions catalyzing ATP degradation. It is not known whether CD39 is expressed and implicated in the activity of CD8+ regulatory T lymphocytes (Treg). In this study, CD39 expression and function was analyzed in both CD8+ and CD4+CD25(hi) Treg from the peripheral blood of healthy donors as well as from tumor specimens. CD39 was found expressed by both CD8+ (from the majority of healthy donors and tumor patients) and CD4+CD25(hi) Treg, and CD39 expression correlated with suppression activity mediated by CD8+ Treg. Importantly, CD39 counteraction remarkably inhibited the suppression activity of CD8+ Treg (both from peripheral blood and tumor microenvironment) suggesting that CD39-mediated inhibition constitutes a prevalent hallmark of their function. Collectively, these findings, unveiling a new mechanism of action for CD8+ Treg, provide new knowledge on intratumoral molecular pathways related to tumor immune escape, which could be exploited in the future for designing new biological tools for anticancer immune intervention. PMID:23359087

Parodi, Alessia; Battaglia, Florinda; Kalli, Francesca; Ferrera, Francesca; Conteduca, Giuseppina; Tardito, Samuele; Stringara, Silvia; Ivaldi, Federico; Negrini, Simone; Borgonovo, Giacomo; Simonato, Alchiede; Traverso, Paolo; Carmignani, Giorgio; Fenoglio, Daniela; Filaci, Gilberto

2013-05-01

376

Effects of Luteolin on Liver, Kidney and Brain in Pentylentetrazol-Induced Seizures: Involvement of Metalloproteinases and NOS Activities  

PubMed Central

Objective: Flavonoids are an important group of recognized antioxidants in plants. Luteolin (LUT) is a natural flavonoid in the plant kingdom. This study was aimed to investigate the effects of the LUT in the liver, kidney and brain of pentylentetrazol (PTZ)-induced seizure and the relationship between nitric oxide synthases (iNOS, eNOS) and matrix metalloproteinases (MMP2, MMP9). Materials and Methods: LUT (10 mg/kg) was given intraperitoneally during two weeks prior to seizure induction. A single dose PTZ 80 mg/kg i.p. was administered and seizures were observed and evaluated with regard to latency, frequency and stage for one hour. Results: Seizure frequen cy after PTZ administration was significantly decreased in LUT pretreated rats (p<0.05). An increase of immunhistochemical reactions of iNOS and MMP2, but a decrease of eNOS activity, were observed in rat hippocampus and peripheral tissues during the PTZ induced seizures. LUT pretreatment reversed the iNOS and MMP2 activity to the control levels and significantly increased the eNOS activity (p<0.001). Conclusion: LUT seems to have an effective role in reducing the seizure frequency and a protective role on peripheral organ injury in animal models of seizure. The protective effect of LUT in seizures and the seizure induced peripheral tissue damage warrant further investigations. PMID:25206993

Birman, Hüsniye; Dar, Kadriye Akgün; Kapucu, Ay?egül; Acar, Samet; Üzüm, Gülay

2012-01-01

377

Antiangiogenic activity of trabectedin in myxoid liposarcoma: involvement of host TIMP-1 and TIMP-2 and tumor thrombospondin-1.  

PubMed

Trabectedin is a marine natural product, approved in Europe for the treatment of soft tissue sarcoma and relapsed ovarian cancer. Clinical and experimental evidence indicates that trabectedin is particularly effective against myxoid liposarcomas where response is associated to regression of capillary networks. Here, we investigated the mechanism of the antiangiogenic activity of trabectedin in myxoid liposarcomas. Trabectedin directly targeted endothelial cells, impairing functions relying on extracellular matrix remodeling (invasion and branching morphogenesis) through the upregulation of the inhibitors of matrix metalloproteinases TIMP-1 and TIMP-2. Increased TIMPs synthesis by the tumor microenvironment following trabectedin treatment was confirmed in xenograft models of myxoid liposarcoma. In addition, trabectedin upregulated tumor cell expression of the endogenous inhibitor thrombospondin-1 (TSP-1, a key regulator of angiogenesis-dependent dormancy in sarcoma), in in vivo models of myxoid liposarcomas, in vitro cell lines and primary cell cultures from patients' myxoid liposarcomas. Chromatin Immunoprecipitation analysis showed that trabectedin displaced the master regulator of adipogenesis C/EBP? from the TSP-1 promoter, indicating an association between the up-regulation of TSP-1 and induction of adipocytic differentiation program by trabectedin. We conclude that trabectedin inhibits angiogenesis through multiple mechanisms, including directly affecting endothelial cells in the tumor microenvironment--with a potentially widespread activity--and targeting tumor cells' angiogenic activity, linked to a tumor-specific molecular alteration. PMID:24917554

Dossi, Romina; Frapolli, Roberta; Di Giandomenico, Silvana; Paracchini, Lara; Bozzi, Fabio; Brich, Silvia; Castiglioni, Vittoria; Borsotti, Patrizia; Belotti, Dorina; Uboldi, Sarah; Sanfilippo, Roberta; Erba, Eugenio; Giavazzi, Raffaella; Marchini, Sergio; Pilotti, Silvana; D'Incalci, Maurizio; Taraboletti, Giulia

2015-02-01

378

Involvement of Fyn kinase in Kit and integrin-mediated Rac activation, cytoskeletal reorganization, and chemotaxis of mast cells  

PubMed Central

Kit receptor and its ligand stem cell factor (SCF) are critical regulators of mast cell production, proliferation, degranulation, and chemotaxis. In this study, we investigated how Fyn kinase regulates chemotaxis of mast cells toward SCF. On ?1-integrin engagement, Fyn-deficient (fyn?/?) mast cells displayed a striking defect in cell spreading and lamellipodia formation compared to wild-type mast cells. The hematopoietic-specific Src family kinases (Lyn/Fgr/Hck) were not required for initial SCF-induced cell spreading. Reduced SCF-induced activation of Rac1 and Rac2 GTPases, p38 mitogen-activated protein kinase, and filamentous actin polymerization was observed in fyn?/? mast cells compared to wild-type mast cells. Retroviral-mediated expression of Fyn, constitutively active forms of Rac2 or phosphatidylinositol 3-kinase (PI3K) in fyn?/? mast cells rescued defects in SCF-induced cell polarization and chemotaxis of Fyn-deficient mast cells. Thus, we conclude that Fyn kinase plays a unique role upstream of PI3K and Rac GTPases to promote the reorganization of the cytoskeleton during mast cell spreading and chemotaxis. PMID:17213284

Samayawardhena, Lionel A.; Kapur, Reuben

2007-01-01

379

Anosognosia in mild cognitive impairment: Relationship to activation of cortical midline structures involved in self-appraisal  

PubMed Central

Awareness of cognitive dysfunction shown by individuals with Mild Cognitive Impairment (MCI), a condition conferring risk for Alzheimer’s disease (AD), is variable. Anosognosia, or unawareness of loss of function, is beginning to be recognized as an important clinical symptom of MCI. However, little is known about the brain substrates underlying this symptom. We hypothesized that MCI participants’ activation of cortical midline structures (CMS) during self-appraisal would covary with level of insight into cognitive difficulties (indexed by a discrepancy score between patient and informant ratings of cognitive decline in each MCI participant). To address this hypothesis, we first compared 16 MCI participants and 16 age-matched controls, examining brain regions showing conjoint or differential BOLD response during self-appraisal. Second, we used regression to investigate the relationship between awareness of deficit in MCI and BOLD activity during self-appraisal, controlling for extent of memory impairment. Between-group comparisons indicated that MCI participants show subtly attenuated CMS activity during self-appraisal. Regression analysis revealed a highly-significant relationship between BOLD response during self-appraisal and self-awareness of deficit in MCI. This finding highlights the level of anosognosia in MCI as an important predictor of response to self-appraisal in cortical midline structures, brain regions vulnerable to changes in early AD. PMID:17445294

Ries, Michele L.; Jabbar, Britta M.; Schmitz, Taylor W.; Trivedi, Mehul A.; Gleason, Carey E.; Carlsson, Cynthia M.; Rowley, Howard A.; Asthana, Sanjay; Johnson, Sterling C.

2009-01-01

380

HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS.  

PubMed

Apart from its repressing effect on plasma lipid levels, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors exert neuroprotective functions in animal models of neurodegenerative disorders. In view of these promising observations, we were interested in whether HMG-CoA reductase inhibition would affect epileptiform activity in the brain. To elucidate this issue, atorvastatin, simvastatin and rosuvastatin were administered orally at a dose of 20mg/kg each for 3days and their anti-epileptic activities were tested and compared in rats. Epileptiform activity in the brain was induced by an intracortical penicillin G injection. Among HMG-CoA reductase inhibitors, simvastatin-treatment was less effective in terms of spike frequency as compared with atorvastatin- and rosuvastatin-treated animals. Atorvastatin treatment reduced spike frequencies and amplitudes significantly throughout the experiment. However, the most pronounced anti-epileptic effect was observed in rosuvastatin-treated animals, which was associated with improved blood-brain barrier (BBB) integrity, increased expression of endothelial nitric oxide synthase (eNOS) mRNA and decreased expressions of pro-apoptotic p53, Bax and caspase-3 mRNAs. Inhibition of eNOS activity with l-NG-Nitroarginine Methyl Ester (l-NAME) reversed the anti-epileptic effect of rosuvastatin significantly. However, l-NAME did not alter the effect of rosuvastatin on the levels of p53, Bax and caspase-3 mRNA expression. Here, we provide evidence that among HMG-CoA reductase inhibitors, rosuvastatin was the most effective statin on the reduction of epileptiform activity, which was associated with improved BBB permeability, increased expression of eNOS and decreased expressions of pro-apoptotic p53, Bax and caspase-3. Our observation also revealed that the anti-epileptic effect of rosuvastatin was dependent on the increased expression level of eNOS. The robust anti-epileptic effect encourages proof-of-concept studies with rosuvastatin in human epilepsy patients with hypercholesterolemia. PMID:25453767

Seker, F B; Kilic, U; Caglayan, B; Ethemoglu, M S; Caglayan, A B; Ekimci, N; Demirci, S; Dogan, A; Oztezcan, S; Sahin, F; Yilmaz, B; Kilic, E

2015-01-22

381

Timely Activation of Budding Yeast APCCdh1 Involves Degradation of Its Inhibitor, Acm1, by an Unconventional Proteolytic Mechanism  

PubMed Central

Regulated proteolysis mediated by the ubiquitin proteasome system is a fundamental and essential feature of the eukaryotic cell division cycle. Most proteins with cell cycle-regulated stability are targeted for degradation by one of two related ubiquitin ligases, the Skp1-cullin-F box protein (SCF) complex or the anaphase-promoting complex (APC). Here we describe an unconventional cell cycle-regulated proteolytic mechanism that acts on the Acm1 protein, an inhibitor of the APC activator Cdh1 in budding yeast. Although Acm1 can be recognized as a substrate by the Cdc20-activated APC (APCCdc20) in anaphase, APCCdc20 is neither necessary nor sufficient for complete Acm1 degradation at the end of mitosis. An APC-independent, but 26S proteasome-dependent, mechanism is sufficient for complete Acm1 clearance from late mitotic and G1 cells. Surprisingly, this mechanism appears distinct from the canonical ubiquitin targeting pathway, exhibiting several features of ubiquitin-independent proteasomal degradation. For example, Acm1 degradation in G1 requires neither lysine residues in Acm1 nor assembly of polyubiquitin chains. Acm1 was stabilized though by conditional inactivation of the ubiquitin activating enzyme Uba1, implying some requirement for the ubiquitin pathway, either direct or indirect. We identified an amino terminal predicted disordered region in Acm1 that contributes to its proteolysis in G1. Although ubiquitin-independent proteasome substrates have been described, Acm1 appears unique in that its sensitivity to this mechanism is strictly cell cycle-regulated via cyclin-dependent kinase (Cdk) phosphorylation. As a result, Acm1 expression is limited to the cell cycle window in which Cdk is active. We provide evidence that failure to eliminate Acm1 impairs activation of APCCdh1 at mitotic exit, justifying its strict regulation by cell cycle-dependent transcription and proteolytic mechanisms. Importantly, our results reveal that strict cell-cycle expression profiles can be established independent of proteolysis mediated by the APC and SCF enzymes. PMID:25072887

Melesse, Michael; Choi, Eunyoung; Hall, Hana; Walsh, Michael J.; Geer, M. Ariel; Hall, Mark C.

2014-01-01

382

Mapping of a microbial protein domain involved in binding and activation of the TLR2/TLR1 heterodimer.  

PubMed

The pentameric B subunit of type IIb Escherichia coli enterotoxin (LT-IIb-B(5)), a doughnut-shaped oligomeric protein from enterotoxigenic E. coli, activates the TLR2/TLR1 heterodimer (TLR2/1). We investigated the molecular basis of the LT-IIb-B(5) interaction with TLR2/1 to define the structure-function relationship of LT-IIb-B(5) and, moreover, to gain an insight into how TLR2/1 recognizes large, nonacylated protein ligands that cannot fit within its lipid-binding pockets, as previously shown for the Pam(3)CysSerLys(4) (Pam(3)CSK(4)) lipopeptide. We first identified four critical residues in the upper region of the LT-IIb-B(5) pore. Corresponding point mutants (M69E, A70D, L73E, S74D) were defective in binding TLR2 or TLR1 and could not activate APCs, despite retaining full ganglioside-binding capacity. Point mutations in the TLR2/1 dimer interface, as determined in the crystallographic structure of the TLR2/1-Pam(3)CSK(4) complex, resulted in diminished activation by both Pam(3)CSK(4) and LT-IIb-B(5). Docking analysis of the LT-IIb-B(5) interaction with this apparently predominant activation conformation of TLR2/1 revealed that LT-IIb-B(5) might primarily contact the convex surface of the TLR2 central domain. Although the TLR1/LT-IIb-B(5) interface is relatively smaller, the leucine-rich repeat motifs 9-12 in the central domain of TLR1 were found to be critical for cooperative TLR2-induced cell activation by LT-IIb-B(5). Moreover, the putative LT-IIb-B(5) binding site overlaps partially with that of Pam(3)CSK(4); consistent with this, Pam(3)CSK(4) suppressed TLR2 binding of LT-IIb-B(5), albeit not as potently as self-competitive inhibition. We identified the upper pore region of LT-IIb-B(5) as a TLR2/1 interactive domain, which contacts the heterodimeric receptor at a site that is distinct from, although it overlaps with, that of Pam(3)CSK(4). PMID:19234193

Liang, Shuang; Hosur, Kavita B; Lu, Shanyun; Nawar, Hesham F; Weber, Benjamin R; Tapping, Richard I; Connell, Terry D; Hajishengallis, George

2009-03-01

383

Mapping of a Microbial Protein Domain Involved in Binding and Activation of the TLR2/TLR1 Heterodimer 1  

PubMed Central

LT-IIb-B5, a doughnut-shaped oligomeric protein from enterotoxigenic Escherichia coli, is known to activate the TLR2/TLR1 heterodimer (TLR2/1). We investigated the molecular basis of the LT-IIb-B5 interaction with TLR2/1 in order to define the structure-function relationship of LT-IIb-B5 and, moreover, to gain an insight into how TLR2/1 recognizes large, non-acylated protein ligands that cannot fit within its lipid-binding pockets, as previously shown for the Pam3CSK4 lipopeptide. We first identified four critical residues in the upper region of the LT-IIb-B5 pore: Corresponding point mutants (M69E, A70D, L73E, S74D) were defective in binding TLR2 or TLR1 and could not activate antigen-presenting cells, despite retaining full ganglioside-binding capacity. Point mutations in the TLR2/1 dimer interface, as determined in the crystallographic structure of the TLR2/1-Pam3CSK4 complex, resulted in diminished activation by both Pam3CSK4 and LT-IIb-B5. Docking analysis of the LT-IIb-B5 interaction with this apparently “predominant” activation conformation of TLR2/1 revealed that LT-IIb-B5 may primarily contact the convex surface of the TLR2 central domain. Although the TLR1/LT-IIb-B5 interface is relatively smaller, the leucine-rich repeat motifs 9–12 in the central domain of TLR1 were found to be critical for cooperative TLR2-induced cell activation by LT-IIb-B5. Moreover, the putative LT-IIb-B5 binding site overlaps partially with that of Pam3CSK4; consistent with this, Pam3CSK4 suppressed TLR2 binding of LT-IIb-B5, albeit not as potently as self-competitive inhibition. In conclusion, we identified the upper pore region of LT-IIb-B5 as a TLR2/1 interactive domain, which contacts the heterodimeric receptor at a site that is distinct from, though overlaps with, that of Pam3CSK4. PMID:19234193

Liang, Shuang; Hosur, Kavita B.; Lu, Shanyun; Nawar, Hesham F.; Weber, Benjamin R.; Tapping, Richard I.; Connell, Terry D.; Hajishengallis, George

2009-01-01

384

Mitogen-activated protein kinases and NF?B are involved in SP-A-enhanced responses of macrophages to mycobacteria  

PubMed Central

Background Surfactant protein A (SP-A) is a C-type lectin involved in surfactant homeostasis as well as host defense in the lung. We have recently demonstrated that SP-A enhances the killing of bacillus Calmette-Guerin (BCG) by rat macrophages through a nitric oxide-dependent pathway. In the current study we have investigated the role of tyrosine kinases and the downstream mitogen-activated protein kinase (MAPK) family, and the transcription factor NF?B in mediating the enhanced signaling in response to BCG in the presence of SP-A. Methods Human SP-A was prepared from alveolar proteinosis fluid, and primary macrophages were obtained by maturation of cells from whole rat bone marrow. BCG-SP-A complexes were routinely prepared by incubation of a ratio of 20 ?g of SP-A to 5 × 105 BCG for 30 min at 37°C. Cells were incubated with PBS, SP-A, BCG, or SP-A-BCG complexes for the times indicated. BCG killing was assessed using a 3H-uracil incorporation assay. Phosphorylated protein levels, enzyme assays, and secreted mediator assays were conducted using standard immunoblot and biochemical methods as outlined. Results Involvement of tyrosine kinases was demonstrated by herbimycin A-mediated inhibition of the SP-A-enhanced nitric oxide production and BCG killing. Following infection of macrophages with BCG, the MAPK family members ERK1 and ERK2 were activated as evidence by increased tyrosine phosphorylation and enzymatic activity, and this activation was enhanced when the BCG were opsonized with SP-A. An inhibitor of upstream kinases required for ERK activation inhibited BCG- and SP-A-BCG-enhanced production of nitric oxide by approximately 35%. Macrophages isolated from transgenic mice expressing a NF?B-responsive luciferase gene showed increased luciferase activity following infection with BCG, and this activity was enhanced two-fold in the presence of SP-A. Finally, lactacystin, an inhibitor of I?B degradation, reduced BCG- and SP-A-BCG-induced nitric oxide production by 60% and 80% respectively. Conclusion These results demonstrate that BCG and SP-A-BCG ingestion by macrophages is accompanied by activation of signaling pathways involving the MAP kinase pathway and NF?B. PMID:19566962

Lopez, Joseph P; Vigerust, David J; Shepherd, Virginia L

2009-01-01

385

Involvement of Prolactin-Releasing Peptide in the Activation of Oxytocin Neurones in Response to Food Intake  

PubMed Central

Food intake activates neurones expressing prolactin-releasing peptide (PrRP) in the medulla oblongata and oxytocin neurones in the hypothalamus. Both PrRP and oxytocin have been shown to have an anorexic action. In the present study, we investigated whether the activation of oxytocin neurones following food intake is mediated by PrRP. We first examined the expression of PrRP receptors (also known as GPR10) in rats. Immunoreactivity of PrRP receptors was observed in oxytocin neurones and in vasopressin neurones in the paraventricular and supraoptic nuclei of the hypothalamus and in the bed nucleus of the stria terminalis. Application of PrRP to isolated supraoptic nuclei facilitated the release of oxytocin and vasopressin. In mice, re-feeding increased the expression of Fos protein in oxytocin neurones of the hypothalamus and bed nucleus of the stria terminalis. The increased expression of Fos protein in oxytocin neurones following re-feeding or i.p. administration of cholecystokinin octapeptide (CCK), a peripheral satiety factor, was impaired in PrRP-deficient mice. CCK-induced oxytocin increase in plasma was also impaired in PrRP-deficient mice. Furthermore, oxytocin receptor-deficient mice showed an increased meal size, as reported in PrRP-deficient mice and in CCKA receptor-deficient mice. These findings suggest that PrRP mediates, at least in part, the activation of oxytocin neurones in response to food intake, and that the CCK–PrRP–oxytocin pathway plays an important role in the control of the termination of each meal. PMID:23363338

Yamashita, M; Takayanagi, Y; Yoshida, M; Nishimori, K; Kusama, M; Onaka, T

2013-01-01

386

Membrane potential regulates mitochondrial ATP-diphosphohydrolase activity but is not involved in progesterone biosynthesis in human syncytiotrophoblast cells.  

PubMed

ATP-diphosphohydrolase is associated with human syncytiotrophoblast mitochondria. The activity of this enzyme is implicated in the stimulation of oxygen uptake and progesterone synthesis. We reported previously that: (1) the detergent-solubilized ATP-diphosphohydrolase has low substrate specificity, and (2) purine and pyrimidine nucleosides, tri- or diphosphates, are fully dephosphorylated in the presence of calcium or magnesium (Flores-Herrera 1999, 2002). In this study we show that ATP-diphosphohydrolase hydrolyzes first the nucleoside triphosphate to nucleoside diphosphate, and then to nucleotide monophosphate, in the case of all tested nucleotides. The activation energies (Ea) for ATP, GTP, UTP, and CTP were 6.06, 4.10, 6.25, and 5.26kcal/mol, respectively; for ADP, GDP, UDP, and CDP, they were 4.67, 5.42, 5.43, and 6.22kcal/mol, respectively. The corresponding Arrhenius plots indicated a single rate-limiting step for each hydrolyzed nucleoside, either tri- or diphosphate. In intact mitochondria, the ADP produced by ATP-diphosphohydrolase activity depolarized the membrane potential (??m) and stimulated oxygen uptake. Mitochondrial respiration showed the state-3/state-4 transition when ATP was added, suggesting that ATP-diphosphohydrolase and the F1F0-ATP synthase work in conjunction to avoid a futile cycle. Substrate selectivity of the ATP-diphosphohydrolase was modified by ??m (i.e. ATP was preferred over GTP when the inner mitochondrial membrane was energized). In contrast, dissipation of ??m by CCCP produced a loss of substrate specificity and so the ATP-diphosphohydrolase was able to hydrolyze ATP and GTP at the same rate. In intact mitochondria, ATP hydrolysis increased progesterone synthesis as compared with GTP. Although dissipation of ??m by CCCP decreased progesterone synthesis, NADPH production restores steroidogenesis. Overall, our results suggest a novel physiological role for ??m in steroidogenesis. PMID:25444704

Flores-Herrera, Oscar; Olvera-Sánchez, Sofia; Esparza-Perusquía, Mercedes; Pardo, Juan Pablo; Rendón, Juan Luis; Mendoza-Hernández, Guillermo; Martínez, Federico

2015-02-01

387

Resistance of tumor cells to cytolytic T lymphocytes involves Rho-GTPases and focal adhesion kinase activation.  

PubMed

Tumor cells evade adaptive immunity by a variety of mechanisms, including selection of variants that are resistant to specific cytotoxic T lymphocyte (CTL) pressure. Recently, we have reported that the reorganization of the actin cytoskeleton can be used by tumor cells as a strategy to promote their resistance to CTL-mediated lysis. In this study, we further examined the functional features of a CTL-resistant tumor variant and investigated the relationship between cytoskeleton alteration, the acquisition of tumor resistance to CTL-induced cell death, Rho-GTPases, and focal adhesion kinase (FAK) pathways. Our data indicate that although the resistant cells do not display an increased migratory potential, an alteration of adhesion to the extracellular matrix was observed. When Rho-GTPases were activated in cells by the bacterial CNF1 (cytotoxic necrotizing factor 1), striking changes in the cell morphology, including actin cytoskeleton, focal adhesions, and membrane extensions, were observed. More importantly, such activation also resulted in a significant attenuation of resistance to CTL-induced cell death. Furthermore, we demonstrate that FAK signaling pathways were constitutively defective in the resistant cells. Silencing of FAK in the sensitive target cells resulted in the inhibition of immune synapse formation with specific CTLs and their subsequent lysis. Expression of the FAK mutant (Y397F) resulted in an inhibition of IGR-Heu cell adhesion and of their susceptibility to specific lysis. These results suggest that FAK activation plays a role in the control of tumor cell susceptibility to CTL-mediated lysis. PMID:18779334

Abouzahr-Rifai, Soraya; Hasmim, Meriem; Boukerche, Habib; Hamelin, Jocelyne; Janji, Bassam; Jalil, Abdelali; Kieda, Claudine; Mami-Chouaib, Fathia; Bertoglio, Jacques; Chouaib, Salem

2008-11-14

388

The fourth molybdenum containing enzyme mARC: cloning and involvement in the activation of N-hydroxylated prodrugs.  

PubMed

The recently discovered mammalian molybdoprotein mARC1 is capable of reducing N-hydroxylated compounds. Upon reconstitution with cytochrome b(5) and b(5) reductase, benzamidoxime, pentamidine, and diminazene amidoximes, N-hydroxymelagatran, guanoxabenz, and N-hydroxydebrisoquine are efficiently reduced. These substances are amidoxime/N-hydroxyguanidine prodrugs, leading to improved bioavailability compared to the active