Science.gov

Sample records for einstein affine gravity

  1. Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity

    SciTech Connect

    Heinicke, Christian; Baekler, Peter; Hehl, Friedrich W.

    2005-07-15

    We show that the Einstein-aether theory of Jacobson and Mattingly (J and M) can be understood in the framework of the metric-affine (gauge theory of) gravity (MAG). We achieve this by relating the aether vector field of J and M to certain post-Riemannian nonmetricity pieces contained in an independent linear connection of spacetime. Then, for the aether, a corresponding geometrical curvature-square Lagrangian with a massive piece can be formulated straightforwardly. We find an exact spherically symmetric solution of our model.

  2. Unifying Einstein and Palatini gravities

    SciTech Connect

    Amendola, Luca; Enqvist, Kari; Koivisto, Tomi

    2011-02-15

    We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g{sub {mu}{nu}=}C(R)g{sub {mu}{nu}} with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.

  3. Schwinger's Approach to Einstein's Gravity

    NASA Astrophysics Data System (ADS)

    Milton, Kim

    2012-05-01

    Albert Einstein was one of Julian Schwinger's heroes, and Schwinger was greatly honored when he received the first Einstein Prize (together with Kurt Godel) for his work on quantum electrodynamics. Schwinger contributed greatly to the development of a quantum version of gravitational theory, and his work led directly to the important work of (his students) Arnowitt, Deser, and DeWitt on the subject. Later in the 1960's and 1970's Schwinger developed a new formulation of quantum field theory, which he dubbed Source Theory, in an attempt to get closer contact to phenomena. In this formulation, he revisited gravity, and in books and papers showed how Einstein's theory of General Relativity emerged naturally from one physical assumption: that the carrier of the gravitational force is a massless, helicity-2 particle, the graviton. (There has been a minor dispute whether gravitational theory can be considered as the massless limit of a massive spin-2 theory; Schwinger believed that was the case, while Van Dam and Veltman concluded the opposite.) In the process, he showed how all of the tests of General Relativity could be explained simply, without using the full machinery of the theory and without the extraneous concept of curved space, including such effects as geodetic precession and the Lense-Thirring effect. (These effects have now been verified by the Gravity Probe B experiment.) This did not mean that he did not accept Einstein's equations, and in his book and full article on the subject, he showed how those emerge essentially uniquely from the assumption of the graviton. So to speak of Schwinger versus Einstein is misleading, although it is true that Schwinger saw no necessity to talk of curved spacetime. In this talk I will lay out Schwinger's approach, and the connection to Einstein's theory.

  4. Affine gravity, Palatini formalism and charges

    NASA Astrophysics Data System (ADS)

    Katz, Joseph; Livshits, Gideon I.

    2011-12-01

    Affine gravity and the Palatini formalism contribute both to produce a simple and unique formula for calculating charges at spatial and null infinity for Lovelock type Lagrangians whose variational derivatives do not depend on second-order derivatives of the field components. The method is based on the covariant generalization due to Julia and Silva of the Regge-Teitelboim procedure that was used to define properly the mass in the classical formulation of Einstein's theory of gravity. Numerous applications reproduce standard results obtained by other secure but mostly specialized method like in ADM energy for asymptotically flat spacetimes and in Abbot and Deser for asymptotically de Sitter and anti-de Sitter spacetimes, both at spatial infinity. As a novel application we calculate the Bondi energy loss in five dimensional gravity, based on the asymptotic solution given by Tanabe et al. and obtain, as expected, the same result. We also give the for Einstein-Gauss-Bonnet gravity and find the superpotential for Lovelock theories of gravity when the number of dimensions tends to infinity with maximally symmetrical boundaries. The paper is written in standard component formalism.

  5. Gravity Before Einstein and Schwinger Before Gravity

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  6. Einstein, Mach, and the Fortunes of Gravity

    NASA Astrophysics Data System (ADS)

    Kaiser, David

    2005-04-01

    Early in his life, Albert Einstein considered himself a devoted student of the physicist and philosopher Ernst Mach. Mach's famous critiques of Newton's absolute space and time -- most notably Mach's explanation of Newton's bucket experiment -- held a strong sway over Einstein as he struggled to formulate general relativity. Einstein was convinced that his emerging theory of gravity should be consistent with Mach's principle, which states that local inertial effects arise due to gravitational interactions with distant matter. Once completed, Einstein's general relativity enjoyed two decades of worldwide attention, only to fall out of physicists' interest during the 1930s and 1940s, when topics like nuclear physics claimed center stage. Gravity began to return to the limelight during the 1950s and especially the 1960s, and once again Mach proved to be a major spur: Princeton physicists Carl Brans and Robert Dicke introduced a rival theory of gravity in 1961 which they argued satisfied Mach's principle better than Einstein's general relativity did. The Brans-Dicke theory, and the new generation of experiments designed to test its predictions against those of general relativity, played a major role in bringing Einstein's beloved topic back to the center of physics.

  7. Microlensing, Newton-Einstein gravity, and conformal gravity

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    1995-07-01

    We discuss some implications of the current round of galactic dark matter searches for galactic rotation curve systematics and dynamics, and show that these new data do not invalidate the conformal gravity program of Mannheim and Kazanas which has been advanced as a candidate alternative to both the standard second order Newton-Einstein theory and the need for dark matter. .

  8. Einstein spaces modeling nonminimal modified gravity

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Vacaru, Sergiu I.

    2015-06-01

    Off-diagonal vacuum and nonvacuum configurations in the Einstein gravity can mimic physical effects of modified gravitational theories of f( R, T, R μν T μν ) type. To prove this statement, exact and approximate solutions are constructed in the paper, which encode certain models of covariant Hořava-type gravity with dynamical Lorentz symmetry breaking. The corresponding FLRW cosmological dynamics with possible nonholonomic deformations and the reconstruction procedure of certain actions closely related with the standard ΛCDM universe are studied. Off-diagonal generalizations of de Sitter universes are constructed which are generated through nonlinear gravitational polarization of fundamental physical constants and which model interactions with nonconstant exotic fluids and effective matter. The problem of possible matter instability for such off-diagonal deformations in (modified) gravity theories is briefly discussed.

  9. Hamiltonian analysis of Einstein-Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Avilés, L.; Salgado, P.

    2016-06-01

    In this work we consider the construction of the Hamiltonian action for the transgressions field theory. The subspace separation method for Chern-Simons Hamiltonian is built and used to find the Hamiltonian for five-dimensional Einstein-Chern-Simons gravity. It is then shown that the Hamiltonian for Einstein gravity arises in the limit where the scale parameter l approaches zero.

  10. Unification of Einstein's Gravity with Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2010-02-01

    The four tetrad and six spin-connection Cartan 1-forms of Einstein's GeoMetroDynamic (GMD) field emerge from the eight virtual gluon macro-quantum coherent QCD post-inflation vacuum condensates that form in the inflationary phase transition. This joint emergence of gravity and the strong force is similar to the emergence of irrotational superflow with vortex defects in liquid helium below the Lambda Point. Repulsive dark energy is from the residual random virtual bosons that did not cohere in the moment of inflation. Similarly, attractive dark matter is from the residual random virtual fermion-antifermion pairs. Therefore, I predict that the LHC will not detect any on-mass-shell real particles that can explain φDM˜0.23. As first suggested by Abdus Salam (f-gravity) the low energy tail of the nuclear force can be explained as strong short-range Yukawa gravity. QCD's IR confinement and UV asymptotic freedom are elementary consequences in this simple model. )

  11. Effectively nonlocal metric-affine gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey; Koivisto, Tomi; Sandstad, Marit

    2016-03-01

    In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric, and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with nonsingular and cosmologically interesting properties may be recovered. Relations between different formulations are analyzed at both perturbative and nonperturbative levels, taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.

  12. The dynamics of metric-affine gravity

    SciTech Connect

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-05-15

    Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to

  13. Extended Horava gravity and Einstein-aether theory

    SciTech Connect

    Jacobson, Ted

    2010-05-15

    Einstein-aether theory is general relativity coupled to a dynamical, unit timelike vector. If this vector is restricted in the action to be hypersurface orthogonal, the theory is identical to the IR limit of the extension of Horava gravity proposed by Blas, Pujolas and Sibiryakov. Hypersurface orthogonal solutions of Einstein-aether theory are solutions to the IR limit of this theory, hence numerous results already obtained for Einstein-aether theory carry over.

  14. A Demonstration of Einstein's Equivalence of Gravity and Acceleration

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2008-01-01

    In 1907, Einstein described a "Gedankenexperiment" in which he showed that free fall in a gravitational field is indistinguishable from a body at rest in an elevator accelerated upwards in zero gravity. This paper describes an apparatus, which is simple to make and simple to operate, that acts as an observable footnote to Einstein's example. It…

  15. Einstein's other gravity and the acceleration of the Universe

    SciTech Connect

    Linder, Eric V.

    2010-06-15

    Spacetime curvature plays the primary role in general relativity but Einstein later considered a theory where torsion was the central quantity. Just as the Einstein-Hilbert action in the Ricci curvature scalar R can be generalized to f(R) gravity, we consider extensions of teleparallel, or torsion scalar T, gravity to f(T) theories. The field equations are naturally second order, avoiding pathologies, and can give rise to cosmic acceleration with unique features.

  16. Gravity Probe B: Testing Einstein with Gyroscopes

    NASA Technical Reports Server (NTRS)

    Geveden, Rex D.; May, Todd

    2003-01-01

    Some 40 years in the making, NASA' s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta II in 2003. GP-B will test two extraordinary predictions from Einstein's General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.

  17. Gravity Probe B: Testing Einstein with Gyroscopes

    NASA Technical Reports Server (NTRS)

    Geveden, Rex D.; May, Todd

    2003-01-01

    Some 40 years in the making, NASA s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta I1 in 2003. GP-B will test two extraordinary predictions from Einstein s General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star- tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.

  18. Avoiding degenerate coframes in an affine gauge approach to quantum gravity

    SciTech Connect

    Mielke, E.W.; McCrea, J.D.; Ne`eman, Y.; Hehl, F.W.

    1993-04-01

    This report discusses the following concepts on quantum gravity: The affine gauge approach; affine gauge transformations versus active differomorphisms; affine gauge approach to quantum gravity with topology change.

  19. Einstein's theory of gravity and the problem of missing mass.

    PubMed

    Ferreira, Pedro G; Starkman, Glenn D

    2009-11-01

    The observed matter in the universe accounts for just 5% of the observed gravity. A possible explanation is that Newton's and Einstein's theories of gravity fail where gravity is either weak or enhanced. The modified theory of Newtonian dynamics (MOND) reproduces, without dark matter, spiral-galaxy orbital motions and the relation between luminosity and rotation in galaxies, although not in clusters. Recent extensions of Einstein's theory are theoretically more complete. They inevitably include dark fields that seed structure growth, and they may explain recent weak lensing data. However, the presence of dark fields reduces calculability and comes at the expense of the original MOND premise, that the matter we see is the sole source of gravity. Observational tests of the relic radiation, weak lensing, and the growth of structure may distinguish modified gravity from dark matter. PMID:19892973

  20. Minimal extension of Einstein's theory: The quartic gravity

    NASA Astrophysics Data System (ADS)

    Karasu, Atalay; Kenar, Esin; Tekin, Bayram

    2016-04-01

    We study structure of solutions of the recently constructed minimal extensions of Einstein's gravity in four dimensions at the quartic curvature level. The extended higher derivative theory, just like Einstein's gravity, has only a massless spin-two graviton about its unique maximally symmetric vacuum. The extended theory does not admit the Schwarzschild or Kerr metrics as exact solutions, hence there is no issue of Schwarzschild type singularity but, approximately, outside a source, spherically symmetric metric with the correct Newtonian limit is recovered. We also show that for all Einstein space-times, the square of the Riemann tensor (the Kretschmann scalar or the Gauss-Bonnet invariant) obeys a nonlinear scalar Klein-Gordon equation.

  1. Domain Walls in AdS-EINSTEIN-SCALAR Gravity

    NASA Astrophysics Data System (ADS)

    Yun, Sangheon

    In this paper, we show that the supergravity theory which is dual to ABJM field theory can be consistently reduced to scalar-coupled AdS-Einstein gravity and then consider the reflection symmetric domain wall and its small fluctuation. It is also shown that this domain wall solution is none other than dimensional reduction of M2-brane configuration.

  2. Metric redefinition and UV divergences in quantum Einstein gravity

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2016-03-01

    I formulate several statements demonstrating that the local metric redefinition can be used to reduce the UV divergences present in the quantum action for the Einstein gravity in d = 4 dimensions. In its most general form, the proposal is that any UV divergences in the quantum action can be removed by an appropriate field re-definition and a renormalization of cosmological constant.

  3. Effective Einstein cosmological spaces for non-minimal modified gravity

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Vacaru, Sergiu I.

    2015-06-01

    Certain off-diagonal vacuum and nonvacuum configurations in Einstein gravity can mimic physical effects of modified gravitational theories of type. We prove this statement by constructing exact and approximate solutions which encode certain models of covariant Hořava type gravity with dynamical Lorentz symmetry breaking. Off-diagonal generalizations of de Sitter and nonholonomic CDM universes are constructed which are generated through nonlinear gravitational polarization of fundamental physical constants and which model interactions with non-constant exotic fluids and effective matter. The problem of possible matter instability for such off-diagonal deformations in (modified) gravity theories is discussed.

  4. Exact solutions of three-dimensional black holes: Einstein gravity versus F(R) gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Eslam Panah, B.; Saffari, R.

    2014-10-01

    In this paper, we consider Einstein gravity in the presence of a class of nonlinear electrodynamics, called power Maxwell invariant (PMI). We take into account (2 + 1)-dimensional spacetime in Einstein-PMI gravity and obtain its black hole solutions. Then, we regard pure F(R) gravity as well as F(R)-conformally invariant Maxwell (CIM) theory to obtain exact solutions of the field equations with black hole interpretation. Finally, we investigate the conserved and thermodynamic quantities and discuss about the first law of thermodynamics for the mentioned gravitational models.

  5. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Dominguez, Alfredo E.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditions on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.

  6. Affine group formulation of the Standard Model coupled to gravity

    SciTech Connect

    Chou, Ching-Yi; Ita, Eyo; Soo, Chopin

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  7. Infrared divergence of pure Einstein gravity contributions to the cosmological density power spectrum.

    PubMed

    Noh, Hyerim; Jeong, Donghui; Hwang, Jai-Chan

    2009-07-10

    We probe the pure Einstein gravity contributions to the second-order density power spectrum. On the small scale, we discover that Einstein's gravity contribution is negligibly small. This guarantees that Newton's gravity is currently sufficient to handle the baryon acoustic oscillation scale. On the large scale, however, we discover that Einstein's gavity contribution to the second-order power spectrum dominates the linear-order power spectrum. Thus, the pure Einstein gravity contribution appearing in the third-order perturbation leads to an infrared divergence in the power spectrum. PMID:19659195

  8. Unified Geometrodynamics:. A Complementarity of Newton's and Einstein's Gravity

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard L.

    2013-09-01

    Newton claimed the influence of gravity is instantaneous; Einstein insisted no influence could propagate faster than the speed of light. Recent experiments to test the speed of gravity have been controversial and inconclusive on technical grounds. Considerable effort is currently expended in the search for a Quantum Gravity; but there is no a priori reason there should be one. We propose that is not the regime of integration which instead occurs in the arena of the Unified Field, UF; further that a completed model of Geometrodynamics inherently includes a Newton/Einstein duality which introduces shock effects in certain arenas. The unified theory predicts that there is no graviton of the usual phenomenal form (an artifact of the incompleteness of Gauge Theory, i.e. gauge theory is only an approximation suggesting new physics). A new Large Scale Additional Dimensional (LSXD) M-Theoretic topological charge alternative is presented. We also attempt to show how the Titius-Bode Law for solar and exoplanetary configurations appears to provide indicia of this multiverse gravitational model. Applications of the dual geometrodynamics formulation include an interpretation of quasar luminosity as the result of gravitational shock waves in a manner countering explanations of large redshift, Z in Big Bang cosmology putatively based on Doppler recession. Instead redshift occurs as the result of a periodic minute photon mass anisotropy caused by periodic coupling to a covariant polarized Dirac vacuum.

  9. Gauges and functional measures in quantum gravity I: Einstein theory

    NASA Astrophysics Data System (ADS)

    Ohta, N.; Percacci, R.; Pereira, A. D.

    2016-06-01

    We perform a general computation of the off-shell one-loop divergences in Einstein gravity, in a two-parameter family of path integral measures, corresponding to different ways of parametrizing the graviton field, and a two-parameter family of gauges. Trying to reduce the gauge- and measure-dependence selects certain classes of measures and gauges respectively. There is a choice of two parameters (corresponding to the exponential parametrization and the partial gauge condition that the quantum field be traceless) that automatically eliminates the dependence on the remaining two parameters and on the cosmological constant. We observe that the divergences are invariant under a Z 2 "duality" transformation that (in a particularly important special case) involves the replacement of the densitized metric by a densitized inverse metric as the fundamental quantum variable. This singles out a formulation of unimodular gravity as the unique "self-dual" theory in this class.

  10. N+1 formalism in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Torii, Takashi; Shinkai, Hisa-aki

    2008-10-15

    Towards the investigation of the full dynamics in a higher-dimensional and/or a stringy gravitational model, we present the basic equations of the Einstein-Gauss-Bonnet gravity theory. We show the (N+1)-dimensional version of the Arnowitt-Deser-Misner decomposition including Gauss-Bonnet terms, which shall be the standard approach to treat the space-time as a Cauchy problem. Because of the quasilinear property of the Gauss-Bonnet gravity, we find that the evolution equations can be in a treatable form in numerics. We also show the conformally transformed constraint equations for constructing the initial data. We discuss how the constraints can be simplified by tuning the powers of conformal factors. Our equations can be used both for timelike and spacelike foliations.

  11. Einstein equations and MOND theory from Debye entropic gravity

    SciTech Connect

    Sheykhi, A.; Sarab, K. Rezazadeh E-mail: kazem.rezazadeh.sarab@gmail.com

    2012-10-01

    Verlinde's proposal on the entropic origin of gravity is based strongly on the assumption that the equipartition law of energy holds on the holographic screen induced by the mass distribution of the system. However, from the theory of statistical mechanics we know that the equipartition law of energy does not hold in the limit of very low temperature. Inspired by the Debye model for the equipartition law of energy in statistical thermodynamics and adopting the viewpoint that gravitational systems can be regarded as a thermodynamical system, we modify Einstein field equations. We also perform the study for Poisson equation and modified Newtonian dynamics (MOND). Interestingly enough, we find that the origin of the MOND theory can be understood from Debye entropic gravity perspective. Thus our study may fill in the gap existing in the literature understanding the theoretical origin of MOND theory. In the limit of high temperature our results reduce to their respective standard gravitational equations.

  12. Einstein gravity as a 3D conformally invariant theory

    NASA Astrophysics Data System (ADS)

    Gomes, Henrique; Gryb, Sean; Koslowski, Tim

    2011-02-01

    We give an alternative description of the physical content of general relativity that does not require a Lorentz invariant spacetime. Instead, we find that gravity admits a dual description in terms of a theory where local size is irrelevant. The dual theory is invariant under foliation-preserving 3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume (for the spatially compact case). Locally, this symmetry is identical to that of Hořava-Lifshitz gravity in the high energy limit but our theory is equivalent to Einstein gravity. Specifically, we find that the solutions of general relativity, in a gauge where the spatial hypersurfaces have constant mean extrinsic curvature, can be mapped to solutions of a particular gauge fixing of the dual theory. Moreover, this duality is not accidental. We provide a general geometric picture for our procedure that allows us to trade foliation invariance for conformal invariance. The dual theory provides a new proposal for the theory space of quantum gravity.

  13. Static solutions in Einstein-Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Crisóstomo, J.; Gomez, F.; Mella, P.; Quinzacara, C.; Salgado, P.

    2016-06-01

    In this paper we study static solutions with more general symmetries than the spherical symmetry of the five-dimensional Einstein-Chern-Simons gravity. In this context, we study the coupling of the extra bosonic field ha with ordinary matter which is quantified by the introduction of an energy-momentum tensor field associated with ha. It is found that exist (i) a negative tangential pressure zone around low-mass distributions (μ < μ1) when the coupling constant α is greater than zero; (ii) a maximum in the tangential pressure, which can be observed in the outer region of a field distribution that satisfies μ < μ2 (iii) solutions that behave like those obtained from models with negative cosmological constant. In such a situation, the field ha plays the role of a cosmological constant.

  14. RG flows of Quantum Einstein Gravity on maximally symmetric spaces

    NASA Astrophysics Data System (ADS)

    Demmel, Maximilian; Saueressig, Frank; Zanusso, Omar

    2014-06-01

    We use the Wetterich-equation to study the renormalization group flow of f ( R)-gravity in a three-dimensional, conformally reduced setting. Building on the exact heat kernel for maximally symmetric spaces, we obtain a partial differential equation which captures the scale-dependence of f ( R) for positive and, for the first time, negative scalar curvature. The effects of different background topologies are studied in detail and it is shown that they affect the gravitational RG flow in a way that is not visible in finite-dimensional truncations. Thus, while featuring local background independence, the functional renormalization group equation is sensitive to the topological properties of the background. The detailed analytical and numerical analysis of the partial differential equation reveals two globally well-defined fixed functionals with at most a finite number of relevant deformations. Their properties are remarkably similar to two of the fixed points identified within the R 2-truncation of full Quantum Einstein Gravity. As a byproduct, we obtain a nice illustration of how the functional renormalization group realizes the "integrating out" of fluctuation modes on the three-sphere.

  15. Modified gravity in three dimensional metric-affine scenarios

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Ghasemi-Nodehi, M.; Rubiera-Garcia, D.

    2015-08-01

    We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. We first study the case of f (R ) theories, finding deviations near the center as compared to the solutions of general relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.

  16. Black Hole Thermodynamic Products in Einstein Gauss Bonnet Gravity

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata

    2016-07-01

    By now, there are many hints from string theory that collective excitations of solitonic objects can be described by effective low energy theories. The entropy of general rotating black holes in five dimensions may be interpreted as an indication that, it derives from two independent microscopic contributions and each of these may be attributed to a gas of strings. In the present work, we consider a charged black hole in five dimensional Einstein Gauss Bonnet gravity. In spite of presenting the thermodynamic quantities' product as summation/ subtraction of two independent integers, our motive is to check whether the product of the same quantity for event horizon and Cauchy horizon is free of mass, i.e., global, or not. We derive the thermodynamic products of characteristic parameters to mark which are global. We further interpret the stability of the black holes by computing the specific heat for both horizons. Stable and unstable phases of horizons are pointed out. The phase transitions with respect to the charge in nature of specific heat are also observed. All these calculation might be helpful to understand the microscopic nature of such black holes.

  17. Bimetric renormalization group flows in quantum Einstein gravity

    SciTech Connect

    Manrique, Elisa; Reuter, Martin; Saueressig, Frank

    2011-02-15

    Research Highlights: > Gravitational Effective Action in the bimetric truncation. > First study of the full gravitational flow with a bimetric structure. > The non-trivial gravitational RG fixed point persists under bimetric truncations. > Second non-trivial fixed point emerges, which may control the IR behavior of the theory. - Abstract: The formulation of an exact functional renormalization group equation for quantum Einstein gravity necessitates that the underlying effective average action depends on two metrics, a dynamical metric giving the vacuum expectation value of the quantum field, and a background metric supplying the coarse graining scale. The central requirement of 'background independence' is met by leaving the background metric completely arbitrary. This bimetric structure entails that the effective average action may contain three classes of interactions: those built from the dynamical metric only, terms which are purely background, and those involving a mixture of both metrics. This work initiates the first study of the full-fledged gravitational RG flow, which explicitly accounts for this bimetric structure, by considering an ansatz for the effective average action which includes all three classes of interactions. It is shown that the non-trivial gravitational RG fixed point central to the asymptotic safety program persists upon disentangling the dynamical and background terms. Moreover, upon including the mixed terms, a second non-trivial fixed point emerges, which may control the theory's IR behavior.

  18. The Cauchy problem for metric-affine f(R)-gravity in the presence of perfect-fluid matter

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; Vignolo, S.

    2009-09-01

    The Cauchy problem for metric-affine f(R)-gravity in the manner of Palatini and with torsion, in the presence of perfect fluid matter acting as a source, is discussed following the well-known Bruhat prescriptions for general relativity. The problem results in being well formulated and well posed when the perfect-fluid form of the stress-energy tensor is preserved under conformal transformations and the set of viable f(R)-models is not empty. The key role of conservation laws in the Jordan and in the Einstein frame is also discussed.

  19. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  20. Quantum Gravity Effects on the Tunneling Radiation of the Einstein-Maxwell-Dilaton-Axion Black Hole

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhu; Ren, Ruyi; Chen, Deyou; Liu, Zixiang; Li, Guopin

    2016-07-01

    Taking into account effects of quantum gravity, we investigate the evaporation of an Einstein-Maxwell-Dilaton-Axion black hole. The corrected Hawking temperature is gotten respectively by the scalar particle's and the fermion's tunneling across the horizon. This temperature is lower than the original one derived by Hawking, which means quantum gravity effects slow down the rise of the temperature.

  1. On the breakdown of asymptotic Poincare invariance in D = 3 Einstein gravity

    NASA Technical Reports Server (NTRS)

    Deser, S.

    1985-01-01

    It is shown through a series of calculations that neither momentum nor boosts are definable for finite energy solutions of Einstein gravity in D = 3. The contrast between the effects of Lorentz transformations on the corresponding metrics for D = 3 and D = 4 gravity is demonstrated, and some comparisons with the vector gauge treatment of the problem are offered.

  2. Stability of the Einstein static universe in f(R) gravity

    SciTech Connect

    Boehmer, Christian G.; Hollenstein, Lukas; Lobo, Francisco S. N.

    2007-10-15

    We analyze the stability of the Einstein static universe by considering homogeneous scalar perturbations in the context of f(R) modified theories of gravity. By considering specific forms of f(R), the stability regions of the solutions are parametrized by a linear equation of state parameter w=p/{rho}. Contrary to classical general relativity, it is found that in f(R) gravity a stable Einstein cosmos with a positive cosmological constant does indeed exist. Thus, we are lead to conclude that, in principle, modifications in f(R) gravity stabilize solutions which are unstable in general relativity.

  3. Cosmology without Einstein's assumption that inertial mass produces gravity

    NASA Astrophysics Data System (ADS)

    Ellis, Homer G.

    2015-06-01

    Giving up Einstein's assumption, implicit in his 1916 field equations, that inertial mass, even in its appearance as energy, is equivalent to active gravitational mass and therefore is a source of gravity allows revising the field equations to a form in which a positive cosmological constant is seen to (mis)represent a uniform negative net mass density of gravitationally attractive and gravitationally repulsive matter. Field equations with both positive and negative active gravitational mass densities of both primordial and continuously created matter, incorporated along with two scalar fields to 'relax the constraints' on the spacetime geometry, yield cosmological solutions that exhibit inflation, deceleration, coasting, acceleration, and a 'big bounce' instead of a 'big bang,' and provide good fits to a Hubble diagram of Type Ia supernovae data. The repulsive matter is identified as the back sides of the 'drainholes' introduced by the author in 1973 as solutions of those same field equations. Drainholes (prototypical examples of 'traversable wormholes') are topological tunnels in space which gravitationally attract on their front, entrance sides, and repel more strongly on their back, exit sides. The front sides serve both as the gravitating cores of the visible, baryonic particles of primordial matter and as the continuously created, invisible particles of the 'dark matter' needed to hold together the large-scale structures seen in the universe; the back sides serve as the misnamed 'dark energy' driving the current acceleration of the expansion of the universe. Formation of cosmic voids, walls, filaments and nodes is attributed to expulsion of drainhole entrances from regions populated by drainhole exits and accumulation of the entrances on boundaries separating those regions.

  4. EINSTEIN-ÆTHER Gravity:. Theory and Observational Constraints

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted

    2008-03-01

    Einstein-æther theory is general relativity coupled to a dynamical unit timelike vector field. A brief review of current theoretical understanding and observational constraints on the four coupling parameters of the theory is given.

  5. Quasispherical gravitational collapse in 5D Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Ghosh, Sushant G.; Jhingan, S.

    2010-07-15

    We obtain a general five-dimensional quasispherical collapsing solutions of irrotational dust in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms. These solutions are a generalization, to Einstein-Gauss-Bonnet gravity, of the five-dimensional quasispherical Szkeres like collapsing solutions in general relativity. It is found that the collapse proceeds in the same way as in the analogous spherical collapse, i.e., there exists regular initial data such that the collapse proceed to form naked singularities violating cosmic censorship conjecture. The effect of Gauss-Bonnet quadratic curvature terms on the formation and locations of the apparent horizon is deduced.

  6. Variational principle and one-point functions in three-dimensional flat space Einstein gravity

    NASA Astrophysics Data System (ADS)

    Detournay, Stephane; Grumiller, Daniel; Schöller, Friedrich; Simón, Joan

    2014-04-01

    We provide a well-defined variational principle for three-dimensional flat space Einstein gravity by adding one-half of the Gibbons-Hawking-York boundary term to the bulk action. We check the zero-point function, recovering consistency with thermodynamics of flat space cosmologies. We then apply our result to calculate the one-point functions in flat space Einstein gravity for the vacuum and all flat space cosmologies. The results are compatible with the ones for the zero-mode charges obtained by canonical analysis.

  7. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. An Educator's Guide with Activities in Space Science.

    ERIC Educational Resources Information Center

    Range, Shannon K'doah; Mullins, Jennifer

    This teaching guide introduces a relativity gyroscope experiment aiming to test two unverified predictions of Albert Einstein's general theory of relativity. An introduction to the theory includes the following sections: (1) "Spacetime, Curved Spacetime, and Frame-Dragging"; (2) "'Seeing' Spacetime with Gyroscopes"; (3) "The Gravity Probe B…

  8. Horizons of radiating black holes in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Ghosh, S. G.; Deshkar, D. W.

    2008-02-15

    A Vaidya-based model of a radiating black hole is studied in a 5-dimensional Einstein gravity with Gauss-Bonnet contribution of quadratic curvature terms. The structure and locations of the apparent and event horizons of the radiating black hole are determined.

  9. Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?

    ERIC Educational Resources Information Center

    Puri, Avinash

    2015-01-01

    According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…

  10. Einstein's Gravity as Seen by a Cosmic Lighthouse Keeper

    NASA Astrophysics Data System (ADS)

    Kramer, Michael

    The last years have seen continuing activities in the exploration of our understanding of gravity, motivated by results from precision cosmology and new precision astrophysical experiments. At the centre of attention lies the question as to whether general relativity is the correct theory of gravity. In answering this question, we work not only towards correctly interpreting the phenomenon of "dark energy" but also towards the goal of achieving a quantum theory of gravity. In these efforts, the observations of pulsars, especially those in binary systems, play an important role. Pulsars do not only provide the only evidence for the existence of gravitational waves so far, but they also provide precision tests of general relativity and alternative theories of gravity. This talk summarizes the current state-of-art in these experiments and looks into the future.

  11. Einstein Revisited - Gravity in Curved Spacetime Without Event Horizons

    NASA Astrophysics Data System (ADS)

    Leiter, Darryl

    2000-04-01

    In terms of covariant derivatives with respect to flat background spacetimes upon which the physical curved spacetime is imposed (1), covariant conservation of energy momentum requires, via the Bianchi Identity, that the Einstein tensor be equated to the matter energy momentum tensor. However the Einstein tensor covariantly splits (2) into two tensor parts: (a) a term proportional to the gravitational stress energy momentum tensor, and (b) an anti-symmetric tensor which obeys a covariant 4-divergence identity called the Freud Identity. Hence covariant conservation of energy momentum requires, via the Freud Identity, that the Freud tensor be equal to a constant times the matter energy momentum tensor. The resultant field equations (3) agree with the Einstein equations to first order, but differ in higher orders (4) such that black holes are replaced by "red holes" i.e., dense objects collapsed inside of their photon orbits with no event horizons. (1) Rosen, N., (1963), Ann. Phys. v22, 1; (2) Rund, H., (1991), Alg. Grps. & Geom. v8, 267; (3) Yilmaz, Hl, (1992), Nuo. Cim. v107B, 946; (4) Roberstson, S., (1999),Ap.J. v515, 365.

  12. Evolution and spherical collapse in Einstein-Æther theory and Hořava gravity

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Jishnu; Coates, Andrew; Colombo, Mattia; Sotiriou, Thomas P.

    2016-03-01

    We compare the initial value formulation of the low-energy limit of (nonprojectable) Hořava gravity to that of Einstein-æther theory when the æther is assumed to be hypersurface orthogonal at the level of the field equations. This comparison clearly highlights a crucial difference in the causal structure of the two theories at the nonperturbative level: in Hořava gravity evolution equations include an elliptic equation that is not a constraint relating initial data but needs to be imposed on each slice of the foliation. This feature is absent in Einstein-æther theory. We discuss its physical significance in Hořava gravity. We also focus on spherical symmetry, and we revisit existing collapse simulations in Einstein-æther theory. We argue that they have likely already uncovered the dynamical formation of a universal horizon and that they can act as evidence that this horizon is indeed a Cauchy horizon in Hořava gravity.

  13. Why does a ball fall?: A new visualization for Einstein's model of gravity

    NASA Astrophysics Data System (ADS)

    Gould, Roy R.

    2016-05-01

    Many physics teachers seek a simple illustration of Einstein's model of gravity, suitable for the introductory physics classroom. In this article, we show that an ordinary wall map of the world can be used to contrast Newton's and Einstein's explanations for why a ball falls when released. Trajectories on the map are analogous to the trajectories of the ball through spacetime, because the geometry of the map is remarkably similar to the geometry of spacetime near Earth's surface. To aid in the pedagogy, we focus on the concept of scale rather than curvature. We show that, contrary to popular visualizations of Einstein's model, it is primarily the warping of time, not space, that causes a ball to fall, and we address the question of why we do not see the distortion of spacetime around us. Finally, we recover Newton's results for the falling ball from our geometrical treatment.

  14. Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.

    PubMed

    Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor

    2015-02-20

    Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude. PMID:25763946

  15. Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity

    SciTech Connect

    Eichhorn, Astrid; Gies, Holger; Scherer, Michael M.

    2009-11-15

    We consider the asymptotic-safety scenario for quantum gravity which constructs a nonperturbatively renormalizable quantum gravity theory with the help of the functional renormalization group (RG). We verify the existence of a non-Gaussian fixed point and include a running curvature-ghost coupling as a first step towards the flow of the ghost sector of the theory. We find that the scalar curvature-ghost coupling is asymptotically free and RG relevant in the ultraviolet. Most importantly, the property of asymptotic safety discovered so far within the Einstein-Hilbert truncation and beyond remains stable under the inclusion of the ghost flow.

  16. Testing Einstein's theory of gravity in a millisecond pulsar triple system

    NASA Astrophysics Data System (ADS)

    Archibald, Anne

    2015-04-01

    Einstein's theory of gravity depends on a key postulate, the strong equivalence principle. This principle says, among other things, that all objects fall the same way, even objects with strong self-gravity. Almost every metric theory of gravity other than Einstein's general relativity violates the strong equivalence principle at some level. While the weak equivalence principle--for objects with negligible self-gravity--has been tested in the laboratory, the strong equivalence principle requires astrophysical tests. Lunar laser ranging provides the best current tests by measuring whether the Earth and the Moon fall the same way in the gravitational field of the Sun. These tests are limited by the weak self-gravity of the Earth: the gravitational binding energy (over c2) over the mass is only 4 . 6 ×10-10 . By contrast, for neutron stars this same ratio is expected to be roughly 0 . 1 . Thus the recently-discovered system PSR J0337+17, a hierarchical triple consisting of a millisecond pulsar and two white dwarfs, offers the possibility of a test of the strong equivalence principle that is more sensitive by a factor of 20 to 100 than the best existing test. I will describe our observations of this system and our progress towards such a test.

  17. Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field

    SciTech Connect

    Cadoni, Mariano; Serra, Matteo; Mignemi, Salvatore

    2011-10-15

    We propose a general method for solving exactly the static field equations of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Our method starts from an ansatz for the scalar field profile, and determines, together with the metric functions, the corresponding form of the scalar self-interaction potential. Using this method we prove a new no-hair theorem about the existence of hairy black-hole and black-brane solutions and derive broad classes of static solutions with radial symmetry of the theory, which may play an important role in applications of the AdS/CFT correspondence to condensed matter and strongly coupled QFTs. These solutions include: (1) four- or generic (d+2)-dimensional solutions with planar, spherical or hyperbolic horizon topology; (2) solutions with anti-de Sitter, domain wall and Lifshitz asymptotics; (3) solutions interpolating between an anti-de Sitter spacetime in the asymptotic region and a domain wall or conformal Lifshitz spacetime in the near-horizon region.

  18. Braneworld dynamics in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki; Sahni, Varun; Shtanov, Yuri

    2007-11-15

    We discuss the cosmological evolution of a braneworld in five-dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be spacelike as well as timelike. The resulting equations of motion have the form of a cubic equation in the (H{sup 2},({rho}+{sigma}){sup 2}) plane, where {sigma} is the brane tension and {rho} is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantomlike so that w<-1. At late times, this branch approaches de Sitter space (w=-1) and avoids the big-rip singularities usually present in phantom models. For a timelike extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.

  19. Avoidance of singularities in asymptotically safe Quantum Einstein Gravity

    SciTech Connect

    Kofinas, Georgios; Zarikas, Vasilios

    2015-10-30

    New general spherically symmetric solutions have been derived with a cosmological “constant” Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) is timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.

  20. Spatially covariant theories of gravity: disformal transformation, cosmological perturbations and the Einstein frame

    NASA Astrophysics Data System (ADS)

    Fujita, Tomohiro; Gao, Xian; Yokoyama, Jun'ichi

    2016-02-01

    We investigate the cosmological background evolution and perturbations in a general class of spatially covariant theories of gravity, which propagates two tensor modes and one scalar mode. We show that the structure of the theory is preserved under the disformal transformation. We also evaluate the primordial spectra for both the gravitational waves and the curvature perturbation, which are invariant under the disformal transformation. Due to the existence of higher spatial derivatives, the quadratic Lagrangian for the tensor modes itself cannot be transformed to the form in the Einstein frame. Nevertheless, there exists a one-parameter family of frames in which the spectrum of the gravitational waves takes the standard form in the Einstein frame.

  1. Five-dimensional black strings in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Kobayashi, Tsutomu; Tanaka, Takahiro

    2005-04-15

    We consider black-string-type solutions in five-dimensional Einstein-Gauss-Bonnet gravity. Numerically constructed solutions under static, axially symmetric and translationally invariant metric ansatz are presented. The solutions are specified by two asymptotic charges: mass of a black string and a scalar charge associated with the radion part of the metric. Regular black string solutions are found if and only if the two charges satisfy a fine-tuned relation, and otherwise the spacetime develops a singular event horizon or a naked singularity. We can also generate bubble solutions from the black strings by using a double Wick rotation.

  2. Some exact solutions with torsion in 5D Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Canfora, F.; Giacomini, A.; Willison, S.

    2007-08-15

    Exact solutions with torsion in Einstein-Gauss-Bonnet gravity are derived. These solutions have a cross product structure of two constant curvature manifolds. The equations of motion give a relation for the coupling constants of the theory in order to have solutions with nontrivial torsion. This relation is not the Chern-Simons combination. One of the solutions has an AdS{sub 2}xS{sup 3} structure and is so the purely gravitational analogue of the Bertotti-Robinson space-time where the torsion can be seen as the dual of the covariantly constant electromagnetic field.

  3. Hydrodynamics dual to Einstein-Gauss-Bonnet gravity: all-order gradient resummation

    NASA Astrophysics Data System (ADS)

    Bu, Yanyan; Lublinsky, Michael; Sharon, Amir

    2015-06-01

    Relativistic hydrodynamics dual to Einstein-Gauss-Bonnet gravity in asymptotic AdS5 space is under study. To linear order in the amplitude of the fluid velocity and temperature, we derive the fluid's stress-energy tensor via an all-order resummation of the derivative terms. Each order is accompanied by new transport coefficients, which all together could be compactly absorbed into two functions of momenta, referred to as viscosity functions. Via inverse Fourier transform, these viscosities appear as memory functions in the constitutive relation between components of the stress-energy tensor.

  4. Black holes with scalar hair in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Brihaye, Y.; Ducobu, L.

    2016-05-01

    The Einstein-Gauss-Bonnet gravity in five dimensions is extended by scalar fields and the corresponding equations are reduced to a system of nonlinear differential equations. A large family of regular solutions of these equations is shown to exist. Generically, these solutions are spinning black holes with scalar hairs. They can be characterized (but not uniquely) by an horizon and an angular velocity on this horizon. Taking particular limits, the black holes approach boson star or become extremal, in any case the limiting configurations remain hairy.

  5. - criticality of AdS black hole in the Einstein-Maxwell-power-Yang-Mills gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Yang, Zhan-Ying; Zou, De-Cheng; Xu, Wei; Yue, Rui-Hong

    2015-02-01

    We study the - critical behaivor of N-dimensional AdS black holes in Einstein-Maxwell-power-Yang-Mills gravity. Our results show the existence of the Van der Waals like small-large black hole phase transitions when taking some special values of charges of the Maxwell and Yang-Mills fields. Further to calculate the critical exponents of the black holes at the critical point, we find that they are the same as those in the Van der Waals liquid-gas system.

  6. Conformal mass in Einstein-Gauss-Bonnet AdS gravity

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Kofinas, Georgios; Miskovic, Olivera; Olea, Rodrigo

    2015-05-01

    In this paper, we show that the physical information given by conserved charges for asymptotically AdS spacetimes in Einstein-Gauss-Bonnet AdS gravity is encoded in the electric part of the Weyl tensor. This result generalizes the conformal mass definition by Ashtekar-Magnon-Das (AMD) to a gravity theory with a Gauss-Bonnet term. This proof makes use of the Noether charges obtained from an action renormalized by the addition of counterterms which depend on the extrinsic curvature (Kounterterms). If the asymptotic fall-off behavior of the Weyl tensor is same as the one considered in the AMD method, then the Kounterterm charges and the AMD charges agree in any dimension.

  7. The twins and the bucket: How Einstein made gravity rather than motion relative in general relativity

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    2012-08-01

    In publications in 1914 and 1918, Einstein claimed that his new theory of gravity in some sense relativizes the rotation of a body with respect to the distant stars (a stripped-down version of Newton's rotating bucket experiment) and the acceleration of the traveler with respect to the stay-at-home in the twin paradox. What he showed was that phenomena seen as inertial effects in a space-time coordinate system in which the non-accelerating body is at rest can be seen as a combination of inertial and gravitational effects in a (suitably chosen) space-time coordinate system in which the accelerating body is at rest. Two different relativity principles play a role in these accounts: (a) the relativity of non-uniform motion, in the weak sense that the laws of physics are the same in the two space-time coordinate systems involved; (b) what Einstein in 1920 called the relativity of the gravitational field, the notion that there is a unified inertio-gravitational field that splits differently into inertial and gravitational components in different coordinate systems. I provide a detailed reconstruction of Einstein's rather sketchy accounts of the twins and the bucket and examine the role of these two relativity principles. I argue that we can hold on to (b) but that (a) is either false or trivial.

  8. Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity

    SciTech Connect

    Dehghani, M. H.; Sedehi, H. R. Rastegar

    2006-12-15

    We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account.

  9. Topological black holes for Einstein-Gauss-Bonnet gravity with a nonminimal scalar field

    NASA Astrophysics Data System (ADS)

    Gaete, Moisés Bravo; Hassaïne, Mokhtar

    2013-11-01

    We consider the Einstein-Gauss-Bonnet gravity with a negative cosmological constant together with a source given by a scalar field nonminimally coupled in arbitrary dimension D. For a certain election of the cosmological and Gauss-Bonnet coupling constants, we derive two classes of AdS black hole solutions whose horizon is planar. The first family of black holes obtained for a particular value of the nonminimal coupling parameter only depends on a constant M, and the scalar field vanishes as M=0. The second class of solutions corresponds to a two-parametric (with constants M and A) black hole stealth configuration, which is a nontrivial scalar field with a black hole metric such that both sides (gravity and matter parts) of the Einstein equations vanish. In this case, in the vanishing M, the solution reduces to a stealth scalar field on the pure AdS metric. We note that the existence of these two classes of solutions is indicative of the particular choice of the coupling constants, and they cannot be promoted to spherical or hyperboloid black hole solutions in a standard fashion. In the last part, we add to the original action some exact (D-1) forms coupled to the scalar field. The direct benefit of introducing such extra fields is to obtain black hole solutions with a planar horizon for an arbitrary value of the nonminimal coupling parameter.

  10. Einstein-Born-Infeld-massive gravity: adS-black hole solutions and their thermodynamical properties

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panah, B. Eslam; Panahiyan, S.

    2015-11-01

    In this paper, we study massive gravity in the presence of Born-Infeld nonlinear electrodynamics. First, we obtain metric function related to this gravity and investigate the geometry of the solutions and find that there is an essential singularity at the origin ( r = 0). It will be shown that due to contribution of the massive part, the number, type and place of horizons may be changed. Next, we calculate the conserved and thermodynamic quantities and check the validation of the first law of thermodynamics. We also investigate thermal stability of these black holes in context of canonical ensemble. It will be shown that number, type and place of phase transition points are functions of different parameters which lead to dependency of stability conditions to these parameters. Also, it will be shown how the behavior of temperature is modified due to extension of massive gravity and strong nonlinearity parameter. Next, critical behavior of the system in extended phase space by considering cosmological constant as pressure is investigated. A study regarding neutral Einstein-massive gravity in context of extended phase space is done. Geometrical approach is employed to study the thermodynamical behavior of the system in context of heat capacity and extended phase space. It will be shown that GTs, heat capacity and extended phase space have consistent results. Finally, critical behavior of the system is investigated through use of another method. It will be pointed out that the results of this method is in agreement with other methods and follow the concepts of ordinary thermodynamics.

  11. A new functional flow equation for Einstein-Cartan quantum gravity

    NASA Astrophysics Data System (ADS)

    Harst, U.; Reuter, M.

    2015-03-01

    We construct a special-purpose functional flow equation which facilitates non-perturbative renormalization group (RG) studies on theory spaces involving a large number of independent field components that are prohibitively complicated using standard methods. Its main motivation are quantum gravity theories in which the gravitational degrees of freedom are carried by a complex system of tensor fields, a prime example being Einstein-Cartan theory, possibly coupled to matter. We describe a sequence of approximation steps leading from the functional RG equation of the Effective Average Action to the new flow equation which, as a consequence, is no longer fully exact on the untruncated theory space. However, it is by far more "user friendly" when it comes to projecting the abstract equation on a concrete (truncated) theory space and computing explicit beta-functions. The necessary amount of (tensor) algebra reduces drastically, and the usually very hard problem of diagonalizing the pertinent Hessian operator is sidestepped completely. In this paper we demonstrate the reliability of the simplified equation by applying it to a truncation of the Einstein-Cartan theory space. It is parametrized by a scale dependent Holst action, depending on a O(4) spin-connection and the tetrad as the independent field variables. We compute the resulting RG flow, focusing in particular on the running of the Immirzi parameter, and compare it to the results of an earlier computation where the exact equation had been applied to the same truncation. We find consistency between the two approaches and provide further evidence for the conjectured non-perturbative renormalizability (asymptotic safety) of quantum Einstein-Cartan gravity. We also investigate a duality symmetry relating small and large values of the Immirzi parameter (γ → 1 / γ) which is displayed by the beta-functions in the absence of a cosmological constant.

  12. Thermodynamics of Taub-NUT/bolt-AdS black holes in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Khodam-Mohammadi, A.; Monshizadeh, M.

    2009-02-15

    We give a review of the existence of Taub-NUT/bolt solutions in Einstein Gauss-Bonnet gravity with the parameter {alpha} in six dimensions. Although the spacetime with base space S{sup 2}xS{sup 2} has a curvature singularity at r=N, which does not admit NUT solutions, we may proceed with the same computations as in the CP{sup 2} case. The investigation of thermodynamics of NUT/bolt solutions in six dimensions is carried out. We compute the finite action, mass, entropy, and temperature of the black hole. Then the validity of the first law of thermodynamics is demonstrated. It is shown that in NUT solutions all thermodynamic quantities for both base spaces are related to each other by substituting {alpha}{sup CP{sup k}}=[(k+1)/k]{alpha}{sup S{sup 2}}{sup xS{sup 2}}{sup x...S{sub k}{sup 2}}. So, no further information is given by investigating NUT solutions in the S{sup 2}xS{sup 2} case. This relation is not true for bolt solutions. A generalization of the thermodynamics of black holes to arbitrary even dimensions is made using a new method based on the Gibbs-Duhem relation and Gibbs free energy for NUT solutions. According to this method, the finite action in Einstein Gauss-Bonnet is obtained by considering the generalized finite action in Einstein gravity with an additional term as a function of {alpha}. Stability analysis is done by investigating the heat capacity and entropy in the allowed range of {alpha}, {lambda}, and N. For NUT solutions in d dimensions, there exists a stable phase at a narrow range of {alpha}. In six-dimensional bolt solutions, the metric is completely stable for B=S{sup 2}xS{sup 2} and is completely unstable for the B=CP{sup 2} case.

  13. Theory of quantum gravity beyond Einstein and space-time dynamics with quantum inflation

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2015-10-01

    In this talk, I present a theory of quantum gravity beyond Einstein. The theory is established based on spinnic and scaling gauge symmetries by treating the gravitational force on the same footing as the electroweak and strong forces. A bi-frame space-time is initiated to describe the laws of nature. One frame space-time is a globally flat coordinate Minkowski space-time that acts as an inertial reference frame for the motions of fields, the other is a locally flat non-coordinate Gravifield space-time that functions as an interaction representation frame for the degrees of freedom of fields. The Gravifield is sided on both the globally flat coordinate space-time and locally flat non-coordinate space-time and characterizes the gravitational force. Instead of the principle of general coordinate invariance in Einstein theory of general relativity, some underlying principles with the postulates of coordinate independence and gauge invariance are motivated to establish the theory of quantum gravity. When transmuting the Gravifield basis into the coordinate basis in Minkowski space-time, it enables us to obtain equations of motion for all quantum fields and derive basic conservation laws for all symmetries. The gravity equation is found to be governed by the total energy-momentum tensor defined in the flat Minkowski space-time. When the spinnic and scaling gauge symmetries are broken down to a background structure that possesses the global Lorentz and scaling symmetries, we arrive at a Lorentz invariant and conformally flat background Gravifield space-time that is characterized by a cosmic vector with a non-zero cosmological mass scale. We also obtain the massless graviton and massive spinnon. The resulting universe is in general not isotropic in terms of conformal proper time and turns out to be inflationary in light of cosmic proper time. The conformal size of the universe has a singular at the cosmological horizon to which the cosmic proper time must be infinitely

  14. Einstein Gravity Explorer-a medium-class fundamental physics mission

    NASA Astrophysics Data System (ADS)

    Schiller, S.; Tino, G. M.; Gill, P.; Salomon, C.; Sterr, U.; Peik, E.; Nevsky, A.; Görlitz, A.; Svehla, D.; Ferrari, G.; Poli, N.; Lusanna, L.; Klein, H.; Margolis, H.; Lemonde, P.; Laurent, P.; Santarelli, G.; Clairon, A.; Ertmer, W.; Rasel, E.; Müller, J.; Iorio, L.; Lämmerzahl, C.; Dittus, H.; Gill, E.; Rothacher, M.; Flechner, F.; Schreiber, U.; Flambaum, V.; Ni, Wei-Tou; Liu, Liang; Chen, Xuzong; Chen, Jingbiao; Gao, Kelin; Cacciapuoti, L.; Holzwarth, R.; Heß, M. P.; Schäfer, W.

    2009-03-01

    The Einstein Gravity Explorer mission (EGE) is devoted to a precise measurement of the properties of space-time using atomic clocks. It tests one of the most fundamental predictions of Einstein’s Theory of General Relativity, the gravitational redshift, and thereby searches for hints of quantum effects in gravity, exploring one of the most important and challenging frontiers in fundamental physics. The primary mission goal is the measurement of the gravitational redshift with an accuracy up to a factor 104 higher than the best current result. The mission is based on a satellite carrying cold atom-based clocks. The payload includes a cesium microwave clock (PHARAO), an optical clock, a femtosecond frequency comb, as well as precise microwave time transfer systems between space and ground. The tick rates of the clocks are continuously compared with each other, and nearly continuously with clocks on earth, during the course of the 3-year mission. The highly elliptic orbit of the satellite is optimized for the scientific goals, providing a large variation in the gravitational potential between perigee and apogee. Besides the fundamental physics results, as secondary goals EGE will establish a global reference frame for the Earth’s gravitational potential and will allow a new approach to mapping Earth’s gravity field with very high spatial resolution. The mission was proposed as a class-M mission to ESA’s Cosmic Vision Program 2015-2025.

  15. A proper fixed functional for four-dimensional Quantum Einstein Gravity

    NASA Astrophysics Data System (ADS)

    Demmel, Maximilian; Saueressig, Frank; Zanusso, Omar

    2015-08-01

    Realizing a quantum theory for gravity based on Asymptotic Safety hinges on the existence of a non-Gaussian fixed point of the theory's renormalization group flow. In this work, we use the functional renormalization group equation for the effective average action to study the fixed point underlying Quantum Einstein Gravity at the functional level including an infinite number of scale-dependent coupling constants. We formulate a list of guiding principles underlying the construction of a partial differential equation encoding the scale-dependence of f( R)-gravity. We show that this equation admits a unique, globally well-defined fixed functional describing the non-Gaussian fixed point at the level of functions of the scalar curvature. This solution is constructed explicitly via a numerical double-shooting method. In the UV, this solution is in good agreement with results from polynomial expansions including a finite number of coupling constants, while it scales proportional to R 2, dressed up with non-analytic terms, in the IR. We demonstrate that its structure is mainly governed by the conformal sector of the flow equation. The relation of our work to previous, partial constructions of similar scaling solutions is discussed.

  16. Geometric flows and Perelman's thermodynamics for black ellipsoids in R2 and Einstein gravity theories

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Tamara; Ruchin, Vyacheslav; Vacaru, Olivia; Vacaru, Sergiu I.

    2016-06-01

    We study geometric relativistic flow and Ricci soliton equations which (for respective nonholonomic constraints and self-similarity conditions) are equivalent to the gravitational field equations of R2 gravity and/or to the Einstein equations with scalar field in general relativity, GR. Perelman's functionals are generalized for modified gravity theories, MGTs, which allows to formulate an analogous statistical thermodynamics for geometric flows and Ricci solitons. There are constructed and analyzed generic off-diagonal black ellipsoid, black hole and solitonic exact solutions in MGTs and GR encoding geometric flow evolution scenarios and nonlinear parametric interactions. Such new classes of solutions in MGTs can be with polarized and/or running constants, nonholonomically deformed horizons and/or embedded self-consistently into solitonic backgrounds. They exist also in GR as generic off-diagonal vacuum configurations with effective cosmological constant and/or mimicking effective scalar field interactions. Finally, we compute Perelman's energy and entropy for black ellipsoids and evolution solitons in R2 gravity.

  17. Horizon area-angular momentum-charge-magnetic flux inequalities in the 5D Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho

    2013-06-01

    In this paper, we consider 5D spacetimes satisfying the Einstein-Maxwell-dilaton gravity equations which are U(1)2 axisymmetric but otherwise highly dynamical. We derive inequalities between the area, the angular momenta, the electric charge and the magnetic fluxes for any smooth stably outer marginally trapped surface.

  18. Thermodynamics of black holes in (n+1)-dimensional Einstein-Born-Infeld-dilaton gravity

    SciTech Connect

    Sheykhi, A.; Riazi, N.

    2007-01-15

    We construct a new class of (n+1)-dimensional (n{>=}3) black hole solutions in Einstein-Born-Infeld-dilaton gravity with Liouville-type potential for the dilaton field and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black holes, with inner and outer event horizons, an extreme black hole, or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the thermodynamic quantities of the black hole solutions and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis and investigate the effect of dilaton on the stability of the solutions.

  19. Finsler black holes induced by noncommutative anholonomic distributions in Einstein gravity

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2010-05-01

    We study Finsler black holes induced from Einstein gravity as possible effects of quantum spacetime noncommutativity. Such Finsler models are defined by nonholonomic frames not on tangent bundles but on (pseudo)Riemannian manifolds being compatible with standard theories of physics. We focus on noncommutative deformations of Schwarzschild metrics into locally anisotropic stationary ones with spherical/rotoid symmetry. The conditions are derived when black hole configurations can be extracted from two classes of exact solutions depending on noncommutative parameters. The first class of metrics is defined by nonholonomic deformations of the gravitational vacuum by noncommutative geometry. The second class of such solutions is induced by noncommutative matter fields and/or effective polarizations of cosmological constants.

  20. Slowly-Rotating Black Hole Solution in Einstein-Dilaton-Gauss-Bonnet Gravity

    NASA Astrophysics Data System (ADS)

    Ayzenberg, Dimitry; Yunes, Nicolas

    2015-04-01

    We present a stationary and axisymmetric black hole solution in Einstein-Dilaton-Gauss-Bonnet gravity to quadratic order in the ratio of the spin angular momentum to the black hole mass squared. This solution introduces new corrections to previously found nonspinning and linear-in-spin solutions. The location of the event horizon and the ergosphere are modified, as well as the quadrupole moment. The new solution is of Petrov type I, although lower order in spin solutions are of Petrov type D. There are no closed timelike curves or spacetime regions that violate causality outside of the event horizon in the new solution. We calculate the modifications to the binding energy, Kepler's third law, and properties of the innermost stable circular orbit. These modifications are important for determining how the electromagnetic properties of accretion disks around supermassive black holes are changed from those expected in general relativity.

  1. Primordial massive gravitational waves from Einstein-Chern-Simons-Weyl gravity

    SciTech Connect

    Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr

    2014-08-01

    We investigate the evolution of cosmological perturbations during de Sitter inflation in the Einstein-Chern-Simons-Weyl gravity. Primordial massive gravitational waves are composed of one scalar, two vector and four tensor circularly polarized modes. We show that the vector power spectrum decays quickly like a transversely massive vector in the superhorizon limit z → 0. In this limit, the power spectrum coming from massive tensor modes decays quickly, leading to the conventional tensor power spectrum. Also, we find that in the limit of m{sup 2} → 0 (keeping the Weyl-squared term only), the vector and tensor power spectra disappear. It implies that their power spectra are not gravitationally produced because they (vector and tensor) are decoupled from the expanding de Sitter background, as a result of conformal invariance.

  2. Equivalent off-diagonal cosmological models and ekpyrotic scenarios in -modified, massive, and einstein gravity

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2015-04-01

    We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and -modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painlevé-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed.

  3. Thermodynamics of rotating solutions in (n+1)-dimensional Einstein-Maxwell-dilaton gravity

    SciTech Connect

    Sheykhi, A.; Riazi, N.; Pakravan, J.; Dehghani, M. H.

    2006-10-15

    We construct a class of charged, rotating solutions of (n+1)-dimensional Einstein-Maxwell-dilaton gravity with cylindrical or toroidal horizons in the presence of Liouville-type potentials and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black brane, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We also compute temperature, entropy, charge, electric potential, mass and angular momentum of the black brane solutions, and find that these quantities satisfy the first law of thermodynamics. We find a Smarr-type formula and perform a stability analysis by computing the heat capacity in the canonical ensemble. We find that the system is thermally stable when the coupling constant between the dilaton and matter field {alpha}{<=}1, while for {alpha}>1 the system has an unstable phase. This shows that the dilaton field makes the solution unstable, while it is stable even in Lovelock gravity.

  4. Generalized Misner-Sharp quasilocal mass in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki; Nozawa, Masato

    2008-03-15

    We investigate properties of a quasilocal mass in a higher-dimensional spacetime having symmetries corresponding to the isomertries of an (n-2)-dimensional maximally symmetric space in Einstein-Gauss-Bonnet gravity in the presence of a cosmological constant. We assume that the Gauss-Bonnet coupling constant is non-negative. The quasilocal mass was recently defined by one of the authors as a counterpart of the Misner-Sharp quasilocal mass in general relativity. The quasilocal mass is found to be a quasilocal conserved charge associated with a locally conserved current constructed from the generalized Kodama vector and exhibits the unified first law corresponding to the energy-balance law. In the asymptotically flat case, it converges to the Arnowitt-Deser-Misner mass at spacelike infinity, while it converges to the Deser-Tekin and Padilla mass at infinity in the case of asymptotically anti-de Sitter. Under the dominant energy condition, we show the monotonicity of the quasilocal mass for any k, while the positivity on an untrapped hypersurface with a regular center is shown for k=1 and for k=0 with an additional condition, where k={+-}1, 0 is the constant sectional curvature of each spatial section of equipotential surfaces. Under a special relation between coupling constants, positivity of the quasilocal mass is shown for any k without assumptions above. We also classify all the vacuum solutions by utilizing the generalized Kodama vector. Lastly, several conjectures on further generalization of the quasilocal mass in Lovelock gravity are proposed.

  5. Static black holes of metric-affine gravity in the presence of matter

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; García, Alberto; Macías, Alfredo; Quevedo, Hernando

    2001-07-01

    We investigate spherically symmetric and static gravitational fields representing black hole configurations in the framework of metric-affine gauge theories of gravity (MAG) in the presence of different matter fields. It is shown that in the triplet ansatz sector of MAG, black hole configurations in the presence of non-Abelian matter fields allow the existence of black hole hair. We analyze several cases of matter fields characterized by the presence of hair and for all of them we show the validity of the no short hair conjecture.

  6. Emergent universe supported by chiral cosmological fields in 5D Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Chervon, S. V.; Maharaj, S. D.; Beesham, Aroonkumar; Kubasov, A. S.

    2014-07-01

    We propose the application of the chiral cosmological model (CCM) for the Einstein--Gauss--Bonnet (EGB) theory of gravitation with the aim of finding new models of the Emergent Universe (EmU) scenario. We analysed the EmU supported by two chiral cosmological fields for a spatially flat universe, while we have used three chiral fields when we investigated open and closed universes. To prove the validity of the EmU scenario we fixed the scale factor and found the exact solution by decomposition of EGB equations and solving the chiral field dynamics equation. To this end, we suggested the decomposition of the EGB equations in such a way that the first chiral field is responsible for the Einstein part of the model, while the second field, together with kinetic interaction term, is connected with the Gauss--Bonnet part of the theory. We proved that both fields are phantom ones under this decomposition, and that the model has a solution if the kinetic interaction between the fields equals a constant. We have presented the exact solution in terms of cosmic time. This was done for a spatially flat universe. In the case of open and closed universes we introduced the third chiral field (canonical for closed and phantom for open universe) which is responsible for the EGB and curvature parts. The solution of the third field equation is obtained in quadratures. Thus we have proved that the CCM is able to support EmU scenario in EGB gravity for spatially flat, open and closed universes.

  7. Uniqueness theorem for black holes with Kaluza-Klein asymptotic in 5D Einstein-Maxwell gravity

    SciTech Connect

    Yazadjiev, Stoytcho

    2010-07-15

    In the present paper, we prove a uniqueness theorem for stationary multi-black hole configurations with Kaluza-Klein asymptotic in a certain sector of 5D Einstein-Maxwell gravity. As a part of the technical assumptions in the theorem, we assume that the Killing vector associated with the compact dimension is orthogonal to the other Killing vectors and that it is also hypersurface orthogonal. About the Maxwell field, we assume that it is invariant under the Killing symmetries and has a nonzero component only along the Killing vector associated with the compact dimension. We show that such multi-black hole configurations are uniquely specified by the interval structure, angular momenta of the horizons, magnetic charges, and the magnetic flux. A straightforward generalization of the uniqueness theorem for 5D Einstein-Maxwell-dilaton gravity is also given.

  8. Static and symmetric wormholes respecting energy conditions in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki; Nozawa, Masato

    2008-07-15

    Properties of n({>=}5)-dimensional static wormhole solutions are investigated in Einstein-Gauss-Bonnet gravity with or without a cosmological constant {lambda}. We assume that the spacetime has symmetries corresponding to the isometries of an (n-2)-dimensional maximally symmetric space with the sectional curvature k={+-}1, 0. It is also assumed that the metric is at least C{sup 2} and the (n-2)-dimensional maximally symmetric subspace is compact. Depending on the existence or absence of the general relativistic limit {alpha}{yields}0, solutions are classified into general relativistic (GR) and non-GR branches, respectively, where {alpha} is the Gauss-Bonnet coupling constant. We show that a wormhole throat respecting the dominant energy condition coincides with a branch surface in the GR branch, otherwise the null energy condition is violated there. In the non-GR branch, it is shown that there is no wormhole solution for k{alpha}{>=}0. For the matter field with zero tangential pressure, it is also shown in the non-GR branch with k{alpha}<0 and {lambda}{<=}0 that the dominant energy condition holds at the wormhole throat if the radius of the throat satisfies some inequality. In the vacuum case, a fine-tuning of the coupling constants is shown to be necessary and the radius of a wormhole throat is fixed. Explicit wormhole solutions respecting the energy conditions in the whole spacetime are obtained in the vacuum and dust cases with k=-1 and {alpha}>0.

  9. Magnetic branes in (n+1)-dimensional Einstein-Maxwell-dilaton gravity

    SciTech Connect

    Sheykhi, A.; Riazi, N.; Dehghani, M. H.

    2007-02-15

    We construct two new classes of spacetimes generated by spinning and traveling magnetic sources in (n+1)-dimensional Einstein-Maxwell-dilaton gravity with Liouville-type potential. These solutions are neither asymptotically flat nor (A)dS. The first class of solutions which yields a (n+1)-dimensional spacetime with a longitudinal magnetic field and k rotation parameters have no curvature singularity and no horizons, but have a conic geometry. We show that when one or more of the rotation parameters are nonzero, the spinning branes have a net electric charge that is proportional to the magnitude of the rotation parameters. The second class of solutions yields a static spacetime with an angular magnetic field and has no curvature singularity, no horizons, and no conical singularity. Although one may add linear momentum to the second class of solutions by a boost transformation, one does not obtain a new solution. We find that the net electric charge of these traveling branes with one or more nonzero boost parameters is proportional to the magnitude of the velocity of the branes. We also use the counterterm method and calculate the conserved quantities of the solutions.

  10. Continuum interpretation of the dynamical-triangulation formulation of quantum Einstein gravity

    NASA Astrophysics Data System (ADS)

    Smit, Jan

    2013-08-01

    In the time-space symmetric version of dynamical triangulation, a non-perturbative formulation of quantum Einstein gravity, numerical simulations without matter have shown two phases, with spacetimes that are either crumpled or elongated like branched-polymers, with strong evidence of a first-order transition between them. These properties have generally been considered unphysical. Using previously unpublished numerical results, we give an interpretation in terms of continuum spacetimes that have constant positive and negative curvature, respectively in the `elongated' and `crumpled' phase. The magnitude of the positive curvature leads naturally to average spacetimes consisting solely of baby-universes in a branched-polymer structure, whereas the negative curvature accommodates easily a large mother universe, albeit with a crumpling singularity. Nevertheless, there is evidence for scaling in the crumpled phase, which we compare with the well-known scaling in the elongated phase. Using constraint effective-action models we analyze existing numerical susceptibility-data of the phase transition and determine the behavior of the average Regge-curvature. We propose a renormalization of the Regge curvature and compare it to the curvature of the above continuum spacetimes, and also to the curvature implied by the Gauss-Bonnet theorem in the continuum. The latter involves a more benign multiplicative renormalization and suggests that simulations at larger volumes are needed to settle to order of the phase transition.

  11. Finitary Topos for Locally Finite, Causal and Quantal Vacuum Einstein Gravity

    NASA Astrophysics Data System (ADS)

    Raptis, Ioannis

    2007-03-01

    The pentalogy (Mallios, A. and Raptis, I. (2001). International Journal of Theoretical Physics 40, 1885; Mallios, A. and Raptis, I. (2002). International Journal of Theoretical Physics 41, 1857; Mallios, A. and Raptis, I. (2003).International Journal of Theoretical Physics 42, 1479; Mallios, A. and Raptis, I. (2004). ‘paper-book’/research monograph); I. Raptis (2005). International Journal of Theoretical Physics (to appear)is brought to its categorical climax by organizing the curved finitary spacetime sheaves of quantumcausal sets involved therein, on which a finitary (:locally finite), singularity-free, background manifold independent and geometrically prequantized version of the gravitational vacuum Einstein field equations were seen to hold, into a topos structure [InlineMediaObject not available: see fulltext.]. We show that the category of finitary differential triads [InlineMediaObject not available: see fulltext.] is a finitary instance of an elementary topos proper in the original sense dueto Lawvere and Tierney. We present in the light of Abstract Differential Geometry (ADG) a Grothendieck-type of generalization of Sorkin’s finitary substitutes of continuous spacetime manifoldtopologies, the latter’s topological refinement inverse systems of locally finite coverings and their associated coarse graining sieves, the upshot being that [InlineMediaObject not available: see fulltext.] is also a finitary example of a Grothendieck topos. In the process, we discover that the subobject classifier Ω fcq of [InlineMediaObject not available: see fulltext.] is a Heyting algebra type of object, thus we infer that the internal logic of our finitary topos is intuitionistic, as expected. We also introduce the new notion of ‘finitary differential geometric morphism’ which, as befits ADG, gives a differential geometric slant to Sorkin’s purely topological acts of refinement (:coarse graining). Based on finitary differential geometric morphisms regarded as

  12. Thermodynamics of Taub-NUT/bolt black holes in Einstein-Maxwell gravity

    SciTech Connect

    Dehghani, M.H.; Khodam-Mohammadi, A.

    2006-06-15

    First, we construct the Taub-NUT/bolt solutions of (2k+2)-dimensional Einstein-Maxwell gravity, when all the factor spaces of 2k-dimensional base space B have positive curvature. These solutions depend on two extra parameters, other than the mass and the NUT charge. These are electric charge q and electric potential at infinity V. We investigate the existence of Taub-NUT solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two extra conditions. These two extra conditions come from the regularity of vector potential at r=N and the fact that the horizon at r=N should be the outer horizon of the NUT charged black hole. We find that the NUT solutions in 2k+2 dimensions have no curvature singularity at r=N, when the 2k-dimensional base space is chosen to be CP{sup 2k}. For bolt solutions, there exists an upper limit for the NUT parameter which decreases as the potential parameter increases. Second, we study the thermodynamics of these spacetimes. We compute temperature, entropy, charge, electric potential, action and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We perform a stability analysis by computing the heat capacity, and show that the NUT solutions are not thermally stable for even k's, while there exists a stable phase for odd k's, which becomes increasingly narrow with increasing dimensionality and wide with increasing V. We also study the phase behavior of the 4 and 6 dimensional bolt solutions in canonical ensemble and find that these solutions have a stable phase, which becomes smaller as V increases.

  13. Spin precession of slow neutrons in Einstein-Cartan gravity with torsion, chameleon, and magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Wellenzohn, M.

    2016-02-01

    We analyze a spin precession of slow neutrons in the Einstein-Cartan gravity with torsion, chameleon and magnetic field. For the derivation of the Heisenberg equation of motion of the neutron spin we use the effective low-energy potential, derived by Ivanov and Wellenzohn [Phys. Rev. D 92, 125004 (2015)] for slow neutrons, coupled to gravitational, chameleon, and torsion fields to order 1 /m , where m is the neutron mass. In addition to these low-energy interactions we switch on the interaction of slow neutrons with a magnetic field. We show that to linear order approximation with respect to gravitational, chameleon, and torsion fields the Dirac Hamilton operator for fermions (neutrons), moving in spacetimes created by rotating coordinate systems, contains the anti-Hermitian operators of torsion-fermion (neutron) interactions, caused by torsion scalar and tensor space-space-time and time-space-space degrees of freedom. Such anti-Hermitian operators violate C P and T invariance. In the low-energy approximation the C P and T violating torsion-fermion (neutron) interactions appear only to order O (1 /m ). One may assume that in the rotating Universe and galaxies the obtained anti-Hermitian torsion-fermion interactions might be an origin of (i) violation of C P and T invariance in the Universe and (ii) of baryon asymmetry. We show that anti-Hermitian torsion-fermion interactions of relativistic fermions, violating C P and T invariance, (i) cannot be removed by nonunitary transformations of the Dirac fermion wave functions and (ii) are conformal invariant. According to general requirements of conformal invariance of massive particle theories in gravitational fields [see R. H. Dicke, Phys. Rev. 125, 2163 (1962) and A. J. Silenko, Phys. Rev. D 91, 065012 (2015)], conformal invariance of anti-Hermitian torsion-fermion interactions is valid only if the fermion mass is changed by a conformal factor.

  14. Modified Einstein's gravity as a possible missing link between sub- and super-Chandrasekhar type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Das, Upasana; Mukhopadhyay, Banibrata

    2015-05-01

    We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!

  15. Stability of thin-shell wormholes supported by normal matter in Einstein-Maxwell-Gauss-Bonnet gravity

    SciTech Connect

    Mazharimousavi, S. Habib; Halilsoy, M.; Amirabi, Z.

    2010-05-15

    Recently in [Phys. Rev. D 76, 087502 (2007) and Phys. Rev. D 77, 089903 (2008)] a thin-shell wormhole has been introduced in five-dimensional Einstein-Maxwell-Gauss-Bonnet gravity which was supported by normal matter. We wish to consider this solution and investigate its stability. Our analysis shows that for the Gauss-Bonnet parameter {alpha}<0, stability regions form for a narrow band of finely tuned mass and charge. For the case {alpha}>0, we iterate once more that no stable, normal matter thin-shell wormhole exists.

  16. Einstein equations for generalized theories of gravity and the thermodynamic relation deltaQ=TdeltaS are equivalent.

    PubMed

    Brustein, Ram; Hadad, Merav

    2009-09-01

    We show that the equations of motion of generalized theories of gravity are equivalent to the thermodynamic relation deltaQ=TdeltaS. Our proof relies on extending previous arguments by using a more general definition of the Noether charge entropy. We have thus completed the implementation of Jacobson's proposal to express Einstein's equations as a thermodynamic equation of state. Additionally, we find that the Noether charge entropy obeys the second law of thermodynamics if the energy-momentum tensor obeys the null energy condition. Our results support the idea that gravitation on a macroscopic scale is a manifestation of the thermodynamics of the vacuum. PMID:19792292

  17. AdS/CFT connection between Boltzmann and Einstein equations: Kinetic theory and pure gravity in AdS space

    SciTech Connect

    Iyer, Ramakrishnan; Mukhopadhyay, Ayan

    2010-04-15

    The AdS/CFT correspondence defines a sector with universal strongly coupled dynamics in the field theory as the dual of pure gravity in AdS described by Einstein's equation with a negative cosmological constant. We explain here, from the field-theoretic viewpoint how the dynamics in this sector gets determined by the expectation value of the energy-momentum tensor alone. We first show that the Boltzmann equation has very special solutions which could be functionally completely determined in terms of the energy-momentum tensor alone. We call these solutions conservative solutions. We indicate why conservative solutions should also exist when we refine this kinetic description to go closer to the exact microscopic theory or even move away from the regime of weak coupling so that no kinetic description could be employed. We argue that these conservative solutions form the universal sector dual to pure gravity at strong coupling and large N. Based on this observation, we propose a regularity condition on the energy-momentum tensor so that the dual solution in pure gravity has a smooth future horizon. We also study if irreversibility emerges only at long time scales of observation, unlike the case of the Boltzmann equation.

  18. Reconstructing f( R), f( G), f( T), and Einstein-Aether gravities from entropy-corrected ( m, n) type pilgrim dark energy

    NASA Astrophysics Data System (ADS)

    Debnath, Ujjal

    2015-02-01

    First, we describe the ordinary holographic dark energy (HDE), ( m, n) type holographic dark energy, entropy-corrected holographic dark energy (ECHDE) for logarithmic and power-law versions and pilgrim dark energy (PDE) models. Next, we introduce the ( m, n) type pilgrim dark energy and its entropy-corrected versions of logarithmic and power-law forms i.e., ( m, n) type LECPDE and PLECPDE models. The main motivation of the work is to have reconstructions of f( R), f( G), f( T), and Einstein-Aether gravities from ( m, n) type entropy-corrected pilgrim dark energy (ECPDE). Briefly the idea of our proposed entropy-corrected ( m, n) type pilgrim dark energy model is discussed. We also discuss the modified Friedmann equations for f( R), f( G), f( T), and Einstein-Aether gravities and then from the equations we find the effective density and pressure for the f( R), f( G), f( T), and Einstein-Aether gravities sectors, respectively. These can be treated as an effective dark energy. Assuming the power-law solution of the scale factor, a˜ t δ , we can reconstruct the unknown functions of f( R), f( G), f( T), and F( K) of Einstein-Aether gravities from logarithmic and power-law corrected versions of ECPDE. Finally, we give some cosmological implications of the reconstructed models.

  19. Universal slow fall-off to the unique AdS infinity in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki

    2008-08-15

    In this paper, the following two propositions are proven under the dominant energy condition for the matter field in the higher-dimensional spherically symmetric spacetime in Einstein-Gauss-Bonnet gravity in the presence of a cosmological constant {lambda}. First, for {lambda}{<=}0 and {alpha}{>=}0 without a fine-tuning to give a unique anti-de Sitter (AdS) vacuum, where {alpha} is the Gauss-Bonnet coupling constant, vanishing generalized Misner-Sharp mass is equivalent to the maximally symmetric spacetime. Under the fine-tuning, it is equivalent to the vacuum class I spacetime. Second, under the fine-tuning with {alpha}>0, the asymptotically AdS spacetime in the higher-dimensional Henneaux-Teitelboim sense is only a special class of the vacuum class I spacetime. This means the universal slow fall-off to the unique AdS infinity in the presence of physically reasonable matter.

  20. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    NASA Astrophysics Data System (ADS)

    Mišković, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  1. Extended phase space of AdS black holes in Einstein-Gauss-Bonnet gravity with a quadratic nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.; Momennia, M.

    2016-04-01

    In this paper, we consider quadratic Maxwell invariant as a correction to the Maxwell theory and study thermodynamic behavior of the black holes in Einstein and Gauss-Bonnet gravities. We consider cosmological constant as a thermodynamic pressure to extend phase space. Next, we obtain critical values in case of variation of nonlinearity and Gauss-Bonnet parameters. Although the general thermodynamical behavior of the black hole solutions is the same as usual Van der Waals system, we show that in special case of the nonlinear electromagnetic field, there will be a turning point for the phase diagrams and usual Van der Waals is not observed. This theory of nonlinear electromagnetic field provides two critical horizon radii. We show that this unusual behavior of phase diagrams is due to existence of second critical horizon radius. It will be pointed out that the power of the gravity and nonlinearity of the matter field modify the critical values. We generalize the study by considering the effects of dimensionality on critical values and make comparisons between our models with their special sub-classes. In addition, we examine the possibility of the existence of the reentrant phase transitions through two different methods.

  2. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    SciTech Connect

    Miskovic, Olivera; Olea, Rodrigo

    2011-01-15

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  3. 5D radiating black holes in Einstein-Yang-Mills-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Ghosh, S. G.

    2011-10-01

    We derive nonstatic spherically symmetric solutions of a null fluid, in five dimension (5D), to Einstein-Yang-Mills (EYM) equations with the coupling of Gauss-Bonnet (GB) combination of quadratic curvature terms, namely, 5D EYMGB radiating black hole solution. It is shown that, in the limit, we can recover known radiating black hole solutions. The spherically symmetric known 5D static black hole solutions are also retrieved. The effect of the GB term and Yang-Mills (YM) gauge charge on the structure and location of horizons, of the 5D radiating black hole, is also discussed.

  4. Celebrating Einstein

    NASA Astrophysics Data System (ADS)

    Shapiro Key, Joey; Yunes, Nicolas

    2013-04-01

    The Gravity Group at Montana State University (MSU) hosted Celebrating Einstein, a free public arts and multimedia event celebrating Einstein and his ideas in Bozeman, Montana April 2-6, 2013. The products of our efforts are now available to any party interested in hosting a similar event. Celebrating Einstein is a truly interdisciplinary effort including art, film, dance, music, physics, history, and education. Events included a black hole immersive art installation, a series of public talks by physicists, and Einstein lessons in the public schools leading up to a live free public multimedia performance including a professional dance company, a live interview with a renowned physicist, and an original score composed for the MSU student symphony to be performed with an original film produced by the Science and Natural History film program at MSU. This project is funded by the Montana Space Grant Consortium, Montana State University, and the National Science Foundation.

  5. Dirac-Born-Infeld inflation model with kinetic coupling to Einstein gravity

    NASA Astrophysics Data System (ADS)

    Qiu, Taotao

    2016-06-01

    In this paper, we study a new class of inflation models which generalize the Dirac-Born-Infeld (DBI) action with the addition of a nonminimal kinetic coupling (NKC) term. We dub this model as the new DBI inflation model. The NKC term does not bring a new dynamical degree of freedom, so the equations of motion remain of second order. However, with such coupling, the action is no longer linear with respect to the Einstein curvature term (R or Gμ ν), which leads to a correction term of k4 in the perturbations. The new DBI inflation model can be viewed as a theory beyond Horndeski. Without violating approximate scale invariance, such correction may lead to new effects on the inflationary spectra that can be tested by future observations.

  6. Energy-momentum tensors in linearized Einstein's theory and massive gravity: The question of uniqueness

    NASA Astrophysics Data System (ADS)

    Bičák, Jiří; Schmidt, Josef

    2016-01-01

    The question of the uniqueness of energy-momentum tensors in the linearized general relativity and in the linear massive gravity is analyzed without using variational techniques. We start from a natural ansatz for the form of the tensor (for example, that it is a linear combination of the terms quadratic in the first derivatives), and require it to be conserved as a consequence of field equations. In the case of the linear gravity in a general gauge we find a four-parametric system of conserved second-rank tensors which contains a unique symmetric tensor. This turns out to be the linearized Landau-Lifshitz pseudotensor employed often in full general relativity. We elucidate the relation of the four-parametric system to the expression proposed recently by Butcher et al. "on physical grounds" in harmonic gauge, and we show that the results coincide in the case of high-frequency waves in vacuum after a suitable averaging. In the massive gravity we show how one can arrive at the expression which coincides with the "generalized linear symmetric Landau-Lifshitz" tensor. However, there exists another uniquely given simpler symmetric tensor which can be obtained by adding the divergence of a suitable superpotential to the canonical energy-momentum tensor following from the Fierz-Pauli action. In contrast to the symmetric tensor derived by the Belinfante procedure which involves the second derivatives of the field variables, this expression contains only the field and its first derivatives. It is simpler than the generalized Landau-Lifshitz tensor but both yield the same total quantities since they differ by the divergence of a superpotential. We also discuss the role of the gauge conditions in the proofs of the uniqueness. In the Appendix, the symbolic tensor manipulation software cadabra is briefly described. It is very effective in obtaining various results which would otherwise require lengthy calculations.

  7. Einstein versus the simple pendulum formula: does gravity slow all clocks?

    NASA Astrophysics Data System (ADS)

    Puri, Avinash

    2015-07-01

    According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of g, the gravitational field strength. Einstein’s theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and teacher alike. There is, however, no real paradox. This article, which aims to clarify the conceptual issues, identifies two sources of confusion. One is a failure to distinguish a pendulum from a pendulum clock. The other is a failure to distinguish between two distinct gravitational fields.

  8. Einstein-vector gravity, emerging gauge symmetry, and de Sitter bounce

    NASA Astrophysics Data System (ADS)

    Geng, Wei-Jian; Lü, H.

    2016-02-01

    We construct a class of Einstein-vector theories where the vector field couples bilinearly to the curvature polynomials of arbitrary order in such a way that only the Riemann tensor rather than its derivative enters the equations of motion. The theories can thus be ghost free. The U (1 ) gauge symmetry may emerge in the vacuum and also in some weak-field limit. We focus on the two-derivative theory and study a variety of applications. We find that in this theory, the energy-momentum tensor of dark matter provides a position-dependent gauge-violating term to the Maxwell field. We also use the vector as an inflaton and construct cosmological solutions. We find that the expansion can accelerate without a bare cosmological constant, indicating a new candidate for dark energy. Furthermore, we obtain exact solutions of de Sitter bounce, generated by the vector which behaves like a Maxwell field at later times. We also obtain a few new exact black holes that are asymptotic to flat and Lifshitz spacetimes. In addition, we construct exact wormholes and Randall-Sundrum II domain walls.

  9. Non-parametric reconstruction of an inflaton potential from Einstein-Cartan-Sciama-Kibble gravity with particle production

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu; Popławski, Nikodem J.

    2016-04-01

    The coupling between spin and torsion in the Einstein-Cartan-Sciama-Kibble theory of gravity generates gravitational repulsion at very high densities, which prevents a singularity in a black hole and may create there a new universe. We show that quantum particle production in such a universe near the last bounce, which represents the Big Bang, gives the dynamics that solves the horizon, flatness, and homogeneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 60 e-folds, which lasts about ∼10-42 s. This scenario can thus explain cosmic inflation without requiring a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we follow the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential which gives the same dynamics of the early universe. This potential gives the slow-roll parameters of cosmic inflation, from which we calculate the tensor-to-scalar ratio, the scalar spectral index of density perturbations, and its running as functions of the production coefficient. We find that these quantities do not significantly depend on the scale factor at the Big Bounce. Our predictions for these quantities are consistent with the Planck 2015 observations.

  10. Non-parametric reconstruction of an inflaton potential from Einstein-Cartan-Sciama-Kibble gravity with particle production

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu; Popławski, Nikodem J.

    2016-04-01

    The coupling between spin and torsion in the Einstein-Cartan-Sciama-Kibble theory of gravity generates gravitational repulsion at very high densities, which prevents a singularity in a black hole and may create there a new universe. We show that quantum particle production in such a universe near the last bounce, which represents the Big Bang, gives the dynamics that solves the horizon, flatness, and homogeneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 60 e-folds, which lasts about ˜10-42 s. This scenario can thus explain cosmic inflation without requiring a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we follow the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential which gives the same dynamics of the early universe. This potential gives the slow-roll parameters of cosmic inflation, from which we calculate the tensor-to-scalar ratio, the scalar spectral index of density perturbations, and its running as functions of the production coefficient. We find that these quantities do not significantly depend on the scale factor at the Big Bounce. Our predictions for these quantities are consistent with the Planck 2015 observations.

  11. Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2016-01-01

    Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (in)homogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé-Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.

  12. Posing Einstein's Question: Questioning Einstein's Pose.

    ERIC Educational Resources Information Center

    Topper, David; Vincent, Dwight E.

    2000-01-01

    Discusses the events surrounding a famous picture of Albert Einstein in which he poses near a blackboard containing a tensor form of his 10 field equations for pure gravity with a question mark after it. Speculates as to the content of Einstein's lecture and the questions he might have had about the equation. (Contains over 30 references.) (WRM)

  13. Beyond Einstein

    SciTech Connect

    Professor Joel Primack

    2007-10-08

    The National Academy of Sciences was commissioned in 2006 to report on how to restart the Beyond Einstein program, which includes missions to understand dark energy, test general relativity, and observe gravity waves from merging supermassive black holes. This colloquium by one of the members of the recently released Academy study will explain the research strategy that the report proposes and its implications for continued U.S. participation in the exploration of the universe.

  14. Off-diagonal deformations of kerr black holes in Einstein and modified massive gravity and higher dimensions

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Tamara; Vacaru, Olivia; Vacaru, Sergiu I.

    2014-12-01

    We find general parameterizations for generic off-diagonal spacetime metrics and matter sources in general relativity (GR) and modified gravity theories when the field equations decouple with respect to certain types of nonholonomic frames of reference. This allows us to construct various classes of exact solutions when the coefficients of the fundamental geometric/physical objects depend on all spacetime coordinates via corresponding classes of generating and integration functions and/or constants. Such (modified) spacetimes display Killing and non-Killing symmetries, describe nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants. Our method can be extended to higher dimensions which simplifies some proofs for embedded and nonholonomically constrained four-dimensional configurations. We reproduce the Kerr solution and show how to deform it nonholonomically into new classes of generic off-diagonal solutions depending on 3-8 spacetime coordinates. Certain examples of exact solutions are analyzed and they are determined by contributions of a new type of interactions with sources in massive gravity and/or modified f(R,T) gravity. We conclude that by considering generic off-diagonal nonlinear parametric interactions in GR it is possible to mimic various effects in massive and/or modified gravity, or to distinguish certain classes of "generic" modified gravity solutions which cannot be encoded in GR.

  15. Is nonrelativistic gravity possible?

    SciTech Connect

    Kocharyan, A. A.

    2009-07-15

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  16. Gravity

    NASA Astrophysics Data System (ADS)

    Poisson, Eric; Will, Clifford M.

    2014-05-01

    Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.

  17. String or branelike solutions in four-dimensional Einstein gravity in the presence of a cosmological constant

    SciTech Connect

    Lee, Youngone; Kang, Gungwon; Kim, Hyeong-Chan; Lee, Jungjai

    2011-10-15

    We investigate string or branelike solutions for four-dimensional vacuum Einstein equations in the presence of a cosmological constant. For the case of negative cosmological constant, the Banados-Teitelboim-Zanelli black string is the only warped stringlike solution. The general solutions for nonwarped branelike configurations are found and they are characterized by the Arnowitt-Deser-Misner mass density and two tensions. Interestingly, the sum of these tensions is equal to the minus of the mass density. Other than the well-known black string and soliton spacetimes, all the static solutions possess naked singularities. The time-dependent solutions can be regarded as the anti-de Sitter extension of the well-known Kasner solutions. The speciality of those static regular solutions and the implication of singular solutions are also discussed in the context of cylindrical matter collapse. For the case of positive cosmological constant, the Kasner-de Sitter spacetime appears as time-dependent solutions and all static solutions are found to be naked singular.

  18. String or branelike solutions in four-dimensional Einstein gravity in the presence of a cosmological constant

    NASA Astrophysics Data System (ADS)

    Lee, Youngone; Kang, Gungwon; Kim, Hyeong-Chan; Lee, Jungjai

    2011-10-01

    We investigate string or branelike solutions for four-dimensional vacuum Einstein equations in the presence of a cosmological constant. For the case of negative cosmological constant, the Bañados-Teitelboim-Zanelli black string is the only warped stringlike solution. The general solutions for nonwarped branelike configurations are found and they are characterized by the Arnowitt-Deser-Misner mass density and two tensions. Interestingly, the sum of these tensions is equal to the minus of the mass density. Other than the well-known black string and soliton spacetimes, all the static solutions possess naked singularities. The time-dependent solutions can be regarded as the anti-de Sitter extension of the well-known Kasner solutions. The speciality of those static regular solutions and the implication of singular solutions are also discussed in the context of cylindrical matter collapse. For the case of positive cosmological constant, the Kasner-de Sitter spacetime appears as time-dependent solutions and all static solutions are found to be naked singular.

  19. On the equivalence of the Einstein-Hilbert and the Einstein-Palatini formulations of general relativity for an arbitrary connection

    NASA Astrophysics Data System (ADS)

    Dadhich, Naresh; Pons, Josep M.

    2012-09-01

    In the framework of the Einstein-Palatini formalism, even though the projective transformation connecting the arbitrary connection with the Levi-Civita connection has been floating in the literature for a long time and perhaps the result was implicitly known in the affine gravity community, yet as far as we know Julia and Silva were the first to realise its gauge character. We rederive this result by using the Rosenfeld-Dirac-Bergmann approach to constrained Hamiltonian systems and do a comprehensive self contained analysis establishing the equivalence of the Einstein-Palatini and the metric formulations without having to impose the gauge choice that the connection is symmetric. We also make contact with the the Einstein-Cartan theory when the matter Lagrangian has fermions.

  20. Final fate of spherically symmetric gravitational collapse of a dust cloud in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Maeda, Hideki

    2006-05-15

    We give a model of the higher-dimensional spherically symmetric gravitational collapse of a dust cloud including the perturbative effects of quantum gravity. The n({>=}5)-dimensional action with the Gauss-Bonnet term for gravity is considered and a simple formulation of the basic equations is given for the spacetime M{approx_equal}M{sup 2}xK{sup n-2} with a perfect fluid and a cosmological constant. This is a generalization of the Misner-Sharp formalism of the four-dimensional spherically symmetric spacetime with a perfect fluid in general relativity. The whole picture and the final fate of the gravitational collapse of a dust cloud differ greatly between the cases with n=5 and n{>=}6. There are two families of solutions, which we call plus-branch and the minus-branch solutions. A plus-branch solution can be attached to the outside vacuum region which is asymptotically anti-de Sitter in spite of the absence of a cosmological constant. Bounce inevitably occurs in the plus-branch solution for n{>=}6, and consequently singularities cannot be formed. Since there is no trapped surface in the plus-branch solution, the singularity formed in the case of n=5 must be naked. On the other hand, a minus-branch solution can be attached to the outside asymptotically flat vacuum region. We show that naked singularities are massless for n{>=}6, while massive naked singularities are possible for n=5. In the homogeneous collapse represented by the flat Friedmann-Robertson-Walker solution, the singularity formed is spacelike for n{>=}6, while it is ingoing-null for n=5. In the inhomogeneous collapse with smooth initial data, the strong cosmic censorship hypothesis holds for n{>=}10 and for n=9 depending on the parameters in the initial data, while a naked singularity is always formed for 5{<=}n{<=}8. These naked singularities can be globally naked when the initial surface radius of the dust cloud is fine-tuned, and then the weak cosmic censorship hypothesis is violated.

  1. Parameterized Beyond-Einstein Growth

    SciTech Connect

    Linder, Eric; Linder, Eric V.; Cahn, Robert N.

    2007-09-17

    A single parameter, the gravitational growth index gamma, succeeds in characterizing the growth of density perturbations in the linear regime separately from the effects of the cosmic expansion. The parameter is restricted to a very narrow range for models of dark energy obeying the laws of general relativity but can take on distinctly different values in models of beyond-Einstein gravity. Motivated by the parameterized post-Newtonian (PPN) formalism for testing gravity, we analytically derive and extend the gravitational growth index, or Minimal Modified Gravity, approach to parameterizing beyond-Einstein cosmology. The analytic formalism demonstrates how to apply the growth index parameter to early dark energy, time-varying gravity, DGP braneworld gravity, and some scalar-tensor gravity.

  2. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  3. Challenging Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Roveto, Jonathan

    2011-11-01

    A recent proposal by Erik Verlinde claims that gravity should be viewed not as a fundamental force, but an emergent thermodynamic phenomenon due to some yet undetermined microscopic theory. We present a challenge to this reformulation of gravity. Our claim is that a detailed derivation using Verlinde's proposed theory fails to correctly give Newton's laws or Einstein gravity.

  4. Einstein's 1919 View

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2012-10-01

    When Rutherford discovered the nuclear force in 1919, he felt the force he discovered reflected some deviation of Newtonian gravity. Einstein too in his 1919 paper published the failure of the general relativity and Newtonian gravity to explain nuclear force and, in his concluding remarks, he retracted his earlier introduction of the cosmological constant. Consistent with his genius, we modify Newtonian gravity as probabilistic gravity using natural Planck units for a realistic study of nature. The result is capable of expressing both (1) nuclear force [strong coupling], and (2) Newtonian gravity in one equation, implying in general, in layman's words, that gravity is the cumulative effect of all quantum mechanical forces which are impossible to measure at long distances. Non discovery of graviton and quantum gravity silently support our findings. Continuing to climb on the shoulders of the giants enables us to see horizons otherwise unseen, as reflected in our book: ``Quantum Consciousness - The Road to Reality,'' and physics/0210040, where we derive the fine structure constant as a function of the age of the universe in Planck times consistent with Gamow's hint, using natural logarithm consistent with Feynman's hint.

  5. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  6. Centenarian Einstein

    ScienceCinema

    None

    2011-04-25

    Commémoration de A.Einstein avec 4 orateurs pour honnorer sa mémoire: le prof.Weisskopf parlera de l'homme de science engagé, Daniel Amati du climat de la physique aux années 1920, Sergio Fubini de l'heure scientifique d'A.Einstein et le prof.Berob(?)

  7. Einsteins dream

    SciTech Connect

    Parker, B.

    1986-01-01

    This book discusses the following topics: the search for meaning; Einstein's dream; curved space; Einstein and warped space-time and extreme wraping; early unified field theories; star death; beyond the white dwarf; the early universe; the hadron, Lepton, and Radiation eras; the redshift controversy; other universes; the final fate of the universe; the missing mass; bounce; fate of the open universe; the world of particles and fields; Dirac's equation; Yukawa; gauge theory; quantum chromodynamics; supergravity and superstrings; twistors and heaven; and the new Einstein.

  8. Stability of the Einstein static universe in Einstein-Cartan theory

    SciTech Connect

    Atazadeh, K.

    2014-06-01

    The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.

  9. Einstein's Universe.

    ERIC Educational Resources Information Center

    Carlson, Eric; Wald, Robert

    1979-01-01

    Presents a guide to be used by students and teachers in conjunction with a television program about Einstein. Provides general information about special and general relativity, and the universe. Includes questions for discussion after each section and a bibliography. (MA)

  10. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects.

    PubMed

    Tarallo, M G; Mazzoni, T; Poli, N; Sutyrin, D V; Zhang, X; Tino, G M

    2014-07-11

    We report on a conceptually new test of the equivalence principle performed by measuring the acceleration in Earth's gravity field of two isotopes of strontium atoms, namely, the bosonic (88)Sr isotope which has no spin versus the fermionic (87)Sr isotope which has a half-integer spin. The effect of gravity on the two atomic species has been probed by means of a precision differential measurement of the Bloch frequency for the two atomic matter waves in a vertical optical lattice. We obtain the values η=(0.2±1.6)×10(-7) for the Eötvös parameter and k=(0.5±1.1)×10(-7) for the coupling between nuclear spin and gravity. This is the first reported experimental test of the equivalence principle for bosonic and fermionic particles and opens a new way to the search for the predicted spin-gravity coupling effects. PMID:25062176

  11. Einstein's Radiation Formula and Modifications to the Einstein Equation

    NASA Astrophysics Data System (ADS)

    Lo, C. Y.

    1995-12-01

    Einstein's radiation formula is supported by the Taylor-Hulse experiment, but its derivation is not self-consistent. Furthermore, as discovered by Einstein, his radiation formula is not compatible with his field equation. As suggested by Einstein's own remark, modifications to the source tensor are necessary. Based on the Taylor-Hulse experiment, in this paper a theory is developed within the theoretical framework of general relativity within which the radiation formula remains the same for binary stars. Concurrently, it is determined that, because of radiation, the source tensor is not zero in a vacuum. Antigravity coupling, suggested by Pauli as a possibility, is a necessary feature. In addition, it is shown that the current theory of linearized gravity is not valid for radiation.

  12. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  13. Einstein Revisited

    ERIC Educational Resources Information Center

    Fine, Leonard

    2005-01-01

    A brief description on the work and life of the great physicist scientist Albert Einstein is presented. The photoelectric paper written by him in 1905 led him to the study of fluctuations in the energy density of radiation and from there to the incomplete nature of the equipartition theorem of classical mechanics, which failed to account for…

  14. A Challenge to Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Roveto, Jonathan; Munoz, Gerardo

    2012-03-01

    In a recent publication, Erik Verlinde attempts to show that gravity should be viewed not as a fundamental force, but rather as an emergent thermodynamic phenomenon arising from an unspecified microscopic theory via equipartition and holography. We present a challenge to his reformulation of gravity. A detailed examination of Verlinde's derivation leads to a number of questions that severely weaken the claim that such a theory correctly reproduces Newton's laws or Einstein gravity. In particular, we find that neither Newtonian gravity nor the Einstein equations are uniquely determined using Verlinde's postulates.

  15. Astrophysical observations: lensing and eclipsing Einstein's theories.

    PubMed

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics. PMID:15705841

  16. Einstein's Mirror

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  17. Beyond Einstein

    NASA Astrophysics Data System (ADS)

    Hertz, P.

    2003-03-01

    The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.

  18. Probing hybrid modified gravity by stellar motion around Galactic Center

    NASA Astrophysics Data System (ADS)

    Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V.

    2016-06-01

    We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatiniand can be easily reduced to an equivalent scalar-tensor theory. Such an approach is introduced in order to cure the shortcomings related to f(R) gravity, in general formulated either in metric or in metric-affine frameworks. Hybrid gravity allows to disentangle the further gravitational degrees of freedom with respect to those of standard General Relativity. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Center where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with constraints on the range of hybrid gravity interaction parameter ϕ0, showing that in the case of S2 star it is between -0.0009 and -0.0002. At the same time, we are also able to obtain the constraints on the effective mass parameter mϕ, and found that it is between -0.0034 and -0.0025 AU-1 for S2 star. Furthermore, the hybrid gravity potential induces precession of S2 star orbit in the same direction as General Relativity. In previous papers, we considered other types of extended gravities, like metric power law f(R)∝Rn gravity, inducing Yukawa and Sanders-like gravitational potentials, but it seems that hybrid gravity is the best among these models to explain different gravitational phenomena at different astronomical scales.

  19. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  20. Unimodular F(R) gravity

    NASA Astrophysics Data System (ADS)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-05-01

    We extend the formalism of the Einstein-Hilbert unimodular gravity in the context of modified F(R) gravity. After appropriately modifying the Friedmann-Robertson-Walker metric in a way that it becomes compatible to the unimodular condition of having a constant metric determinant, we derive the equations of motion of the unimodular F(R) gravity by using the metric formalism of modified gravity with Lagrange multiplier constraint. The resulting equations are studied in frames of reconstruction method, which enables us to realize various cosmological scenarios, which was impossible to realize in the standard Einstein-Hilbert unimodular gravity. Several unimodular F(R) inflationary scenarios are presented, and in some cases, concordance with Planck and BICEP2 observational data can be achieved.

  1. Cylindrical solutions in braneworld gravity

    SciTech Connect

    Khoeini-Moghaddam, S.; Nouri-Zonoz, M.

    2005-09-15

    In this article we investigate exact cylindrically symmetric solutions to the modified Einstein field equations in the braneworld gravity scenarios. It is shown that for the special choice of the equation of state 2U+P=0 for the dark energy and dark pressure, the solutions found could be considered formally as solutions of the Einstein-Maxwell equations in 4-D general relativity.

  2. Quasilocal energy in modified gravity

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio

    2016-01-01

    A new generalization of the Hawking-Hayward quasilocal energy to scalar-tensor gravity is proposed without assuming symmetries, asymptotic flatness, or special spacetime metrics. The procedure followed is simple but powerful and consists of writing the scalar-tensor field equations as effective Einstein equations and then applying the standard definition of quasilocal mass. An alternative procedure using the Einstein frame representation leads to the same result in vacuo.

  3. Einstein as Evaluator?

    ERIC Educational Resources Information Center

    Caulley, Darrel N.

    1982-01-01

    Like any other person, Albert Einstein was an informal evaluator, engaged in placing value on various aspects of his life, work, and the world. Based on Einstein's own statements, this paper speculates about what Einstein would have been like as a connoisseur evaluator, a conceptual evaluator, or a responsive evaluator. (Author/BW)

  4. Crystal clear lessons on the microstructure of spacetime and modified gravity

    NASA Astrophysics Data System (ADS)

    Lobo, Francisco S. N.; Olmo, Gonzalo J.; Rubiera-Garcia, D.

    2015-06-01

    We argue that a microscopic structure for spacetime such as that expected in a quantum foam scenario, in which microscopic wormholes and other topological structures should play a relevant role, might lead to an effective metric-affine geometry at larger scales. This idea is supported by the role that microscopic defects play in crystalline structures. With an explicit model, we show that wormhole formation is possible in a metric-affine scenario, where the wormhole and the matter fields play a role analogous to that of defects in crystals. Such wormholes also arise in Born-Infeld gravity, which is favored by an analogy with the estimated mass of a point defect in condensed matter systems. We also point out that in metric-affine geometries, Einstein's equations with an effective cosmological constant appear as an attractor in the vacuum limit for a vast family of theories of gravity. This illustrates how lessons from solid state physics can be useful in unveiling the properties of the microcosmos and defining new avenues for modified theories of gravity.

  5. Einstein's Cosmos (German Title: Einsteins Kosmos)

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.; Dick, Wolfgang R.

    The different contributions of the present volume illuminate the interaction between Einstein and his colleagues when the foundations of modern cosmology were laid: First, the relativistic effects in the solar system, the gravitational redshift in the solar spectrum, and Einstein's relations with Freundlich and Eddington. Second, the cosmological models of Einstein, de Sitter, Friedmann, and Lemaître, which were discussed controversely till the end of the 1920s. Other scientists have also widened or critically questioned Einstein's insight and knowledge: Schwarzschild, Selety, Silberstein, and Mandl, whose life and work is discussed in separate articles. In those days, politics more than ever in history had influenced the lifes of scientists. Therefore, some comments on the ``political cosmos'' that has influenced decisively Einstein's life are also given. A special role in popularizing Einstein's world view was played by Archenhold Observatory in Berlin. A list of Einstein memorial places and a bibliographic list conclude the present book. All papers are written in German, and have English abstracts.

  6. Neutron stars in Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Silva, Hector O.; Minamitsuji, Masato; Berti, Emanuele

    2016-06-01

    Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the Λ CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John"), and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and were not able to find realistic compact stars in theories involving the Paul class.

  7. Artificial gravity field

    NASA Astrophysics Data System (ADS)

    Markley, Larry C.; Lindner, John F.

    Using computer algebra to run Einstein's equations "backward", from field to source rather than from source to field, we design an artificial gravity field for a space station or spaceship. Everywhere inside astronauts experience normal Earth gravity, while outside they float freely. The stress-energy that generates the field contains exotic matter of negative energy density but also relies importantly on pressures and shears, which we describe. The same techniques can be readily used to design other interesting spacetimes and thereby elucidate the connection between the source and field in general relativity.

  8. n-DBI gravity

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos; Hirano, Shinji; Sato, Yuki

    2011-12-01

    n-DBI gravity is a gravitational theory introduced in [C. Herdeiro and S. Hirano, arXiv:1109.1468.], motivated by Dirac-Born-Infeld type conformal scalar theory and designed to yield noneternal inflation spontaneously. It contains a foliation structure provided by an everywhere timelike vector field n, which couples to the gravitational sector of the theory, but decouples in the small curvature limit. We show that any solution of Einstein gravity with a particular curvature property is a solution of n-DBI gravity. Among them is a class of geometries isometric to a Reissner-Nordström-(anti)-de Sitter black hole, which is obtained within the spherically symmetric solutions of n-DBI gravity minimally coupled to the Maxwell field. These solutions have, however, two distinct features from their Einstein gravity counterparts: (1) the cosmological constant appears as an integration constant and can be positive, negative, or vanishing, making it a variable quantity of the theory; and (2) there is a nonuniqueness of solutions with the same total mass, charge, and effective cosmological constant. Such inequivalent solutions cannot be mapped to each other by a foliation preserving diffeomorphism. Physically they are distinguished by the expansion and shear of the congruence tangent to n, which define scalar invariants on each leaf of the foliation.

  9. Electricity from Gravity

    NASA Astrophysics Data System (ADS)

    Masters, Roy

    2007-03-01

    Einstein's cosmological constant as gravity, will unify quantum mechanics to general relativity and link gravity to electromagnetism. Then, an electromagnetic vacuum engine driven by the force that spins, moves, and sustains mass at the subatomic level, will do free, what generators cannot. Flowing outward-bound sinusoidally from its source, this gravity force assumes a three-dimensional spherical universe. Lines of force intersect, spinning into gyroscopic particles and passes as time-present, with a compression gravity of space-time curvature continuum unifying all mass. The spaces between approaching masses suffer a decrease of right-angled vacuum energy, increasing external pressures, pushing them together. Ubiquitous gravity now interacts electromagnetically with mass. Gravity's ``heat energy'' operates below absolute zero and squeezes mass into thermonuclear ignition of stars. Creation needs a gravity field for the propagation of light that will make sense of its wave/particle behavior. Creation from a white hole recycles down through a black one, into new beginnings of galaxies. ``Vacuum energy'' will light cities and factories; faster than light spacecraft will raise silently from the ground utilizing the very gravity it defies, propelling us to the stars.

  10. Einstein A to Z

    NASA Astrophysics Data System (ADS)

    Fox, Karen C.; Keck, Aries

    2004-07-01

    Einstein was the twentieth century's most celebrated scientist - a man who developed the theory of relativity, revolutionised physics and became an iconic genius in the popular imagination. Essays range from the reasonably scientific including the theory of relativity, to the odd and engaging, such as Einstein's brain, his favourite jokes and films. Einstein A to Z provides a vibrant overview of the man and his achievements.

  11. Neuromythology of Einstein's brain.

    PubMed

    Hines, Terence

    2014-07-01

    The idea that the brain of the great physicist Albert Einstein is different from "average" brains in both cellular structure and external shape is widespread. This belief is based on several studies examining Einstein's brain both histologically and morphologically. This paper reviews these studies and finds them wanting. Their results do not, in fact, provide support for the claim that the structure of Einstein's brain reflects his intellectual abilities. PMID:24836969

  12. 5D Einstein-Maxwell solitons and concentric rotating dipole black rings

    SciTech Connect

    Yazadjiev, Stoytcho S.

    2008-09-15

    We discuss the application of the solitonic techniques to the 5D Einstein-Maxwell gravity. As an illustration we construct a new exact solution describing two concentric rotating dipole black rings. The properties of the solution are investigated.

  13. Light, Gravity and Black Holes

    ERIC Educational Resources Information Center

    Falla, David

    2012-01-01

    The nature of light and how it is affected by gravity is discussed. Einstein's prediction of the deflection of light as it passes near the Sun was verified by observations made during the solar eclipse of 1919. Another prediction was that of gravitational redshift, which occurs when light emitted by a star loses energy in the gravitational field…

  14. What is the entropy in entropic gravity?

    NASA Astrophysics Data System (ADS)

    Carroll, Sean M.; Remmen, Grant N.

    2016-06-01

    We investigate theories in which gravity arises as a consequence of entropy. We distinguish between two approaches to this idea: holographic gravity, in which Einstein's equation arises from keeping entropy stationary in equilibrium under variations of the geometry and quantum state of a small region, and thermodynamic gravity, in which Einstein's equation emerges as a local equation of state from constraints on the area of a dynamical light sheet in a fixed spacetime background. Examining holographic gravity, we argue that its underlying assumptions can be justified in part using recent results on the form of the modular energy in quantum field theory. For thermodynamic gravity, on the other hand, we find that it is difficult to formulate a self-consistent definition of the entropy, which represents an obstacle for this approach. This investigation points the way forward in understanding the connections between gravity and entanglement.

  15. Cosmological constant: a lesson from Bose-Einstein condensates.

    PubMed

    Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo

    2012-02-17

    The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario. PMID:22401190

  16. Einstein's Theory Fights off Challengers

    NASA Astrophysics Data System (ADS)

    2010-04-01

    Two new and independent studies have put Einstein's General Theory of Relativity to the test like never before. These results, made using NASA's Chandra X-ray Observatory, show Einstein's theory is still the best game in town. Each team of scientists took advantage of extensive Chandra observations of galaxy clusters, the largest objects in the Universe bound together by gravity. One result undercuts a rival gravity model to General Relativity, while the other shows that Einstein's theory works over a vast range of times and distances across the cosmos. The first finding significantly weakens a competitor to General Relativity known as "f(R) gravity". "If General Relativity were the heavyweight boxing champion, this other theory was hoping to be the upstart contender," said Fabian Schmidt of the California Institute of Technology in Pasadena, who led the study. "Our work shows that the chances of its upsetting the champ are very slim." In recent years, physicists have turned their attention to competing theories to General Relativity as a possible explanation for the accelerated expansion of the universe. Currently, the most popular explanation for the acceleration is the so-called cosmological constant, which can be understood as energy that exists in empty space. This energy is referred to as dark energy to emphasize that it cannot be directly detected. In the f(R) theory, the cosmic acceleration comes not from an exotic form of energy but from a modification of the gravitational force. The modified force also affects the rate at which small enhancements of matter can grow over the eons to become massive clusters of galaxies, opening up the possibility of a sensitive test of the theory. Schmidt and colleagues used mass estimates of 49 galaxy clusters in the local universe from Chandra observations, and compared them with theoretical model predictions and studies of supernovas, the cosmic microwave background, and the large-scale distribution of galaxies. They

  17. Albert Einstein: The Violinist

    NASA Astrophysics Data System (ADS)

    White, Peregrine

    2005-05-01

    To the press of his time Albert Einstein was two parts renowned scientist, one jigger pacifist and Zionist fundraiser, and a dash amateur musician. These proportions persisted during 1979, the 100th anniversary of his birth, as writers in all media jostled each other as they recounted his achievements. Relativity tended to hog the show. Relatively little space was given to Einstein the musician.

  18. Einstein for Everyone

    ScienceCinema

    Piccioni, Robert

    2014-06-25

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  19. Einstein for Everyone

    SciTech Connect

    Piccioni, Robert

    2010-10-05

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  20. Einstein Up in Smoke

    NASA Astrophysics Data System (ADS)

    Lisle, John

    2016-01-01

    Albert Einstein's biographers have not explained why he developed the abdominal aortic aneurysm that led to his death. Early conjectures proposed that it was caused by syphilis, without accurate evidence. The present article gives evidence to the contrary, and argues that the principal cause of Einstein's death was smoking.

  1. When Art Meets Einstein

    ERIC Educational Resources Information Center

    Science Scope, 2006

    2006-01-01

    This article deals with a pale blue sculpture entitled "A New World View", as an homage to the most famous scientist in modern history, Albert Einstein. It has 32 bas-relief squares composed of glass and steel that represent one aspect of the life and legacy of Albert Einstein. Images of children's faces peer out from behind the glass squares,…

  2. Einstein and Ehrenfest

    NASA Astrophysics Data System (ADS)

    Klein, Martin J.

    2005-03-01

    After Paul Ehrenfest's untimely death, Albert Einstein wrote about their first meeting more than twenty years earlier. ``Within a few hours we were true friends as though our dreams and aspirations were meant for each other.'' In fact, this warm friendship with a fellow theoretical physicist of his own age was unique in Einstein's life. I shall try to characterize it in this talk.

  3. Lovelock gravity from entropic force

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Moradpour, H.; Riazi, N.

    2013-05-01

    In this paper, we first generalize the formulation of entropic gravity to (n+1)-dimensional spacetime and derive Newton's law of gravity and Friedmann equation in arbitrary dimensions. Then, we extend the discussion to higher order gravity theories and propose an entropic origin for Gauss-Bonnet gravity and more general Lovelock gravity in arbitrary dimensions. As a result, we are able to derive Newton's law of gravitation as well as the corresponding Friedmann equations in these gravity theories. This procedure naturally leads to a derivation of the higher dimensional gravitational coupling constant of Friedmann/Einstein equation which is in complete agreement with the results obtained by comparing the weak field limit of Einstein equation with Poisson equation in higher dimensions. Our strategy is to start from first principles and assuming the entropy associated with the apparent horizon given by the expression previously known via black hole thermodynamics, but replacing the horizon radius r_+ with the apparent horizon radius R. Our study shows that the approach presented here is powerful enough to derive the gravitational field equations in any gravity theory and further supports the viability of Verlinde's proposal.

  4. Einstein and Planck

    NASA Astrophysics Data System (ADS)

    Heilbron, John

    2005-03-01

    As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .

  5. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  6. Einstein and Millikan

    NASA Astrophysics Data System (ADS)

    Erwin, Charlotte

    2005-03-01

    Albert Einstein traveled to America by boat during the great depression to consult with scientists at the California Institute of Technology. He was a theoretical physicist, a Nobel Prize winner, and a 20th century folk hero. Few members of the general public understood his theories, but they idolized him all the same. The invitation came from physicist Robert Millikan, who had initiated a visiting-scholars program at Caltech shortly after he became head of the school in 1921. Einstein's visits to the campus in 1931, 1932, and 1933 capped Millikan's campaign to make Caltech one of the physics capitals of the world. Mount Wilson astronomer Edwin Hubble's discovery that redshifts are proportional to their distances from the observer challenged Einstein's cosmological picture of a static universe. The big question at Caltech in 1931 was whether Einstein would give up his cosmological constant and accept the idea of an expanding universe. By day, Einstein discussed his theory and its interpretation at length with Richard Tolman, Hubble, and the other scientists on the campus. By night, Einstein filled his travel diary with his personal impressions. During his third visit, Einstein sidestepped as long as possible the question of whether conditions in Germany might prevent his return there. After the January 30 announcement that Hitler had become chancellor of Germany, the question could no longer be evaded. He postponed his return trip for a few weeks and then went to Belgium for several months instead of to Berlin. In the fall of 1933, Albert Einstein returned to the United States as an emigre and became a charter member of Abraham Flexner's new Institute for Advanced Study in Princeton, New Jersey. Why did Einstein go to Princeton and not Pasadena?

  7. From Petrov-Einstein to Navier-Stokes

    NASA Astrophysics Data System (ADS)

    Lysov, Vyacheslav

    The fluid/gravity correspondence relates solutions of the incompressible Navier-Stokes equation to metrics which solve the Einstein equations. We propose propose two possible approaches to establish this correspondence: perturbative expansion for shear modes and large mean curvature expansion for algebraically special metrics. We show by explicit construction that for every solution of the incompressible Navier-Stokes equation in p+1 dimensions, there is an associated "dual" solution of the vacuum Einstein equations in p+2 dimensions. The dual geometry has an intrinsically flat time-like boundary segment whose extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a "near-horizon" limit in which hypersurface becomes highly accelerated. The near-horizon expansion in gravity is shown to be mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the incompressible Navier-Stokes equation. It is shown that imposing a Petrov type I condition on the hypersurface geometry reduces the degrees of freedom in the extrinsic curvature to those of a fluid. Moreover, expanding around a limit in which the mean curvature of the embedding diverges, the leading-order Einstein constraint equations on hypersurface are shown to reduce to the non-linear incompressible Navier-Stokes equation for a fluid moving in hypersurface. We extend the fluid/gravity correspondence to include the magnetohydrodynamics/gravity correspondence, which translates solutions of the equations of magnetohydrodynamics (describing charged fluids) into geometries that satisfy the Einstein-Maxwell equations. We present an explicit example of this new correspondence in the context of flat Minkowski space. We show that a perturbative deformation of the Rindler wedge satisfies the Einstein-Maxwell equations provided that the parameters appearing in the expansion, which we interpret as fluid fields, satisfy the

  8. Einstein and 1905

    NASA Astrophysics Data System (ADS)

    Rigden, John

    2005-05-01

    From March 17 to September 29, 1905, just over six months, Einstein wrote five papers that shifted the tectonic foundations of physics and changed the face of Nature. Three of these papers, the March paper presenting the particle of light, the May paper on Brownian motion, and the June paper on the Special Theory of Relativity are universally recognized as fundamental; however, the Brownian motion paper cannot be divorced from Einstein's April paper, A New Determination of the Dimensions of Molecules, and the September paper that gave the world its most famous equation, E = mc^2, cannot be separated from the June paper. These five papers reveal characteristics of Einstein's approach to physics.

  9. Einstein: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Kormos-Buchwald, Diana

    2015-04-01

    In late 1915, Albert Einstein (1879-1955) completed as series of papers on a generalized theory of gravitation that were to constitute a major conceptual change in the history of modern physics and the crowning achievement of his scientific career. But this accomplishment came after a decade of intense intellectual struggle and was received with muted enthusiasm. Einstein's previously unpublished writings and massive correspondence, edited by the Einstein Papers Project, provide vivid insights into the historical, personal, and scientific context of the formulation, completion, and reception of GR during the first decades of the 20th century.

  10. QCD analogy for quantum gravity

    NASA Astrophysics Data System (ADS)

    Holdom, Bob; Ren, Jing

    2016-06-01

    Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum gravity. When its couplings grow strong at some scale, as in QCD, then this strong scale sets the Planck mass. QCD has a gluon that does not appear in the physical spectrum. Quadratic gravity has a spin-2 ghost that we conjecture does not appear in the physical spectrum. We discuss how the QCD analogy leads to this conjecture and to the possible emergence of general relativity. Certain aspects of the QCD path integral and its measure are also similar for quadratic gravity. With the addition of the Einstein-Hilbert term, quadratic gravity has a dimensionful parameter that seems to control a quantum phase transition and the size of a mass gap in the strong phase.

  11. Einstein in Wyoming.

    ERIC Educational Resources Information Center

    Elliot, Ian

    1996-01-01

    Describes "Einstein's Adventurarium," a science center housed in an empty shopping mall in Gillette, Wyoming, created through school, business, and city-county government partnership. Describes how interactive exhibits allow exploration of life sciences, physics, and paleontology. (KDFB)

  12. Non-local F(R)-mimetic gravity

    NASA Astrophysics Data System (ADS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo

    2016-06-01

    In this paper, we study non-local F(R)-mimetic gravity. We implement mimetic gravity in the framework of non-local F(R)-theories of gravity. Given some specific class of models and using a potential on the mimetic field, we investigate some scenarios related to the early-time universe, namely the inflation and the cosmological bounce, which bring to Einstein's gravity with cold dark matter at the late-time.

  13. Einstein equation at singularities

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu-Cristinel

    2014-02-01

    Einstein's equation is rewritten in an equivalent form, which remains valid at the singularities in some major cases. These cases include the Schwarzschild singularity, the Friedmann-Lemaître-Robertson-Walker Big Bang singularity, isotropic singularities, and a class of warped product singularities. This equation is constructed in terms of the Ricci part of the Riemann curvature (as the Kulkarni-Nomizu product between Einstein's equation and the metric tensor).

  14. Einstein studies in Russia

    NASA Astrophysics Data System (ADS)

    Balashov, Yuri; Vizgin, Vladimir

    This volume presents a selection of the best contributions by Russian scholars - historians and philosophers of science - to the Einstein Studies industry, broadly construed. Many of the papers were first published in Russian, in the Einshteinovskiy Sbornik series (Einstein Studies) initiated by I. Tamm in 1966. This book explores the historical and foundational issues in general relativity and relativistic cosmology, Einstein's contributions to quantum theory of radiation, and the rise of Dirac's quantum electrodynamics. It also includes a detailed description of the physics colloquium Einstein established and coordinated in 1912- 1914 in Zürich. The contributors draw extensively on documentation previously unavailable to most scholars. Materials from various Russian archives shed new light on the famous exchange (regarding the first evolutionary cosmological models) between Einstein and Alexander Friedmann in the early 1920's and on the role of Boris Podolsky and Vladimir Fock in the emergence of quantum electrodynamics. The little-known correspondence between Einstein and a famous German pilot Paul Erhardt suggests that during World War I, the former was involved with aero- and hydrodynamics research and ways of improving airplane design. Other articles introduce new approaches to important foundational questions in general relativity and cosmology. Historians, philosophers, and sociologists of science will find much new and unexpected material in this engaging volume presenting the best of recent Russian scholarship in the field. The book is also very accessible to the general reader.

  15. 2010 Einstein Fellows Chosen

    NASA Astrophysics Data System (ADS)

    2010-02-01

    NASA has announced the selection of the 2010 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2010. The new Einstein Fellows and their host institutions are listed below: * Simona Giacintucci (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Boaz Katz (Institute for Advanced Studies, Princeton, N.J.) * Matthew Kerr (Stanford University, Palo Alto, Calif.) * Matthew Kistler (California Institute of Technology, Pasadena) * Emily Levesque (University of Colorado, Boulder) * Xin Liu (Harvard, Cambridge, Mass.) * Tony Mroczkowski (University of Pennsylvania, Philadelphia) * Ryan O'Leary (University of California at Berkeley) * Dov Poznanski (Lawrence Berkeley National Laboratory. Berkeley, Calif.) * Nicolas Yunes (Massachusetts Institute of Technology, Cambridge, Mass.) The Einstein Fellowships are administered for NASA by the Chandra X-ray Center in Cambridge, Mass. Along with the Hubble and Sagan Fellowships, the Einstein Fellowships are made possible by the Astrophysics Division within NASA's Science Mission Directorate. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/CfPfellow.2009.html

  16. Affine conformal vectors in space-time

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Tupper, B. O. J.

    1992-05-01

    All space-times admitting a proper affine conformal vector (ACV) are found. By using a theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine vector and a conformal Killing vector or (ii) the space-time is 2+2 decomposable, in which case it is shown that no ACV can exist (unless the space-time decomposes further). Furthermore, it is proved that all space-times admitting an ACV and a null covariantly constant vector (which are necessarily generalized pp-wave space-times) must have Ricci tensor of Segré type {2,(1,1)}. It follows that, among space-times admitting proper ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null Einstein-Maxwell space-times, and only the pp-wave space-times are representative of null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids and viscous heat-conducting fluids, but only with restricted equations of state in each case.

  17. Metric redefinitions in Einstein-Aether theory

    SciTech Connect

    Foster, Brendan Z.

    2005-08-15

    'Einstein-Aether' theory, in which gravity couples to a dynamical, timelike, unit-norm vector field, provides a means for studying Lorentz violation in a generally covariant setting. Demonstrated here is the effect of a redefinition of the metric and 'aether' fields in terms of the original fields and two free parameters. The net effect is a change of the coupling constants appearing in the action. Using such a redefinition, one of the coupling constants can be set to zero, simplifying studies of solutions of the theory.

  18. Black holes in higher derivative gravity.

    PubMed

    Lü, H; Perkins, A; Pope, C N; Stelle, K S

    2015-05-01

    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics. PMID:25978224

  19. Space-time curvature signatures in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Matos, Tonatiuh; Gomez, Eduardo

    2015-05-01

    We derive a generalized Gross-Pitaevski (GP) equation for a Bose Einstein Condensate (BEC) immersed in a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the traditional GP equation where the gravitational field is added by hand as an external potential. We show that there is a small difference of order gz/c2 between them that could be measured in the future using Bose-Einstein Condensates. This represents the next order correction to the Newtonian gravity in a curved space-time.

  20. Perturbative Solutions of the Einstein Klein-Gordon Equations

    NASA Astrophysics Data System (ADS)

    Puliti, Gianluca; Jennings, Mara; Mamo, Vincent; Vuille, Chris

    2005-11-01

    As the Klein-Gordon equation is important in quantum theory and describes spin-0 particles, it is of interest to discover the nature of the gravity field such particles would be expected to create. In this paper, we solve the static, massive Einstein-Klein-Gordon (EKG) equations in perturbation, and compare the results with a similar calculation developed for the Einstein-Proca system. Subsequently, we study the massless static Klein-Gordon equation, and compare the result to the Reissner-Nordstrom metric.

  1. Conversations With Albert Einstein. II

    ERIC Educational Resources Information Center

    Shankland, R. S.

    1973-01-01

    Discusses Einstein's views on the role of Michelson-Morley, Fizeau, and Miller experiments in the development of relativity and his attitude toward the theories of new quantum mechanics. Indicates that Einstein's opposition to quantum mechanics is beyond dispute. (CC)

  2. Critical Gravity in Four Dimensions

    SciTech Connect

    Lue, H.; Pope, C. N.

    2011-05-06

    We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This ''critical'' theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical 'new massive gravity' with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.

  3. Positive signs in massive gravity

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Remmen, Grant N.

    2016-04-01

    We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.

  4. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681

  5. The Happiest thought of Einstein's Life

    NASA Astrophysics Data System (ADS)

    Heller, Michael

    Finally, let us have a closer look at the place of the equivalence principle in the logical scheme of Einstein's general relativity theory. First, Einstein new well, from Minkowski's geometric formulation of his own special relativity, that accelerated motions should be represented as curved lines in a flat space-time. Second, the Galileo principle asserts that all bodies are accelerated in the same way in a given gravitational field, and consequently their motions are represented in the flat space-time by curved lines, all exactly in the same way. Third, since all lines representing free motions are curved exactly in the same way in the flat space-time, one can say that the lines remain straight (as far as possible) but the space-time itself becomes curved. Fourth, and last, since acceleration is (locally) equivalent to a gravitational field (here we have the equivalence principle), one is entitled to assert that it is the gravitational field (and not acceleration) that is represented as the curvature of space-time. This looks almost like an Aristotelian syllogism. However, to put all the pieces of evidence into the logical chain took Einstein a few years of hard thinking. The result has been incorporated into the field equations which quantitatively show how the curvature of space-time and gravity are linked together.

  6. Induced gravity from curvature density preserving diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2016-08-01

    We construct not only an induced gravity model with restricted diffeomorphisms, that is, transverse diffeomorphisms that preserve the curvature density, but also with full diffeomorphisms. By solving the equations of motion, it turns out that these models produce Einstein's equations with a certain Newton constant in addition to the constraint for the curvature density. In the limit of the infinite Newton constant, the models give rise to induced gravity. Moreover, we discuss cosmological solutions on the basis of the gravitational models at hand.

  7. A Note on Friedmann Equation of FRW Universe in Deformed Hořava—Lifshitz Gravity from Entropic Force

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao; Wang, Yong-Qiang

    2011-09-01

    With entropic interpretation of gravity proposed by Verlinde, we obtain the Friedmann equation of the Friedmann—Robertson—Walker universe for the deformed Hořava—Lifshitz gravity. It is shown that, when the parameter of Hořava—Lifshitz gravity ω → ∞, the modified Friedmann equation will go back to the one in Einstein gravity. This results may imply that the entropic interpretation of gravity is effective for the deformed Hořava—Lifshitz gravity.

  8. Disformal transformations, veiled General Relativity and Mimetic Gravity

    SciTech Connect

    Deruelle, Nathalie; Rua, Josephine E-mail: rua@cbpf.br

    2014-09-01

    In this Note we show that Einstein's equations for gravity are generically invariant under ''disformations''. We also show that the particular subclass when this is not true yields the equations of motion of ''Mimetic Gravity''. Finally we give the ''mimetic'' generalization of the Schwarzschild solution.

  9. Einstein and a century of time

    NASA Astrophysics Data System (ADS)

    Raine, D. J.

    2005-09-01

    In a world overabundant in information, a subject is defined by its iconography. Physics is the falling apple, the planetary atom, the laser, the mushroom cloud and the image of the later Einstein - images that represent, respectively, gravity, atomic theory, quantum theory, mass-energy and the scientist who had a hand in all four. It is therefore appropriate that World Year of Physics is called Einstein Year in the UK. Of course one can argue that progress in science depends on the contributions of many people; that there are other geniuses in physics, even some colourful personalities. Nevertheless there are fundamental reasons why Einstein's early achievements stand out even in their company. When at last the thought came to him that 'time itself was suspect', Einstein had found a new insight into the nature of the physical universe. It is this: that the universal properties of material objects tell us about the nature of space and time, and it is through these properties, not philosophical logic or common sense, that we discover the structure of spacetime. The later Einstein turned this successful formula on its head and sought to use the properties of spacetime to define those of material objects, thereby seeking to abolish matter entirely in favour of geometry. Before I introduce this special feature of European Journal of Physics I will say a few words about what is not here. Like all great geniuses Einstein can be seen as the climax of what went before him and the initiation of what was to follow. Looking back we can see the influence of Mach's positivism, according to which the role of science is to relate observations to other observations; hence only observations can tell us what is 'real'. But Einstein also grew up with the family electromechanical businesses, which testifies to the reality of the Maxwellian electromagnetic fields: thus only theory can tell us what is real! As is well known, Einstein himself refused to accept the full consequences of

  10. The Einstein Toolkit

    NASA Astrophysics Data System (ADS)

    Löffler, Frank

    2012-03-01

    The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Its aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of petascale computers and advanced cyberinfrastructure. The Einstein Toolkit currently consists of an open set of over 100 modules for the Cactus framework, primarily for computational relativity along with associated tools for simulation management and visualization. The toolkit includes solvers for vacuum spacetimes as well as relativistic magneto-hydrodynamics, along with modules for initial data, analysis and computational infrastructure. These modules have been developed and improved over many years by many different researchers. The Einstein Toolkit is supported by a distributed model, combining core support of software, tools, and documentation in its own repositories and through partnerships with other developers who contribute open software and coordinate together on development. As of January 2012 it has 68 registered members from 30 research groups world-wide. This talk will present the current capabilities of the Einstein Toolkit and will point to information how to leverage it for future research.

  11. 2011 Einstein Fellows Chosen

    NASA Astrophysics Data System (ADS)

    2011-03-01

    ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/

  12. Einstein and Friedman

    NASA Astrophysics Data System (ADS)

    Frenkel, Viktor

    The focus of the present article is Friedman's 1922 letter to Einstein accompanied by additional evidence throwing light on their debate, and the great roles played by Yuri Krutkov and Paul Ehrenfest, both of whom Einstein knew very well (see Frenkel 1970). The debate began soon after the appearance of Friedman's first article showing the possibility of a nonstationary solution of the cosmological problem (thus laying the foundation for the theory of an expanding universe). Einstein replied to Friedman with a note in which, as aptly observed by Fock, "he said, somewhat condescendingly, that Friedman's results seemed suspicious to him, and that he had found a mistake in them which, when corrected, reduced Friedman's solution to a stationary one" (Friedman 1966). Great people's delusions are always instructive, especially when dealing with fundamental problems. The honesty of great men can also be exemplary: the debate came to an end after the publication of Einstein's second note, in which he stressed the importance of Friedman's work.

  13. From Newton to Einstein.

    ERIC Educational Resources Information Center

    Ryder, L. H.

    1987-01-01

    Discusses the history of scientific thought in terms of the theories of inertia and absolute space, relativity and gravitation. Describes how Sir Isaac Newton used the work of earlier scholars in his theories and how Albert Einstein used Newton's theories in his. (CW)

  14. Examining the Enigmatic Einstein

    ERIC Educational Resources Information Center

    Khoon, Koh Aik

    2007-01-01

    Albert Einstein is the icon of scientific genius. His is one the most recognizable faces in the history of mankind. This paper takes a cursory look at the man who is commonly perceived to be the epitome of eccentricity. We manage to sum up his salient traits which are associated with his name. The traits are based on anecdotal evidence. This…

  15. Einstein in My Hometown

    NASA Astrophysics Data System (ADS)

    Mamola, Karl

    2005-12-01

    During the 22 years Albert Einstein lived and worked in the United States, he frequently took long summer vacations. Generally he chose quiet, out-of-the-way vacation spots, and because of his love of sailing, places close to bodies of water. Among other locations, he vacationed at Saranac Lake in upstate New York, the Rhode Island coast, and, during the summers of 1937-39, at Nassau Point on the North Fork of Long Island. Nassau Point is a part of the small town of Cutchogue and is located on Peconic Bay, about 90 miles from New York City. It was an ideal spot for Einstein both because it was off the beaten path and because of the outstanding sailing conditions on Peconic Bay. Einstein rented a cabin just a stone's throw from the bay. I myself have a special interest in Cutchogue because it's the place where I was born and where I spent the first few years of my life. Unfortunately, I came along five or six years too late to have actually seen Einstein there, but he did have encounters with some of my older friends and relatives.

  16. Axial quasinormal modes of Einstein-Gauss-Bonnet-dilaton neutron stars

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; González-Romero, Luis Manuel; Kunz, Jutta; Mojica, Sindy; Navarro-Lérida, Francisco

    2016-01-01

    We investigate axial quasinormal modes of realistic neutron stars in Einstein-Gauss-Bonnet-dilaton gravity. We consider eight realistic equations of state containing nuclear, hyperonic, and hybrid matter. We focus on the fundamental curvature mode and compare the results with those of pure Einstein theory. We observe that the frequency of the modes is increased by the presence of the Gauss-Bonnet-dilaton, while the impact on the damping time is typically smaller. Interestingly, we obtain that universal relations valid in pure Einstein theory still hold for Einstein-Gauss-Bonnet-dilaton gravity, and we propose a method to use these phenomenological relations to constrain the value of the Gauss-Bonnet coupling.

  17. In the Beginning Was Quantum Gravity.

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1983-01-01

    Cosmology is the theory by which the structure and history of the universe is described. Discusses the relationship between cosmology, gravity, and quantum mechanics, and whether the relationship can be formulated through Einstein's theory or a modification of it. Also discusses progress made in these scientific areas. (JN)

  18. Non-static cosmological model in gravity

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Sahoo, P. K.; Tarai, Sankarsan

    2015-09-01

    In this paper, we have studied the Einstein-Rosen space time in gravity by considering the second model of Harko et al. (Phys. Rev. D 84:024020, 2011), , where ; and ; . The matter field is considered in the form of perfect fluid. It is observed that, the perfect fluid represent the Zel'dovich universe in both the forms.

  19. Black holes in an ultraviolet complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Modesto, Leonardo; Moffat, John W.; Nicolini, Piero

    2011-01-01

    In this Letter we derive the gravity field equations by varying the action for an ultraviolet complete quantum gravity. Then we consider the case of a static source term and we determine an exact black hole solution. As a result we find a regular spacetime geometry: in place of the conventional curvature singularity extreme energy fluctuations of the gravitational field at small length scales provide an effective cosmological constant in a region locally described in terms of a de Sitter space. We show that the new metric coincides with the noncommutative geometry inspired Schwarzschild black hole. Indeed, we show that the ultraviolet complete quantum gravity, generated by ordinary matter is the dual theory of ordinary Einstein gravity coupled to a noncommutative smeared matter. In other words we obtain further insights about that quantum gravity mechanism which improves Einstein gravity in the vicinity of curvature singularities. This corroborates all the existing literature in the physics and phenomenology of noncommutative black holes.

  20. Turning on gravity with the Higgs mechanism

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Barrow, John D.; Magueijo, João

    2016-07-01

    We investigate how a Higgs mechanism could be responsible for the emergence of gravity in extensions of Einstein theory, with a suitable low energy limit. In this scenario, at high energies, symmetry restoration could ‘turn off’ gravity, with dramatic implications for cosmology and quantum gravity. The sense in which gravity is muted depends on the details of the implementation. In the most extreme case gravity’s dynamical degrees of freedom would only be unleashed after the Higgs field acquires a non-trivial vacuum expectation value, with gravity reduced to a topological field theory in the symmetric phase. We might also identify the Higgs and the Brans–Dicke fields in such a way that in the unbroken phase Newton’s constant vanishes, decoupling matter and gravity. We discuss the broad implications of these scenarios.

  1. From the Komar Mass and Entropic Force Scenarios to the Einstein Field Equations on the Ads Brane

    NASA Astrophysics Data System (ADS)

    Moradpour, H.; Sheykhi, A.

    2016-02-01

    By bearing the Komar's definition for the mass, together with the entropic origin of gravity in mind, we find the Einstein field equations in ( n + 1)-dimensional spacetime. Then, by reflecting the (4 + 1)-dimensional Einstein equations on the (3 + 1)-hypersurface, we get the Einstein equations onto the 3-brane. The corresponding energy conditions are also addressed. Since the higher dimensional considerations modify the Einstein field equations in the (3 + 1)-dimensions and thus the energy-momentum tensor, we get a relation for the Komar mass on the brane. In addition, the strongness of this relation compared with existing definition for the Komar mass on the brane is addressed.

  2. Slowly rotating black holes in Einstein-æther theory

    NASA Astrophysics Data System (ADS)

    Barausse, Enrico; Sotiriou, Thomas P.; Vega, Ian

    2016-02-01

    We study slowly rotating, asymptotically flat black holes in Einstein-æther theory and show that solutions that are free from naked finite area singularities form a two-parameter family. These parameters can be thought of as the mass and angular momentum of the black hole, while there are no independent æ ther charges. We also show that the æ ther has nonvanishing vorticity throughout the spacetime, as a result of which there is no hypersurface that resembles the universal horizon found in static, spherically symmetric solutions. Moreover, for experimentally viable choices of the coupling constants, the frame-dragging potential of our solutions only shows percent-level deviations from the corresponding quantities in General Relativity and Hořava gravity. Finally, we uncover and discuss several subtleties in the correspondence between Einstein-æther theory and Hořava gravity solutions in the cω→∞ limit.

  3. Probing quantized Einstein-Rosen waves with massless scalar matter

    SciTech Connect

    Fernando Barbero, J. G.; Garay, Inaki; Villasenor, Eduardo J. S.

    2006-08-15

    The purpose of this paper is to discuss in detail the use of scalar matter coupled to linearly polarized Einstein-Rosen waves as a probe to study quantum gravity in the restricted setting provided by this symmetry reduction of general relativity. We will obtain the relevant Hamiltonian and quantize it with the techniques already used for the purely gravitational case. Finally, we will discuss the use of particlelike modes of the quantized fields to operationally explore some of the features of quantum gravity within this framework. Specifically, we will study two-point functions, the Newton-Wigner propagator, and radial wave functions for one-particle states.

  4. The global Utiyama theorem in Einstein-Cartan theory

    NASA Astrophysics Data System (ADS)

    Bruzzo, Ugo

    1987-09-01

    A global formulation of Utiyama's theorem for Einstein-Cartan-type gravitational theories regarded as gauge theories of the group of space-time diffeomorphisms is given. The local conditions for the Lagrangian to be gauge invariant coincide with those found by other authors [A. Pérez-Rendón Collantes, ``Utiyama type theorems,'' in Poincaré Gauge Approach to Gravity. I, Proceedings Journées Relativistes 1984; A. Pérez-Rendón and J. J. Seisdedos, ``Utiyama type theorems in Poincaré gauge approach to gravity. II, '' Preprints de Mathematicas, Universidad de Salamanca, 1986] in Kibble's and Hehl's approaches.

  5. Analogue gravitational phenomena in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano

    2012-08-01

    Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which are general relativistic spacetimes allowing faster-than-light travel, are unstable. Finally, the cosmological constant issue is investigated from an analogue gravity perspective and relativistic Bose-Einstein condensates are proposed as new analogue systems with novel interesting properties.

  6. Einstein and a century of time

    NASA Astrophysics Data System (ADS)

    Raine, D. J.

    2005-09-01

    In a world overabundant in information, a subject is defined by its iconography. Physics is the falling apple, the planetary atom, the laser, the mushroom cloud and the image of the later Einstein - images that represent, respectively, gravity, atomic theory, quantum theory, mass-energy and the scientist who had a hand in all four. It is therefore appropriate that World Year of Physics is called Einstein Year in the UK. Of course one can argue that progress in science depends on the contributions of many people; that there are other geniuses in physics, even some colourful personalities. Nevertheless there are fundamental reasons why Einstein's early achievements stand out even in their company. When at last the thought came to him that 'time itself was suspect', Einstein had found a new insight into the nature of the physical universe. It is this: that the universal properties of material objects tell us about the nature of space and time, and it is through these properties, not philosophical logic or common sense, that we discover the structure of spacetime. The later Einstein turned this successful formula on its head and sought to use the properties of spacetime to define those of material objects, thereby seeking to abolish matter entirely in favour of geometry. Before I introduce this special feature of European Journal of Physics I will say a few words about what is not here. Like all great geniuses Einstein can be seen as the climax of what went before him and the initiation of what was to follow. Looking back we can see the influence of Mach's positivism, according to which the role of science is to relate observations to other observations; hence only observations can tell us what is 'real'. But Einstein also grew up with the family electromechanical businesses, which testifies to the reality of the Maxwellian electromagnetic fields: thus only theory can tell us what is real! As is well known, Einstein himself refused to accept the full consequences of

  7. Einstein's Real "biggest Blunder"

    NASA Astrophysics Data System (ADS)

    Ellis, Homer G.

    2012-10-01

    Albert Einstein's real "biggest blunder" was not the 1917 introduction into his gravitational field equations of a cosmological constant term Λ, rather was his failure in 1916 to distinguish between the entirely different concepts of active gravitational mass and passive gravitational mass. Had he made the distinction, and followed David Hilbert's lead in deriving field equations from a variational principle, he might have discovered a true (not a cut and paste) Einstein-Rosen bridge and a cosmological model that would have allowed him to predict, long before such phenomena were imagined by others, inflation, a big bounce (not a big bang), an accelerating expansion of the universe, dark matter, and the existence of cosmic voids, walls, filaments and nodes.

  8. Bose-Einstein Condensation

    SciTech Connect

    El-Sherbini, Th.M.

    2005-03-17

    This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.

  9. Einstein's Years in Switzerland

    NASA Astrophysics Data System (ADS)

    Plendl, Hans S.

    2005-11-01

    Albert Einstein left Germany, the country of his birth, in 1894 and moved to Switzerland in 1895. He studied, worked and taught there, except for a year's stay in Prague, until1914. That year he returned to Germany, where he lived until his emigration to the United States in 1933. In 1905, while living with his wife Mileva and their first son Hans Albert in Bern and working as a technical expert at the Swiss Patent Office, he published his dissertation on the determination of molecular dimensions, his papers on Brownian Motion that helped to establish the Kinetic Theory of Heat and on the Photo-Electric Effect that validated the Quantum Theory of Light, and the two papers introducing the Special Theory of Relativity. How the young Einstein could help to lay the foundations of these theories while still working on his dissertation, holding a full-time job and helping to raise a family has evoked much discussion among his biographers. In this contribution, the extent to which living within Swiss society and culture could have made this feat possible will be examined. Old and recent photos of places in Switzerland where Einstein has lived and worked will be shown.

  10. The stolen brain of Einstein

    NASA Astrophysics Data System (ADS)

    Modi, Kavan

    2008-03-01

    Pathologist Thomas Stoltz Harvey performed an autopsy on Einstein after his death in 1955. During the autopsy Harvey removed Einstein's brain, took pictures of it and then cut it into several pieces. A lot of scientific attention has been devoted to Einstein' brain, and it still comes up once in a while. We've all heard something or other about Einstein's brain, as it has become somewhat of a folk lore. What is less known is that Harvey in actuality did not have the permission to remove the brain. Only later Harvey convinced Einstein's Hans Albert Einstein son that this was for a good purpose. The brain would only be used for scientific purpose, which will be published reputable journals. I will try to describe in some detail the long journey this brain has taken in last fifty two years.

  11. Lorentzian wormholes in Lovelock gravity

    SciTech Connect

    Dehghani, M. H.; Dayyani, Z.

    2009-03-15

    In this paper, we introduce the n-dimensional Lorentzian wormhole solutions of third order Lovelock gravity. In contrast to Einstein gravity and as in the case of Gauss-Bonnet gravity, we find that the wormhole throat radius r{sub 0} has a lower limit that depends on the Lovelock coefficients, the dimensionality of the spacetime, and the shape function. We study the conditions of having normal matter near the throat, and find that the matter near the throat can be normal for the region r{sub 0}{<=}r{<=}r{sub max}, where r{sub max} depends on the Lovelock coefficients and the shape function. We also find that the third order Lovelock term with negative coupling constant enlarges the radius of the region of normal matter, and conclude that the higher order Lovelock terms with negative coupling constants enlarge the region of normal matter near the throat.

  12. Einstein, Bohr, and Bell

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    The final form of quantum physics, in the particular case of wave mechanics, was established in the years 1925-1927 by Heisenberg, Schrödinger, Born and others, but the synthesis was the work of Bohr who gave an epistemological interpretation of all the technicalities built up over those years; this interpretation will be examined briefly in Chapter 10. Although Einstein acknowledged the success of quantum mechanics in atomic, molecular and solid state physics, he disagreed deeply with Bohr's interpretation. For many years, he tried to find flaws in the formulation of quantum theory as it had been more or less accepted by a large majority of physicists, but his objections were brushed away by Bohr. However, in an article published in 1935 with Podolsky and Rosen, universally known under the acronym EPR, Einstein thought he had identified a difficulty in the by then standard interpretation. Bohr's obscure, and in part beyond the point, answer showed that Einstein had hit a sensitive target. Nevertheless, until 1964, the so-called Bohr-Einstein debate stayed uniquely on a philosophical level, and it was actually forgotten by most physicists, as the few of them aware of it thought it had no practical implication. In 1964, the Northern Irish physicist John Bell realized that the assumptions contained in the EPR article could be tested experimentally. These assumptions led to inequalities, the Bell inequalities, which were in contradiction with quantum mechanical predictions: as we shall see later on, it is extremely likely that the assumptions of the EPR article are not consistent with experiment, which, on the contrary, vindicates the predictions of quantum physics. In Section 3.2, the origin of Bell's inequalities will be explained with an intuitive example, then they will be compared with the predictions of quantum theory in Section 3.3, and finally their experimental status will be reviewed in Section 3.4. The debate between Bohr and Einstein goes much beyond a

  13. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  14. The Weyl-Cartan Space Problem in Purely Affine Theory

    NASA Astrophysics Data System (ADS)

    von Borzeszkowski, Horst-Heino; Treder, Hans-Jürgen

    1997-04-01

    According to Poincaré, only the ``epistemological sum of geometry and physics is measurable". Of course, there are requirements of measurement to be imposed on geometry because otherwise the theory resting on this geometry cannot be physically interpreted. In particular, the Weyl--Cartan space problem must be solved, i.e., it must be guaranteed that the comparison of distances is compatible with the Levi-Civita transport. In the present paper, we discuss these requirements of measurement and show that in the (purely affine) Einstein-Schrödinger unified field theory the solution of the Weyl-Cartan space problem simultaneously determines the matter via Einstein's equations. Here the affine field $\\Gamma^ikl$ represents Poincaré's sum, and the solution of the space problem means its splitting in a metrical space and in matter fields, where the latter are given by the torsion tensor $\\Gamma^i_{[kl]}$.

  15. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  16. How Einstein Did Not Discover

    NASA Astrophysics Data System (ADS)

    Norton, John D.

    2016-08-01

    What powered Einstein's discoveries? Was it asking naïve questions, stubbornly? Was it a mischievous urge to break rules? Was it the destructive power of operational thinking? It was none of these. Rather, Einstein made his discoveries through lengthy, mundane investigations, pursued with tenacity and discipline. We have been led to think otherwise in part through Einstein's brilliance at recounting in beguilingly simple terms a few brief moments of transcendent insight, and in part through our need to find a simple trick underlying his achievements. These ideas are illustrated with the examples of Einstein's 1905 discoveries of special relativity and the light quantum.

  17. Twistor-strings and gravity tree amplitudes

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Mason, Lionel

    2013-04-01

    Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.

  18. A cosmological study in massive gravity theory

    SciTech Connect

    Pan, Supriya Chakraborty, Subenoy

    2015-09-15

    A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.

  19. The Einstein Dossiers: Science and Politics - Einstein's Berlin Period with an Appendix on Einstein's FBI File

    NASA Astrophysics Data System (ADS)

    Grundmann, Siegfried

    In 1919 the Prussian Ministry of Science, Arts and Culture opened a dossier on "Einstein's Theory of Relativity." It was rediscovered by the author in 1961 and is used in conjunction with numerous other subsequently identified 'Einstein' files as the basis of this fascinating book. In particular, the author carefully scrutinizes Einstein's FBI file from 1950-55 against mostly unpublished material from European including Soviet sources and presents hitherto unknown documentation on Einstein's alleged contacts with the German Communist Party and the Comintern.

  20. Generalized Vaidya spacetime in Lovelock gravity and thermodynamics on the apparent horizon

    SciTech Connect

    Cai Ronggen; Cao Liming; Hu Yapeng; Kim, Sang Pyo

    2008-12-15

    We present a kind of generalized Vaidya solutions in a generic Lovelock gravity. This solution generalizes the simple case in Gauss-Bonnet gravity reported recently by some authors. We study the thermodynamics of apparent horizon in this generalized Vaidya spacetime. Treating those terms except for the Einstein tensor as an effective energy-momentum tensor in the gravitational field equations, and using the unified first law in Einstein gravity theory, we obtain an entropy expression for the apparent horizon. We also obtain an energy expression of this spacetime, which coincides with the generalized Misner-Sharp energy proposed by Maeda and Nozawa in Lovelock gravity.

  1. Einstein flow and cosmology

    NASA Astrophysics Data System (ADS)

    Kouneiher, J.

    2015-07-01

    The recent evolution of the observational technics and the development of new tools in cosmology and gravitation have a significant impact on the study of the cosmological models. In particular, the qualitative and numerical methods used in dynamical system and elsewhere, enable the resolution of some difficult problems and allow the analysis of different cosmological models even with a limited number of symmetries. On the other hand, following Einstein point of view the manifold ℳ and the metric should be built simultaneously when solving Einstein’s equation Rμν -1 2Rgμν = Tμν. From this point of view, the only kinematic condition imposed is that at each point of space-time, the tangent space is endowed with a metric (which is a Minkowski metric in the physical case of pseudo-Riemannian manifolds and an Euclidean one in the Riemannian analogous problem). Then the field (gμν) describes the way these metrics depend on the point in a smooth way and the Einstein equation is the “dynamical” constraint on gμν. So, we have to imagine an infinite continuous family of copies of the same Minkowski or Euclidean space and to find a way to sew together these infinitesimal pieces into a manifold, by respecting Einstein’s equation. Thus, Einstein field equations do not fix once and for all the global topology. 34 Given this freedom in the topology of the space-time manifold, a question arises as to how free the choice of these topologies may be and how one may hope to determine them, which in turn is intimately related to the observational consequences of the space-time possessing nontrivial topologies. Therefore, in this paper we will use a different qualitative dynamical methods to determine the actual topology of the space-time.

  2. Einstein spectra of quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.

    1988-01-01

    The results of the initial stage of the CfA survey of quasar energy distributions are reviewed. Einstein imaging proportional counter spectra of 33 quasars have been studied by fitting a single power law slope and absorption by an equivalent column density of neutral hydrogen. Comparison with the higher energy HEAO-A2 data leads to a two-component model for the X-ray spectrum. The X-ray column density is systematically lower than the 21-cm measured Galactic column density along the same line of sight.

  3. Energy in the Einstein-aether theory

    SciTech Connect

    Eling, Christopher

    2006-04-15

    We investigate the energy of a theory with a unit vector field (the aether) coupled to gravity. Both the Weinberg and Einstein type energy-momentum pseudotensors are employed. In the linearized theory we find expressions for the energy density of the 5 wave modes. The requirement that the modes have positive energy is then used to constrain the theory. In the fully nonlinear theory we compute the total energy of an asymptotically flat spacetime. The resulting energy expression is modified by the presence of the aether due to the nonzero value of the unit vector at infinity and its 1/r falloff. The question of nonlinear energy positivity is also discussed, but not resolved.

  4. Radiation damping in Einstein-aether theory

    SciTech Connect

    Foster, Brendan Z.

    2006-05-15

    This work concerns the loss of energy of a material system due to gravitational radiation in Einstein-aether theory - an alternative theory of gravity in which the metric couples to a dynamical, timelike, unit-norm vector field. Derived to lowest post-Newtonian order are wave forms for the metric and vector fields far from a nearly Newtonian system and the rate of energy radiated by the system. The expressions depend on the quadrupole moment of the source, as in standard general relativity, but also contain monopolar and dipolar terms. There exists a one-parameter family of Einstein-aether theories for which only the quadrupolar contribution is present, and for which the expression for the damping rate is identical to that of general relativity to the order worked to here. This family cannot yet be declared observationally viable, since effects due to the strong internal fields of bodies in the actual systems used to test the damping rate have not yet been determined.

  5. Newton to Einstein — dust to dust

    SciTech Connect

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas E-mail: cora.uhlemann@physik.lmu.de

    2014-03-01

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show that this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.

  6. Noncommutative Einstein-Proca spacetime

    NASA Astrophysics Data System (ADS)

    González, Angélica; Linares, Román; Maceda, Marco; Sánchez-Santos, Oscar

    2014-12-01

    In this paper, we present a deformed model of Einstein-Proca spacetime based on the replacement of pointlike sources by noncommutative smeared distributions. We discuss the solutions to the set of noncommutative Einstein-Proca equations thus obtained, with emphasis on the issue of singularities and horizons.

  7. Einstein and the "Crucial" Experiment

    ERIC Educational Resources Information Center

    Holton, Gerald

    1969-01-01

    Examines the widespread view that it was the crucial Michelson-Morley experiment that led Einstein to formulate the special relativity theory. From Einstein's writings, evidence is presented that no such direct genetic connection exists. The author suggests that the historian of science must resist the experimenticist's fallacy of imposing a…

  8. Albert Einstein 1879-1955.

    ERIC Educational Resources Information Center

    Physics Today, 1979

    1979-01-01

    Celebrates the centennial of Einstein's birth with an eight-page pictorial biography and two special articles: (1) Einstein the catalyst; and (2) Unitary field theories. His special and general theories of relativity and his contributions to quantum physics and other topics are also presented. (HM)

  9. Transverse gravity versus observations

    SciTech Connect

    Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J.J. E-mail: anton.fernandez@uam.es

    2009-07-01

    Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂{sub μ}ξ{sup μ} = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.

  10. Vorticity in analog gravity

    NASA Astrophysics Data System (ADS)

    Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo

    2016-06-01

    In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose–Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.

  11. Transverse gravity versus observations

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J. J.

    2009-07-01

    Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂μξμ = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.

  12. Venus gravity

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  13. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  14. Thermodynamics of Einstein-Born-Infeld black holes in three dimensions

    SciTech Connect

    Myung, Yun Soo; Kim, Yong-Wan; Park, Young-Jai

    2008-08-15

    We show that all thermodynamic quantities of the Einstein-Born-Infeld black holes in three dimensions can be obtained from the dilaton and its potential of two-dimensional dilaton gravity through dimensional reduction. These are all between nonrotating uncharged BTZ (Banados-Teitelboim-Zanelli) black hole (NBTZ) and charged BTZ black hole (CBTZ)

  15. Short Range Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David

    2014-03-01

    Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.

  16. Infinite-dimensional symmetries in gravity

    NASA Astrophysics Data System (ADS)

    Einstein theory Introduction Mathematical conventions The Einstein-Hilbert action Dimensional reduction D = 4 --> D = 3 Dimensional reduction D = 3 --> D = 2 Nonlinear σ-models Ehlers Lagrangian as a nonlinear σ-model The Ernst equation The Matzner-Misner Lagrangian as a nonlinear σ-model Symmetries of nonlinear σ-models Nonlinear realization of SL(2, R)E Nonlinear realization of SL(2, R)MM The Geroch group Action of SL(2, R)E on λbar, B2 Action of SL(2, R)MM on λ, B The affine Kac-Moody SL(2, R) algebra The linear system Solving Einstein's equations The linear system Derivation of the colliding plane metric by factorization Acknowledgments Further reading

  17. Classification of the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes with a photon sphere

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho; Lazov, Boian

    2016-04-01

    We consider the problem for the classification of static and asymptotically flat Einstein-Maxwell-dilaton spacetimes with a photon sphere. It is first proven that the photon spheres in Einstein-Maxwell-dilaton gravity have constant mean and constant scalar curvature. Then we derive some relations between the mean curvature and the physical characteristics of the photon spheres. Using further the symmetries of the dimensionally reduced Einstein-Maxwell-dilaton field equations we show that the lapse function, the electrostatic potential, and the dilaton field are functionally dependent in the presence of a photon sphere. Using all this we prove the main classification theorem by explicitly constructing all Einstein-Maxwell-dilaton solutions possessing a nonextremal photon sphere.

  18. Matter bounce loop quantum cosmology from F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2014-12-01

    Using the reconstruction method, we investigate which F (R ) theories, with or without the presence of matter fluids, can produce the matter bounce scenario of holonomy corrected loop quantum cosmology. We focus our study in two limits of the cosmic time, the large cosmic time limit and the small cosmic time limit. For the former, we find that, in the presence of noninteracting and nonrelativistic matter, the F (R ) gravity that reproduces the late time limit of the matter bounce solution is actually the Einstein-Hilbert gravity plus a power law term. In the early time limit, since it corresponds to large spacetime curvatures, assuming that the Jordan frame is described by a general metric that, when it is conformally transformed to the Einstein frame, produces an accelerating Friedmann-Robertson-Walker metric, we find explicitly the scalar field dependence on time. After demonstrating that the solution in the Einstein frame is indeed accelerating, we calculate the spectral index derived from the Einstein frame scalar-tensor counterpart theory of the F (R ) theory and compare it with the Planck experiment data. In order to implement the resulting picture, we embed the F (R ) gravity explicitly in a loop quantum cosmology framework by introducing holonomy corrections to the F (R ) gravity. In this way, the resulting inflation picture corresponding to the F (R ) gravity can be corrected in order that it coincides to some extent with the current experimental data.

  19. Michelson-Morley in Einstein's elevators

    NASA Astrophysics Data System (ADS)

    Pierce, Fred; Pierce, Ayal

    2010-02-01

    Experiments are proposed in which a Michelson-Morley interferometer is placed in Einstein's thought experiments where elevators are subjected to varied accelerated fields. Unbeknownst to the observers inside the elevators, they are placed in different circumstances: on the surface of the Earth, in free fall, in space distant from any mass, and inside a rotating space station. By use of not one, but two objects, the observer will be challenged to determine the nature and shape of the accelerated field, if any, inside the elevator. It will be demonstrated that the nature of the accelerated field can be determined easily from inside the elevator by the motion of the two objects released by the observer. It will also be shown that, for the elevator on the space station which is generating an ``artificial gravity'' field by rotation, Michelson-Morley would have the same null result as on Earth. However, the Michelson-Morley experiment is adapted so that in addition to the two horizontal arms of the interferometer (parallel to the floor of the elevator) a vertical arm is added perpendicular to the floor facing towards the ceiling. Such a vertical arm added to the Michelson-Morley experiment adds a new dimension to examining each accelerated field, including gravity. )

  20. Gravity investigations

    SciTech Connect

    Healey, D.L.

    1983-12-31

    A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.

  1. Numerical solutions of Einstein's equations for cosmological spacetimes with spatial topology S3 and symmetry group U(1)

    NASA Astrophysics Data System (ADS)

    Beyer, F.; Escobar, L.; Frauendiener, J.

    2016-02-01

    In this paper we consider the single patch pseudospectral scheme for tensorial and spinorial evolution problems on the 2-sphere presented by Beyer et al. [Classical Quantum Gravity 32, 175013 (2015); Classical Quantum Gravity31, 075019 (2014)], which is based on the spin-weighted spherical harmonics transform. We apply and extend this method to Einstein's equations and certain classes of spherical cosmological spacetimes. More specifically, we use the hyperbolic reductions of Einstein's equations obtained in the generalized wave map gauge formalism combined with Geroch's symmetry reduction, and focus on cosmological spacetimes with spatial S3 -topologies and symmetry groups U(1) or U (1 )×U (1 ) . We discuss analytical and numerical issues related to our implementation. We test our code by reproducing the exact inhomogeneous cosmological solutions of the vacuum Einstein field equations obtained by Beyer and Hennig [Classical Quantum Gravity 31, 095010 (2014)].

  2. Modifications of gravity.

    PubMed

    Skordis, Constantinos

    2011-12-28

    General relativity (GR) is a phenomenologically successful theory that rests on firm foundations, but has not been tested on cosmological scales. The deep mystery of dark energy (and possibly even the requirement of cold dark matter (CDM)) has increased the need for testing modifications to GR, as the inference of such otherwise undetected fluids depends crucially on the theory of gravity. Here, I discuss a general scheme for constructing consistent and covariant modifications to the Einstein equations. This framework is such that there is a clear connection between the modification and the underlying field content that produces it. I argue that this is mandatory for distinguishing modifications of gravity from conventional fluids. I give a non-trivial example, a simple metric-based modification of the fluctuation equations for which the background is exact ΛCDM, but differs from it in the perturbations. I show how this can be generalized and solved in terms of two arbitrary functions. Finally, I discuss future prospects and directions of research. PMID:22084286

  3. Polymer quantization of the Einstein-Rosen wormhole throat

    SciTech Connect

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2010-01-15

    We present a polymer quantization of spherically symmetric Einstein gravity in which the polymerized variable is the area of the Einstein-Rosen wormhole throat. In the classical polymer theory, the singularity is replaced by a bounce at a radius that depends on the polymerization scale. In the polymer quantum theory, we show numerically that the area spectrum is evenly spaced and in agreement with a Bohr-Sommerfeld semiclassical estimate, and this spectrum is not qualitatively sensitive to issues of factor ordering or boundary conditions except in the lowest few eigenvalues. In the limit of small polymerization scale we recover, within the numerical accuracy, the area spectrum obtained from a Schroedinger quantization of the wormhole throat dynamics. The prospects of recovering from the polymer throat theory a full quantum-corrected spacetime are discussed.

  4. Second post-Newtonian approximation of Einstein-aether theory

    SciTech Connect

    Xie Yi; Huang Tianyi

    2008-06-15

    In this paper, second post-Newtonian approximation of Einstein-aether theory is obtained by Chandrasekhar's approach. Five parametrized post-Newtonian parameters in first post-Newtonian approximation are presented after a time transformation and they are identical with previous works, in which {gamma}=1, {beta}=1, and two preferred-frame parameters remain. Meanwhile, in second post-Newtonian approximation, a parameter, which represents third order nonlinearity for gravity, is zero--the same as in general relativity. For an application for future deep space laser ranging missions, we reduce the metric coefficients for light propagation in a case of N point masses as a simplified model of the Solar System. The resulting light deflection angle in second post-Newtonian approximation poses another constraint on the Einstein-aether theory.

  5. Unified theory of nonlinear electrodynamics and gravity

    SciTech Connect

    Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos

    2011-01-15

    We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but for any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.

  6. Exact quantization of Einstein-Rosen waves coupled to massless scalar matter.

    PubMed

    Barbero G, J Fernando; Garay, Iñaki; Villaseñor, Eduardo J S

    2005-07-29

    We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity. PMID:16090861

  7. Einstein: The Gourmet of Creativity.

    ERIC Educational Resources Information Center

    Greenberg, Joel

    1979-01-01

    Reports a psychiatrist's analysis of Einstein's personal account of how he developed the theory of relativity. The psychiatrist cites Janusian thinking, actively conceiving two or more opposite concepts simultaneously, as a characteristic of much creative thought in general. (MA)

  8. Some notes on Einstein relationships

    NASA Astrophysics Data System (ADS)

    Allen, Michael P.; Masters, Andrew J.

    Transport coefficients are often expressed in the form of an Einstein relationship. In this report we point out some possibly surprising properties of the correlation functions appearing in such expressions and we discuss under what conditions the relationships are true. We further consider the Einstein relationship for the shear viscosity proposed by McQuarrie [in Statistical Mechanics (Harper and Row), 1976]. On the basis both of theoretical analysis and computer simulation, we conclude that this expression is incorrect.

  9. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is part of NASA s Beyond Einstein program. This program seeks to answer the questions What Powered the Big Bang?, What happens at the edge of a Black Hole?, and What is Dark Energy?. LISA IS the first mission to be launched in this new program. This paper will give an overview of the Beyond Einstein program, its current status and where LISA fits in.

  10. Differential geometry, Palatini gravity and reduction

    SciTech Connect

    Capriotti, S.

    2014-01-15

    The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincaré reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.

  11. Charged C -metric in conformal gravity

    NASA Astrophysics Data System (ADS)

    Lim, Yen-Kheng

    2016-04-01

    Using a C -metric-type ansatz, we obtain an exact solution to conformal gravity coupled to a Maxwell electromagnetic field. The solution resembles a C -metric spacetime carrying an electromagnetic charge. The metric is cast in a factorized form which allows us to study the domain structure of its static coordinate regions. This metric reduces to the well-known Mannheim-Kazanas metric under an appropriate limiting procedure, and also reduces to the (anti)de Sitter C -metric of Einstein gravity for a particular choice of parameters.

  12. Induced gravity I: real scalar field

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2016-01-01

    We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.

  13. New variables for classical and quantum gravity

    NASA Technical Reports Server (NTRS)

    Ashtekar, Abhay

    1986-01-01

    A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced. These variables simplify the constraints of general relativity considerably and enable one to imbed the constraint surface in the phase space of Einstein's theory into that of Yang-Mills theory. The imbedding suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illustrative applications are discussed.

  14. Stress tensor correlators in three dimensional gravity

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Grumiller, Daniel; Merbis, Wout

    2016-03-01

    We calculate holographically arbitrary n -point correlators of the boundary stress tensor in three-dimensional Einstein gravity with negative or vanishing cosmological constant. We provide explicit expressions up to 5-point (connected) correlators and show consistency with the Galilean conformal field theory Ward identities and recursion relations of correlators, which we derive. This provides a novel check of flat space holography in three dimensions.

  15. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  16. Gravity Currents

    NASA Astrophysics Data System (ADS)

    Simpson, John E.

    1997-03-01

    This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.

  17. Gravity Currents

    NASA Astrophysics Data System (ADS)

    Simpson, John E.

    1999-11-01

    This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.

  18. The Gravity Probe B Experiment

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffrey

    2008-01-01

    This presentation briefly describes the Gravity Probe B (GP-B) Experiment which is designed to measure parts of Einstein's general theory of relativity by monitoring gyroscope orientation relative to a distant guide star. To measure the miniscule angles predicted by Einstein's theory, it was necessary to build near-perfect gyroscopes that were approximately 50 million times more precise than the best navigational gyroscopes. A telescope mounted along the central axis of the dewar and spacecraft provided the experiment's pointing reference to a guide star. The telescope's image divide precisely split the star's beam into x-axis and y-axis components whose brightness could be compared. GP-B's 650-gallon dewar, kept the science instrument inside the probe at a cryogenic temperature for 17.3 months and also provided the thruster propellant for precision attitude and translation control. Built around the dewar, the GP-B spacecraft was a total-integrated system, comprising both the space vehicle and payload, dedicated as a single entity to experimentally testing predictions of Einstein's theory.

  19. The Einstein Slew Survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Plummer, David; Schachter, Jonathan; Fabbiano, G.

    1992-01-01

    A catalog of 819 sources detected in the Einstein IPC Slew Survey of the X-ray sky is presented; 313 of the sources were not previously known as X-ray sources. Typical count rates are 0.1 IPC count/s, roughly equivalent to a flux of 3 x 10 exp -12 ergs/sq cm s. The sources have positional uncertainties of 1.2 arcmin (90 percent confidence) radius, based on a subset of 452 sources identified with previously known pointlike X-ray sources (i.e., extent less than 3 arcmin). Identifications based on a number of existing catalogs of X-ray and optical objects are proposed for 637 of the sources, 78 percent of the survey (within a 3-arcmin error radius) including 133 identifications of new X-ray sources. A public identification data base for the Slew Survey sources will be maintained at CfA, and contributions to this data base are invited.

  20. Newtonian limit of fully nonlinear cosmological perturbations in Einstein's gravity

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim E-mail: hr@kasi.re.kr

    2013-04-01

    We prove that in the infinite speed-of-light limit (i.e., non-relativistic and subhorizon limits), the relativistic fully nonlinear cosmological perturbation equations in two gauge conditions, the zero-shear gauge and the uniform-expansion gauge, exactly reproduce the Newtonian hydrodynamic perturbation equations in the cosmological background; as a consequence, in the same two gauge conditions, the Newtonian hydrodynamic equations are exactly recovered in the Minkowsky background.

  1. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  2. Wormholes without exotic matter in Einstein-Cartan theory

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Galiakhmetov, A. M.

    2015-10-01

    We study the possible existence of static traversable wormholes without invoking exotic matter in the framework of the Einstein--Cartan theory. A family of exact static, spherically symmetric wormhole solutions with an arbitrary throat radius, with flat or AdS asymptotic behavior, has been obtained with sources in the form of two noninteracting scalar fields with nonzero potentials. Both scalar fields are canonical (that is, satisfy the weak energy condition), one is minimally and the other nonminimally coupled to gravity, and the latter is a source of torsion.

  3. Magnetic strings in dilaton gravity

    SciTech Connect

    Dehghani, M.H.

    2005-03-15

    First, I present two new classes of magnetic rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with Liouville-type potential. The first class of solutions yields a four-dimensional spacetime with a longitudinal magnetic field generated by a static or spinning magnetic string. I find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when the rotation parameter does not vanish, there exists an electric field, and therefore the spinning string has a net electric charge which is proportional to the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. The net electric charge of the strings in these spacetimes is proportional to their velocities. Second, I obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. I argue that these solutions can present horizonless spacetimes with conic singularity, if one chooses the parameters of the solutions suitable. I also use the counterterm method and compute the conserved quantities of these spacetimes.

  4. Is Electromagnetic Gravity Control Possible?

    SciTech Connect

    Vargas, Jose G.; Torr, Douglas G.

    2004-02-04

    We study the interplay of Einstein's Gravitation (GR) and Maxwell's Electromagnetism, where the distribution of energy-momentum is not presently known (The Feynman Lectures, Vol 2, Chapter 27, section 4). As Feynman himself stated, one might in principle use Einstein's equations of GR to find such a distribution. GR (born in 1915) presently uses the Levi-Civita connection, LCC (the LCC was born two years after GR as a new concept, and not just as the pre-existing Christoffel symbols that represent it). Around 1927, Einstein proposed for physics an alternative to the LCC that constitutes a far more sensible and powerful affine enrichment of metric Riemannian geometry. It is called teleparallelism (TP). Its Finslerian version (i.e. in the space-time-velocity arena) permits an unequivocal identification of the EM field as a geometric quantity. This in turn permits one to identify a completely geometric set of Einstein equations from curvature equations. From their right hand side, one may obtain the actual distribution of EM energy-momentum. It is consistent with Maxwell's equations, since these also are implied by the equations of structure of TP. We find that the so-far-unknown terms in this distribution amount to a total differential and do not, therefore, alter the value of the total EM energy-momentum. And yet these extra terms are at macroscopic distances enormously larger than the standard quadratic terms. This allows for the generation of measurable gravitational fields by EM fields. We thus answer affirmatively the question of the title.

  5. Is Electromagnetic Gravity Control Possible?

    NASA Astrophysics Data System (ADS)

    Vargas, Jose G.; Torr, Douglas G.

    2004-02-01

    We study the interplay of Einstein's Gravitation (GR) and Maxwell's Electromagnetism, where the distribution of energy-momentum is not presently known (The Feynman Lectures, Vol 2, Chapter 27, section 4). As Feynman himself stated, one might in principle use Einstein's equations of GR to find such a distribution. GR (born in 1915) presently uses the Levi-Civita connection, LCC (the LCC was born two years after GR as a new concept, and not just as the pre-existing Christoffel symbols that represent it). Around 1927, Einstein proposed for physics an alternative to the LCC that constitutes a far more sensible and powerful affine enrichment of metric Riemannian geometry. It is called teleparallelism (TP). Its Finslerian version (i.e. in the space-time-velocity arena) permits an unequivocal identification of the EM field as a geometric quantity. This in turn permits one to identify a completely geometric set of Einstein equations from curvature equations. From their right hand side, one may obtain the actual distribution of EM energy-momentum. It is consistent with Maxwell's equations, since these also are implied by the equations of structure of TP. We find that the so-far-unknown terms in this distribution amount to a total differential and do not, therefore, alter the value of the total EM energy-momentum. And yet these extra terms are at macroscopic distances enormously larger than the standard quadratic terms. This allows for the generation of measurable gravitational fields by EM fields. We thus answer affirmatively the question of the title.

  6. Deflection of Light by Gravity: A Physical Approach.

    ERIC Educational Resources Information Center

    Diamond, Joshua B.

    1982-01-01

    Einstein's equivalence principle relates effects seen by an accelerating observer to those experienced by an observer in a gravitational field, providing an explanation of bending of a light beam by gravity. Because the calculations lead to results one-half the value found experimentally, obtaining the correct light deflection is discussed.…

  7. Cosmological solutions of a quadratic theory of gravity with torsion

    NASA Astrophysics Data System (ADS)

    Canale, Anna; de Ritis, Ruggiero; Tarantino, Ciro

    1984-01-01

    Following the general approach of Hehl, and Hayashi and Shirafuji, we give the gravity equations for the lagrangian L=(e/2L2)(F+1/2×F2) + LM. We have found the explicit Einstein-de Sitter solutions for a spinless dust. We have discussed in this case the singularity problem for the metric and for the torsion.

  8. My Half Hour with Einstein

    NASA Astrophysics Data System (ADS)

    Romer, Robert H.

    2005-03-01

    "So you're studying at Princeton. Would you like to meet Einstein?" That question, during a brief two-body collision at a cocktail party, a collision that was over before I could think of an appropriate response, led—over a year later—to one of the more memorable half hours of my life. It was an elastic collision, we drifted apart, and I thought it had simply been a casual remark until a few days later when the mail brought me a carbon copy [sic] of a letter (dated "25.XII.52") from the speaker, Dr. Tilly Edinger, to Albert Einstein. Accompanying the letter to Einstein was a card that Dr. Edinger advised me to send around to Einstein's home on Mercer Street to request a meeting. (What is perhaps most truly astonishing in connection with this event is that not only do I still have that carbon copy—and the eventual letter from Mercer Street that invited me to Einstein's home—but that I was able to find both documents in my attic!)

  9. Can Gravity Probe B usefully constrain torsion gravity theories?

    SciTech Connect

    Flanagan, Eanna E.; Rosenthal, Eran

    2007-06-15

    In most theories of gravity involving torsion, the source for torsion is the intrinsic spin of matter. Since the spins of fermions are normally randomly oriented in macroscopic bodies, the amount of torsion generated by macroscopic bodies is normally negligible. However, in a recent paper, Mao et al. (arXiv:gr-qc/0608121) point out that there is a class of theories, including the Hayashi-Shirafuji (1979) theory, in which the angular momentum of macroscopic spinning bodies generates a significant amount of torsion. They further argue that, by the principle of action equals reaction, one would expect the angular momentum of test bodies to couple to a background torsion field, and therefore the precession of the Gravity Probe B gyroscopes should be affected in these theories by the torsion generated by the Earth. We show that in fact the principle of action equals reaction does not apply to these theories, essentially because the torsion is not an independent dynamical degree of freedom. We examine in detail a generalization of the Hayashi-Shirafuji theory suggested by Mao et al. called Einstein-Hayashi-Shirafuji theory. There are a variety of different versions of this theory, depending on the precise form of the coupling to matter chosen for the torsion. We show that, for any coupling to matter that is compatible with the spin transport equation postulated by Mao et al., the theory has either ghosts or an ill-posed initial-value formulation. These theoretical problems can be avoided by specializing the parameters of the theory and in addition choosing the standard minimal coupling to matter of the torsion tensor. This yields a consistent theory, but one in which the action equals reaction principle is violated, and in which the angular momentum of the gyroscopes does not couple to the Earth's torsion field. Thus, the Einstein-Hayashi-Shirafuji theory does not predict a detectable torsion signal for Gravity Probe B. There may be other torsion theories which do.

  10. Position and frequency shifts induced by massive modes of the gravitational wave background in alternative gravity

    SciTech Connect

    Bellucci, Stefano; Capozziello, Salvatore; De Laurentis, Mariafelicia; Faraoni, Valerio

    2009-05-15

    Alternative theories of gravity predict the presence of massive scalar, vector, and tensor gravitational wave modes in addition to the standard massless spin 2 graviton of general relativity. The deflection and frequency shift effects on light from distant sources propagating through a stochastic background of gravitational waves, containing such modes, differ from their counterparts in general relativity. Such effects are considered as a possible signature for alternative gravity in attempts to detect deviations from Einstein's gravity by astrophysical means.

  11. Einstein Session of the Pontifical Academy.

    ERIC Educational Resources Information Center

    Science, 1980

    1980-01-01

    The texts of four speeches, given at the 1979 Einstein Session of the Pontifical Academy held in Rome, are presented. Each address relates to some aspect of the life and times of Albert Einstein. (SA)

  12. Analyzing modified unimodular gravity via Lagrange multipliers

    NASA Astrophysics Data System (ADS)

    Sáez-Gómez, Diego

    2016-06-01

    The so-called unimodular version of general relativity is revisited. Unimodular gravity is constructed by fixing the determinant of the metric, which leads to the trace-free part of the equations instead of the usual Einstein field equations. Then a cosmological constant naturally arises as an integration constant. While unimodular gravity turns out to be equivalent to general relativity (GR) at the classical level, it provides important differences at the quantum level. Here we extend the unimodular constraint to some extensions of general relativity that have drawn a lot of attention over the last years—f (R ) gravity (or its scalar-tensor picture) and Gauss-Bonnet gravity. The corresponding unimodular version of such theories is constructed as well as the conformal transformation that relates the Einstein and Jordan frames for these nonminimally coupled theories. From the classical point of view, the unimodular versions of such extensions are completely equivalent to their originals, but an effective cosmological constant arises naturally, which may provide a richer description of the evolution of the Universe. Here we analyze the case of Starobisnky inflation and compare it with the original one.

  13. Gravity, antigravity and gravitational shielding in (2+1) dimensions

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Helayël-Neto, José; Lobo, Matheus

    2009-07-01

    Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.

  14. Gauss-Bonnet Brane World Gravity with a Scalar Field

    SciTech Connect

    Davis, Stephen C.

    2004-11-17

    The effective four-dimensional, linearised gravity of a brane world model with one extra dimension and a single brane is analysed. The model includes higher order curvature terms (such as the Gauss-Bonnet term) and a conformally coupled scalar field. Large and small distance gravitational laws are derived. In contrast to the corresponding Einstein gravity models, it is possible to obtain solutions with localised gravity which are compatible with observations. Solutions with non-standard large distance Newtonian potentials are also described.

  15. Surface singularities in Eddington-inspired Born-Infeld gravity.

    PubMed

    Pani, Paolo; Sotiriou, Thomas P

    2012-12-21

    Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability. PMID:23368444

  16. Einstein's Math Errors Profoundly Affect Mathematical and Physical Theory

    NASA Astrophysics Data System (ADS)

    Pressler, David

    2008-04-01

    Einstein treats time as a vector, however, time has no direction associated with it; it is a scalar, it only has magnitude and is specified completely by giving it a number or units. Vectors possess both magnitude and direction. To mathematically equate time with direction is ambiguous and commits a Fallacy of Ambiguity. It is physically impossible to have space with more than three directions. Any theory where time is represented as a forth direction does not represent reality, i.e., (x, y, z, t). Einstein defines the speed of light as a constant, in the equation c = d (distance)/t (time). In this direct proportion Einstein changes the time factor (denominator), when time slows down due to motion but he does not change the distance factor (numerator). This is an error. In reality, time slows down when space contracts in all three directions, in the system of Cartesian coordinates (x, y, z,); or C-Space. Pressler's Law of C-Space: The speed of light will always be measured as a constant, c, in all three directions, in ones own inertial reference frame and the speed of light will always be measured to be different in all other inertial reference frames which are at a different gravity or kinetic energy level. Time is exactly defined as the rate of physical process; how fast things take place. This new paradigm shift redefines the Michelson-Morley where both mirrors move inward toward the center of the interferometer.

  17. Einstein for Schools and the General Public

    ERIC Educational Resources Information Center

    Johansson, K. E.; Kozma, C; Nilsson, Ch

    2006-01-01

    In April 2005 the World Year of Physics (Einstein Year in the UK and Ireland) was celebrated with an Einstein week in Stockholm House of Science. Seven experiments illustrated Einstein's remarkable work in 1905 on Brownian motion, the photoelectric effect and special relativity. Thirteen school classes with 260 pupils, 30 teachers and 25 members…

  18. Affine generalization of the Komar complex of general relativity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2001-02-01

    On the basis of the ``on shell'' Noether identities of the metric-affine gauge approach of gravity, an affine superpotential is derived which comprises the energy- and angular-momentum content of exact solutions. In the special case of general relativity (GR) or its teleparallel equivalent, the Komar or Freud complex, respectively, are recovered. Applying this to the spontaneously broken anti-de Sitter gauge model of McDowell and Mansouri with an induced Euler term automatically yields the correct mass and spin of the Kerr-AdS solution of GR with a (induced) cosmological constant without the factor two discrepancy of the Komar formula.

  19. The Einstein equations on the 3-brane world

    NASA Astrophysics Data System (ADS)

    Shiromizu, Tetsuya; Maeda, Kei-Ichi; Sasaki, Misao

    2000-07-01

    We carefully investigate the gravitational equations of the brane world, in which all the matter forces except gravity are confined on the 3-brane in a 5-dimensional spacetime with Z2 symmetry. We derive the effective gravitational equations on the brane, which reduce to the conventional Einstein equations in the low energy limit. From our general argument we conclude that the first Randall-Sundrum-type theory predicts that the brane with a negative tension is an antigravity world and hence should be excluded from the physical point of view. Their second-type theory where the brane has a positive tension provides the correct signature of gravity. In this latter case, if the bulk spacetime is exactly anti-de Sitter spacetime, generically the matter on the brane is required to be spatially homogeneous because of the Bianchi identities. By allowing deviations from anti-de Sitter spacetime in the bulk, the situation will be relaxed and the Bianchi identities give just the relation between the Weyl tensor and the energy momentum tensor. In the present brane world scenario, the effective Einstein equations cease to be valid during an era when the cosmological constant on the brane is not well defined, such as in the case of the matter dominated by the potential energy of the scalar field.

  20. Einstein Universe Revisited and End of Dark ERA

    NASA Astrophysics Data System (ADS)

    Nurgaliev, Ildus S.

    2015-01-01

    Historically the earliest general relativistic cosmological solution was received by Einstein himself as homogenous, isotropic one. In accordance with European cosmology it was expected static. The Eternal Universe as scientific model is conflicting with the existed theological model of the Universe created by God, therefore, of the limited age. Christianity, younger Islam, older Judaism are based on creationism. Much older oriental traditions such us Hinduism and Buddhism are based on conceptions of eternal and cyclic Universe which are closer to scientific worldview. To have static universe Einstein needed a factor to counteract gravity and postulated cosmological term and considered it as a disadvantage of the theory. This aesthetic dissatisfaction was amplified by interpretation distance-redshift relationship as a cosmological expansion effect. Emerged scientific cosmological community (excluding Hubble himself - almost always) endorsed the concept of expanding Universe. At the same time, as it is shown in this report, a natural well known factors do exist to counteract gravity. They are inertial centrifugal and Coriolis forces finding their geometrical presentation in the relativity theory.

  1. Gravity Probe B Inspection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  2. On the ground state of quantum gravity

    NASA Astrophysics Data System (ADS)

    Cacciatori, S.; Preparata, G.; Rovelli, S.; Spagnolatti, I.; Xue, S.-S.

    1998-05-01

    In order to gain insight into the possible ground state of quantized Einstein's gravity, we have devised a variational calculation of the energy of the quantum gravitational field in an open space, as measured by an asymptotic observer living in an asymptotically flat space-time. We find that for quantum gravity (QG) it is energetically favourable to perform its quantum fluctuations not upon flat space-time but around a ``gas'' of wormholes, whose size is the Planck length ap (ap~=10-33 cm). As a result, assuming such configuration to be a good approximation to the true ground state of quantum gravity, space-time, the arena of physical reality, turns out to be well described by Wheeler's Quantum Foam and adequately modeled by a space-time lattice with lattice constant ap, the Planck lattice. All rights reserved

  3. Quantum gravity effects in the Kerr spacetime

    SciTech Connect

    Reuter, M.; Tuiran, E.

    2011-02-15

    We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.

  4. Observational bounds on modified gravity models

    SciTech Connect

    De Felice, Antonio; Mukherjee, Pia; Wang Yun

    2008-01-15

    Modified gravity provides a possible explanation for the currently observed cosmic acceleration. In this paper, we study general classes of modified gravity models. The Einstein-Hilbert action is modified by using general functions of the Ricci and the Gauss-Bonnet scalars, both in the metric and in the Palatini formalisms. We do not use an explicit form for the functions, but a general form with a valid Taylor expansion up to second order about redshift zero in the Riemann-scalars. The coefficients of this expansion are then reconstructed via the cosmic expansion history measured using current cosmological observations. These are the quantities of interest for theoretical considerations relating to ghosts and instabilities. We find that current data provide interesting constraints on the coefficients. The next-generation dark energy surveys should shrink the allowed parameter space for modified gravity models quite dramatically.

  5. Results from an extensive Einstein stellar survey

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.; Fabbiano, G.; Giacconi, R.; Golub, L.; Gorenstein, P.; Harnden, F. R., Jr.; Cassinelli, J. P.; Haisch, B. M.; Johnson, H. M.; Linsky, J. L.

    1981-01-01

    The preliminary results of the Einstein Observatory stellar X-ray survey are presented. To date, 143 soft X-ray sources have been identified with stellar counterparts, leaving no doubt that stars in general constitute a pervasive class of low-luminosity galactic X-ray sources. Stars along the entire main sequence, of all luminosity classes, pre-main sequence stars as well as very evolved stars have been detected. Early type OB stars have X-ray luminosities in the range 10 to the 31st to 10 to the 34th ergs/s; late type stars show a somewhat lower range of X-ray emission levels, from 10 to the 26th to 10 to the 31st ergs/s. Late type main-sequence stars show little dependence of X-ray emission levels upon stellar effective temperature; similarly, the observations suggest weak, if any, dependence of X-ray luminosity upon effective gravity. Instead, the data show a broad range of emission levels (about three orders of magnitude) throughout the main sequence later than F0.

  6. Einstein's Math Errors Profoundly Affects Mathematical and Physical Theory

    NASA Astrophysics Data System (ADS)

    Pressler, David

    2007-05-01

    Einstein treats time as a vector, however time is a scalar. Vectors possess both magnitude and direction. To mathematically equate time with direction is a Fallacy of Ambiguity. It is physically impossible to have space with more than three directions. Any theory where time is represented as a forth direction does not represent reality, i.e., (x, y, z, t). The entire math used in the Special and General Theories of Relativity is meaningless, unreasonable and ambiguous. Second. Einstein defines the speed of light as a constant, in the equation c = d (distance)/t (time). In this direct proportion, c being the constant, change one factor and the other must change as well. Einstein changes the time factor in this formula when time slows down but he does not change the distance factor. In reality, time slows down when space contracts in all three directions or in the system of Cartesian coordinates (x, y, z,) being length, width, and height. The author defines this contraction as C-Space. Pressler's Law of C-Space: The speed of light will always be measured as a constant, c, in all three directions, in ones own inertial reference frame and the speed of light will always be measured to be different in all other inertial reference frames which are at a different gravity or kinetic energy levels. Time is defined as the rate of physical process; how fast things take place. Gravity is the distortion of space in all three directions, c-space. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.D2.2

  7. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  8. Dutch museum marks Einstein anniversary

    NASA Astrophysics Data System (ADS)

    van Calmthout, Matijn

    2016-01-01

    A new painting of Albert Einstein's field equation from his 1915 general theory of relativity was unveiled in a ceremony in November 2015 by the Dutch physicist Robbert Dijkgraaf, who is director of the Princeton Institute for Advanced Study in the US.

  9. Gravity settling

    DOEpatents

    Davis, Hyman R.; Long, R. H.; Simone, A. A.

    1979-01-01

    Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.

  10. Simulating Gravity

    ERIC Educational Resources Information Center

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  11. Local Affinity Release.

    PubMed

    Delplace, Vianney; Obermeyer, Jaclyn; Shoichet, Molly S

    2016-07-26

    The use of hydrogels for therapeutic delivery is a burgeoning area of investigation. These water-swollen polymer matrices are ideal platforms for localized drug delivery that can be further combined with specific ligands or nanotechnologies to advance the controlled release of small-molecule drugs and proteins. Due to the advantage of hydrophobic, electrostatic, or specific extracellular matrix interactions, affinity-based strategies can overcome burst release and challenges associated with encapsulation. Future studies will provide innovative binding tools, truly stimuli-responsive systems, and original combinations of emerging technologies to control the release of therapeutics spatially and temporally. Local drug delivery can be achieved by directly injecting a therapeutic to its site of action and is advantageous because off-target effects associated with systemic delivery can be minimized. For prolonged benefit, a vehicle that provides sustained drug release is required. Hydrogels are versatile platforms for localized drug release, owing to the large library of biocompatible building blocks from which they can be formed. Injectable hydrogel formulations that gel quickly in situ and provide sustained release of therapeutics are particularly advantageous to minimize invasiveness. The incorporation of polymers, ligands or nanoparticles that have an affinity for the therapeutic of interest improve control over the release of small-molecule drugs and proteins from hydrogels, enabling spatial and temporal control over the delivery. Such affinity-based strategies can overcome drug burst release and challenges associated with protein instability, allowing more effective therapeutic molecule delivery for a range of applications from therapeutic contact lenses to ischemic tissue regeneration. PMID:27403513

  12. Making the Case for Conformal Gravity

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2012-03-01

    We review some recent developments in the conformal gravity theory that has been advanced as a candidate alternative to standard Einstein gravity. As a quantum theory the conformal theory is both renormalizable and unitary, with unitarity being obtained because the theory is a PT symmetric rather than a Hermitian theory. We show that in the theory there can be no a priori classical curvature, with all curvature having to result from quantization. In the conformal theory gravity requires no independent quantization of its own, with it being quantized solely by virtue of its being coupled to a quantized matter source. Moreover, because it is this very coupling that fixes the strength of the gravitational field commutators, the gravity sector zero-point energy density and pressure fluctuations are then able to identically cancel the zero-point fluctuations associated with the matter sector. In addition, we show that when the conformal symmetry is spontaneously broken, the zero-point structure automatically readjusts so as to identically cancel the cosmological constant term that dynamical mass generation induces. We show that the macroscopic classical theory that results from the quantum conformal theory incorporates global physics effects that provide for a detailed accounting of a comprehensive set of 138 galactic rotation curves with no adjustable parameters other than the galactic mass to light ratios, and with the need for no dark matter whatsoever. With these global effects eliminating the need for dark matter, we see that invoking dark matter in galaxies could potentially be nothing more than an attempt to describe global physics effects in purely local galactic terms. Finally, we review some recent work by 't Hooft in which a connection between conformal gravity and Einstein gravity has been found.

  13. Gravity Probe B Encapsulated

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  14. Induced gravity II: grand unification

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2016-05-01

    As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an SO(10) gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking SO(10) to SU(5)⊗U(1), while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale v. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action giving a positive dilaton (mass)2 from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed point. Moreover, the asymptotic behavior of the coupling constants also lie within the range of convergence of the Euclidean path integral, so there is hope that there will be candidates for sensible vacua. Although open questions remain concerning unitarity of all such renormalizable models of gravity, it is not obvious that, in curved backgrounds such as those considered here, unitarity is violated. In any case, any violation that may remain will be suppressed by inverse powers of the reduced Planck mass.

  15. Nonlinear Dynamics of Bose-Einstein Condensates with Long-Range Interactions

    SciTech Connect

    Wunner, G.; Cartarius, H.; Fabcic, T.; Koeberle, P.; Main, J.; Schwidder, T.

    2008-11-13

    The motto of this paper is: Let's face Bose-Einstein condensation through nonlinear dynamics. We do this by choosing variational forms of the condensate wave functions (of given symmetry classes), which convert the Bose-Einstein condensates via the time-dependent Gross-Pitaevskii equation into Hamiltonian systems that can be studied using the methods of nonlinear dynamics. We consider in particular cold quantum gases where long-range interactions between the neutral atoms are present, in addition to the conventional short-range contact interaction, viz. gravity-like interactions, and dipole-dipole interactions. The results obtained serve as a useful guide in the search for nonlinear dynamics effects in numerically exact quantum calculations for Bose-Einstein condensates. A main result is the prediction of the existence of stable islands as well as chaotic regions for excited states of dipolar condensates, which could be checked experimentally.

  16. Noether charges and black hole mechanics in Einstein-aether theory

    SciTech Connect

    Foster, Brendan Z.

    2006-01-15

    The Noether charge method for defining the Hamiltonian of a diffeomorphism-invariant field theory is applied to 'Einstein-aether' theory, in which gravity couples to a dynamical, timelike, unit-norm vector field. Using the method, expressions are obtained for the total energy, momentum, and angular momentum of an Einstein-aether space-time. The method is also used to discuss the mechanics of Einstein-aether black holes. The derivation of Wald, and Iyer and Wald, of the first law of black hole thermodynamics fails for this theory because the unit-vector is necessarily singular at the bifurcation surface of the Killing horizon. A general identity relating variations of energy and angular momentum to a surface integral at the horizon is obtained, but a thermodynamic interpretation, including a definitive expression for the black hole entropy, is not found.

  17. Cosmological bounces in spatially flat FRW spacetimes in metric f(R) gravity

    SciTech Connect

    Paul, Niladri; Chakrabarty, Saikat Nil; Bhattacharya, Kaushik E-mail: snilch@iitk.ac.in

    2014-10-01

    The present work analyzes the various conditions in which there can be a bouncing universe solution in f(R) gravity. In the article an interesting method, to analyze the bouncing FRW solutions in a spatially flat universe using f(R) gravity models using an effective Einstein frame description of the process, is presented. The analysis shows that a cosmological bounce in the f(R) theory need not be described by an equivalent bounce in the Einstein frame description of the process where actually there may be no bounce at all. Nevertheless the Einstein frame description of the bouncing phenomena turns out to be immensely important as the dynamics of the bounce becomes amenable to logic based on general relativistic intuition. The theory of scalar cosmological perturbations in the bouncing universe models in f(R) theories has also been worked out in the Einstein frame.

  18. Morphometric affinities of gigantopithecus.

    PubMed

    Gelvin, B R

    1980-11-01

    Multivariate analyses, supplemented by univariate statistical methods, of measurements from mandibular tooth crown dimensions and the mandible of Gigantopithecus blacki, G. bilaspurensis, Plio-Plelstocene hominids, Homo erectus, and seven Neogene ape species from the genera Proconsul, Sivapithecus, Ouranopithecus, and Dryopithecus were used to assess the morphometric affinities of Gigantopithecus. The results show that Gigantopithecus displays affinities to Ouranopithecus and to the hominids, particularly the Plio-Plelstocene hominids, rather than to the apes. Ouranopithecus demonstrated dental resemblances to G. bilaspurensis and the Plio-Pleistocene hominids but mandibular similarities to the apes. Results of analyses of tooth and mandibular shape indices, combined with multivariate distance and temporal relationships, suggest that Ouranopithecus is a more likely candidate for Gigantopithecus ancestry than is Silvapithecus indicus. Shape and allometric differences between G. bilaspurensis and the robust australopithecines weaken the argument for an ancestral-descendant relationship between these groups. The results support the hypothesis that Gigantopithecus is an extinct side branch of the Hominidae. PMID:7468790

  19. Generalized Misner-Sharp energy in f(R) gravity

    SciTech Connect

    Cai Ronggen; Cao Liming; Ohta, Nobuyoshi; Hu Yapeng

    2009-11-15

    We study generalized Misner-Sharp energy in f(R) gravity in a spherically symmetric space-time. We find that unlike the cases of Einstein gravity and Gauss-Bonnet gravity, the existence of the generalized Misner-Sharp energy depends on a constraint condition in the f(R) gravity. When the constraint condition is satisfied, one can define a generalized Misner-Sharp energy, but it cannot always be written in an explicit quasilocal form. However, such a form can be obtained in a Friedmann-Robertson-Walker universe and for static spherically symmetric solutions with constant scalar curvature. In the Friedmann-Robertson-Walker universe, the generalized Misner-Sharp energy is nothing but the total matter energy inside a sphere with radius r, which acts as the boundary of a finite region under consideration. The case of scalar-tensor gravity is also briefly discussed.

  20. BOOK REVIEW: Once Upon Einstein

    NASA Astrophysics Data System (ADS)

    Giannetto, E.

    2007-07-01

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conté (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein `those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within À la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: `time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour

  1. Ludwik Silberstein - Einstein's antagonist (German Title: Ludwik Silberstein - Einsteins Antagonist)

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.; Flin, Piotr

    We consider the life and work of the physicist Ludwik Silberstein, who corresponded with Einstein, Sommerfeld and other famous physicists and astronomers, and became known by his contributions to relativity and cosmology, among them a treatise on relativity. Silberstein, who had obtained his PhD in Berlin, became assistant in Lemberg, lecturer in mathematical physics in Bologna and Rome, and industrial physicist in London (1913) and with the Eastman Kodak Co. in Rochester, New York (1920). Although he always felt sympathetic with Einstein and his theory of relativity, he often voiced scepticism concerning its results and verification, and did not hesitate to make his doubts public, thereby losing much sympathy among his colleagues. His cosmological studies are also marked by wrong insights and a certain ignorance of astronomical facts; nevertheless his attacks against established opinions show sometimes an astonishing far-sightedness. In the appendix we publish two Silberstein letters: one to Sommerfeld on the discussion of the results of the solar eclipse expeditions of 1919, and another very personal one to Einstein, in which he reveals some details of his life.

  2. Strong binary pulsar constraints on Lorentz violation in gravity.

    PubMed

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation. PMID:24815632

  3. On the stability of Einstein static universe in doubly general relativity scenario

    NASA Astrophysics Data System (ADS)

    Khodadi, M.; Heydarzade, Y.; Nozari, K.; Darabi, F.

    2015-12-01

    By presenting a relation between the average energy of the ensemble of probe photons and the energy density of the universe, in the context of gravity's rainbow or the doubly general relativity scenario, we introduce a rainbow FRW universe model. By analyzing the fixed points in the flat FRW model modified by two well-known rainbow functions, we find that the finite time singularity avoidance (i.e. Big Bang) may still remain as a problem. Then we follow the "emergent universe" scenario in which there is no beginning of time and consequently there is no Big-Bang singularity. Moreover, we study the impact of high energy quantum gravity modifications related to the gravity's rainbow on the stability conditions of an "Einstein static universe" (ESU). We find that independent of the particular rainbow function, the positive energy condition dictates a positive spatial curvature for the universe. In fact, without raising a nonphysical energy condition in the quantum gravity regimes, we can observe agreement between gravity's rainbow scenario and the basic assumption of the modern version of the "emergent universe". We show that in the absence and presence of an energy-dependent cosmological constant Λ (ɛ ), a stable Einstein static solution is available versus the homogeneous and linear scalar perturbations under the variety of the obtained conditions. Also, we explore the stability of ESU against the vector and tensor perturbations.

  4. Intricacies of cosmological bounce in polynomial metric f(R) gravity for flat FLRW spacetime

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kaushik; Chakrabarty, Saikat

    2016-02-01

    In this paper we present the techniques for computing cosmological bounces in polynomial f(R) theories, whose order is more than two, for spatially flat FLRW spacetime. In these cases the conformally connected Einstein frame shows up multiple scalar potentials predicting various possibilities of cosmological evolution in the Jordan frame where the f(R) theory lives. We present a reasonable way in which one can associate the various possible potentials in the Einstein frame, for cubic f(R) gravity, to the cosmological development in the Jordan frame. The issue concerning the energy conditions in f(R) theories is presented. We also point out the very important relationships between the conformal transformations connecting the Jordan frame and the Einstein frame and the various instabilities of f(R) theory. All the calculations are done for cubic f(R) gravity but we hope the results are sufficiently general for higher order polynomial gravity.

  5. The interaction between dark energy and dark matter and its connection to the modified gravity

    NASA Astrophysics Data System (ADS)

    He, Jian-Hua; Wang, Bin

    2015-10-01

    We review the conformal equivalence in describing the background expansion of the universe by f(R) gravity both in the Jordan frame and the Einstein frame. In the Jordan frame, we present the general analytic expression for f(R) models that have the same expansion history as the ΛCDM model. This analytic form can provide further insights on how cosmology can be used to test the f(R) gravity at the largest scales. Moreover we present a systematic and self-consistent way to construct the viable f(R) model in Jordan frame using the mass dilation rate function from the Einstein frame through the conformal transformation. In addition, we extend our study to the linear perturbation theories and we further exhibit the equivalence of the f(R) gravity presented in the Jordan frame and Einstein frame in the perturbed space-time. We argue that this equivalence has solid physics root.

  6. Some cosmological solutions of 5D Einstein equations with dark spinor condensate

    NASA Astrophysics Data System (ADS)

    Lee, Tae Hoon

    2012-05-01

    We study the 5D Einstein gravity equations with dark spinor condensate, and under the cylinder condition we find an exponentially expanding cosmological solution for the scale factor of our universe, even without a cosmological constant. The stability condition for the solution is given. Some power-law cosmological solutions are also derived when bulk matter sources in the form of a perfect fluid are additionally introduced.

  7. Dyonic (A)dS black holes in Einstein-Born-Infeld theory in diverse dimensions

    NASA Astrophysics Data System (ADS)

    Li, Shoulong; Lü, H.; Wei, Hao

    2016-07-01

    We study Einstein-Born-Infeld gravity and construct the dyonic (A)dS planar black holes in general even dimensions, that carry both the electric charge and magnetic fluxes along the planar space. In four dimensions, the solution can be constructed with also spherical and hyperbolic topologies. We study the black hole thermodynamics and obtain the first law. We also classify the singularity structure.

  8. Expanding Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2005-04-01

    Newton's gravitational constant Gn and Laws of Gravity are based upon observations in our solar system. Mysteries appear when they are used far outside our solar system Apparently, Newton's gravitational constant can not be applied at large distances. Dark matter was needed to explain the observed flat rotational velocity curves of spiral galaxies (Rubin), and of groups of remote galaxies (Zwicky). Our expansion of Newton's gravitational constant Gn as a power series in distance r, is sufficient to explain these observations without using dark matter. This is different from the MOND theory of Milgrom involving acceleration. Also, our Expanded Gravitational Constant (EGC) can show the correct use of the red shift. In addition to the Doppler contribution, there are three other contributions and these depend only upon gravity. Thus, velocity observations only based on the red shift can not be used to support the concept of the expanding universe, the accelerating expansion, or dark energy. Our expanded gravity constant can predict and explain Olbers' paradox (dark sky), and the temperature of the CMB (cosmic microwave background). Thus, CMB may not support the big bang and inflation.

  9. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  10. Gravity from spontaneous Lorentz violation

    SciTech Connect

    Kostelecky, V. Alan; Potting, Robertus

    2009-03-15

    We investigate a class of theories involving a symmetric two-tensor field in Minkowski spacetime with a potential triggering spontaneous violation of Lorentz symmetry. The resulting massless Nambu-Goldstone modes are shown to obey the linearized Einstein equations in a fixed gauge. Imposing self-consistent coupling to the energy-momentum tensor constrains the potential for the Lorentz violation. The nonlinear theory generated from the self-consistent bootstrap is an alternative theory of gravity, containing kinetic and potential terms along with a matter coupling. At energies small compared to the Planck scale, the theory contains general relativity, with the Riemann-spacetime metric constructed as a combination of the two-tensor field and the Minkowski metric. At high energies, the structure of the theory is qualitatively different from general relativity. Observable effects can arise in suitable gravitational experiments.

  11. Albert Einstein, Cosmos and Religion

    NASA Astrophysics Data System (ADS)

    Djokovic, V.; Grujic, P.

    2007-06-01

    We consider Einstein's attitude regarding religious as such, from both cosmological and epistemological points of view. An attempt to put it into a wider socio-historical perspective was made, with the emphasis on ethnic and religious background. It turns out that the great scientist was neither atheist nor believer in the orthodox sense and the closest labels one might stick to him in this respect would be pantheism/cosmism (ontological aspect) and agnosticism (epistemological aspect). His ideas on divine could be considered as a continuation of line traced by Philo of Alexandria, who himself followed Greek Stoics and (Neo-) Platonists and especially Baruch Spinoza. It turns out that Einstein's both scientific (rational aspects) and religious (intuitive aspects) thinking were deeply rooted in the Hellenic culture. His striving to unravel the secrets of the universe and the roots of cosmological order resembles much the ancient ideas of the role of knowledge in fathoming the divine as such, as ascribed to Gnostics.

  12. Could we now convince Einstein?

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi

    2006-01-01

    The present conference takes place in the same year that celebrates the centenary of Albert Einstein. Hence it is a good occasion to reflect on those problems which have been at the core of Einstein's intellectual activity. Undoubtedly the foundation of quantum mechanics (QM) is one of these problems. It is known that Einstein was never convinced by the interpretation of quantum mechanics accepted, in his times and still now, by the majority of physicists. The fact that he was sharing this skepticism with people like Schrödinger and, most of all, the fact that no convincing answer, to the doubts of these people, had emerged in a more than half a century old debate, helped in keeping alive the attention of a growing number of people on this problem. The crucial issue is that the standard interpretation of QM has some physical implications which are experimentally verifiable and which, for several years, have been thought to be incompatible with relativity theory (the so-called "quantum nonlocality"). On the other hand alternative, more intuitive, interpretations (such as the ensemble interpretation) seemed to be ruled out from very well confirmed experimental data. The way out from this impasse has required a deep analysis of the connections between mathematics and physics as well as the emergence of new ideas both in mathematics (non-Kolmogorovian probabilities) and in physics (the theory of adaptive systems). The Einstein centenary is a good occasion for a short survey of these developments with the goal of answering the intriguing question posed in the title of the present paper.

  13. ...und Einstein hatte doch recht

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.; Leuchs, Anne; Leuchs, Gerd

    Keine wissenschaftliche Theorie ist auf solche Faszination auch außerhalb der Wissenschaft gestoßen wie die Allgemeine Relativitätstheorie von Albert Einstein, und keine wurde so nachdrücklich mit den Mitteln der modernen Physik überprüft. Wie hat sie diesen Test mit Raumsonden, Radioastronomie, Atomuhren und Supercomputern standgehalten? Hatte Einstein recht? Mit der Autorität des Fachmanns und dem Flair des unvoreingenommenen Erzählers schildert Clifford Will die Menschen, Ideen und Maschinen hinter den Tests der allgemeinen Relativitätstheorie. Ohne Formeln und Fachjargon wird der leser mit Einsteins Gedanken vertraut und erfährt von der Bestätigung seiner Vorhersagen, angefangen bei der Lichtablenkung im Schwerefeld der Sonne 1919 bis zu den ausgefeilten Kreiselexperimenten auf dem Space Shuttle. Die Allgemeine Relativitätstheorie hat nich nur alle diese Tests bestanden, sie hat darüber hinaus wesentlich beigetragen zu unserem Verständnis von Phänomenen wie Pulsaren, Quasaren, Schwarzen Löchern und Gravitationslinsen. Dieses Buch erzählt lebendig und spannend die Geschichte einer der größten geistigen Leistungen unserer Zeit.

  14. Einstein Gyrogroup as a B-loop

    NASA Astrophysics Data System (ADS)

    Suksumran, Teerapong; Wiboonton, Keng

    2015-08-01

    Using the Clifford algebra formalism, we give an algebraic proof that the open unit ball B = v ∈Rn : ‖ v ‖ < 1 } of Rn equipped with Einstein addition ⊕E forms a B-loop or, equivalently, a uniquely 2-divisible gyrocommutative gyrogroup. We obtain a compact formula for Einstein addition in terms of Möbius addition. We then give a characterization of associativity and commutativity of vectors in B with respect to Einstein addition.

  15. Gravity of magnetic stresses and energy

    SciTech Connect

    Bimonte, Giuseppe; Calloni, Enrico; Rosa, Luigi

    2008-02-15

    In the framework of designing laboratory tests of relativistic gravity, we investigate the gravitational field produced by the magnetic field of a solenoid. Observing this field might provide a means of testing whether stresses gravitate as predicted by Einstein's theory. A previous study of this problem by Braginsky, Caves, and Thorne predicted that the contribution to the gravitational field resulting from the stresses of the magnetic field and of the solenoid walls would cancel the gravitational field produced by the mass-energy of the magnetic field, resulting in a null magnetically generated gravitational force outside the solenoid. They claim that this null result, once proved experimentally, would demonstrate the stress contribution to gravity. We show that this result is incorrect, as it arises from an incomplete analysis of the stresses, which neglects the axial stresses in the walls. Once the stresses are properly evaluated, we find that the gravitational field outside a long solenoid is in fact independent of Maxwell and material stresses, and it coincides with the Newtonian field produced by the linear mass distribution equivalent to the density of magnetic energy stored in a unit length of the solenoid. We argue that the gravity of Maxwell stress can be directly measured in the vacuum region inside the solenoid, where the Newtonian noise is absent in principle, and the gravity generated by Maxwell stresses is not screened by the negative gravity of magnetic-induced stresses in the solenoid walls.

  16. Gravity, black holes, and the universe

    SciTech Connect

    Nicolson, I.

    1981-01-01

    The book treats current understandings of the nature and properties of gravity, with particular emphasis on its role in the physics of black holes and the structure and evolution of the universe as a whole. The development of modern ideas on force, motion and gravity is traced from the systems of Aristotle and Ptolemy through the work of Copernicus, Galileo and Kepler to Newton's law of universal gravitation and Einstein's general theory of relativity. Particular attention is then given to the role of gravity in stellar motions and to the phenomena determined by the immense gravitational forces associated with bodies of such great density, including relativistic effects, tidal forces, space-time effects, event horizons, rotation, mass and electrical charge, the existence of naked singularities and white holes, and black-hole thermodynamics. The existence of actual black holes in the universe is considered, and various black-hole candidates in the Galaxy, quasars and galactic nuclei are indicated. The role of gravity in cosmology is then examined, with attention given to the implications of general relativity, the Hubble law, the age of the universe, the density of the universe and its eventual fate. Possible alternative to general relativity as a theory of gravitation are considered, including theories of variable gravitational constant, grand unified theories, and quantum gravity.

  17. Einstein as a Missionary of Science

    NASA Astrophysics Data System (ADS)

    Renn, Jürgen

    2013-10-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed studies, Einstein's travels and their impact on the dissemination of relativity theory are examined. These activities as well as Einstein's own popular writings are interpreted in the context of his understanding of science as part of human culture.

  18. Mass gap in Yang's theory of gravity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2015-06-01

    The quantization of a curvature-squared model of gravity, in the affine form proposed by Yang, is reconsidered in the path integral formulation. Due to its inherent Weyl invariance, sharing this with internal Yang-Mills fields, it or some of its topological generalizations are still a possible route to quantum gravity. Instanton type solutions with double duality properties exhibit a "vacuum degeneracy", i.e. a bifurcation into distinct classical Einsteinian backgrounds. For linearized fields, this conclusively induces a mass gap in the graviton spectrum, a feature which is an open problem in the quantization of internal Yang-Mills fields.

  19. SO(2, 3) noncommutative gravity model

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M.; Radovanović, V.

    2014-12-01

    In this paper the noncommutative gravity is treated as a gauge theory of the non-commutative SO(2, 3)★ group, while the noncommutativity is canonical. The Seiberg-Witten (SW) map is used to express noncommutative fields in terms of the corresponding commutative fields. The commutative limit of the model is the Einstein-Hilbert action plus the cosmological term and the topological Gauss-Bonnet term. We calculate the second order correction to this model and obtain terms that are zeroth, first, ... and fourth power of the curvature tensor. Finally, we discuss physical consequences of those correction terms in the limit of big cosmological constant.

  20. Thermodynamics of 5D dilaton-gravity

    SciTech Connect

    Megias, E.

    2011-05-23

    We calculate the free energy, spatial string tension and Polyakov loop of the gluon plasma using the dilaton potential of Ref. [1] in the dilaton-gravity theory of AdS/QCD. The free energy is computed from the Black Hole solutions of the Einstein equations in two ways: first, from the Bekenstein-Hawking proportionality of the entropy with the area of the horizon, and secondly from the Page-Hawking computation of the free energy. The finite temperature behaviour of the spatial string tension and Polyakov loop follow from the corresponding string theory in AdS{sub 5}. Comparison with lattice data is made.

  1. Studying planet populations with Einstein's blip.

    PubMed

    Dominik, Martin

    2010-08-13

    Although Einstein originally judged that 'there is no great chance of observing this phenomenon', the 'most curious effect' of the bending of starlight by the gravity of intervening foreground stars--now commonly referred to as 'gravitational microlensing'--has become one of the successfully applied techniques to detect planets orbiting stars other than the Sun, while being quite unlike any other. With more than 400 extra-solar planets known altogether, the discovery of a true sibling of our home planet seems to have become simply a question of time. However, in order to properly understand the origin of Earth, carrying all its various life forms, models of planet formation and orbital evolution need to be brought into agreement with the statistics of the full variety of planets like Earth and unlike Earth. Given the complementarity of the currently applied planet detection techniques, a comprehensive picture will only arise from a combination of their respective findings. Gravitational microlensing favours a range of orbital separations that covers planets whose orbital periods are too long to allow detection by other indirect techniques, but which are still too close to their host star to be detected by means of their emitted or reflected light. Rather than being limited to the Solar neighbourhood, a unique opportunity is provided for inferring a census of planets orbiting stars belonging to two distinct populations within the Milky Way, with a sensitivity not only reaching down to Earth mass, but even below, with ground-based observations. The capabilities of gravitational microlensing extend even to obtaining evidence of a planet orbiting a star in another galaxy. PMID:20603366

  2. Affinity chromatography: a historical perspective.

    PubMed

    Hage, David S; Matsuda, Ryan

    2015-01-01

    Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods. PMID:25749941

  3. Gravity Probe B Assembled

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  4. Quantum gravity at astrophysical distances?

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Weyer, H.

    2004-12-01

    Assuming that quantum Einstein gravity (QEG) is the correct theory of gravity on all length scales, we use analytical results from nonperturbative renormalization group (RG) equations as well as experimental input in order to characterize the special RG trajectory of QEG which is realized in Nature and to determine its parameters. On this trajectory, we identify a regime of scales where gravitational physics is well described by classical general relativity. Strong renormalization effects occur at both larger and smaller momentum scales. The latter lead to a growth of Newton's constant at large distances. We argue that this effect becomes visible at the scale of galaxies and could provide a solution to the astrophysical missing mass problem which does not require any dark matter. We show that an extremely weak power law running of Newton's constant leads to flat galaxy rotation curves similar to those observed in Nature. Furthermore, a possible resolution of the cosmological constant problem is proposed by noting that all RG trajectories admitting a long classical regime automatically give rise to a small cosmological constant.

  5. Albert Einstein:. Opportunity and Perception

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    The year 1905 has been called Albert Einstein's "Annus Mirabilis." It was during that year that he caused revolutionary changes in man's primordial concepts about the physical world: space, time, energy, light and matter. How could a 26-year-old clerk, previously unknown, cause such profound conceptual changes, and thereby open the door to the era of modern scientific technological world? No one, of course, can answer that question. But one can, perhaps, analyze some factors that were essential to his stepping into such a historic role...

  6. Atom interferometry with a weakly interacting Bose-Einstein condensate.

    PubMed

    Fattori, M; D'Errico, C; Roati, G; Zaccanti, M; Jona-Lasinio, M; Modugno, M; Inguscio, M; Modugno, G

    2008-02-29

    We demonstrate the operation of an atom interferometer based on a weakly interacting Bose-Einstein condensate. We strongly reduce the interaction induced decoherence that usually limits interferometers based on trapped condensates by tuning the s-wave scattering length almost to zero via a magnetic Feshbach resonance. We employ a 39K condensate trapped in an optical lattice, where Bloch oscillations are forced by gravity. The fine-tuning of the scattering length down to 0.1 a_(0) and the micrometric sizes of the atomic sample make our system a very promising candidate for measuring forces with high spatial resolution. Our technique can be in principle extended to other measurement schemes opening new possibilities in the field of trapped atom interferometry. PMID:18352607

  7. Searching for cosmological signatures of the Einstein equivalence principle breaking

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.; Barros, K. N. N. O.

    2016-07-01

    Modifications of gravity generated by a multiplicative coupling of a scalar field to the electromagnetic Lagrangian lead to a breaking of the Einstein equivalence principle (EEPB), as well as to variations of fundamental constants. In these theoretical frameworks, deviations of standard values of the fine structure constant, Δ α /α =ϕ , and of the cosmic distance duality relation, DL(1 +z )-2/DA=η =1 , where DL and DA are the luminosity and angular diameter distances, respectively, are unequivocally linked. In this paper, we search for cosmological signatures of the EEPB by using angular diameter distance from galaxy clusters, obtained via their Sunyaev-Zel'dovich effect (SZE) and x-ray observations, and distance modulus of type Ia supernovae (SNe Ia). The crucial point here is that we take into account the dependence of the SZE/x-ray technique with ϕ and η . Our new results show no indication of the EEPB.

  8. Atom Interferometry with a Weakly Interacting Bose-Einstein Condensate

    SciTech Connect

    Fattori, M.; D'Errico, C.; Roati, G.; Inguscio, M.; Modugno, G.; Zaccanti, M.; Jona-Lasinio, M.; Modugno, M.

    2008-02-29

    We demonstrate the operation of an atom interferometer based on a weakly interacting Bose-Einstein condensate. We strongly reduce the interaction induced decoherence that usually limits interferometers based on trapped condensates by tuning the s-wave scattering length almost to zero via a magnetic Feshbach resonance. We employ a {sup 39}K condensate trapped in an optical lattice, where Bloch oscillations are forced by gravity. The fine-tuning of the scattering length down to 0.1 a{sub 0} and the micrometric sizes of the atomic sample make our system a very promising candidate for measuring forces with high spatial resolution. Our technique can be in principle extended to other measurement schemes opening new possibilities in the field of trapped atom interferometry.

  9. B-mode polarization in Einstein-aether theory

    SciTech Connect

    Nakashima, Masahiro; Kobayashi, Tsutomu

    2011-10-15

    We study how the dynamical vector degree of freedom in modified gravity affects the CMB B-mode polarization in terms of the Einstein-aether theory. In this theory, vector perturbations can be generated from inflation, which can grow on superhorizon scales in the subsequent epochs and thereby leaves imprints on the CMB B-mode polarization. We derive the linear perturbation equations in a covariant formalism, and compute the CMB B-mode polarization using the CAMB code modified so as to incorporate the effect of the aether vector field. We find that the amplitude of the B-mode signal from the aether field can be larger than the contribution from the inflationary gravitational waves for reasonable initial conditions and for a viable range of model parameters, in which perturbation modes propagate superluminally. We also give an analytic argument explaining the shape of the spectrum based on the tight coupling approximation.

  10. Generic features of Einstein-Aether black holes

    SciTech Connect

    Tamaki, Takashi; Miyamoto, Umpei

    2008-01-15

    We reconsider spherically symmetric black hole solutions in Einstein-Aether theory with the condition that this theory has identical parametrized post-Newtonian parameters as those for general relativity, which is the main difference from the previous research. In contrast with previous study, we allow superluminal propagation of a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a spin-0 'horizon' inside an event horizon. We allow a singularity at a spin-0 horizon since it is concealed by the event horizon. If we allow such a configuration, the kinetic term of the Aether field can be large enough for black holes to be significantly different from Schwarzschild black holes with respect to Arnowitt-Deser-Misner mass, innermost stable circular orbit, Hawking temperature, and so on. We also discuss whether or not the above features can be seen in more generic vector-tensor theories.

  11. Optical Devices for Cold Atoms and Bose-Einstein Condensates

    SciTech Connect

    Gaaloul, Naceur; Jaouadi, Amine; Telmini, Mourad; Pruvost, Laurence; Charron, Eric

    2007-09-19

    The manipulation of cold atoms with optical fields is a very promising technique for a variety of applications ranging from laser cooling and trapping to coherent atom transport and matter wave interferometry. Optical fields have also been proposed as interesting tools for quantum information processing with cold atoms. In this paper, we present a theoretical study of the dynamics of a cold {sup 87}Rb atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is either deflected or split between the two branches of this guide. We explore the possibilities of optimization of this device and present preliminary results obtained in the case of zero-temperature dilute Bose-Einstein condensates.

  12. The metric on field space, functional renormalization, and metric-torsion quantum gravity

    NASA Astrophysics Data System (ADS)

    Reuter, Martin; Schollmeyer, Gregor M.

    2016-04-01

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein-Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and "tetrad-only" gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modified FRGE is obtained if this metric is scale-dependent, as it happens in the metric-torsion system considered.

  13. Junction conditions in extended Teleparallel gravities

    SciTech Connect

    De la Cruz-Dombriz, Álvaro; Dunsby, Peter K.S.; Sáez-Gómez, Diego E-mail: peter.dunsby@uct.ac.za

    2014-12-01

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.

  14. Black hole thermodynamics in MOdified Gravity (MOG)

    NASA Astrophysics Data System (ADS)

    Mureika, Jonas R.; Moffat, John W.; Faizal, Mir

    2016-06-01

    We analyze the thermodynamical properties of black holes in a modified theory of gravity, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in Einstein-Maxwell theory with the electric charge being replaced by a new mass dependent gravitational charge Q =√{ αGN } M. This new mass dependent charge modifies the effective Newtonian constant from GN to G =GN (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain the usual logarithmic correction term.

  15. Quantum gravity constraints from unitarity and analyticity

    NASA Astrophysics Data System (ADS)

    Bellazzini, Brando; Cheung, Clifford; Remmen, Grant N.

    2016-03-01

    We derive rigorous bounds on corrections to Einstein gravity using unitarity and analyticity of graviton scattering amplitudes. In D ≥4 spacetime dimensions, these consistency conditions mandate positive coefficients for certain quartic curvature operators. We systematically enumerate all such positivity bounds in D =4 and D =5 before extending to D ≥6 . Afterwards, we derive positivity bounds for supersymmetric operators and verify that all of our constraints are satisfied by weakly coupled string theories. Among quadratic curvature operators, we find that the Gauss-Bonnet term in D ≥5 is inconsistent unless new degrees of freedom enter at the natural cutoff scale defined by the effective theory. Our bounds apply to perturbative ultraviolet completions of gravity.

  16. Virial Theorem in Nonlocal Newtonian Gravity

    NASA Astrophysics Data System (ADS)

    Mashhoon, Bahram

    2016-05-01

    Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.

  17. Warped black holes in 3D general massive gravity

    NASA Astrophysics Data System (ADS)

    Tonni, Erik

    2010-08-01

    We study regular spacelike warped black holes in the three dimensional general massive gravity model, which contains both the gravitational Chern-Simons term and the linear combination of curvature squared terms characterizing the new massive gravity besides the Einstein-Hilbert term. The parameters of the metric are found by solving a quartic equation, constrained by an inequality that imposes the absence of closed timelike curves. Explicit expressions for the central charges are suggested by exploiting the fact that these black holes are discrete quotients of spacelike warped AdS 3 and a known formula for the entropy. Previous results obtained separately in topological massive gravity and in new massive gravity are recovered as special cases.

  18. Atom Interferometry on Sounding Rockets with Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Seidel, Stephan T.; Becker, Dennis; Lachmann, Maike D.; Herr, Waldemar; Rasel, Ernst M.; Quantus Collaboration

    2016-05-01

    One of the fundamental postulates of our description of nature is the universality of free fall, stating that the force exerted upon an object due to gravity is independent of its constitution. A precise test of this assumption is the comparison of the free fall of two ultra-cold clouds of different atomic species via atom interferometry. Since the sensitivity of the measurement is proportional to the square of the propagation time in the interferometer, it can be increased by performing the experiments in microgravity. In order to fully utilize the potential of the experiments the usage of a Bose-Einstein-Condensate as the initial state is necessary, because it is characterized by a small initial size and a low expansion velocity. As a step towards the transfer of such a system into space three sounding rocket missions with atom interferometers are currently being prepared. The launch of the first mission, aimed at the first demonstration of a Bose-Einstein-Condensate in space and an atom interferometer based on it is planned for 2016 from ESRANGE, Sweden. It will be followed by two more missions that extend the scientific goals to the creation of degenerate mixtures and dual-species atom interferometry. This research is funded by the German Space Agency DLR under Grant Number DLR 50 1131-37.

  19. Emergent scenario in the Einstein-Cartan theory

    NASA Astrophysics Data System (ADS)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2015-05-01

    We study the emergent scenario, which is proposed to avoid the big bang singularity, in the Einstein-Cartan (EC) theory with a positive cosmological constant and a perfect fluid by analyzing the existence and stability of the Einstein static (ES) solutions. We find that there is no stable ES solution for a spatially flat or open universe. However, for a spatially closed universe, the stable ES solution does exist, and in the same existence parameter regions, there also exists an unstable one. With the slow decrease of the equation of state w of the perfect fluid, the stable and unstable critical points move close gradually and coincide once w reaches a critical value, so that the stable critical point becomes an unstable one. As a result, if w approaches a constant at t →-∞, the universe can stay at the stable ES state past eternally, and furthermore it can naturally exit from this state and evolve into an inflationary era if w decreases slowly as time goes forward. Therefore, the emergent scenario that avoids the big bang singularity can be successfully implemented in the EC theory of gravity.

  20. Symmetries, currents and conservation laws of self-dual gravity

    NASA Astrophysics Data System (ADS)

    Popov, A. D.; Bordemann, M.; Römer, H.

    1996-02-01

    We describe an infinite-dimensional algebra of hidden symmetries for the self-dual gravity equations. Besides the known diffeomorphism-type symmetries (affine extension of w∞ algebra), this algebra contains new hidden symmetries, which are an affine extension of the Lorentz rotations. The full symmetry algebra has both Kac-Moody and Virasoro-like generators, whose exponentiation maps solutions of the field equations to other solutions. Relations to problems of string theories are briefly discussed.

  1. What Einstein Can Teach Us about Education

    ERIC Educational Resources Information Center

    Hayes, Denis

    2007-01-01

    People are more likely to associate Einstein with complex scientific theories and mathematical calculations than with education theory. In fact, Einstein's own experiences of schooling and his reflections on the meaning of life and the significance of education are profound and oddly relevant to the situation that pertains in England today. It is…

  2. Einstein as a Missionary of Science

    ERIC Educational Resources Information Center

    Renn, Jürgen

    2013-01-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed…

  3. Books on Einstein--Collectors' Delight

    ERIC Educational Resources Information Center

    Khoon, Koh Aik; Jalal, Azman; Abd-Shukor, R.; Yatim, Baharudin; Talib, Ibrahim Abu; Daud, Abdul Razak; Samat, Supian

    2009-01-01

    A survey of thirteen books on Einstein is presented. Its gives an idea on how much is written about the man and how frequent are the publications. The year 2005 saw the most publications. It is the centenary for the Miraculous Year. Interestingly some books can just sustain their readers' interest with just words. Einstein comes alive with the…

  4. People Interview: Continuing Einstein's great work

    NASA Astrophysics Data System (ADS)

    2009-09-01

    INTERVIEW Continuing Einstein's great work Dr Michio Kaku is a theoretical physicist, bestselling author and popularizer of science. He is the co-founder of string field theory (a branch of string theory) and continues Einstein's search to unite the four fundamental forces of nature into one unified theory. David Smith speaks to him about inspiration and education.

  5. On Quantum Gravity, Asymptotic Safety and Paramagnetic Dominance

    NASA Astrophysics Data System (ADS)

    Nink, Andreas; Reuter, Martin

    2013-04-01

    We discuss the conceptual ideas underlying the Asymptotic Safety approach to the nonperturbative renormalization of gravity. By now numerous functional renormalization group (RG) studies predict the existence of a suitable nontrivial ultraviolet (UV) fixed point. We use an analogy to elementary magnetic systems to uncover the physical mechanism behind the emergence of this fixed point. It is seen to result from the dominance of certain paramagnetic-type interactions over diamagnetic ones. Furthermore, the spacetimes of quantum Einstein gravity (QEG) behave like a polarizable medium with a "paramagnetic" response to external perturbations. Similarities with the vacuum state of Yang-Mills theory are pointed out.

  6. New 2D dilaton gravity for nonsingular black holes

    NASA Astrophysics Data System (ADS)

    Kunstatter, Gabor; Maeda, Hideki; Taves, Tim

    2016-05-01

    We construct a two-dimensional action that is an extension of spherically symmetric Einstein-Lanczos-Lovelock (ELL) gravity. The action contains arbitrary functions of the areal radius and the norm squared of its gradient, but the field equations are second order and obey Birkhoff’s theorem. In complete analogy with spherically symmetric ELL gravity, the field equations admit the generalized Misner-Sharp mass as the first integral that determines the form of the vacuum solution. The arbitrary functions in the action allow for vacuum solutions that describe a larger class of interesting nonsingular black hole spacetimes than previously available.

  7. On Quantum Gravity, Asymptotic Safety, and Paramagnetic Dominance

    NASA Astrophysics Data System (ADS)

    Nink, Andreas; Reuter, Martin

    2015-01-01

    We discuss the conceptual ideas underlying the Asymptotic Safety approach to the nonperturbative renormalization of gravity. By now numerous functional renormalization group studies predict the existence of a suitable nontrivial ultraviolet fixed point. We use an analogy to elementary magnetic systems to uncover the physical mechanism behind the emergence of this fixed point. It is seen to result from the dominance of certain paramagnetic-type interactions over diamagnetic ones. Furthermore, the spacetimes of Quantum Einstein Gravity behave like a polarizable medium with a "paramagnetic" response to external perturbations. Similarities with the vacuum state of Yang-Mills theory are pointed out.

  8. Homopolar artificial gravity generator based on frame-dragging

    NASA Astrophysics Data System (ADS)

    Tajmar, M.

    2010-05-01

    Space exploration is linked in many ways to the generation and challenges of artificial gravity. Space stations and drag-free satellite platforms are used to provide microgravity environments for scientific experiments. On the other hand, microgravity or reduced gravity environments such as on Moon and Mars are known to put limits for long-term human presence. Large centrifuges in space may provide Earth-like gravity environments during long-term travels, however, such technology certainly has its limits to provide similar environments for human outposts on other moons and planets. One can imagine a different technology using a prediction out of Einstein's general relativity theory which is called frame-dragging. In principle, frame-dragging might be used to generate artificial gravitational fields similar to electric fields generated by time-varying or moving magnetic fields. We will show that it is also possible to generate constant artificial gravitational fields that could provide microgravity or artificial gravity environments. Although such technology is possible in principle, the field strengths calculated from Einstein's theory are too small to be useful so far. However, recently detected anomalies around low-temperature spinning matter as well as fly-by anomalies point to possible enhancement mechanisms that might make an artificial gravity generator based on frame-dragging a reality in the future.

  9. Gravitation. [consideration of black holes in gravity theories

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.

    1978-01-01

    Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models.

  10. Hedgehogs in higher dimensional gravity with curvature self-interactions

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2001-04-01

    Static solutions of the higher dimensional Einstein-Hilbert gravity supplemented by quadratic curvature self-interactions are discussed in the presence of hedgehog configurations along the transverse dimensions. The quadratic part of the action is parametrized in terms of the (ghost-free) Euler-Gauss-Bonnet curvature invariant. Spherically symmetric profiles of the transverse metric admit exponentially decaying warp factors both for positive and negative bulk cosmological constants.

  11. Breakdown of the initial value formulation of scalar-tensor gravity and its physical meaning

    SciTech Connect

    Faraoni, Valerio; Lanahan-Tremblay, Nicolas

    2008-09-15

    We revisit singularities of two distinct kinds in the Cauchy problem of general scalar-tensor theories of gravity (previously discussed in the literature), and of metric and Palatini f(R) gravity, in both their Jordan and Einstein frame representations. Examples and toy models are used to shed light onto the problem and it is shown that, contrary to common lore, the two conformal frames are equivalent with respect to the initial value problem.

  12. Experimental constraints on metric and non-metric theories of gravity

    NASA Technical Reports Server (NTRS)

    Will, Clifford M.

    1989-01-01

    Experimental constraints on metric and non-metric theories of gravitation are reviewed. Tests of the Einstein Equivalence Principle indicate that only metric theories of gravity are likely to be viable. Solar system experiments constrain the parameters of the weak field, post-Newtonian limit to be close to the values predicted by general relativity. Future space experiments will provide further constraints on post-Newtonian gravity.

  13. Wald Entropy for Ghost-Free, Infinite Derivative Theories of Gravity.

    PubMed

    Conroy, Aindriú; Mazumdar, Anupam; Teimouri, Ali

    2015-05-22

    In this Letter, we demonstrate that the Wald entropy for any spherically symmetric black hole within an infinite derivative theory of gravity that is quadratic in curvature is determined solely by the area law. Thus, the infrared behavior of gravity is captured by the Einstein-Hilbert term, provided that the massless graviton remains the only propagating degree of freedom in the spacetime. PMID:26047217

  14. New Self-Dual Einstein Metrics

    NASA Astrophysics Data System (ADS)

    Casteill, P. Y.; Valent, G.

    A new family of euclidean Einstein metrics with self-dual Weyl tensor have been obtained using ideas from extended supersymmetries1,2. The basic supersymmetric formalism3, known as harmonic superspace, was adapted to the computation of self-dual Einstein metrics in 4. The resulting metric depends on 4 parameters besides the Einstein constant and has for isometry group U(1) × U(1), with hypersurface generating Killing vectors. In the limit of vanishing Einstein constant we recover a family of hyperkähler metrics within the Multicentre family 5 (in fact the most general one with two centres). Our results include the metrics of Plebanski and Demianski6 when these ones are restricted to be self-dual Weyl. From Flaherty's equivalence 7 these metrics can also be interpreted as a solution of the coupled Einstein-Maxwell field equations, for which we have given the Maxwell field strength forms2.

  15. Albert Einstein's Magic Mountain: An Aarau Education*

    NASA Astrophysics Data System (ADS)

    Hunziker, Herbert

    2015-03-01

    For economic reasons, the electrotechnical factory J. Einstein & Cie. (co-owned by Albert Einstein's father Hermann) had to be closed in the summer of 1894. While Albert's parents emigrated to Italy to build a new existence, he remained in Munich to complete his studies at the Gymnasium. Left behind, however, he had a difficult time with what he considered the rigid educational practices at the Munich Luitpold-Gymnasium and quit without a diploma. The present article discusses Einstein's richly winding path to the Aargau Cantonal School (Switzerland), especially its history and educational philosophy during the time of his stay in Aarau. There, Einstein met some outstanding teachers, who could serve him as models of scholars and human beings. In spite of Einstein's distinct independence of mind, these personalities may well have had a significant influence on the alignment of his inner compass.

  16. NUT-charged black holes in Gauss-Bonnet gravity

    SciTech Connect

    Dehghani, M.H.; Mann, R.B.

    2005-12-15

    We investigate the existence of Taub-NUT (Newman-Unti-Tamburino) and Taub-bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter {alpha} goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield nonextremal NUT solutions to Einstein gravity having a curvature singularity at r=N in the limit {alpha}{yields}0. Indeed, we have nonextreme NUT solutions in 2+2k dimensions with nontrivial fibration only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a two-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two-dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.

  17. Gravitational Lensing: Einstein's unfinished symphony

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; Ellis, Richard S.

    2015-01-01

    Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of general relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring the distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a failure of general relativity on large scales. We illustrate the wide range of applications which harness the power of gravitational lensing, from searches for the earliest galaxies magnified by massive clusters to those for extrasolar planets which temporarily brighten a background star. We summarise the future prospects with dedicated ground and space-based facilities designed to exploit this remarkable physical phenomenon.

  18. Einstein Ring in Distant Universe

    NASA Astrophysics Data System (ADS)

    2005-06-01

    Using ESO's Very Large Telescope, Rémi Cabanac and his European colleagues have discovered an amazing cosmic mirage, known to scientists as an Einstein Ring. This cosmic mirage, dubbed FOR J0332-3557, is seen towards the southern constellation Fornax (the Furnace), and is remarkable on at least two counts. First, it is a bright, almost complete Einstein ring. Second, it is the farthest ever found. ESO PR Photo 20a/05 ESO PR Photo 20a/05 Deep Image of a Region in Fornax (FORS/VLT) [Preview - JPEG: 400 x 434 pix - 60k] [Normal - JPEG: 800 x 867 pix - 276k] [Full Res - JPEG: 1859 x 2015 pix - 3.8M] ESO PR Photo 20b/05 ESO PR Photo 20b/05 Zoom-in on the Newly Found Einstein Ring (FORS/VLT) [Preview - JPEG: 400 x 575 pix - 168k] [Normal - JPEG: 630 x 906 pix - 880k] Caption: ESO PR Photo 20a/05 is a composite image taken in two bands (B and R) with VLT/FORS1 of a small portion of the sky (field-of-view 7x7' or 1/15th of the area of the full moon). The faintest object seen in the image has a magnitude 26, that is, it is 100 million times fainter than what can be observed with the unaided eye. The bright elliptical galaxy on the lower-left quadrant is a dwarf galaxy part of a large nearby cluster in the Fornax constellation. As for all deep images of the sky, this field shows a variety of objects, the brightest ponctual sources being stars from our Galaxy. By far the field is dominated by thousands of faint background galaxies the colours of which are related to the age of their dominant stellar population, their dust content and their distance. The newly found Einstein ring is visible in the top right part of the image. ESO PR Photo 20b/05 zooms-in on the position of the newly found cosmic mirage. ESO PR Photo 20c/05 ESO PR Photo 20c/05 Einstein Ring in Distant Universe (FORS/VLT) [Preview - JPEG: 400 x 584 pix - 104k] [Normal - JPEG: 800 x 1168 pix - 292k] [Full Res - JPEG: 1502 x 2192 pix - 684k] Caption of ESO PR Photo 20c/05: The left image is magnified and centred

  19. 1/R correction to gravity in the early universe

    SciTech Connect

    Pi Shi; Wang Tower

    2009-08-15

    To explain the accelerated expansion of the late universe, the 1/R correction to Einstein gravity is usually considered, where R is the Ricci scalar. This correction term, if stable, is generally believed to be negligible during inflation. However, if the 1/R term is inflaton dependent, it will dramatically change the story of inflation. The entropy perturbation will naturally appear and drive the evolution of curvature perturbation outside the Hubble horizon. In a large class of models, the entropy perturbation can be made nearly scale invariant. In Einstein gravity the single-field inflation with a quartic potential has been ruled out by recent observations, but it revives when the 1/R term is turned on. The evolution of non-Gaussianities on a large scale are also studied and applied to inflation with 1/R correction. In some specific models, a large non-Gaussianity can be naturally generated outside the horizon. A recent study ruled out almost all f(R) models during the matter-dominated phase. Taking this into consideration, we are left with a limited class of model which recovers the Einstein gravity soon after reheating.

  20. Approaches to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2009-03-01

    Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and

  1. The Canarias Einstein ring: a newly discovered optical Einstein ring

    NASA Astrophysics Data System (ADS)

    Bettinelli, M.; Simioni, M.; Aparicio, A.; Hidalgo, S. L.; Cassisi, S.; Walker, A. R.; Piotto, G.; Valdes, F.

    2016-09-01

    We report the discovery of an optical Einstein ring in the Sculptor constellation, IAC J010127-334319, in the vicinity of the Sculptor dwarf spheroidal galaxy. It is an almost complete ring (˜300°) with a diameter of ˜4.5 arcsec. The discovery was made serendipitously from inspecting Dark Energy Camera (DECam) archive imaging data. Confirmation of the object nature has been obtained by deriving spectroscopic redshifts for both components, lens and source, from observations at the 10.4 m Gran Telescopio CANARIAS (GTC) with the spectrograph OSIRIS. The lens, a massive early-type galaxy, has a redshift of z = 0.581, while the source is a starburst galaxy with redshift of z = 1.165. The total enclosed mass that produces the lensing effect has been estimated to be Mtot = (1.86 ± 0.23) × 1012 M⊙.

  2. f(Lovelock) theories of gravity

    NASA Astrophysics Data System (ADS)

    Bueno, Pablo; Cano, Pablo A.; Óscar Lasso, A.; Ramírez, Pedro F.

    2016-04-01

    f(Lovelock) gravities are simple generalizations of the usual f( R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.

  3. Constraining torsion with Gravity Probe B

    SciTech Connect

    Mao Yi; Guth, Alan H.; Cabi, Serkan; Tegmark, Max

    2007-11-15

    It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) such as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.

  4. A gauge-theoretic approach to gravity.

    PubMed

    Krasnov, Kirill

    2012-08-01

    Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  5. On the generalized minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.

    2015-09-01

    In this paper we study the Generalized Minimal Massive Gravity (GMMG) in asymptotically AdS3 background. The generalized minimal massive gravity theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. We study the linearized excitations around the AdS3 background and find that at special point (tricritical) in parameter space the two massive graviton solutions become massless and they are replaced by two solutions with logarithmic and logarithmic-squared boundary behavior. So it is natural to propose that GMMG model could also provide a holographic description for a 3-rank Logarithmic Conformal Field Theory (LCFT). We calculate the energy of the linearized gravitons in AdS3 background, and show that the theory is free of negative-energy bulk modes. Then we obtain the central charges of the CFT dual explicitly and show GMMG also avoids the aforementioned "bulk-boundary unitarity clash". After that we show that General Zwei-Dreibein Gravity (GZDG) model can reduce to GMMG model. Finally by a Hamiltonian analysis we show that the GMMG model has no Boulware-Deser ghosts and this model propagates only two physical modes.

  6. A gauge-theoretic approach to gravity

    PubMed Central

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  7. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  8. Gravity wave transmission diagram

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  9. Revisiting Einstein's brain in Brain Awareness Week.

    PubMed

    Chen, Hao; Chen, Su; Zeng, Lidan; Zhou, Lin; Hou, Shengtao

    2014-10-01

    Albert Einstein's brain has long been an object of fascination to both neuroscience specialists and the general public. However, without records of advanced neuro-imaging of his brain, conclusions regarding Einstein's extraordinary cognitive capabilities can only be drawn based on the unique external features of his brain and through comparison of the external features with those of other human brain samples. The recent discovery of 14 previously unpublished photographs of Einstein's brain taken at unconventional angles by Dr. Thomas Stoltz Harvey, the pathologist, ignited a renewed frenzy about clues to explain Einstein's genius. Dr. Dean Falk and her colleagues, in their landmark paper published in Brain (2013; 136:1304-1327), described in such details about the unusual features of Einstein's brain, which shed new light on Einstein's intelligence. In this article, we ask what are the unique structures of his brain? What can we learn from this new information? Can we really explain his extraordinary cognitive capabilities based on these unique brain structures? We conclude that studying the brain of a remarkable person like Albert Einstein indeed provides us a better example to comprehensively appreciate the relationship between brain structures and advanced cognitive functions. However, caution must be exercised so as not to over-interpret his intelligence solely based on the understanding of the surface structures of his brain. PMID:25382446

  10. Thought-Experiments about Gravity in the History of Science and in Research into Children's Thinking

    ERIC Educational Resources Information Center

    Blown, E. J.; Bryce, T. G. K.

    2013-01-01

    This article examines the main strands of thinking about gravity through the ages and the continuity of thought-experiments, from the early Greeks, through medieval times, to Galileo, Newton and Einstein. The key ideas are used to contextualise an empirical study of 247 children's ideas about falling objects carried out in China and New Zealand,…

  11. The Beyond Einstein Outreach Program

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, Anita

    2006-09-01

    We are currently in the beginning stages of designing an education and public outreach effort for the Beyond Einstein (BE) program. This presentation will discuss opportunities for scientists involved in the BE program to work with us on engaging a variety of audiences on outreach efforts of various scales. These range from being part of a speaker's bureau to promote the science to working with museums, community groups, teachers and school classrooms, etc. We would like to offer our help to scientists who have ROSES awards related to BE science (such as the BEFS grantees) to apply for EPO funding so that we can leverage efforts and build a coherent and vibrant EPO program. Additionally, we have initiated a few efforts that might allow BE scientists to leverage our ongoing programs and take advantage of established infrastructure.

  12. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ΛCDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ζ. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ζ, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ζ. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  13. Entanglement Equilibrium and the Einstein Equation

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted

    2016-05-01

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  14. Entanglement Equilibrium and the Einstein Equation.

    PubMed

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy. PMID:27258860

  15. Rediscovering Einstein's legacy: How Einstein anticipates Kuhn and Feyerabend on the nature of science.

    PubMed

    Oberheim, Eric

    2016-06-01

    Thomas Kuhn and Paul Feyerabend promote incommensurability as a central component of their conflicting accounts of the nature of science. This paper argues that in so doing, they both develop Albert Einstein's views, albeit in different directions. Einstein describes scientific revolutions as conceptual replacements, not mere revisions, endorsing 'Kant-on-wheels' metaphysics in light of 'world change'. Einstein emphasizes underdetermination of theory by evidence, rational disagreement in theory choice, and the non-neutrality of empirical evidence. Einstein even uses the term 'incommensurable' specifically to apply to challenges posed to comparatively evaluating scientific theories in 1949, more than a decade before Kuhn and Feyerabend. This analysis shows how Einstein anticipates substantial components of Kuhn and Feyerabend's views, and suggests that there are strong reasons to suspect that Kuhn and Feyerabend were directly inspired by Einstein's use of the term 'incommensurable', as well as his more general methodological and philosophical reflections. PMID:27269260

  16. Conformal transformations in modified teleparallel theories of gravity revisited

    NASA Astrophysics Data System (ADS)

    Wright, Matthew

    2016-05-01

    It is well known that one cannot apply a conformal transformation to f (T ) gravity to obtain a minimally coupled scalar field model, and thus no Einstein frame exists for f (T ) gravity. Furthermore nonminimally coupled "teleparallel dark energy models" are not conformally equivalent to f (T ) gravity. However, it can be shown that f (T ) gravity is conformally equivalent to a teleparallel phantom scalar field model with a nonminimal coupling to a boundary term only. In this work, we extend this analysis by considering a recently studied extended class of models, known as f (T ,B ) gravity, where B is a boundary term related to the divergence of a contraction of the torsion tensor. We find that nonminimally coupled "teleparallel dark energy models" are conformally equivalent to either an f (T ,B ) or f (B ) gravity model. Finally conditions on the functional form of f (T ,B ) gravity are derived to allow it to be transformed to particular nonminimally coupled scalar field models.

  17. Unified Einstein-Virasoro Master Equation in the General Non-Linear Sigma Model

    SciTech Connect

    Boer, J. de; Halpern, M.B.

    1996-06-05

    The Virasoro master equation (VME) describes the general affine-Virasoro construction $T=L^abJ_aJ_b+iD^a \\dif J_a$ in the operator algebra of the WZW model, where $L^ab$ is the inverse inertia tensor and $D^a $ is the improvement vector. In this paper, we generalize this construction to find the general (one-loop) Virasoro construction in the operator algebra of the general non-linear sigma model. The result is a unified Einstein-Virasoro master equation which couples the spacetime spin-two field $L^ab$ to the background fields of the sigma model. For a particular solution $L_G^ab$, the unified system reduces to the canonical stress tensors and conventional Einstein equations of the sigma model, and the system reduces to the general affine-Virasoro construction and the VME when the sigma model is taken to be the WZW action. More generally, the unified system describes a space of conformal field theories which is presumably much larger than the sum of the general affine-Virasoro construction and the sigma model with its canonical stress tensors. We also discuss a number of algebraic and geometrical properties of the system, including its relation to an unsolved problem in the theory of $G$-structures on manifolds with torsion.

  18. From the Flamm-Einstein-Rosen bridge to the modern renaissance of traversable wormholes

    NASA Astrophysics Data System (ADS)

    Lobo, Francisco S. N.

    2016-05-01

    We consider the possibility of multiply-connected spacetimes, ranging from the Flamm-Einstein-Rosen bridge, geons, and the modern renaissance of traversable wormholes. A fundamental property in wormhole physics is the flaring-out condition of the throat, which through the Einstein field equation entails the violation of the null energy condition (NEC). In the context of modified theories of gravity, it has also been shown that the normal matter can be imposed to satisfy the energy conditions, and it is the higher order curvature terms, interpreted as a gravitational fluid, that sustain these nonstandard wormhole geometries, fundamentally different from their counterparts in general relativity (GR). We explore interesting features of these geometries, in particular, the physical properties and characteristics of these ‘exotic spacetimes’.

  19. Bose-Einstein condensation of the classical axion field in cosmology?

    SciTech Connect

    Davidson, Sacha; Elmer, Martin E-mail: m.elmer@ipnl.in2p3.fr

    2013-12-01

    The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. To quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.

  20. Chiral gravity, log gravity, and extremal CFT

    SciTech Connect

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-03-15

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  1. Symmetry in Cartan language for geometric theories of gravity

    NASA Astrophysics Data System (ADS)

    Hohmann, M.

    We present a recent definition of symmetry generating vector fields on manifolds equipped with a first-order reductive Cartan geometry. We apply this definition to a number of spacetime geometries used in gravity theories and show that this definition agrees with the usual notions of symmetry of affine, Riemann-Cartan, Riemannian, Weizenböck and Finsler spacetimes.

  2. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  3. Covariant Conformal Decomposition of Einstein Equations

    NASA Astrophysics Data System (ADS)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  4. On algebraic endomorphisms of the Einstein gyrogroup

    NASA Astrophysics Data System (ADS)

    Molnár, Lajos; Virosztek, Dániel

    2015-08-01

    We describe the structure of all continuous algebraic endomorphisms of the open unit ball B of ℝ3 equipped with the Einstein velocity addition. We show that any nonzero such transformation originates from an orthogonal linear transformation on ℝ3.

  5. Recent developments in Bose-Einstein condensation

    SciTech Connect

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  6. The happiest thought of Einstein's life.

    NASA Astrophysics Data System (ADS)

    Heller, M.

    It is a commonly told story that Einstein formulated his famous principle of equivalence when thinking about what happens in a freely falling elevator, and that it was an original idea of his genius distinguished by the rare capability to see deep problems in the most ordinary things. In the reading of Einstein's and Ernst Mach's works the author has discovered that it was not a physicist in an elevator which led to the principle of equivalence but rather somebody falling from a roof; moreover, the idea behind the principle was not invented by Einstein himself but rather read by him from the book by Mach entitled The Science of Mechanics. The influence this book had on young Einstein is very well known.

  7. On homogeneous Einstein (α , β) -metrics

    NASA Astrophysics Data System (ADS)

    Yan, Zaili; Deng, Shaoqiang

    2016-05-01

    In this paper, we study homogeneous Einstein (α , β) -metrics. First, we deduce a formula for Ricci curvature of a homogeneous (α , β) -metric. Based on this formula, we obtain a sufficient and necessary condition for a compact homogeneous (α , β) -metric to be Einstein and with vanishing S-curvature. Moreover, we prove that any homogeneous Ricci flat (α , β) space with vanishing S-curvature must be a Minkowski space. Finally, we consider left invariant Einstein (α , β) -metrics on Lie groups with negative Ricci constant. Under some appropriate conditions, we show that the underlying Lie groups must be two step solvable. We also present a more convenient sufficient and necessary condition for the metric to be Einstein in this special case.

  8. Einstein/Roosevelt Letters: A Unit.

    ERIC Educational Resources Information Center

    Bodle, Walter S.

    1985-01-01

    The letters in this unit of study intended for secondary students are facsimile reproductions of the correspondence between Albert Einstein and President Roosevelt on the possibility of constructing an atomic bomb. Classroom activities are also suggested. (RM)

  9. Einstein and General Relativity: Historical Perspectives.

    ERIC Educational Resources Information Center

    Chandrasekhar, S.

    1979-01-01

    This paper presented in the 1978 Oppenheimer Memorial Lecture at Los Alamos Scientific Laboratories on August 17, 1978, discusses Einstein's contributions to physics, in particular, his discovery of the general theory of relativity. (HM)

  10. How History Helped Einstein in Special Relativity

    NASA Astrophysics Data System (ADS)

    Martinez, Alberto

    2013-04-01

    I will discuss how the German intellectual movement known as ``critical history'' motivated several physicists in the late 1900s to radically analyze the fundamental principles of mechanics, leading eventually to Einstein's special theory of relativity. Eugen Karl Dühring, Johann Bernhard Stallo, Ludwig Lange, and Ernst Mach wrote critical histories of mechanics, some of which emphasized notions of relativity and observation, in opposition to old metaphysical concepts that seemed to infect the foundations of physics. This strand of critical history included the ``genetic method'' of analyzing how concepts develop over time, in our minds, by way of ordinary experiences, which by 1904 was young Albert Einstein's favorite approach for examining fundamental notions. Thus I will discuss how history contributed in Einstein's path to relativity, as well as comment more generally on Einstein's views on history.

  11. The creativity of Einstein and astronomy

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y. B.

    1980-01-01

    A discussion of Einstein's scientific achievements for the 100th anniversary of his birth is presented. His works dealing with thermodynamics are described, along with his quantum theory of radiation. Most of the article discusses his general theory of relativity.

  12. Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Stein, Leo C.; Yunes, Nicolás; Tanaka, Takahiro

    2012-03-01

    We consider a general class of quantum gravity-inspired, modified gravity theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to scalar fields with standard kinetic energy. This class of theories includes Einstein-Dilaton-Gauss-Bonnet and Chern-Simons modified gravity as special cases. We analytically derive and solve the coupled field equations in the post-Newtonian approximation, assuming a comparable-mass, spinning black hole binary source in a quasicircular, weak-field/slow-motion orbit. We find that a naive subtraction of divergent piece associated with the point-particle approximation is ill-suited to represent compact objects in these theories. Instead, we model them by appropriate effective sources built so that known strong-field solutions are reproduced in the far-field limit. In doing so, we prove that black holes in Einstein-Dilaton-Gauss-Bonnet and Chern-Simons theory can have hair, while neutron stars have no scalar monopole charge, in diametrical opposition to results in scalar-tensor theories. We then employ techniques similar to the direct integration of the relaxed Einstein equations to obtain analytic expressions for the scalar field, metric perturbation, and the associated gravitational wave luminosity measured at infinity. We find that scalar field emission mainly dominates the energy flux budget, sourcing electric-type (even-parity) dipole scalar radiation and magnetic-type (odd-parity) quadrupole scalar radiation, correcting the General Relativistic prediction at relative -1PN and 2PN orders. Such modifications lead to corrections in the emitted gravitational waves that can be mapped to the parameterized post-Einsteinian framework. Such modifications could be strongly constrained with gravitational wave observations.

  13. Einstein's Biggest Blunder: A Cosmic Mystery Story

    ScienceCinema

    Krauss, Lawrence

    2010-09-01

    The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.

  14. Bose-Einstein condensation at constant temperature

    NASA Astrophysics Data System (ADS)

    Erhard, M.; Schmaljohann, H.; Kronjäger, J.; Bongs, K.; Sengstock, K.

    2004-09-01

    We present an experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular, the emergence of a new condensate is observed in multicomponent F=1 spinor condensates of Rb87 . Furthermore, we develop a simple rate-equation model for multicomponent Bose-Einstein condensate thermodynamics at finite temperature which well reproduces the measured effects.

  15. Traversable wormholes and non-singular black holes from the vacuum of quadratic gravity

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Easson, Damien A.

    2015-08-01

    We present new traversable wormhole and nonsingular black hole solutions in pure, scale-free R2 gravity. These exotic solutions require no null energy condition violating or "exotic" matter and are supported only by the vacuum of the theory. It is well known that f (R ) theories of gravity may be recast as dual theories in the Einstein frame. The solutions we present are found when the conformal transformation required to move to the dual frame is singular. For quadratic R2 gravity, the required conformal factor is identically zero for spacetimes with R =0 . Solutions in this case are argued to arise in the strong coupling limit of general relativity.

  16. S2 like Star Orbits near the Galactic Center in Rn and Yukawa Gravity

    NASA Astrophysics Data System (ADS)

    Borka, Dusko; Jovanović, Predrag; Jovanović Vesna Borka; Zakharov, Alexander F.

    2015-01-01

    In this chapter we investigate the possibility to provide theoretical explanation for the observed deviations of S2 star orbit around the Galactic Center using gravitational potentials derived from extended gravity models, but in absence of dark matter. Extended Theories of Gravity are alternative theories of gravitational interaction developed from the exact starting points investigated first by Einstein and Hilbert and aimed from one side to extend the positive results of General Relativity and, on the other hand, to cure its shortcomings. One of the aims of these theories is to explain galactic and extragalactic dynamics without introduction of dark matter. They are based on straightforward generalizations of the Einstein theory where the gravitational action (the Hilbert-Einstein action) is assumed to be linear in the Ricci curvature scalar R. The f(R) gravity is a type of modified gravity which generalizes Einstein's General Relativity, i.e. the simplest case is just the General Relativity. It is actually a family of models, each one defined by a different function of the Ricci scalar. Here, we consider Rn (power-law fourth-order theories of gravity) and Yukawa-like modified gravities in the weak field limit and discuss the constrains on these theories. For that purpose we simulate the orbit of S2 star around the Galactic Center in Rn and Yukawa-like gravity potentials and compare it with New Technology Telescope/Very Large Telescope (NTT/VLT) as well as by Keck telescope observations. Our simulations result in strong constraints on the range of gravity interaction and showed that both Rn and Yukawa gravity could satisfactorily explain the observed orbits of S2 star. However, we concluded that parameters of Rn and Yukawa gravity theories must be very close to those corresponding to the Newtonian limit of the theory. Besides, in contrast to Newtonian gravity, these two modified theories induce orbital precession, even in the case of point-like central mass. The

  17. Space-time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2016-02-01

    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is algebraic in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein's principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the 'true' geometry, one might wonder, in line with Poincaré's modal conventionality argument? Infinitely many theories exhibit this bimetric 'geometry,' all with the total stress-energy's trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers-Pirani-Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities-indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein's equations along the lines of Einstein's newly re-appreciated "physical strategy" and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz

  18. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Sondek, John

    2004-09-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, and for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:18429272

  19. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Brill, Allison L; Pasker, Renee L

    2013-01-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, as well as for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:24510596

  20. Urine specific gravity test

    MedlinePlus

    Urine specific gravity is a laboratory test that shows the concentration of all chemical particles in the urine. ... changes to will tell the provider the specific gravity of your urine. The dipstick test gives only ...

  1. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Tethered gravity laboratories study is presented. The following subject areas are covered: variable gravity laboratory; attitude tether stabilizer; configuration analysis (AIT); dynamic analysis (SAO); and work planned for the next reporting period.

  2. Urine specific gravity test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  3. Holographic entanglement entropy, field redefinition invariance, and higher derivative gravity theories

    NASA Astrophysics Data System (ADS)

    Mohammadi Mozaffar, M. R.; Mollabashi, A.; Sheikh-Jabbari, M. M.; Vahidinia, M. H.

    2016-08-01

    It is established that physical observables in local quantum field theories should be invariant under invertible field redefinitions. It is then expected that this statement should be true for the entanglement entropy and moreover that, via the gauge/gravity correspondence, the recipe for computing entanglement entropy holographically should also be invariant under local field redefinitions in the gravity side. We use this fact to fix the recipe for computing holographic entanglement entropy (HEE) for f (R ,Rμ ν) theories that could be mapped to Einstein gravity. An outcome of our prescription is that the surfaces that minimize the corresponding HEE functional for f (R ,Rμ ν) theories always have a vanishing trace of extrinsic curvature and that the HEE may be evaluated using the Wald entropy functional. We show that similar results follow from the FPS and Dong HEE functionals, for Einstein manifold backgrounds in f (R ,Rμ ν) theories.

  4. On Non-Equilibrium Thermodynamics of Space-Time and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Munkhammar, Joakim

    Based on recent results from general relativistic statistical mechanics and black hole information transfer limits, a space-time entropy-action equivalence is proposed as a generalization of the holographic principle. With this conjecture, the action principle can be replaced by the second law of thermodynamics, and for the Einstein-Hilbert action the Einstein field equations are conceptually the result of thermodynamic equilibrium. For non-equilibrium situations, Jaynes' information-theoretic approach to maximum entropy production is adopted instead of the second law of thermodynamics. As it turns out for appropriate choices of constants, quantum gravity is obtained. For the special case of a free particle the Bekenstein-Verlinde entropy-to-displacement relation of holographic gravity and thus the traditional holographic principle emerges. Although Jacobson's original thermodynamic equilibrium approach proposed that gravity might not necessarily be quantized, this particular non-equilibrium treatment might require it.

  5. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  6. Quantifying Affinity among Chinese Dialects.

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    A study of the relationships between Chinese dialects based on a quantitative measure of dialect affinity is summarized. First, tone values in all the dialect localities available in the early 1970s were used to calculate the dialectal differences in terms of tone height with respect to the "yin and yang" split. In the late 1970s, calculations of…

  7. BOOK REVIEW Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics With an Afterword by Roy Kerr Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics With an Afterword by Roy Kerr

    NASA Astrophysics Data System (ADS)

    Carr, Bernard

    2011-02-01

    , where he wrote his seminal paper. The second strength of this book is that it shows how Kerr's discovery related to other developments in the field. Progress in physics is rarely made in isolation and there is a strong supporting cast in this drama. The key to his breakthrough was the simplification of Einstein's equations entailed in studying what are termed `shear-free' solutions. The first clue came from Ray Sachs, whose studies of asymptotically shear-free bundles of light-rays reduced Einstein's equations to manageable form. Ivor Robinson and Andrzej Trautman then considered bundles which are shear-free everywhere but they were looking for solutions with gravity waves rather than time-independent ones and so missed the great discovery. Kerr learnt about these developments at a 1962 meeting on Gravitation and General Relativity in Warsaw, which clearly played a seminal role in the development of his ideas. But what most excited him was the enthusiastic summary of Vitaly Ginzburg, extolling the virtues of general relativity and emphasizing the need to understand strong gravity effects such as rotation. In any case, he returned to Austin convinced that he had the tools required to solve the problem. At first, he was discouraged when Newman claimed to prove that no shear-free space is possible but fortunately Kerr found a mistake in this work. By using coordinates which incorporated the rotational symmetry of the problem, he was able to find an exact solution in which the metric contains an event horizon and is asymptotically rotating. Since the Warsaw meeting played such a crucial role, it is interesting to recall that Richard Feynman also attended the meeting and described it in rather unflattering terms in a letter to his wife [2]: `I am not getting anything out of the meeting. I am learning nothing. Because there are no experiments, this field is not an active one, so few of the best men are doing work in it. The result is that there are hosts of dopes here and it

  8. BOOK REVIEW: Einsteins Kosmos. Untersuchungen zur Geschichte der Kosmologie Relativitatstheorie und zu Einsteins Wirken und Nachwirken

    NASA Astrophysics Data System (ADS)

    Sterken, C.; Duerbeck, H. W.; Dick, W. R.

    2006-12-01

    This book collects about 15 papers (most of them by one single author) on Einstein and the history of general relativity (GR) and the foundations of relativistic cosmology. The matter not only deals with Einstein and his times, but also with pre-GR ideas, and with the interplay of Einstein and his colleagues (opposing as well as supporting personalities). As the title indicates, all papers are written in German, but they include comprehensive Abstracts both in German and English. The book is illustrated with quite a number classical - but also some far more original though not less beautiful - photographs and facsimiles of documents. The book is edited very well, though the style of references is not quite homogeneous. There is no Index. K. Hentschel covers Einstein's argumentation for the existence of graviational redshift, and the initial search for empirical support. The error analysis of observational evidence supporting relativistic light deflection is discussed in a paper by P. Brosche. In particular, H. Duerbeck and P. Flin - in their description of the life and work of Silberstein, who was quite sceptic on the significance of the observational verifications a la Eddington - include the transcription of two most revealing letters by Silberstein to Sommerfeld (1919) and to Einstein (1934). In the first letter, Silberstein clearly shows his scientific maturity and integrity by scrutinising the observational evidence supporting light deflection, presented at a joint meeting of the Royal Society and the Royal Astronomical Society. The second letter, which is more a personal letter, includes lots of political references and connotations. Some of Einstein's political views are also revealed by D.B. Herrmann on the basis of his own correspondence with E.G. Straus, a collaborator of Einstein's. In a consequent paper, S. Grundmann gives remarks on Herrmann's contribution and illustrates Einstein's attitude towards Marx, Engels, Lenin and Stalin. M. Schemmel discusses

  9. Quantum gases and white dwarfs with quantum gravity

    NASA Astrophysics Data System (ADS)

    Moussa, Mohamed

    2014-11-01

    This paper addresses the effect of a generalized uncertainty principle produced by different approaches of quantum gravity within the Planck scale on statistical and thermodynamical properties of ideal fermion and boson gases. The partition function and some thermodynamical properties are investigated. The Bose-Einstein condensation and the ground state properties of fermion gases are also considered. The target approach is extended to a white dwarf as an application. The modified mass-radius relation is calculated. A decrease in the pressure of degenerate fermions due to the presence of quantum gravity leads to a contraction in the star radius. It is also found that the gravity background does not result in any change in white dwarf stability.

  10. Gravity's Immunity from Vacuum:. the Holographic Structure of Semiclassical Action

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    Principle of equivalence, general covariance and the demand that the variation of the action functional should be well defined lead to a generic Lagrangian for semiclassical gravity of the form L = Qabcd Rabcd with ∇b Qabcd = 0. The expansion of Qabcd in terms of the derivatives of the metric tensor determines the structure of the theory uniquely. The zeroth order term gives the Einstein-Hilbert action and the first-order correction is given by the Gauss-Bonnet action. Remarkably, any such Lagrangian can be decomposed into surface and bulk terms which are related holographically. The equations of motion can be obtained purely from a surface term in the gravity sector and hence gravity does not respond to the changes in the bulk vacuum energy density.

  11. Superbounce and loop quantum cosmology ekpyrosis from modified gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2015-09-01

    As is known, in modified cosmological theories of gravity many of the cosmologies which could not be generated by standard Einstein gravity, can be consistently described by theories. Using known reconstruction techniques, we investigate which theories can lead to a Hubble parameter describing two types of cosmological bounces, the superbounce model, related to supergravity and non-supersymmetric models of contracting ekpyrosis and also the Loop Quantum Cosmology modified ekpyrotic model. Since our method is an approximate method, we investigate the problem at large and small curvatures. As we evince, both models yield power law reconstructed gravities, with the most interesting new feature being that both lead to accelerating cosmologies, in the large curvature approximation. The mathematical properties of the some Friedmann-Robertson-Walker spacetimes , that describe superbounce-like cosmologies are also pointed out, with regards to the group of curvature collineations.

  12. Higher derivative gravity: Field equation as the equation of state

    NASA Astrophysics Data System (ADS)

    Dey, Ramit; Liberati, Stefano; Mohd, Arif

    2016-08-01

    One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.

  13. The virial theorem in Eddington-Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Santos, Noelia S.; Santos, Janilo

    2015-12-01

    We consider the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides an alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations, finding an additional "geometrical mass" term which provides an effective contribution to the gravitational binding energy. Using some approximations and assumptions for weak gravitational fields, and taking into account the collisionless relativistic Boltzmann equation, we derive a generalized version of the virial theorem in the framework of EBI gravity. We show that the "geometrical mass" term may account for the well known virial mass discrepancy in clusters of galaxies. We also derive the velocity dispersion relation for galaxies in the clusters, which could provide an efficient method for testing EBI gravity from astrophysical observations.

  14. Large-scale structure in f(T) gravity

    SciTech Connect

    Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.

    2011-05-15

    In this work we study the cosmology of the general f(T) gravity theory. We express the modified Einstein equations using covariant quantities, and derive the gauge-invariant perturbation equations in covariant form. We consider a specific choice of f(T), designed to explain the observed late-time accelerating cosmic expansion without including an exotic dark energy component. Our numerical solution shows that the extra degree of freedom of such f(T) gravity models generally decays as one goes to smaller scales, and consequently its effects on scales such as galaxies and galaxies clusters are small. But on large scales, this degree of freedom can produce large deviations from the standard {Lambda}CDM scenario, leading to severe constraints on the f(T) gravity models as an explanation to the cosmic acceleration.

  15. Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Panahiyan, S.; Panah, B. Eslam; Momennia, M.

    2016-03-01

    Motivated by the violation of Lorentz invariance in quantum gravity, we study black hole solutions in gravity's rainbow in the context of Einstein gravity coupled with various models of nonlinear electrodynamics. We regard an energy dependent spacetime and obtain the related metric functions and electric fields. We show that there is an essential singularity at the origin which is covered by an event horizon. We also compute the conserved and thermodynamical quantities and examine the validity of the first law of thermodynamics in the presence of rainbow functions. Finally, we investigate the thermal stability conditions for these black hole solutions in the context of canonical ensemble. We show that the thermodynamical structure of the solutions depends on the choices of nonlinearity parameters, charge, and energy functions.

  16. Diquark Bose-Einstein condensation

    SciTech Connect

    Nawa, K.; Nakano, E.; Yabu, H.

    2006-08-01

    Bose-Einstein condensation of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasichemical equilibrium theory at a relatively low-density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic framework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in the bound/resonant state. We obtained T{sub C}{approx}60-80 MeV for constituent quarks and T{sub C}{approx}130 MeV for current quarks at a moderate density ({rho}{sub b}{approx}3{rho}{sub 0}). The method is also developed to include interdiquark interactions into the quasichemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by {approx}50%.

  17. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  18. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^-23 Hz^-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  19. Quantum Gravity in More than Four Dimensions.

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo

    Ever since its inception, Einstein's general relativity has been considered a most remarkable theory. It is generally believed today, that the classical theory is well understood. Nevertheless, in the pursuit of a deeper understanding of physics in terms of a 'grand' unification of forces, one would like to quantize the theory, thus bringing it under the known forces of nature. We will address the possibility that space-time is of dimension greater that four. In the pursuit of Einstein's dream of a unification of physical interactions, many interesting ideas have been developed. Beginning with Weyl and Kaluza, we have progressed to strings and superstrings. The thing that is common to all these theories is the requirement of a space-time of more than four dimensions. To explain the apparent dimensionality of space-time, the extra dimensions are thought to form some compact manifold of extremely small characteristic size. While Kaluza's theory implicitly assumes that Einstein's gravity is classically correct in any number of dimensions, superstring phenomenology may suggest otherwise. Generalizations to Einstein's gravity are indicated, and the gravitational Casimir energy is explicitly approximated on a background configuration M^4 times S^6, on a ten dimensional space-time. Weyl invariance is particularly interesting to the quantum gravitationalist. One finds that energy momentum tensor of the Weyl invariant quantum field picks up an anomalous trace, which is related to particle production by the curved background. We therefore compute the conformal anomaly for a conformally coupled scalar field and consider some of its consequences. We then suggest that the conformal anomaly, when combined with the perfect fluid hypothesis, can be used to determine the complete energy momentum tensor of the quantum field in certain backgrounds. Christensen has suggested that by imposing some 'natural' conditions to be obeyed by the renormalized stress tensor, one could avoid most

  20. Novel type of CPT violation for correlated Einstein-Podolsky-Rosen states of neutral mesons.

    PubMed

    Bernabéu, J; Mavromatos, N; Papavassiliou, J

    2004-04-01

    We discuss modifications to the concept of an "antiparticle," induced by a breakdown of the CPT symmetry at a fundamental level, realized within an extended class of quantum gravity models. The resulting loss of particle-antiparticle identity in the neutral-meson system induces a breaking of the Einstein-Podolsky-Rosen correlation imposed by Bose statistics. This is parametrized by a complex parameter associated with the contamination by the "wrong symmetry" state. The physical consequences are studied, and novel observables of CPT violation in phi factories are proposed. PMID:15089595

  1. Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate

    SciTech Connect

    Lahav, Oren; Itah, Amir; Blumkin, Alex; Gordon, Carmit; Rinott, Shahar; Zayats, Alona; Steinhauer, Jeff

    2010-12-10

    We have created an analog of a black hole in a Bose-Einstein condensate. In this sonic black hole, sound waves, rather than light waves, cannot escape the event horizon. A steplike potential accelerates the flow of the condensate to velocities which cross and exceed the speed of sound by an order of magnitude. The Landau critical velocity is therefore surpassed. The point where the flow velocity equals the speed of sound is the sonic event horizon. The effective gravity is determined from the profiles of the velocity and speed of sound. A simulation finds negative energy excitations, by means of Bragg spectroscopy.

  2. Qualitative analysis of a generalized Maxwell-Einstein system - Application for a cosmological model

    NASA Astrophysics Data System (ADS)

    Tossa, Joel; Fabris, Julo C.; Romero, Carlos

    1992-02-01

    A methodology for studying dynamical systems is employed to qualitatively analyze the relationship between a Maxwellian field coupled to gravity and Einstein equations. The Maxwellian-type field is assumed to have n even dimensions to develop variables describing the expansion factor of the 4D universe and the variation of the gravitational constant. The resulting phase diagram is analyzed and found to have trajectories expanding from a singularity at infinity and tending toward equilibrium. This description of Minkowskian space-time is complemented by nonphysical regions in which trajectories originating from a 'big-bang' singularity tend toward an unstable singularity at infinity.

  3. Post-Newtonian parameters and constraints on Einstein-aether theory

    SciTech Connect

    Foster, Brendan Z.; Jacobson, Ted

    2006-03-15

    We analyze the observational and theoretical constraints on ''Einstein-aether theory,'' a generally covariant theory of gravity coupled to a dynamical, unit, timelike vector field that breaks local Lorentz symmetry. The results of a computation of the remaining post-Newtonian parameters are reported. These are combined with other results to determine the joint post-Newtonian, vacuum-Cerenkov, nucleosynthesis, stability, and positive-energy constraints. All of these constraints are satisfied by parameters in a large two-dimensional region in the four-dimensional parameter space defining the theory.

  4. Einstein's Revolutionary Light-Quantum Hypothesis

    NASA Astrophysics Data System (ADS)

    Stuewer, Roger H.

    2005-05-01

    The paper in which Albert Einstein proposed his light-quantum hypothesis was the only one of his great papers of 1905 that he himself termed ``revolutionary.'' Contrary to widespread belief, Einstein did not propose his light-quantum hypothesis ``to explain the photoelectric effect.'' Instead, he based his argument for light quanta on the statistical interpretation of the second law of thermodynamics, with the photoelectric effect being only one of three phenomena that he offered as possible experimental support for it. I will discuss Einstein's light-quantum hypothesis of 1905 and his introduction of the wave-particle duality in 1909 and then turn to the reception of his work on light quanta by his contemporaries. We will examine the reasons that prominent physicists advanced to reject Einstein's light-quantum hypothesis in succeeding years. Those physicists included Robert A. Millikan, even though he provided convincing experimental proof of the validity of Einstein's equation of the photoelectric effect in 1915. The turning point came after Arthur Holly Compton discovered the Compton effect in late 1922, but even then Compton's discovery was contested both on experimental and on theoretical grounds. Niels Bohr, in particular, had never accepted the reality of light quanta and now, in 1924, proposed a theory, the Bohr-Kramers-Slater theory, which assumed that energy and momentum were conserved only statistically in microscopic interactions. Only after that theory was disproved experimentally in 1925 was Einstein's revolutionary light-quantum hypothesis generally accepted by physicists---a full two decades after Einstein had proposed it.

  5. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems. PMID:21117653

  6. Gravity Probe B Gyroscope Rotor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. This photograph is a close up of a niobium-coated gyroscope motor and its housing halves. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Don Harley.)

  7. Gravity Probe B Space Vehicle

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.

  8. Dissipative superfluid dynamics from gravity

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Jyotirmoy; Bhattacharyya, Sayantani; Minwalla, Shiraz

    2011-04-01

    Charged asymptotically AdS 5 black branes are sometimes unstable to the condensation of charged scalar fields. For fields of infinite charge and squared mass -4 Herzog was able to analytically determine the phase transition temperature and compute the endpoint of this instability in the neighborhood of the phase transition. We generalize Herzog's construction by perturbing away from infinite charge in an expansion in inverse charge and use the solutions so obtained as input for the fluid gravity map. Our tube wise construction of patched up locally hairy black brane solutions yields a one to one map from the space of solutions of superfluid dynamics to the long wavelength solutions of the Einstein Maxwell system. We obtain explicit expressions for the metric, gauge field and scalar field dual to an arbitrary superfluid flow at first order in the derivative expansion. Our construction allows us to read off the the leading dissipative corrections to the perfect superfluid stress tensor, current and Josephson equations. A general framework for dissipative superfluid dynamics was worked out by Landau and Lifshitz for zero superfluid velocity and generalized to nonzero fluid velocity by Clark and Putterman. Our gravitational results do not fit into the 13 parameter Clark-Putterman framework. Purely within fluid dynamics we present a consistent new generalization of Clark and Putterman's equations to a set of superfluid equations parameterized by 14 dissipative parameters. The results of our gravitational calculation fit perfectly into this enlarged framework. In particular we compute all the dissipative constants for the gravitational superfluid.

  9. Cosmology in general massive gravity theories

    SciTech Connect

    Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@aquila.infn.it

    2014-05-01

    We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w{sub eff} has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w{sub eff} from -1. Taking into account current limits on w{sub eff} and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w{sub eff} form -1 in a weakly coupled massive gravity theory.

  10. Perturbations of single-field inflation in modified gravity theory

    NASA Astrophysics Data System (ADS)

    Qiu, Taotao; Xia, Jun-Qing

    2015-05-01

    In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f (R). Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure f (R) theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.

  11. Black hole phase transitions in Horava-Lifshitz gravity

    SciTech Connect

    Cao Qiaojun; Chen Yixin; Shao Kainan

    2011-03-15

    We study black hole phase transitions in (deformed) Horava-Lifshitz (H-L) gravity, including the charged/uncharged topological black holes and KS black hole. Stability analysis and state space geometry are both used. We find interesting phase structures in these black holes, some of the properties are never observed in Einstein gravity. Particularly, the stability properties of black holes in H-L gravity with small radius change dramatically, which can be considered as a leak of information about the small scale behavior of spacetime. A new black hole local phase transition in H-L gravity which cannot be revealed by thermodynamical metrics has been found. There is an infinite discontinuity at the specific heat curve for charged black hole in H-L gravity with hyperbolic event horizon. However, this discontinuity does not have a corresponding curvature singularity of thermodynamical metrics. Our results may provide new insights towards a better understanding of the H-L gravity, as well as black hole thermodynamics.

  12. Generalized Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Mullin, William J.; Sakhel, Asaad R.

    2012-02-01

    Generalized Bose-Einstein condensation (GBEC) involves condensates appearing simultaneously in multiple states. We review examples of the three types in an ideal Bose gas with different geometries. In Type I there is a discrete number of quantum states each having macroscopic occupation; Type II has condensation into a continuous band of states, with each state having macroscopic occupation; in Type III each state is microscopically occupied while the entire condensate band is macroscopically occupied. We begin by discussing Type I or "normal" BEC into a single state for an isotropic harmonic oscillator potential. Other geometries and external potentials are then considered: the "channel" potential (harmonic in one dimension and hard-wall in the other), which displays Type II, the "cigar trap" (anisotropic harmonic potential), and the "Casimir prism" (an elongated box), the latter two having Type III condensations. General box geometries are considered in an appendix. We particularly focus on the cigar trap, which Van Druten and Ketterle first showed had a two-step condensation: a GBEC into a band of states at a temperature T c and another "one-dimensional" transition at a lower temperature T 1 into the ground state. In a thermodynamic limit in which the ratio of the dimensions of the anisotropic harmonic trap is kept fixed, T 1 merges with the upper transition, which then becomes a normal BEC. However, in the thermodynamic limit of Beau and Zagrebnov, in which the ratio of the boundary lengths increases exponentially, T 1 becomes fixed at the temperature of a true Type I phase transition. The effects of interactions on GBEC are discussed and we show that there is evidence that Type III condensation may have been observed in the cigar trap.

  13. On (ab)normality: Einstein's fusiform gyrus.

    PubMed

    Weiner, Kevin S

    2015-03-01

    Recently, Hines (2014) wrote an evocative paper challenging findings from both histological and morphological studies of Einstein's brain. In this discussion paper, I extend Hines' theoretical point and further discuss how best to determine 'abnormal' morphology. To do so, I assess the sulcal patterning of Einstein's fusiform gyrus (FG) for the first time. The sulcal patterning of the FG was unconsidered in prior studies because the morphological features of the mid-fusiform sulcus have only been clarified recently. On the one hand, the sulcal patterning of Einstein's FG is abnormal relative to averages of 'normal' brains generated from two independent datasets (N = 39 and N = 15, respectively). On the other hand, within the 108 hemispheres used to make these average brains, it is not impossible to find FG sulcal patterns that resemble those of Einstein. Thus, concluding whether a morphological pattern is normal or abnormal heavily depends on the chosen analysis method (e.g. group average vs. individual). Such findings question the functional meaning of morphological 'abnormalities' when determined by comparing an individual to an average brain or average frequency characteristics. These observations are not only important for analyzing a rare brain such as that of Einstein, but also for comparing macroanatomical features between typical and atypical populations. PMID:25562419

  14. A restricted proof that the weak equivalence principle implies the Einstein equivalence principle

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.; Lee, D. L.

    1973-01-01

    Schiff has conjectured that the weak equivalence principle (WEP) implies the Einstein equivalence principle (EEP). A proof is presented of Schiff's conjecture, restricted to: (1) test bodies made of electromagnetically interacting point particles, that fall from rest in a static, spherically symmetric gravitational field; (2) theories of gravity within a certain broad class - a class that includes almost all complete relativistic theories that have been found in the literature, but with each theory truncated to contain only point particles plus electromagnetic and gravitational fields. The proof shows that every nonmentric theory in the class (every theory that violates EEP) must violate WEP. A formula is derived for the magnitude of the violation. It is shown that WEP is a powerful theoretical and experimental tool for constraining the manner in which gravity couples to electromagnetism in gravitation theories.

  15. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  16. Extended solution space for Chern-Simons gravity: The slowly rotating Kerr black hole

    SciTech Connect

    Cambiaso, Mauro; Urrutia, Luis F.

    2010-11-15

    In the Einstein-Cartan formulation, an iterative procedure to find solutions in nondynamical Chern-Simons gravity in vacuum is proposed. The iterations, in powers of a small parameter {beta} which codifies the Chern-Simons coupling, start from an arbitrary torsionless solution of Einstein equations. With Schwarzschild as the zeroth-order choice, we derive a second-order differential equation for the O({beta}) corrections to the metric, for an arbitrary zeroth-order embedding parameter. In particular, the slowly rotating Kerr metric is an O({beta}) solution in either the canonical or the axial embeddings.

  17. Einstein, Ethics and the Atomic Bomb

    NASA Astrophysics Data System (ADS)

    Rife, Patricia

    2005-03-01

    Einstein voiced his ethical views against war as well as fascism via venues and alliances with a variety of organizations still debated today. In 1939, he signed a letter to President Roosevelt (drafted by younger colleagues Szilard, Wigner and others) warning the U.S.government about the danger of Nazi Germany gaining control of uranium in the Belgian-controlled Congo in order to develop atomic weapons, based on the discovery of fission by Otto Hahn and Lise Meitner. In 1945, he became a member of the Princeton-based ``Emergency Committee for Atomic Scientists'' organized by Bethe, Condon, Bacher, Urey, Szilard and Weisskopf. Rare Einstein slides will illustrate Dr.Rife's presentation on Albert Einstein's philosophic and ethical convictions about peace, and public stance against war (1914-1950).

  18. Bose-Einstein condensation in microgravity.

    PubMed

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter. PMID:20558713

  19. Albert Einstein - And the Frontiers of Physics

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeremy

    1997-11-01

    Albert Einstein did not impress his first teachers. They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called "wonder" about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.

  20. Misconceptions about Einstein: His Work and His Views.

    ERIC Educational Resources Information Center

    Resnick, Robert

    1980-01-01

    Discusses eight misconceptions concerning Einstein's work and views, as part of a presentation at the Einstein Symposium held at the 178th National American Chemical Society Meetings in Washington, D.C., in September, 1979. (CS)

  1. Coherence, Abstraction, and Personal Involvement: Albert Einstein, Physicist and Humanist.

    ERIC Educational Resources Information Center

    Ne'eman, Yuval

    1979-01-01

    Reviews Einstein's main contributions to physics, and analyzes the importance of a coherent body of theory. Einstein's involvement in nonscientific issues such as nuclear disarmament is also included. (HM)

  2. Einstein. Ein Genie und sein überfordertes Publikum.

    NASA Astrophysics Data System (ADS)

    Fischer, E. P.

    Dieses Buch ist keine herkömmliche Biographie von Albert Einstein - vielmehr untersucht der Autor anhand charakteristischer Stationen in Einsteins Leben, dessen Denken und die Reaktionen seiner Zeitgenossen.

  3. Notes on Born-Infeld-like modified gravity

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-02-01

    We investigate the modified F(R) gravity theory with the function F(R) = (1-√{1-2λ R-σ(λ R)2})/λ. The action is converted into Einstein-Hilbert action at small values of λ and σ. The local tests give a bound on the parameters, λ(1+σ)≤2×10^{-6} cm2. The Jordan and Einstein frames are considered, the potential, and the mass of the scalar field were obtained. The constant curvature solutions of the model are found. It was demonstrated that the de Sitter space is unstable but a solution with zero Ricci scalar is stable. The cosmological parameters of the model are evaluated. Critical points of autonomous equations are obtained and described.

  4. Emergent universe from the Horava-Lifshitz gravity

    SciTech Connect

    Wu Puxun; Yu Hongwei

    2010-05-15

    We study the stability of the Einstein static universe in the Horava-Lifshitz (HL) gravity and a generalized version of it formulated by Sotiriou, Visser, and Weifurtner. We find that, for the HL cosmology, there exists a stable Einstein static state if the cosmological constant {Lambda} is negative. The universe can stay at this stable state eternally and thus the big bang singularity can be avoided. However, in this case, the Universe can not exit to an inflationary era. For the Sotiriou, Visser, and Weifurtner HL cosmology, if the cosmic scale factor satisfies certain conditions initially, the Universe can stay at the stable state past eternally and may undergo a series of infinite, nonsingular oscillations. Once the parameter of the equation of state w approaches a critical value, the stable critical point coincides with the unstable one, and the Universe enters an inflationary era. Therefore, the big bang singularity can be avoided and a subsequent inflation can occur naturally.

  5. A new model of arcsin-gravity

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2015-05-01

    The new model of modified F(R)-gravity theory with the function F(R) = R + (a/γ) arcsin(γR) is suggested and investigated. Constant curvature solutions corresponding to the extremum of the effective potential are obtained. We consider both the Jordan and Einstein frames, and the potential and the mass of the scalar degree of freedom are found. It was shown that the de Sitter space-time is unstable but the flat space-time is stable. We calculate the slow-roll parameters ɛ, η, and the e-fold number of the model. Critical points of autonomous equations for the de Sitter phase and the matter dominated epoch are obtained and learned.

  6. Generalized Galilean algebras and Newtonian gravity

    NASA Astrophysics Data System (ADS)

    González, N.; Rubio, G.; Salgado, P.; Salgado, S.

    2016-04-01

    The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

  7. Invariant conserved currents in generalized gravity

    NASA Astrophysics Data System (ADS)

    Obukhov, Yuri N.; Portales-Oliva, Felipe; Puetzfeld, Dirk; Rubilar, Guillermo F.

    2015-11-01

    We study conservation laws for gravity theories invariant under general coordinate transformations. The class of models under consideration includes Einstein's general relativity theory as a special case as well as its generalizations to non-Riemannian spacetime geometry and nonminimal coupling. We demonstrate that an arbitrary vector field on the spacetime manifold generates a current density that is conserved under certain conditions, and find the expression of the corresponding superpotential. For a family of models including nonminimal coupling between geometry and matter, we discuss in detail the differential conservation laws and the conserved quantities defined in terms of covariant multipole moments. We show that the equations of motion for the multipole moments of extended microstructured test bodies lead to conserved quantities that are closely related to the conserved currents derived in the field-theoretic framework.

  8. Geometric massive gravity in multiconnection framework

    NASA Astrophysics Data System (ADS)

    Khosravi, Nima

    2014-01-01

    What is the right way to interpret a massive graviton? We generalize the kinematical framework of general relativity to multiple connections. The average of the connections is itself a connection and plays the role of the canonical connection in standard general relativity. At the level of dynamics, the simplest choice of the Einstein-Hilbert action is indistinguishable from the single-connection case. However, inspired by Weyl geometry, we show how one can construct massive gravity to all orders in perturbation theory compatible with the de Rham-Gabadadze-Tolley ghost-free model. We conclude that the mass of the graviton can be interpreted as a geometrical property of spacetime arising from two connections. Furthermore, in the multiconnection framework there is no ambiguity in the definition of the physical metric and consequently coupling to matter.

  9. Model-independent tests of cosmic gravity.

    PubMed

    Linder, Eric V

    2011-12-28

    Gravitation governs the expansion and fate of the universe, and the growth of large-scale structure within it, but has not been tested in detail on these cosmic scales. The observed acceleration of the expansion may provide signs of gravitational laws beyond general relativity (GR). Since the form of any such extension is not clear, from either theory or data, we adopt a model-independent approach to parametrizing deviations to the Einstein framework. We explore the phase space dynamics of two key post-GR functions and derive a classification scheme, and an absolute criterion on accuracy necessary for distinguishing classes of gravity models. Future surveys will be able to constrain the post-GR functions' amplitudes and forms to the required precision, and hence reveal new aspects of gravitation. PMID:22084288

  10. Hardware development for Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Bardas, D.; Cheung, W. S.; Gill, D.; Hacker, R.; Keiser, G. M.

    1986-01-01

    Gravity Probe-B (GP-B), also known as the Stanford Relativity Gyroscope Experiment, will test two fundamental predictions of Einstein's General Theory of Relativity by precise measurement of the precessions of nearly perfect gyroscopes in earth orbit. This endeavor embodies state-of-the-art technologies in many fields, including gyroscope fabrication and readout, cryogenics, superconductivity, magnetic shielding, precision optics and alignment methods, and satellite control systems. These technologies are necessary to enable measurement of the predicted precession rates to the milliarcsecond/year level, and to reduce to 'near zero' all non-General Relativistic torques on the gyroscopes. This paper provides a brief overview of the experiment followed by descriptions of several specific hardware items with highlights on progress to date and plans for future development and tests.

  11. Proof of the entropy principle in Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Gao, Sijie

    We consider a self-gravitating charged perfect fluid in a static spacetime. We assume that the Einstein constraint equation is satisfied. Then we prove that the extrema of the total entropy of fluid implies other components of Einstein's equation. Conversely, if Einstein's equation is satisfied, we show that the total entropy achieves an extremum. This work suggests that the maximum entropy principle is consistent with Einstein's equation when an electrostatic field is taken into account.

  12. Einstein billiards and spatially homogeneous cosmological models

    NASA Astrophysics Data System (ADS)

    de Buyl, Sophie; Pinardi, Gaïa; Schomblond, Christiane

    2003-12-01

    In this paper, we analyse the Einstein and Einstein Maxwell billiards for all spatially homogeneous cosmological models corresponding to three- and four-dimensional real unimodular Lie algebras and provide a list of those models which are chaotic in the Belinskii, Khalatnikov and Lifschitz (BKL) limit. Through the billiard picture, we confirm that, in D = 5 spacetime dimensions, chaos is present if off-diagonal metric elements are kept: the finite volume billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac Moody algebras. The most generic cases bring in the same algebras as in the inhomogeneous case, but other algebras appear through special initial conditions.

  13. Was Einstein Right? A Centennial Assessment

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    2016-01-01

    Einstein formulated general relativity 100 years ago. Although it is generally considered a great triumph, the theory's early years were characterized by conceptual confusion, empirical uncertainties and a lack of relevance to ordinary physics. But in recent decades, a remarkably diverse set of precision experiments has established it as the "standard model" for gravitational physics. Yet it might not be the final word. We review a century of measurements that have verified general relativity, and describe some of the opportunities and challenges involved in testing Einstein's great theory in strong-field regimes and in gravitational waves.

  14. Propagating torsion in the Einstein frame

    SciTech Connect

    Poplawski, Nikodem J.

    2006-11-15

    The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.

  15. Beyond Einstein: Exploring the Extreme Universe

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.

    2005-01-01

    This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate some of the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will carry and in the spacecraft that will carry those instruments.

  16. Bose-Einstein condensation. Twenty years after

    SciTech Connect

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Malomed, B. A.; Mihalache, D.

    2015-02-23

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  17. Hypermass generalization of Einstein's gravitation theory

    NASA Technical Reports Server (NTRS)

    Edmonds, J. D., Jr.

    1973-01-01

    The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.

  18. Einstein - Peace Now!: Visions and Ideas

    NASA Astrophysics Data System (ADS)

    Braun, Reiner; Krieger, David

    2005-09-01

    Einstein was not only an extraordinary scientist, but also a person who faced his social responsibilities determinedly. The main focus of this book is put on topical articles by Scientific and Peace Nobel Prize laureates, prominent scientists and those committed to peace issues and justice, as well as citizens engagement for peace. Among the contributors are more than 10 Nobel Prize laureates, such as Mikhail Gorbachev, Walter Kohn, Joseph Rotblat, Alexander Ginzburg or Hans Bethe. This unique collection of intellectual thoughts on Einstein's vision of peace addresses a thoughtful, concerned and courageous audience, and was compiled to encourage and envision ways towards a more peaceful society.

  19. Using worksheets to solve the Einstein equation

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.

    2016-05-01

    This article describes how one can use worksheets to guide undergraduate students through the process of finding solutions to specific cases of the Einstein equation of general relativity. The worksheets provide expressions for a metric's Christoffel symbols and Ricci tensor components for fairly general metrics. Students can use a worksheet to adapt these expressions to specific cases where symmetry or other considerations constrain the metric components' dependencies, and then use the worksheet's results to reduce the Einstein equation to a set of simpler differential equations that they can solve. This article illustrates the process for both a diagonal metric and a metric with one off-diagonal element.

  20. Secrets of the Old One: Einstein, 1905

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeremy

    Beginning on the 18th of March, 1905,at approximately eight week intervals, the noted German physics journal Annalen der Physik received three hand-written manuscripts from a relatively unknown patent examiner in Bern. The patent examiner was the twenty-six year old Albert Einstein and the three papers would set the agenda for twentieth century physics. A fourth short paper was received by the journal on the 27th of September. It contained Einstein's derivation of the formula E=mc2. These papers with their many technological ramifications changed our lives in the twentieth century and beyond.

  1. BOOK REVIEW: The Legacy of Albert Einstein: A Collection of Essays in Celebration of the Year of Physics

    NASA Astrophysics Data System (ADS)

    Straumann, Norbert

    2007-10-01

    recent observational progress in cosmology and the emergence of the 'cosmic concordance model', with dark matter and dark energy as the dominant components of the current universe. Their discovery is widely considered as the most direct evidence for fundamental physics beyond the standard model of particle physics. In an introductory section Sarkar recalls the main reasons why the cosmological constant (vacuum energy) problem is of a very profound nature. In spite of some interesting ideas, no satisfactory solution is in sight. The article by B Sathyapakhash on gravitational radiation provides a readable introduction to the status of current detectors and astronomical sources of gravitational radiation. Of great cosmological interest are planned searches for a stochastic background of gravitational waves that is expected to have been produced by quantum processes in the very early universe. More than the first third of the book is devoted to current speculative attempts at creating a quantum theory of gravity, possibly within a unified coherent description of the known four fundamental interactions. Thanks to the enormously large value of the Planck energy in comparison to elementary particle masses, physicists may maintain for a long time, with success, a schizophrenic attitude in working within the framework of our present understanding, based on quantum field theory and classical general relativity. That physics cannot stay with that was already pointed out by Einstein in 1916, as A Ashtekar recalls in his essay. 'Einstein and the search for unification' by D Gross is the first article of the present book. In this he describes the reasons why, for those working in speculative areas, 'Einstein remains an inspiration for his foresight, and his unyielding determination and courage'. This inspiration is also manifest in the essays by M Atiyah, A Sen, and A Dabholkar on string theory. Hopefully, this book will find many readers, especially among graduate students, who can

  2. Holographic bound in covariant loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Tamaki, Takashi

    2016-07-01

    We investigate puncture statistics based on the covariant area spectrum in loop quantum gravity. First, we consider Maxwell-Boltzmann statistics with a Gibbs factor for punctures. We establish formulas which relate physical quantities such as horizon area to the parameter characterizing holographic degrees of freedom. We also perform numerical calculations and obtain consistency with these formulas. These results tell us that the holographic bound is satisfied in the large area limit and the correction term of the entropy-area law can be proportional to the logarithm of the horizon area. Second, we also consider Bose-Einstein statistics and show that the above formulas are also useful in this case. By applying the formulas, we can understand intrinsic features of Bose-Einstein condensate which corresponds to the case when the horizon area almost consists of punctures in the ground state. When this phenomena occurs, the area is approximately constant against the parameter characterizing the temperature. When this phenomena is broken, the area shows rapid increase which suggests the phase transition from quantum to classical area.

  3. Rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Mojica, Sindy; Zagermann, Marco

    2016-03-01

    We construct sequences of rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory, employing two equations of state for the nuclear matter. We analyze the dependence of the physical properties of these neutron stars on the Gauss-Bonnet coupling strength. For a given equation of state we determine the physically relevant domain of rapidly rotating neutron stars, which is delimited by the set of neutron stars rotating at the Kepler limit, the set of neutron stars along the secular instability line, and the set of static neutron stars. As compared to Einstein gravity, the presence of the Gauss-Bonnet term decreases this domain, leading to lower values for the maximum mass as well as to smaller central densities. The quadrupole moment is decreased by the Gauss-Bonnet term for rapidly rotating neutron stars, while it is increased for slowly rotating neutron stars. The universal relation between the quadrupole moment and the moment of inertia found in general relativity appears to extend to dilatonic Einstein-Gauss-Bonnet theory with very little dependence on the coupling strength of the Gauss-Bonnet term. The neutron stars carry a small dilaton charge.

  4. Temperature and thermodynamic structure of Einstein's equations for a cosmological black hole

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan

    2016-07-01

    It is expected that the cosmological black holes are the closest realistic solutions of gravitational theories and they evolve with time. Moreover, the natural way of defining thermodynamic entities for the stationary ones is not applicable in the case of a time dependent spacetime. Here we confine our discussion within the Sultana-Dyer metric, which is a cosmological black hole solution of Einstein's gravity. In the literature, there exist two expressions of horizon temperature—one is time dependent and the other does not depend on time. To single out the correct one we find the temperature by studying the Hawking effect in the tunneling formalism. This leads to time dependent structure. After identifying the correct one, Einstein's equations are written on the horizon and we show that this leads to the first law of thermodynamics. In this process the expressions for horizon entropy and energy, obtained earlier by explicit calculations, are being used. This provides the evidence that Einstein's equations have thermodynamic structure even for a cosmological black hole spacetime. Moreover, this study further clarifies the correctness of the expressions for the thermodynamic quantities, like temperature, entropy, and internal energy.

  5. Stability of spherically symmetric solutions in modified theories of gravity

    SciTech Connect

    Seifert, Michael D.

    2007-09-15

    In recent years, a number of alternative theories of gravity have been proposed as possible resolutions of certain cosmological problems or as toy models for possible but heretofore unobserved effects. However, the implications of such theories for the stability of structures such as stars have not been fully investigated. We use our 'generalized variational principle', described in a previous work [M. D. Seifert and R. M. Wald, Phys. Rev. D 75, 084029 (2007)], to analyze the stability of static spherically symmetric solutions to spherically symmetric perturbations in three such alternative theories: Carroll et al.'s f(R) gravity, Jacobson and Mattingly's 'Einstein-aether theory', and Bekenstein's TeVeS theory. We find that in the presence of matter, f(R) gravity is highly unstable; that the stability conditions for spherically symmetric curved vacuum Einstein-aether backgrounds are the same as those for linearized stability about flat spacetime, with one exceptional case; and that the 'kinetic terms' of vacuum TeVeS theory are indefinite in a curved background, leading to an instability.

  6. Saving Space and Time: The Tractor That Einstein Built

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In 1984, NASA initiated the Gravity Probe B (GP-B) program to test two unverified predictions of Albert Einstein s theory of general relativity, hypotheses about the ways space, time, light, and gravity relate to each other. To test these predictions, the Space Agency and researchers at Stanford University developed an experiment that would check, with extreme precision, tiny changes in the spin direction of four gyroscopes contained in an Earth satellite orbiting at a 400-mile altitude directly over the Earth s poles. When the program first began, the researchers assessed using Global Positioning System (GPS) technology to control the attitude of the GP-B spacecraft accurately. At that time, the best GPS receivers could only provide accuracy to nearly 1 meter, but the GP-B spacecraft required a system 100 times more accurate. To address this concern, researchers at Stanford designed high-performance, attitude-determining hardware that used GPS signals, perfecting a high-precision form of GPS called Carrier-Phase Differential GPS that could provide continuous real-time position, velocity, time, and attitude sensor information for all axes of a vehicle. The researchers came to the realization that controlling the GP-B spacecraft with this new system was essentially no different than controlling an airplane. Their thinking took a new direction: If this technology proved successful, the airlines and the Federal Aviation Administration (FAA) were ready commercial markets. They set out to test the new technology, the "Integrity Beacon Landing System," using it to automatically land a commercial Boeing 737 over 100 times successfully through Real-Time Kinematic (RTK) GPS technology. The thinking of the researchers shifted again, from automatically landing aircraft, to automating precision farming and construction equipment.

  7. Einstein 1905-1955: His Approach to Physics

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    We review Einstein's epistemological conceptions, and indicate their philosophical roots. The particular importance of the ideas of Hume, Kant, Mach, and Poincaré is highlighted. The specific characteristics of Einstein's approach to physics are underlined. Lastly, we consider the practical application of Einstein's methodological principles to the two theories of relativity, and to quantum theory. We emphasize a Kantian approach to quantum theory.

  8. Conceptual Development of Einstein's Mass-Energy Relationship

    ERIC Educational Resources Information Center

    Wong, Chee Leong; Yap, Kueh Chin

    2005-01-01

    Einstein's special theory of relativity was published in 1905. It stands as one of the greatest intellectual achievements in the history of human thought. Einstein described the equivalence of mass and energy as "the most important upshot of the special theory of relativity" (Einstein, 1919). In this paper, we will discuss the evolution of the…

  9. Serendipitous discoveries in nonlocal gravity theory

    NASA Astrophysics Data System (ADS)

    Barvinsky, A. O.

    2012-05-01

    We present a class of generally covariant nonlocal gravity models which have a flat-space general relativistic limit and also possess a stable de Sitter or anti-de Sitter (AdS) background with an arbitrary value of its cosmological constant. The nonlocal action of the theory is formulated in the Euclidean signature spacetime and is understood as an approximation to the quantum effective action (generating functional of one-particle irreducible diagrams) originating from fundamental quantum gravity theory. Using the known relation between the Schwinger-Keldysh technique for quantum expectation values and the Euclidean quantum field theory we derive from this action the causal effective equations of motion for mean value of the metric field in the physical Lorentzian-signature spacetime. Thus we show that the (A)dS background of the theory carries as free propagating modes massless gravitons having two polarizations identical to those of the Einstein theory with a cosmological term. The on-shell action of the theory is vanishing both for the flat-space and (A)dS backgrounds which play the role of stable vacua underlying, respectively, the ultraviolet and infrared phases of the theory. We also obtain linearized gravitational potentials of compact matter sources and show that in the infrared (A)dS phase their effective gravitational coupling Geff can be essentially different from the Newton gravitational constant GN of the short-distance general relativistic phase. When Geff≫GN the (A)dS phase can be regarded as a strongly coupled infrared modification of Einstein theory not only describing the dark energy mechanism of cosmic acceleration but also simulating the dark matter phenomenon by enhanced gravitational attraction at long distances.

  10. A parametrix for quantum gravity?

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero

    2016-03-01

    In the 60s, DeWitt discovered that the advanced and retarded Green functions of the wave operator on metric perturbations in the de Donder gauge make it possible to define classical Poisson brackets on the space of functionals that are invariant under the action of the full diffeomorphism group of spacetime. He therefore tried to exploit this property to define invariant commutators for the quantized gravitational field, but the operator counterpart of such classical Poisson brackets turned out to be a hard task. On the other hand, in the mathematical literature, it is by now clear that, rather than inverting exactly an hyperbolic (or elliptic) operator, it is more convenient to build a quasi-inverse, i.e. an inverse operator up to an operator of lower order which plays the role of regularizing operator. This approximate inverse, the parametrix, which is, strictly, a distribution, makes it possible to solve inhomogeneous hyperbolic (or elliptic) equations. We here suggest that such a construction might be exploited in canonical quantum gravity provided one understands what is the counterpart of classical smoothing operators in the quantization procedure. We begin with the simplest case, i.e. fundamental solution and parametrix for the linear, scalar wave operator; the next step are tensor wave equations, again for linear theory, e.g. Maxwell theory in curved spacetime. Last, the nonlinear Einstein equations are studied, relying upon the well-established Choquet-Bruhat construction, according to which the fifth derivatives of solutions of a nonlinear hyperbolic system solve a linear hyperbolic system. The latter is solved by means of Kirchhoff-type formulas, while the former fifth-order equations can be solved by means of well-established parametrix techniques for elliptic operators. But then the metric components that solve the vacuum Einstein equations can be obtained by convolution of such a parametrix with Kirchhoff-type formulas. Some basic functional equations

  11. Unique Stellar System Gives Einstein a Thumbs-Up

    NASA Astrophysics Data System (ADS)

    2008-07-01

    Taking advantage of a unique cosmic coincidence, astronomers have measured an effect predicted by Albert Einstein's theory of General Relativity in the extremely strong gravity of a pair of superdense neutron stars. The new data indicate that the famed physicist's 93-year-old theory has passed yet another test. Double Pulsar Graphic Artist's Conception of Double Pulsar System PSR J0737-3039A/B CREDIT: Daniel Cantin, DarwinDimensions, McGill University Click on image for more graphics. The scientists used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to make a four-year study of a double-star system unlike any other known in the Universe. The system is a pair of neutron stars, both of which are seen as pulsars that emit lighthouse-like beams of radio waves. "Of about 1700 known pulsars, this is the only case where two pulsars are in orbit around each other," said Rene Breton, a graduate student at McGill University in Montreal, Canada. In addition, the stars' orbital plane is aligned nearly perfectly with their line of sight to the Earth, so that one passes behind a doughnut-shaped region of ionized gas surrounding the other, eclipsing the signal from the pulsar in back. "Those eclipses are the key to making a measurement that could never be done before," Breton said. Einstein's 1915 theory predicted that, in a close system of two very massive objects, such as neutron stars, one object's gravitational tug, along with an effect of its spinning around its axis, should cause the spin axis of the other to wobble, or precess. Studies of other pulsars in binary systems had indicated that such wobbling occurred, but could not produce precise measurements of the amount of wobbling. "Measuring the amount of wobbling is what tests the details of Einstein's theory and gives a benchmark that any alternative gravitational theories must meet," said Scott Ransom of the National Radio Astronomy Observatory. The eclipses allowed the astronomers to pin

  12. Preparation of Bose Einstein condensates in realistc trapping potentials for precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Posso Trujillo, Katerine; Rasel, Ernst M.; Gaaloul, Naceur; Quantus Team

    Preparation of Bose Einstein condensates in realistc trapping potentials for precision atom interferometry Theoretical studies of the ground state and the dynamical properties of Bose Einstein condensates (BECs) are typically realized by considering the ensemble as being initiaally trapped by a harmonic potential. Dramatic discrepancies were found by comparing numerical results of the long-time expansion of BECs after being released from the harmonic trap, and measurements of the free evolution and delta-kick cooling (DKC) of a 87Rb BEC on large timescales of up to 2 s in micro-gravity (micro-g) environment such as those performed in the QUANTUS project from our group. The modification in the dynamics of a 87Rb BEC with the application of DKC by using experimentally implemented trapping geometries and the effect of gravity have been studied. Three different configurations have been considered: atom chip-based potential, dipole trap and the time-averaged orbiting potential. Such discrepancies may be crucial in high precision atom interferometry experiments in micro-g and zero-g platforms in which the implementation of DKC is mandatory to achieve the long-expansion times required

  13. Canonical gravity with fermions

    SciTech Connect

    Bojowald, Martin; Das, Rupam

    2008-09-15

    Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.

  14. Immobilized metal ion affinity chromatography.

    PubMed

    Yip, T T; Hutchens, T W

    1992-01-01

    Immobilized metal ion affinity chromatography (IMAC) (1,2) is also referred to as metal chelate chromatography, metal ion interaction chromatography, and ligand-exchange chromatography. We view this affinity separation technique as an intermediate between highly specific, high-affinity bioaffinity separation methods, and wider spectrum, low-specificity adsorption methods, such as ion exchange. The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups (e.g., His residues) in peptides (e.g., 3-7) and on protein surfaces (8-13). The number of stationary phases that can be synthesized for efficient chelation of metal ions is unlimited, but the critical consideration is that there must be enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. Several examples are presented in Fig. 1. The challenge to produce new immobilized chelating groups, including protein surface metal-binding domains (14,15) is being explored continuously. Table 1 presents a list of published procedures for the synthesis and use of stationary phases with immobilized chelating groups. This is by no means exhaustive, and is intended only to give an idea of the scope and versatility of IMAC. Fig. 1 Schematic illustration of several types of immobilized metal-chelating groups, including, iminodiacetate (IDA), tris(carboxymethyl) ethylenediamine (TED), and the metal-binding peptides (GHHPH)(n)G (where n = 1,2,3, and 5) (14,15). Table 1 Immobilized Chelating Groups and Metal Ions Used for Immobilized Metal Ion Affinity Chromatography Chelating group Suitable metal ions Reference Commercial source Immodiacetate Transitional1,2 Pharmacia LKB Pierce Sigma Boehringer Mannheim TosoHaas 2-Hydroxy-3[N-(2- pyrtdylmethyl) glycme]propyl Transitional3 Not available ?-Alky1 mtrilo triacetic acid Transitional4 Not available Carboxymethylated asparhc acid Ca(II)13 Not available Tris (carboxy- methyl) ethylene Diamme

  15. Quantum dynamics of the Einstein-Rosen wormhole throat

    NASA Astrophysics Data System (ADS)

    Kunstatter, Gabor; Louko, Jorma; Peltola, Ari

    2011-02-01

    We consider the polymer quantization of the Einstein wormhole throat theory for an eternal Schwarzschild black hole. We numerically solve the difference equation describing the quantum evolution of an initially Gaussian, semiclassical wave packet. As expected from previous work on loop quantum cosmology, the wave packet remains semiclassical until it nears the classical singularity at which point it enters a quantum regime in which the fluctuations become large. The expectation value of the radius reaches a minimum as the wave packet is reflected from the origin and emerges to form a near-Gaussian but asymmetrical semiclassical state at late times. The value of the minimum depends in a nontrivial way on the initial mass/energy of the pulse, its width, and the polymerization scale. For wave packets that are sufficiently narrow near the bounce, the semiclassical bounce radius is obtained. Although the numerics become difficult to control in this limit, we argue that for pulses of finite width the bounce persists as the polymerization scale goes to zero, suggesting that in this model the loop quantum gravity effects mimicked by polymer quantization do not play a crucial role in the quantum bounce.

  16. Quantum dynamics of the Einstein-Rosen wormhole throat

    SciTech Connect

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2011-02-15

    We consider the polymer quantization of the Einstein wormhole throat theory for an eternal Schwarzschild black hole. We numerically solve the difference equation describing the quantum evolution of an initially Gaussian, semiclassical wave packet. As expected from previous work on loop quantum cosmology, the wave packet remains semiclassical until it nears the classical singularity at which point it enters a quantum regime in which the fluctuations become large. The expectation value of the radius reaches a minimum as the wave packet is reflected from the origin and emerges to form a near-Gaussian but asymmetrical semiclassical state at late times. The value of the minimum depends in a nontrivial way on the initial mass/energy of the pulse, its width, and the polymerization scale. For wave packets that are sufficiently narrow near the bounce, the semiclassical bounce radius is obtained. Although the numerics become difficult to control in this limit, we argue that for pulses of finite width the bounce persists as the polymerization scale goes to zero, suggesting that in this model the loop quantum gravity effects mimicked by polymer quantization do not play a crucial role in the quantum bounce.

  17. Test of the Equivalence Principle in an Einstein Elevator

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.; Glashow, S.; Lorenzini, E. C.; Cosmo, M. L.; Cheimets, P. N.; Finkelstein, N.; Schneps, M.

    2005-01-01

    This Annual Report illustrates the work carried out during the last grant-year activity on the Test of the Equivalence Principle in an Einstein Elevator. The activity focused on the following main topics: (1) analysis and conceptual design of a detector configuration suitable for the flight tests; (2) development of techniques for extracting a small signal from data strings with colored and white noise; (3) design of the mechanism that spins and releases the instrument package inside the cryostat; and (4) experimental activity carried out by our non-US partners (a summary is shown in this report). The analysis and conceptual design of the flight-detector (point 1) was focused on studying the response of the differential accelerometer during free fall, in the presence of errors and precession dynamics, for various detector's configurations. The goal was to devise a detector configuration in which an Equivalence Principle violation (EPV) signal at the sensitivity threshold level can be successfully measured and resolved out of a much stronger dynamics-related noise and gravity gradient. A detailed analysis and comprehensive simulation effort led us to a detector's design that can accomplish that goal successfully.

  18. Spherically symmetric Einstein-aether perfect fluid models

    NASA Astrophysics Data System (ADS)

    Coley, Alan A.; Leon, Genly; Sandin, Patrik; Latta, Joey

    2015-12-01

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β-) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.

  19. Primordial perturbations in Einstein-Aether and BPSH theories

    SciTech Connect

    Armendariz-Picon, Cristian; Sierra, Noela Fariña; Garriga, Jaume E-mail: noela@ffn.ub.es

    2010-07-01

    We study the primordial perturbations generated during a stage of single-field inflation in Einstein-aether theories. Quantum fluctuations of the inflaton and aether fields seed long wavelength adiabatic and isocurvature scalar perturbations, as well as transverse vector perturbations. Geometrically, the isocurvature mode is the potential for the velocity field of the aether with respect to matter. For a certain range of parameters, this mode may lead to a sizable random velocity of the aether within the observable universe. The adiabatic mode corresponds to curvature perturbations of co-moving slices (where matter is at rest). In contrast with the standard case, it has a non-vanishing anisotropic stress on large scales. Scalar and vector perturbations may leave significant imprints on the cosmic microwave background. We calculate their primordial spectra, analyze their contributions to the temperature anisotropies, and formulate some of the phenomenological constraints that follow from observations. These may be used to further tighten the existing limits on the parameters for this class of theories. The results for the scalar sector also apply to the extension of Hořava gravity recently proposed by Blas, Pujolàs and Sibiryakov.

  20. A new Einstein-nonlinear electrodynamics solution in dimensions

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.; Gurtug, O.

    2014-01-01

    We introduce a class of solutions in -dimensional Einstein-Power-Maxwell theory for a circularly symmetric electric field. The electromagnetic field is considered with an angular component given by for constant. First, we show that the metric for zero cosmological constant and the Power-Maxwell Lagrangian of the form of coincides with the solution given in -dimensional gravity coupled with a massless, self-interacting real scalar field. With the same Lagrangian and a non-zero cosmological constant we obtain a non-asymptotically flat wormhole solution in dimensions. The confining motions of massive charged and chargeless particles are investigated too. Secondly, another interesting solution is given for zero cosmological constant together with the conformal invariant condition. The formation of a timelike naked singularity for this particular case is investigated within the framework of the quantum mechanics. Quantum fields obeying the Klein-Gordon and Dirac equations are used to probe the singularity and test the quantum mechanical status of the singularity.

  1. Going Beyond Einstein with the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas

    2007-01-01

    The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution X-ray spectroscopy.'The mission will also perform routine high-resolution X-ray spectroscopy of faint 2nd extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity; and ionization state for a wide range of astrophysical problems, including new constraints on the Neutron Star equation of state.

  2. On Einstein's Path, essays in honor of Engelbert Schucking

    NASA Astrophysics Data System (ADS)

    Harvey, Alex

    This collection of essays in honor of Engelbert Schucking spans the gamut of research in general relativity and presents a lively and personal account of current work in the field. Contributions include: E.L. Schucking: Jordan, Pauli, Politics, Brecht... and a Variable Gravitational Constant J.L. Anderson: Thomson Scattering in an Expanding Universe A. Ashtekar & T.A. Schilling: Geometrical Formulation of Quantum Mechanics J. Baugh, D.R. Finkelstein, H. Saller, and Zhong Tang: General Covariance is Bose-Einstein Statistics S.L. Bazanski: The Split and Propagation of Light Rays in Relativity L. Bel: How to Define a Unique Vacuum in Cosmology P.G. Bergmann: EIH Theory and Noether's Theorem W.B. Bonnor: The Static Cylinder in General Relativity C.H. Brahns: Gravity and the Tenacious Scalar Field D. Brill: The Cavendish Experiment in General Relativity Y. Choquet-Bruhat: Wave Maps in General Relativity T. Damour: General Relativty and Experiment J. Ehlers: Some Developments in Newtonian Cosmology G.F.R. Ellis & H. van Elst: Deviation of Geodesics in FLRW Spacetime Geometries S. Frittelli & E.T. Newman: Poincar Pseudo-symmetries in Asymptotically Flat Spacetimes E.N. Glass: Taub Numbers and Asymptotic Invariants J.N. Goldberg: Second Class Constraints F.W. Hehl, A. Macias, E.W. Mielke, & Yu.N. Obukhov: On the Structure of the Energy-momentum and the Spin Currents in Dirac's Electron

  3. Einstein - Cartan - Dirac theory in the low-energy limit

    NASA Astrophysics Data System (ADS)

    Singh, P.; Ryder, L. H.

    1997-12-01

    We look for manifestations of the effects of torsion in the low-energy limit in the context of Einstein - Cartan - Dirac theory (or any theory of gravity in which the torsion tensor is purely axial). To proceed, we introduce the mathematical law governing the transport of orthonormal bases or tetrads in a spacetime with torsion. This law is applied to compute the metric and connection in a rotating and accelerating frame, or laboratory. A spin-0264-9381/14/12/031/img1 particle is placed in this rotating and accelerating frame and the low-energy limit of the Dirac equation is taken by means of the Foldy - Wouthuysen transformation. In addition to obtaining the Bonse - Wroblewski phase shift due to acceleration, Sagnac-type effects, rotation - spin couplings of the Mashhoon type, redshift of the kinetic energy and the spin - orbit coupling term of Hehl and Ni, we also obtain several interesting and significant terms as a consequence of introducing torsion into spacetime. We give a detailed interpretation of these additional terms and discuss their observability in the light of current well-known experimental techniques.

  4. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    NASA Astrophysics Data System (ADS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  5. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    SciTech Connect

    Ayissi, Raoul Domingo Noutchegueme, Norbert

    2015-01-15

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  6. Metropolis Prize Winner: Numerical Hydrodynamics at Gravity's Extremes

    NASA Astrophysics Data System (ADS)

    East, William

    2015-04-01

    Einstein's theory of general relativity is currently our best understanding of how gravity works. However, there are a very limited number of analytically-known solutions to the set of coupled, non-linear PDEs that make up the field equations. This means numerical methods are essential to understanding many interesting strong-field phenomena like black hole formation or the generation of gravitational waves. There has been great progress in the field of numerical relativity, especially in the past decade, not only in terms of being able to accurately simulate the mergers of compact objects like black holes or neutron stars, but beyond. I will discuss some recent work developing computational methods for simulating hydrodynamics coupled to Einstein gravity, and applying them to new regimes and problems in high-energy astrophysics, gravitational-wave astronomy, and theoretical general relativity. This includes developing flexible and robust methods for solving the constraint part of the Einstein field equations in order to specify initial data for an evolution, as well as an algorithm for efficiently evolving the full non-linear evolution equations when the solution is dominated by a known background solution. I will emphasize how these computational tools allow us to push the domain of numerical relativity into more extreme regimes of gravity: exploring mergers of black holes and neutron stars with high orbital eccentricity; simulating the extreme-mass-ratios involved in the tidal disruption of a star by a black hole using full relativity; and studying ultrarelativistic collisions, where the gravitational pull of kinetic energy is strong enough to form a black hole.

  7. Einstein-Podolsky-Rosen Entanglement Strategies in Two-Well Bose-Einstein Condensates

    SciTech Connect

    He, Q. Y.; Vaughan, T. G.; Reid, M. D.; Drummond, P. D.; Gross, C.; Oberthaler, M.

    2011-03-25

    Criteria suitable for measuring entanglement between two different potential wells in a Bose-Einstein condensation are evaluated. We show how to generate the required entanglement, utilizing either an adiabatic two-mode or a dynamic four-mode interaction strategy, with techniques that take advantage of s-wave scattering interactions to provide the nonlinear coupling. The dynamic entanglement method results in an entanglement signature with spatially separated detectors, as in the Einstein-Podolsky-Rosen paradox.

  8. Einstein Slew Survey: Data analysis innovations

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.; Plummer, David; Schachter, Jonathan F.; Fabbiano, G.

    1992-01-01

    Several new methods were needed in order to make the Einstein Slew X-ray Sky Survey. The innovations which enabled the Slew Survey to be done are summarized. These methods included experimental approach to large projects, parallel processing on a LAN, percolation source detection, minimum action identifications, and rapid dissemination of the whole data base.

  9. Einstein-Yang-Mills theory: Asymptotic symmetries

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Lambert, Pierre-Henry

    2013-11-01

    Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four-dimensional asymptotically flat case.

  10. Can you do quantum mechanics without Einstein?

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Noz, Marilyn E.

    2007-02-01

    The present form of quantum mechanics is based on the Copenhagen school of interpretation. Einstein did not belong to the Copenhagen school, because he did not believe in probabilistic interpretation of fundamental physical laws. This is the reason why we are still debating whether there is a more deterministic theory. One cause of this separation between Einstein and the Copenhagen school could have been that the Copenhagen physicists thoroughly ignored Einstein's main concern: the principle of relativity. Paul A. M. Dirac was the first one to realize this problem. Indeed, from 1927 to 1963, Paul A. M. Dirac published at least four papers to study the problem of making the uncertainty relation consistent with Einstein's Lorentz covariance. It is interesting to combine those papers by Dirac to make the uncertainty relation consistent with relativity. It is shown that the mathematics of two coupled oscillators enables us to carry out this job. We are then led to the question of whether the concept of localized probability distribution is consistent with Lorentz covariance.

  11. Quantum metrology with Bose-Einstein condensates

    SciTech Connect

    Boixo, Sergio; Datta, Animesh; Davis, Matthew J.; Flammia, Steven T.; Shaji, Anil; Tacla, Alexandre B.; Caves, Carlton M.

    2009-04-13

    We show how a generalized quantum metrology protocol can be implemented in a two-mode Bose-Einstein condensate of n atoms, achieving a sensitivity that scales better than 1/n and approaches 1/n{sup 3/2} for appropriate design of the condensate.

  12. Skyrme-Einstein closed cosmic chiral strings

    SciTech Connect

    Rybakov, Yu. P. Ivanova, I. S.

    2007-07-15

    Within the theory of general relativity, the configuration of a closed string (vortex) characterized by a topological charge of the degree type is described for the Skyrme-Einstein SU (2) chiral model. In the approximation of a large vortex-closure radius (a), a solution to equations of motion is obtained, along with estimates for the vortex energy and radius.

  13. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  14. The Einstein All-Sky Slew Survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1992-01-01

    The First Einstein IPC Slew Survey produced a list of 819 x-ray sources, with f(sub x) approximately 10(exp -12) - 10(exp -10) erg/sq cm s and positional accuracy of approximately 1.2 feet (90 percent radius). The aim of this program was to identify these x-ray sources.

  15. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  16. The Excellence of Einstein's Theory of Gravitation.

    ERIC Educational Resources Information Center

    Dirac, P. A. M.

    1979-01-01

    This article is adapted from a presentation made in 1978 at the symposium on the Impact of Modern Scientific Ideas on Society organized by UNESCO in Ulm, West Germany. It discusses Einstein's theory of gravitation and how it started a new line of activity for physicists. (HM)

  17. How Einstein Got the Nobel Prize.

    ERIC Educational Resources Information Center

    Pais, Abraham

    1982-01-01

    Discusses why the Nobel Committee for Physics waited so long before giving Einstein the Nobel Prize and why they did not award it for relativity, but for the photoelectric effect instead. Focuses on the judgments of leading scientists who made nominations as well as committee members' decisions. (Author/JN)

  18. Albert Einstein and the Quantum Riddle

    ERIC Educational Resources Information Center

    Lande, Alfred

    1974-01-01

    Derives a systematic structure contributing to the solution of the quantum riddle in Einstein's sense by deducing quantum mechanics from the postulates of symmetry, correspondence, and covariance. Indicates that the systematic presentation is in agreement with quantum mechanics established by Schroedinger, Born, and Heisenberg. (CC)

  19. Chromohydrodynamics in Einstein-Cartan theory

    SciTech Connect

    Amorim, R.

    1986-05-15

    The complete dynamical system for a classical fluid endowed with non-Abelian charge density is obtained by using variational techniques. Spin density appears in a natural way, as a consequence of a usual gauge construction. Einstein-Cartan, Yang-Mills, and generalized Wong equations are explicitly shown.

  20. Three years of practical use of airborne gravity gradiometry

    NASA Astrophysics Data System (ADS)

    van Leeuwen, E.

    2003-04-01

    BHP Billiton has successfully built and deployed three airborne gravity gradiometer (AGG) systems, (Newton, Einstein and Galileo) based upon the Bell Airspace (now Lockheed Martin) Gravity Gradient Instruments developed for the United States Department of Defense. A second-generation gradiometer (Feynman) is presently nearing completion. The GGI technology is based on groups of four (4) accelerometers where the accelerometers are equi-spaced on a circle. The configuration successfully rejects both common mode accelerations and rotations about the axis perpendicular to the plane of the complement. The GGI is mounted within an aircraft in a specially designed, inertially stabilized platform, which significantly reduces sensitivity to noise and turbulence. The BHP Billiton AGG Technology provides high quality gravity maps with a resolution and sensitivity to map gravity anomalies associated with both minerals and hydrocarbon deposits. To date the purpose built and designed hardware and data processing algorithms, in conjunction with several other geophysical survey instruments, have been deployed against a broad range of mineral and hydrocarbon targets, a total of over 300,000km of operational flights having been made. Data will also be presented on the in-flight sensitivity of a gravity gradiometer to the airborne environment. It will also outline some of the many unexpected problems that were encountered in the 18-month flight trials required to achieve satisfactory airborne operation.