Science.gov

Sample records for einstein eddington timescale

  1. An Examination of the Documentary Film "Einstein and Eddington" in Terms of Nature of Science Themes, Philosophical Movements, and Concepts

    ERIC Educational Resources Information Center

    Kapucu, Munise Seçkin

    2016-01-01

    This study aims to examine nature of science themes, philosophical movements, and overall concepts covered in the documentary film, "Einstein and Eddington". A qualitative research method was used. In this study, the documentary film "Einstein and Eddington," the viewing time of which is 1 hour and 28 minutes, was used as the…

  2. Eddington: Eddington: leading the field

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Mestel, Leon

    2004-06-01

    Sixty years after the death of Sir Arthur Eddington OM, FRS, the RAS held a Commemoration Meeting to recall his outstanding contributions to astronomy, cosmology and the popularization of science, organized by John D Barrow and Leon Mestel.

  3. Eddington, Sir Arthur Stanley (1882-1944)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Astrophysicist, born in Kendal, Westmorland, England, became Plumian professor of astronomy and director of the Cambridge Observatory. Eddington's work on the theory of relativity was described by EINSTEIN as `the finest presentation of the subject in any language' and from Greenwich, he led one of the two 1919 solar eclipse expeditions which confirmed the predicted deflection of starlight by gra...

  4. Instability & Mass Loss near the Eddington Limit

    NASA Astrophysics Data System (ADS)

    Owocki, S. P.; Shaviv, N. J.

    We review the physics of continuum-driven mass loss and its likely role in η Carinae and LBVs. Unlike a line-driven wind, which is inherently limited by self-shadowing, continuum driving can in principle lead to mass-loss rates up to the "photon-tiring" limit, for which the entire luminosity is expended in lifting the outflow. We discuss how instabilities near the Eddington limit give rise to a clumped atmosphere, and how the associated "porosity" can regulate a continuum-driven flow. We also summarize recent time-dependent simulations in which a mass flow stagnates because it exceeds the tiring limit, leading to complex time-dependent inflow and outflow regions. Porosity-regulated continuum driving in super-Eddington epochs can probably explain the large, near tiring-limit mass loss inferred for LBV giant eruptions. However, while these extreme flows can persist over dynamically long periods, they cannot be sustained for an evolutionary timescale; so ultimately it is stellar structure and evolution that sets the overall mass loss.

  5. Studies of the black hole mass and the eddington rate of AGNs

    NASA Astrophysics Data System (ADS)

    Bao, Y. Y.; Zhang, X.; Chen, L. E.; Zhang, H. J.; Peng, Z. Y.; Zheng, Y. G.

    2008-04-01

    Many people have discussed the property of AGNs (active galactic nuclei). The variation of spectrum, the correlation of multi-wave bands and the property of polarization give good information for studying intrinsic correlation of components and its position. To date, the redshift and the Eddington rate and the masses of black hole are the basic properties of active galactic nuclei. In this paper, firstly calculated the mass of black hole and the Eddington rate of 172 samples using the reverberation mapping method, secondly statistical distribution of the black hole masses and the Eddington rate of Seyfert Galaxies and Quasars, thirdly investigated the relation between redshift and Eddington rate and analysed the relation between Eddington rate and the black hole mass and discussed the relation between the redshift and the masses of black hole as well as the relation between the redshift and the Eddington rate, since the evolution essential of AGNs is the change on the timescales of the universe, and the redshift plays an important role in the evolution of AGNs. From these analyses, this paper found that the black hole masses and the redshift of AGNs change with the development of Eddington rate. Through these results, the paper has made an initial statistical research for the AGNs evolution, and found the transformation from Quasar to Seyfert galaxy.

  6. Surface singularities in Eddington-inspired Born-Infeld gravity.

    PubMed

    Pani, Paolo; Sotiriou, Thomas P

    2012-12-21

    Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability. PMID:23368444

  7. Einstein's Cosmos (German Title: Einsteins Kosmos)

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.; Dick, Wolfgang R.

    The different contributions of the present volume illuminate the interaction between Einstein and his colleagues when the foundations of modern cosmology were laid: First, the relativistic effects in the solar system, the gravitational redshift in the solar spectrum, and Einstein's relations with Freundlich and Eddington. Second, the cosmological models of Einstein, de Sitter, Friedmann, and Lemaître, which were discussed controversely till the end of the 1920s. Other scientists have also widened or critically questioned Einstein's insight and knowledge: Schwarzschild, Selety, Silberstein, and Mandl, whose life and work is discussed in separate articles. In those days, politics more than ever in history had influenced the lifes of scientists. Therefore, some comments on the ``political cosmos'' that has influenced decisively Einstein's life are also given. A special role in popularizing Einstein's world view was played by Archenhold Observatory in Berlin. A list of Einstein memorial places and a bibliographic list conclude the present book. All papers are written in German, and have English abstracts.

  8. Sub-Eddington star-forming regions are super-Eddington: momentum-driven outflows from supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.; Krumholz, Mark R.

    2016-01-01

    We show that the turbulent gas in the star-forming regions of galaxies is unstable to wind formation via momentum deposition by radiation pressure or other momentum sources like supernova explosions, even if the system is below the average Eddington limit. This conclusion follows from the fact that the critical momentum injection rate per unit mass for unbinding gas from a self-gravitating system is proportional to the gas surface density and that a turbulent medium presents a broad distribution of column densities to the sources. For an average Eddington ratio of <Γ> ≃ 0.1 and for turbulent Mach numbers ≳ 30, we find that ˜1 per cent of the gas is ejected per dynamical time-scale at velocities larger than the local escape velocity. Because of the lognormal shape of the surface density distribution, the mass-loss rate is highly sensitive to the average Eddington ratio, reaching ˜20-40 per cent of the gas mass per dynamical time for <Γ> ≃ 1. Using this model we find a large scatter in the mass-loading factor for star-forming galaxies, ranging from ˜10-3-10, but with significant uncertainties. Implications for the efficiency of star formation in giant molecular clouds are highlighted. For radiation pressure feedback alone, we find an increasing star formation efficiency as a function of initial gas surface density. Uncertainties are discussed.

  9. "An expedition to heal the wounds of war". The 1919 eclipse and Eddington as Quaker adventurer.

    PubMed

    Stanley, Matthew

    2003-03-01

    The 1919 eclipse expedition's confirmation of general relativity is often celebrated as a triumph of scientific internationalism. However, British scientific opinion during World War I leaned toward the permanent severance of intellectual ties with Germany. That the expedition came to be remembered as a progressive moment of internationalism was largely the result of the efforts of A. S. Eddington. A devout Quaker, Eddington imported into the scientific community the strategies being used by his coreligionists in the national dialogue: humanize the enemy through personal contact and dramatic projects that highlight the value of peace and cooperation. The essay also addresses the common misconception that Eddington's sympathy for Einstein led him intentionally to misinterpret the expedition's results. The evidence gives no reason to think that Eddington or his coworkers were anything but rigorous. Eddington's pacifism is reflected not in manipulated data but in the meaning of the expedition and the way it entered the collective memory as a celebration of international cooperation in the wake of war. PMID:12725104

  10. The virial theorem in Eddington-Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Santos, Noelia S.; Santos, Janilo

    2015-12-01

    We consider the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides an alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations, finding an additional "geometrical mass" term which provides an effective contribution to the gravitational binding energy. Using some approximations and assumptions for weak gravitational fields, and taking into account the collisionless relativistic Boltzmann equation, we derive a generalized version of the virial theorem in the framework of EBI gravity. We show that the "geometrical mass" term may account for the well known virial mass discrepancy in clusters of galaxies. We also derive the velocity dispersion relation for galaxies in the clusters, which could provide an efficient method for testing EBI gravity from astrophysical observations.

  11. PHOTON FEEDBACK: SCREENING AND THE EDDINGTON LIMIT

    SciTech Connect

    Socrates, Aristotle; Sironi, Lorenzo E-mail: lsironi@cfa.harvard.edu

    2013-08-01

    Bright star-forming galaxies radiate well below their Eddington limits. The value of the flux-mean opacity that mediates the radiation force onto matter is orders of magnitude smaller than the UV or optical dust opacity. On empirical grounds, it is shown that high-redshift ULIRGs radiate at two orders of magnitude below their Eddington limits, while the local starbursters M82 and Arp 220 radiate at a few percent of their Eddington limits. A model for the radiative transfer of UV and optical light in dust-rich environments is considered. Radiation pressure on dust does not greatly affect the large-scale gas dynamics of star-forming galaxies.

  12. Eddington capture sphere around luminous relativistic stars

    NASA Astrophysics Data System (ADS)

    Wielgus, Maciek

    2016-02-01

    We discuss the interplay of gravity and radiation in a static, spherically symmetric spacetime. Because of the spacetime curvature, balance between radiation pressure from spherical star and effective force of gravity may be established in a particular distance from the star surface, on so-called Eddington capture sphere. This is in contrast with the Newtonian scenario, for which Eddington luminosity of the radiation assures gravity-radiation balance at any radius. We explore properties of this relativistic equilibrium and the dynamics of test particles under radiation influence in the strong gravity regime.

  13. Chandrasekhar vs. Eddington - An Unanticipated Confrontation.

    ERIC Educational Resources Information Center

    Wali, Kameshwar C.

    1982-01-01

    In the 1930s, Subrahmanyan Chandrasekhar found a fundamental parameter that determines the density of stars. Although recognized as a major discovery, it was generally unaccepted by astronomers because the work was ridiculed by a preeminent astronomer (Arthur Eddington). The controversy and current understanding of stellar evolution are discussed.…

  14. Eddington's theory of gravity and its progeny.

    PubMed

    Bañados, Máximo; Ferreira, Pedro G

    2010-07-01

    We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe. PMID:20867432

  15. The white dwarf affair: Chandrasekhar, Eddington and the limiting mass

    NASA Astrophysics Data System (ADS)

    Gooneratne, Sakura

    A thesis describing and analysing the controversy between Subrahmanyan Chandrasekhar and Arthur Stanley Eddington over the limiting mass of white dwarf stars. The aim of the thesis is to discover why the controversy occurred and to analyse the reasons behind Eddington's rejection of relativistic degeneracy and the limiting mass. The ultimate reason behind Eddington's attack on relativistic degeneracy was found to be Eddington's severe objection to singularities which was apparent long before Chandrasekhar's discovery of the limiting mass and occurred in three separate areas of research undertaken by Eddington during this period: astrophysics, cosmology, general relativity and Dirac's relativistic equation of the electron which led to Eddington's fundamental theory. The thesis will focus on the problem of the limiting mass of white dwarfs between 1929 and 1935 but will use the problem to analyse Eddington's view of singularities within the three different research areas spanning two decades from 1916 to 1936. The Chandrasekhar-Eddington controversy is set within Eddington's earlier controversies with James Jeans and Edward Arthur Milne who together with Eddington founded theoretical astrophysics during the 1920s. The thesis will examine the problem of white dwarfs within the context of the earlier controversies on stellar structure. As well as the technical analysis of the controversy, the thesis will also analyse the social dynamics and interactions within the astronomical community and their impact on the controversies. The aim of this thesis is to create a more complete picture of the Chandrasekhar-Eddington controversy by analysing Eddington's arguments for rejecting relativistic degeneracy, the limiting mass of white dwarfs and singularities not just within the context of astrophysics, but also cosmology, general relativity and quantum mechanics and to provide some new explanations as to why Eddington opposed relativistic degeneracy.

  16. Compact stars in Eddington inspired gravity.

    PubMed

    Pani, Paolo; Cardoso, Vitor; Delsate, Térence

    2011-07-15

    A new, Eddington inspired theory of gravity was recently proposed by Bañados and Ferreira. It is equivalent to general relativity in vacuum, but differs from it inside matter. This viable, one-parameter theory was shown to avoid cosmological singularities and turns out to lead to many other exciting new features that we report here. First, for a positive coupling parameter, the field equations have a dramatic impact on the collapse of dust, and do not lead to singularities. We further find that the theory supports stable, compact pressureless stars made of perfect fluid, which provide interesting models of self-gravitating dark matter. Finally, we show that the mere existence of relativistic stars imposes a strong, near optimal constraint on the coupling parameter, which can even be improved by observations of the moment of inertia of the double pulsar. PMID:21838345

  17. BAL QSOs AND EXTREME UFOs: THE EDDINGTON CONNECTION

    SciTech Connect

    Zubovas, Kastytis; King, Andrew

    2013-05-20

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to {approx}10-50 times this in BAL QSOs. For UFOs this implies black hole accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-{sigma} relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.

  18. BAL QSOs and Extreme UFOs: The Eddington Connection

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; King, Andrew

    2013-05-01

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to ~10-50 times this in BAL QSOs. For UFOs this implies black hole accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-σ relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.

  19. Eddington limit for a gaseous stratus with finite optical depth

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2015-06-01

    The Eddington luminosity of a spherical source is usually defined for a uniformly extending normal plasma. We usually suppose that the gas can accrete to the central object at the sub-Eddington luminosity, while it would be blown off from the central luminous source in the super-Eddington case. We reconsider this central dogma of the Eddington limit under the radiative transfer effect for the purely scattering case, using analytical and numerical methods. For the translucent isolated gas cloud (stratus) with finite optical depth, the concept of the Eddington luminosity is drastically changed. In an heuristic way, we find that the critical condition is approximately expressed as Γ = (1 + μ* + τc)/2, where Γ (=L/LE) is the central luminosity L normalized by the Eddington luminosity LE, τc is the optical depth of the stratus, and μ* (=√{1-R_*^2/R^2}) is the direction cosine of the central object, R* being the radius of the central object, and R the distance from the central object. When the optical depth of the stratus is around unity, the classical Eddington limit roughly holds for the stratus; Γ ˜ 1. However, when the optical depth is greater than unity, the critical condition becomes roughly Γ ˜ τc/2, and the stratus would infall on to the central source even at the highly super-Eddington luminosity. When the optical depth is less than unity, on the other hand, the critical condition reduces to Γ ≳ (1 + μ*)/2, and the stratus could be blown off in some limited ranges, depending on μ*. This new concept of the Eddington limit for the isolated stratus could drastically change the accretion and outflow physics of highly inhomegeneous plasmas, with relevance for astrophysical jets and winds and supermassive black hole formation.

  20. Centenarian Einstein

    ScienceCinema

    None

    2011-04-25

    Commémoration de A.Einstein avec 4 orateurs pour honnorer sa mémoire: le prof.Weisskopf parlera de l'homme de science engagé, Daniel Amati du climat de la physique aux années 1920, Sergio Fubini de l'heure scientifique d'A.Einstein et le prof.Berob(?)

  1. Einsteins dream

    SciTech Connect

    Parker, B.

    1986-01-01

    This book discusses the following topics: the search for meaning; Einstein's dream; curved space; Einstein and warped space-time and extreme wraping; early unified field theories; star death; beyond the white dwarf; the early universe; the hadron, Lepton, and Radiation eras; the redshift controversy; other universes; the final fate of the universe; the missing mass; bounce; fate of the open universe; the world of particles and fields; Dirac's equation; Yukawa; gauge theory; quantum chromodynamics; supergravity and superstrings; twistors and heaven; and the new Einstein.

  2. Celebrating Einstein

    NASA Astrophysics Data System (ADS)

    Shapiro Key, Joey; Yunes, Nicolas

    2013-04-01

    The Gravity Group at Montana State University (MSU) hosted Celebrating Einstein, a free public arts and multimedia event celebrating Einstein and his ideas in Bozeman, Montana April 2-6, 2013. The products of our efforts are now available to any party interested in hosting a similar event. Celebrating Einstein is a truly interdisciplinary effort including art, film, dance, music, physics, history, and education. Events included a black hole immersive art installation, a series of public talks by physicists, and Einstein lessons in the public schools leading up to a live free public multimedia performance including a professional dance company, a live interview with a renowned physicist, and an original score composed for the MSU student symphony to be performed with an original film produced by the Science and Natural History film program at MSU. This project is funded by the Montana Space Grant Consortium, Montana State University, and the National Science Foundation.

  3. Einstein's Universe.

    ERIC Educational Resources Information Center

    Carlson, Eric; Wald, Robert

    1979-01-01

    Presents a guide to be used by students and teachers in conjunction with a television program about Einstein. Provides general information about special and general relativity, and the universe. Includes questions for discussion after each section and a bibliography. (MA)

  4. Black hole winds II: Hyper-Eddington winds and feedback

    NASA Astrophysics Data System (ADS)

    King, Andrew; Muldrew, Stuart I.

    2016-01-01

    We show that black holes supplied with mass at hyper-Eddington rates drive outflows with mildly sub-relativistic velocities. These are ˜0.1-0.2c for Eddington accretion factors {dot{m}_acc}˜ 10-100, and ˜1500 km s-1 for {dot{m}_acc}˜ 10^4. Winds like this are seen in the X-ray spectra of ultraluminous sources (ULXs), strongly supporting the view that ULXs are stellar-mass compact binaries in hyper-Eddington accretion states. SS433 appears to be an extreme ULX system ({dot{m}_acc}˜ 10^4) viewed from outside the main X-ray emission cone. For less-extreme Eddington factors {dot{m}_acc}˜ 10-100 the photospheric temperatures of the winds are ˜100 eV, consistent with the picture that the ultraluminous supersoft sources (ULSs) are ULXs seen outside the medium-energy X-ray beam, unifying the ULX/ULS populations and SS433 (actually a ULS but with photospheric emission too soft to detect). For supermassive black holes (SMBHs), feedback from hyper-Eddington accretion is significantly more powerful than the usual near-Eddington (`UFO') case, and if realized in nature would imply M - σ masses noticeably smaller than observed. We suggest that the likely warping of the accretion disc in such cases may lead to much of the disc mass being expelled, severely reducing the incidence of such strong feedback. We show that hyper-Eddington feedback from bright ULXs can have major effects on their host galaxies. This is likely to have important consequences for the formation and survival of small galaxies.

  5. Wormhole geometries in Eddington-Inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.; Sushkov, Sergey V.

    2015-10-01

    Eddington-inspired Born-Infeld (EiBI) gravity is a recently proposed modified theory of gravity, based on the classic work of Eddington and Born-Infeld nonlinear electrodynamics. In this paper, we consider the possibility that wormhole geometries are sustained in EiBI gravity. We present the gravitational field equations for an anisotropic stress-energy tensor and consider the generic conditions, for the auxiliary metric, at the wormhole throat. In addition to this, we obtain an exact solution for an asymptotically flat wormhole.

  6. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  7. Einstein Revisited

    ERIC Educational Resources Information Center

    Fine, Leonard

    2005-01-01

    A brief description on the work and life of the great physicist scientist Albert Einstein is presented. The photoelectric paper written by him in 1905 led him to the study of fluctuations in the energy density of radiation and from there to the incomplete nature of the equipartition theorem of classical mechanics, which failed to account for…

  8. BOOK REVIEW: Einsteins Kosmos. Untersuchungen zur Geschichte der Kosmologie Relativitatstheorie und zu Einsteins Wirken und Nachwirken

    NASA Astrophysics Data System (ADS)

    Sterken, C.; Duerbeck, H. W.; Dick, W. R.

    2006-12-01

    This book collects about 15 papers (most of them by one single author) on Einstein and the history of general relativity (GR) and the foundations of relativistic cosmology. The matter not only deals with Einstein and his times, but also with pre-GR ideas, and with the interplay of Einstein and his colleagues (opposing as well as supporting personalities). As the title indicates, all papers are written in German, but they include comprehensive Abstracts both in German and English. The book is illustrated with quite a number classical - but also some far more original though not less beautiful - photographs and facsimiles of documents. The book is edited very well, though the style of references is not quite homogeneous. There is no Index. K. Hentschel covers Einstein's argumentation for the existence of graviational redshift, and the initial search for empirical support. The error analysis of observational evidence supporting relativistic light deflection is discussed in a paper by P. Brosche. In particular, H. Duerbeck and P. Flin - in their description of the life and work of Silberstein, who was quite sceptic on the significance of the observational verifications a la Eddington - include the transcription of two most revealing letters by Silberstein to Sommerfeld (1919) and to Einstein (1934). In the first letter, Silberstein clearly shows his scientific maturity and integrity by scrutinising the observational evidence supporting light deflection, presented at a joint meeting of the Royal Society and the Royal Astronomical Society. The second letter, which is more a personal letter, includes lots of political references and connotations. Some of Einstein's political views are also revealed by D.B. Herrmann on the basis of his own correspondence with E.G. Straus, a collaborator of Einstein's. In a consequent paper, S. Grundmann gives remarks on Herrmann's contribution and illustrates Einstein's attitude towards Marx, Engels, Lenin and Stalin. M. Schemmel discusses

  9. Einstein's Mirror

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  10. Beyond Einstein

    SciTech Connect

    Professor Joel Primack

    2007-10-08

    The National Academy of Sciences was commissioned in 2006 to report on how to restart the Beyond Einstein program, which includes missions to understand dark energy, test general relativity, and observe gravity waves from merging supermassive black holes. This colloquium by one of the members of the recently released Academy study will explain the research strategy that the report proposes and its implications for continued U.S. participation in the exploration of the universe.

  11. Beyond Einstein

    NASA Astrophysics Data System (ADS)

    Hertz, P.

    2003-03-01

    The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.

  12. Understanding accretion beyond the Eddington limit: NGC 5204 X-1

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew

    2013-10-01

    It has been suggested that ULXs are in a new super-Eddington `ultraluminous' accretion state, and that they progress through a sequence of three spectral regimes with increasing accretion rate. However, our recent results (Sutton et al. 2013) indicate that inclination is also critical in determining the observed X-ray properties. These properties can broadly be explained by a massive radiatively-driven wind that emerges as the Eddington limit is exceeded, and forms a funnel around the black hole axis. Previous observations show NGC 5204 X-1 straddling the boundary between two ultraluminous regimes, marking it as a critical source in testing this scenario. Here we propose to obtain a further four 20 ks XMM-Newton EPIC observations, which will allow us to probe the validity of the proposed model.

  13. Hyper-Eddington accretion flows on to massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-07-01

    We study very high rate, spherically symmetric accretion flows on to massive black holes (BHs; 102 ≲ MBH ≲ 106 M⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105 cm-3) > (MBH/104 M⊙)-1(T∞/104 K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000 K. When the emergent luminosity is limited to ≲ LEdd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of Tvir ≳ 104K. Once a seed BH forms at the centre of the galaxy, it can grow to a maximum ˜105(Tvir/104 K) M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  14. Hyper-Eddington accretion flows onto massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-04-01

    We study very-high rate, spherically symmetric accretion flows onto massive black holes (BH; 10^2 ⪉ M_BH ⪉ 10^6~M_⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105~cm-3) > (MBH/104~M⊙)-1(T∞/104~K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000~LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000~K. When the emergent luminosity is limited to ⪉ L_Edd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of T_vir⪆ 10^4~K. Once a seed BH forms at the center of the galaxy, it can grow to a maximum ˜105~(Tvir/104~K)~M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  15. Eddington's Stellar Models and Early Twentieth Century Astrophysics

    NASA Astrophysics Data System (ADS)

    Eisberg, Joann

    1991-06-01

    Between 1916 and 1926, Arthur Stanley Eddington developed models of the temperature, pressure and density in the interior of stars. The models generated a relationship between stellar mass and luminosity that agreed well with observation. Coupled with the evolutionary theory that astronomers then thought governed stars, the models explained the distribution of stars upon the Hertzsprung-Russell diagram. This thesis argues that Eddington's models were shaped by the cosmological concerns that had preoccupied the British astronomical community in the preceding decade. British astronomers participated in a program of statistical cosmology, spearheaded by the Dutch astronomer, J. C. Kapteyn, to map the universe by studying the distribution of stars in neighborhoods successively more distant from the sun. The parameters of chief concern in this program were proper motion, which was used to measure stellar distance, and luminosity, considered the most important inherent characteristic of a star. In 1913 Henry Norris Russell published an empirical diagram of stellar luminosity and spectral type, on which he based a new theory of the evolution of stars from bright, red giants to bright, blue giants, to faint red dwarfs. British astronomers recognized the theory and diagram as fruits of the statistical program, and they rapidly accepted its parameters as the ones a stellar model should generate. Prompted by his interest in cepheid variable stars to construct a model of stars in radiative equilibrium, Eddington's first concern was to reproduce the features of Russell's diagram. Russell's evolutionary theory played so large a role in Eddington's work that when his own mass -luminosity relationship threatened to overturn it, he tailored his theory of stellar energy generation to preserve it.

  16. Active Galactic Nuclei flicker on a characteristic timescale of 105 years: implications for black hole growth and AGN feedback

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Koss, Michael; Sartori, Lia F.; Berney, Simon

    2016-01-01

    The total duration of quasar phases has been estimated to be on the order of 100 Myr to 1 Gyr. However, black hole accretion may not be a smooth process and a long-lasting growth phase may actually be composed of maby brief 105 year accretion bursts, interspersed by low-Eddington phases and even quiescence. I present an observational argument for the 105 year timescale, discuss its implications as well as current observational efforts to map out the entire AGN lifecycle.

  17. Super-Eddington radiation transfer in soft gamma repeaters

    NASA Astrophysics Data System (ADS)

    Ulmer, Andrew

    1994-12-01

    Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 1013 G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.

  18. Correlation between excitation index and Eddington ratio in radio galaxies

    NASA Astrophysics Data System (ADS)

    Hu, Jing-Fu; Cao, Xin-Wu; Chen, Liang; You, Bei

    2016-09-01

    We use a sample of 111 radio galaxies with redshift z < 0.3 to investigate their nuclear properties. The black hole masses of the sources in this sample are estimated with the velocity dispersion/luminosity of the galaxies, or the width of the broad-lines. We find that the excitation index, the relative intensity of low and high excitation lines, is correlated with the Eddington ratio for this sample. The size of the narrow-line region (NLR) was found to vary with ionizing luminosity as RNLR ∝ Lion0.25 (Liu et al. 2013). Using this empirical relation, we find that the correlation between the excitation index and the Eddington ratio can be reproduced by photoionization models. We adopt two sets of spectral energy distributions (SEDs), with or without a big blue bump in ultraviolet as the ionizing continuum, and infer that the modeled correlation between the excitation index and the Eddington ratio is insensitive to the applied SED. This means that the difference between high excitation galaxies and low excitation galaxies is not caused by the different accretion modes in these sources. Instead, it may be caused by the size of the NLR.

  19. Is Eddington-Born-Infeld theory really free of cosmological singularities?

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Chen, Che-Yu; Chen, Pisin

    2014-03-01

    The Eddington-inspired-Born-Infeld (EiBI) theory has recently been resurrected. Such a theory is characterized by being equivalent to Einstein theory in vacuum but differing from it in the presence of matter. One of the virtues of the theory is that it avoids the Big Bang singularity for a radiation-filled universe. In this paper, we analyze singularity avoidance in this kind of model. More precisely, we analyze the behavior of a homogeneous and isotropic universe filled with phantom energy in addition to the dark and baryonic matter. Unlike the Big Bang singularity that can be avoided in this kind of model through a bounce or a loitering effect on the physical metric, we find that the Big Rip singularity is unavoidable in the EiBI phantom model even though it can be postponed towards a slightly further future cosmic time as compared with the same singularity in other models based on the standard general relativity and with the same matter content as described above.

  20. Super-Eddington growth of the first black holes

    NASA Astrophysics Data System (ADS)

    Pezzulli, Edwige; Valiante, Rosa; Schneider, Raffaella

    2016-05-01

    The assembly of the first super massive black holes (SMBHs) at z ≳ 6 is still a subject of intense debate. If black holes (BHs) grow at their Eddington rate, they must start from ≳104 M⊙ seeds formed by the direct collapse of gas. Here, we explore the alternative scenario where ˜100 M⊙ BH remnants of the first stars grow at super-Eddington rate via radiatively inefficient slim accretion discs. We use an improved version of the cosmological, data-constrained semi-analytic model GAMETE/QSODUST, where we follow the evolution of nuclear BHs and gas cooling, disc and bulge formation of their host galaxies. Adopting SDSS J1148+5251 (J1148) at z = 6.4 as a prototype of luminous z ≳ 6 quasars, we find that ˜80 per cent of its SMBH mass is grown by super-Eddington accretion, which can be sustained down to z ˜ 10 in dense, gas-rich environments. The average BH mass at z ˜ 20 is MBH ≳ 104 M⊙, comparable to that of direct collapse BHs. At z = 6.4 the AGN-driven mass outflow rate is consistent with the observations and the BH-to-bulge mass ratio is compatible with the local scaling relation. However, the stellar mass in the central 2.5 kpc is closer to the value inferred from CO observations. Finally, ˜20 per cent of J1148 progenitors at z = 7.1 have BH luminosities and masses comparable to ULAS J1120+0641, suggesting that this quasar may be one of the progenitors of J1148.

  1. Spectral indices in Eddington-inspired Born-Infeld inflation

    NASA Astrophysics Data System (ADS)

    Cho, Inyong; Gong, Jinn-Ouk

    2015-09-01

    We investigate the scalar and tensor spectral indices of the quadratic inflation model in Eddington-inspired Born-Infeld (EiBI) gravity. We find that the EiBI corrections to the spectral indices are of second and first order in the slow-roll approximation for the scalar and tensor perturbations, respectively. This is very promising since the quadratic inflation model in general relativity provides a very nice fit for the spectral indices. Together with the suppression of the tensor-to-scalar ratio, EiBI inflation is agrees well with the observational data.

  2. FOREWORD: Modern Applications of Timescales Modern Applications of Timescales

    NASA Astrophysics Data System (ADS)

    Arias, E. F.; Lewandowski, W.

    2011-08-01

    The development of the first atomic frequency standard by Louis Essen in the 1950s is at the origin of the adoption of the atomic definition of the SI second by the 13th General Conference on Weights and Measures in 1967 and the consequent adoption of the atomic timescale. After the short reign of ephemeris time as the world's reference timescale from 1954 until 1967, Coordinated Universal Time (UTC), synchronized to universal time UT1, appeared as the best compromise for satisfying the requests of all users. At the moment of the discussion on the adoption of an atomic timescale to replace ephemeris time, the possibility of having both an astronomical time and an atomic time to serve different purposes was discussed. In the words of Essen [1], this 'would cause endless confusion as well as involving duplication of equipment'. Forty years after the adoption of the definition of Coordinated Universal Time at the International Telecommunication Union (ITU), we are close to the moment of making a decision on whether or not to decouple UTC from its tight link to the rotation of the Earth embodied in UT1. It has been a ten-year process of discussion, mainly at the ITU with the input of the International Astronomical Union, the BIPM, the Consultative Committee for Time and Frequency and other organizations. The majority opinion supported the change based on developers and users of systems that need time synchronization to a stable and continuous reference timescale; others insist on the necessity of keeping the leap-second strategy for serving some applications or just for tradition. It is our hope that, as happened in the seventies, the most appropriate definition to serve all modern applications will be adopted with the consensus of the different sectors. The redirection of international timekeeping from astronomy to metrology can be considered the benchmark that started the era of modern timescales, all based on atomic properties. The aim of this special issue of

  3. Super-Eddington Atmospheres That Do Not Blow Away

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2001-04-01

    We show that magnetized, radiation-dominated atmospheres can support steady state patterns of density inhomogeneity that enable them to radiate at far above the Eddington limit without suffering mass loss. The inhomogeneities consist of periodic shock fronts bounding narrow, high-density regions, interspersed with much broader regions of low density. The flow of radiation avoids the dense regions, which are therefore weighed down by gravity, while gas in the low-density regions is slammed upward into the shock fronts by radiation force. As the wave pattern moves through the atmosphere, each parcel of matter alternately experiences upward and downward forces, which balance on average. We calculate the density structure and phase speed of the wave pattern and relate these to the density contrast and the factor by which the net radiation flux exceeds the Eddington limit. The presence of a magnetic field is essential for the existence of these flows since magnetic tension shares the competing forces between regions of different densities, preventing the atmosphere from blowing apart. There appears to be a broad family of modes propagating in arbitrary directions with respect to the direction of the mean magnetic field and exhibiting a range of density contrasts. While the transition from low to high density occurs through a strong shock, the gas must pass through a slow magnetosonic critical point in order to return to the low-density state. The flux of radiation escaping from the atmosphere exceeds the Eddington limit by a factor of order the square root of the ratio between maximum and minimum density. In principle, this factor can be as large as the ratio of magnetic pressure to mean gas pressure. Although the magnetic pressure must be large compared to the mean gas pressure in order to support a large density contrast, it need not be large compared to the radiation pressure. These highly inhomogeneous flows could represent the nonlinear development of the ``photon

  4. Posing Einstein's Question: Questioning Einstein's Pose.

    ERIC Educational Resources Information Center

    Topper, David; Vincent, Dwight E.

    2000-01-01

    Discusses the events surrounding a famous picture of Albert Einstein in which he poses near a blackboard containing a tensor form of his 10 field equations for pure gravity with a question mark after it. Speculates as to the content of Einstein's lecture and the questions he might have had about the equation. (Contains over 30 references.) (WRM)

  5. Einstein as Evaluator?

    ERIC Educational Resources Information Center

    Caulley, Darrel N.

    1982-01-01

    Like any other person, Albert Einstein was an informal evaluator, engaged in placing value on various aspects of his life, work, and the world. Based on Einstein's own statements, this paper speculates about what Einstein would have been like as a connoisseur evaluator, a conceptual evaluator, or a responsive evaluator. (Author/BW)

  6. Eddington-Born-Infeld theory and the dark sector

    NASA Astrophysics Data System (ADS)

    Skordis, Constantinos

    2009-10-01

    I consider a unified description of the phenomena of dark matter and dark energy which is given by a simple modification of gravity. Gravity is modified with new degrees of freedom which come from a second connection, different from the usual Levi-Civita connection. A candidate action, the Eddington-Born-Infeld action (EBI) for these degrees of freedom was proposed by Bañados and is shown to be dual to a theory with two metrics called bi-gravity. This modification directly gives solutions to the field equations which mimic dark matter for spherically symmetric systems while for cosmological spacetimes it gives, in addition, the effect of dark energy. I shall further show that the effect of dark matter is present even at the linearized cosmological level and that this makes it in harmony with all known large scale cosmological observations.

  7. Accretion Timescales from Kepler AGN

    NASA Astrophysics Data System (ADS)

    Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.

    2015-01-01

    We constrain AGN accretion disk variability mechanisms using the optical light curves of AGN observed by Kepler. AGN optical fluxes are known to exhibit stochastic variations on timescales of hours, days, months and years. The excellent sampling properties of the original Kepler mission - high S/N ratio (105), short sampling interval (30 minutes), and long sampling duration (~ 3.5 years) - allow for a detailed examination of the differences between the variability processes present in various sub-types of AGN such as Type I and II Seyferts, QSOs, and Blazars. We model the flux data using the Auto-Regressive Moving Average (ARMA) representation from the field of time series analysis. We use the Kalman filter to determine optimal mode parameters and use the Akaike Information Criteria (AIC) to select the optimal model. We find that optical light curves from Kepler AGN cannot be fit by low order statistical models such as the popular AR(1) process or damped random walk. Kepler light curves exhibit complicated power spectra and are better modeled by higher order ARMA processes. We find that Kepler AGN typically exhibit power spectra that change from a bending power law (PSD ~ 1/fa) to a flat power spectrum on timescales in the range of ~ 5 - 100 days consistent with the orbital and thermal timescales of a typical 107 solar mass black hole.

  8. Solar Variability Magnitudes and Timescales

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  9. Einstein A to Z

    NASA Astrophysics Data System (ADS)

    Fox, Karen C.; Keck, Aries

    2004-07-01

    Einstein was the twentieth century's most celebrated scientist - a man who developed the theory of relativity, revolutionised physics and became an iconic genius in the popular imagination. Essays range from the reasonably scientific including the theory of relativity, to the odd and engaging, such as Einstein's brain, his favourite jokes and films. Einstein A to Z provides a vibrant overview of the man and his achievements.

  10. Neuromythology of Einstein's brain.

    PubMed

    Hines, Terence

    2014-07-01

    The idea that the brain of the great physicist Albert Einstein is different from "average" brains in both cellular structure and external shape is widespread. This belief is based on several studies examining Einstein's brain both histologically and morphologically. This paper reviews these studies and finds them wanting. Their results do not, in fact, provide support for the claim that the structure of Einstein's brain reflects his intellectual abilities. PMID:24836969

  11. Lorentzian wormholes in Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Shaikh, Rajibul

    2015-07-01

    We show that it is possible to construct a wide class of Lorentzian wormholes in Eddington-inspired Born-Infeld gravity with a stress energy which does not violate the weak or null energy condition. The wormholes exist in a certain region of the parameter space. In fact, it is shown that there is a critical value of a parameter defined in our work, below which we have wormholes. Above the critical value, we have a regular black hole spacetime. We put a restriction on the equation of state parameter α (pθ=α ρ ) to have wormholes. We also put a lower limit on both the theory parameter |κ | and the throat radius, to restrict the tidal acceleration (at the throat) below one Earth gravity. As a special case of our general solution, we retrieve the wormhole supported by an electric field for a charge-to-mass ratio greater than the critical value (Q/M) c≈1.144 .

  12. LOW-IONIZATION OUTFLOWS IN HIGH EDDINGTON RATIO QUASARS

    SciTech Connect

    Marziani, Paola; Sulentic, Jack W.; Plauchu-Frayn, Ilse; Del Olmo, Ascension

    2013-02-20

    The broad Mg II {lambda}2800 doublet has been frequently studied in connection with its potentially important role as a virial estimator of black hole mass in high-redshift quasars. An important task, therefore, is the identification of any line components that are likely related to broadening by non-virial motions. High signal-to-noise median composite spectra (binned in the {sup f}our-dimensional eigenvector 1'' context of Sulentic et al.) were constructed for the brightest 680 Sloan Digital Sky Survey Data Release 7 quasars in the 0.4 {<=} z {<=} 0.75 range where both Mg II {lambda}2800 and H{beta} are recorded in the same spectra. Composite spectra representing 90% of the quasars confirm previous findings that FWHM(Mg II {lambda}2800) is about 20% narrower than FWHM(H{beta}). The situation is clearly different for the most extreme (Population A) sources, which are the highest Eddington radiators in the sample. In the median spectra of these sources, FWHM Mg II {lambda}2800 is equal to or greater than FWHM(H{beta}) and shows a significant blueshift relative to H{beta}. We interpret the Mg II {lambda}2800 blueshift as the signature of a radiation-driven wind or outflow in the highest accreting quasars. In this interpretation, the Mg II {lambda}2800 line width-affected by blueshifted emission-is unsuitable for virial mass estimation in Almost-Equal-To 10% of quasars.

  13. Bending space–time: a commentary on Dyson, Eddington and Davidson (1920) ‘A determination of the deflection of light by the Sun's gravitational field’

    PubMed Central

    Longair, Malcolm

    2015-01-01

    The famous eclipse expedition of 1919 to Sobral, Brazil, and the island of Principe, in the Gulf of Guinea, led by Dyson, Eddington and Davidson was a turning point in the history of relativity, not only because of its importance as a test of Einstein's General Theory of Relativity, but also because of the intense public interest which was aroused by the success of the expedition. The dramatic sequence of events which occurred is reviewed, as well as the long-term impact of its success. The gravitational bending of electromagnetic waves by massive bodies is a subject of the greatest importance for contemporary and future astronomy, astrophysics and cosmology. Examples of the potential impact of this key tool of modern observational astronomy are presented. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750149

  14. Bending space-time: a commentary on Dyson, Eddington and Davidson (1920) 'A determination of the deflection of light by the Sun's gravitational field'.

    PubMed

    Longair, Malcolm

    2015-04-13

    The famous eclipse expedition of 1919 to Sobral, Brazil, and the island of Principe, in the Gulf of Guinea, led by Dyson, Eddington and Davidson was a turning point in the history of relativity, not only because of its importance as a test of Einstein's General Theory of Relativity, but also because of the intense public interest which was aroused by the success of the expedition. The dramatic sequence of events which occurred is reviewed, as well as the long-term impact of its success. The gravitational bending of electromagnetic waves by massive bodies is a subject of the greatest importance for contemporary and future astronomy, astrophysics and cosmology. Examples of the potential impact of this key tool of modern observational astronomy are presented. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750149

  15. Eddington-class flares and their distance from the central black hole in blazars

    NASA Astrophysics Data System (ADS)

    Georganopoulos, Markos; Rivas, David

    2014-08-01

    The distance from the central engine at which the bright gamma-ray flares of blazars take place is an open question with implications on our understanding of jet formation and collimation. In some cases, pair opacity arguments suggest that the detection of sub-TeV photons points to the emission taking place beyond the ~ 0.1 pc size broad line region. Here we show that for bright flares having beaming-corrected luminosity comparable to the Eddington luminosity (Eddington-class flares), strong deceleration due to Compton drag is expected if the flare takes place inside the 1-few pc molecular torus region. This is incompatible with the highly superluminal speeds these sources exhibit, requiring that Eddington-class flares take place beyond the molecular torus. We demonstrate this in the case of the MAGIC-detected source PKS 1222+21 (Aleksicet al. 2011), a source that exhibited Eddington-class flares in 2010 (Tanaka11).

  16. Decoding Intention at Sensorimotor Timescales

    PubMed Central

    Salvaris, Mathew; Haggard, Patrick

    2014-01-01

    The ability to decode an individual's intentions in real time has long been a ‘holy grail’ of research on human volition. For example, a reliable method could be used to improve scientific study of voluntary action by allowing external probe stimuli to be delivered at different moments during development of intention and action. Several Brain Computer Interface applications have used motor imagery of repetitive actions to achieve this goal. These systems are relatively successful, but only if the intention is sustained over a period of several seconds; much longer than the timescales identified in psychophysiological studies for normal preparation for voluntary action. We have used a combination of sensorimotor rhythms and motor imagery training to decode intentions in a single-trial cued-response paradigm similar to those used in human and non-human primate motor control research. Decoding accuracy of over 0.83 was achieved with twelve participants. With this approach, we could decode intentions to move the left or right hand at sub-second timescales, both for instructed choices instructed by an external stimulus and for free choices generated intentionally by the participant. The implications for volition are considered. PMID:24523855

  17. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Young Galaxies from SDSS

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine; Hainline, Kevin Nicholas; DiPompeo, Michael A.

    2016-04-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates, i.e. the Eddington ratio distribution, of active galactic nuclei (AGN). Specifically, it is matter of debate whether AGN follow a broad distribution in accretion rates, or if the distribution is more strongly peaked at characteristic Eddington ratios. Using a sample of galaxies from SDSS DR7, we test whether an intrinsic Eddington ratio distribution that takes the form of a broad Schechter function is in fact consistent with previous work that suggests instead that young galaxies in optical surveys have a more strongly peaked lognormal Eddington ratio distribution. Furthermore, we present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that the intrinsic Eddington ratio distribution of optically selected AGN is consistent with a power law with an exponential cutoff, as is observed in the X-rays. This work was supported in part by a NASA Jenkins Fellowship.

  18. Albert Einstein: The Violinist

    NASA Astrophysics Data System (ADS)

    White, Peregrine

    2005-05-01

    To the press of his time Albert Einstein was two parts renowned scientist, one jigger pacifist and Zionist fundraiser, and a dash amateur musician. These proportions persisted during 1979, the 100th anniversary of his birth, as writers in all media jostled each other as they recounted his achievements. Relativity tended to hog the show. Relatively little space was given to Einstein the musician.

  19. Einstein for Everyone

    ScienceCinema

    Piccioni, Robert

    2014-06-25

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  20. Einstein for Everyone

    SciTech Connect

    Piccioni, Robert

    2010-10-05

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  1. Einstein Up in Smoke

    NASA Astrophysics Data System (ADS)

    Lisle, John

    2016-01-01

    Albert Einstein's biographers have not explained why he developed the abdominal aortic aneurysm that led to his death. Early conjectures proposed that it was caused by syphilis, without accurate evidence. The present article gives evidence to the contrary, and argues that the principal cause of Einstein's death was smoking.

  2. When Art Meets Einstein

    ERIC Educational Resources Information Center

    Science Scope, 2006

    2006-01-01

    This article deals with a pale blue sculpture entitled "A New World View", as an homage to the most famous scientist in modern history, Albert Einstein. It has 32 bas-relief squares composed of glass and steel that represent one aspect of the life and legacy of Albert Einstein. Images of children's faces peer out from behind the glass squares,…

  3. Einstein and Ehrenfest

    NASA Astrophysics Data System (ADS)

    Klein, Martin J.

    2005-03-01

    After Paul Ehrenfest's untimely death, Albert Einstein wrote about their first meeting more than twenty years earlier. ``Within a few hours we were true friends as though our dreams and aspirations were meant for each other.'' In fact, this warm friendship with a fellow theoretical physicist of his own age was unique in Einstein's life. I shall try to characterize it in this talk.

  4. Solar activity over different timescales

    NASA Astrophysics Data System (ADS)

    Obridko, Vladimir; Nagovitsyn, Yuri

    The report deals with the “General History of the Sun” (multi-scale description of the long-term behavior of solar activity): the possibility of reconstruction. Time scales: • 100-150 years - the Solar Service. • 400 - instrumental observations. • 1000-2000 years - indirect data (polar auroras, sunspots seen with the naked eye). • Over-millennial scale (Holocene) -14С (10Be) Overview and comparison of data sets. General approaches to the problem of reconstruction of solar activity indices on a large timescale. North-South asymmetry of the sunspot formation activity. 200-year cycle over the “evolution timescales”.The relative contribution of the large-scale and low-latitude. components of the solar magnetic field to the general geomagnetic activity. “Large-scale” and low-latitude sources of geomagnetic disturbances.

  5. Genomic clocks and evolutionary timescales

    NASA Technical Reports Server (NTRS)

    Blair Hedges, S.; Kumar, Sudhir

    2003-01-01

    For decades, molecular clocks have helped to illuminate the evolutionary timescale of life, but now genomic data pose a challenge for time estimation methods. It is unclear how to integrate data from many genes, each potentially evolving under a different model of substitution and at a different rate. Current methods can be grouped by the way the data are handled (genes considered separately or combined into a 'supergene') and the way gene-specific rate models are applied (global versus local clock). There are advantages and disadvantages to each of these approaches, and the optimal method has not yet emerged. Fortunately, time estimates inferred using many genes or proteins have greater precision and appear to be robust to different approaches.

  6. Swift J1644+57: an ideal test bed of radiation mechanisms in a relativistic super-Eddington jet

    NASA Astrophysics Data System (ADS)

    Crumley, P.; Lu, W.; Santana, R.; Hernández, R. A.; Kumar, P.; Markoff, S.

    2016-07-01

    Within the first 10 d after Swift discovered the jetted tidal disruption event (TDE) Sw J1644+57, simultaneous observations in the radio, near-infrared, optical, X-ray, and γ-ray bands were carried out. These multiwavelength data provide a unique opportunity to constrain the emission mechanism and make-up of a relativistic super-Eddington jet. We consider an exhaustive variety of radiation mechanisms for the generation of X-rays in this TDE, and rule out many processes such as synchrotron self-Compton, photospheric and proton synchrotron. The infrared-to-γ-ray data for Sw J1644+57 are consistent with synchrotron and external-inverse-Compton (EIC) processes provided that electrons in the jet are continuously accelerated on a time-scale shorter than ˜1 per cent of the dynamical time to maintain a power-law distribution. The requirement of continuous electron acceleration points to magnetic reconnection in a Poynting flux-dominated jet. The EIC process may require fine tuning to explain the observed temporal decay of the X-ray light curve, whereas the synchrotron process in a magnetic jet needs no fine tuning for this TDE.

  7. Relaxation and self-diffusion of supercooled liquids derived from picosecond timescale dynamics

    NASA Astrophysics Data System (ADS)

    Cicerone, Marcus; Zhi, Miaochan; Blakely, Brandon; Tyagi, Madhusudan

    We use neutron scattering and nonlinear optical measurements to investigate ps-ns timescale dynamics in liquid, supercooled liquid, and glassy states. The experimental observables show evidence of dynamic heterogeneity on this timescale that supports a facilitated dynamics picture. We obtain a direct measure of the concentration of molecular excitations, or mobile regions, as a function of time and temperature. Using a model broadly consistent with that proposed by Chandler and co-workers, we are able to quantitatively predict self-diffusion rates and Stokes Einstein violation deep in the supercooled regime directly from ps timescale and Angstrom - nanometer length scale measurements for all systems we have investigated. The model we employ also provides a clear physical mechanism for the Johari-Goldstein relaxation process

  8. Einstein and Planck

    NASA Astrophysics Data System (ADS)

    Heilbron, John

    2005-03-01

    As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .

  9. Rheology and timescales of welding

    NASA Astrophysics Data System (ADS)

    Quane, S.; Russell, J. K.

    2004-12-01

    required for strain accumulation (reduced φ ) during welding of natural pyroclastic deposits. We show that the timescales of welding for even moderate emplacement temperatures, relative to glass transition temperatures, can be very short (i.e., days) and within an order of magnitude of the timescales of deposition or assembly of large ignimbrite sheets.

  10. Einstein and Millikan

    NASA Astrophysics Data System (ADS)

    Erwin, Charlotte

    2005-03-01

    Albert Einstein traveled to America by boat during the great depression to consult with scientists at the California Institute of Technology. He was a theoretical physicist, a Nobel Prize winner, and a 20th century folk hero. Few members of the general public understood his theories, but they idolized him all the same. The invitation came from physicist Robert Millikan, who had initiated a visiting-scholars program at Caltech shortly after he became head of the school in 1921. Einstein's visits to the campus in 1931, 1932, and 1933 capped Millikan's campaign to make Caltech one of the physics capitals of the world. Mount Wilson astronomer Edwin Hubble's discovery that redshifts are proportional to their distances from the observer challenged Einstein's cosmological picture of a static universe. The big question at Caltech in 1931 was whether Einstein would give up his cosmological constant and accept the idea of an expanding universe. By day, Einstein discussed his theory and its interpretation at length with Richard Tolman, Hubble, and the other scientists on the campus. By night, Einstein filled his travel diary with his personal impressions. During his third visit, Einstein sidestepped as long as possible the question of whether conditions in Germany might prevent his return there. After the January 30 announcement that Hitler had become chancellor of Germany, the question could no longer be evaded. He postponed his return trip for a few weeks and then went to Belgium for several months instead of to Berlin. In the fall of 1933, Albert Einstein returned to the United States as an emigre and became a charter member of Abraham Flexner's new Institute for Advanced Study in Princeton, New Jersey. Why did Einstein go to Princeton and not Pasadena?

  11. Einstein and 1905

    NASA Astrophysics Data System (ADS)

    Rigden, John

    2005-05-01

    From March 17 to September 29, 1905, just over six months, Einstein wrote five papers that shifted the tectonic foundations of physics and changed the face of Nature. Three of these papers, the March paper presenting the particle of light, the May paper on Brownian motion, and the June paper on the Special Theory of Relativity are universally recognized as fundamental; however, the Brownian motion paper cannot be divorced from Einstein's April paper, A New Determination of the Dimensions of Molecules, and the September paper that gave the world its most famous equation, E = mc^2, cannot be separated from the June paper. These five papers reveal characteristics of Einstein's approach to physics.

  12. Einstein: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Kormos-Buchwald, Diana

    2015-04-01

    In late 1915, Albert Einstein (1879-1955) completed as series of papers on a generalized theory of gravitation that were to constitute a major conceptual change in the history of modern physics and the crowning achievement of his scientific career. But this accomplishment came after a decade of intense intellectual struggle and was received with muted enthusiasm. Einstein's previously unpublished writings and massive correspondence, edited by the Einstein Papers Project, provide vivid insights into the historical, personal, and scientific context of the formulation, completion, and reception of GR during the first decades of the 20th century.

  13. The ultraluminous state refined: spectral and temporal characteristics of super-Eddington accretion

    NASA Astrophysics Data System (ADS)

    Roberts, T.; Middleton, M.; Sutton, A.; Heil, L.; Walton, D.

    2014-07-01

    Recent evidence - in particular the hard X-ray spectra obtained by NuSTAR - reveals that ultraluminous X-ray source (ULX) behaviour is inconsistent with known sub-Eddington accretion modes, as would be expected for an intermediate-mass black hole. Instead, it appears that the majority of ULXs are powered by super-Eddington accretion onto stellar-mass black holes. The key question for ULXs then becomes: how does this super-Eddington accretion work? Here we present new results from ULX spectral and timing studies that delve deeper into their underlying physical mechanisms. We firstly show that the spectral and temporal characteristics of ULXs appear intrinsically interwoven, with high levels of variability apparent when the spectra are dominated by a soft component. It has been suggested that this component represents the emission from an optically-thick wind driven radiatively from the ULX; we examine evidence that may corroborate this model. Finally, we present a revised picture of super-Eddington processes in which we also consider how both mass accretion rate variability propagating through a super-Eddington disc, and scattering within the wind, might affect the X-ray characteristics as a function of accretion rate and of viewing angle. We show that its predictions are qualitatively similar to the observed behaviour of ULXs.

  14. A NUMERICAL METHOD FOR STUDYING SUPER-EDDINGTON MASS TRANSFER IN DOUBLE WHITE DWARF BINARIES

    SciTech Connect

    Marcello, Dominic C.; Tohline, Joel E. E-mail: tohline@phys.lsu.edu

    2012-04-01

    We present a numerical method for the study of double white dwarf (DWD) binary systems at the onset of super-Eddington mass transfer. We incorporate the physics of ideal inviscid hydrodynamical flow, Newtonian self-gravity, and radiation transport on a three-dimensional uniformly rotating cylindrical Eulerian grid. Care has been taken to conserve the key physical quantities such as angular momentum and energy. Our new method conserves total energy to a higher degree of accuracy than other codes that are presently being used to model mass transfer in DWD systems. We present the results of verification tests and simulate the first 20 + orbits of a binary system of mass ratio q 0.7 at the onset of dynamically unstable direct impact mass transfer. The mass transfer rate quickly exceeds the critical Eddington limit by many orders of magnitude, and thus we are unable to model a trans-Eddington phase. It appears that radiation pressure does not significantly affect the accretion flow in the highly super-Eddington regime. An optically thick common envelope forms around the binary within a few orbits. Although this envelope quickly exceeds the spatial domain of the computational grid, the fraction of the common envelope that exceeds zero gravitational binding energy is extremely small, suggesting that radiation-driven mass loss is insignificant in this regime. It remains to be seen whether simulations that capture the trans-Eddington phase of such flows will lead to the same conclusion or show that substantial material gets expelled.

  15. Einstein in Wyoming.

    ERIC Educational Resources Information Center

    Elliot, Ian

    1996-01-01

    Describes "Einstein's Adventurarium," a science center housed in an empty shopping mall in Gillette, Wyoming, created through school, business, and city-county government partnership. Describes how interactive exhibits allow exploration of life sciences, physics, and paleontology. (KDFB)

  16. Einstein equation at singularities

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu-Cristinel

    2014-02-01

    Einstein's equation is rewritten in an equivalent form, which remains valid at the singularities in some major cases. These cases include the Schwarzschild singularity, the Friedmann-Lemaître-Robertson-Walker Big Bang singularity, isotropic singularities, and a class of warped product singularities. This equation is constructed in terms of the Ricci part of the Riemann curvature (as the Kulkarni-Nomizu product between Einstein's equation and the metric tensor).

  17. Einstein studies in Russia

    NASA Astrophysics Data System (ADS)

    Balashov, Yuri; Vizgin, Vladimir

    This volume presents a selection of the best contributions by Russian scholars - historians and philosophers of science - to the Einstein Studies industry, broadly construed. Many of the papers were first published in Russian, in the Einshteinovskiy Sbornik series (Einstein Studies) initiated by I. Tamm in 1966. This book explores the historical and foundational issues in general relativity and relativistic cosmology, Einstein's contributions to quantum theory of radiation, and the rise of Dirac's quantum electrodynamics. It also includes a detailed description of the physics colloquium Einstein established and coordinated in 1912- 1914 in Zürich. The contributors draw extensively on documentation previously unavailable to most scholars. Materials from various Russian archives shed new light on the famous exchange (regarding the first evolutionary cosmological models) between Einstein and Alexander Friedmann in the early 1920's and on the role of Boris Podolsky and Vladimir Fock in the emergence of quantum electrodynamics. The little-known correspondence between Einstein and a famous German pilot Paul Erhardt suggests that during World War I, the former was involved with aero- and hydrodynamics research and ways of improving airplane design. Other articles introduce new approaches to important foundational questions in general relativity and cosmology. Historians, philosophers, and sociologists of science will find much new and unexpected material in this engaging volume presenting the best of recent Russian scholarship in the field. The book is also very accessible to the general reader.

  18. 2010 Einstein Fellows Chosen

    NASA Astrophysics Data System (ADS)

    2010-02-01

    NASA has announced the selection of the 2010 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2010. The new Einstein Fellows and their host institutions are listed below: * Simona Giacintucci (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Boaz Katz (Institute for Advanced Studies, Princeton, N.J.) * Matthew Kerr (Stanford University, Palo Alto, Calif.) * Matthew Kistler (California Institute of Technology, Pasadena) * Emily Levesque (University of Colorado, Boulder) * Xin Liu (Harvard, Cambridge, Mass.) * Tony Mroczkowski (University of Pennsylvania, Philadelphia) * Ryan O'Leary (University of California at Berkeley) * Dov Poznanski (Lawrence Berkeley National Laboratory. Berkeley, Calif.) * Nicolas Yunes (Massachusetts Institute of Technology, Cambridge, Mass.) The Einstein Fellowships are administered for NASA by the Chandra X-ray Center in Cambridge, Mass. Along with the Hubble and Sagan Fellowships, the Einstein Fellowships are made possible by the Astrophysics Division within NASA's Science Mission Directorate. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/CfPfellow.2009.html

  19. Super-Eddington mechanical power of an accreting black hole in M83.

    PubMed

    Soria, R; Long, K S; Blair, W P; Godfrey, L; Kuntz, K D; Lenc, E; Stockdale, C; Winkler, P F

    2014-03-21

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(40) erg second(-1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment. PMID:24578533

  20. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    NASA Technical Reports Server (NTRS)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  1. Conversations With Albert Einstein. II

    ERIC Educational Resources Information Center

    Shankland, R. S.

    1973-01-01

    Discusses Einstein's views on the role of Michelson-Morley, Fizeau, and Miller experiments in the development of relativity and his attitude toward the theories of new quantum mechanics. Indicates that Einstein's opposition to quantum mechanics is beyond dispute. (CC)

  2. Probing the hard and intermediate states of X-ray binaries using short time-scale variability

    NASA Astrophysics Data System (ADS)

    Skipper, Chris J.; McHardy, Ian M.

    2016-05-01

    Below an accretion rate of approximately a few per cent of the Eddington accretion rate, X-ray binary systems are not usually found in the soft spectral state. However, at accretion rates a factor of a few lower still, in the hard state, there is another spectral transition which is well observed but not well understood. Below {˜ }0.5-1 per cent of the Eddington accretion rate (dot{m}_crit), the spectral index hardens with increasing accretion rate, but above dot{m}_crit, although still in the hard state, the spectral index softens with increasing accretion rate. Here we use a combination of X-ray spectral fitting and a study of short time-scale spectral variability to examine the behaviour of three well-known X-ray binaries: Cygnus X-1, GX 339-4 and XTE J1118+480. In Cygnus X-1 we find separate hard and soft continuum components, and show using root mean square (rms) spectra that the soft component dominates the variability. The spectral transition at dot{m}_crit is clearly present in the hard-state hardness-intensity diagrams of Cygnus X-1. Above dot{m}_crit, GX 339-4 shows similar softer-when-brighter behaviour at both long and short time-scales. Similarly, XTE J1118+480, which remains well below dot{m}_crit, has harder-when-brighter behaviour on all time-scales. We interpret these results in terms of two continuum components: a hard power law which dominates the spectra when the accretion rate is low, probably arising from Comptonization of cyclo-synchrotron photons from the corona, and a soft power law which dominates at higher accretion rates, arising from Comptonization of seed photons from the accretion disc.

  3. BOOK REVIEW: Einstein's Jury: The Race to Test Relativity

    NASA Astrophysics Data System (ADS)

    Ehlers, Jürgen

    2007-10-01

    'I know very well that my theory rests on a shaky foundation. What attracts me to it is that it leads to consequences that seem to be accessible to experiment, and it provides a starting point for the theoretical understanding of gravitation', wrote Einstein in 1911. Einstein's Jury by Jeffrey Crelinsten—well documented, well written, and fascinating to read—describes how, from 1909 on, Einstein's two theories of relativity became known to astronomers, and how the predictions made between 1907 and 1915 were received as challenges to observers. The author gives a non-technical account of the efforts made until 1930 to test these predictions; he focuses on two of the three classical tests, namely gravitational redshift and bending of light; the 'jury' consists mainly of American observers—Adams, Campbell, Curtis, Hale, Perrin, St John, Trumpler and others—working with newly built large telescopes, and the Britons Eddington and Evershed. The major steps which, after a long struggle, convinced the majority of astronomers that Einstein was right, are narrated chronologically in rather great detail, especially the work at Lick Observatory, before and after the famous British observation of 1919, on solar eclipses, and the work at Mount Wilson and the Indian Kodaikanal Observatories to extract the gravitational redshift from the complicated spectrum of the sun. The account of the eclipse work which was carried out between 1918 and 1923 by Lick astronomers corrects the impression suggested by many historical accounts that the British expedition alone settled the light-bending question. Apart from these main topics, the anomalous perihelion advance of Mercury and the ether problem are covered. By concentrating on astronomy rather than on physics this book complements the rich but repetitive literature on Einstein and relativity which appeared in connection with the commemoration of Einstein's annus mirabilis, 2005. The well told stories include curiosities such as

  4. The Einstein Toolkit

    NASA Astrophysics Data System (ADS)

    Löffler, Frank

    2012-03-01

    The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Its aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of petascale computers and advanced cyberinfrastructure. The Einstein Toolkit currently consists of an open set of over 100 modules for the Cactus framework, primarily for computational relativity along with associated tools for simulation management and visualization. The toolkit includes solvers for vacuum spacetimes as well as relativistic magneto-hydrodynamics, along with modules for initial data, analysis and computational infrastructure. These modules have been developed and improved over many years by many different researchers. The Einstein Toolkit is supported by a distributed model, combining core support of software, tools, and documentation in its own repositories and through partnerships with other developers who contribute open software and coordinate together on development. As of January 2012 it has 68 registered members from 30 research groups world-wide. This talk will present the current capabilities of the Einstein Toolkit and will point to information how to leverage it for future research.

  5. 2011 Einstein Fellows Chosen

    NASA Astrophysics Data System (ADS)

    2011-03-01

    ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/

  6. Einstein and Friedman

    NASA Astrophysics Data System (ADS)

    Frenkel, Viktor

    The focus of the present article is Friedman's 1922 letter to Einstein accompanied by additional evidence throwing light on their debate, and the great roles played by Yuri Krutkov and Paul Ehrenfest, both of whom Einstein knew very well (see Frenkel 1970). The debate began soon after the appearance of Friedman's first article showing the possibility of a nonstationary solution of the cosmological problem (thus laying the foundation for the theory of an expanding universe). Einstein replied to Friedman with a note in which, as aptly observed by Fock, "he said, somewhat condescendingly, that Friedman's results seemed suspicious to him, and that he had found a mistake in them which, when corrected, reduced Friedman's solution to a stationary one" (Friedman 1966). Great people's delusions are always instructive, especially when dealing with fundamental problems. The honesty of great men can also be exemplary: the debate came to an end after the publication of Einstein's second note, in which he stressed the importance of Friedman's work.

  7. From Newton to Einstein.

    ERIC Educational Resources Information Center

    Ryder, L. H.

    1987-01-01

    Discusses the history of scientific thought in terms of the theories of inertia and absolute space, relativity and gravitation. Describes how Sir Isaac Newton used the work of earlier scholars in his theories and how Albert Einstein used Newton's theories in his. (CW)

  8. Examining the Enigmatic Einstein

    ERIC Educational Resources Information Center

    Khoon, Koh Aik

    2007-01-01

    Albert Einstein is the icon of scientific genius. His is one the most recognizable faces in the history of mankind. This paper takes a cursory look at the man who is commonly perceived to be the epitome of eccentricity. We manage to sum up his salient traits which are associated with his name. The traits are based on anecdotal evidence. This…

  9. Einstein in My Hometown

    NASA Astrophysics Data System (ADS)

    Mamola, Karl

    2005-12-01

    During the 22 years Albert Einstein lived and worked in the United States, he frequently took long summer vacations. Generally he chose quiet, out-of-the-way vacation spots, and because of his love of sailing, places close to bodies of water. Among other locations, he vacationed at Saranac Lake in upstate New York, the Rhode Island coast, and, during the summers of 1937-39, at Nassau Point on the North Fork of Long Island. Nassau Point is a part of the small town of Cutchogue and is located on Peconic Bay, about 90 miles from New York City. It was an ideal spot for Einstein both because it was off the beaten path and because of the outstanding sailing conditions on Peconic Bay. Einstein rented a cabin just a stone's throw from the bay. I myself have a special interest in Cutchogue because it's the place where I was born and where I spent the first few years of my life. Unfortunately, I came along five or six years too late to have actually seen Einstein there, but he did have encounters with some of my older friends and relatives.

  10. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Star-forming Galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine S.; Hainline, Kevin N.; DiPompeo, Michael A.; Goulding, Andy D.

    2016-07-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGNs). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test whether or not an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work suggesting that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGNs using a broad, instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observed galaxies via their positions on an emission line excitation diagram and Eddington ratio distributions. We present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that for optically selected AGNs in young galaxies, the intrinsic Eddington ratio distribution is consistent with a possibly universal, broad power law with an exponential cutoff, as this distribution is observed in old, optically selected galaxies and X-rays.

  11. Millisecond Timescale Synchrony among Hippocampal Neurons

    PubMed Central

    Amarasingham, Asohan; Mizuseki, Kenji; Buzsáki, György

    2014-01-01

    Inhibitory neurons in cortical circuits play critical roles in composing spike timing and oscillatory patterns in neuronal activity. These roles in turn require coherent activation of interneurons at different timescales. To investigate how the local circuitry provides for these activities, we applied resampled cross-correlation analyses to large-scale recordings of neuronal populations in the cornu ammonis 1 (CA1) and CA3 regions of the hippocampus of freely moving rats. Significant counts in the cross-correlation of cell pairs, relative to jittered surrogate spike-trains, allowed us to identify the effective couplings between neurons in CA1 and CA3 hippocampal regions on the timescale of milliseconds. In addition to putative excitatory and inhibitory monosynaptic connections, we uncovered prominent millisecond timescale synchrony between cell pairs, observed as peaks in the central 0 ms bin of cross-correlograms. This millisecond timescale synchrony appeared to be independent of network state, excitatory input, and γ oscillations. Moreover, it was frequently observed between cells of differing putative interneuronal type, arguing against gap junctions as the sole underlying source. Our observations corroborate recent in vitro findings suggesting that inhibition alone is sufficient to synchronize interneurons at such fast timescales. Moreover, we show that this synchronous spiking may cause stronger inhibition and rebound spiking in target neurons, pointing toward a potential function for millisecond synchrony of interneurons in shaping and affecting timing in pyramidal populations within and downstream from the circuit. PMID:25378164

  12. Tunneling Effect and Hawking Radiation from a Gibbon Maeda Black Hole by Using Eddington Finkelstein Coordinates

    NASA Astrophysics Data System (ADS)

    Ren, Jun; Zhao, Zheng

    2007-12-01

    In this paper, by using well-known Eddington Finkelstein coordinates instead of Painlevè coordinates, we study the tunneling effect of black holes. As examples of special static black holes, we calculate the tunneling rates of Gibbon Maeda black holes. The result obtained by adopting Eddington Finkelstein coordinates is in agreement with the Parikh’s standard result, Γ˜exp (-2Im S), which adopts the Painlevè coordinates. In addition, we discuss carefully the condition that the coordinates system in which we study the tunneling process should satisfy. In our opinion, the terms of the tunneling effect are not as strict as ones in Parikh’s paper and could be softened properly.

  13. Eddington-Born-Infeld gravity and the large scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Bañados, M.; Ferreira, P. G.; Skordis, C.

    2009-03-01

    It has been argued that a Universe governed by Eddington-Born-Infeld gravity can be compatible with current cosmological constraints. The extra fields introduced in this theory can behave as both dark matter and dark energy, unifying the dark sector in one coherent framework. We show the various roles the extra fields can play in the expansion of the Universe and study the evolution of linear perturbations in the various regimes. We find that, as a unified theory of the dark sector, Eddington-Born-Infeld gravity will lead to excessive fluctuations in the cosmic microwave background on large scales. In the presence of a cosmological constant, however, the extra fields can behave as a form of nonparticulate dark matter and can lead to a cosmology which is entirely compatible with current observations of large scale structure. We discuss the interpretation of this form of dark matter and how it can differ from standard, particulate dark matter.

  14. Einstein's Real "biggest Blunder"

    NASA Astrophysics Data System (ADS)

    Ellis, Homer G.

    2012-10-01

    Albert Einstein's real "biggest blunder" was not the 1917 introduction into his gravitational field equations of a cosmological constant term Λ, rather was his failure in 1916 to distinguish between the entirely different concepts of active gravitational mass and passive gravitational mass. Had he made the distinction, and followed David Hilbert's lead in deriving field equations from a variational principle, he might have discovered a true (not a cut and paste) Einstein-Rosen bridge and a cosmological model that would have allowed him to predict, long before such phenomena were imagined by others, inflation, a big bounce (not a big bang), an accelerating expansion of the universe, dark matter, and the existence of cosmic voids, walls, filaments and nodes.

  15. Comte, Mach, Planck, and Eddington: a study of influence across generations

    NASA Astrophysics Data System (ADS)

    Batten, Alan H.

    2016-04-01

    Auguste Comte is frequently ridiculed by astronomers for saying that human beings would never be able to know the physical nature and constitution of the stars. His philosophy, however, influenced scientists throughout his lifetime and for over a century after his death. That influence is traced here in the work of three outstanding scientists who spanned, roughly speaking, three successive generations after his own, namely, Ernst Mach, Max Planck and Arthur Stanley Eddington.

  16. Super-Eddington stellar winds driven by near-surface energy deposition

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel; Klion, Hannah; Paxton, Bill

    2016-05-01

    We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g. unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in the giant eruptions of luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem v_crit˜ (dot{E} G)^{1/5} (where dot{E} is the heating rate) to the stellar escape speed near the heating region vesc(rh). For vcrit ≳ vesc(rh), the wind kinetic power at large radii dot{E}_w ˜ dot{E}. For vcrit ≲ vesc(rh), most of the energy is used to unbind the wind material and thus dot{E}_w ≲ dot{E}. Multidimensional hydrodynamic simulations without radiation diffusion using FLASH and one-dimensional hydrodynamic simulations with radiation diffusion using MESA are in good agreement with the analytic predictions. The photon luminosity from the wind is itself super-Eddington but in many cases the photon luminosity is likely dominated by `internal shocks' in the wind. We discuss the application of our models to eruptive mass-loss from massive stars and argue that the wind models described here can account for the broad properties of LBV outflows and the enhanced mass-loss in the years prior to Type IIn core-collapse supernovae.

  17. A SUPER-EDDINGTON WIND SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Ma, Xin; Chen, Xuefei; Chen, Hai-liang; Han, Zhanwen; Denissenkov, Pavel A. E-mail: cxf@ynao.ac.cn

    2013-12-01

    The accretion of hydrogen-rich material on to carbon-oxygen white dwarfs (CO WDs) is crucial for understanding Type Ia supernova (SN Ia) from the single-degenerate model, but this process has not been well understood due to the numerical difficulties in treating H and He flashes during the accretion. For CO WD masses from 0.5 to 1.378 M {sub ☉} and accretion rates in the range from 10{sup –8} to 10{sup –5} M {sub ☉} yr{sup –1}, we simulated the accretion of solar-composition material on to CO WDs using the state-of-the-art stellar evolution code of MESA. For comparison with steady-state models, we first ignored the contribution from nuclear burning to the luminosity when determining the Eddington accretion rate, and found that the properties of H burning in our accreting CO WD models are similar to those from the steady-state models, except that the critical accretion rates at which the WDs turn into red giants or H-shell flashes occur on their surfaces are slightly higher than those from the steady-state models. However, the super-Eddington wind is triggered at much lower accretion rates than previously thought, when the contribution of nuclear burning to the total luminosity is included. This super-Eddington wind naturally prevents the CO WDs with high accretion rates from becoming red giants, thus presenting an alternative to the optically thick wind proposed by Hachisu et al. Furthermore, the super-Eddington wind works in low-metallicity environments, which may explain SNe Ia observed at high redshifts.

  18. Bose-Einstein Condensation

    SciTech Connect

    El-Sherbini, Th.M.

    2005-03-17

    This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.

  19. Mid-infrared-selected quasars. I. Virial black hole mass and eddington ratios

    SciTech Connect

    Dai, Y. Sophia; Elvis, Martin; Fazio, Giovanni G.; Huang, Jia-Sheng; Wilkes, Belinda J.; Bergeron, Jacqueline; Omont, Alain; Willmer, Christopher N. A.; Papovich, Casey

    2014-08-20

    We provide a catalog of 391 mid-infrared-selected (MIR; 24 μm) broad-emission-line (BEL; type 1) quasars in the 22 deg{sup 2} SWIRE Lockman Hole field. This quasar sample is selected in the MIR from Spitzer MIPS with S {sub 24} > 400 μJy, jointly with an optical magnitude limit of r (AB) < 22.5 for broad line identification. The catalog is based on MMT and Sloan Digital Sky Survey (SDSS) spectroscopy to select BEL quasars, extending the SDSS coverage to fainter magnitudes and lower redshifts, and recovers a more complete quasar population. The MIR-selected quasar sample peaks at z ∼ 1.4 and recovers a significant and constant (20%) fraction of extended objects with SDSS photometry across magnitudes, which were not included in the SDSS quasar survey dominated by point sources. This sample also recovers a significant population of z < 3 quasars at i > 19.1. We then investigate the continuum luminosity and line profiles of these MIR quasars, and estimate their virial black hole masses and the Eddington ratios. The supermassive black hole mass shows evidence of downsizing, although the Eddington ratios remain constant at 1 < z < 4. Compared to point sources in the same redshift range, extended sources at z < 1 show systematically lower Eddington ratios. The catalog and spectra are publicly available online.

  20. A hybrid Eddington - single scattering radiative transfer model for computing radiances from thermally emitting atmospheres.

    NASA Astrophysics Data System (ADS)

    Deeter, M. N.; Evans, K. F.

    1998-10-01

    A novel radiative transfer model for a scattering layer in a plane-parallel thermally emitting atmosphere is described. The model is designed for computing radiances in iterative remote-sensing methods where computational efficiency is of utmost importance. The model combines a single-scatter method with the standard Eddington's second approximation technique, which is required for higher-order scattering. The single-scattering model uses tabulated scattering properties. The accuracy of the hybrid model, relative to an exact doubling-adding model, is compared with three other approximate methods (nonscattering, single-scattering, and Eddington). Brightness temperature errors for simulated ice and water clouds are shown for various particle size distributions in both microwave (1-50 cm-1) and infrared (300-3000 cm-1) parts of the spectrum. As indicated by a root-mean-square measure of brightness temperature error over outgoing directions, the hybrid model is a significant improvement over the standard Eddington model in the regions of the infrared where scattering is important. Computer source code (written in FORTRAN) for implementing the hybrid scattering model is available from the authors.

  1. Mid-infrared-selected Quasars. I. Virial Black Hole Mass and Eddington Ratios

    NASA Astrophysics Data System (ADS)

    Dai, Y. Sophia; Elvis, Martin; Bergeron, Jacqueline; Fazio, Giovanni G.; Huang, Jia-Sheng; Wilkes, Belinda J.; Willmer, Christopher N. A.; Omont, Alain; Papovich, Casey

    2014-08-01

    We provide a catalog of 391 mid-infrared-selected (MIR; 24 μm) broad-emission-line (BEL; type 1) quasars in the 22 deg2 SWIRE Lockman Hole field. This quasar sample is selected in the MIR from Spitzer MIPS with S 24 > 400 μJy, jointly with an optical magnitude limit of r (AB) < 22.5 for broad line identification. The catalog is based on MMT and Sloan Digital Sky Survey (SDSS) spectroscopy to select BEL quasars, extending the SDSS coverage to fainter magnitudes and lower redshifts, and recovers a more complete quasar population. The MIR-selected quasar sample peaks at z ~ 1.4 and recovers a significant and constant (20%) fraction of extended objects with SDSS photometry across magnitudes, which were not included in the SDSS quasar survey dominated by point sources. This sample also recovers a significant population of z < 3 quasars at i > 19.1. We then investigate the continuum luminosity and line profiles of these MIR quasars, and estimate their virial black hole masses and the Eddington ratios. The supermassive black hole mass shows evidence of downsizing, although the Eddington ratios remain constant at 1 < z < 4. Compared to point sources in the same redshift range, extended sources at z < 1 show systematically lower Eddington ratios. The catalog and spectra are publicly available online. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  2. Mass inflation in Eddington-inspired Born-Infeld black holes: Analytical scaling solutions

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.

    2016-05-01

    We study the inner dynamics of accreting Eddington-inspired Born-Infeld black holes using the homogeneous approximation and taking charge as a surrogate for angular momentum. We show that there is a minimum of the accretion rate below which mass inflation does not occur, and we derive an analytical expression for this threshold as a function of the fundamental scale of the theory, the accretion rate, the mass, and the charge of the black hole. Our result explicitly demonstrates that, no matter how close Eddington-inspired Born-Infeld gravity is to general relativity, there is always a minimum accretion rate below which there is no mass inflation. For larger accretion rates, mass inflation takes place inside the black hole as in general relativity until the extremely rapid density variations bring it to an abrupt end. We derive analytical scaling solutions for the value of the energy density and of the Misner-Sharp mass attained at the end of mass inflation as a function of the fundamental scale of the theory, the accretion rate, the mass, and the charge of the black hole, and compare these with the corresponding numerical solutions. We find that, except for unreasonably high accretion rates, our analytical results appear to provide an accurate description of homogeneous mass inflation inside accreting Eddington-inspired Born-Infeld black holes.

  3. Einstein's Years in Switzerland

    NASA Astrophysics Data System (ADS)

    Plendl, Hans S.

    2005-11-01

    Albert Einstein left Germany, the country of his birth, in 1894 and moved to Switzerland in 1895. He studied, worked and taught there, except for a year's stay in Prague, until1914. That year he returned to Germany, where he lived until his emigration to the United States in 1933. In 1905, while living with his wife Mileva and their first son Hans Albert in Bern and working as a technical expert at the Swiss Patent Office, he published his dissertation on the determination of molecular dimensions, his papers on Brownian Motion that helped to establish the Kinetic Theory of Heat and on the Photo-Electric Effect that validated the Quantum Theory of Light, and the two papers introducing the Special Theory of Relativity. How the young Einstein could help to lay the foundations of these theories while still working on his dissertation, holding a full-time job and helping to raise a family has evoked much discussion among his biographers. In this contribution, the extent to which living within Swiss society and culture could have made this feat possible will be examined. Old and recent photos of places in Switzerland where Einstein has lived and worked will be shown.

  4. The stolen brain of Einstein

    NASA Astrophysics Data System (ADS)

    Modi, Kavan

    2008-03-01

    Pathologist Thomas Stoltz Harvey performed an autopsy on Einstein after his death in 1955. During the autopsy Harvey removed Einstein's brain, took pictures of it and then cut it into several pieces. A lot of scientific attention has been devoted to Einstein' brain, and it still comes up once in a while. We've all heard something or other about Einstein's brain, as it has become somewhat of a folk lore. What is less known is that Harvey in actuality did not have the permission to remove the brain. Only later Harvey convinced Einstein's Hans Albert Einstein son that this was for a good purpose. The brain would only be used for scientific purpose, which will be published reputable journals. I will try to describe in some detail the long journey this brain has taken in last fifty two years.

  5. Einstein, Bohr, and Bell

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    The final form of quantum physics, in the particular case of wave mechanics, was established in the years 1925-1927 by Heisenberg, Schrödinger, Born and others, but the synthesis was the work of Bohr who gave an epistemological interpretation of all the technicalities built up over those years; this interpretation will be examined briefly in Chapter 10. Although Einstein acknowledged the success of quantum mechanics in atomic, molecular and solid state physics, he disagreed deeply with Bohr's interpretation. For many years, he tried to find flaws in the formulation of quantum theory as it had been more or less accepted by a large majority of physicists, but his objections were brushed away by Bohr. However, in an article published in 1935 with Podolsky and Rosen, universally known under the acronym EPR, Einstein thought he had identified a difficulty in the by then standard interpretation. Bohr's obscure, and in part beyond the point, answer showed that Einstein had hit a sensitive target. Nevertheless, until 1964, the so-called Bohr-Einstein debate stayed uniquely on a philosophical level, and it was actually forgotten by most physicists, as the few of them aware of it thought it had no practical implication. In 1964, the Northern Irish physicist John Bell realized that the assumptions contained in the EPR article could be tested experimentally. These assumptions led to inequalities, the Bell inequalities, which were in contradiction with quantum mechanical predictions: as we shall see later on, it is extremely likely that the assumptions of the EPR article are not consistent with experiment, which, on the contrary, vindicates the predictions of quantum physics. In Section 3.2, the origin of Bell's inequalities will be explained with an intuitive example, then they will be compared with the predictions of quantum theory in Section 3.3, and finally their experimental status will be reviewed in Section 3.4. The debate between Bohr and Einstein goes much beyond a

  6. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  7. How Einstein Did Not Discover

    NASA Astrophysics Data System (ADS)

    Norton, John D.

    2016-08-01

    What powered Einstein's discoveries? Was it asking naïve questions, stubbornly? Was it a mischievous urge to break rules? Was it the destructive power of operational thinking? It was none of these. Rather, Einstein made his discoveries through lengthy, mundane investigations, pursued with tenacity and discipline. We have been led to think otherwise in part through Einstein's brilliance at recounting in beguilingly simple terms a few brief moments of transcendent insight, and in part through our need to find a simple trick underlying his achievements. These ideas are illustrated with the examples of Einstein's 1905 discoveries of special relativity and the light quantum.

  8. Monitoring of the Einstein Cross with the Nordic Optical Telescope.

    NASA Astrophysics Data System (ADS)

    Ostensen, R.; Refsdal, S.; Stabell, R.; Teuber, J.; Emanuelsen, P. I.; Festin, L.; Florentin-Nielsen, R.; Gahm, G.; Gullbring, E.; Grundahl, F.; Hjorth, J.; Jablonski, M.; Jaunsen, A. O.; Kaas, A. A.; Karttunen, H.; Kotilainen, J.; Laurikainen, E.; Lindgren, H.; Maehoenen, P.; Nilsson, K.; Olofsson, G.; Olsen, O.; Pettersen, B. R.; Piirola, V.; Sorensen, A. N.; Takalo, L.; Thomsen, B.; Valtaoja, E.; Vestergaard, M.; Av Vianborg, T.

    1996-05-01

    We report results from five years of monitoring of the Einstein Cross (QSO 2237+0305) with the Nordic Optical Telescope. The photometry, mainly in the R and I bands, has been performed by a PSF fitting and 'cleaning' procedure, in which the four image components as well as the host galaxy and its nucleus are iteratively removed. The resulting lightcurves exhibit several microlensing features; one event may have a timescale as short as 14days. Variations on timescales of several years are found in all four images. This becomes even more convincing when our data are combined with data published for 1986-89. No clear high amplification event was observed during the period. A brightening of all four components during 1994 is interpreted as intrinsic variation.

  9. The Einstein Dossiers: Science and Politics - Einstein's Berlin Period with an Appendix on Einstein's FBI File

    NASA Astrophysics Data System (ADS)

    Grundmann, Siegfried

    In 1919 the Prussian Ministry of Science, Arts and Culture opened a dossier on "Einstein's Theory of Relativity." It was rediscovered by the author in 1961 and is used in conjunction with numerous other subsequently identified 'Einstein' files as the basis of this fascinating book. In particular, the author carefully scrutinizes Einstein's FBI file from 1950-55 against mostly unpublished material from European including Soviet sources and presents hitherto unknown documentation on Einstein's alleged contacts with the German Communist Party and the Comintern.

  10. Einstein flow and cosmology

    NASA Astrophysics Data System (ADS)

    Kouneiher, J.

    2015-07-01

    The recent evolution of the observational technics and the development of new tools in cosmology and gravitation have a significant impact on the study of the cosmological models. In particular, the qualitative and numerical methods used in dynamical system and elsewhere, enable the resolution of some difficult problems and allow the analysis of different cosmological models even with a limited number of symmetries. On the other hand, following Einstein point of view the manifold ℳ and the metric should be built simultaneously when solving Einstein’s equation Rμν -1 2Rgμν = Tμν. From this point of view, the only kinematic condition imposed is that at each point of space-time, the tangent space is endowed with a metric (which is a Minkowski metric in the physical case of pseudo-Riemannian manifolds and an Euclidean one in the Riemannian analogous problem). Then the field (gμν) describes the way these metrics depend on the point in a smooth way and the Einstein equation is the “dynamical” constraint on gμν. So, we have to imagine an infinite continuous family of copies of the same Minkowski or Euclidean space and to find a way to sew together these infinitesimal pieces into a manifold, by respecting Einstein’s equation. Thus, Einstein field equations do not fix once and for all the global topology. 34 Given this freedom in the topology of the space-time manifold, a question arises as to how free the choice of these topologies may be and how one may hope to determine them, which in turn is intimately related to the observational consequences of the space-time possessing nontrivial topologies. Therefore, in this paper we will use a different qualitative dynamical methods to determine the actual topology of the space-time.

  11. Einstein spectra of quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.

    1988-01-01

    The results of the initial stage of the CfA survey of quasar energy distributions are reviewed. Einstein imaging proportional counter spectra of 33 quasars have been studied by fitting a single power law slope and absorption by an equivalent column density of neutral hydrogen. Comparison with the higher energy HEAO-A2 data leads to a two-component model for the X-ray spectrum. The X-ray column density is systematically lower than the 21-cm measured Galactic column density along the same line of sight.

  12. The controversy between Alexander Friedmann and Albert Einstein about the possibility of a non-static world (German Title: Die Kontroverse zwischen Alexander Friedmann und Albert Einstein um die Möglichkeit einer nichtstatischen Welt)

    NASA Astrophysics Data System (ADS)

    Singer, Georg

    Einstein's treatment of the cosmological problem as well as his unshakeable adherence to his own static solution of the complete field equations was throughout determined by Ernst Mach's idea of relativity of inertia. Friedmann, however, like Eddington, Weyl and others did not consider Mach's principle to be a part of general relativity, and so he regarded a time dependent developing spatial geometry as being consistent with world matter at relative rest. In his final statement to the controversy, Einstein acknowledged just formal correctness of Friedmann's results. Actually his criticism was not due ``to a miscalculation'', as he was ready to admit, but was owed to a fundamental fixed idea which continued to exist and which was the cause of his disavowal of physical significance of dynamical solutions.

  13. Noncommutative Einstein-Proca spacetime

    NASA Astrophysics Data System (ADS)

    González, Angélica; Linares, Román; Maceda, Marco; Sánchez-Santos, Oscar

    2014-12-01

    In this paper, we present a deformed model of Einstein-Proca spacetime based on the replacement of pointlike sources by noncommutative smeared distributions. We discuss the solutions to the set of noncommutative Einstein-Proca equations thus obtained, with emphasis on the issue of singularities and horizons.

  14. Einstein and the "Crucial" Experiment

    ERIC Educational Resources Information Center

    Holton, Gerald

    1969-01-01

    Examines the widespread view that it was the crucial Michelson-Morley experiment that led Einstein to formulate the special relativity theory. From Einstein's writings, evidence is presented that no such direct genetic connection exists. The author suggests that the historian of science must resist the experimenticist's fallacy of imposing a…

  15. Albert Einstein 1879-1955.

    ERIC Educational Resources Information Center

    Physics Today, 1979

    1979-01-01

    Celebrates the centennial of Einstein's birth with an eight-page pictorial biography and two special articles: (1) Einstein the catalyst; and (2) Unitary field theories. His special and general theories of relativity and his contributions to quantum physics and other topics are also presented. (HM)

  16. Timescales of Land Surface Evapotranspiration Response

    NASA Technical Reports Server (NTRS)

    Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max

    1997-01-01

    Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.

  17. Measuring quenching timescales in green valley galaxies

    NASA Astrophysics Data System (ADS)

    Signorini Gonçalves, Thiago; Martin, Christopher; Nogueira-Cavalcante, Joao Paulo; Menéndez-Delmestre, Karín; Sheth, Kartik

    2015-08-01

    What are the processes that halt star formation in galaxies? The clear bimodality in galaxy colors tells us that there must be a mechanism - or combination of mechanisms - responsible for the swift transformation of star-forming galaxies into passively evolving objects, but it is remarkably difficult to identify what these mechanisms might be in each case. In that sense, a measurement of quenching timescales might help identify which mechanisms are more efficient in moving galaxies from the blue cloud into the red sequence. In this talk I will discuss our spectroscopic studies of green valley galaxies (i.e. galaxies currently undergoing this transition) and our determination of quenching timescales in these cases. Comparisons between our samples at low and high redshift show that galaxies were transitioning faster at earlier times, probably due to more violent processes taking place at such epochs. We can also distinguish between different morphologies in our sample, and are able to determine that galaxies with signs of secular evolution show slower quenching timescales. Finally, I will discuss our new method which determines the instantaneous time derivative of the star formation rates for individual galaxies, which allows for a precise characterization of star formation histories and its correlation with other physical properties such as AGN activity or local environment.

  18. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  19. Modeling coupled avulsion and earthquake timescale dynamics

    NASA Astrophysics Data System (ADS)

    Reitz, M. D.; Steckler, M. S.; Paola, C.; Seeber, L.

    2014-12-01

    River avulsions and earthquakes can be hazardous events, and many researchers work to better understand and predict their timescales. Improvements in the understanding of the intrinsic processes of deposition and strain accumulation that lead to these events have resulted in better constraints on the timescales of each process individually. There are however several mechanisms by which these two systems may plausibly become linked. River deposition and avulsion can affect the stress on underlying faults through differential loading by sediment or water. Conversely, earthquakes can affect river avulsion patterns through altering the topography. These interactions may alter the event recurrence timescales, but this dynamic has not yet been explored. We present results of a simple numerical model, in which two systems have intrinsic rates of approach to failure thresholds, but the state of one system contributes to the other's approach to failure through coupling functions. The model is first explored for the simplest case of two linear approaches to failure, and linearly proportional coupling terms. Intriguing coupling dynamics emerge: the system settles into cycles of repeating earthquake and avulsion timescales, which are approached at an exponential decay rate that depends on the coupling terms. The ratio of the number of events of each type and the timescale values also depend on the coupling coefficients and the threshold values. We then adapt the model to a more complex and realistic scenario, in which a river avulses between either side of a fault, with parameters corresponding to the Brahmaputra River / Dauki fault system in Bangladesh. Here the tectonic activity alters the topography by gradually subsiding during the interseismic time, and abruptly increasing during an earthquake. The river strengthens the fault by sediment loading when in one path, and weakens it when in the other. We show this coupling can significantly affect earthquake and avulsion

  20. Stable, levitating, optically thin atmospheres of Eddington-luminosity neutron stars

    NASA Astrophysics Data System (ADS)

    Wielgus, M.; Kluźniak, W.; Saḑowski, A.; Narayan, R.; Abramowicz, M.

    2015-12-01

    In general relativity, static gaseous atmospheres may be in hydrostatic balance in the absence of a supporting stellar surface, provided that the luminosity is close to the Eddington value. We construct analytic models of optically thin, spherically symmetric shells supported by the radiation pressure of a luminous central body in the Schwarzschild metric. Opacity is assumed to be dominated by Thomson scattering. The inner parts of the atmospheres, where the luminosity locally has supercritical values, are characterized by a density and pressure inversion. The atmospheres are convectively and Rayleigh-Taylor stable, and there is no outflow of gas.

  1. A modified Eddington-Barbier relation in highly coherent resonance-line wings

    NASA Technical Reports Server (NTRS)

    Gayley, K. G.

    1992-01-01

    It is shown that resonance-line wings are just as useful in inferring plane-parallel stellar chromospheric S sub L distributions as complete redistribution (CRD) profiles. Although coherent scattering effects at a given frequency tend to average depth-dependent parameters over a larger volume than in CRD, this effect can be offset by simply looking closer to line center, where the same depth-dependent information exists as in CRD, albeit somewhat more compressed in frequency space. For resonance lines with high excitation energies such as Ly-alpha, steep Planck function gradients can invalidate the modified Eddington-Barbier approach given, but this problem also exists in CRD.

  2. Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales.

    PubMed

    Tauris; van Den Heuvel EP; Savonije

    2000-02-20

    We have performed detailed numerical calculations of the nonconservative evolution of close X-ray binary systems with intermediate-mass (2.0-6.0 M middle dot in circle) donor stars and a 1.3 M middle dot in circle accreting neutron star. We calculated the thermal response of the donor star to mass loss in order to determine its stability and follow the evolution of the mass transfer. Under the assumption of the "isotropic reemission model," we demonstrate that in many cases it is possible for the binary to prevent a spiral-in and survive a highly super-Eddington mass transfer phase (1timescale if the convective envelope of the donor star is not too deep. These systems thus provide a new formation channel for binary millisecond pulsars with heavy CO white dwarfs and relatively short orbital periods (3-50 days). However, we conclude that to produce a binary pulsar with a O-Ne-Mg white dwarf or Porb approximately 1 day (e.g., PSR B0655+64) the above scenario does not work, and a spiral-in phase is still considered the most plausible scenario for the formation of such a system. PMID:10655173

  3. Supernova Neutrino Thermalization: Interactions and Timescales

    NASA Astrophysics Data System (ADS)

    Thompson, Todd; Burrows, Adam

    1999-10-01

    We solve the Boltzmann equation for the evolution of mu and tau-type neutrino distribution functions including contributions from electron scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and nucleon scattering at temperatures and densities relevant to supernova and protoneutron star calculations, but in an idealized system with no spatial or angular gradients. We incorporate the structure function formalism of Reddy et al. (1998) and Burrows and Sawyer (1998) in electron scattering and nucleon scattering, respectively, in order to include the full scattering kinematics at arbitrary degeneracy. Particularly, we examine the timescales for thermalization with the ambient nuclear medium and the approach to equilibrium.

  4. Long Timescale Variability of AGN with RXTE

    NASA Astrophysics Data System (ADS)

    McHardy, I. M.; Uttley, P.; Taylor, R. D.; Seymour, N.

    2004-07-01

    In this paper we review the very large contribution made by RXTE to our understanding of Active Galaxies (AGN). We discuss the relationship between AGN and Galactic Black Hole X-ray binary systems (GBHs) and show, by comparison of their powerspectral densities (PSDs) that some AGN are the equivalent of GBHs in their `high' state, rather than in their `low' state as has previously been assumed. We plot the timescale at which the PSD slope steepens from -1 to -2 against the black hole mass for a sample of AGN, and for Cyg X-1 in its high and low states. We find it is not possible to fit all AGN to the same linear scaling of break timescale with black hole mass. However broad line AGN are consistent with a linear scaling of break timescale with mass from Cyg X-1 in its low state and NLS1 galaxies scale better with Cyg X-1 in its high state, although there is an exception, NGC3227. We suggest that the relationship between black hole mass and break timescale is a function of another underlying parameter which may be accretion rate or black hole spin or, probably, both. We examine X-ray spectral variability and show how simple `flux-flux' plots can distinguish between `two-component' and `spectral pivoting' models. We also examine the relationship between the X-ray emission and that in other wavebands. In the case of X-ray/optical variability we show how cooler discs in AGN with larger mass black holes lead to greater proximity of the X-ray and optical emission regions and hence to more highly correlated variability. The very large amplitude of optical variability then rules out reprocessing as the origin of the optical emission. We show how the radio emission in NGC 4051 is strongly correlated with the X-ray emission, implying some contribution to the X-ray emission from a jet for which there is some evidence in radio images. We point out, however, that we have only studied in detail the X-ray variability of a handful of AGN. There is a strong requirement to extend such

  5. A Super-Eddington, Compton-thick Wind in GRO J1655–40?

    NASA Astrophysics Data System (ADS)

    Neilsen, J.; Rahoui, F.; Homan, J.; Buxton, M.

    2016-05-01

    During its 2005 outburst, GRO J1655–40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley & Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on the orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this “hypersoft state” are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.

  6. The quasar mass-luminosity plane - I. A sub-Eddington limit for quasars

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Elvis, Martin

    2010-03-01

    We use 62185 quasars from the Sloan Digital Sky Survey Data Release 5 sample to explore the relationship between black hole mass and luminosity. Black hole masses were estimated based on the widths of their Hβ, MgII and CIV lines and adjacent continuum luminosities using standard virial mass estimate scaling laws. We find that, over the range 0.2 < z < 4.0, the most luminous low-mass quasars are at their Eddington luminosity, but the most luminous high-mass quasars in each redshift bin fall short of their Eddington luminosities, with the shortfall of the order of 10 or more at 0.2 < z < 0.6. We examine several potential sources of measurement uncertainty or bias and show that none of them can account for this effect. We also show the statistical uncertainty in virial mass estimation to have an upper bound of ~0.15 dex, smaller than the 0.4 dex previously reported. We also examine the highest mass quasars in every redshift bin in an effort to learn more about quasars that are about to cease their luminous accretion. We conclude that the quasar mass-luminosity locus contains a number of new puzzles that must be explained theoretically.

  7. A Super-Eddington, Compton-thick Wind in GRO J1655-40?

    NASA Astrophysics Data System (ADS)

    Neilsen, J.; Rahoui, F.; Homan, J.; Buxton, M.

    2016-05-01

    During its 2005 outburst, GRO J1655-40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley & Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on the orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this “hypersoft state” are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.

  8. X-RAY OUTFLOWS AND SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Miller, J. M.; Reis, R. C.; Fabian, A. C.; Roberts, T. P.; Middleton, M. J.

    2013-08-10

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultraluminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with L{sub X} {>=} 10{sup 40} erg s{sup -1}). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass {approx}10 M{sub Sun} or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive data set in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the {approx}>150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind and that Holmberg IX X-1 must primarily accrete via Roche-lobe overflow.

  9. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  10. IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS

    SciTech Connect

    Smith, Randall K.; Hughes, John P. E-mail: jph@physics.rutgers.ed

    2010-07-20

    Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai and Hughes and Helfand. In general, the ionization evolution of an element Z in a constant electron temperature plasma is given by a coupled set of Z + 1 first-order differential equations. However, they can be recast as Z uncoupled first-order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of the slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily long time.

  11. Einstein: The Gourmet of Creativity.

    ERIC Educational Resources Information Center

    Greenberg, Joel

    1979-01-01

    Reports a psychiatrist's analysis of Einstein's personal account of how he developed the theory of relativity. The psychiatrist cites Janusian thinking, actively conceiving two or more opposite concepts simultaneously, as a characteristic of much creative thought in general. (MA)

  12. Some notes on Einstein relationships

    NASA Astrophysics Data System (ADS)

    Allen, Michael P.; Masters, Andrew J.

    Transport coefficients are often expressed in the form of an Einstein relationship. In this report we point out some possibly surprising properties of the correlation functions appearing in such expressions and we discuss under what conditions the relationships are true. We further consider the Einstein relationship for the shear viscosity proposed by McQuarrie [in Statistical Mechanics (Harper and Row), 1976]. On the basis both of theoretical analysis and computer simulation, we conclude that this expression is incorrect.

  13. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is part of NASA s Beyond Einstein program. This program seeks to answer the questions What Powered the Big Bang?, What happens at the edge of a Black Hole?, and What is Dark Energy?. LISA IS the first mission to be launched in this new program. This paper will give an overview of the Beyond Einstein program, its current status and where LISA fits in.

  14. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  15. Hindcasting of decadal‐timescale estuarine bathymetric change with a tidal‐timescale model

    USGS Publications Warehouse

    Ganju, Neil K.; Schoellhamer, David H.; Jaffe, Bruce E.

    2009-01-01

    Hindcasting decadal-timescale bathymetric change in estuaries is prone to error due to limited data for initial conditions, boundary forcing, and calibration; computational limitations further hinder efforts. We developed and calibrated a tidal-timescale model to bathymetric change in Suisun Bay, California, over the 1867–1887 period. A general, multiple-timescale calibration ensured robustness over all timescales; two input reduction methods, the morphological hydrograph and the morphological acceleration factor, were applied at the decadal timescale. The model was calibrated to net bathymetric change in the entire basin; average error for bathymetric change over individual depth ranges was 37%. On a model cell-by-cell basis, performance for spatial amplitude correlation was poor over the majority of the domain, though spatial phase correlation was better, with 61% of the domain correctly indicated as erosional or depositional. Poor agreement was likely caused by the specification of initial bed composition, which was unknown during the 1867–1887 period. Cross-sectional bathymetric change between channels and flats, driven primarily by wind wave resuspension, was modeled with higher skill than longitudinal change, which is driven in part by gravitational circulation. The accelerated response of depth may have prevented gravitational circulation from being represented properly. As performance criteria became more stringent in a spatial sense, the error of the model increased. While these methods are useful for estimating basin-scale sedimentation changes, they may not be suitable for predicting specific locations of erosion or deposition. They do, however, provide a foundation for realistic estuarine geomorphic modeling applications.

  16. BOOK REVIEW: Einstein's Jury: The Race to Test Relativity

    NASA Astrophysics Data System (ADS)

    Ehlers, Jürgen

    2007-10-01

    'I know very well that my theory rests on a shaky foundation. What attracts me to it is that it leads to consequences that seem to be accessible to experiment, and it provides a starting point for the theoretical understanding of gravitation', wrote Einstein in 1911. Einstein's Jury by Jeffrey Crelinsten—well documented, well written, and fascinating to read—describes how, from 1909 on, Einstein's two theories of relativity became known to astronomers, and how the predictions made between 1907 and 1915 were received as challenges to observers. The author gives a non-technical account of the efforts made until 1930 to test these predictions; he focuses on two of the three classical tests, namely gravitational redshift and bending of light; the 'jury' consists mainly of American observers—Adams, Campbell, Curtis, Hale, Perrin, St John, Trumpler and others—working with newly built large telescopes, and the Britons Eddington and Evershed. The major steps which, after a long struggle, convinced the majority of astronomers that Einstein was right, are narrated chronologically in rather great detail, especially the work at Lick Observatory, before and after the famous British observation of 1919, on solar eclipses, and the work at Mount Wilson and the Indian Kodaikanal Observatories to extract the gravitational redshift from the complicated spectrum of the sun. The account of the eclipse work which was carried out between 1918 and 1923 by Lick astronomers corrects the impression suggested by many historical accounts that the British expedition alone settled the light-bending question. Apart from these main topics, the anomalous perihelion advance of Mercury and the ether problem are covered. By concentrating on astronomy rather than on physics this book complements the rich but repetitive literature on Einstein and relativity which appeared in connection with the commemoration of Einstein's annus mirabilis, 2005. The well told stories include curiosities such as

  17. The Einstein Slew Survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Plummer, David; Schachter, Jonathan; Fabbiano, G.

    1992-01-01

    A catalog of 819 sources detected in the Einstein IPC Slew Survey of the X-ray sky is presented; 313 of the sources were not previously known as X-ray sources. Typical count rates are 0.1 IPC count/s, roughly equivalent to a flux of 3 x 10 exp -12 ergs/sq cm s. The sources have positional uncertainties of 1.2 arcmin (90 percent confidence) radius, based on a subset of 452 sources identified with previously known pointlike X-ray sources (i.e., extent less than 3 arcmin). Identifications based on a number of existing catalogs of X-ray and optical objects are proposed for 637 of the sources, 78 percent of the survey (within a 3-arcmin error radius) including 133 identifications of new X-ray sources. A public identification data base for the Slew Survey sources will be maintained at CfA, and contributions to this data base are invited.

  18. Einstein's 1919 View

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2012-10-01

    When Rutherford discovered the nuclear force in 1919, he felt the force he discovered reflected some deviation of Newtonian gravity. Einstein too in his 1919 paper published the failure of the general relativity and Newtonian gravity to explain nuclear force and, in his concluding remarks, he retracted his earlier introduction of the cosmological constant. Consistent with his genius, we modify Newtonian gravity as probabilistic gravity using natural Planck units for a realistic study of nature. The result is capable of expressing both (1) nuclear force [strong coupling], and (2) Newtonian gravity in one equation, implying in general, in layman's words, that gravity is the cumulative effect of all quantum mechanical forces which are impossible to measure at long distances. Non discovery of graviton and quantum gravity silently support our findings. Continuing to climb on the shoulders of the giants enables us to see horizons otherwise unseen, as reflected in our book: ``Quantum Consciousness - The Road to Reality,'' and physics/0210040, where we derive the fine structure constant as a function of the age of the universe in Planck times consistent with Gamow's hint, using natural logarithm consistent with Feynman's hint.

  19. Relativistic timescale analysis suggests lunar theory revision

    NASA Astrophysics Data System (ADS)

    Deines, Steven D.; Williams, Carol A.

    1995-05-01

    The SI second of the atomic clock was calibrated to match the Ephemeris Time (ET) second in a mutual four year effort between the National Physical Laboratory (NPL) and the United States Naval Observatory (USNO). The ephemeris time is 'clocked' by observing the elapsed time it takes the Moon to cross two positions (usually occultation of stars relative to a position on Earth) and dividing that time span into the predicted seconds according to the lunar equations of motion. The last revision of the equations of motion was the Improved Lunar Ephemeris (ILE), which was based on E. W. Brown's lunar theory. Brown classically derived the lunar equations from a purely Newtonian gravity with no relativistic compensations. However, ET is very theory dependent and is affected by relativity, which was not included in the ILE. To investigate the relativistic effects, a new, noninertial metric for a gravitated, translationally accelerated and rotating reference frame has three sets of contributions, namely (1) Earth's velocity, (2) the static solar gravity field and (3) the centripetal acceleration from Earth's orbit. This last term can be characterized as a pseudogravitational acceleration. This metric predicts a time dilation calculated to be -0.787481 seconds in one year. The effect of this dilation would make the ET timescale run slower than had been originally determined. Interestingly, this value is within 2 percent of the average leap second insertion rate, which is the result of the divergence between International Atomic Time (TAI) and Earth's rotational time called Universal Time (UT or UTI). Because the predictions themselves are significant, regardless of the comparison to TAI and UT, the authors will be rederiving the lunar ephemeris model in the manner of Brown with the relativistic time dilation effects from the new metric to determine a revised, relativistic ephemeris timescale that could be used to determine UT free of leap second adjustments.

  20. Relativistic timescale analysis suggests lunar theory revision

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.; Williams, Carol A.

    1995-01-01

    The SI second of the atomic clock was calibrated to match the Ephemeris Time (ET) second in a mutual four year effort between the National Physical Laboratory (NPL) and the United States Naval Observatory (USNO). The ephemeris time is 'clocked' by observing the elapsed time it takes the Moon to cross two positions (usually occultation of stars relative to a position on Earth) and dividing that time span into the predicted seconds according to the lunar equations of motion. The last revision of the equations of motion was the Improved Lunar Ephemeris (ILE), which was based on E. W. Brown's lunar theory. Brown classically derived the lunar equations from a purely Newtonian gravity with no relativistic compensations. However, ET is very theory dependent and is affected by relativity, which was not included in the ILE. To investigate the relativistic effects, a new, noninertial metric for a gravitated, translationally accelerated and rotating reference frame has three sets of contributions, namely (1) Earth's velocity, (2) the static solar gravity field and (3) the centripetal acceleration from Earth's orbit. This last term can be characterized as a pseudogravitational acceleration. This metric predicts a time dilation calculated to be -0.787481 seconds in one year. The effect of this dilation would make the ET timescale run slower than had been originally determined. Interestingly, this value is within 2 percent of the average leap second insertion rate, which is the result of the divergence between International Atomic Time (TAI) and Earth's rotational time called Universal Time (UT or UTI). Because the predictions themselves are significant, regardless of the comparison to TAI and UT, the authors will be rederiving the lunar ephemeris model in the manner of Brown with the relativistic time dilation effects from the new metric to determine a revised, relativistic ephemeris timescale that could be used to determine UT free of leap second adjustments.

  1. Hyperons in neutron stars within an Eddington-inspired Born-Infeld theory of gravity

    NASA Astrophysics Data System (ADS)

    Qauli, A. I.; Iqbal, M.; Sulaksono, A.; Ramadhan, H. S.

    2016-05-01

    We investigate the mass-radius relation of the neutron star (NS) with hyperons inside its core by using the Eddington-inspired Born-Infeld (EiBI) theory of gravity. The equation of state of the star is calculated by using the relativistic mean field model under which the standard SU(6) prescription and hyperon potential depths are used to determine the hyperon coupling constants. We found that, for 4 ×106 m2≲κ ≲6 ×106 m2 , the corresponding NS mass and radius predicted by the EiBI theory of gravity is compatible with observational constraints of maximum NS mass and radius. The corresponding κ value is also compatible with the κ range predicted by the astrophysical-cosmological constraints. We also found that the parameter κ could control the size and the compactness of a neutron star.

  2. A Super-Eddington, Compton-Thick Wind in GRO J1655-40?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Rahoui, Farid; Homan, Jeroen; Buxton, Michelle

    2016-04-01

    During its 2005 outburst, GRO J1655-40 was observed at high spectral resolution with the Chandra HETGS, revealing a spectrum rich with blueshifted absorption lines of elements ranging from oxygen to nickel, including exotic metals like titanium and scandium. It has been argued that magnetic fields must be responsible for the dense accretion disk wind that produces these deep absorption lines. But questions about this outburst remain, because the presence of this exotic wind coincides with extremely soft and curved X-ray spectra, remarkable X-ray variability, and bright, unexpected optical/infrared emission that varies on the orbital period. I will argue that the unusual features of this "hypersoft state" are natural consequences of a super-Eddington Compton-thick wind from the disk.

  3. A Super-Eddington, Compton-Thick Wind in GRO J1655-40?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Rahoui, Farid; Homan, Jeroen; Buxton, Michelle

    2016-01-01

    During its 2005 outburst, GRO J1655-40 was observed at high spectral resolution with the Chandra HETGS, revealing a spectrum rich with blueshifted absorption lines of elements ranging from oxygen to nickel, including exotic metals like titanium and scandium. It has been argued that magnetic fields must be responsible for the dense accretion disk wind that produces these deep absorption lines. But questions about this outburst remain, because the presence of this exotic wind coincides with extremely soft and curved X-ray spectra, remarkable X-ray variability, and bright, unexpected optical/infrared emission that varies on the orbital period. I will argue that the unusual features of this "hypersoft state" are natural consequences of a super-Eddington Compton-thick wind from the disk.

  4. Dark matter searches employing asymmetric velocity distributions obtained via the Eddington approach

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Moustakidis, Ch. C.; Owen, D.

    2016-08-01

    Starting from WIMP density profiles, in the framework of the Eddington approach, we obtain the energy distribution f(E) of dark matter in our vicinity. Assuming a factorizable phase space function, f(E , L) = F(E) FL(L) , we obtain the velocity dispersions and the anisotropy parameter β in terms of the parameters describing the angular momentum dependence. By employing the derived expression f(E) we construct axially symmetric WIMP velocity distributions. The obtained distributions automatically have a velocity upper bound, as a consequence of the fact that they are associated with a gravitationally bound system, and are characterized by an anisotropy parameter β. We then show how such velocity distributions can be used in determining the event rates, including modulation, both in the standard as well directional WIMP searches.

  5. Origin of the universe: A hint from Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-Chan

    2014-09-01

    We study the `initial state' of an anisotropic universe in Eddington-inspired Born-Infeld gravity filled with a scalar field, whose potential has various forms. With this purpose, the evolution of a spatially-flat, homogeneous, anisotropic Kasner universe is studied. We find an exact evolution of the universe for each scalar potential by imposing a maximal pressure condition. The solution is shown to describe the initial state of the universe. The state is regular if the scalar potential does not increase faster than the quadratic power for large-field values. We also show that the anisotropy does not raise any defect in the early universe, contrary to the case of general relativity.

  6. Extended Eddington approximation for use in high-resolution atmospheric GCMs

    NASA Astrophysics Data System (ADS)

    Knoepfel, Rahel

    Computationally extensive parameterizations of complex physical processes restrict the spatial resolution of climate models. Corresponding mechanistic models can be run at much higher resolutions. However, the parameterizations used are often oversimplified. A prominent example is the use of temperature relaxation as a surrogate for radiative heating instead of employing a comprehensive radiative transfer scheme. In the present study we propose a radiation scheme of intermediate complexity which may be used in high-resolution simulations up to the mesopause region. Our method is based on an extended Eddington approximation for the most relevant long-wave absorber bands, as well as a simple Bouger-Beer-Lambert absorption of solar radiation. First tests and applications of this new parameterization in a mechanistic GCM are presented.

  7. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Daddi, E.; Ciesla, L.; Schreiber, C.

    2016-04-01

    We investigate the star-forming properties of 1620 X-ray selected AGN host galaxies as a function of their specific X-ray luminosity (i.e., X-ray luminosity per unit host stellar mass) - a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star-formation at high Eddington ratios, which may hint toward "AGN feedback" effects. Star-formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01 ≲ L_X/M_{ast } ≲ 100 L_{⊙} M_{⊙}^{-1}). After normalising for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e., 8-10 per cent vs. 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star-formation.

  8. THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS

    SciTech Connect

    Ballantyne, D. R.; Armour, J. N.; Indergaard, J.

    2013-03-10

    Two important avenues into understanding the formation and evolution of galaxies are the Kennicutt-Schmidt (K-S) and Elmegreen-Silk (E-S) laws. These relations connect the surface densities of gas and star formation ({Sigma}{sub gas} and {Sigma}-dot{sub *}, respectively) in a galaxy. To elucidate the K-S and E-S laws for disks where {Sigma}{sub gas} {approx}> 10{sup 4} M{sub Sun} pc{sup -2}, we compute 132 Eddington-limited star-forming disk models with radii spanning tens to hundreds of parsecs. The theoretically expected slopes ( Almost-Equal-To 1 for the K-S law and Almost-Equal-To 0.5 for the E-S relation) are relatively robust to spatial averaging over the disks. However, the star formation laws exhibit a strong dependence on opacity that separates the models by the dust-to-gas ratio that may lead to the appearance of a erroneously large slope. The total infrared luminosity (L{sub TIR}) and multiple carbon monoxide (CO) line intensities were computed for each model. While L{sub TIR} can yield an estimate of the average {Sigma}-dot{sub *} that is correct to within a factor of two, the velocity-integrated CO line intensity is a poor proxy for the average {Sigma}{sub gas} for these warm and dense disks, making the CO conversion factor ({alpha}{sub CO}) all but useless. Thus, observationally derived K-S and E-S laws at these values of {Sigma}{sub gas} that uses any transition of CO will provide a poor measurement of the underlying star formation relation. Studies of the star formation laws of Eddington-limited disks will require a high-J transition of a high density molecular tracer, as well as a sample of galaxies with known metallicity estimates.

  9. Continuum-driven versus line-driven mass loss and the Eddington limit

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley P.

    2007-08-01

    Basic stellar structure dictates that stars of ˜ 100 M or more will be close to the Eddington limit, with luminosities in excess of 106 L, and radiation pressure contributing prominently to the support against gravity. Although it is formally possible to generate static structure models of even more massive stars, recent studies of dense clusters show there is a sharp cutoff at masses above ˜ 150 M. This talk examines the role of extreme mass loss is limiting the masses of stars, emphasizing in particular that continuum driving, possibly associated with structural instabilities of radiation dominated envelope, can lead to much stronger mass loss than is possible by the usual line-scattering mechanism of steady stellar winds. However, population studies of very young, dense stellar clusters now suggest quite strongly that there is a sharp cutoff at masses above ca. 150 M (see, e.g., the talk by Sally Oey, in this JD 05, p. 206). This is sometimes attributed to a mass limit on star formation by accretion processes, though there are competing formation scenarios by binary or cluster merging that would seem likely to lead to formation of even higher mass stars (see talks in JD14 and S237). So given the above rough coincidence of the observational upper mass limit with the Eddington-limit domain of radiation-pressure dominance, it seems associated instabilities in stellar structure might actually be a more important factor in this upper mass limit, leading to extreme mass loss in LBV and/or giant eruption events, much as inferred from circumstellar nebulae observed around high mass stars like eta Carinae and the Pistol star.

  10. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Daddi, E.; Ciesla, L.; Schreiber, C.

    2016-07-01

    We investigate the star-forming properties of 1620 X-ray selected active galactic nuclei (AGN) host galaxies as a function of their specific X-ray luminosity (i.e. X-ray luminosity per unit host stellar mass) - a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star formation at high Eddington ratios, which may hint towards `AGN feedback' effects. Star formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01 ≲ L_X/M_{ast } ≲ 100 L_{{⊙}} M_{{⊙}}^{-1}). After normalizing for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e. 8-10 per cent versus 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star formation.

  11. SN Hunt 248: a super-Eddington outburst from a massive cool hypergiant

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Graham, Melissa L.; Zheng, WeiKang; Clubb, Kelsey I.; Filippenko, Alexei V.; Valenti, Stefano; Brown, Peter; Smith, Nathan; Howell, D. Andrew; Arcavi, Iair

    2015-02-01

    We present observations of SN Hunt 248, a new supernova (SN) impostor in NGC 5806, which began a multistage outburst in 2014 May. The `2014a' discovery brightening exhibited an absolute magnitude of M ≈ -12 and the spectral characteristics of a cool, dense outflow, including P Cygni lines of Fe II, H I, and Na I, and line blanketing from metals. The source rapidly climbed and peaked at M ≈ -15 mag after two additional weeks. During this bright `2014b' phase the spectrum became dominated by Balmer emission and a stronger blue continuum, similar to the SN impostor SN 1997bs. Archival images from the Hubble Space Telescope between 1997 and 2005 reveal a luminous (4 × 105 L⊙) variable precursor star. Its location on the Hertzsprung-Russell diagram is consistent with a massive (Minit ≈ 30 M⊙) cool hypergiant having an extremely dense wind and an Eddington ratio (Γ) just below unity. At the onset of the 2014a brightening, however, the object was super-Eddington (Γ = 4-12). The subsequent boost in luminosity during the 2014b phase probably resulted from circumstellar interaction. SN Hunt 248 provides the first case of a cool hypergiant undergoing a giant eruption reminiscent of outbursts from luminous blue variable stars (LBVs). This lends support to the hypothesis that some cool hypergiants, such as ρ Cas, could be LBVs masquerading under a pseudo-photosphere created by their extremely dense winds. Moreover, SN Hunt 248 demonstrates that eruptions stemming from such stars can rival in peak luminosity the giant outbursts of much more massive systems like η Car.

  12. SN Hunt 248: a super-Eddington outburst from a massive cool hypergiant

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon; Van Dyk, Schuyler D.; Graham, Melissa Lynn; Zheng, WeiKang; Clubb, Kelsey I.; Filippenko, Alexei V.; Valenti, Stefano; Brown, Peter; Smith, Nathan; Howell, Dale Andrew; Arcavi, Iair

    2015-01-01

    We present observations of SN Hunt 248, a new supernova (SN) impostor in NGC 5806, which began a multi-stage outburst in May 2014. The "2014a" discovery brightening exhibited an absolute magnitude of M ≈ -12 and the spectral characteristics of a cool dense outflow, with P-Cygni lines of Hα, Fe II, and Na I. The source rapidly climbed and peaked at M ≈ -15 mag after two additional weeks. During this bright "2014b'' phase the spectrum became hotter, dominated by Balmer emission and a stronger blue continuum, similar to the SN impostor SN 1997bs. Archival images from the Hubble Space Telescope between 1997 and 2005 reveal a luminous (4×105 L⊙) variable precursor star. Its location on the Hertzsprung-Russell diagram is consistent with a massive (Minit ≈ 30 M⊙) cool hypergiant having an extremely dense wind and an Eddington ratio (Γ) just below unity. At the onset of the 2014a brightening, however, the object was super-Eddington (Γ = 4 - 12). The subsequent boost in luminosity during the 2014b phase probably resulted from circumstellar interaction. SN Hunt 248 provides the first case of a cool hypergiant undergoing a giant eruption reminiscent of outbursts from luminous blue variable stars (LBVs). This lends support to the hypothesis that some cool hypergiants, such as ρCas, could be LBVs masquerading under a pseudo-photosphere created by their extremely dense winds. Moreover, SN Hunt 248 demonstrates that eruptions stemming from such stars can rival in peak luminosity the giant outbursts of much more massive systems like ηCar.

  13. Einstein's Radiation Formula and Modifications to the Einstein Equation

    NASA Astrophysics Data System (ADS)

    Lo, C. Y.

    1995-12-01

    Einstein's radiation formula is supported by the Taylor-Hulse experiment, but its derivation is not self-consistent. Furthermore, as discovered by Einstein, his radiation formula is not compatible with his field equation. As suggested by Einstein's own remark, modifications to the source tensor are necessary. Based on the Taylor-Hulse experiment, in this paper a theory is developed within the theoretical framework of general relativity within which the radiation formula remains the same for binary stars. Concurrently, it is determined that, because of radiation, the source tensor is not zero in a vacuum. Antigravity coupling, suggested by Pauli as a possibility, is a necessary feature. In addition, it is shown that the current theory of linearized gravity is not valid for radiation.

  14. My Half Hour with Einstein

    NASA Astrophysics Data System (ADS)

    Romer, Robert H.

    2005-03-01

    "So you're studying at Princeton. Would you like to meet Einstein?" That question, during a brief two-body collision at a cocktail party, a collision that was over before I could think of an appropriate response, led—over a year later—to one of the more memorable half hours of my life. It was an elastic collision, we drifted apart, and I thought it had simply been a casual remark until a few days later when the mail brought me a carbon copy [sic] of a letter (dated "25.XII.52") from the speaker, Dr. Tilly Edinger, to Albert Einstein. Accompanying the letter to Einstein was a card that Dr. Edinger advised me to send around to Einstein's home on Mercer Street to request a meeting. (What is perhaps most truly astonishing in connection with this event is that not only do I still have that carbon copy—and the eventual letter from Mercer Street that invited me to Einstein's home—but that I was able to find both documents in my attic!)

  15. Deformation Timescales of Porous Volcanic Materials

    NASA Astrophysics Data System (ADS)

    Quane, S.; Friedlander, B.; Robert, G.; Lynn, H.

    2007-12-01

    determined constant dependent on material properties. The real power of this new model is that now we can predict the timescale of formation of volcanic deposits that have undergone porosity loss by viscous deformation. Two examples we show are welding of ignimbrites and deformation in a volcanic conduit. Prediction of these poorly known timescales provides significant leverage for dynamic models detailing eruption and deposition of volcanic materials.

  16. PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES

    SciTech Connect

    Morrison, Sarah; Malhotra, Renu

    2015-01-20

    We investigate the orbital evolution of particles in a planet's chaotic zone to determine their final destinations and their timescales of clearing. There are four possible final states of chaotic particles: collision with the planet, collision with the star, escape, or bounded but non-collision orbits. In our investigations, within the framework of the planar circular restricted three body problem for planet-star mass ratio μ in the range 10{sup –9} to 10{sup –1.5}, we find no particles hitting the star. The relative frequencies of escape and collision with the planet are not scale-free, as they depend upon the size of the planet. For planet radius R{sub p} ≥ 0.001 R{sub H} where R{sub H} is the planet's Hill radius, we find that most chaotic zone particles collide with the planet for μ ≲ 10{sup –5}; particle scattering to large distances is significant only for higher mass planets. For fixed ratio R{sub p} /R{sub H} , the particle clearing timescale, T {sub cl}, has a broken power-law dependence on μ. A shallower power law, T {sub cl} ∼ μ{sup –1/3}, prevails at small μ where particles are cleared primarily by collisions with the planet; a steeper power law, T {sub cl} ∼ μ{sup –3/2}, prevails at larger μ where scattering dominates the particle loss. In the limit of vanishing planet radius, we find T {sub cl} ≈ 0.024 μ{sup –3/2}. The interior and exterior boundaries of the annular zone in which chaotic particles are cleared are increasingly asymmetric about the planet's orbit for larger planet masses; the inner boundary coincides well with the classical first order resonance overlap zone, Δa {sub cl,} {sub int} ≅ 1.2 μ{sup 0.28} a{sub p} ; the outer boundary is better described by Δa {sub cl,} {sub ext} ≅ 1.7 μ{sup 0.31} a{sub p} , where a{sub p} is the planet-star separation.

  17. SHORT TIMESCALE VARIATIONS IN THE ATMOSPHERE OF ANTARES A

    SciTech Connect

    Pugh, T.; Gray, David F.

    2013-11-01

    We analyze three years of high-resolution spectroscopic data and find radial velocity variations with a characteristic timescale of 100 ± 6 days that are nearly sinusoidal. Simultaneous variations in line-depth ratios imply temperature variations of up to 100 K. No photometric variation is seen on a 100 day timescale. The timescale of the variation and its resonant nature suggest solar-like oscillations driven by large-scale convection.

  18. Einstein Session of the Pontifical Academy.

    ERIC Educational Resources Information Center

    Science, 1980

    1980-01-01

    The texts of four speeches, given at the 1979 Einstein Session of the Pontifical Academy held in Rome, are presented. Each address relates to some aspect of the life and times of Albert Einstein. (SA)

  19. Schwinger's Approach to Einstein's Gravity

    NASA Astrophysics Data System (ADS)

    Milton, Kim

    2012-05-01

    Albert Einstein was one of Julian Schwinger's heroes, and Schwinger was greatly honored when he received the first Einstein Prize (together with Kurt Godel) for his work on quantum electrodynamics. Schwinger contributed greatly to the development of a quantum version of gravitational theory, and his work led directly to the important work of (his students) Arnowitt, Deser, and DeWitt on the subject. Later in the 1960's and 1970's Schwinger developed a new formulation of quantum field theory, which he dubbed Source Theory, in an attempt to get closer contact to phenomena. In this formulation, he revisited gravity, and in books and papers showed how Einstein's theory of General Relativity emerged naturally from one physical assumption: that the carrier of the gravitational force is a massless, helicity-2 particle, the graviton. (There has been a minor dispute whether gravitational theory can be considered as the massless limit of a massive spin-2 theory; Schwinger believed that was the case, while Van Dam and Veltman concluded the opposite.) In the process, he showed how all of the tests of General Relativity could be explained simply, without using the full machinery of the theory and without the extraneous concept of curved space, including such effects as geodetic precession and the Lense-Thirring effect. (These effects have now been verified by the Gravity Probe B experiment.) This did not mean that he did not accept Einstein's equations, and in his book and full article on the subject, he showed how those emerge essentially uniquely from the assumption of the graviton. So to speak of Schwinger versus Einstein is misleading, although it is true that Schwinger saw no necessity to talk of curved spacetime. In this talk I will lay out Schwinger's approach, and the connection to Einstein's theory.

  20. Einstein for Schools and the General Public

    ERIC Educational Resources Information Center

    Johansson, K. E.; Kozma, C; Nilsson, Ch

    2006-01-01

    In April 2005 the World Year of Physics (Einstein Year in the UK and Ireland) was celebrated with an Einstein week in Stockholm House of Science. Seven experiments illustrated Einstein's remarkable work in 1905 on Brownian motion, the photoelectric effect and special relativity. Thirteen school classes with 260 pupils, 30 teachers and 25 members…

  1. Non-equilibrium dynamics in driven Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Clark, Logan W.; Ha, Li-Chung; Chin, Cheng

    2016-05-01

    We report recent progress on the study of non-equilibrium dynamics in Bose-Einstein condensates using the shaken optical lattice or optically controlled Feshbach resonances. In the shaken lattice at sufficient shaking amplitude we observe a quantum phase transition from ordinary condensates to pseudo-spinor 1/2 condensates containing discrete domains with effective ferromagnetic interactions. We study the temporal and spatial Kibble-Zurek scaling laws for the dependence of this domain structure on the quench rate across the transition. Furthermore, we observe long-range density correlations within the ferromagnetic condensate. With optically controlled Feshbach resonances we demonstrate control of the interaction strength between atoms at timescales as short as ten nanoseconds and length scales smaller than the condensate. We find that making interactions attractive within only one region of the gas induces localized collapse of the condensate.

  2. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  3. Dutch museum marks Einstein anniversary

    NASA Astrophysics Data System (ADS)

    van Calmthout, Matijn

    2016-01-01

    A new painting of Albert Einstein's field equation from his 1915 general theory of relativity was unveiled in a ceremony in November 2015 by the Dutch physicist Robbert Dijkgraaf, who is director of the Princeton Institute for Advanced Study in the US.

  4. Chemical Timescales in the Atmospheres of Highly Eccentric Exoplanets

    NASA Astrophysics Data System (ADS)

    Visscher, Channon

    2012-10-01

    Close-in exoplanets with highly eccentric orbits are subject to large variations in incoming stellar flux between periapse and apoapse. These variations may lead to large swings in atmospheric temperature, which in turn may cause changes in the chemistry of the atmosphere from relatively higher CO abundances at periapse to relatively higher CH4 abundances at apoapse. Here we examine chemical timescales for CO<->CH4 interconversion compared to orbital timescales and vertical mixing timescales for the highly eccentric exoplanets HAT-P-2b and CoRoT-10b. As exoplanet atmospheres cool, the chemical timescales for CO<->CH4 tend to exceed orbital and/or vertical mixing timescales, leading to quenching. The relative roles of orbit-induced thermal quenching and vertical quenching depend upon mixing timescales relative to orbital timescales. For both HAT-P-2b and CoRoT-10b, vertical quenching will determine disequilibrium CO<->CH4 chemistry at faster vertical mixing rates, whereas orbit-induced thermal quenching may play a significant role at slower mixing rates. The general abundance and chemical timescale results - calculated as a function of pressure, temperature, and metallicity - can be applied for different atmospheric profiles in order to estimate the quench level and disequilibrium abundances of CO and CH4 on hydrogen-dominated exoplanets. Observations of CO and CH4 on highly eccentric exoplanets may yield important clues to the chemical and dynamical properties of their atmospheres.

  5. The discovery of timescale-dependent color variability of quasars

    SciTech Connect

    Sun, Yu-Han; Wang, Jun-Xian; Chen, Xiao-Yang; Zheng, Zhen-Ya E-mail: jxw@ustc.edu.cn

    2014-09-01

    Quasars are variable on timescales from days to years in UV/optical and generally appear bluer while they brighten. The physics behind the variations in fluxes and colors remains unclear. Using Sloan Digital Sky Survey g- and r-band photometric monitoring data for quasars in Stripe 82, we find that although the flux variation amplitude increases with timescale, the color variability exhibits the opposite behavior. The color variability of quasars is prominent at timescales as short as ∼10 days, but gradually reduces toward timescales up to years. In other words, the variable emission at shorter timescales is bluer than that at longer timescales. This timescale dependence is clearly and consistently detected at all redshifts from z = 0 to 3.5; thus, it cannot be due to contamination to broadband photometry from emission lines that do not respond to fast continuum variations. The discovery directly rules out the possibility that simply attributes the color variability to contamination from a non-variable redder component such as the host galaxy. It cannot be interpreted as changes in global accretion rate either. The thermal accretion disk fluctuation model is favored in the sense that fluctuations in the inner, hotter region of the disk are responsible for short-term variations, while longer-term and stronger variations are expected from the larger and cooler disk region. An interesting implication is that one can use quasar variations at different timescales to probe disk emission at different radii.

  6. TIMESCALE-RESOLVED SPECTROSCOPY OF Cyg X-1

    SciTech Connect

    Wu, Y. X.; Li, T. P.; Belloni, T. M.; Wang, T. S.; Liu, H.

    2009-04-20

    We propose the timescale-resolved spectroscopy (TRS) as a new method to combine the timing and spectral study. The TRS is based on the time domain power spectrum and reflects the variable amplitudes of spectral components on different timescales. We produce the TRS with the RXTE PCA data for Cyg X-1 and study the spectral parameters (the power-law photon index and the equivalent width of the iron fluorescent line) as a function of timescale. The results of TRS and frequency-resolved spectra have been compared, and similarities have been found for the two methods with the identical motivations. We also discover the correspondences between the evolution of photon index with timescale and the evolution of the equivalent width with timescale. The observations can be divided into three types according to the correspondences and different type is connected with different spectral state.

  7. Modified Eddington-inspired-Born-Infeld Gravity with a Trace Term

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin

    2016-01-01

    In this paper, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term g_{μ ν }R being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric g_{μ ν }. This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which were not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic "quasi-sudden" singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.

  8. Magnetized relativistic stellar models in Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2015-04-01

    We consider the structure of the magnetic fields inside the neutron stars in Eddington-inspired Born-Infeld (EiBI) gravity. In order to construct the magnetic fields, we derive the relativistic Grad-Shafranov equation in EiBI and numerically determine the magnetic distribution in such a way that the interior magnetic fields should be connected to the exterior distribution. Then, we find that the magnetic distribution inside the neutron stars in EiBI is qualitatively similar to that in general relativity, where the deviation of magnetic distribution in EiBI from that in general relativity is almost comparable to uncertainty due to the equation of state for the neutron star matter. However, we also find that the magnetic fields in the crust region are almost independent of the coupling constant in EiBI, which suggests a possibility of obtaining the information about the crust equation of state independent from the gravitational theory via the observations of the phenomena associated with the crust region. In any case, since the imprint of EiBI gravity on the magnetic fields is weak, the magnetic fields could be a poor probe of gravitational theories, considering the many magnetic uncertainties.

  9. Modified Eddington-inspired-Born-Infeld gravity with a trace term

    DOE PAGESBeta

    Chen, Che -Yu; Bouhmadi-Lopez, Mariam; Chen, Pisin

    2016-01-22

    In this study, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term gμνR being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric gμν . This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which weremore » not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic “quasi-sudden” singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.« less

  10. On the generalized wormhole in the Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Tamang, Amarjit; Potapov, Alexander A.; Lukmanova, Regina; Izmailov, Ramil; Nandi, Kamal K.

    2015-12-01

    In this paper, we wish to investigate certain observable effects in the recently obtained wormhole solution of the Eddington-inspired Born-Infeld (EiBI) theory, which generalizes the zero-mass Ellis-Bronnikov wormhole of general relativity. The solutions of EiBI theory contain an extra parameter κ having the inverse dimension of the cosmological constant Λ, and which is expected to modify various general relativistic observables such as the masses of wormhole mouths, tidal forces and light deflection. A remarkable result is that a non-zero κ could prevent the tidal forces in the geodesic orthonormal frame from becoming arbitrarily large near a small throat radius ({r}0˜ 0) contrary to what happens near a small Schwarzschild horizon radius (M˜ 0). The role of κ in the flare-out and energy conditions is also analyzed, which reveals that the energy conditions are violated. We show that the exotic matter in the EiBI wormhole cannot be interpreted as a phantom (ω =\\frac{{p}{{r}}}{ρ }\\lt -1) or ghost field ϕ of general relativity due to the fact that both ρ and p r are negative for all κ.

  11. Milne-Eddington inversion for unresolved magnetic structures in the quiet Sun photosphere

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2016-06-01

    This paper is first devoted to present our method for modeling unresolved magnetic structures in the Milne-Eddington inversion of spectropolarimetric data. The related definitions and other approaches and different used inversion algorithms are recalled for comparison. In a second part, we apply our method to quiet Sun data outside active regions. We obtain the quiet Sun photospheric magnetic field as composed of unresolved opening and connected magnetic flux tubes, which form a loop carpet of field lines. We then analyze the spatial correlation, which we also observed for the magnetic field vector, in terms of flux tube diameter, distance, and field strength. We find that different observations with the Zurich imaging polarimeter and THEMIS polarimeter mounted on the THEMIS telescope give very close results, and we add results also very close derived from HINODE/Solar Optical Telescope/spectropolarimeter observations analyzed with the same method. We obtain a mean flux tube diameter of 30 km, a mean flux tube distance of 230 km, and a mean flux tube magnetic field of 1.3 kG.

  12. Primordial power spectra of Eddington-inspired Born-Infeld inflation in strong gravity limit

    NASA Astrophysics Data System (ADS)

    Cho, Inyong; Singh, Naveen K.

    2015-07-01

    We investigate the scalar and the tensor perturbations of the φ2 inflation model in the strong-gravity limit of Eddington-inspired Born-Infeld (EiBI) theory. In order to consider the strong EiBI-gravity effect, we take the value of κ large, where κ is the EiBI theory parameter. The energy density of the Universe at the early stage is very high, and the Universe is in a strong-gravity regime. Therefore, the perturbation feature is not altered from what was investigated earlier. At the attractor inflationary stage, however, the feature is changed in the strong EiBI-gravity limit. The correction to the scalar perturbation in this limit comes mainly via the background matter field, while that to the tensor perturbation comes directly from the gravity (κ ) effect. The change in the value of the scalar spectrum is little compared with that in the weak EiBI-gravity limit, or in general relativity. The form of the tensor spectrum is the same as that in the weak limit, but the value of the spectrum can be suppressed down to zero in the strong limit. Therefore, the resulting tensor-to-scalar ratio can also be suppressed in the same way, which makes the φ2 model in EiBI theory viable.

  13. Resonances of Spin-1/2 Fermions in Eddington-Inspired Born-Infeld Gravity

    NASA Astrophysics Data System (ADS)

    Fu, Qi-Ming; Zhao, Li; Du, Yun-Zhi; Gu, Bao-Min

    2016-03-01

    We investigate the fermionic resonances for both chiralities in five-dimensional Eddington-inspired Born-Infeld (EiBI) theory. In order to localize fermion on the brane, it needs to be considered the Yukawa coupling between the fermion and the background scalar field. In our models, since the background scalar field has kink, double kink, or anti-kink solution, the system has rich resonant Kaluza–Klein (KK) modes structure. The massive KK fermionic modes feel a volcano potential, which result in a fermionic zero mode and a set of continuous massive KK modes. The inner structure of the branes and a free parameter in background scalar field influence the resonant behaviors of the massive KK fermions. Supported in part by the National Natural Science Foundation of China under Grant No. 11075065, the Huo Ying-Dong Education Foundation of Chinese Ministry of Education under Grant No. 121106 and the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2014-31

  14. Super-Eddington accreting massive black holes as long-lived cosmological standards.

    PubMed

    Wang, Jian-Min; Du, Pu; Valls-Gabaud, David; Hu, Chen; Netzer, Hagai

    2013-02-22

    Super-Eddington accreting massive black holes (SEAMBHs) reach saturated luminosities above a certain accretion rate due to photon trapping and advection in slim accretion disks. We show that these SEAMBHs could provide a new tool for estimating cosmological distances if they are properly identified by hard x-ray observations, in particular by the slope of their 2-10 keV continuum. To verify this idea we obtained black hole mass estimates and x-ray data for a sample of 60 narrow line Seyfert 1 galaxies that we consider to be the most promising SEAMBH candidates. We demonstrate that the distances derived by the new method for the objects in the sample get closer to the standard luminosity distances as the hard x-ray continuum gets steeper. The results allow us to analyze the requirements for using the method in future samples of active black holes and to demonstrate that the expected uncertainty, given large enough samples, can make them into a useful, new cosmological ruler. PMID:23473126

  15. A Niching Genetic Algorithm For Milne-Eddington Spectral Line Inversions

    NASA Astrophysics Data System (ADS)

    Harker, Brian; Balasubramaniam, K.; Sojka, Jan

    2006-10-01

    Stokes profile inversions form a basis for ``measuring'' solar magnetic fields. The High Altitude Observatory (HAO) Milne-Eddington (M-E) spectral line inversions have traditionally been used as initializations to more sophisticated inversion procedures. One such code uses a genetic-algorithm initialization to search the parameter space on a more global scale, in an effort to obtain a good starting guess for a more traditional hill-climbing (e.g. Levenberg-Marquardt) algorithm. A serious drawback to the type of genetic algorithm used is that it has been shown to perform poorly on high-dimensional spaces with multiple optima. A single-component M-E model atmosphere is typically described by about 7 free parameters, indicating a fairly high parameter space dimensionality. Two-component models increase the ability to fit frequently-observed asymmetric spectral lines, at the price of nearly doubling the dimension of the parameter space. Furthermore, spectral lines for large magnetic field strengths and large inclinations are very similar to profiles for weaker field strengths and small inclinations, indicating the potential presence of multiple optima that correspond to very different physical conditions. This poster presents an initial investigation into alleviating these difficulties by incorporating a more sophisticated evolutionary strategy into the SGA, and parallelizing over multiple processors.

  16. A Godunov Method for Multidimensional Radiation Magnetohydrodynamics Based on a Variable Eddington Tensor

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2012-03-01

    We describe a numerical algorithm to integrate the equations of radiation magnetohydrodynamics in multidimensions using Godunov methods. This algorithm solves the radiation moment equations in the mixed frame, without invoking any diffusion-like approximations. The moment equations are closed using a variable Eddington tensor whose components are calculated from a formal solution of the transfer equation at a large number of angles using the method of short characteristics. We use a comprehensive test suite to verify the algorithm, including convergence tests of radiation-modified linear acoustic and magnetosonic waves, the structure of radiation-modified shocks, and two-dimensional tests of photon bubble instability and the ablation of dense clouds by an intense radiation field. These tests cover a very wide range of regimes, including both optically thick and thin flows, and ratios of the radiation to gas pressure of at least 10-4-104. Across most of the parameter space, we find that the method is accurate. However, the tests also reveal there are regimes where the method needs improvement, for example when both the radiation pressure and absorption opacity are very large. We suggest modifications to the algorithm that will improve the accuracy in this case. We discuss the advantages of this method over those based on flux-limited diffusion. In particular, we find that the method is not only substantially more accurate, but often no more expensive than the diffusion approximation for our intended applications.

  17. Eddington-inspired Born-Infeld gravity: Phenomenology of nonlinear gravity-matter coupling

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Delsate, Térence; Cardoso, Vitor

    2012-04-01

    Viable corrections to the matter sector of Poisson’s equation may result in qualitatively different astrophysical phenomenology, for example, the gravitational collapse and the properties of compact objects can change drastically. We discuss a class of modified nonrelativistic theories and focus on a relativistic completion, Eddington-inspired Born-Infeld gravity. This recently proposed theory is equivalent to General Relativity in vacuum, but its nontrivial coupling to matter prevents singularities in early cosmology and in the nonrelativistic collapse of noninteracting particles. We extend our previous analysis, discussing further developments. We present a full numerical study of spherically symmetric nonrelativistic gravitational collapse of dust. For any positive coupling, the final state of the collapse is a regular pressureless star rather than a singularity. We also argue that there is no Chandrasekhar limit for the mass of a nonrelativistic white dwarf in this theory. Finally, we extend our previous results in the fully relativistic theory by constructing static and slowly rotating compact stars governed by nuclear-physics inspired equations of state. In the relativistic theory, there exists an upper bound on the mass of compact objects, suggesting that black holes can still be formed in the relativistic collapse.

  18. Super-Eddington wind scenario for the progenitors of type Ia supernovae: Accreting He-rich matter onto white dwarfs

    NASA Astrophysics Data System (ADS)

    Wang, B.; Li, Y.; Ma, X.; Liu, D.-D.; Cui, X.; Han, Z.

    2015-12-01

    Context. Supernovae of type Ia (SNe Ia) are believed to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs). However, the mass accretion process onto CO WDs is still not completely understood. Aims: In this paper, we study the accretion of He-rich matter onto CO WDs and explore a scenario in which a strong wind forms on the surface of the WD if the total luminosity exceeds the Eddington limit. Methods: Using a stellar evolution code called modules for experiments in stellar astrophysics (MESA), we simulated the He accretion process onto CO WDs for WDs with masses of 0.6-1.35 M⊙ and various accretion rates of 10-8-10-5 M⊙ yr-1. Results: If the contribution of the total luminosity is included when determining the Eddington accretion rate, then a super-Eddington wind could be triggered at relatively lower accretion rates than those of previous studies based on steady-state models. The super-Eddington wind can prevent the WDs with high accretion rates from evolving into red-giant-like He stars. We found that the contributions from thermal energy of the WD are non-negligible, judging by our simulations, even though the nuclear burning energy is the dominating source of luminosity. We also provide the limits of the steady He-burning regime in which the WDs do not lose any accreted matter and increase their mass steadily, and calculated the mass retention efficiency during He layer flashes for various WD masses and accretion rates. These obtained results can be used in future binary population synthesis computations.

  19. BOOK REVIEW: Once Upon Einstein

    NASA Astrophysics Data System (ADS)

    Giannetto, E.

    2007-07-01

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conté (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein `those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within À la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: `time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour

  20. THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS-LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS

    SciTech Connect

    Kelly, Brandon C.; Shen, Yue

    2013-02-10

    We employ a flexible Bayesian technique to estimate the black hole (BH) mass and Eddington ratio functions for Type 1 (i.e., broad line) quasars from a uniformly selected data set of {approx}58, 000 quasars from the Sloan Digital Sky Survey (SDSS) DR7. We find that the SDSS becomes significantly incomplete at M {sub BH} {approx}< 3 Multiplication-Sign 10{sup 8} M {sub Sun} or L/L {sub Edd} {approx}< 0.07, and that the number densities of Type 1 quasars continue to increase down to these limits. Both the mass and Eddington ratio functions show evidence of downsizing, with the most massive and highest Eddington ratio BHs experiencing Type 1 quasar phases first, although the Eddington ratio number densities are flat at z < 2. We estimate the maximum Eddington ratio of Type 1 quasars in the observable universe to be L/L {sub Edd} {approx} 3. Consistent with our results in Shen and Kelly, we do not find statistical evidence for a so-called sub-Eddington boundary in the mass-luminosity plane of broad-line quasars, and demonstrate that such an apparent boundary in the observed distribution can be caused by selection effect and errors in virial BH mass estimates. Based on the typical Eddington ratio in a given mass bin, we estimate growth times for the BHs in Type 1 quasars and find that they are comparable to or longer than the age of the universe, implying an earlier phase of accelerated (i.e., with higher Eddington ratios) and possibly obscured growth. The large masses probed by our sample imply that most of our BHs reside in what are locally early-type galaxies, and we interpret our results within the context of models of self-regulated BH growth.

  1. Ludwik Silberstein - Einstein's antagonist (German Title: Ludwik Silberstein - Einsteins Antagonist)

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.; Flin, Piotr

    We consider the life and work of the physicist Ludwik Silberstein, who corresponded with Einstein, Sommerfeld and other famous physicists and astronomers, and became known by his contributions to relativity and cosmology, among them a treatise on relativity. Silberstein, who had obtained his PhD in Berlin, became assistant in Lemberg, lecturer in mathematical physics in Bologna and Rome, and industrial physicist in London (1913) and with the Eastman Kodak Co. in Rochester, New York (1920). Although he always felt sympathetic with Einstein and his theory of relativity, he often voiced scepticism concerning its results and verification, and did not hesitate to make his doubts public, thereby losing much sympathy among his colleagues. His cosmological studies are also marked by wrong insights and a certain ignorance of astronomical facts; nevertheless his attacks against established opinions show sometimes an astonishing far-sightedness. In the appendix we publish two Silberstein letters: one to Sommerfeld on the discussion of the results of the solar eclipse expeditions of 1919, and another very personal one to Einstein, in which he reveals some details of his life.

  2. The Energy Dependence of GRB Minimum Variability Timescales

    NASA Astrophysics Data System (ADS)

    Golkhou, V. Zach; Butler, Nathaniel R.; Littlejohns, Owen M.

    2015-10-01

    We constrain the minimum variability timescales for 938 gamma-ray bursts (GRBs) observed by the Fermi/Gamma-ray Burst Monitor instrument prior to 2012 July 11. The tightest constraints on progenitor radii derived from these timescales are obtained from light curves in the hardest energy channel. In the softer bands—or from measurements of the same GRBs in the hard X-rays from Swift—we show that variability timescales tend to be a factor of two to three longer. Applying a survival analysis to account for detections and upper limits, we find median minimum timescale in the rest frame for long-duration and short-duration GRBs of 45 and 10 ms, respectively. Less than 10% of GRBs show evidence for variability on timescales below 2 ms. These shortest timescales require Lorentz factors ≳ 400 and imply typical emission radii R≈ 1× {10}14 cm for long-duration GRBs and R≈ 3× {10}13 cm for short-duration GRBs. We discuss implications for the GRB fireball model and investigate whether or not GRB minimum timescales evolve with cosmic time.

  3. The timescales of global surface-ocean connectivity

    NASA Astrophysics Data System (ADS)

    Jönsson, Bror F.; Watson, James R.

    2016-04-01

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types.

  4. Albert Einstein, Cosmos and Religion

    NASA Astrophysics Data System (ADS)

    Djokovic, V.; Grujic, P.

    2007-06-01

    We consider Einstein's attitude regarding religious as such, from both cosmological and epistemological points of view. An attempt to put it into a wider socio-historical perspective was made, with the emphasis on ethnic and religious background. It turns out that the great scientist was neither atheist nor believer in the orthodox sense and the closest labels one might stick to him in this respect would be pantheism/cosmism (ontological aspect) and agnosticism (epistemological aspect). His ideas on divine could be considered as a continuation of line traced by Philo of Alexandria, who himself followed Greek Stoics and (Neo-) Platonists and especially Baruch Spinoza. It turns out that Einstein's both scientific (rational aspects) and religious (intuitive aspects) thinking were deeply rooted in the Hellenic culture. His striving to unravel the secrets of the universe and the roots of cosmological order resembles much the ancient ideas of the role of knowledge in fathoming the divine as such, as ascribed to Gnostics.

  5. Unifying Einstein and Palatini gravities

    SciTech Connect

    Amendola, Luca; Enqvist, Kari; Koivisto, Tomi

    2011-02-15

    We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g{sub {mu}{nu}=}C(R)g{sub {mu}{nu}} with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.

  6. Parameterized Beyond-Einstein Growth

    SciTech Connect

    Linder, Eric; Linder, Eric V.; Cahn, Robert N.

    2007-09-17

    A single parameter, the gravitational growth index gamma, succeeds in characterizing the growth of density perturbations in the linear regime separately from the effects of the cosmic expansion. The parameter is restricted to a very narrow range for models of dark energy obeying the laws of general relativity but can take on distinctly different values in models of beyond-Einstein gravity. Motivated by the parameterized post-Newtonian (PPN) formalism for testing gravity, we analytically derive and extend the gravitational growth index, or Minimal Modified Gravity, approach to parameterizing beyond-Einstein cosmology. The analytic formalism demonstrates how to apply the growth index parameter to early dark energy, time-varying gravity, DGP braneworld gravity, and some scalar-tensor gravity.

  7. Could we now convince Einstein?

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi

    2006-01-01

    The present conference takes place in the same year that celebrates the centenary of Albert Einstein. Hence it is a good occasion to reflect on those problems which have been at the core of Einstein's intellectual activity. Undoubtedly the foundation of quantum mechanics (QM) is one of these problems. It is known that Einstein was never convinced by the interpretation of quantum mechanics accepted, in his times and still now, by the majority of physicists. The fact that he was sharing this skepticism with people like Schrödinger and, most of all, the fact that no convincing answer, to the doubts of these people, had emerged in a more than half a century old debate, helped in keeping alive the attention of a growing number of people on this problem. The crucial issue is that the standard interpretation of QM has some physical implications which are experimentally verifiable and which, for several years, have been thought to be incompatible with relativity theory (the so-called "quantum nonlocality"). On the other hand alternative, more intuitive, interpretations (such as the ensemble interpretation) seemed to be ruled out from very well confirmed experimental data. The way out from this impasse has required a deep analysis of the connections between mathematics and physics as well as the emergence of new ideas both in mathematics (non-Kolmogorovian probabilities) and in physics (the theory of adaptive systems). The Einstein centenary is a good occasion for a short survey of these developments with the goal of answering the intriguing question posed in the title of the present paper.

  8. ...und Einstein hatte doch recht

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.; Leuchs, Anne; Leuchs, Gerd

    Keine wissenschaftliche Theorie ist auf solche Faszination auch außerhalb der Wissenschaft gestoßen wie die Allgemeine Relativitätstheorie von Albert Einstein, und keine wurde so nachdrücklich mit den Mitteln der modernen Physik überprüft. Wie hat sie diesen Test mit Raumsonden, Radioastronomie, Atomuhren und Supercomputern standgehalten? Hatte Einstein recht? Mit der Autorität des Fachmanns und dem Flair des unvoreingenommenen Erzählers schildert Clifford Will die Menschen, Ideen und Maschinen hinter den Tests der allgemeinen Relativitätstheorie. Ohne Formeln und Fachjargon wird der leser mit Einsteins Gedanken vertraut und erfährt von der Bestätigung seiner Vorhersagen, angefangen bei der Lichtablenkung im Schwerefeld der Sonne 1919 bis zu den ausgefeilten Kreiselexperimenten auf dem Space Shuttle. Die Allgemeine Relativitätstheorie hat nich nur alle diese Tests bestanden, sie hat darüber hinaus wesentlich beigetragen zu unserem Verständnis von Phänomenen wie Pulsaren, Quasaren, Schwarzen Löchern und Gravitationslinsen. Dieses Buch erzählt lebendig und spannend die Geschichte einer der größten geistigen Leistungen unserer Zeit.

  9. A global three-dimensional radiation magneto-hydrodynamic simulation of super-eddington accretion disks

    SciTech Connect

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-12-01

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  10. Comparison of inversion codes for polarized line formation in MHD simulations. I. Milne-Eddington codes

    NASA Astrophysics Data System (ADS)

    Borrero, J. M.; Lites, B. W.; Lagg, A.; Rezaei, R.; Rempel, M.

    2014-12-01

    Milne-Eddington (M-E) inversion codes for the radiative transfer equation are the most widely used tools to infer the magnetic field from observations of the polarization signals in photospheric and chromospheric spectral lines. Unfortunately, a comprehensive comparison between the different M-E codes available to the solar physics community is still missing, and so is a physical interpretation of their inferences. In this contribution we offer a comparison between three of those codes (VFISV, ASP/HAO, and HeLIx+). These codes are used to invert synthetic Stokes profiles that were previously obtained from realistic non-grey three-dimensional magnetohydrodynamical (3D MHD) simulations. The results of the inversion are compared with each other and with those from the MHD simulations. In the first case, the M-E codes retrieve values for the magnetic field strength, inclination and line-of-sight velocity that agree with each other within σB ≤ 35 (Gauss), σγ ≤ 1.2°, and σv ≤ 10 m s-1, respectively. Additionally, M-E inversion codes agree with the numerical simulations, when compared at a fixed optical depth, within σB ≤ 130 (Gauss), σγ ≤ 5°, and σv ≤ 320 m s-1. Finally, we show that employing generalized response functions to determine the height at which M-E codes measure physical parameters is more meaningful than comparing at a fixed geometrical height or optical depth. In this case the differences between M-E inferences and the 3D MHD simulations decrease to σB ≤ 90 (Gauss), σγ ≤ 3°, and σv ≤ 90 m s-1.

  11. The dark matter distribution function and halo thermalization from the Eddington equation in galaxies

    NASA Astrophysics Data System (ADS)

    de Vega, H. J.; Sanchez, N. G.

    2016-05-01

    We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with warm dark matter (WDM). With these methods we find: (i) Cored density profiles behaving quadratically for small distances ρ(r)= r → 0ρ(0) ‑ Kr2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r ≲ 3rh where rh is the halo radius. (iii) Analytic expressions for the dispersion velocity and the pressure are derived yielding at each halo point an ideal DM gas equation of state with local temperature T(r) ≡ mv2(r)/3. T(r) turns out to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T0 for r ≲ 3rh, (b) a space dependent temperature T(r) for 3rh < r ≲ Rvirial, which slowly decreases with r. That is, the DM halo is realistically a collisionless self-gravitating thermal gas for r ≲ Rvirial. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.

  12. EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6

    SciTech Connect

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Albert, Loic; Arzoumanian, Doris; Bergeron, Jacqueline; Omont, Alain; Delorme, Philippe; Reyle, Celine

    2010-08-15

    We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z = 6.44. We also use near-infrared spectroscopy of nine CFHQS quasars at z {approx} 6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between Mg II FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus, these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z = 6. Our black hole mass function is {approx}10{sup 4} times lower than at z = 0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high redshift than is observed at low redshift and/or a low quasar duty cycle at z = 6. In comparison, the global stellar mass function is only {approx}10{sup 2} times lower at z = 6 than at z = 0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass-stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4 < z < 6 from the local relation if one just studies the most massive black holes.

  13. SN 2008S: A Cool Super-Eddington Wind in a Supernova Impostor

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Ganeshalingam, Mohan; Chornock, Ryan; Filippenko, Alexei V.; Li, Weidong; Silverman, Jeffrey M.; Steele, Thea N.; Griffith, Christopher V.; Joubert, Niels; Lee, Nicholas Y.; Lowe, Thomas B.; Mobberley, Martin P.; Winslow, Dustin M.

    2009-05-01

    We present visual-wavelength photometry and spectroscopy of supernova (SN) 2008S. Based on the low peak luminosity for a SN of MR = -13.9 mag, photometric and spectral evolution unlike that of low-luminosity SNe, a late-time decline rate slower than 56Co decay, and slow outflow speeds of 600-1000 km s-1, we conclude that SN 2008S is not a true core-collapse SN and is probably not an electron-capture SN. Instead, we show that SN 2008S more closely resembles an "SN impostor" event like SN 1997bs, analogous to the giant eruptions of luminous blue variables (LBVs). Its total radiated energy was ~1047.8 erg, and it may have ejected 0.05-0.2 M sun in the event. We discover an uncanny similarity between the spectrum of SN 2008S and that of the Galactic hypergiant IRC+10420, which is dominated by narrow Hα, [Ca II], and Ca II emission lines formed in an opaque wind. We propose a scenario where the vastly super-Eddington (Γ ≈ 40) wind of SN 2008S partly fails because of reduced opacity due to recombination, as suggested for IRC+10420. The range of initial masses susceptible to eruptive LBV-like mass loss was known to extend down to 20-25 M sun, but estimates for the progenitor of SN 2008S (and the similar NGC 300 transient) may extend this range to lsim15 M sun. As such, SN 2008S may have implications for the progenitor of SN 1987A.

  14. Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint

    SciTech Connect

    Hodge, B. M.; Milligan, M.

    2011-03-01

    In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

  15. CHEMICAL TIMESCALES IN THE ATMOSPHERES OF HIGHLY ECCENTRIC EXOPLANETS

    SciTech Connect

    Visscher, Channon

    2012-09-20

    Close-in exoplanets with highly eccentric orbits are subject to large variations in incoming stellar flux between periapse and apoapse. These variations may lead to large swings in atmospheric temperature, which in turn may cause changes in the chemistry of the atmosphere from higher CO abundances at periapse to higher CH{sub 4} abundances at apoapse. Here, we examine chemical timescales for CO{r_reversible}CH{sub 4} interconversion compared to orbital timescales and vertical mixing timescales for the highly eccentric exoplanets HAT-P-2b and CoRoT-10b. As exoplanet atmospheres cool, the chemical timescales for CO{r_reversible}CH{sub 4} tend to exceed orbital and/or vertical mixing timescales, leading to quenching. The relative roles of orbit-induced thermal quenching and vertical quenching depend upon mixing timescales relative to orbital timescales. For both HAT-P-2b and CoRoT-10b, vertical quenching will determine disequilibrium CO{r_reversible}CH{sub 4} chemistry at faster vertical mixing rates (K{sub zz} > 10{sup 7} cm{sup 2} s{sup -1}), whereas orbit-induced thermal quenching may play a significant role at slower mixing rates (K{sub zz} < 10{sup 7} cm{sup 2} s{sup -1}). The general abundance and chemical timescale results-calculated as a function of pressure, temperature, and metallicity-can be applied for different atmospheric profiles in order to estimate the quench level and disequilibrium abundances of CO and CH{sub 4} on hydrogen-dominated exoplanets. Observations of CO and CH{sub 4} on highly eccentric exoplanets may yield important clues to the chemical and dynamical properties of their atmospheres.

  16. Chemical Timescales in the Atmospheres of Highly Eccentric Exoplanets

    NASA Astrophysics Data System (ADS)

    Visscher, Channon

    2012-09-01

    Close-in exoplanets with highly eccentric orbits are subject to large variations in incoming stellar flux between periapse and apoapse. These variations may lead to large swings in atmospheric temperature, which in turn may cause changes in the chemistry of the atmosphere from higher CO abundances at periapse to higher CH4 abundances at apoapse. Here, we examine chemical timescales for CO\\rightleftarrowsCH4 interconversion compared to orbital timescales and vertical mixing timescales for the highly eccentric exoplanets HAT-P-2b and CoRoT-10b. As exoplanet atmospheres cool, the chemical timescales for CO\\rightleftarrowsCH4 tend to exceed orbital and/or vertical mixing timescales, leading to quenching. The relative roles of orbit-induced thermal quenching and vertical quenching depend upon mixing timescales relative to orbital timescales. For both HAT-P-2b and CoRoT-10b, vertical quenching will determine disequilibrium CO\\rightleftarrowsCH4 chemistry at faster vertical mixing rates (Kzz > 107 cm2 s-1), whereas orbit-induced thermal quenching may play a significant role at slower mixing rates (Kzz < 107 cm2 s-1). The general abundance and chemical timescale results—calculated as a function of pressure, temperature, and metallicity—can be applied for different atmospheric profiles in order to estimate the quench level and disequilibrium abundances of CO and CH4 on hydrogen-dominated exoplanets. Observations of CO and CH4 on highly eccentric exoplanets may yield important clues to the chemical and dynamical properties of their atmospheres.

  17. Einstein Gyrogroup as a B-loop

    NASA Astrophysics Data System (ADS)

    Suksumran, Teerapong; Wiboonton, Keng

    2015-08-01

    Using the Clifford algebra formalism, we give an algebraic proof that the open unit ball B = v ∈Rn : ‖ v ‖ < 1 } of Rn equipped with Einstein addition ⊕E forms a B-loop or, equivalently, a uniquely 2-divisible gyrocommutative gyrogroup. We obtain a compact formula for Einstein addition in terms of Möbius addition. We then give a characterization of associativity and commutativity of vectors in B with respect to Einstein addition.

  18. Reservoir timescales for anthropogenic CO2 in the atmosphere

    PubMed

    O'Neill, B C; Gaffin, S R; Tubiello, F N; Oppenheimer, M

    1994-11-01

    Non-steady state timescales are complicated and their application to specific geophysical systems requires a common theoretical foundation. We first extend reservoir theory by quantifying the difference between turnover time and transit time (or residence time) for time-dependent systems under any mixing conditions. We explicitly demonstrate the errors which result from assuming these timescales are equal, which is only true at steady state. We also derive a new response function which allows the calculation of age distributions and timescales for well-mixed reservoirs away from steady state, and differentiate between timescales based on gross and net fluxes. These theoretical results are particularly important to tracer-calibrated "box models" currently used to study the carbon cycle, which usually approximate reservoirs as well-mixed. We then apply the results to the important case of anthropogenic CO2 in the atmosphere, since timescales describing its behavior are commonly used but ambiguously defined. All relevant timescales, including lifetime, transit time, and adjustment time, are precisely defined and calculated from data and models. Apparent discrepancies between the current, empirically determined turnover time of 30-60 years and longer model-derived estimates of expected lifetime and adjustment time are explained within this theoretical framework. We also discuss the results in light of policy issues related to global warming, in particular since any comparisons of the "lifetimes" of different greenhouse gases (CO2, CH4, N2O, CFC's etc.) must use a consistent definition to be meaningful. PMID:11541520

  19. Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales

    PubMed Central

    Boker, Steven M.

    2015-01-01

    An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development. PMID:27066197

  20. Stability within Jupiter's polar auroral 'Swirl region' over moderate timescales

    NASA Astrophysics Data System (ADS)

    Stallard, Tom S.; Clarke, John T.; Melin, Henrik; Miller, Steve; Nichols, Jon D.; O'Donoghue, James; Johnson, Rosie E.; Connerney, John E. P.; Satoh, Takehiko; Perry, Michael

    2016-04-01

    Jupiter's Swirl region, poleward of the main auroral emission, has been characterised in previous observations as having highly variable auroral emission, changing dramatically across the region on a two-minute timescale, the typical integration time for UV images. This variability has made comparisons with H3+ emission difficult. Here, we show that the Swirl region in H3+ images is characterised by relatively stable emission, often with an arc of emission on the boundary between the Swirl and Dark regions. Coadding multiple UV images taken over the approximate lifetime of the H3+ molecule in the ionosphere, show similar structures to those observed in the H3+ images. Our analysis shows that UV auroral morphology within Jupiter's Swirl region is only highly variable on short timescales of ∼100 s, an intrinsic property of the particle precipitation process, but this variability drops away on timescales of 5-15 min. On moderate timescales between 10 and 100 min, the Swirl region is stable, evolving through as yet unknown underlying magnetospheric interactions. This shows that observing the UV aurora over timescales 5-15 min resolves clear auroral structures that will help us understand the magnetospheric origin of these features, and that calculating the variability over different timescales, especially >15 min, provides a new and important new tool in our understanding of Jupiter's polar aurora.

  1. Einstein as a Missionary of Science

    NASA Astrophysics Data System (ADS)

    Renn, Jürgen

    2013-10-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed studies, Einstein's travels and their impact on the dissemination of relativity theory are examined. These activities as well as Einstein's own popular writings are interpreted in the context of his understanding of science as part of human culture.

  2. Eddington Ratio Distribution of X-Ray-selected Broad-line AGNs at 1.0 < z < 2.2

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles; Silverman, John D.; Schramm, Malte

    2015-12-01

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction of massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  3. Albert Einstein:. Opportunity and Perception

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    The year 1905 has been called Albert Einstein's "Annus Mirabilis." It was during that year that he caused revolutionary changes in man's primordial concepts about the physical world: space, time, energy, light and matter. How could a 26-year-old clerk, previously unknown, cause such profound conceptual changes, and thereby open the door to the era of modern scientific technological world? No one, of course, can answer that question. But one can, perhaps, analyze some factors that were essential to his stepping into such a historic role...

  4. Eddington-inspired Born-Infeld gravity: nuclear physics constraints and the validity of the continuous fluid approximation

    SciTech Connect

    Avelino, P.P.

    2012-11-01

    In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory κ, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level.

  5. Super- and sub-Eddington accreting massive black holes: a comparison of slim and thin accretion discs through study of the spectral energy distribution

    NASA Astrophysics Data System (ADS)

    Castelló-Mor, N.; Netzer, H.; Kaspi, S.

    2016-05-01

    We employ optical and ultraviolet (UV) observations to present spectral energy distributions (SEDs) for two reverberation-mapped samples of super-Eddington and sub-Eddington active galactic nuclei (AGN) with similar luminosity distributions. The samples are fitted with accretion disc (AD) models in order to look for SED differences that depend on the Eddington ratio. The fitting takes into account measured black hole (BH) mass and accretion rates, BH spin and intrinsic reddening of the sources. All objects in both groups can be fitted by thin AD models over the range 0.2-1 μm with reddening as a free parameter. The intrinsic reddening required to fit the data are relatively small, E(B - V) ≤ 0.2 mag, except for one source. Super-Eddington AGN seems to require more reddening. The distribution of E(B - V) is similar to what is observed in larger AGN samples. The best-fitting disc models recover very well the BH mass and accretion for the two groups. However, the SEDs are very different, with super-Eddington sources requiring much more luminous far-UV continuum. The exact amount depends on the possible saturation of the UV radiation in slim discs. In particular, we derive for the super-Eddington sources a typical bolometric correction at 5100 Å of 60-150 compared with a median of ˜20 for the sub-Eddington AGN. The measured torus luminosity relative to λLλ(5100 Å) are similar in both groups. The αOX distribution is similar too. However, we find extremely small torus covering factors for super-Eddington sources, an order of magnitude smaller than those of sub-Eddington AGN. The small differences between the groups regarding the spectral range 0.2-22 μm, and the significant differences related to the part of the SED that we cannot observe may be consistent with some slim disc models. An alternative explanation is that present day slim-disc models overestimate the far-UV luminosity of such objects by a large amount.

  6. A diversity of localized timescales in network activity

    PubMed Central

    Chaudhuri, Rishidev; Bernacchia, Alberto; Wang, Xiao-Jing

    2014-01-01

    Neurons show diverse timescales, so that different parts of a network respond with disparate temporal dynamics. Such diversity is observed both when comparing timescales across brain areas and among cells within local populations; the underlying circuit mechanism remains unknown. We examine conditions under which spatially local connectivity can produce such diverse temporal behavior. In a linear network, timescales are segregated if the eigenvectors of the connectivity matrix are localized to different parts of the network. We develop a framework to predict the shapes of localized eigenvectors. Notably, local connectivity alone is insufficient for separate timescales. However, localization of timescales can be realized by heterogeneity in the connectivity profile, and we demonstrate two classes of network architecture that allow such localization. Our results suggest a framework to relate structural heterogeneity to functional diversity and, beyond neural dynamics, are generally applicable to the relationship between structure and dynamics in biological networks. DOI: http://dx.doi.org/10.7554/eLife.01239.001 PMID:24448407

  7. What Einstein Can Teach Us about Education

    ERIC Educational Resources Information Center

    Hayes, Denis

    2007-01-01

    People are more likely to associate Einstein with complex scientific theories and mathematical calculations than with education theory. In fact, Einstein's own experiences of schooling and his reflections on the meaning of life and the significance of education are profound and oddly relevant to the situation that pertains in England today. It is…

  8. Einstein as a Missionary of Science

    ERIC Educational Resources Information Center

    Renn, Jürgen

    2013-01-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed…

  9. Books on Einstein--Collectors' Delight

    ERIC Educational Resources Information Center

    Khoon, Koh Aik; Jalal, Azman; Abd-Shukor, R.; Yatim, Baharudin; Talib, Ibrahim Abu; Daud, Abdul Razak; Samat, Supian

    2009-01-01

    A survey of thirteen books on Einstein is presented. Its gives an idea on how much is written about the man and how frequent are the publications. The year 2005 saw the most publications. It is the centenary for the Miraculous Year. Interestingly some books can just sustain their readers' interest with just words. Einstein comes alive with the…

  10. People Interview: Continuing Einstein's great work

    NASA Astrophysics Data System (ADS)

    2009-09-01

    INTERVIEW Continuing Einstein's great work Dr Michio Kaku is a theoretical physicist, bestselling author and popularizer of science. He is the co-founder of string field theory (a branch of string theory) and continues Einstein's search to unite the four fundamental forces of nature into one unified theory. David Smith speaks to him about inspiration and education.

  11. New Self-Dual Einstein Metrics

    NASA Astrophysics Data System (ADS)

    Casteill, P. Y.; Valent, G.

    A new family of euclidean Einstein metrics with self-dual Weyl tensor have been obtained using ideas from extended supersymmetries1,2. The basic supersymmetric formalism3, known as harmonic superspace, was adapted to the computation of self-dual Einstein metrics in 4. The resulting metric depends on 4 parameters besides the Einstein constant and has for isometry group U(1) × U(1), with hypersurface generating Killing vectors. In the limit of vanishing Einstein constant we recover a family of hyperkähler metrics within the Multicentre family 5 (in fact the most general one with two centres). Our results include the metrics of Plebanski and Demianski6 when these ones are restricted to be self-dual Weyl. From Flaherty's equivalence 7 these metrics can also be interpreted as a solution of the coupled Einstein-Maxwell field equations, for which we have given the Maxwell field strength forms2.

  12. Astrophysical observations: lensing and eclipsing Einstein's theories.

    PubMed

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics. PMID:15705841

  13. Albert Einstein's Magic Mountain: An Aarau Education*

    NASA Astrophysics Data System (ADS)

    Hunziker, Herbert

    2015-03-01

    For economic reasons, the electrotechnical factory J. Einstein & Cie. (co-owned by Albert Einstein's father Hermann) had to be closed in the summer of 1894. While Albert's parents emigrated to Italy to build a new existence, he remained in Munich to complete his studies at the Gymnasium. Left behind, however, he had a difficult time with what he considered the rigid educational practices at the Munich Luitpold-Gymnasium and quit without a diploma. The present article discusses Einstein's richly winding path to the Aargau Cantonal School (Switzerland), especially its history and educational philosophy during the time of his stay in Aarau. There, Einstein met some outstanding teachers, who could serve him as models of scholars and human beings. In spite of Einstein's distinct independence of mind, these personalities may well have had a significant influence on the alignment of his inner compass.

  14. Gravitational Lensing: Einstein's unfinished symphony

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; Ellis, Richard S.

    2015-01-01

    Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of general relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring the distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a failure of general relativity on large scales. We illustrate the wide range of applications which harness the power of gravitational lensing, from searches for the earliest galaxies magnified by massive clusters to those for extrasolar planets which temporarily brighten a background star. We summarise the future prospects with dedicated ground and space-based facilities designed to exploit this remarkable physical phenomenon.

  15. The timescales of global surface-ocean connectivity.

    PubMed

    Jönsson, Bror F; Watson, James R

    2016-01-01

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types. PMID:27093522

  16. A Two-Timescale Discretization Scheme for Collocation

    NASA Technical Reports Server (NTRS)

    Desai, Prasun; Conway, Bruce A.

    2004-01-01

    The development of a two-timescale discretization scheme for collocation is presented. This scheme allows a larger discretization to be utilized for smoothly varying state variables and a second finer discretization to be utilized for state variables having higher frequency dynamics. As such. the discretization scheme can be tailored to the dynamics of the particular state variables. In so doing. the size of the overall Nonlinear Programming (NLP) problem can be reduced significantly. Two two-timescale discretization architecture schemes are described. Comparison of results between the two-timescale method and conventional collocation show very good agreement. Differences of less than 0.5 percent are observed. Consequently. a significant reduction (by two-thirds) in the number of NLP parameters and iterations required for convergence can be achieved without sacrificing solution accuracy.

  17. BINARY ASTEROID ENCOUNTERS WITH TERRESTRIAL PLANETS: TIMESCALES AND EFFECTS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-01-15

    Many asteroids that make close encounters with terrestrial planets are in a binary configuration. Here, we calculate the relevant encounter timescales and investigate the effects of encounters on a binary's mutual orbit. We use a combination of analytical and numerical approaches with a wide range of initial conditions. Our test cases include generic binaries with close, moderate, and wide separations, as well as seven well-characterized near-Earth binaries. We find that close approaches (<10 Earth radii) occur for almost all binaries on 1-10 million year timescales. At such distances, our results suggest substantial modifications to a binary's semimajor axis, eccentricity, and inclination, which we quantify. Encounters within 30 Earth radii typically occur on sub-million year timescales and significantly affect the wider binaries. Important processes in the lives of near-Earth binaries, such as tidal and radiative evolution, can be altered or stopped by planetary encounters.

  18. Diffusion Time-Scale of Porous Pressure-Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Teduka, Norikazu; Kameda, Masaharu; Asai, Keisuke

    2001-01-01

    Pressure-sensitive paint (PSP) is an optical pressure sensor that utilizes the oxygen quenching of luminescence. PSP measurements in unsteady aerodynamic flows require fast time response of the paint. There are two characteristic time-scales that are related to the time response of PSP. One is the luminescent lifetime representing an intrinsic physical limit for the achievable temporal resolution of PSP. Another is the time-scale of oxygen diffusion across the PSP layer. When the time-scale of oxygen diffusion is much larger than the luminescent lifetime, the time response of PSP is controlled by oxygen diffusion. In a thin homogenous polymer layer where diffusion is Fickian, the oxygen concentration 1021 can be described by the diffusion equation in one-dimension.

  19. Einstein Ring in Distant Universe

    NASA Astrophysics Data System (ADS)

    2005-06-01

    Using ESO's Very Large Telescope, Rémi Cabanac and his European colleagues have discovered an amazing cosmic mirage, known to scientists as an Einstein Ring. This cosmic mirage, dubbed FOR J0332-3557, is seen towards the southern constellation Fornax (the Furnace), and is remarkable on at least two counts. First, it is a bright, almost complete Einstein ring. Second, it is the farthest ever found. ESO PR Photo 20a/05 ESO PR Photo 20a/05 Deep Image of a Region in Fornax (FORS/VLT) [Preview - JPEG: 400 x 434 pix - 60k] [Normal - JPEG: 800 x 867 pix - 276k] [Full Res - JPEG: 1859 x 2015 pix - 3.8M] ESO PR Photo 20b/05 ESO PR Photo 20b/05 Zoom-in on the Newly Found Einstein Ring (FORS/VLT) [Preview - JPEG: 400 x 575 pix - 168k] [Normal - JPEG: 630 x 906 pix - 880k] Caption: ESO PR Photo 20a/05 is a composite image taken in two bands (B and R) with VLT/FORS1 of a small portion of the sky (field-of-view 7x7' or 1/15th of the area of the full moon). The faintest object seen in the image has a magnitude 26, that is, it is 100 million times fainter than what can be observed with the unaided eye. The bright elliptical galaxy on the lower-left quadrant is a dwarf galaxy part of a large nearby cluster in the Fornax constellation. As for all deep images of the sky, this field shows a variety of objects, the brightest ponctual sources being stars from our Galaxy. By far the field is dominated by thousands of faint background galaxies the colours of which are related to the age of their dominant stellar population, their dust content and their distance. The newly found Einstein ring is visible in the top right part of the image. ESO PR Photo 20b/05 zooms-in on the position of the newly found cosmic mirage. ESO PR Photo 20c/05 ESO PR Photo 20c/05 Einstein Ring in Distant Universe (FORS/VLT) [Preview - JPEG: 400 x 584 pix - 104k] [Normal - JPEG: 800 x 1168 pix - 292k] [Full Res - JPEG: 1502 x 2192 pix - 684k] Caption of ESO PR Photo 20c/05: The left image is magnified and centred

  20. Action Planning and the Timescale of Evidence Accumulation

    PubMed Central

    Donner, Tobias H.

    2015-01-01

    Perceptual decisions are based on the temporal integration of sensory evidence for different states of the outside world. The timescale of this integration process varies widely across behavioral contexts and individuals, and it is diagnostic for the underlying neural mechanisms. In many situations, the decision-maker knows the required mapping between perceptual evidence and motor response (henceforth termed “sensory-motor contingency”) before decision formation. Here, the integrated evidence can be directly translated into a motor plan and, indeed, neural signatures of the integration process are evident as build-up activity in premotor brain regions. In other situations, however, the sensory-motor contingencies are unknown at the time of decision formation. We used behavioral psychophysics and computational modeling to test if knowledge about sensory-motor contingencies affects the timescale of perceptual evidence integration. We asked human observers to perform the same motion discrimination task, with or without trial-to-trial variations of the mapping between perceptual choice and motor response. When the mapping varied, it was either instructed before or after the stimulus presentation. We quantified the timescale of evidence integration under these different sensory-motor mapping conditions by means of two approaches. First, we analyzed subjects’ discrimination threshold as a function of stimulus duration. Second, we fitted a dynamical decision-making model to subjects’ choice behavior. The results from both approaches indicated that observers (i) integrated motion information for several hundred ms, (ii) used a shorter than optimal integration timescale, and (iii) used the same integration timescale under all sensory-motor mappings. We conclude that the mechanisms limiting the timescale of perceptual decisions are largely independent from long-term learning (under fixed mapping) or rapid acquisition (under variable mapping) of sensory

  1. Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Mushotzy, Richard F.; Winter, Lisa M.; McIntosh, Daniel H.; Tueller, Jack

    2008-01-01

    We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10(exp 3) in luminosity (L(sub IR) approx.equals L(sub BAT)(sup 1.25) and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.

  2. The Canarias Einstein ring: a newly discovered optical Einstein ring

    NASA Astrophysics Data System (ADS)

    Bettinelli, M.; Simioni, M.; Aparicio, A.; Hidalgo, S. L.; Cassisi, S.; Walker, A. R.; Piotto, G.; Valdes, F.

    2016-09-01

    We report the discovery of an optical Einstein ring in the Sculptor constellation, IAC J010127-334319, in the vicinity of the Sculptor dwarf spheroidal galaxy. It is an almost complete ring (˜300°) with a diameter of ˜4.5 arcsec. The discovery was made serendipitously from inspecting Dark Energy Camera (DECam) archive imaging data. Confirmation of the object nature has been obtained by deriving spectroscopic redshifts for both components, lens and source, from observations at the 10.4 m Gran Telescopio CANARIAS (GTC) with the spectrograph OSIRIS. The lens, a massive early-type galaxy, has a redshift of z = 0.581, while the source is a starburst galaxy with redshift of z = 1.165. The total enclosed mass that produces the lensing effect has been estimated to be Mtot = (1.86 ± 0.23) × 1012 M⊙.

  3. Revisiting Einstein's brain in Brain Awareness Week.

    PubMed

    Chen, Hao; Chen, Su; Zeng, Lidan; Zhou, Lin; Hou, Shengtao

    2014-10-01

    Albert Einstein's brain has long been an object of fascination to both neuroscience specialists and the general public. However, without records of advanced neuro-imaging of his brain, conclusions regarding Einstein's extraordinary cognitive capabilities can only be drawn based on the unique external features of his brain and through comparison of the external features with those of other human brain samples. The recent discovery of 14 previously unpublished photographs of Einstein's brain taken at unconventional angles by Dr. Thomas Stoltz Harvey, the pathologist, ignited a renewed frenzy about clues to explain Einstein's genius. Dr. Dean Falk and her colleagues, in their landmark paper published in Brain (2013; 136:1304-1327), described in such details about the unusual features of Einstein's brain, which shed new light on Einstein's intelligence. In this article, we ask what are the unique structures of his brain? What can we learn from this new information? Can we really explain his extraordinary cognitive capabilities based on these unique brain structures? We conclude that studying the brain of a remarkable person like Albert Einstein indeed provides us a better example to comprehensively appreciate the relationship between brain structures and advanced cognitive functions. However, caution must be exercised so as not to over-interpret his intelligence solely based on the understanding of the surface structures of his brain. PMID:25382446

  4. The Beyond Einstein Outreach Program

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, Anita

    2006-09-01

    We are currently in the beginning stages of designing an education and public outreach effort for the Beyond Einstein (BE) program. This presentation will discuss opportunities for scientists involved in the BE program to work with us on engaging a variety of audiences on outreach efforts of various scales. These range from being part of a speaker's bureau to promote the science to working with museums, community groups, teachers and school classrooms, etc. We would like to offer our help to scientists who have ROSES awards related to BE science (such as the BEFS grantees) to apply for EPO funding so that we can leverage efforts and build a coherent and vibrant EPO program. Additionally, we have initiated a few efforts that might allow BE scientists to leverage our ongoing programs and take advantage of established infrastructure.

  5. Orbital Forcing at Monthly-to-Multidecadal Timescales

    NASA Astrophysics Data System (ADS)

    Stine, A.; Huybers, P.

    2010-12-01

    The bulk of variability in Earth's surface temperature can be directly associated with the orbital motions of the tropical year, precession of the equinoxes, and obliquity variability. Orbital forcing also varies at timescales associated with the orbits of other objects in the solar system. We examine the spectrum of orbital forcing from monthly-to-multidecadal timescales and estimate the sensitivity and detectability of orbital forcing on the timescales associated with Jupiter, Venus and the Moon. We compile a large number of daily resolution thermometer records and calculate the spectrum of temperature variability at forced and unforced frequencies. We use the gain of the annual cycle of surface temperature to estimate the expected response of surface temperature to orbital insolation forcing, under the assumption that the gain of the annual cycle is representative of the local (in frequency) sensitivity of surface temperature to insolation forcing. We use the observed phase and amplitude of temperature variability at forced frequencies, relative to the phase and amplitude of insolation forcing, to test the hypothesis of orbital influence on temperature at Jovian, Venusian and Lunar timescales.

  6. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    ERIC Educational Resources Information Center

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  7. Magnitudes and timescales of total solar irradiance variability

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2016-07-01

    The Sun's net radiative output varies on timescales of minutes to gigayears. Direct measurements of the total solar irradiance (TSI) show changes in the spatially- and spectrally-integrated radiant energy on timescales as short as minutes to as long as a solar cycle. Variations of ~0.01% over a few minutes are caused by the ever-present superposition of convection and oscillations with very large solar flares on rare occasion causing slightly-larger measurable signals. On timescales of days to weeks, changing photospheric magnetic activity affects solar brightness at the ~0.1% level. The 11-year solar cycle shows variations of comparable magnitude with irradiances peaking near solar maximum. Secular variations are more difficult to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Historical reconstructions of the Sun's irradiance based on indicators of solar-surface magnetic activity, such as sunspots, faculae, and cosmogenic isotope records, suggest solar brightness changes over decades to millennia, although the magnitudes of these variations have high uncertainties due to the indirect historical records on which they rely. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities. In this manuscript I summarize the Sun's variability magnitudes over different temporal regimes and discuss the irradiance record's relevance for solar and climate studies as well as for detections of exo-solar planets transiting Sun-like stars.

  8. Rate-based ABR flow control using two timescale SPSA

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Shalabh; Fu, Michael C.; Marcus, Steven I.

    1999-08-01

    In this paper, a two timescale simultaneous perturbation stochastic approximation algorithm is developed and applied to closed loop rate based available bit rate flow control. The relevant convergence results are stated and explained. Numerical experiments demonstrate fast convergence even in the presence of significant delays and a large number of parameterized policy levels.

  9. Granular convection and its application to asteroidal resurfacing timescale

    NASA Astrophysics Data System (ADS)

    Yamada, Tomoya; Ando, Kosuke; Morota, Tomokatsu; Katsuragi, Hiroaki

    2016-04-01

    A model for the asteroid resurfacing resulting from regolith convection is built to estimate its timescale. The regolith convection by impact-induced global seismic shaking could be a possible reason for regolith migration and resultant segregated terrain which were found on the asteroids Itokawa [1]. Some recent studies [2, 3] experimentally investigated the convective velocity of the vibrated granular bed to discuss the feasibility of regolith convection under the microgravity condition such as small asteroids. These studies found that the granular convective velocity is almost proportional to the gravitational acceleration [2, 3]. Namely, the granular (regolith) convective velocity would be very low under the microgravity condition. Therefore, the timescale of resurfacing by regolith convection would become very long. In order to examine the feasibility of the resurfacing by regolith convection on asteroids, its timescale have to be compared with the surface age or the lifetime of asteroids. In this study, we aim at developing a model of asteroid resurfacing process induced by regolith convection. The model allows us to estimate the resurfacing timescale for various-sized asteroids covered with regolith. In the model, regolith convection is driven by the impact-induced global seismic shaking. The model consists of three phases, (i) Impact phase: An impactor intermittently collides with a target asteroid [4], (ii) Vibration phase: The collision results in a global seismic shaking [5], (iii) Convection phase: The global seismic shaking induces the regolith convection on the asteroid [3]. For the feasibility assessment of the resurfacing process driven by regolith convection, we estimate the regolith-convection-based resurfacing timescale T as a function of the size of a target asteroid Da. According to the estimated result, the resurfacing time scale is 40 Myr for the Itokawa-sized asteroid, and this value is shorter than the mean collisional lifetime of Itokawa

  10. Entanglement Equilibrium and the Einstein Equation

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted

    2016-05-01

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  11. Entanglement Equilibrium and the Einstein Equation.

    PubMed

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy. PMID:27258860

  12. Rediscovering Einstein's legacy: How Einstein anticipates Kuhn and Feyerabend on the nature of science.

    PubMed

    Oberheim, Eric

    2016-06-01

    Thomas Kuhn and Paul Feyerabend promote incommensurability as a central component of their conflicting accounts of the nature of science. This paper argues that in so doing, they both develop Albert Einstein's views, albeit in different directions. Einstein describes scientific revolutions as conceptual replacements, not mere revisions, endorsing 'Kant-on-wheels' metaphysics in light of 'world change'. Einstein emphasizes underdetermination of theory by evidence, rational disagreement in theory choice, and the non-neutrality of empirical evidence. Einstein even uses the term 'incommensurable' specifically to apply to challenges posed to comparatively evaluating scientific theories in 1949, more than a decade before Kuhn and Feyerabend. This analysis shows how Einstein anticipates substantial components of Kuhn and Feyerabend's views, and suggests that there are strong reasons to suspect that Kuhn and Feyerabend were directly inspired by Einstein's use of the term 'incommensurable', as well as his more general methodological and philosophical reflections. PMID:27269260

  13. TIMESCALES ON WHICH STAR FORMATION AFFECTS THE NEUTRAL INTERSTELLAR MEDIUM

    SciTech Connect

    Stilp, Adrienne M.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F.; Warren, Steven R.; Skillman, Evan; Ott, Juergen; Dolphin, Andrew E.

    2013-08-01

    Turbulent neutral hydrogen (H I) line widths are often thought to be driven primarily by star formation (SF), but the timescale for converting SF energy to H I kinetic energy is unclear. As a complication, studies on the connection between H I line widths and SF in external galaxies often use broadband tracers for the SF rate, which must implicitly assume that SF histories (SFHs) have been constant over the timescale of the tracer. In this paper, we compare measures of H I energy to time-resolved SFHs in a number of nearby dwarf galaxies. We find that H I energy surface density is strongly correlated only with SF that occurred 30-40 Myr ago. This timescale corresponds to the approximate lifetime of the lowest mass supernova progenitors ({approx}8 M{sub Sun }). This analysis suggests that the coupling between SF and the neutral interstellar medium is strongest on this timescale, due either to an intrinsic delay between the release of the peak energy from SF or to the coherent effects of many supernova explosions during this interval. At {Sigma}{sub SFR} > 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}, we find a mean coupling efficiency between SF energy and H I energy of {epsilon} = 0.11 {+-} 0.04 using the 30-40 Myr timescale. However, unphysical efficiencies are required in lower {Sigma}{sub SFR} systems, implying that SF is not the primary driver of H I kinematics at {Sigma}{sub SFR} < 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}.

  14. The global monsoon across timescales: coherent variability of regional monsoons

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z. T.; Kiefer, T.; Liu, Z. Y.

    2014-11-01

    Monsoon has earned increasing attention from the climate community since the last century, yet only recently have regional monsoons been recognized as a global system. It remains a debated issue, however, as to what extent and at which timescales the global monsoon can be viewed as a major mode of climate variability. For this purpose, a PAGES (Past Global Changes) working group (WG) was set up to investigate the concept of the global monsoon and its future research directions. The WG's synthesis is presented here. On the basis of observation and proxy data, the WG found that the regional monsoons can vary coherently, although not perfectly, at various timescales, varying between interannual, interdecadal, centennial, millennial, orbital and tectonic timescales, conforming to the global monsoon concept across timescales. Within the global monsoon system, each subsystem has its own features, depending on its geographic and topographic conditions. Discrimination between global and regional components in the monsoon system is a key to revealing the driving factors in monsoon variations; hence, the global monsoon concept helps to enhance our understanding and to improve future projections of the regional monsoons. This paper starts with a historical review of the global monsoon concept in both modern and paleo-climatology, and an assessment of monsoon proxies used in regional and global scales. The main body of the paper is devoted to a summary of observation data at various timescales, providing evidence of the coherent global monsoon system. The paper concludes with a projection of future monsoon shifts in a warming world. The synthesis will be followed by a companion paper addressing driving mechanisms and outstanding issues in global monsoon studies.

  15. Timescale analysis of rule-based biochemical reaction networks

    PubMed Central

    Klinke, David J.; Finley, Stacey D.

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150

  16. Stability of the Einstein static universe in Einstein-Cartan theory

    SciTech Connect

    Atazadeh, K.

    2014-06-01

    The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.

  17. Covariant Conformal Decomposition of Einstein Equations

    NASA Astrophysics Data System (ADS)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  18. On algebraic endomorphisms of the Einstein gyrogroup

    NASA Astrophysics Data System (ADS)

    Molnár, Lajos; Virosztek, Dániel

    2015-08-01

    We describe the structure of all continuous algebraic endomorphisms of the open unit ball B of ℝ3 equipped with the Einstein velocity addition. We show that any nonzero such transformation originates from an orthogonal linear transformation on ℝ3.

  19. Recent developments in Bose-Einstein condensation

    SciTech Connect

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  20. The happiest thought of Einstein's life.

    NASA Astrophysics Data System (ADS)

    Heller, M.

    It is a commonly told story that Einstein formulated his famous principle of equivalence when thinking about what happens in a freely falling elevator, and that it was an original idea of his genius distinguished by the rare capability to see deep problems in the most ordinary things. In the reading of Einstein's and Ernst Mach's works the author has discovered that it was not a physicist in an elevator which led to the principle of equivalence but rather somebody falling from a roof; moreover, the idea behind the principle was not invented by Einstein himself but rather read by him from the book by Mach entitled The Science of Mechanics. The influence this book had on young Einstein is very well known.

  1. On homogeneous Einstein (α , β) -metrics

    NASA Astrophysics Data System (ADS)

    Yan, Zaili; Deng, Shaoqiang

    2016-05-01

    In this paper, we study homogeneous Einstein (α , β) -metrics. First, we deduce a formula for Ricci curvature of a homogeneous (α , β) -metric. Based on this formula, we obtain a sufficient and necessary condition for a compact homogeneous (α , β) -metric to be Einstein and with vanishing S-curvature. Moreover, we prove that any homogeneous Ricci flat (α , β) space with vanishing S-curvature must be a Minkowski space. Finally, we consider left invariant Einstein (α , β) -metrics on Lie groups with negative Ricci constant. Under some appropriate conditions, we show that the underlying Lie groups must be two step solvable. We also present a more convenient sufficient and necessary condition for the metric to be Einstein in this special case.

  2. Einstein/Roosevelt Letters: A Unit.

    ERIC Educational Resources Information Center

    Bodle, Walter S.

    1985-01-01

    The letters in this unit of study intended for secondary students are facsimile reproductions of the correspondence between Albert Einstein and President Roosevelt on the possibility of constructing an atomic bomb. Classroom activities are also suggested. (RM)

  3. Einstein and General Relativity: Historical Perspectives.

    ERIC Educational Resources Information Center

    Chandrasekhar, S.

    1979-01-01

    This paper presented in the 1978 Oppenheimer Memorial Lecture at Los Alamos Scientific Laboratories on August 17, 1978, discusses Einstein's contributions to physics, in particular, his discovery of the general theory of relativity. (HM)

  4. How History Helped Einstein in Special Relativity

    NASA Astrophysics Data System (ADS)

    Martinez, Alberto

    2013-04-01

    I will discuss how the German intellectual movement known as ``critical history'' motivated several physicists in the late 1900s to radically analyze the fundamental principles of mechanics, leading eventually to Einstein's special theory of relativity. Eugen Karl Dühring, Johann Bernhard Stallo, Ludwig Lange, and Ernst Mach wrote critical histories of mechanics, some of which emphasized notions of relativity and observation, in opposition to old metaphysical concepts that seemed to infect the foundations of physics. This strand of critical history included the ``genetic method'' of analyzing how concepts develop over time, in our minds, by way of ordinary experiences, which by 1904 was young Albert Einstein's favorite approach for examining fundamental notions. Thus I will discuss how history contributed in Einstein's path to relativity, as well as comment more generally on Einstein's views on history.

  5. The creativity of Einstein and astronomy

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y. B.

    1980-01-01

    A discussion of Einstein's scientific achievements for the 100th anniversary of his birth is presented. His works dealing with thermodynamics are described, along with his quantum theory of radiation. Most of the article discusses his general theory of relativity.

  6. Einstein's Biggest Blunder: A Cosmic Mystery Story

    ScienceCinema

    Krauss, Lawrence

    2010-09-01

    The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.

  7. Bose-Einstein condensation at constant temperature

    NASA Astrophysics Data System (ADS)

    Erhard, M.; Schmaljohann, H.; Kronjäger, J.; Bongs, K.; Sengstock, K.

    2004-09-01

    We present an experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular, the emergence of a new condensate is observed in multicomponent F=1 spinor condensates of Rb87 . Furthermore, we develop a simple rate-equation model for multicomponent Bose-Einstein condensate thermodynamics at finite temperature which well reproduces the measured effects.

  8. The timescales of magma evolution at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Brandl, Philipp A.; Regelous, Marcel; Beier, Christoph; O'Neill, Hugh St. C.; Nebel, Oliver; Haase, Karsten M.

    2016-01-01

    Oceanic crust is continuously created at mid-ocean ridges by decompression melting of the upper mantle as it upwells due to plate separation. Decades of research on active spreading ridges have led to a growing understanding of the complex magmatic, tectonic and hydrothermal processes linked to the formation of new oceanic igneous crust. However, less is known about the timescales of magmatic processes at mid-ocean ridges, including melting in and melt extraction from the mantle, fractional crystallisation, crustal assimilation and/or magma mixing. In this paper, we review the timescales of magmatic processes by integrating radiometric dating, chemical and petrological observations of mid-ocean ridge basalts (MORBs) and geophysical models. These different lines of evidence suggest that melt extraction and migration, and crystallisation and mixing processes occur over timescales of 1 to 10,000 a. High-resolution geochemical stratigraphic profiles of the oceanic crust using drill-core samples further show that at fast-spreading ridges, adjacent flow units may differ in age by only a few 100 a. We use existing chemical data and new major- and trace-element analyses of fresh MORB glasses from drill-cores in ancient Atlantic and Pacific crust, together with model stratigraphic ages to investigate how lava chemistry changes over 10 to 100 ka periods, the timescale of crustal accretion at spreading ridges which is recorded in the basalt stratigraphy in drilled sections through the oceanic crust. We show that drilled MORBs have compositions that are similar to those of young MORB glasses dredged from active spreading ridges (lavas that will eventually be preserved in the lowermost part of the extrusive section covered by younger flows), showing that the dredged samples are indeed representative of the bulk oceanic crust. Model stratigraphic ages calculated for individual flows in boreholes, together with the geochemical stratigraphy of the drilled sections, show that at

  9. OWL representation of the geologic timescale implementing stratigraphic best practice

    NASA Astrophysics Data System (ADS)

    Cox, S. J.

    2011-12-01

    The geologic timescale is a cornerstone of the earth sciences. Versions are available from many sources, with the following being of particular interest: (i) The official International Stratigraphic Chart (ISC) is maintained by the International Commission for Stratigraphy (ICS), following principles developed over the last 40 years. ICS provides the data underlying the chart as part of a specialized software package, and the chart itself as a PDF using the standard colours; (ii) ITC Enschede has developed a representation of the timescale as a thesaurus in SKOS, used in a Web Map Service delivery system; (iii) JPL's SWEET ontology includes a geologic timescale. This takes full advantage of the capabilities of OWL. However, each of these has limitations - The ISC falls down because of incompatibility with web technologies; - While SKOS supports multilingual labelling, SKOS does not adequately support timescale semantics, in particular since it does not include ordering relationships; - The SWEET version (as of version 2) is not fully aligned to the model used by ICS, in particular not recognizing the role of the Global Boundary Stratotype Sections and Point (GSSP). Furthermore, it is distributed as static documents, rather than through a dynamic API using SPARQL. The representation presented in this paper overcomes all of these limitations as follows: - the timescale model is formulated as an OWL ontology - the ontology is directly derived from the UML representation of the ICS best practice proposed by Cox & Richard [2005], and subsequently included as the Geologic Timescale package in GeoSciML (http://www.geosciml.org); this includes links to GSSPs as per the ICS process - key properties in the ontology are also asserted to be subProperties of SKOS properties (topConcept and broader/narrower relations) in order to support SKOS-based queries; SKOS labelling is used to support multi-lingual naming and synonyms - the International Stratigraphic Chart is implemented

  10. Inner structure of black holes in Eddington-inspired Born-Infeld gravity: The role of mass inflation

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.

    2016-02-01

    We investigate the interior dynamics of accreting black holes in Eddington-inspired Born-Infeld gravity using the homogeneous approximation and taking charge as a surrogate for angular momentum, showing that accretion can have an enormous impact on their inner structure. We find that, unlike in general relativity, there is a minimum accretion rate below which the mass inflation instability, which drives the center-of-mass streaming density to exponentially high values in an extremely short interval of time, does not occur. We further show that, above this threshold, mass inflation takes place inside black holes much in the same way as in general relativity, but is brought to a halt at an energy density which is, in general, much smaller than the fundamental energy density of the theory. We conjecture that some of these results may be a common feature of modified gravity theories in which significant deviations from general relativity manifest themselves at high densities.

  11. Strong gravitational lensing by an electrically charged black hole in Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Miyamoto, Umpei

    2015-08-01

    We systematically examine the properties of null geodesics around an electrically charged, asymptotically flat black hole in Eddington-inspired Born-Infeld gravity, varying the electric charge of the black hole and the coupling constant in the theory. We find that the radius of the unstable circular orbit for a massless particle decreases with the coupling constant, if the value of the electrical charge is fixed. Additionally, we consider the strong gravitational lensing around such a black hole. We show that the deflection angle, the position angle of the relativistic images, and the magnification due to the light bending in strong gravitational field are quite sensitive to the parameters determining the black hole solution. Thus, through the accurate observations associated with the strong gravitational lensing, it might be possible to reveal the gravitational theory in a strong field regime.

  12. Einstein, Mach, and the Fortunes of Gravity

    NASA Astrophysics Data System (ADS)

    Kaiser, David

    2005-04-01

    Early in his life, Albert Einstein considered himself a devoted student of the physicist and philosopher Ernst Mach. Mach's famous critiques of Newton's absolute space and time -- most notably Mach's explanation of Newton's bucket experiment -- held a strong sway over Einstein as he struggled to formulate general relativity. Einstein was convinced that his emerging theory of gravity should be consistent with Mach's principle, which states that local inertial effects arise due to gravitational interactions with distant matter. Once completed, Einstein's general relativity enjoyed two decades of worldwide attention, only to fall out of physicists' interest during the 1930s and 1940s, when topics like nuclear physics claimed center stage. Gravity began to return to the limelight during the 1950s and especially the 1960s, and once again Mach proved to be a major spur: Princeton physicists Carl Brans and Robert Dicke introduced a rival theory of gravity in 1961 which they argued satisfied Mach's principle better than Einstein's general relativity did. The Brans-Dicke theory, and the new generation of experiments designed to test its predictions against those of general relativity, played a major role in bringing Einstein's beloved topic back to the center of physics.

  13. Quasi-periodicities at Year-like Timescales in Blazars

    NASA Astrophysics Data System (ADS)

    Sandrinelli, A.; Covino, S.; Dotti, M.; Treves, A.

    2016-03-01

    We searched for quasi-periodicities on year-like timescales in the light curves of six blazars in the optical—near-infrared bands and we made a comparison with the high energy emission. We obtained optical/NIR light curves from Rapid Eye Mounting photometry plus archival Small & Moderate Aperture Research Telescope System data and we accessed the Fermi light curves for the γ-ray data. The periodograms often show strong peaks in the optical and γ-ray bands, which in some cases may be inter-related. The significance of the revealed peaks is then discussed, taking into account that the noise is frequency dependent. Quasi-periodicities on a year-like timescale appear to occur often in blazars. No straightforward model describing these possible periodicities is yet available, but some plausible interpretations for the physical mechanisms causing periodic variabilities of these sources are examined.

  14. Insect olfactory coding and memory at multiple timescales

    PubMed Central

    Gupta, Nitin; Stopfer, Mark

    2011-01-01

    Insects can learn, allowing them great flexibility for locating seasonal food sources and avoiding wily predators. Because insects are relatively simple and accessible to manipulation, they provide good experimental preparations for exploring mechanisms underlying sensory coding and memory. Here we review how the intertwining of memory with computation enables the coding, decoding, and storage of sensory experience at various stages of the insect olfactory system. Individual parts of this system are capable of multiplexing memories at different timescales, and conversely, memory on a given timescale can be distributed across different parts of the circuit. Our sampling of the olfactory system emphasizes the diversity of memories, and the importance of understanding these memories in the context of computations performed by different parts of a sensory system. PMID:21632235

  15. Segregation time-scales in model granular flows

    NASA Astrophysics Data System (ADS)

    Staron, Lydie; Phillips, Jeremy C.

    2016-04-01

    Segregation patterns in natural granular systems offer a singular picture of the systems evolution. In many cases, understanding segregation dynamics may help understanding the system's history as well as its future evolution. Among the key questions, one concerns the typical time-scales at which segregation occurs. In this contribution, we present model granular flows simulated by means of the discrete Contact Dynamics method. The granular flows are bi-disperse, namely exhibiting two grain sizes. The flow composition and its dynamics are systematically varied, and the segregation dynamics carefully analyzed. We propose a physical model for the segregation that gives account of the observed dependence of segregation time scales on composition and dynamics. References L. Staron and J. C. Phillips, Stress partition and micro-structure in size-segregating granular flows, Phys. Rev. E 92 022210 (2015) L. Staron and J. C. Phillips, Segregation time-scales in bi-disperse granular flows, Phys. Fluids 26 (3), 033302 (2014)

  16. The timescales of global surface-ocean connectivity

    PubMed Central

    Jönsson, Bror F.; Watson, James R.

    2016-01-01

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches—each randomly located anywhere in the surface ocean—is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change—increasing temperatures, ocean acidification and changes in stratification over decadal timescales—through the advection of resilient types. PMID:27093522

  17. How long is now? The multiple timescales of language processing.

    PubMed

    Honey, Christopher J; Chen, Janice; Müsch, Kathrin; Hasson, Uri

    2016-01-01

    Christiansen & Chater (C&C) envision language function as a hierarchical chain of transformations, enabling rapid, continuous processing of input. Their notion of a "Now-or-Never" bottleneck may be elaborated by recognizing that timescales become longer at successive levels of the sensory processing hierarchy - that is, the window of "Now" expands. We propose that a hierarchical "process memory" is intrinsic to language processing. PMID:27561841

  18. The effects of clock errors on timescale stability

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A.

    1995-01-01

    The weighting scheme for the cesium clocks and hydrogen masers constituting the USNO timing ensemble is reexamined from an empirical standpoint of maximizing both frequency accuracy and timescale uniformity. The utility of a sliding-weight relation between the masers and the cesiums is reaffirmed, but improvement is found if one incorporates inverse Allan variances for sampling times of 12 and 6 hours for the cesiums and masers, respectively, with some dependence on clock model.

  19. Timescale algorithms combining cesium clocks and hydrogen masers

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A.

    1992-01-01

    The United States Naval Observatory (USNO) atomic timescale, formerly based on an ensemble of cesium clocks, is now produced by an ensemble of cesium clocks and hydrogen masers. In order to optimize stability and reliability, equal clock weighting has been replaced by a procedure reflecting the relative, time-varying noise characteristics of the two different types of clocks. Correlation of frequency drift is required, and residual drift is avoided by the eventual complete deweighting of the masers.

  20. Multiple timescales in the adaptation of the rotational VOR

    PubMed Central

    Colagiorgio, Paolo; Bertolini, Giovanni; Bockisch, Christopher J.; Straumann, Dominik

    2015-01-01

    Goal-directed movements, such as pointing and saccades, have been shown to share similar neural architectures, in spite of the different neuromuscular systems producing them. Such structure involve an inverse model of the actuator being controlled, which produces the commands innervating the muscles, and a forward model of the actuator, which predicts the sensory consequences of such commands and allows online movement corrections. Recent studies have shown that goal-directed movements also share similar motor-learning and motor-memory mechanisms, which are based on multiple timescales. The hypothesis that also the rotational vestibulo-ocular reflex (rVOR) may be based on a similar architecture has been presented recently. We hypothesize that multiple timescales are the brain's solution to the plasticity-stability dilemma, allowing adaptation to temporary and sudden changes while keeping stable motor-control abilities. If that were the case, then we would also expect the adaptation of reflex movements to follow the same principles. Thus we studied rVOR gain adaptation in eight healthy human subjects using a custom paradigm aimed at investigating the existence of spontaneous recovery, which we considered as the hallmark of multiple timescales in motor learning. Our experimental results show that spontaneous recovery occurred in six of eight subjects. Thus we developed a mathematical model of rVOR adaptation based on two hidden-states processes, which adapts the cerebellar-forward model of the ocular motor plant, and show that it accurately simulates our experimental data on rVOR gain adaptation, whereas a single timescale learning process fails to do so. PMID:25744882

  1. Diquark Bose-Einstein condensation

    SciTech Connect

    Nawa, K.; Nakano, E.; Yabu, H.

    2006-08-01

    Bose-Einstein condensation of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasichemical equilibrium theory at a relatively low-density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic framework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in the bound/resonant state. We obtained T{sub C}{approx}60-80 MeV for constituent quarks and T{sub C}{approx}130 MeV for current quarks at a moderate density ({rho}{sub b}{approx}3{rho}{sub 0}). The method is also developed to include interdiquark interactions into the quasichemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by {approx}50%.

  2. Einstein's Theory Fights off Challengers

    NASA Astrophysics Data System (ADS)

    2010-04-01

    Two new and independent studies have put Einstein's General Theory of Relativity to the test like never before. These results, made using NASA's Chandra X-ray Observatory, show Einstein's theory is still the best game in town. Each team of scientists took advantage of extensive Chandra observations of galaxy clusters, the largest objects in the Universe bound together by gravity. One result undercuts a rival gravity model to General Relativity, while the other shows that Einstein's theory works over a vast range of times and distances across the cosmos. The first finding significantly weakens a competitor to General Relativity known as "f(R) gravity". "If General Relativity were the heavyweight boxing champion, this other theory was hoping to be the upstart contender," said Fabian Schmidt of the California Institute of Technology in Pasadena, who led the study. "Our work shows that the chances of its upsetting the champ are very slim." In recent years, physicists have turned their attention to competing theories to General Relativity as a possible explanation for the accelerated expansion of the universe. Currently, the most popular explanation for the acceleration is the so-called cosmological constant, which can be understood as energy that exists in empty space. This energy is referred to as dark energy to emphasize that it cannot be directly detected. In the f(R) theory, the cosmic acceleration comes not from an exotic form of energy but from a modification of the gravitational force. The modified force also affects the rate at which small enhancements of matter can grow over the eons to become massive clusters of galaxies, opening up the possibility of a sensitive test of the theory. Schmidt and colleagues used mass estimates of 49 galaxy clusters in the local universe from Chandra observations, and compared them with theoretical model predictions and studies of supernovas, the cosmic microwave background, and the large-scale distribution of galaxies. They

  3. Resource distributions affect social learning on multiple timescales.

    PubMed

    van der Post, Daniel J; Ursem, Bas; Hogeweg, Paulien

    2009-09-01

    We study how learning is shaped by foraging opportunities and self-organizing processes and how this impacts on the effects of "copying what neighbors eat" on multiple timescales. We use an individual-based model with a rich environment, where group foragers learn what to eat. We vary foraging opportunities by changing local variation in resources, studying copying in environments with pure patches, varied patches, and uniform distributed resources. We find that copying can help individuals explore the environment by sharing information, but this depends on how foraging opportunities shape the learning process. Copying has the greatest impact in varied patches, where local resource variation makes learning difficult, but local resource abundance makes copying easy. In contrast, copying is redundant or excessive in pure patches where learning is easy, and mostly ineffective in uniform environments where learning is difficult. Our results reveal that the mediation of copying behavior by individual experience is crucial for the impact of copying. Moreover, we find that the dynamics of social learning at short timescales shapes cultural phenomena. In fact, the integration of learning on short and long timescales generates cumulative cultural improvement in diet. Our results therefore provide insight into how and when such processes can arise. These insights need to be taken into account when considering behavioral patterns in nature. PMID:19701483

  4. Quasar Broad Absorption Line Variability on Multiyear Timescales

    NASA Astrophysics Data System (ADS)

    Gibson, Robert R.; Brandt, W. N.; Schneider, Donald P.; Gallagher, S. C.

    2008-03-01

    We use quantitative metrics to characterize the variation of C IV λ1549 broad absorption lines (BALs) over 3-6 (rest-frame) years in a sample of 13 quasars at 1.7 <= z<= 2.8 and compare the results to previous studies of BAL variability on shorter timescales. The strong BALs in our study change in complex ways over 3-6 yr. Variation occurs in discrete regions only a few thousand kilometers per second wide, and the distribution of the change in absorption equivalent width broadens over time. We constrain the typical C IV BAL lifetime to be at least a few decades. While we do not find evidence to support a scenario in which the variation is primarily driven by photoionization on multiyear timescales, there is some indication that the variation is produced by changes in outflow geometry. We do not observe significant changes in the BAL onset velocity, indicating that the absorber is either far from the source or is being continually replenished and is azimuthally symmetric. It is not possible in a human lifetime to expand the timescales in our study by more than a factor of a few using optical spectroscopy. However, the strong variation we have observed in some BALs indicates that future studies of large numbers of BAL QSOs will be valuable to constrain BAL lifetimes and the physics of variation.

  5. Timescales of fluvial response to climate and tectonic perturbations

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2015-04-01

    Earth's landscapes are composed of connected elements such as hillslopes, bedrock and alluvial rivers, alluvial fans and floodplains for example. Because these entities are dominated by different processes, they might respond in different ways and at different rates to external forcings depending on the nature, magnitude and time scale of changes. Knowledge of those response times is fundamental if we want to extract past climate and tectonics from landscape forms and sedimentary archives. Moreover, the interactions between different landscape elements and their response times also control the response of the landscape as a whole, and the delivery of sediment flux to the basins. Here we review the timescales of fluvial response to perturbations in bedrock and alluvial rivers and discuss the implications for delivery of sediment to basins over multi-millenial timescales. We first use existing relationships for bedrock rivers to study their response to climatic and tectonic perturbations. For alluvial rivers, we consider a simple 1D alluvial reach with a single grain size and an equilibrium slope determined by classical bedload relations. Upstream perturbations of grain size, sediment concentration and water discharge induce river aggradation or degradation according to their effect on river equilibrium slope. While minimum aggradation time can be computed analytically as a function of slope change and sediment supply, the time necessary to degrade to a lower equilibrium slope may be only a function of the timescale of the perturbation in a transport-limited system. We explore the field of natural rivers and their possible response to upstream perturbations.

  6. SIMULATED PERFORMANCE OF TIMESCALE METRICS FOR APERIODIC LIGHT CURVES

    SciTech Connect

    Findeisen, Krzysztof; Hillenbrand, Lynne; Cody, Ann Marie

    2015-01-10

    Aperiodic variability is a characteristic feature of young stars, massive stars, and active galactic nuclei. With the recent proliferation of time-domain surveys, it is increasingly essential to develop methods to quantify and analyze aperiodic variability. We develop three timescale metrics that have been little used in astronomy—Δm-Δt plots, peak-finding, and Gaussian process regression—and present simulations comparing their effectiveness across a range of aperiodic light curve shapes, characteristic timescales, observing cadences, and signal to noise ratios. We find that Gaussian process regression is easily confused by noise and by irregular sampling, even when the model being fit reflects the process underlying the light curve, but that Δm-Δt plots and peak-finding can coarsely characterize timescales across a broad region of parameter space. We make public the software we used for our simulations, both in the spirit of open research and to allow others to carry out analogous simulations for their own observing programs.

  7. Einstein's Revolutionary Light-Quantum Hypothesis

    NASA Astrophysics Data System (ADS)

    Stuewer, Roger H.

    2005-05-01

    The paper in which Albert Einstein proposed his light-quantum hypothesis was the only one of his great papers of 1905 that he himself termed ``revolutionary.'' Contrary to widespread belief, Einstein did not propose his light-quantum hypothesis ``to explain the photoelectric effect.'' Instead, he based his argument for light quanta on the statistical interpretation of the second law of thermodynamics, with the photoelectric effect being only one of three phenomena that he offered as possible experimental support for it. I will discuss Einstein's light-quantum hypothesis of 1905 and his introduction of the wave-particle duality in 1909 and then turn to the reception of his work on light quanta by his contemporaries. We will examine the reasons that prominent physicists advanced to reject Einstein's light-quantum hypothesis in succeeding years. Those physicists included Robert A. Millikan, even though he provided convincing experimental proof of the validity of Einstein's equation of the photoelectric effect in 1915. The turning point came after Arthur Holly Compton discovered the Compton effect in late 1922, but even then Compton's discovery was contested both on experimental and on theoretical grounds. Niels Bohr, in particular, had never accepted the reality of light quanta and now, in 1924, proposed a theory, the Bohr-Kramers-Slater theory, which assumed that energy and momentum were conserved only statistically in microscopic interactions. Only after that theory was disproved experimentally in 1925 was Einstein's revolutionary light-quantum hypothesis generally accepted by physicists---a full two decades after Einstein had proposed it.

  8. Random time-scale invariant diffusion and transport coefficients.

    PubMed

    He, Y; Burov, S; Metzler, R; Barkai, E

    2008-08-01

    Single particle tracking of mRNA molecules and lipid granules in living cells shows that the time averaged mean squared displacement delta2[over ] of individual particles remains a random variable while indicating that the particle motion is subdiffusive. We investigate this type of ergodicity breaking within the continuous time random walk model and show that delta2[over ] differs from the corresponding ensemble average. In particular we derive the distribution for the fluctuations of the random variable delta2[over ]. Similarly we quantify the response to a constant external field, revealing a generalization of the Einstein relation. Consequences for the interpretation of single molecule tracking data are discussed. PMID:18764430

  9. Minute-timescale >100 MeV γ-Ray Variability during the Giant Outburst of Quasar 3C 279 Observed by Fermi-LAT in 2015 June

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Anantua, R.; Asano, K.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D’Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Grenier, I. A.; Guillemot, L.; Guiriec, S.; Hayashida, M.; Hays, E.; Horan, D.; Jóhannesson, G.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Nalewajko, K.; Negro, M.; Nuss, E.; Ohsugi, T.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Principe, G.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Scargle, J. D.; Sgrò, C.; Sikora, M.; Simone, D.; Siskind, E. J.; Spada, F.; Spinelli, P.; Stawarz, L.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Yuan, Y.; Zimmer, S.

    2016-06-01

    On 2015 June 16, Fermi-LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak >100 MeV flux of ˜3.6 × 10‑5 photons cm‑2 s‑1, averaged over orbital period intervals. It is historically the highest γ-ray flux observed from the source, including past EGRET observations, with the γ-ray isotropic luminosity reaching ˜1049 erg s‑1. During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 minutes, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi-LAT. The source flux variability was resolved down to 2-minute binned timescales, with flux doubling times of less than 5 minutes. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz factor (Γ) of 35 is necessary to avoid both internal γ-ray absorption and super-Eddington jet power. In the standard external radiation Comptonization scenario, Γ should be at least 50 to avoid overproducing the synchrotron self-Compton component. However, this predicts extremely low magnetization (˜5 × 10‑4). Equipartition requires Γ as high as 120, unless the emitting region is a small fraction of the dissipation region. Alternatively, we consider γ rays originating as synchrotron radiation of γ e ˜ 1.6 × 106 electrons, in a magnetic field B ˜ 1.3 kG, accelerated by strong electric fields E ˜ B in the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude the production of γ-rays in hadronic processes.

  10. Minute-timescale >100 MeV γ-Ray Variability during the Giant Outburst of Quasar 3C 279 Observed by Fermi-LAT in 2015 June

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Anantua, R.; Asano, K.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D’Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Grenier, I. A.; Guillemot, L.; Guiriec, S.; Hayashida, M.; Hays, E.; Horan, D.; Jóhannesson, G.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Nalewajko, K.; Negro, M.; Nuss, E.; Ohsugi, T.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Principe, G.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Scargle, J. D.; Sgrò, C.; Sikora, M.; Simone, D.; Siskind, E. J.; Spada, F.; Spinelli, P.; Stawarz, L.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Yuan, Y.; Zimmer, S.

    2016-06-01

    On 2015 June 16, Fermi-LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak >100 MeV flux of ∼3.6 × 10‑5 photons cm‑2 s‑1, averaged over orbital period intervals. It is historically the highest γ-ray flux observed from the source, including past EGRET observations, with the γ-ray isotropic luminosity reaching ∼1049 erg s‑1. During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 minutes, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi-LAT. The source flux variability was resolved down to 2-minute binned timescales, with flux doubling times of less than 5 minutes. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz factor (Γ) of 35 is necessary to avoid both internal γ-ray absorption and super-Eddington jet power. In the standard external radiation Comptonization scenario, Γ should be at least 50 to avoid overproducing the synchrotron self-Compton component. However, this predicts extremely low magnetization (∼5 × 10‑4). Equipartition requires Γ as high as 120, unless the emitting region is a small fraction of the dissipation region. Alternatively, we consider γ rays originating as synchrotron radiation of γ e ∼ 1.6 × 106 electrons, in a magnetic field B ∼ 1.3 kG, accelerated by strong electric fields E ∼ B in the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude the production of γ-rays in hadronic processes.

  11. Generalized Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Mullin, William J.; Sakhel, Asaad R.

    2012-02-01

    Generalized Bose-Einstein condensation (GBEC) involves condensates appearing simultaneously in multiple states. We review examples of the three types in an ideal Bose gas with different geometries. In Type I there is a discrete number of quantum states each having macroscopic occupation; Type II has condensation into a continuous band of states, with each state having macroscopic occupation; in Type III each state is microscopically occupied while the entire condensate band is macroscopically occupied. We begin by discussing Type I or "normal" BEC into a single state for an isotropic harmonic oscillator potential. Other geometries and external potentials are then considered: the "channel" potential (harmonic in one dimension and hard-wall in the other), which displays Type II, the "cigar trap" (anisotropic harmonic potential), and the "Casimir prism" (an elongated box), the latter two having Type III condensations. General box geometries are considered in an appendix. We particularly focus on the cigar trap, which Van Druten and Ketterle first showed had a two-step condensation: a GBEC into a band of states at a temperature T c and another "one-dimensional" transition at a lower temperature T 1 into the ground state. In a thermodynamic limit in which the ratio of the dimensions of the anisotropic harmonic trap is kept fixed, T 1 merges with the upper transition, which then becomes a normal BEC. However, in the thermodynamic limit of Beau and Zagrebnov, in which the ratio of the boundary lengths increases exponentially, T 1 becomes fixed at the temperature of a true Type I phase transition. The effects of interactions on GBEC are discussed and we show that there is evidence that Type III condensation may have been observed in the cigar trap.

  12. On (ab)normality: Einstein's fusiform gyrus.

    PubMed

    Weiner, Kevin S

    2015-03-01

    Recently, Hines (2014) wrote an evocative paper challenging findings from both histological and morphological studies of Einstein's brain. In this discussion paper, I extend Hines' theoretical point and further discuss how best to determine 'abnormal' morphology. To do so, I assess the sulcal patterning of Einstein's fusiform gyrus (FG) for the first time. The sulcal patterning of the FG was unconsidered in prior studies because the morphological features of the mid-fusiform sulcus have only been clarified recently. On the one hand, the sulcal patterning of Einstein's FG is abnormal relative to averages of 'normal' brains generated from two independent datasets (N = 39 and N = 15, respectively). On the other hand, within the 108 hemispheres used to make these average brains, it is not impossible to find FG sulcal patterns that resemble those of Einstein. Thus, concluding whether a morphological pattern is normal or abnormal heavily depends on the chosen analysis method (e.g. group average vs. individual). Such findings question the functional meaning of morphological 'abnormalities' when determined by comparing an individual to an average brain or average frequency characteristics. These observations are not only important for analyzing a rare brain such as that of Einstein, but also for comparing macroanatomical features between typical and atypical populations. PMID:25562419

  13. Einstein, Ethics and the Atomic Bomb

    NASA Astrophysics Data System (ADS)

    Rife, Patricia

    2005-03-01

    Einstein voiced his ethical views against war as well as fascism via venues and alliances with a variety of organizations still debated today. In 1939, he signed a letter to President Roosevelt (drafted by younger colleagues Szilard, Wigner and others) warning the U.S.government about the danger of Nazi Germany gaining control of uranium in the Belgian-controlled Congo in order to develop atomic weapons, based on the discovery of fission by Otto Hahn and Lise Meitner. In 1945, he became a member of the Princeton-based ``Emergency Committee for Atomic Scientists'' organized by Bethe, Condon, Bacher, Urey, Szilard and Weisskopf. Rare Einstein slides will illustrate Dr.Rife's presentation on Albert Einstein's philosophic and ethical convictions about peace, and public stance against war (1914-1950).

  14. Bose-Einstein condensation in microgravity.

    PubMed

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter. PMID:20558713

  15. Albert Einstein - And the Frontiers of Physics

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeremy

    1997-11-01

    Albert Einstein did not impress his first teachers. They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called "wonder" about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.

  16. Misconceptions about Einstein: His Work and His Views.

    ERIC Educational Resources Information Center

    Resnick, Robert

    1980-01-01

    Discusses eight misconceptions concerning Einstein's work and views, as part of a presentation at the Einstein Symposium held at the 178th National American Chemical Society Meetings in Washington, D.C., in September, 1979. (CS)

  17. Coherence, Abstraction, and Personal Involvement: Albert Einstein, Physicist and Humanist.

    ERIC Educational Resources Information Center

    Ne'eman, Yuval

    1979-01-01

    Reviews Einstein's main contributions to physics, and analyzes the importance of a coherent body of theory. Einstein's involvement in nonscientific issues such as nuclear disarmament is also included. (HM)

  18. Einstein. Ein Genie und sein überfordertes Publikum.

    NASA Astrophysics Data System (ADS)

    Fischer, E. P.

    Dieses Buch ist keine herkömmliche Biographie von Albert Einstein - vielmehr untersucht der Autor anhand charakteristischer Stationen in Einsteins Leben, dessen Denken und die Reaktionen seiner Zeitgenossen.

  19. Proof of the entropy principle in Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Gao, Sijie

    We consider a self-gravitating charged perfect fluid in a static spacetime. We assume that the Einstein constraint equation is satisfied. Then we prove that the extrema of the total entropy of fluid implies other components of Einstein's equation. Conversely, if Einstein's equation is satisfied, we show that the total entropy achieves an extremum. This work suggests that the maximum entropy principle is consistent with Einstein's equation when an electrostatic field is taken into account.

  20. Einstein billiards and spatially homogeneous cosmological models

    NASA Astrophysics Data System (ADS)

    de Buyl, Sophie; Pinardi, Gaïa; Schomblond, Christiane

    2003-12-01

    In this paper, we analyse the Einstein and Einstein Maxwell billiards for all spatially homogeneous cosmological models corresponding to three- and four-dimensional real unimodular Lie algebras and provide a list of those models which are chaotic in the Belinskii, Khalatnikov and Lifschitz (BKL) limit. Through the billiard picture, we confirm that, in D = 5 spacetime dimensions, chaos is present if off-diagonal metric elements are kept: the finite volume billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac Moody algebras. The most generic cases bring in the same algebras as in the inhomogeneous case, but other algebras appear through special initial conditions.

  1. Was Einstein Right? A Centennial Assessment

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    2016-01-01

    Einstein formulated general relativity 100 years ago. Although it is generally considered a great triumph, the theory's early years were characterized by conceptual confusion, empirical uncertainties and a lack of relevance to ordinary physics. But in recent decades, a remarkably diverse set of precision experiments has established it as the "standard model" for gravitational physics. Yet it might not be the final word. We review a century of measurements that have verified general relativity, and describe some of the opportunities and challenges involved in testing Einstein's great theory in strong-field regimes and in gravitational waves.

  2. Propagating torsion in the Einstein frame

    SciTech Connect

    Poplawski, Nikodem J.

    2006-11-15

    The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.

  3. Beyond Einstein: Exploring the Extreme Universe

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.

    2005-01-01

    This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate some of the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will carry and in the spacecraft that will carry those instruments.

  4. Bose-Einstein condensation. Twenty years after

    SciTech Connect

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Malomed, B. A.; Mihalache, D.

    2015-02-23

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  5. Hypermass generalization of Einstein's gravitation theory

    NASA Technical Reports Server (NTRS)

    Edmonds, J. D., Jr.

    1973-01-01

    The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.

  6. Einstein - Peace Now!: Visions and Ideas

    NASA Astrophysics Data System (ADS)

    Braun, Reiner; Krieger, David

    2005-09-01

    Einstein was not only an extraordinary scientist, but also a person who faced his social responsibilities determinedly. The main focus of this book is put on topical articles by Scientific and Peace Nobel Prize laureates, prominent scientists and those committed to peace issues and justice, as well as citizens engagement for peace. Among the contributors are more than 10 Nobel Prize laureates, such as Mikhail Gorbachev, Walter Kohn, Joseph Rotblat, Alexander Ginzburg or Hans Bethe. This unique collection of intellectual thoughts on Einstein's vision of peace addresses a thoughtful, concerned and courageous audience, and was compiled to encourage and envision ways towards a more peaceful society.

  7. Using worksheets to solve the Einstein equation

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.

    2016-05-01

    This article describes how one can use worksheets to guide undergraduate students through the process of finding solutions to specific cases of the Einstein equation of general relativity. The worksheets provide expressions for a metric's Christoffel symbols and Ricci tensor components for fairly general metrics. Students can use a worksheet to adapt these expressions to specific cases where symmetry or other considerations constrain the metric components' dependencies, and then use the worksheet's results to reduce the Einstein equation to a set of simpler differential equations that they can solve. This article illustrates the process for both a diagonal metric and a metric with one off-diagonal element.

  8. Secrets of the Old One: Einstein, 1905

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeremy

    Beginning on the 18th of March, 1905,at approximately eight week intervals, the noted German physics journal Annalen der Physik received three hand-written manuscripts from a relatively unknown patent examiner in Bern. The patent examiner was the twenty-six year old Albert Einstein and the three papers would set the agenda for twentieth century physics. A fourth short paper was received by the journal on the 27th of September. It contained Einstein's derivation of the formula E=mc2. These papers with their many technological ramifications changed our lives in the twentieth century and beyond.

  9. Einstein and a century of time

    NASA Astrophysics Data System (ADS)

    Raine, D. J.

    2005-09-01

    In a world overabundant in information, a subject is defined by its iconography. Physics is the falling apple, the planetary atom, the laser, the mushroom cloud and the image of the later Einstein - images that represent, respectively, gravity, atomic theory, quantum theory, mass-energy and the scientist who had a hand in all four. It is therefore appropriate that World Year of Physics is called Einstein Year in the UK. Of course one can argue that progress in science depends on the contributions of many people; that there are other geniuses in physics, even some colourful personalities. Nevertheless there are fundamental reasons why Einstein's early achievements stand out even in their company. When at last the thought came to him that 'time itself was suspect', Einstein had found a new insight into the nature of the physical universe. It is this: that the universal properties of material objects tell us about the nature of space and time, and it is through these properties, not philosophical logic or common sense, that we discover the structure of spacetime. The later Einstein turned this successful formula on its head and sought to use the properties of spacetime to define those of material objects, thereby seeking to abolish matter entirely in favour of geometry. Before I introduce this special feature of European Journal of Physics I will say a few words about what is not here. Like all great geniuses Einstein can be seen as the climax of what went before him and the initiation of what was to follow. Looking back we can see the influence of Mach's positivism, according to which the role of science is to relate observations to other observations; hence only observations can tell us what is 'real'. But Einstein also grew up with the family electromechanical businesses, which testifies to the reality of the Maxwellian electromagnetic fields: thus only theory can tell us what is real! As is well known, Einstein himself refused to accept the full consequences of

  10. Einstein 1905-1955: His Approach to Physics

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    We review Einstein's epistemological conceptions, and indicate their philosophical roots. The particular importance of the ideas of Hume, Kant, Mach, and Poincaré is highlighted. The specific characteristics of Einstein's approach to physics are underlined. Lastly, we consider the practical application of Einstein's methodological principles to the two theories of relativity, and to quantum theory. We emphasize a Kantian approach to quantum theory.

  11. Conceptual Development of Einstein's Mass-Energy Relationship

    ERIC Educational Resources Information Center

    Wong, Chee Leong; Yap, Kueh Chin

    2005-01-01

    Einstein's special theory of relativity was published in 1905. It stands as one of the greatest intellectual achievements in the history of human thought. Einstein described the equivalence of mass and energy as "the most important upshot of the special theory of relativity" (Einstein, 1919). In this paper, we will discuss the evolution of the…

  12. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  13. Indian monsoon variability on millennial-orbital timescales.

    PubMed

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F M

    2016-01-01

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ(18)O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ(18)O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales. PMID:27071753

  14. Effects of high activation energies on acoustic timescale detonation initiation

    NASA Astrophysics Data System (ADS)

    Regele, J. D.; Kassoy, D. R.; Vasilyev, O. V.

    2012-08-01

    Acoustic timescale Deflagration-to-Detonation Transition (DDT) has been shown to occur through the generation of compression waves emitted by a hot spot or reaction centre where the pressure and temperature increase with little diminution of density. In order to compensate for the multi-scale nature of the physico-chemical processes, previous numerical simulations in this area have been limited to relatively small activation energies. In this work, a computational study investigates the effect of increased activation energy on the time required to form a detonation wave and the change in behaviour of each hot spot as the activation energy is increased. The simulations use a localised spatially distributed thermal power deposition of limited duration into a finite volume of reactive gas to facilitate DDT. The Adaptive Wavelet-Collocation Method is used to solve efficiently the 1-D reactive Euler equations with one-step Arrhenius kinetics. The DDT process as described in previous work is characterised by the formation of hot spots during an initial transient period, explosion of the hot spots and creation of an accelerating reaction front that reaches the lead shock and forms an overdriven detonation wave. Current results indicate that as the activation energy is raised the chemical heat release becomes more temporally distributed. Hot spots that produce an accelerating reaction front with low activation energies change behaviour with increased activation energy so that no accelerating reaction front is created. An acoustic timescale ratio is defined that characterises the change in behaviour of each hot spot.

  15. Sea level oscillations over minute timescales: a global perspective

    NASA Astrophysics Data System (ADS)

    Vilibic, Ivica; Sepic, Jadranka

    2016-04-01

    Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.

  16. Indian monsoon variability on millennial-orbital timescales

    NASA Astrophysics Data System (ADS)

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R. Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F. M.

    2016-04-01

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ18O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ18O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  17. Extracting the Global Sea Surface Temperature Evolutions of Different Timescales

    NASA Astrophysics Data System (ADS)

    Feng, J.; Wu, Z.

    2012-12-01

    A new data analysis procedure, involving empirical orthogonal functions (EOF) analysis and ensemble empirical mode decomposition (EEMD), is employed to extract the evolutions of global Sea Surface Temperature (SST) of different timescales spanning the period from 1880 to 2009 (130 yr). Specifically, EOF analysis serves as a means of lossy data compression to eliminate the spatial-temporally incoherent, noise-like part of the data; and EEMD decomposes SST time series into different time scales, which facilitates research on SST-related weather and climate phenomena that have various timescales. Through validation, it is shown that the difference between the results and the original SST time series are mostly white noises, both spatially and temporally incoherent. We apply the results to study El Niño-Southern Oscillation (ENSO) events. Each ENSO event is examined and we find an oceanic region off Baja California coast ( ) that is instrumental to some ENSO events, especially those recently called ENSO Modoki, whose initial warming may be traced back to earlier warming signals from Baja California.

  18. Progress Towards Atomistic Simulations that Reach Anthropological Timescale and Beyond

    NASA Astrophysics Data System (ADS)

    Li, Ju

    2012-02-01

    Atomistic and first-principles modeling, which describe the world as assembly of atoms and electrons, provide the most fundamental answer to problems of materials. However, they also suffer the most severe timescale limitations. For instance, in molecular dynamics (MD) simulations, in order to resolve atomic vibrations, the integration time step is limited to hundredth of a picosecond, and therefore the simulation duration is limited to sub-microsecond due to computational cost. Although a nanosecond simulation is often enough (surprisingly) for many physical and chemical properties, it is usually insufficient for predicting microstructural evolution and thermo-mechanical properties of materials. In this invited talk I will discuss recent attempts at overcoming the timescale challenges of atomic-resolution simulations: (a) strain-boost hyperdynamics [Phys. Rev. B 82 (2010) 184114] for simulating primarily displacive events and associated issues of activation entropy and the Meyer-Neldel compensation rule, (b) diffusive molecular dynamics (DMD) [Phys. Rev. B 84 (2011) 054103] for microstructural evolution driven by repetitive diffusion events and coupled displacive-diffusive processes, and (c) a Markovian network statistical mechanical treatment of the energy-landscape basin connectivity and a formula for the viscosity of supercooled liquid and glass [PLoS ONE 6 (2011) e17909]. Challenges and future directions are discussed.

  19. Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans.

    PubMed

    Stephens, Greg J; Bueno de Mesquita, Matthew; Ryu, William S; Bialek, William

    2011-05-01

    Animal behaviors often are decomposable into discrete, stereotyped elements, well separated in time. In one model, such behaviors are triggered by specific commands; in the extreme case, the discreteness of behavior is traced to the discreteness of action potentials in the individual command neurons. Here, we use the crawling behavior of the nematode Caenorhabditis elegans to demonstrate the opposite view, in which discreteness, stereotypy, and long timescales emerge from the collective dynamics of the behavior itself. In previous work, we found that as C. elegans crawls, its body moves through a "shape space" in which four dimensions capture approximately 95% of the variance in body shape. Here we show that stochastic dynamics within this shape space predicts transitions between attractors corresponding to abrupt reversals in crawling direction. With no free parameters, our inferred stochastic dynamical system generates reversal timescales and stereotyped trajectories in close agreement with experimental observations. We use the stochastic dynamics to show that the noise amplitude decreases systematically with increasing time away from food, resulting in longer bouts of forward crawling and suggesting that worms can use noise to modify their locomotory behavior. PMID:21502536

  20. Multi-Timescale Radio Observations of Multi-Wavelength GRBs

    NASA Astrophysics Data System (ADS)

    Van der Horst, Alexander

    2016-07-01

    Gamma-ray bursts are a broadband phenomenon, with emission detected across the electromagnetic spectrum from low-frequency radio waves to high-energy gamma-rays. Besides this extremely broad spectral range, they are also observed over a very large range of timescales, from millisecond variability in gamma-rays to the afterglows at radio frequencies that can sometimes be observed for years after the initial gamma-ray trigger. Our current understanding of gamma-ray bursts is based on these multi-frequency and multi-timescale observations. In this talk I will show the role that radio observations have played and will play in putting together a broadband picture of the physics behind the observed emission, the progenitors, and their environment. I will highlight some recent discoveries and developments, in particular the searches for early radio emission within the first minutes after gamma-ray triggers; the increasing number of radio-detected, optically dark bursts; and the possibilities that several new and upgraded radio observatories offer to obtain a better understanding of the macro- and microphysics behind these enigmatic phenomena.

  1. Indian monsoon variability on millennial-orbital timescales

    PubMed Central

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R. Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F. M.

    2016-01-01

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ18O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ18O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales. PMID:27071753

  2. Swift J1644+57: an ideal test bed of radiation mechanisms in a relativistic super-Eddington jet

    NASA Astrophysics Data System (ADS)

    Crumley, P.; Lu, W.; Santana, R.; Hernández, R. A.; Kumar, P.; Markoff, S.

    2016-07-01

    Within the first 10 days after Swift discovered the jetted tidal disruption event (TDE) Sw J1644+57, simultaneous observations in the radio, near-infrared, optical, X-ray and gamma-ray bands were carried out. These multiwavelength data provide a unique opportunity to constrain the emission mechanism and make-up of a relativistic super-Eddington jet. We consider an exhaustive variety of radiation mechanisms for the generation of X-rays in this TDE, and rule out many processes such as SSC, photospheric and proton synchrotron. The infrared to gamma-ray data for Sw J1644+57 are consistent with synchrotron and external-inverse-Compton (EIC) processes provided that electrons in the jet are continuously accelerated on a time scale shorter than ~1% of the dynamical time to maintain a power-law distribution. The requirement of continuous electron acceleration points to magnetic reconnection in a Poynting flux dominated jet. The EIC process may require fine tuning to explain the observed temporal decay of the X-ray lightcurve, whereas the synchrotron process in a magnetic jet needs no fine tuning for this TDE.

  3. The relationship between the Eddington limit, the observed upper luminosity limit for massive stars, and the luminous blue variables

    NASA Technical Reports Server (NTRS)

    Lamers, Henny J. G. L. M.; Fitzpatrick, Edward L.

    1988-01-01

    The observed upper luminosity limits in the Galaxy and the LMC are compared with the Eddington limit as estimated for plane-parallel LTE model atmospheres which include the full effects of metal line opacities in the ultraviolet. It is shown that the Humphreys-Davidson (HD) limit corresponds to the locus of extremely low effective gravities. This result suggests that stars approaching the HD limit will suffer high mass-loss rates because of the reduction of the effective gravity due to radiation pressure. These high mass-loss rates ultimtely lead to the core mass fraction reaching its critical value and the reversal of the stellar evolution tracks. It is shown that radiation pressure, as an agent for producing enhanced mass loss near the HD limit, can in a natural way explain the kink in the HD limit near T(eff) roughly 10,000 K and the upper luminosity limit for yellow and red supergiants. The high mass-loss rates of the luminous blue variables, their location in the HR diagram, and their evolutionary stage are also discussed.

  4. Swift J1644+57: an Ideal Test Bed of Radiation Mechanisms in a Relativistic Super-Eddington Jet

    NASA Astrophysics Data System (ADS)

    Crumley, P.; Lu, W.; Santana, R.; Hernández, R. A.; Kumar, P.; Markoff, S.

    2016-04-01

    Within the first 10 days after Swift discovered the jetted tidal disruption event (TDE) Sw J1644+57, simultaneous observations in the radio, near-infrared, optical, X-ray and gamma-ray bands were carried out. These multiwavelength data provide a unique opportunity to constrain the emission mechanism and make-up of a relativistic super-Eddington jet. We consider an exhaustive variety of radiation mechanisms for the generation of X-rays in this TDE, and rule out many processes such as SSC, photospheric and proton synchrotron. The infrared to gamma-ray data for Sw J1644+57 are consistent with synchrotron and external-inverse-Compton (EIC) processes provided that electrons in the jet are continuously accelerated on a time scale shorter than ˜1% of the dynamical time to maintain a power-law distribution. The requirement of continuous electron acceleration points to magnetic reconnection in a Poynting flux dominated jet. The EIC process may require fine tuning to explain the observed temporal decay of the X-ray lightcurve, whereas the synchrotron process in a magnetic jet needs no fine tuning for this TDE.

  5. Hierarchical maximum entropy principle for generalized superstatistical systems and Bose-Einstein condensation of light

    NASA Astrophysics Data System (ADS)

    Sob'yanin, Denis Nikolaevich

    2012-06-01

    A principle of hierarchical entropy maximization is proposed for generalized superstatistical systems, which are characterized by the existence of three levels of dynamics. If a generalized superstatistical system comprises a set of superstatistical subsystems, each made up of a set of cells, then the Boltzmann-Gibbs-Shannon entropy should be maximized first for each cell, second for each subsystem, and finally for the whole system. Hierarchical entropy maximization naturally reflects the sufficient time-scale separation between different dynamical levels and allows one to find the distribution of both the intensive parameter and the control parameter for the corresponding superstatistics. The hierarchical maximum entropy principle is applied to fluctuations of the photon Bose-Einstein condensate in a dye microcavity. This principle provides an alternative to the master equation approach recently applied to this problem. The possibility of constructing generalized superstatistics based on a statistics different from the Boltzmann-Gibbs statistics is pointed out.

  6. Einstein-Podolsky-Rosen Entanglement Strategies in Two-Well Bose-Einstein Condensates

    SciTech Connect

    He, Q. Y.; Vaughan, T. G.; Reid, M. D.; Drummond, P. D.; Gross, C.; Oberthaler, M.

    2011-03-25

    Criteria suitable for measuring entanglement between two different potential wells in a Bose-Einstein condensation are evaluated. We show how to generate the required entanglement, utilizing either an adiabatic two-mode or a dynamic four-mode interaction strategy, with techniques that take advantage of s-wave scattering interactions to provide the nonlinear coupling. The dynamic entanglement method results in an entanglement signature with spatially separated detectors, as in the Einstein-Podolsky-Rosen paradox.

  7. Einstein Slew Survey: Data analysis innovations

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.; Plummer, David; Schachter, Jonathan F.; Fabbiano, G.

    1992-01-01

    Several new methods were needed in order to make the Einstein Slew X-ray Sky Survey. The innovations which enabled the Slew Survey to be done are summarized. These methods included experimental approach to large projects, parallel processing on a LAN, percolation source detection, minimum action identifications, and rapid dissemination of the whole data base.

  8. Einstein-Yang-Mills theory: Asymptotic symmetries

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Lambert, Pierre-Henry

    2013-11-01

    Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four-dimensional asymptotically flat case.

  9. Can you do quantum mechanics without Einstein?

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Noz, Marilyn E.

    2007-02-01

    The present form of quantum mechanics is based on the Copenhagen school of interpretation. Einstein did not belong to the Copenhagen school, because he did not believe in probabilistic interpretation of fundamental physical laws. This is the reason why we are still debating whether there is a more deterministic theory. One cause of this separation between Einstein and the Copenhagen school could have been that the Copenhagen physicists thoroughly ignored Einstein's main concern: the principle of relativity. Paul A. M. Dirac was the first one to realize this problem. Indeed, from 1927 to 1963, Paul A. M. Dirac published at least four papers to study the problem of making the uncertainty relation consistent with Einstein's Lorentz covariance. It is interesting to combine those papers by Dirac to make the uncertainty relation consistent with relativity. It is shown that the mathematics of two coupled oscillators enables us to carry out this job. We are then led to the question of whether the concept of localized probability distribution is consistent with Lorentz covariance.

  10. Quantum metrology with Bose-Einstein condensates

    SciTech Connect

    Boixo, Sergio; Datta, Animesh; Davis, Matthew J.; Flammia, Steven T.; Shaji, Anil; Tacla, Alexandre B.; Caves, Carlton M.

    2009-04-13

    We show how a generalized quantum metrology protocol can be implemented in a two-mode Bose-Einstein condensate of n atoms, achieving a sensitivity that scales better than 1/n and approaches 1/n{sup 3/2} for appropriate design of the condensate.

  11. Skyrme-Einstein closed cosmic chiral strings

    SciTech Connect

    Rybakov, Yu. P. Ivanova, I. S.

    2007-07-15

    Within the theory of general relativity, the configuration of a closed string (vortex) characterized by a topological charge of the degree type is described for the Skyrme-Einstein SU (2) chiral model. In the approximation of a large vortex-closure radius (a), a solution to equations of motion is obtained, along with estimates for the vortex energy and radius.

  12. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  13. The Einstein All-Sky Slew Survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1992-01-01

    The First Einstein IPC Slew Survey produced a list of 819 x-ray sources, with f(sub x) approximately 10(exp -12) - 10(exp -10) erg/sq cm s and positional accuracy of approximately 1.2 feet (90 percent radius). The aim of this program was to identify these x-ray sources.

  14. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  15. The Excellence of Einstein's Theory of Gravitation.

    ERIC Educational Resources Information Center

    Dirac, P. A. M.

    1979-01-01

    This article is adapted from a presentation made in 1978 at the symposium on the Impact of Modern Scientific Ideas on Society organized by UNESCO in Ulm, West Germany. It discusses Einstein's theory of gravitation and how it started a new line of activity for physicists. (HM)

  16. How Einstein Got the Nobel Prize.

    ERIC Educational Resources Information Center

    Pais, Abraham

    1982-01-01

    Discusses why the Nobel Committee for Physics waited so long before giving Einstein the Nobel Prize and why they did not award it for relativity, but for the photoelectric effect instead. Focuses on the judgments of leading scientists who made nominations as well as committee members' decisions. (Author/JN)

  17. Albert Einstein and the Quantum Riddle

    ERIC Educational Resources Information Center

    Lande, Alfred

    1974-01-01

    Derives a systematic structure contributing to the solution of the quantum riddle in Einstein's sense by deducing quantum mechanics from the postulates of symmetry, correspondence, and covariance. Indicates that the systematic presentation is in agreement with quantum mechanics established by Schroedinger, Born, and Heisenberg. (CC)

  18. Chromohydrodynamics in Einstein-Cartan theory

    SciTech Connect

    Amorim, R.

    1986-05-15

    The complete dynamical system for a classical fluid endowed with non-Abelian charge density is obtained by using variational techniques. Spin density appears in a natural way, as a consequence of a usual gauge construction. Einstein-Cartan, Yang-Mills, and generalized Wong equations are explicitly shown.

  19. Input-output description of linear systems with multiple time-scales

    NASA Technical Reports Server (NTRS)

    Madriz, R. S.; Sastry, S. S.

    1984-01-01

    It is pointed out that the study of systems evolving at multiple time-scales is simplified by studying reduced-order models of these systems valid at specific time-scales. The present investigation is concerned with an extension of results on the time-scale decomposition of autonomous systems to that of input-output systems. The results are employed to study conditions under which positive realness of a transfer function is preserved under singular perturbation. Attention is given to the perturbation theory for linear operators, the multiple time-scale structure of autonomous linear systems, the input-output description of two time-scale linear systems, the positive realness of two time-scale systems, and multiple time-scale linear systems.

  20. Timescales for permeability reduction and strength recovery in densifying magma

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Farquharson, J. I.; Wadsworth, F. B.; Kolzenburg, S.; Russell, J. K.

    2015-11-01

    Transitions between effusive and explosive behaviour are routine for many active volcanoes. The permeability of the system, thought to help regulate eruption style, is likely therefore in a state of constant change. Viscous densification of conduit magma during effusive periods, resulting in physical and textural property modifications, may reduce permeability to that preparatory for an explosive eruption. We present here a study designed to estimate timescales of permeability reduction and strength recovery during viscous magma densification by coupling measurements of permeability and strength (using samples from a suite of variably welded, yet compositionally identical, volcanic deposits) with a rheological model for viscous compaction and a micromechanical model, respectively. Bayesian Information Criterion analysis confirms that our porosity-permeability data are best described by two power laws that intersect at a porosity of 0.155 (the "changepoint" porosity). Above and below this changepoint, the permeability-porosity relationship has a power law exponent of 8.8 and 1.0, respectively. Quantitative pore size analysis and micromechanical modelling highlight that the high exponent above the changepoint is due to the closure of wide (∼200-300 μm) inter-granular flow channels during viscous densification and that, below the changepoint, the fluid pathway is restricted to narrow (∼50 μm) channels. The large number of such narrow channels allows porosity loss without considerable permeability reduction, explaining the switch to a lower exponent. Using these data, our modelling predicts a permeability reduction of four orders of magnitude (for volcanically relevant temperatures and depths) and a strength increase of a factor of six on the order of days to weeks. This discrepancy suggests that, while the viscous densification of conduit magma will inhibit outgassing efficiency over time, the regions of the conduit prone to fracturing, such as the margins, will

  1. Timescales of texture development in a cooling lava dome

    NASA Astrophysics Data System (ADS)

    von Aulock, F. W.; Nichols, A. R. L.; Kennedy, B. M.; Oze, C.

    2013-08-01

    Crystal growth and crack development in cooling lava domes are both capable of redistributing and mobilizing water. Cracking and hydration decrease the stability of a dome, which may lead to hazards including partial dome collapse and block and ash flows. By examining the distribution of water around crystals and cracks, we identify and confine temperature and timescales of texture development in glassy rocks of volcanic domes. Four generations of textures have been identified: type a: spherulites, type b: cracks associated with spherulite growth, type c: perlitic cracks, and type d: disparate cracks. High-resolution imaging using Fourier Transform Infrared Spectroscopy (FTIR) performed on samples from the Ngongotaha dome, New Zealand, show an increase in H2O of up to 450% along gradients of around 100 μm up to 300 μm in length from perlitic cracks, spherulitic cracks and in haloes around spherulites. No gradients in water concentrations across the disparate cracks are present. Water diffusion models show potential timescale-temperature couples that coincide with textural observations and previous studies, and allow us to develop a conceptual model of spherulite growth and cracking in a cooling lava dome. Spherulite growth starts around the glass transition temperature (Tg) when the viscous melt cools to a brittle solid and proceeds with cracking related to volume changes at slightly lower temperatures and shorter timescales (days to weeks) compared to spherulite growth. Perlitic cracking happens at T≪Tg, allowing hydration of a permeable network within weeks to months. Low temperature (≲50 °C) cracks could not be hydrated in the time since eruption (≃230 ka). Our data show that textures in cooling glass develop during cooling below Tg within days, producing cracks and crystals that create inhomogeneities in the spatial distribution of water. The lengthscales of water diffusion away from spherulites, spherulite cracks, and perlite cracks suggest that most

  2. Piecewise linear manifolds: Einstein metrics and Ricci flows

    NASA Astrophysics Data System (ADS)

    Schrader, Robert

    2016-05-01

    This article provides an attempt to extend concepts from the theory of Riemannian manifolds to piecewise linear (p.l.) spaces. In particular we propose an analogue of the Ricci tensor, which we give the name of an Einstein vector field. On a given set of p.l. spaces we define and discuss (normalized) Einstein flows. p.l. Einstein metrics are defined and examples are provided. Criteria for flows to approach Einstein metrics are formulated. Second variations of the total scalar curvature at a specific Einstein space are calculated. Dedicated to Ludwig Faddeev on the occasion of his 80th birthday.

  3. Long-timescale dynamics of the Drew-Dickerson dodecamer.

    PubMed

    Dans, Pablo D; Danilāne, Linda; Ivani, Ivan; Dršata, Tomáš; Lankaš, Filip; Hospital, Adam; Walther, Jürgen; Pujagut, Ricard Illa; Battistini, Federica; Gelpí, Josep Lluis; Lavery, Richard; Orozco, Modesto

    2016-05-19

    We present a systematic study of the long-timescale dynamics of the Drew-Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na(+)Cl(-) or K(+)Cl(-) The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 μs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 μs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex. PMID:27084952

  4. From lifetime to evolution: timescales of human gut microbiota adaptation.

    PubMed

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies. PMID:25408692

  5. Equilibration timescale of atmospheric secondary organic aerosol partitioning

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Seinfeld, John H.

    2012-12-01

    Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, τeq, of SOA gas-particle partitioning using a state-of-the-art kinetic flux model. τeq is found to be of order seconds to minutes for partitioning of relatively high volatility organic compounds into liquid particles, thereby adhering to equilibrium gas-particle partitioning. However, τeq increases to hours or days for organic aerosol associated with semi-solid particles, low volatility, large particle size, and low mass loadings. Instantaneous equilibrium partitioning may lead to substantial overestimation of particle mass concentration and underestimation of gas-phase concentration.

  6. Reconstructing disturbances and their biogeochemical consequences over multiple timescales

    USGS Publications Warehouse

    McLauchlan, Kendra K.; Higuera, Philip E.; Gavin, Daniel G.; Perakis, Steven S.; Mack, Michelle C.; Alexander, Heather; Battles, John; Biondi, Franco; Buma, Brian; Colombaroli, Daniele; Enders, Sara K.; Engstrom, Daniel R.; Hu, Feng Sheng; Marlon, Jennifer R.; Marshall, John; McGlone, Matt; Morris, Jesse L.; Nave, Lucas E.; Shuman, Bryan; Smithwick, Erica A.H.; Urrego, Dunia H.; Wardle, David A.; Williams, Christopher J.; Williams, Joseph J.

    2014-01-01

    Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilience.

  7. Long-timescale dynamics of the Drew–Dickerson dodecamer

    PubMed Central

    Dans, Pablo D.; Danilāne, Linda; Ivani, Ivan; Dršata, Tomáš; Lankaš, Filip; Hospital, Adam; Walther, Jürgen; Pujagut, Ricard Illa; Battistini, Federica; Gelpí, Josep Lluis; Lavery, Richard; Orozco, Modesto

    2016-01-01

    We present a systematic study of the long-timescale dynamics of the Drew–Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na+Cl− or K+Cl−. The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 μs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 μs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex. PMID:27084952

  8. From lifetime to evolution: timescales of human gut microbiota adaptation

    PubMed Central

    Quercia, Sara; Candela, Marco; Giuliani, Cristina; Turroni, Silvia; Luiselli, Donata; Rampelli, Simone; Brigidi, Patrizia; Franceschi, Claudio; Bacalini, Maria Giulia; Garagnani, Paolo; Pirazzini, Chiara

    2014-01-01

    Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota (GM) is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The GM continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies. PMID:25408692

  9. Einstein and a century of time

    NASA Astrophysics Data System (ADS)

    Raine, D. J.

    2005-09-01

    In a world overabundant in information, a subject is defined by its iconography. Physics is the falling apple, the planetary atom, the laser, the mushroom cloud and the image of the later Einstein - images that represent, respectively, gravity, atomic theory, quantum theory, mass-energy and the scientist who had a hand in all four. It is therefore appropriate that World Year of Physics is called Einstein Year in the UK. Of course one can argue that progress in science depends on the contributions of many people; that there are other geniuses in physics, even some colourful personalities. Nevertheless there are fundamental reasons why Einstein's early achievements stand out even in their company. When at last the thought came to him that 'time itself was suspect', Einstein had found a new insight into the nature of the physical universe. It is this: that the universal properties of material objects tell us about the nature of space and time, and it is through these properties, not philosophical logic or common sense, that we discover the structure of spacetime. The later Einstein turned this successful formula on its head and sought to use the properties of spacetime to define those of material objects, thereby seeking to abolish matter entirely in favour of geometry. Before I introduce this special feature of European Journal of Physics I will say a few words about what is not here. Like all great geniuses Einstein can be seen as the climax of what went before him and the initiation of what was to follow. Looking back we can see the influence of Mach's positivism, according to which the role of science is to relate observations to other observations; hence only observations can tell us what is 'real'. But Einstein also grew up with the family electromechanical businesses, which testifies to the reality of the Maxwellian electromagnetic fields: thus only theory can tell us what is real! As is well known, Einstein himself refused to accept the full consequences of

  10. Hydralab+: Representing timescales of biological change in flume experiments

    NASA Astrophysics Data System (ADS)

    Baynes, Edwin; McLelland, Stuart; Parsons, Daniel

    2016-04-01

    Fluvial environments are vulnerable to future climate change due to non-linear responses to shifts in boundary conditions such as a migration to a hydrological regime characterised by more frequent extreme events. The biological component of these systems is critical for understanding the morphodynamic responses since organisms are often at the interface between water and sediment transport systems. Under a changing climate, the growth or decline of a particular species may change the flow dynamics and/or sediment transport. Hence, flume experiments that seek to accurately model the impact of climate change on the morphodynamics of sedimentary systems should consider the interaction between organisms and climate-induced changes in hydrodynamic forcing. This requires the ability to control and/or mimic biological components within flume experiments on timescales that are compatible with climate change forcing. Here, we present a review of existing research covering morphodynamics-biological interactions in flume experiments. We consider the approaches implemented to scale organisms (e.g. small-scale or chemical surrogates) and how these can be used to represent variations in the biological component over different timescales. Disparities in the scaling of hydrodynamics, morphodynamics and biota using these existing approaches are identified. During Hydralab+, this review will form the basis to develop innovative experimental protocols to represent total system response to climate change within a laboratory setting (e.g. developing new surrogates that can capture biological responses to climate forcing and enable modelling of longer time periods and longer-term trends). This will allow an improved understanding of the impact of climate change to be developed and potentially guide future adaptation strategies.

  11. Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: Exact solutions

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.

    2016-04-01

    Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.

  12. Preparation of Bose Einstein condensates in realistc trapping potentials for precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Posso Trujillo, Katerine; Rasel, Ernst M.; Gaaloul, Naceur; Quantus Team

    Preparation of Bose Einstein condensates in realistc trapping potentials for precision atom interferometry Theoretical studies of the ground state and the dynamical properties of Bose Einstein condensates (BECs) are typically realized by considering the ensemble as being initiaally trapped by a harmonic potential. Dramatic discrepancies were found by comparing numerical results of the long-time expansion of BECs after being released from the harmonic trap, and measurements of the free evolution and delta-kick cooling (DKC) of a 87Rb BEC on large timescales of up to 2 s in micro-gravity (micro-g) environment such as those performed in the QUANTUS project from our group. The modification in the dynamics of a 87Rb BEC with the application of DKC by using experimentally implemented trapping geometries and the effect of gravity have been studied. Three different configurations have been considered: atom chip-based potential, dipole trap and the time-averaged orbiting potential. Such discrepancies may be crucial in high precision atom interferometry experiments in micro-g and zero-g platforms in which the implementation of DKC is mandatory to achieve the long-expansion times required

  13. Was Einstein Really a Pacifist? Einstein's Independent, Forward-Thinking, Flexible, and Self-Defined Pacifism

    NASA Astrophysics Data System (ADS)

    Holmes, Virginia Iris

    2005-03-01

    Perhaps motivated by an admiration for Einstein and a desire to identify with him, combined with a majority world-view in opposition to pacifism, skeptics may often question whether Einstein was really a pacifist. They might point to the fact that his dramatic contributions to the field of physics at the beginning of the twentieth century made nuclear weapons possible, as well as his 1939 letter to President Franklin D. Roosevelt urging him to develop such weapons before the Nazis would, as examples of at least an inconsistent stance on pacifism across time on Einstein's part. However, as this paper will show, Einstein's pacifism began early in his life, was a deep-seated conviction that he expressed repeatedly across the years, and was an independent pacifism that flowed from his own responses to events around him and contained some original and impressively forward-thinking elements. Moreover, in calling himself a pacifist, as Einstein did, he defined pacifism in his own terms, not according to the standards of others, and this self-defined pacifism included the flexibility to designate the Nazis as a special case that had to be opposed through the use of military violence, in his view. As early as during his childhood, Einstein already disliked competitive games, because of the necessity of winners and losers, and disliked military discipline. In his late thirties, living in Germany during the First World War with a prestigious academic position in Berlin, yet retaining his identity as a Swiss citizen, Einstein joined a small group of four intellectuals who signed the pacifist ``Appeal to the Europeans'' in response to the militarist ``Manifesto to the Civilized World'' signed by 93 German intellectuals. In private, throughout that War, Einstein repeatedly expressed his disgust and sense of alienation at the ``war-enthusiasm'' sentiment of the majority. In the aftermath of the War, Einstein was involved in a German private commission to investigate German war

  14. Eddington-Born-Infeld cosmology: a cosmographic approach, a tale of doomsdays and the fate of bound structures

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Chen, Che-Yu; Chen, Pisin

    2015-02-01

    The Eddington-inspired-Born-Infeld scenario (EiBI) can prevent the big bang singularity for a matter content whose equation of state is constant and positive. In a recent paper [Bouhmadi-Lopez et al. (Eur. Phys. J. C 74:2802, 2014)] we showed that, on the contrary, it is impossible to smooth a big rip in the EiBI setup. In fact the situations are still different for other singularities. In this paper we show that a big freeze singularity in GR can in some cases be smoothed to a sudden or a type IV singularity under the EiBI scenario. Similarly, a sudden or a type IV singularity in GR can be replaced in some regions of the parameter space by a type IV singularity or a loitering behaviour, respectively, in the EiBI framework. Furthermore, we find that the auxiliary metric related to the physical connection usually has a smoother behaviour than that based on the physical metric. In addition, we show that bound structures close to a big rip or a little rip will be destroyed before the advent of the singularity and will remain bound close to a sudden, big freeze or type IV singularity. We then constrain the model following a cosmographic approach, which is well known to be model independent, for a given Friedmann-Lemaître-Robertson-Walker geometry. It turns out that among the various past or present singularities, the cosmographic analysis can pick up the physical region that determines the occurrence of a type IV singularity or a loitering effect in the past. Moreover, to determine which of the future singularities or doomsdays is more probable, observational constraints on the higher-order cosmographic parameters are required.

  15. A Common Mechanism of Multi-timescale Abrupt Global Change

    NASA Astrophysics Data System (ADS)

    Duke, J. H.

    2008-12-01

    The La Nina phase of the El Nino/Southern Oscillation (ENSO) is known to cause global cooling on inter- annual timescales through changes in deep convection patterns and reduced supply of water vapor to the tropical atmosphere. Two distinct means are presented here by which this mechanism may also act on timescales exceeding 100,000 years. Firstly, the hypothesis of millennial tidal forcing is revisited with the view that equatorial buoyancy frequencies and steep internal waves in the Pacific Equatorial Undercurrent make vertical mixing in the equatorial Pacific uniquely susceptible to incremental changes in tidal energy. Hourly Tropical Ocean Array subsurface temperature data show a resonant response to extreme tides associated with the 1997 and 2000 ENSO events. Complimenting the known 1,800 year peak tide cycle, a 550-600 year cycle of three-fold variation in the frequency of deep central eclipses (gamma < 0.05) is consistent with the timing of the Little Ice Age. Fortnightly eclipse triples (FET's) associated with this eclipse cycle are shown to coincide with both warm and cold phase Southern Oscillation Index (SOI) inflection points between 1876 and 2007, and notably the cold phase maxima of 1904 and 1917. In the second proposed trigger, southward migration of the intertropical convergence zone (ITCZ) in the central and eastern Pacific may periodically shift the rising branch of the Hadley circulation over the equatorial cold tongue. The resulting winter monsoon system develops an equatorially symmetric La Nina (ESLN) mode through a positive feedback between diverging surface winds and meridional rather than zonal SST gradients. Exchange of latent heat in the winter monsoon contracts the Hadley Cell, draws circumpolar westerly winds equatorward, and expands high latitude ice volume, as demonstrated in 1998. A three million year record of obliquity and August 10°N minus 10°S insolation (AUG10N-S) shows an ice volume dependence upon the mutual direction of

  16. The EINSTEIN On-Line Service

    NASA Astrophysics Data System (ADS)

    Harris, D. E.; Grant, C. S.; Andernach, H.

    The Einstein On-Line Service (EOLS) is a simple menu-driven system which provides an intuitive method of querying over one hundred database catalogs. In addition, the EOLS contains over 30 CD-ROMs of images from the Einstein X-ray Observatory which are available for downloading. The EOLS provides all of our databases to the NASA Astrophysics Data System (ADS) and our documents which describe each table are written in the ADS format. In conjunction with the IAU working group on Radioastronomical Databases, the EOLS serves as an experimental platform for on-line access to radio source catalogs. The number of entries in these catalogs exceeds half a million.

  17. Quantum Einstein-de Haas effect

    PubMed Central

    Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2016-01-01

    The classical Einstein-de Haas experiment demonstrates that a change of magnetization in a macroscopic magnetic object results in a mechanical rotation of this magnet. This experiment can therefore be considered as a macroscopic manifestation of the conservation of total angular momentum and energy of electronic spins. Since the conservation of angular momentum is a consequence of a system's rotational invariance, it is valid for an ensemble of spins in a macroscopic ferromaget as well as for single spins. Here we propose an experimental realization of an Einstein-de Haas experiment at the single-spin level based on a single-molecule magnet coupled to a nanomechanical resonator. We demonstrate that the spin associated with the single-molecule magnet is then subject to conservation of total angular momentum and energy, which results in a total suppression of the molecule's quantum tunnelling of magnetization. PMID:27126449

  18. Taming the nonlinearity of the Einstein equation.

    PubMed

    Harte, Abraham I

    2014-12-31

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well. PMID:25615299

  19. Quantum Einstein-de Haas effect

    NASA Astrophysics Data System (ADS)

    Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2016-04-01

    The classical Einstein-de Haas experiment demonstrates that a change of magnetization in a macroscopic magnetic object results in a mechanical rotation of this magnet. This experiment can therefore be considered as a macroscopic manifestation of the conservation of total angular momentum and energy of electronic spins. Since the conservation of angular momentum is a consequence of a system's rotational invariance, it is valid for an ensemble of spins in a macroscopic ferromaget as well as for single spins. Here we propose an experimental realization of an Einstein-de Haas experiment at the single-spin level based on a single-molecule magnet coupled to a nanomechanical resonator. We demonstrate that the spin associated with the single-molecule magnet is then subject to conservation of total angular momentum and energy, which results in a total suppression of the molecule's quantum tunnelling of magnetization.

  20. Quantum Einstein-de Haas effect.

    PubMed

    Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2016-01-01

    The classical Einstein-de Haas experiment demonstrates that a change of magnetization in a macroscopic magnetic object results in a mechanical rotation of this magnet. This experiment can therefore be considered as a macroscopic manifestation of the conservation of total angular momentum and energy of electronic spins. Since the conservation of angular momentum is a consequence of a system's rotational invariance, it is valid for an ensemble of spins in a macroscopic ferromaget as well as for single spins. Here we propose an experimental realization of an Einstein-de Haas experiment at the single-spin level based on a single-molecule magnet coupled to a nanomechanical resonator. We demonstrate that the spin associated with the single-molecule magnet is then subject to conservation of total angular momentum and energy, which results in a total suppression of the molecule's quantum tunnelling of magnetization. PMID:27126449

  1. Axions: Bose Einstein condensate or classical field?

    NASA Astrophysics Data System (ADS)

    Davidson, Sacha

    2015-05-01

    The axion is a motivated dark matter candidate, so it would be interesting to find features in Large Scale Structures specific to axion dark matter. Such features were proposed for a Bose Einstein condensate of axions, leading to confusion in the literature (to which I contributed) about whether axions condense due to their gravitational interactions. This note argues that the Bose Einstein condensation of axions is a red herring: the axion dark matter produced by the misalignment mechanism is already a classical field, which has the distinctive features attributed to the axion condensate (BE condensates are described as classical fields). This note also estimates that the rate at which axion particles condense to the field, or the field evaporates to particles, is negligible.

  2. Einstein metrics and Brans-Dicke superfields

    SciTech Connect

    Marques, S.

    1988-01-01

    It is obtained here a space conformal to the Einstein space-time, making the transition from an internal bosonic space, constructed with the Majorana constant spinors in the Majorana representation, to a bosonic ''superspace,'' through the use of Einstein vierbeins. These spaces are related to a Grassmann space constructed with the Majorana spinors referred to above, where the ''metric'' is a function of internal bosonic coordinates. The conformal function is a scale factor in the zone of gravitational radiation. A conformal function dependent on space-time coordinates can be constructed in that region when we introduce Majorana spinors which are functions of those coordinates. With this we obtain a scalar field of Brans-Dicke type. 11 refs.

  3. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    NASA Astrophysics Data System (ADS)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 10 4 to 10 8 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (<1 Ma), cool sediments, but strong evidence for exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ˜75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D 2O

  4. Spectral decomposition of time-scales in hyporheic exchange

    NASA Astrophysics Data System (ADS)

    Wörman, Anders; Riml, Joakim

    2015-04-01

    Hyporheic exchange of heat and solute mass in streams is manifested both in form of different exchange mechanisms and their associated distributions of residence times as well as the range of time-scales characterizing the forcing boundary conditions. A recently developed analytical technique separates the spectrum of time-scales and relates the forcing boundary fluctuations of heat and solute mass through a physical model of the hydrological transport to the response of heat and solute mass. This spectral decomposition can be done both for local (point-scale) observations in the hyporhiec zone itself as well as for transport processes on the watershed scale that can be considered 'well-behaved' in terms of knowledge of the forcing (input) quantities. This paper presents closed-form solutions in spectral form for the point-, reach- and watershed-scale and discusses their applicability to selected data of heat and solute concentration. We quantify the reliability and highlight the benefits of the spectral approach to different scenarios and, peculiarly, the importance for linking the periods in the spectral decomposition of the solute response to the distribution of transport times that arise due to the multitude of exchange mechanisms existing in a watershed. In a point-scale example the power spectra of in-stream temperature is related to the power spectrum of the temperature at a specific sediment depth by means of exact solutions of a physically based formulation of the vertical heat transport. It is shown that any frequency (ω) of in-stream temperature fluctuation scales with the effective thermal diffusivity (κe) and the vertical separation distance between the pairs of temperature (ɛ) data as ω ≈ κe/(2ɛ2), which implies a decreasing weight to higher frequencies (shorter periods) with depth. Similarly on the watershed-scale one can link the watershed dispersion to the damping of the concentration fluctuations in selected frequency intervals

  5. Albert Einstein - Chief Engineer of the Universe: 100 Authors for Einstein Essays

    NASA Astrophysics Data System (ADS)

    Renn, Jürgen

    2005-09-01

    In 1905, Albert Einstein published five scientific articles that fundamentally changed the world-view of physics: The Special Theory of Reativity revolutionized our concept of space and time, E=mc² became the best-known equation in physics. On the occasion of the 100th aniversary of his "annus mirabilis" 1905, the UNESCO declared the year 2005 the "World Year of Physics", in order to draw attention to the impact of physics. The Max Planck Institute for the history of science dedicates an exhibition in the Kronprinzenpalais in Berlin to the probably most important scientist of the 20th century. In this book, 100 authors explain the historical background of Einstein's life and work, shed light on many different aspects of his biography, and on the scientific fields and topics that are connected to Einstein's work. The authors are some of the most renowned Einstein researchers in the world, such as Jürgen Ehlers, Peter Galison, Zeev Rosenkranz, John Stachel and Robert Schulmann. The essays form a bridge between scientific and cultural history, opening up a perspective on Einstein's biography which goes beyond the traditional picture of the exceptional science genius.

  6. Bose-Einstein correlations from 'within'

    SciTech Connect

    Utyuzh, O. V.; Wilk, G.; Wlodarczyk, Z.

    2006-04-11

    We describe an attempt to model numerically Bose-Einstein correlations (BEC) from 'within', i.e., by using them as the most fundamental ingredient of some Monte Carlo event generator (MC) rather than considering them as a kind of (more or less important, depending on the actual situation) 'afterburner', which inevitably changes original physical content of the MC code used to model multiparticle production process.

  7. The Einstein Relation for the KPZ Equation

    NASA Astrophysics Data System (ADS)

    Gonçalves, Patrícia; Jara, Milton

    2015-03-01

    We compute the non-universal constants in the KPZ equation in one dimension, in terms of the thermodynamical quantities associated to the underlying microscopic dynamics. In particular, we derive the second-order Einstein relation for the transport coefficient of the KPZ equation, in terms of the conserved quantity , the diffusion coefficient , the strength of the asymmetry and the static compressibility of the system.

  8. Schrodinger Leopards in Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Dounas-Frazer, Dimitri R.

    2008-03-01

    We present the complex quantum dynamics of vortices in Bose-Einstein condensates in a double well via exact diagonalization of a discretized Hamiltonian. When the barrier is high, vortices evolve into macroscopic superposition (NOON) states of a vortex in either well -- a Schrodinger cat with spots. Such Schrodinger leopard states are more robust than previously proposed NOON states, which only use two single particle modes of the double well potential.

  9. Inhomogeneous Einstein-Rosen string cosmology

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-08-01

    Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.

  10. Bose-Einstein condensation of 84Sr.

    PubMed

    Martinez de Escobar, Y N; Mickelson, P G; Yan, M; DeSalvo, B J; Nagel, S B; Killian, T C

    2009-11-13

    We report Bose-Einstein condensation of (84)Sr in an optical dipole trap. Efficient laser cooling on the narrow intercombination line and an ideal s-wave scattering length allow the creation of large condensates (N(0) approximately 3 x 10(5)) even though the natural abundance of this isotope is only 0.6%. Condensation is heralded by the emergence of a low-velocity component in time-of-flight images. PMID:20365965

  11. On static Poincaré-Einstein metrics

    NASA Astrophysics Data System (ADS)

    Galloway, Gregory J.; Woolgar, Eric

    2015-06-01

    The classification of solutions of the static vacuum Einstein equations, on a given closed manifold or an asymptotically flat one, is a long-standing and much-studied problem. Solutions are characterized by a complete Riemannian n-manifold ( M, g) and a positive function N, called the lapse. We study this problem on Asymptotically Poincaré-Einstein n-manifolds, n ≥ 3, when the conformal boundary-at-infinity is either a round sphere, a flat torus or smooth quotient thereof, or a compact hyperbolic manifold. Such manifolds have well-defined Wang mass, and are time-symmetric slices of static, vacuum, asymptotically anti-de Sitter spacetimes. By integrating a mildly generalized form of an identity used by Lindblom, Shen, Wang, and others, we give a mass formula for such manifolds. There are no solutions with positive mass. In consequence, we observe that either the lapse is trivial and ( M, g) is Poincaré-Einstein or the Wang mass is negative, as in the case of time symmetric slices of the AdS soliton. As an application, we use the mass formula to compute the renormalized volume of the warped product ( X, γ) ≃ ( M 3 , g) × N 2 ( S 1 , dt 2).

  12. The EINSTEIN On-Line Service (EOLS)

    NASA Astrophysics Data System (ADS)

    Harris, D. E.; Stern Grant, C. P.; Andernach, H.

    1994-08-01

    In January 1989, SAO established an on-line service to help astronomers prepare ROSAT proposals by providing access to the preliminary source list from the ``Einstein Observatory Catalog of IPC X-ray Sources''. In the intervening years, we have updated the source list, added to the documentation, included many more Einstein databases as well as a number of tables from other wavebands, provided access to images for downloading from all of the Einstein CDROMs, and installed new software for more sophisticated filtering and retrieval. Although we have improved the functionality and made significant additions to the databases, we still maintain a simple menu interface accessible from any type of terminal. EOLS provides all of our databases to the NASA Astrophysics Data System (ADS) and our documents which describe each table are thus written in the ADS format. In conjunction with the IAU working group on Archiving and Data Bases for Radio Astronomy, EOLS serves as an experimental platform for on-line access to the radio source lists collected by one of us (H.A.). The number of these entries exceeds half a million.

  13. Einstein's Revolutionary Light--Quantum Hypothesis

    NASA Astrophysics Data System (ADS)

    Stuewer, R. H.

    2006-03-01

    Albert Einstein's light-quantum paper was the only one of his great papers of 1905 that he himself called ``very revolutionary''. I sketch his arguments for light quanta, his analysis of the photoelectric effect, and his introduction of the wave-particle duality into physics in 1909. I show that Robert Andrews Millikan, in common with almost all physicists at the time, rejected Einstein's light-quantum hypothesis as an interpretation of his photoelectric-effect experiments of 1915. I then trace the complex experimental and theoretical route that Arthur Holly Compton followed between 1916 and 1922 that led to his discovery of the Compton effect, a discovery that Peter Debye also made virtually simultaneously and independently. Compton's discovery, however, was challenged on experimental grounds by William Duane and on theoretical grounds by Niels Bohr in the Bohr--Kramers--Slater theory of 1924, and only after that theory was disproved experimentally the following year by Walther Bothe and Hans Geiger in Berlin and by Compton and Alfred W. Simon in Chicago was Einstein's light-quantum hypothesis generally accepted by physicists.

  14. Stellar coronae from Einstein - Observations and theory

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Vaiana, G. S.

    1980-01-01

    Einstein Observatory observations of stellar X-ray emission are presented and their implications for the formation of stellar coronae and the problem of stellar angular momentum loss are discussed. Solar coronal X-ray observations and observations of stellar coronae made prior to Einstein are reviewed, and it is noted that they already suggest that the standard theory of acoustic coronal heating is inadequate. The principal results of the Einstein/CfA stellar survey are summarized, with attention given to variations of the level of X-ray flux detected along the main sequence, the decline of X-ray flux with increasing age of giants and supergiants, and indications of a large range of X-ray emission levels within a given type, which are clearly incompatible with models for acoustic flux generation. A new theory to explain stellar coronae and hence X-ray emission from them is then proposed in which stellar magnetic fields play the key role in determining the level of coronal emission, and the modulation of the surface magnetic flux level and the level of stressing of surface magnetic fields essentially determine the variation of mean coronal activity in the H-R diagram.

  15. My Half-Hour with Einstein

    NASA Astrophysics Data System (ADS)

    Romer, Robert H.

    2005-04-01

    Midway during my first year as a Princeton graduate student (1952-53), I was given a letter of introduction to Einstein. Over a year later I finally worked up my courage to use it and -- as a result -- enjoyed a one-on-one conversation with him in the study of his home on Mercer Street. I will describe how my chance to meet Einstein arose and what I can remember of our memorable (to me if not to him) conversation. Among other things, we discussed the bomb, the new state of Israel, fossil horse brains, and evolution. (``Has there really been enough time for all those changes?'') We talked about the Einstein-Rosen-Podolsky problem - though not by that name, and I believe that it was the ``Bohm version'' that he asked me about. (``Do you really believe that if someone here measured the spin of an atom, it could affect the simultaneous measurement of the spin of another atom way over there?'') My major recollection is of my wish that I had been better prepared. As Ehrenfest once wrote: ``Nothing is shabbier than the feeling: now God has granted me the opportunity to meet this man, and I sat before him open-mouthed; how much I might have asked him -- but nothing at all occurred to me.''

  16. The Happiest thought of Einstein's Life

    NASA Astrophysics Data System (ADS)

    Heller, Michael

    Finally, let us have a closer look at the place of the equivalence principle in the logical scheme of Einstein's general relativity theory. First, Einstein new well, from Minkowski's geometric formulation of his own special relativity, that accelerated motions should be represented as curved lines in a flat space-time. Second, the Galileo principle asserts that all bodies are accelerated in the same way in a given gravitational field, and consequently their motions are represented in the flat space-time by curved lines, all exactly in the same way. Third, since all lines representing free motions are curved exactly in the same way in the flat space-time, one can say that the lines remain straight (as far as possible) but the space-time itself becomes curved. Fourth, and last, since acceleration is (locally) equivalent to a gravitational field (here we have the equivalence principle), one is entitled to assert that it is the gravitational field (and not acceleration) that is represented as the curvature of space-time. This looks almost like an Aristotelian syllogism. However, to put all the pieces of evidence into the logical chain took Einstein a few years of hard thinking. The result has been incorporated into the field equations which quantitatively show how the curvature of space-time and gravity are linked together.

  17. Forecasting decadal and shorter time-scale solar cycle features

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi

    2016-07-01

    Solar energetic particles and magnetic fields reach the Earth through the interplanetary medium and affect it in various ways, producing beautiful aurorae, but also electrical blackouts and damage to our technology-dependent economy. The root of energetic solar outputs is the solar activity cycle, which is most likely caused by dynamo processes inside the Sun. It is a formidable task to accurately predict the amplitude, onset and peak timings of a solar cycle. After reviewing all solar cycle prediction methods, including empirical as well as physical model-based schemes, I will describe what we have learned from both validation and nonvalidation of cycle 24 forecasts, and how to refine the model-based schemes for upcoming cycle 25 forecasts. Recent observations indicate that within a solar cycle there are shorter time-scale 'space weather' features, such as bursts of various forms of activity with approximately one year periodicity. I will demonstrate how global tachocline dynamics could play a crucial role in producing such space weather. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  18. Exploring Market State and Stock Interactions on the Minute Timescale

    PubMed Central

    Tan, Lei; Chen, Jun-Jie; Zheng, Bo; Ouyang, Fang-Yan

    2016-01-01

    A stock market is a non-stationary complex system. The stock interactions are important for understanding the state of the market. However, our knowledge on the stock interactions on the minute timescale is limited. Here we apply the random matrix theory and methods in complex networks to study the stock interactions and sector interactions. Further, we construct a new kind of cross-correlation matrix to investigate the correlation between the stock interactions at different minutes within one trading day. Based on 50 million minute-to-minute price data in the Shanghai stock market, we discover that the market states in the morning and afternoon are significantly different. The differences mainly exist in three aspects, i.e. the co-movement of stock prices, interactions of sectors and correlation between the stock interactions at different minutes. In the afternoon, the component stocks of sectors are more robust and the structure of sectors is firmer. Therefore, the market state in the afternoon is more stable. Furthermore, we reveal that the information of the sector interactions can indicate the financial crisis in the market, and the indicator based on the empirical data in the afternoon is more effective. PMID:26900948

  19. Evidence of Protein Collective Motions on the Picosecond Timescale

    PubMed Central

    He, Yunfen; Chen, J.-Y.; Knab, J.R.; Zheng, Wenjun; Markelz, A.G.

    2011-01-01

    We investigate the presence of structural collective motions on a picosecond timescale for the heme protein, cytochrome c, as a function of oxidation and hydration, using terahertz (THz) time domain spectroscopy and molecular dynamics simulations. The THz response dramatically increases with oxidation, with the largest increase for lowest hydrations, and highest frequencies. For both oxidation states the THz response rapidly increases with hydration saturating above ∼25% (g H2O/g protein). Quasiharmonic vibrational modes and dipole-dipole correlation functions were calculated from molecular dynamics trajectories. The collective mode density of states alone reproduces the measured hydration dependence, providing strong evidence of the existence of these motions. The large oxidation dependence is reproduced only by the dipole-dipole correlation function, indicating the contrast arises from diffusive motions consistent with structural changes occurring in the vicinity of buried internal water molecules. This source for the observed oxidation dependence is consistent with the lack of an oxidation dependence in nuclear resonant vibrational spectroscopy measurements. PMID:21320451

  20. The evolution of methods for establishing evolutionary timescales

    PubMed Central

    2016-01-01

    The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325838

  1. Simulating conservative tracers in fractured till under realistic timescales.

    PubMed

    Helmke, M F; Simpkins, W W; Horton, R

    2005-01-01

    Discrete-fracture and dual-porosity models are infrequently used to simulate solute transport through fractured unconsolidated deposits, despite their more common application in fractured rock where distinct flow regimes are hypothesized. In this study, we apply four fracture transport models--the mobile-immobile model (MIM), parallel-plate discrete-fracture model (PDFM), and stochastic and deterministic discrete-fracture models (DFMs)--to demonstrate their utility for simulating solute transport through fractured till. Model results were compared to breakthrough curves (BTCs) for the conservative tracers potassium bromide (KBr), pentafluorobenzoic acid (PFBA), and 1,4-piperazinediethanesulfonic acid (PIPES) in a large-diameter column of fractured till. Input parameters were determined from independent field and laboratory methods. Predictions of Br BTCs were not significantly different among models; however, the stochastic and deterministic DFMs were more accurate than the MIM or PDFM when predicting PFBA and PIPES BTCs. DFMs may be more applicable than the MIM for tracers with small effective diffusion coefficients (De) or for short timescales due to differences in how these models simulate diffusion or incorporate heterogeneities by their fracture networks. At large scales of investigation, the more computationally efficient MIM and PDFM may be more practical to implement than the three-dimensional DFMs, or a combination of model approaches could be employed. Regardless of the modeling approach used, fractures should be incorporated routinely into solute transport models in glaciated terrain. PMID:16324009

  2. Serotonergic neurons signal reward and punishment on multiple timescales

    PubMed Central

    Cohen, Jeremiah Y; Amoroso, Mackenzie W; Uchida, Naoshige

    2015-01-01

    Serotonin's function in the brain is unclear. One challenge in testing the numerous hypotheses about serotonin's function has been observing the activity of identified serotonergic neurons in animals engaged in behavioral tasks. We recorded the activity of dorsal raphe neurons while mice experienced a task in which rewards and punishments varied across blocks of trials. We ‘tagged’ serotonergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to light. We found three main features of serotonergic neuron activity: (1) a large fraction of serotonergic neurons modulated their tonic firing rates over the course of minutes during reward vs punishment blocks; (2) most were phasically excited by punishments; and (3) a subset was phasically excited by reward-predicting cues. By contrast, dopaminergic neurons did not show firing rate changes across blocks of trials. These results suggest that serotonergic neurons signal information about reward and punishment on multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.06346.001 PMID:25714923

  3. Simulating Timescale Dynamics of Network Traffic Using Homogeneous Modeling

    PubMed Central

    Yuan, Jian; Mills, Kevin L.

    2006-01-01

    Simulating and understanding traffic dynamics in large networks are difficult and challenging due to the complexity of such networks and the limitations inherent in simulation modeling. Typically, simulation models used to study traffic dynamics include substantial detail representing protocol mechanisms across several layers of functionality. Such models must be restricted in space and time in order to be computationally tractable. We propose an alternative simulation approach that uses homogeneous modeling with an increased level of abstraction, in order to explore networks at larger space-time scales than otherwise feasible and to develop intuition and insight about the space-time dynamics of large networks. To illustrate the utility of our approach, we examine some current understandings of the timescale dynamics of network traffic, and we discuss some speculative results obtained with homogeneous modeling. Using a wavelet-based technique, we show correlation structures, and changes in correlation structures, of network traffic under variations in traffic sources, transport mechanisms, and network structure. Our simulation results justify further investigation of our approach, which might benefit from cross-verifications against more detailed simulation models. PMID:27274931

  4. The evolution of methods for establishing evolutionary timescales.

    PubMed

    Donoghue, Philip C J; Yang, Ziheng

    2016-07-19

    The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325838

  5. Expectations developed over multiple timescales facilitate visual search performance

    PubMed Central

    Gekas, Nikos; Seitz, Aaron R.; Seriès, Peggy

    2015-01-01

    Our perception of the world is strongly influenced by our expectations, and a question of key importance is how the visual system develops and updates its expectations through interaction with the environment. We used a visual search task to investigate how expectations of different timescales (from the last few trials to hours to long-term statistics of natural scenes) interact to alter perception. We presented human observers with low-contrast white dots at 12 possible locations equally spaced on a circle, and we asked them to simultaneously identify the presence and location of the dots while manipulating their expectations by presenting stimuli at some locations more frequently than others. Our findings suggest that there are strong acuity differences between absolute target locations (e.g., horizontal vs. vertical) and preexisting long-term biases influencing observers' detection and localization performance, respectively. On top of these, subjects quickly learned about the stimulus distribution, which improved their detection performance but caused increased false alarms at the most frequently presented stimulus locations. Recent exposure to a stimulus resulted in significantly improved detection performance and significantly more false alarms but only at locations at which it was more probable that a stimulus would be presented. Our results can be modeled and understood within a Bayesian framework in terms of a near-optimal integration of sensory evidence with rapidly learned statistical priors, which are skewed toward the very recent history of trials and may help understanding the time scale of developing expectations at the neural level. PMID:26200891

  6. Differential force microscope for long time-scale biophysical measurements

    PubMed Central

    Choy, Jason L.; Parekh, Sapun H.; Chaudhuri, Ovijit; Liu, Allen P.; Bustamante, Carlos; Footer, Matthew J.; Theriot, Julie A.; Fletcher, Daniel A.

    2011-01-01

    Force microscopy techniques including optical trapping, magnetic tweezers, and atomic force microscopy (AFM) have facilitated quantification of forces and distances on the molecular scale. However, sensitivity and stability limitations have prevented the application of these techniques to biophysical systems that generate large forces over long times, such as actin filament networks. Growth of actin networks drives cellular shape change and generates nano-Newtons of force over time scales of minutes to hours, and consequently network growth properties have been difficult to study. Here, we present an AFM-based differential force microscope with integrated epifluorescence imaging in which two adjacent cantilevers on the same rigid support are used to provide increased measurement stability. We demonstrate 14 nm displacement control over measurement times of 3 hours and apply the instrument to quantify actin network growth in vitro under controlled loads. By measuring both network length and total network fluorescence simultaneously, we show that the average cross-sectional density of the growing network remains constant under static loads. The differential force microscope presented here provides a sensitive method for quantifying force and displacement with long time-scale stability that is useful for measurements of slow biophysical processes in whole cells or in reconstituted molecular systems in vitro. PMID:17477674

  7. Complex processes from dynamical architectures with time-scale hierarchy.

    PubMed

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-01-01

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363

  8. Exploring Market State and Stock Interactions on the Minute Timescale.

    PubMed

    Tan, Lei; Chen, Jun-Jie; Zheng, Bo; Ouyang, Fang-Yan

    2016-01-01

    A stock market is a non-stationary complex system. The stock interactions are important for understanding the state of the market. However, our knowledge on the stock interactions on the minute timescale is limited. Here we apply the random matrix theory and methods in complex networks to study the stock interactions and sector interactions. Further, we construct a new kind of cross-correlation matrix to investigate the correlation between the stock interactions at different minutes within one trading day. Based on 50 million minute-to-minute price data in the Shanghai stock market, we discover that the market states in the morning and afternoon are significantly different. The differences mainly exist in three aspects, i.e. the co-movement of stock prices, interactions of sectors and correlation between the stock interactions at different minutes. In the afternoon, the component stocks of sectors are more robust and the structure of sectors is firmer. Therefore, the market state in the afternoon is more stable. Furthermore, we reveal that the information of the sector interactions can indicate the financial crisis in the market, and the indicator based on the empirical data in the afternoon is more effective. PMID:26900948

  9. Einstein's Materialism and Modern Tests of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Vigier, J. P.

    After a presentation of Einstein's and Bohr's antagonistic point of view on the interpretation of Quantum Mechanics an illustration of their conflicting positions in the particular case of Young's double slit experiment is presented. It is then shown that in their most recent form (i. e. time dependent neutron interferometry) these experiments suggest (if one accepts absolute energymomentum conservation in all individual microprocesses) that Einstein was right in the Bohr-Einstein controversy.Translated AbstractEinsteins Materialismus und heutige Tests der QuantenmechanikNach einer Darstellung von Einsteins und Bohrs antagonistischen Standpunkten in der Interpretation der Quantenmechanik werden ihre widersprüchlichen Positionen im speziellen Fall des Youngschen Doppelspaltexperiments dargestellt. Es wird dann gezeigt, daß diese Experimente in ihrer neuesten Form (d. h. zeitabhängige Neutroneninterferometrie) Einstein in der Bohr-Einsteinkontroverse recht gaben (wenn man absolute Energie-Impulserhaltung bei allen individuellen Mikroprozessen annimmt).

  10. Einstein-Rosen solutions from Kaluza-Klein theory

    NASA Astrophysics Data System (ADS)

    López, L. A.; Bretón, N.; Ramírez, B. V.

    2013-01-01

    From a time-dependent boost-rotational symmetric vacuum solution of the Einstein Equations in five dimensions, through the Kaluza-Klein reduction the corresponding Einstein-Maxwell-dilaton solutions are obtained. The four dimensional counterpart turns out to be generalized Einstein-Rosen spacetimes representing unpolarized gravitational waves traveling in an inhomogeneous cosmology. Restricting the parameters we are able to obtain different 4D time-dependent solutions equipped with scalar and electromagnetic fields.

  11. Extended Horava gravity and Einstein-aether theory

    SciTech Connect

    Jacobson, Ted

    2010-05-15

    Einstein-aether theory is general relativity coupled to a dynamical, unit timelike vector. If this vector is restricted in the action to be hypersurface orthogonal, the theory is identical to the IR limit of the extension of Horava gravity proposed by Blas, Pujolas and Sibiryakov. Hypersurface orthogonal solutions of Einstein-aether theory are solutions to the IR limit of this theory, hence numerous results already obtained for Einstein-aether theory carry over.

  12. NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Perna, M.; Comastri, A.; Cappi, M.; Dadina, M.; Marinucci, A.; Masini, A.; Matt, G.; Vagnetti, F.; Vignali, C.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brusa, M.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Luo, B.; Piconcelli, E.; Puccetti, S.; Ricci, C.; Saez, C.; Stern, D.; Walton, D. J.; Zhang, W. W.

    2016-05-01

    PG1247+267 is one of the most luminous known quasars at z ~ 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (Γ = 2.3 ± 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of ~100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities.

  13. Einstein-Podolsky-Rosen Correlations via Dissociation of a Molecular Bose-Einstein Condensate

    SciTech Connect

    Kheruntsyan, K.V.; Drummond, P.D.; Olsen, M.K.

    2005-10-07

    Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.

  14. Stellar envelope inflation near the Eddington limit. Implications for the radii of Wolf-Rayet stars and luminous blue variables

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Owocki, S. P.; Vink, J. S.

    2012-02-01

    Context. It has been proposed that the envelopes of luminous stars may be subject to substantial radius inflation. The peculiar structure of such inflated envelopes, with an almost void, radiatively dominated region beneath a thin, dense shell could mean that many in reality compact stars are hidden below inflated envelopes, displaying much lower effective temperatures. The inflation effect has been discussed in relation to the radius problem of Wolf-Rayet (WR) stars, but has yet failed to explain the large observed radii of Galactic WR stars. Aims: We wish to obtain a physical perspective of the inflation effect, and study the consequences for the radii of WR stars, and luminous blue variables (LBVs). For WR stars the observed radii are up to an order of magnitude larger than predicted by theory, whilst S Doradus-type LBVs are subject to humongous radius variations, which remain as yet ill-explained. Methods: We use a dual approach to investigate the envelope inflation, based on numerical models for stars near the Eddington limit, and a new analytic formalism to describe the effect. An additional new aspect is that we take the effect of density inhomogeneities (clumping) within the outer stellar envelopes into account. Results: Due to the effect of clumping we are able to bring the observed WR radii in agreement with theory. Based on our new formalism, we find that the radial inflation is a function of a dimensionless parameter W, which largely depends on the topology of the Fe-opacity peak, i.e., on material properties. For W > 1, we discover an instability limit, for which the stellar envelope becomes gravitationally unbound, i.e. there no longer exists a static solution. Within this framework we are also able to explain the S Doradus-type instabilities for LBVs like AG Car, with a possible triggering due to changes in stellar rotation. Conclusions: The stellar effective temperatures in the upper Hertzsprung-Russell (HR) diagram are potentially strongly affected

  15. A MODEL FOR THE CORRELATION OF HARD X-RAY INDEX WITH EDDINGTON RATIO IN BLACK HOLE X-RAY BINARIES

    SciTech Connect

    Qiao, Erlin; Liu, B. F.

    2013-02-10

    Observations show that there is a positive correlation between the Eddington ratio {lambda} and hard X-ray index {Gamma} for {lambda} {approx}> 0.01, and there is an anti-correlation between {lambda} and {Gamma} for {lambda} {approx}< 0.01 in black hole X-ray binaries (with {lambda} = L {sub bol}/L {sub Edd}). In this work, we theoretically investigate the correlation between {Gamma} and {lambda} within the framework of a disk-corona model. We improve the model by taking into account all cooling processes, including synchrotron and self-Compton radiations in the corona, Comptonization of the soft photons from the underlying accretion disk, and the bremsstrahlung radiations. Presuming that the coronal flow above the disk can reach up to the 0.1 Eddington rate at the outer region, we calculate the structure of the two-phase accretion flows and the emergent spectra for accretion rates from 0.003 to 0.1. We find that at accretion rates larger than bsim0.01 Eddington rate, a fraction of coronal gas condenses into the disk and an inner disk can be sustained by condensation. In this case, the X-ray emission is dominated by the scattering of the soft photon from the underlying disk in the corona. The emission from the inner disk and corona can produce the positive correlation between {lambda} and {Gamma}. While at accretion rates lower than bsim0.01 Eddington accretion rate, the inner disk vanishes completely by evaporation, and the accretion is dominated by advection-dominated accretion flows (ADAFs), in which the X-ray emission is produced by the Comptonization of the synchrotron and bremsstrahlung photons of ADAF itself. The emission from ADAFs can produce the anti-correlation between {lambda} and {Gamma}. We show that our model can roughly explain the observed evolution of {Gamma}{sub 3-25keV} with L {sub 0.5-25keV}/L {sub Edd} for the black hole X-ray transient H1743-322 in the decay of 2003 from the thermal-dominated state to low/hard state.

  16. RAS Awards and Prizes: RAS Awards 2009; Gold Medal: Prof. David Williams; Gold Medal: Prof. Eric Priest; Price Medal: Prof. Malcolm Sambridge; Eddington Medal: Prof. James Pringle

    NASA Astrophysics Data System (ADS)

    2009-02-01

    Each year the RAS recognizes outstanding achievement in astronomy and geophysics by the award of medals and prizes. Candidates are nominated by Fellows and the awards made by a committee of Fellows, ensuring that these scientists have earned the respect and admiration of their peers in the research community. The Gold Medal for Astronomy is awarded to Prof. David Williams of University College London. The Gold Medal for Geophysics is awarded to Prof. Eric Priest of the University of St Andrews. The Price Medal is awarded to Prof. Malcolm Sambridge of the Australian National University. The Eddington Medal is given to Prof. James Pringle of the University of Cambridge.

  17. Mechanocaloric and thermomechanical effects in Bose-Einstein-condensed systems

    SciTech Connect

    Marques, G.C.; Bagnato, V.S.; Muniz, S.R.; Spehler, D.

    2004-05-01

    In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid {sup 4}He, a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas could be investigated in existing experiments.

  18. Flux compactifications in Einstein-Born-Infeld theories

    NASA Astrophysics Data System (ADS)

    Ramadhan, Handhika S.; Cahyo, Brian A.; Iqbal, Muhammad

    2015-07-01

    We investigate the flux compactification mechanism in simple toy models of Einstein-Born-Infeld theories. These are the direct generalizations of the Einstein-Maxwell flux compactifications that recently gained fame as a toy model for tunneling in the landscape. Our investigation reveals that the Born-Infeld form does not significantly modify the qualitative result of the Einstein-Maxwell theory. For the case of Einstein-Higgs theory, however, we found that the effect of Born-Infeld nonlinearity is to render all q >1 extradimensional compactification unstable against semiclassical tunneling to nothing.

  19. On the pathways and timescales of intercontinental air pollution transport

    NASA Astrophysics Data System (ADS)

    Stohl, Andreas; Eckhardt, Sabine; Forster, Caroline; James, Paul; Spichtinger, Nicole

    2002-12-01

    This paper presents results of a 1-year simulation of the transport of six passive tracers, released over the continents according to an emission inventory for carbon monoxide (CO). Lagrangian concepts are introduced to derive age spectra of the tracer concentrations on a global grid in order to determine the timescales and pathways of pollution export from the continents. Calculating these age spectra is equivalent to simulating many (quasi continuous) plumes, each starting at a different time, which are subsequently merged. Movies of the tracer dispersion have been made available on an Internet website. It is found that emissions from Asia experience the fastest vertical transport, whereas European emissions have the strongest tendency to remain in the lower troposphere. European emissions are transported primarily into the Arctic and appear to be the major contributor to the Arctic haze problem. Tracers from an upwind continent first arrive over a receptor continent in the upper troposphere, typically after some 4 days. Only later foreign tracers also arrive in the lower troposphere. Assuming a 2-day lifetime, the domestic tracers dominate total tracer columns over all continents except over Australia where foreign tracers account for 20% of the tracer mass. In contrast, for a 20-day lifetime even continents with high domestic emissions receive more than half of their tracer burden from foreign continents. Three special regions were identified where tracers are transported to, and tracer dilution is slow. Future field studies therefore should be deployed in the following regions: (1) In the winter, the Asia tracer accumulates over Indonesia and the Indian Ocean, a region speculated to be a stratospheric fountain. (2) In the summer, the highest concentrations of the Asia tracer are found in the Middle East. (3) In the summer, the highest concentrations of the North America tracer are found in the Mediterranean.

  20. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  1. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.

    PubMed

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it. PMID:26286084

  2. Release timescales of solar energetic particles in the low corona

    NASA Astrophysics Data System (ADS)

    Agueda, N.; Klein, K.-L.; Vilmer, N.; Rodríguez-Gasén, R.; Malandraki, O. E.; Papaioannou, A.; Subirà, M.; Sanahuja, B.; Valtonen, E.; Dröge, W.; Nindos, A.; Heber, B.; Braune, S.; Usoskin, I. G.; Heynderickx, D.; Talew, E.; Vainio, R.

    2014-10-01

    Aims: We present a systematic study of the timing and duration of the release processes of near-relativistic (NR; >50 keV) electrons in the low corona. Methods: We analyze seven well-observed events using in situ measurements by both the ACE and Wind spacecraft and context electromagnetic observations in soft X-rays, radio, hard X-rays and white light. We make use of velocity dispersion analysis to estimate the release time of the first arriving electrons and compare with the results obtained by using a simulation-based approach, taking interplanetary transport effects into account to unfold the NR electron release time history from in situ measurements. Results: The NR electrons observed in interplanetary space appear to be released during either short (<30 min) or long (>2 h) periods. The observation of NR electron events showing beamed pitch-angle distributions (PADs) during several hours is the clearest observational signature of sustained release in the corona. On the other hand, the in situ observation of PADs isotropizing in less than a couple of hours is a clear signature of a prompt release of electrons in the low corona. Short release episodes appear to originate in solar flares, in coincidence with the timing of the observed type III radio bursts. Magnetic connectivity plays an important role. Only type III radio bursts reaching the local plasma line measured at 1 AU are found to be related with an associated release episode in the low corona. Other type III bursts may also have a release of NR electrons associated with them, but these electrons do not reach L1. Long release episodes appear associated with signatures of long acceleration processes in the low corona (long decay of the soft X-ray emission, type IV radio bursts, and time-extended microwave emission). Type II radio bursts are reported for most of the events and do not provide a clear discrimination between short and long release timescales.

  3. Multiple timescales of body schema reorganization due to plastic surgery.

    PubMed

    Iodice, Pierpaolo; Scuderi, Nicolò; Saggini, Raoul; Pezzulo, Giovanni

    2015-08-01

    Plastic surgery modifies the distribution of mass centers of a person's body segments, changing his or her posture. The functional reorganization processes that lead subjects to re-integrate these body changes into a new stable body (posture) schema is poorly understood but current theories suggest the possible contribution of two components: a feedback mechanism that strongly depends on sensory input and an internal model that is relatively less dependent on sensory input and improves posture control, for example by compensating for delayed feedback. To assess the relative contributions of these two mechanisms during the functional reorganization of a posture scheme, we have conducted a longitudinal postural study in a population of healthy adults who were subject to breast plastic surgery to reduce or augment body weight. We measured participants' orthostatic posture and ground reaction force immediately after, after 4 months, and 1 year after the surgery. To investigate the role of visual sensory information in the reorganization process we tested the participants with eyes open and closed. Our results indicate that participants find a new dynamical equilibrium within a few days. However, posture maintenance remains sub-optimal long after the center of masses and the resultant of ground reaction force stop changing; in some cases, for more than 4 months. Furthermore, the re-adaptation process is faster and more efficient in the eyes-open than in the eyes-closed condition. These results suggest that the reorganization involves different subsystems (responsible for the biomechanical changes, the re-calibration of feedback mechanisms, and the re-adaptation of internal models), which act at different timescales. PMID:25964999

  4. The Lifecycles of Drought: Informing Responses Across Timescales

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.; Schubert, S. D.

    2014-12-01

    Drought is a slow-onset hazard that is a normal part of climate. Drought onset and demise are difficult to determine. Impacts are mostly nonstructural, spread over large geographical areas, and can persist long after precipitation deficits end. These factors hinder development of accurate, timely estimates of drought severity and resultant responses. Drivers of drought range from SST anomalies and global scale atmospheric response, through regional forcing and local land-surface feedbacks. Key climatological questions related to drought risk assessment, perception and management include, "Does a drought end by a return to normal precipitation; how much moisture is required and over what period; can the end of a drought be defined by the diminishing impacts e.g. soil moisture, reservoir volumes; will precipitation patterns on which management systems rely, change in the future?" Effective early warning systems inform strategic responses that anticipate crises and crisis evolution across climate timescales. While such "early information" is critical for defining event onset, it is even more critical for identifying the potential for increases in severity. Many social and economic systems have buffers in place to respond to onset (storage, transfers and purchase of grain) but lack response capabilities as drought intensifies, as buffers are depleted. Throughout the drought lifecycle (and between events), monitoring, research and risk assessments are required to: Map decision-making processes and resource capabilities including degradation of water and ecosystems Place multiple climate and land surface indicators within a consistent triggering framework (e.g. climate and vegetation mapping) before critical thresholds are reached Identify policies and practices that impede or enable the flow of information, through policy gaming and other exercises The presentation will outline the capabilities and framework needed to ensure improved scientific inputs to preparedness

  5. Science at the Time-scale of the Electron

    NASA Astrophysics Data System (ADS)

    Murnane, Margaret

    2010-03-01

    Replace this text with your abstract Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources, with attosecond pulse durations, at very short wavelengths even in the hard x-ray region of the spectrum at wavelengths < 1nm, have brightened considerably. These advances are possible by taking nonlinear optics techniques to an extreme, and are the direct result of a new ability to manipulate electrons on the fastest, attosecond, time-scales of our natural world. My talk will discuss new experimental data that demonstrates high harmonic generation of laser-like, fully coherent, 10 attosecond duration, soft x-ray beams at photon energies around 0.5keV. Several applications will also be discussed, including making a movie of how electron orbitals in a molecule change shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. [4pt] [1] T. Popmintchev et al., ``Phase matched upconversion of coherent ultrafast laser light into the soft and hard x-ray regions of the spectrum'', PNAS 106, 10516 (2009). [0pt] [2] C. LaOVorakiat et al., ``Ultrafast Soft X-Ray Magneto-Optics at the M-edge Using a Tabletop High-Harmonic Source'', Physical Review Letters 103, 257402 (2009). [0pt] [3] M. Siemens et al. ``Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams'', Nature Materials 9, 26 (2010). [0pt] [4] K. Raines et al., ``Three-dimensional structure determination from a single view,'' Nature 463, 214 (2010). [0pt] [5] W. Li et al., ``Time-resolved Probing of Dynamics in Polyatomic Molecules using High Harmonic Generation'', Science 322, 1207 (2008).

  6. On the absence of intra-helical DNA dynamics on the µs to ms timescale

    PubMed Central

    Galindo-Murillo, Rodrigo; Roe, Daniel R.; Cheatham, Thomas E.

    2014-01-01

    DNA helices display a rich tapestry of motion on both short (< 100 ns) and long (> 1 ms) timescales. However, with the exception of mismatched or damaged DNA, experimental measures indicate that motions in the 1 µs to 1 ms range are effectively absent, which is often attributed to difficulties in measuring motions in this time range. We hypothesized that these motions have not been measured because there is effectively no motion on this timescale, as this provides a means to distinguish faithful Watson-Crick base paired DNA from damaged DNA. The absence of motion on this timescale would present a “static” DNA sequence-specific structure that matches the encounter timescales of proteins, thereby facilitating recognition. Here we report long timescale (~10-44 µs) molecular dynamics simulations of a B-DNA duplex structure that addresses this hypothesis using both an “Anton” machine and large ensembles of AMBER GPU simulations. PMID:25351257

  7. Nonlinear and linear timescales near kinetic scales in solar wind turbulence

    SciTech Connect

    Matthaeus, W. H.; Wan, M.; Shay, M. A.; Oughton, S.; Osman, K. T.; Chapman, S. C.; Servidio, S.; Valentini, F.; Gary, S. P.; Roytershteyn, V.; Karimabadi, H.

    2014-08-01

    The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two types of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local (in scale) nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to or faster than the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theory—which assumes constant parameters to calculate the associated kinetic rates—may be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on proton kinetic behavior.

  8. Bose-Einstein Condensation in Extended Microgravity

    NASA Astrophysics Data System (ADS)

    Scharringhausen, Marco; Quantus Team; Rasel, Ernst Maria

    2012-07-01

    The setup and the envisaged experiment timeline of the QUANTUS-III experiment onboard a sounding rocket to be started in the near future are presented. The major intention of QUANTUS-III is the stable generation of a number of Bose-Einstein condensates as a source for atom interferometry during several minutes of microgravity onboard the sounding rocket. Later missions aim at the realization of atom interferoemeters as precursor satellite missions. These condesates will be generated serially, allowing a large number of repeatable tests. Within such Bose-Einstein condensates, millions of atoms lose their identity and can be described by a single macroscopic wave function. During the expansion over several seconds, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter. Cold quantum gases and, in particular, Bose-Einstein condensates represent a new state of matter which is nowadays established in many laboratories. They offer unique insights into a broad range of fundamental physics as well as prospects for novel quantum sensors. Microgravity will substantially extend the science of quantum gases towards nowadays inaccessible regimes at lowest temperatures, to macroscopic dimensions, and to unequalled durations of unperturbed evolution of these distinguished quantum objects. Right now, the QUANTUS-III experiment is in the development phase, taking heritage from QUANTUS-I and QUANTUS-II. Major components of the engineering model are available. Boundary conditions of the rocket, requirements of the experiment and interface considerations are presented. This include laser stabilization, vacuum technology and magnetic shielding. The planned trajectory of the rocket will have an apogee of 200 - 300 km and a total microgravity time of 4 - 7 minutes, both depending on the total experiment mass.

  9. Wormholes in Einstein-Born-Infeld theory

    SciTech Connect

    Richarte, Martin G.; Simeone, Claudio

    2009-11-15

    Spherically symmetric thin-shell wormholes are studied within the framework of Einstein-Born-Infeld theory. We analyze the exotic matter content, and find that for certain values of the Born-Infeld parameter the amount of exotic matter on the shell can be reduced in relation to the Maxwell case. We also examine the mechanical stability of the wormhole configurations under radial perturbations preserving the spherical symmetry. In addition, in the Appendix the repulsive or attractive character of the wormhole geometries is briefly discussed.

  10. Uniqueness and nonuniqueness in the Einstein constraints.

    PubMed

    Pfeiffer, Harald P; York, James W

    2005-08-26

    The conformal thin-sandwich (CTS) equations are a set of four of the Einstein equations, which generalize the Laplace-Poisson equation of Newton's theory. We examine numerically solutions of the CTS equations describing perturbed Minkowski space, and find only one solution. However, we find two distinct solutions, one even containing a black hole, when the lapse is determined by a fifth elliptic equation through specification of the mean curvature. While the relationship of the two systems and their solutions is a fundamental property of general relativity, this fairly simple example of an elliptic system with nonunique solutions is also of broader interest. PMID:16197202

  11. Two scales in Bose-Einstein correlations

    NASA Astrophysics Data System (ADS)

    Khoze, V. A.; Martin, A. D.; Ryskin, M. G.; Schegelsky, V. A.

    2016-04-01

    We argue that the secondaries produced in high-energy hadron collisions are emitted by small-size sources distributed over a much larger area in impact parameter space occupied by the interaction amplitude. That is, Bose-Einstein correlation of two emitted identical particles should be described by a `two-radii' parametrisation ansatz. We discuss the expected energy, charged multiplicity and transverse momentum of the pair (that is, √{s}, N_ch, k_t) behaviour of both the small and the large size components.

  12. Extragalactic counterparts to Einstein slew survey sources

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.; Elvis, Martin; Plummer, David; Remillard, Ron

    1992-01-01

    The Einstein slew survey consists of 819 bright X-ray sources, of which 636 (or 78 percent) are identified with counterparts in standard catalogs. The importance of bright X-ray surveys is stressed, and the slew survey is compared to the Rosat all sky survey. Statistical techniques for minimizing confusion in arcminute error circles in digitized data are discussed. The 238 slew survey active galactic nuclei, clusters, and BL Lacertae objects identified to date and their implications for logN-logS and source evolution studies are described.

  13. Einstein observations of active galaxies and quasars

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.

    1979-01-01

    The radio galaxies Centaurus A and Signus B are discussed. In both these sources, a comparison of the radio and imaged X-ray flux is allowed for the measurement of the magnetic fields. Einstein observations of quasars are discussed. The number of known X-ray emitting QSO's was increased from 3 to 22 and the distances where these QSO's were seen to correspond to an age of 15 billion years. It was shown that these quasars contributed significantly to the X-ray background.

  14. Bose-Einstein Condensation of Yb atoms

    SciTech Connect

    Takasu, Y.; Maki, K.; Komori, K.; Takano, T.; Honda, K.; Kumakura, M.; Yabuzaki, T.; Takahashi, Y.

    2005-05-05

    We could recently achieve the Bose Einstein condensation (BEC) of Yb atoms. Yb differs from most of the elements that have previously been condensed, because it is a two-electron atom with the singlet S ground state. Furthermore the Bosonic isotopes of Yb, like 174Yb which we succeeded to condensate, has no nuclear spin, so that the ground state is completely spin-less state and hence insensitive to magnetic fields. Thus a new type of atom could join the group of atoms for BEC studies. We would like to report how we could achieve the BEC of Yb atoms.

  15. Bose-Einstein Condensation of Strontium

    SciTech Connect

    Stellmer, Simon; Huang Bo; Grimm, Rudolf; Tey, Meng Khoon; Schreck, Florian

    2009-11-13

    We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the {sup 84}Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable state using a magnetic-trap, narrowline cooling, and straightforward evaporative cooling in an optical trap lead to pure condensates containing 1.5x10{sup 5} atoms. This puts {sup 84}Sr in a prime position for future experiments on quantum-degenerate gases involving atomic two-electron systems.

  16. Metric redefinitions in Einstein-Aether theory

    SciTech Connect

    Foster, Brendan Z.

    2005-08-15

    'Einstein-Aether' theory, in which gravity couples to a dynamical, timelike, unit-norm vector field, provides a means for studying Lorentz violation in a generally covariant setting. Demonstrated here is the effect of a redefinition of the metric and 'aether' fields in terms of the original fields and two free parameters. The net effect is a change of the coupling constants appearing in the action. Using such a redefinition, one of the coupling constants can be set to zero, simplifying studies of solutions of the theory.

  17. Varying G. [in Einstein gravitation theory

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Hsieh, S.-H.; Owen, J. R.

    1979-01-01

    The problem of the variation of the gravitational constant with cosmological time is critically analyzed. Since Einstein's equation does not allow G to vary on any time scale, no observational data can be analyzed within the context of the standard theory. The recently proposed scale covariant theory, which allows (but does not demand) G to vary, and which has been shown to have passed several standard cosmological tests, is employed to discuss some recent nonnull observational results which indicate a time variation of G.

  18. Einstein, Bohm, and Leggett-Garg

    NASA Astrophysics Data System (ADS)

    Bacciagaluppi, Guido

    In a recent paper, I have analysed and criticised Leggett and Garg's argument to the effect that oscopic realism contradicts quantum mechanics, by contrasting their assumptions to the example of Bell's stochastic pilot-wave theories, and have applied Dzhafarov and Kujala's analysis of contextuality in the presence of signalling to the case of the Leggett-Garg inequalities. In this chapter, I discuss more in general the motivations for oscopic realism, taking a cue from Einstein's criticism of the Bohm theory, then go on to summarise my previous results, with a few additional comments on other recent work on Leggett and Garg.

  19. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    NASA Astrophysics Data System (ADS)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  20. Deformation associated with faulting within geologic and interseismic timescales

    NASA Astrophysics Data System (ADS)

    Marshall, Scott T.

    2008-04-01

    This dissertation consists of several distinct studies that use numerical modeling to better constrain deformation due to faulting over disparate timescales. Field mapping reveals a segment of the Lake Mead fault system, the Pinto Ridge fault, and a cluster of west-dipping normal faults located near Pinto Ridge. I suggest that this strike-slip segment was kinematically related to the Bitter Spring Valley fault, created the normal fault cluster at Pinto Ridge, and utilized these normal faults as linking structures between fault segments. Modeling results demonstrate that the location and orientations of the normal faults are consistent with having formed in the perturbed stress field around the slipping Pinto Ridge fault. Calculations of mechanical efficiency suggest that a preferred dip of normal faults in the region may reflect a crustal anisotropy at depth, such as a detachment. I present a methodology for simulating interseismic deformation in complex regions. I derive an analytical model of interseismic deformation that is equivalent to the conventional model. Based on this model, I formulate a two-step numerical simulation of geologic and interseismic deformation. I apply this technique to the Los Angeles region and find that model results match well both geologic slip rate estimates and geodetic velocities. Model results suggest that the Puente Hills thrusts are currently slipping at rates that are compatible with geologic estimates and that localized contraction in the San Gabriel basin is dominantly due to deep slip on the Sierra Madre fault. To assess the control of fault geometry and mechanical interactions on fault slip in a natural system, I create models of the Ventura region, California, using both planar and non-planar faults. I find that incorporating geologically-constrained fault surfaces into numerical models results in a better match to available geologic slip rate data than models utilizing planar faults. Because slip rates at most locations

  1. Reliable timescale inference of HBV genotype A origin and phylodynamics.

    PubMed

    Zehender, Gianguglielmo; Svicher, Valentina; Gabanelli, Elena; Ebranati, Erika; Veo, Carla; Lo Presti, Alessandra; Cella, Eleonora; Giovanetti, Marta; Bussini, Linda; Salpini, Romina; Alteri, Claudia; Lai, Alessia; Tanzi, Elisabetta; Perno, Carlo Federico; Galli, Massimo; Ciccozzi, Massimo

    2015-06-01

    The worldwide distributed Hepatitis B virus (HBV) genotype A is classified into three subgenotypes, and one quasi-subgenotype. The majority of HBV-A subgenotypes are widespread in Africa and in ethnic groups that have relatively recently emigrated from African countries, whereas HBV-A2 is highly prevalent among subjects at high risk for sexual exposure to HBV in north-western Europe and the USA. The aim of this study was to reconstruct the origin and dispersion of HBV-A subgenotypes on a reliable timescale using short-term calibration based on heterochronous sampling for HBV-A2, and long-term calibration based on historical data for the other subgenotypes. To this aim, we analysed 113 newly characterised HBV-A isolates with 247 reference sequences retrieved from a public database. The phylodynamic reconstruction was performed by a Bayesian framework. The common ancestor of the currently circulating A subgenotypes was placed in west-central Africa a mean 1057 years ago. The genotype diverged into two main clades at the beginning of the 13th century: one including all of the west-central African quasi-subgenotypes and the other corresponding to subgenotype A1, originating in east Africa and further segregating into two main subclades: an "African" and a "cosmopolitan" clade. It is likely that the slave trade was the main source the spread of cosmopolitan HBV-A1, which was exported to Asia in the 17th century as a result of Arab or Portuguese trade, and to Latin America in the 18th centuries through the trans-Atlantic slave trade. The origin of the currently circulating A2 strains dates back to the first decades of the 20th century, and the evolutionary demography analysis suggests an exponential growth of infections, between 1970s and the mid-1990s. In conclusion, the very different epidemiological and evolutionary histories of HBV-A subgenotypes justify the use of different calibration approaches to reconstruct their reciprocal phylodynamics. PMID:25784568

  2. Timescales of orogeny: Jurassic construction of the Klamath Mountains

    NASA Astrophysics Data System (ADS)

    Hacker, Bradley R.; Donato, Mary M.; Barnes, Calvin G.; McWilliams, M. O.; Ernst, W. G.

    1995-06-01

    An electronic supplement of this material may be obtained on a diskette or Anonymous FTP from KOSMOS.AGU.ORG (LOGIN to AGU's FTP account using ANONYMOUS as the username and GUEST as the password. Go to the right directory by typing CD APEND. Type LS to see what files are available. Type GET and the name of the file to get it. Finally, type EXIT to leave the system.) (Paper 94YCJ2454, Timescales of orogeny: Jurassic construction of the Klamath Mountains, B.R. Hacker, M.M. Donato, C.G. Barnes, M.O. McWilliams, and W.G. Ernst). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009; $15.00. Payment must accompany order. Classical interpretations of orogeny were based on relatively imprecise biostratigraphic and isotopic age determinations that necessitated grouping apparently related features that may in reality have been greatly diachronous. Isotopic age techniques now have the precision required to resolve the timing of orogenic events on a scale much smaller than that of entire mountain belts. Forty-five new 40Ar/39Ar ages from the Klamath Mountains illuminate the deformation, metamorphism, magmatism, and sedimentation involved in the Jurassic construction of that orogen, leading to a new level of understanding regarding how preserved orogenic features relate to ancient plate tectonic processes. The new geochronologic relationships show that many Jurassic units of the Klamath Mountains had 200 Ma or older volcanoplutonic basement. Subsequent formation of a large ˜170 Ma arc was followed by contractional collapse of the arc. Collision with a spreading ridge may have led to large-scale NW-SE extension in the central and northern Klamaths from 167 to ˜155 Ma, coincident with the crystallization of voluminous plutonic and volcanic suites. Marked cooling of a large region of the central Klamath Mountains to below ˜350°C at ˜150 Ma may have occurred as the igneous belt was extinguished by subduction of colder

  3. Time-Scales of the Variability of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Barnston, Anthony G.

    1996-05-01

    In this study the time-scales of variability of several weather elements are explored by season and location across the globe, emphasizing the Northern Hemisphere and especially the USA. The resulting description is useful because regions that exhibit low frequency variability (i.e. longer periods than the 2-5 days synoptic-scale) are assumed to be related more directly to changes in boundary conditions (e.g. anomalies of ENSO-related sea-surface temperature [SST], snow cover, etc.). Therefore, this low frequency variability may be predictable at greater ranges than those for which numerical weather prediction is helpful.New as well as established measures of persistence and frequency dependence are used and intercompared. In particular, the standard deviation of the differences between adjacent period means, when compared over a range of period lengths, reflects both autocorrelation and (if applicable) cycle time. Frequency dependence is thereby summarized with minimal computation.The geographical distribution of the amplitude (amount of variability depends largely on latitude and the upstream geographical environment (i.e. higher latitude and continentality of upstream environment tend to increase variability). At most locations, variability is greatest (lowest) during the cold (warm) seasons of the year. The geographical distribution of the dominant frequencies of variability are examined by season for Northern Hemisphere sea-level pressure and 700 hPa geopotential height, and USA surface temperature and precipitation. It is demonstrated that the dominant frequencies tend to vary in parallel across all four fields.In general, weather variables are found to vary at relatively low frequency (long periods) at high latitudes and, to a lesser extent, at subtropical latitudes. At mid-latitude, low frequency variability prevails most over the blocking regions in the eastern and central North Pacific and North Atlantic oceans. High frequency variability occurs in the

  4. Exact Faraday rotation in the cylindrical Einstein-Maxwell waves

    SciTech Connect

    Arafah, M.R.; Fakioglu, S.; Halilsoy, M. )

    1990-07-15

    We obtain the exact behavior of the cross-polarized cylindrical Einstein-Maxwell waves that generalizes the well-known Einstein-Rosen waves. In the presence of the second mode of polarization the outgoing waves interact with the incoming ones to exhibit an analogous effect of the Faraday rotation.

  5. A Demonstration of Einstein's Equivalence of Gravity and Acceleration

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2008-01-01

    In 1907, Einstein described a "Gedankenexperiment" in which he showed that free fall in a gravitational field is indistinguishable from a body at rest in an elevator accelerated upwards in zero gravity. This paper describes an apparatus, which is simple to make and simple to operate, that acts as an observable footnote to Einstein's example. It…

  6. [Photoeffects, Einstein's light quanta and the history of their acceptance].

    PubMed

    Wiederkehr, Karl Heinrich

    2006-01-01

    It is generally supposed, that the discovery of the efficacy-quantum by Planck was the impetus to Einstein's hypothesis of lightquanta. With its help Einstein could explain the external light-electrical effect. But even years before Einstein had worked at the photoeffect and already made experiments on it. For that reason the article gives a short survey about the history of the lightelectric effects. Lenard's basical work about the release of the photoelectrons is dealt with in detail, without which Einstein would scarcely have found his lightquanta. Furthermore it is shown how difficult it was for the physicists to give up--at least partially--the traditional view of the undulation-nature of light, and how they searched to explain the great energies of the photoelectrons. On the other side it is set forth how Einstein's formula of lightquanta was gradually confirmed. The tragical development of Einstein's personal relations with Johannes Stark and Philipp Lenard are briefly described. Stark was one of the few who supported Einstein's ideas at the beginning. Only with the Compton-effect, which could only be quantitatively interpreted by means of lightquanta and the special theory of relativity 1923, the way was free for the general acceptance of the lightquanta. Einstein did not agree to the obtained dualism of undulation and corpuscle; he had a different solution in mind about the fusion of the two forms of appearance of light. PMID:17338401

  7. From the Classroom to Washington: Einsteins on Education Reform

    ERIC Educational Resources Information Center

    Hughes, Kent H., Ed.; Byers, Elizabeth A., Ed.

    2010-01-01

    The Woodrow Wilson International Center for Scholars was delighted to host a group of current and former Albert Einstein Distinguished Educator Fellows as they celebrated the 20th anniversary of the fellowship program. Outstanding math and science teachers in America's K-12 schools, the Einstein Fellows spend a year (or sometimes two) working on…

  8. Quantum Mechanics of the Einstein-Hopf Model.

    ERIC Educational Resources Information Center

    Milonni, P. W.

    1981-01-01

    The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)

  9. Hamiltonian analysis of Einstein-Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Avilés, L.; Salgado, P.

    2016-06-01

    In this work we consider the construction of the Hamiltonian action for the transgressions field theory. The subspace separation method for Chern-Simons Hamiltonian is built and used to find the Hamiltonian for five-dimensional Einstein-Chern-Simons gravity. It is then shown that the Hamiltonian for Einstein gravity arises in the limit where the scale parameter l approaches zero.

  10. Topological objects in two-component Bose-Einstein condensates

    SciTech Connect

    Cho, Y. M.; Khim, Hyojoong; Zhang, Pengming

    2005-12-15

    We study the topological objects in two-component Bose-Einstein condensates. We compare two competing theories of two-component Bose-Einstein condensates, the popular Gross-Pitaevskii theory, and the recently proposed gauge theory of two-component Bose-Einstein condensate which has an induced vorticity interaction. We show that two theories produce very similar topological objects, in spite of the obvious differences in dynamics. Furthermore we show that the gauge theory of two-component Bose-Einstein condensates, with the U(1) gauge symmetry, is remarkably similar to the Skyrme theory. Just like the Skyrme theory this theory admits the non-Abelian vortex, the helical vortex, and the vorticity knot. We construct the lightest knot solution in two-component Bose-Einstein condensates numerically, and discuss how the knot can be constructed in the spin-(1/2) condensate of {sup 87}Rb atoms.

  11. The Geometry of Newton's and Einstein's Theories

    NASA Astrophysics Data System (ADS)

    Hall, Graham S.

    The aim of this paper is to present a simple, brief, mathematical discussion of the interplay between geometry and physics in the theories of Newton and Einstein. The reader will be assumed to have some familiarity with classical Newtonian theory, the ideas of special and general relativity theory (and differential geometry), and the axiomatic formulation of Euclidean geometry. An attempt will be made to describe the relationship between Galileo's law of inertia (Newton's first law) and Euclid's geometry, which is based on the idea of Newtonian absolute time. Newton's second law and classical gravitation theory will then be introduced through the elegant idea of Cartan and his space-time connection and space metric. This space metric will then be used to introduce Minkowski's metric in special relativity and its subsequent generalization, by Einstein, to incorporate relativistic gravitational theory. The role of the principles of equivalence and covariance will also be discussed. Finally, a brief discussion of cosmology will be given. Stress will be laid on the (geometrical) concepts involved rather than the details of the mathematics, in so far as this is possible.

  12. Radiation damping in Einstein-aether theory

    SciTech Connect

    Foster, Brendan Z.

    2006-05-15

    This work concerns the loss of energy of a material system due to gravitational radiation in Einstein-aether theory - an alternative theory of gravity in which the metric couples to a dynamical, timelike, unit-norm vector field. Derived to lowest post-Newtonian order are wave forms for the metric and vector fields far from a nearly Newtonian system and the rate of energy radiated by the system. The expressions depend on the quadrupole moment of the source, as in standard general relativity, but also contain monopolar and dipolar terms. There exists a one-parameter family of Einstein-aether theories for which only the quadrupolar contribution is present, and for which the expression for the damping rate is identical to that of general relativity to the order worked to here. This family cannot yet be declared observationally viable, since effects due to the strong internal fields of bodies in the actual systems used to test the damping rate have not yet been determined.

  13. Newton to Einstein — dust to dust

    SciTech Connect

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas E-mail: cora.uhlemann@physik.lmu.de

    2014-03-01

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show that this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.

  14. Gravity Before Einstein and Schwinger Before Gravity

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  15. Data analysis challenges for the Einstein Telescope

    NASA Astrophysics Data System (ADS)

    Bosi, Leone; Porter, Edward K.

    2011-02-01

    The Einstein Telescope is a proposed third generation gravitational wave detector that will operate in the region of 1 Hz to a few kHz. As well as the inspiral of compact binaries composed of neutron stars or black holes, the lower frequency cut-off of the detector will open the window to a number of new sources. These will include the end stage of inspirals, plus merger and ringdown of intermediate mass black holes, where the masses of the component bodies are on the order of a few hundred solar masses. There is also the possibility of observing intermediate mass ratio inspirals, where a stellar mass compact object inspirals into a black hole which is a few hundred to a few thousand times more massive. In this article, we investigate some of the data analysis challenges for the Einstein Telescope such as the effects of increased source number, the need for more accurate waveform models and the some of the computational issues that a data analysis strategy might face.

  16. Design analysis of the Einstein refrigeration cycle

    SciTech Connect

    Shelton, S.V.; Delano, A.; Schaefer, L.A.

    1999-07-01

    After developing the theory of relativity, Albert Einstein spent several years working with Leo Szilard on absorption refrigeration cycles. In 1930, they obtained a US patent for a unique single pressure absorption cycle. The single pressure eliminates the need for a solution pump. Their cycle has only recently been rediscovered. The cycle utilizes butane as its refrigerant, ammonia as a pressure equalizing fluid, and water as an absorbing fluid. This cycle is dramatically different in both concept and detail than the better-known ammonia-water-hydrogen cycle. In this study, thermodynamic and mixture property models of the Einstein cycle were created to gain insight into the cycle's operating characteristics and to calculate its performance. A conceptual demonstration model was built and successfully operated, showing for the first time the viability of the cycle. The model results found that the system pressure is an important design parameter, with the COP having an optimum when the system pressure is equal to the saturation pressure of the butane refrigerant. It was also found that for a given system pressure, there is a maximum condenser-absorber temperature and a minimum evaporator temperature.

  17. Nanosecond Motions in Proteins Impose Bounds on the Timescale Distributions of Local Dynamics

    PubMed Central

    Okan, Osman Burak; Atilgan, Ali Rana; Atilgan, Canan

    2009-01-01

    Abstract We elucidate the physics of protein dynamical transition via 10–100-ns molecular dynamics simulations at temperatures spanning 160–300 K. By tracking the energy fluctuations, we show that the protein dynamical transition is marked by a crossover from nonstationary to stationary processes that underlie the dynamics of protein motions. A two-timescale function captures the nonexponential character of backbone structural relaxations. One timescale is attributed to the collective segmental motions and the other to local relaxations. The former is well defined by a single-exponential, nanosecond decay, operative at all temperatures. The latter is described by a set of processes that display a distribution of timescales. Although their average remains on the picosecond timescale, the distribution is markedly contracted at the onset of the transition. It is shown that the collective motions impose bounds on timescales spanned by local dynamical processes. The nonstationary character below the transition implicates the presence of a collection of substates whose interactions are restricted. At these temperatures, a wide distribution of local-motion timescales, extending beyond that of nanoseconds, is observed. At physiological temperatures, local motions are confined to timescales faster than nanoseconds. This relatively narrow window makes possible the appearance of multiple channels for the backbone dynamics to operate. PMID:19804740

  18. BOOK REVIEW: A Student's Guide to Einstein's Major Papers A Student's Guide to Einstein's Major Papers

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    2013-12-01

    The core of this volume is formed by four chapters (2-5) with detailed reconstructions of the arguments and derivations in four of Einstein's most important papers, the three main papers of his annus mirabilis 1905 (on the light quantum, Brownian motion, and special relativity) and his first systematic exposition of general relativity of 1916. The derivations are given in sufficient detail and in sufficiently modernized notation (without any serious distortion of the originals) for an undergraduate physics major to read and understand them with far less effort than it would take him or her to understand (English translations of) Einstein's original papers. Each of these four papers is accompanied by a detailed introduction, which covers the conceptual development of the relevant field prior to Einstein's contribution to it and corrects some of the myths surrounding these papers that still have not been fully eradicated among physicists. (One quibble: though Kennedy correctly points out that the goal of the light quantum paper was not to explain the photoelectric effect, it is also not quite right to say that 'it was written to explain the Wien region of blackbody radiation' (p. xv). Einstein used this explanatory feat as the central argument for his light quantum hypothesis.) These four chapters then are the most valuable part of the volume. They could be used, independently of one another, but preferably in conjunction with Einstein's original texts, in courses on quantum mechanics, statistical mechanics, electrodynamics, and general relativity, respectively, to add a historical component to such courses. As a historian of science embedded in a physics department who is regularly called upon to give guest lectures in such courses on the history of their subjects, I can highly recommend the volume for this purpose. However, I would not adopt this volume as (one of) the central text(s) for a course on the history of modern physics. For one thing, chapter 1, which in

  19. Bridging the timescales between thermochronological and cosmogenic nuclide data

    NASA Astrophysics Data System (ADS)

    Glotzbach, Christoph

    2015-04-01

    Reconstructing the evolution of Earth's landscape is a key to understand its future evolution and to identify the driving forces that shape Earth's surface. Cosmogenic nuclide and thermochronological methods are routinely used to quantify Earth surface processes over 102-104 yr and 106-107 yr, respectively (e.g. Lal 1991; Reiners and Ehlers 2005; von Blanckenburg 2006). A comparison of the rates of surface processes derived from these methods is, however, hampered by the large difference in their timescales. For instance, a constant erosion rate of 0.1 mm/yr yield an apatite (U-Th)/He age of ~24 Ma and a 10Be age of ~6 ka, respectively. Analytical methods that bridge this time gap are on the way, but are not yet fully established (e.g. Herman et al. 2010). A ready to use alternative are river profiles, which record the regional uplift history over 102-107 yr (e.g. Pritchard et al. 2009). Changes in uplift are retained in knickzones that propagate with a distinct velocity upstream, and therefore the time of an uplift event can be estimated. Here I present an integrative inverse modelling approach to simultaneously reconstruct river profiles, model thermochronological and cosmogenic nuclide data and to derive robust information about landscape evolution over thousands to millions of years. An efficient inversion routine is used to solve the forward problem and find the best uplift history and erosional parameters that reproduce the observed data. I test the performance of the algorithm by inverting a synthetic dataset and a dataset from the Sila massif (Italy). Results show that even complicated uplift histories can be reliably retrieved by the combined interpretation of river profiles, thermochronological and cosmogenic nuclide data. References Gallagher, K., Brown, R. & Johnson, C. (1998): Fission track analysis and its applications to geological problems. - Annu. Rev. Earth Planet., 26: 519-572. Herman, F., Rhodes, E.J., Braun, J. & Heiniger, L. (2010): Uniform

  20. Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2015-09-01

    We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.

  1. Einstein, race, and the myth of the cultural icon

    NASA Astrophysics Data System (ADS)

    Jerome, Fred

    2004-12-01

    The most remarkable aspect of Einstein's 1946 address at Lincoln University is that it has vanished from Einstein's recorded history. Its disappearance into a historical black hole symbolizes what seems to happen in the creation of a cultural icon. It is but one of many political statements by Einstein to have met such a fate, though his civil rights activism is most glaringly mission. One explanation for this historical amnesia is that those who shape our official memories felt that Einstein's "controversial" friends like Paul Robeson and activities like co-chairing the anti-lynching crusade might tarnish Einstein as an icon. That icon, sanctified by Time magazine when it dubbed Einstein "Person of the Century" at the end of 1999, is a myth, albeit a marvelous one. Yet it is not so much the motive for the omission but the consequence of it that should concern us. Americans and the millions of Einstein fans around the world are left unaware that he was an outspoken, passionate, committed antiracist.

  2. Einstein, race, and the myth of the cultural icon.

    PubMed

    Jerome, Fred

    2004-12-01

    The most remarkable aspect of Einstein's 1946 address at Lincoln University is that it has vanished from Einstein's recorded history. Its disappearance into a historical black hole symbolizes what seems to happen in the creation of a cultural icon. It is but one of many political statements by Einstein to have met such a fate, though his civil rights activism is most glaringly missing. One explanation for this historical amnesia is that those who shape our official memories felt that Einstein's "controversial" friends like Paul Robeson and activities like co-chairing the anti-lynching crusade might tarnish Einstein as an icon. That icon, sanctified by Time magazine when it dubbed Einstein "Person of the Century" at the end of 1999, is a myth, albeit a marvelous one. Yet it is not so much the motive for the omission but the consequence of it that should concern us. Americans and the millions of Einstein fans around the world are left unaware that he was an outspoken, passionate, committed antiracist. PMID:16011298

  3. VARIABILITY OF GAMMA-RAY EMISSION FROM BLAZARS ON BLACK HOLE TIMESCALES

    SciTech Connect

    Vovk, Ie.; Neronov, A.

    2013-04-20

    We investigate the variability properties of blazars in the GeV band using data from the Fermi/Large Area Telescope (LAT) telescope. We find that blazars exhibit variability down to the minimum timescale resolvable by Fermi; this variability is a function of the peak photon count rate in the LAT. This implies that the real minimum variability timescales for the majority of blazars are typically shorter than those resolvable by the LAT. We find that for several blazars these minimum variability timescales reach those associated with the blazar central engine, the supermassive black hole. At the same time, none of the blazars exhibits variability on a timescale shorter than the black hole horizon light-crossing time and/or the period of rotation around the last stable circular orbit. Based on this fact, we argue that the timing properties of the {gamma}-ray signal could be determined by the processes in the direct vicinity of the supermassive black hole.

  4. Reconstructing the timescale of a catastrophic fan-forming event on Earth using a Mars model

    NASA Astrophysics Data System (ADS)

    Duller, Robert A.; Warner, Nicholas H.; De Angelis, Silvio; Armitage, John J.; Poyatos-Moré, Miquel

    2015-12-01

    The calculation of formation timescales of alluvial fans and deltas on Mars is important as it has direct implications for understanding the planet's hydrologic history. The robustness of sediment transport models is not in doubt but validation of the broad approach using a terrestrial example of similar scale and likely origin, where hydraulic parameters and timescales are known, is useful. Using a catastrophically formed terrestrial fan, where abundant sedimentological information is available, we find that the modeled hydraulic parameters and formation timescales are in very close agreement with the known values of the event. This supports the general modeling approach as applied to Mars fans but also highlights the added value of detailed sedimentary information when reconstructing hydraulics and timescales on Earth and Mars, which cannot be confidently gleaned from the final snapshot of surface geomorphology alone.

  5. An Introduction to the Einstein Toolkit

    NASA Astrophysics Data System (ADS)

    Zilhão, Miguel; Löffler, Frank

    2013-09-01

    We give an introduction to the Einstein Toolkit, a mature, open-source computational infrastructure for numerical relativity based on the Cactus Framework, for the target group of new users. This toolkit is composed of several different modules, is developed by researchers from different institutions throughout the world and is in active continuous development. Documentation for the toolkit and its several modules is often scattered across different locations, a difficulty new users may at times have to struggle with. Scientific papers exist describing the toolkit and its methods in detail, but they might be overwhelming at first. With these lecture notes we hope to provide an initial overview for new users. We cover how to obtain, compile and run the toolkit, and give an overview of some of the tools and modules provided with it.

  6. Einstein spaces modeling nonminimal modified gravity

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Vacaru, Sergiu I.

    2015-06-01

    Off-diagonal vacuum and nonvacuum configurations in the Einstein gravity can mimic physical effects of modified gravitational theories of f( R, T, R μν T μν ) type. To prove this statement, exact and approximate solutions are constructed in the paper, which encode certain models of covariant Hořava-type gravity with dynamical Lorentz symmetry breaking. The corresponding FLRW cosmological dynamics with possible nonholonomic deformations and the reconstruction procedure of certain actions closely related with the standard ΛCDM universe are studied. Off-diagonal generalizations of de Sitter universes are constructed which are generated through nonlinear gravitational polarization of fundamental physical constants and which model interactions with nonconstant exotic fluids and effective matter. The problem of possible matter instability for such off-diagonal deformations in (modified) gravity theories is briefly discussed.

  7. A repulsive force in the Einstein theory

    NASA Astrophysics Data System (ADS)

    Gorkavyi, Nick; Vasilkov, Alexander

    2016-09-01

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) detection of gravitational waves that take away 5 per cent of the total mass of two merging black holes points out on the importance of considering varying gravitational mass of a system in the framework of the Einstein general theory of relativity. We calculate the acceleration of a particle in the non-stationary field of a quasi-spherical system composed of a large number of objects emitting gravitational waves. It is shown that reduction of the gravitational mass of the system due to emitting gravitational waves leads to a repulsive gravitational force that diminishes with time but never disappears. This repulsive force may be related to the observed expansion of the Universe.

  8. Nonlinear interferometry with Bose-Einstein condensates

    SciTech Connect

    Tacla, Alexandre B.; Boixo, Sergio; Datta, Animesh; Shaji, Anil; Caves, Carlton M.

    2010-11-15

    We analyze a proposed experiment [Boixo et al., Phys. Rev. Lett. 101, 040403 (2008)] for achieving sensitivity scaling better than 1/N in a nonlinear Ramsey interferometer that uses a two-mode Bose-Einstein condensate (BEC) of N atoms. We present numerical simulations that confirm the analytical predictions for the effect of the spreading of the BEC ground-state wave function on the ideal 1/N{sup 3/2} scaling. Numerical integration of the coupled, time-dependent, two-mode Gross-Pitaevskii equations allows us to study the several simplifying assumptions made in the initial analytic study of the proposal and to explore when they can be justified. In particular, we find that the two modes share the same spatial wave function for a length of time that is sufficient to run the metrology scheme.

  9. Groups, information theory, and Einstein's likelihood principle

    NASA Astrophysics Data System (ADS)

    Sicuro, Gabriele; Tempesta, Piergiulio

    2016-04-01

    We propose a unifying picture where the notion of generalized entropy is related to information theory by means of a group-theoretical approach. The group structure comes from the requirement that an entropy be well defined with respect to the composition of independent systems, in the context of a recently proposed generalization of the Shannon-Khinchin axioms. We associate to each member of a large class of entropies a generalized information measure, satisfying the additivity property on a set of independent systems as a consequence of the underlying group law. At the same time, we also show that Einstein's likelihood function naturally emerges as a byproduct of our informational interpretation of (generally nonadditive) entropies. These results confirm the adequacy of composable entropies both in physical and social science contexts.

  10. The Dark Universe Through Einstein's Lens

    SciTech Connect

    Bard, Deborah

    2013-07-23

    Bard's talk explains the phenomenon known as gravitational lensing and how astrophysicists use it to explore the 95 percent of the universe that remains unseen: dark matter and dark energy. One of the most surprising predictions made by Einstein's theory of relativity is that light doesn't travel through the universe in a straight line. The gravitational field of massive objects will deflect the path of light traveling past, giving some very dramatic effects. We see multiple images of quasars, galaxies smeared into arcs and circles and magnified images of the most distant objects in the universe. This explains how gravitational lensing was first observed and discusses how scientists use this phenomenon to study everything from exoplanets to dark matter to the structure of the universe and the mysterious dark energy.

  11. Neutron stars in Einstein-aether theory

    SciTech Connect

    Eling, Christopher; Jacobson, Ted; Miller, M. Coleman

    2007-08-15

    As current and future experiments probe strong gravitational regimes around neutron stars and black holes, it is desirable to have theoretically sound alternatives to general relativity against which to test observations. Here we study the consequences of one such generalization, Einstein-aether theory, for the properties of nonrotating neutron stars. This theory has a parameter range that satisfies all current weak-field tests. We find that within this range it leads to lower maximum neutron star masses, as well as larger surface redshifts at a particular mass, for a given nuclear equation of state. For nonrotating black holes and neutron stars, the innermost stable circular orbit is only slightly modified in this theory.

  12. Energy in the Einstein-aether theory

    SciTech Connect

    Eling, Christopher

    2006-04-15

    We investigate the energy of a theory with a unit vector field (the aether) coupled to gravity. Both the Weinberg and Einstein type energy-momentum pseudotensors are employed. In the linearized theory we find expressions for the energy density of the 5 wave modes. The requirement that the modes have positive energy is then used to constrain the theory. In the fully nonlinear theory we compute the total energy of an asymptotically flat spacetime. The resulting energy expression is modified by the presence of the aether due to the nonzero value of the unit vector at infinity and its 1/r falloff. The question of nonlinear energy positivity is also discussed, but not resolved.

  13. Groups, information theory, and Einstein's likelihood principle.

    PubMed

    Sicuro, Gabriele; Tempesta, Piergiulio

    2016-04-01

    We propose a unifying picture where the notion of generalized entropy is related to information theory by means of a group-theoretical approach. The group structure comes from the requirement that an entropy be well defined with respect to the composition of independent systems, in the context of a recently proposed generalization of the Shannon-Khinchin axioms. We associate to each member of a large class of entropies a generalized information measure, satisfying the additivity property on a set of independent systems as a consequence of the underlying group law. At the same time, we also show that Einstein's likelihood function naturally emerges as a byproduct of our informational interpretation of (generally nonadditive) entropies. These results confirm the adequacy of composable entropies both in physical and social science contexts. PMID:27176234

  14. What about Albert Einstein? Using Biographies to Promote Students' Scientific Thinking

    ERIC Educational Resources Information Center

    Fingon, Joan C.; Fingon, Shallon D.

    2009-01-01

    Who hasn't heard of Einstein? Science educators everywhere are familiar with Einstein's genius and general theory of relativity. Students easily recognize Einstein's image by his white flyaway hair and bushy mustache. It is well known that Einstein was a brilliant physicist and an abstract thinker who often used his creativity and imagination in…

  15. An improved whitecap timescale for sea spray aerosol production flux modeling using the discrete whitecap method

    NASA Astrophysics Data System (ADS)

    Callaghan, Adrian H.

    2013-09-01

    The discrete whitecap method (DWM) to model the sea spray aerosol (SSA) production flux explicitly requires a whitecap timescale, which up to now has only considered a whitecap decay timescale, τdecay. A reevaluation of the DWM suggests that the whitecap timescale should account for the total whitecap lifetime (τwcap), which consists of both the formation timescale (τform) and the decay timescale (timescale definitions are given in the text). Here values of τform for 552 oceanic whitecaps measured at the Martha's Vineyard Coastal Observatory on the east coast of the USA are presented, and added to the corresponding values of τdecay to form 552 whitecap timescales. For the majority of whitecaps, τform makes up about 20-25% of τwcap, but this can be as large as 70% depending on the value of τdecay. Furthermore, an area-weighted mean whitecap timescale for use in the DWM (τDWM) is defined that encompasses the variable nature of individual whitecap lifetimes within a given time period, and is calculated to be 5.3 s for this entire data set. This value is combined with previously published whitecap coverage parameterizations and estimates of SSA particle production per whitecap area to form a size-resolved SSA production flux parameterization (dF(r80)/dlog10r80). This parameterization yields integrated sea-salt mass fluxes that are largely within the range of uncertainty of recent measurements over the size range 0.029 µm < r80 < 0.580 µm. Physical factors controlling whitecap lifetime such as bubble plume lifetime and surfactant stabilization are discussed in the context of SSA production from whitecaps.

  16. EDITORIAL: Squeeze transformation and optics after Einstein

    NASA Astrophysics Data System (ADS)

    Kim, Young S.; Man'ko, Margarita A.; Planat, Michel

    2005-12-01

    With this special issue, Journal of Optics B: Quantum and Semiclassical Optics contributes to the celebration of the World Year of Physics held in recognition of five brilliant papers written by Albert Einstein in 1905. There is no need to explain to the readers of this journal the content and importance of these papers, which are cornerstones of modern physics. The 51 contributions in this special issue represent current trends in quantum optics —100 years after the concept of light quanta was introduced. At first glance, in his famous papers of 1905, Einstein treated quite independent subjects—special relativity, the nature and statistical properties of light, electrodynamics of moving bodies and Brownian motion. We now know that all these phenomena are deeply related, and these relations are clearly shown in many papers in this issue. Most of the papers are based on the talks and poster contributions from participants of the 9th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'05), which took place in Besançon, France, 2-6 May, 2005. This was the continuation of a series of meetings, originating with the first workshops organized by Professor Y S Kim at the University of Maryland, College Park, USA, in 1991 and by Professor V I Man'ko at the Lebedev Physical Institute, Moscow in 1992. One of the main topics of ICSSUR'05 and this special issue is the theory and applications of squeezed states and their generalizations. At first glance, one could think that this subject has no relation to Einstein's papers. However, this is not true: the theory of squeezed states is deeply related to special relativity, as far as it is based on the representations of the Lorentz group (see the paper by Kim Y S and Noz M E, S458-S467), which also links the current concepts of entanglement and decoherence with Lorentz-covariance. Besides, studies of the different quantum states of light imply, after all, the study of photon (or photo

  17. Derivation of Einstein-Cartan theory from general relativity

    NASA Astrophysics Data System (ADS)

    Petti, Richard

    2016-03-01

    This article presents a derivation of Einstein-Cartan theory from general relativity with no additional assumptions or parameters. The derivation begins with distributions of Kerr masses that converge to a continuum with constant densities of mass, momentum, and angular momentum. The limit includes torsion and the spin-torsion relationship of Einstein-Cartan theory. The construction of curvature and torsion is equivalent to definition of curvature with Cartan forms on fiber bundles. Advantages of Einstein-Cartan theory include accommodating exchange of classical intrinsic and orbital angular momentum and generation of inflation-like expansion in high density cosmological models.

  18. Generalized Einstein-Aether theories and the Solar System

    SciTech Connect

    Bonvin, Camille; Durrer, Ruth; Ferreira, Pedro G.; Zlosnik, Tom G.; Starkman, Glenn

    2008-01-15

    It has been shown that generalized Einstein-Aether theories may lead to significant modifications to the nonrelativistic limit of the Einstein equations. In this paper we study the effect of a general class of such theories on the Solar System. We consider corrections to the gravitational potential in negative and positive powers of distance from the source. Using measurements of the perihelion shift of Mercury and time delay of radar signals to Cassini, we place constraints on these corrections. We find that a subclass of generalized Einstein-Aether theories is compatible with these constraints.

  19. Einstein, Perrin, and the reality of atoms: 1905 revisited

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald; Peidle, Joseph; Rueckner, Wolfgang

    2006-06-01

    We have repeated Perrin's 1908 experiment for the determination of Avogadro's number by determining the mean square displacement of small particles undergoing Brownian motion. Our apparatus differs from Perrin's by the use of a CCD camera and is much less tedious to perform. We review Einstein's 1905 analysis of Brownian motion and Langevin's alternative derivation of the Einstein equation for the mean square displacement. We also show how Einstein's thinking was a reflection of his belief in the validity of molecular-kinetic theory, a validity not universally recognized 100 years ago.

  20. Six-Degree-of-Freedom Trajectory Optimization Utilizing a Two-Timescale Collocation Architecture

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Conway, Bruce A.

    2005-01-01

    Six-degree-of-freedom (6DOF) trajectory optimization of a reentry vehicle is solved using a two-timescale collocation methodology. This class of 6DOF trajectory problems are characterized by two distinct timescales in their governing equations, where a subset of the states have high-frequency dynamics (the rotational equations of motion) while the remaining states (the translational equations of motion) vary comparatively slowly. With conventional collocation methods, the 6DOF problem size becomes extraordinarily large and difficult to solve. Utilizing the two-timescale collocation architecture, the problem size is reduced significantly. The converged solution shows a realistic landing profile and captures the appropriate high-frequency rotational dynamics. A large reduction in the overall problem size (by 55%) is attained with the two-timescale architecture as compared to the conventional single-timescale collocation method. Consequently, optimum 6DOF trajectory problems can now be solved efficiently using collocation, which was not previously possible for a system with two distinct timescales in the governing states.

  1. COMPARISON OF KEPLER PHOTOMETRIC VARIABILITY WITH THE SUN ON DIFFERENT TIMESCALES

    SciTech Connect

    Basri, Gibor; Walkowicz, Lucianne M.; Reiners, Ansgar

    2013-05-20

    We utilize Kepler data to study the precision differential photometric variability of solar-type and cooler stars at different timescales, ranging from half an hour to three months. We define a diagnostic that characterizes the median differential intensity change between data bins of a given timescale. We apply the same diagnostics to Solar and Heliospheric Observatory data that has been rendered comparable to Kepler. The Sun exhibits similar photometric variability on all timescales as comparable solar-type stars in the Kepler field. The previously defined photometric ''range'' serves as our activity proxy (driven by starspot coverage). We revisit the fraction of comparable stars in the Kepler field that are more active than the Sun. The exact active fraction depends on what is meant by ''more active than the Sun'' and on the magnitude limit of the sample of stars considered. This active fraction is between a quarter and a third (depending on the timescale). We argue that a reliable result requires timescales of half a day or longer and stars brighter than M{sub Kep} of 14, otherwise non-stellar noise distorts it. We also analyze main sequence stars grouped by temperature from 6500 to 3500 K. As one moves to cooler stars, the active fraction of stars becomes steadily larger (greater than 90% for early M dwarfs). The Sun is a good photometric model at all timescales for those cooler stars that have long-term variability within the span of solar variability.

  2. Multi-timescale data assimilation for atmosphere-ocean state estimates

    NASA Astrophysics Data System (ADS)

    Steiger, Nathan; Hakim, Gregory

    2016-06-01

    Paleoclimate proxy data span seasonal to millennial timescales, and Earth's climate system has both high- and low-frequency components. Yet it is currently unclear how best to incorporate multiple timescales of proxy data into a single reconstruction framework and to also capture both high- and low-frequency components of reconstructed variables. Here we present a data assimilation approach that can explicitly incorporate proxy data at arbitrary timescales. The principal advantage of using such an approach is that it allows much more proxy data to inform a climate reconstruction, though there can be additional benefits. Through a series of offline data-assimilation-based pseudoproxy experiments, we find that atmosphere-ocean states are most skillfully reconstructed by incorporating proxies across multiple timescales compared to using proxies at short (annual) or long (˜ decadal) timescales alone. Additionally, reconstructions that incorporate long-timescale pseudoproxies improve the low-frequency components of the reconstructions relative to using only high-resolution pseudoproxies. We argue that this is because time averaging high-resolution observations improves their covariance relationship with the slowly varying components of the coupled-climate system, which the data assimilation algorithm can exploit. These results are consistent across the climate models considered, despite the model variables having very different spectral characteristics. Our results also suggest that it may be possible to reconstruct features of the oceanic meridional overturning circulation based on atmospheric surface temperature proxies, though here we find such reconstructions lack spectral power over a broad range of frequencies.

  3. COMPARING THE ACCRETION DISK EVOLUTION OF BLACK HOLE AND NEUTRON STAR X-RAY BINARIES FROM LOW TO SUPER-EDDINGTON LUMINOSITY

    SciTech Connect

    Weng Shanshan; Zhang Shuangnan E-mail: zhangsn@ihep.ac.cn

    2011-09-20

    Low-mass X-ray binaries (LMXBs) are systems in which a low-mass companion transfers mass via Roche-lobe overflow onto a black hole (BH) or a weakly magnetized neutron star (NS). It is believed that both the solid surface and the magnetic field of an NS can affect the accretion flow and show some observable effects. Using the disk emission dominant data, we compare the disk evolution of the two types of systems from low luminosity to super-Eddington luminosity. As the luminosity decreases the disk in the NS LMXB 4U1608-522 begins to leave the innermost stable circular orbit (ISCO) at much higher luminosity ({approx}0.1 L{sub Edd}), compared with BH LMXBs at much lower luminosity ({approx}0.03 L{sub Edd}), due to the interaction between the NS magnetosphere and accretion flow. However, as the luminosity increases above a critical luminosity, the disks in BH and NS LMXBs trace the same evolutionary pattern, because the magnetosphere is restricted inside ISCO, and then both the NS surface emission and (dipole) magnetic field do not significantly affect the secular evolution of the accretion disk, which is driven by the increased radiation pressure in the inner region. We further suggest that the NS surface emission provides additional information about the accretion disk not available in BH systems. Through the observed NS surface emission, we argue that the disk thickness H/R is less than 0.3-0.4, and that the significant outflow from the inner disk edge exists at a luminosity close to Eddington luminosity.

  4. BOOK REVIEW: A Student's Guide to Einstein's Major Papers A Student's Guide to Einstein's Major Papers

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    2013-12-01

    The core of this volume is formed by four chapters (2-5) with detailed reconstructions of the arguments and derivations in four of Einstein's most important papers, the three main papers of his annus mirabilis 1905 (on the light quantum, Brownian motion, and special relativity) and his first systematic exposition of general relativity of 1916. The derivations are given in sufficient detail and in sufficiently modernized notation (without any serious distortion of the originals) for an undergraduate physics major to read and understand them with far less effort than it would take him or her to understand (English translations of) Einstein's original papers. Each of these four papers is accompanied by a detailed introduction, which covers the conceptual development of the relevant field prior to Einstein's contribution to it and corrects some of the myths surrounding these papers that still have not been fully eradicated among physicists. (One quibble: though Kennedy correctly points out that the goal of the light quantum paper was not to explain the photoelectric effect, it is also not quite right to say that 'it was written to explain the Wien region of blackbody radiation' (p. xv). Einstein used this explanatory feat as the central argument for his light quantum hypothesis.) These four chapters then are the most valuable part of the volume. They could be used, independently of one another, but preferably in conjunction with Einstein's original texts, in courses on quantum mechanics, statistical mechanics, electrodynamics, and general relativity, respectively, to add a historical component to such courses. As a historian of science embedded in a physics department who is regularly called upon to give guest lectures in such courses on the history of their subjects, I can highly recommend the volume for this purpose. However, I would not adopt this volume as (one of) the central text(s) for a course on the history of modern physics. For one thing, chapter 1, which in

  5. A New Measurement of Time: The Einstein System.

    ERIC Educational Resources Information Center

    Aragon, Mario Rodriguez

    1979-01-01

    Analyzes the concepts of physical time and of the measurement of the magnitude of time, and examines the International System of Units (SI). A proposal for the use of the Einstein system (ES) is also included. (HM)

  6. EINSTEIN-ÆTHER Gravity:. Theory and Observational Constraints

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted

    2008-03-01

    Einstein-æther theory is general relativity coupled to a dynamical unit timelike vector field. A brief review of current theoretical understanding and observational constraints on the four coupling parameters of the theory is given.

  7. The EINSTEIN-VARIĆAK Correspondence on Relativistic Rigid Rotation

    NASA Astrophysics Data System (ADS)

    Sauer, Tilman

    2008-09-01

    The historical significance of the problem of relativistic rigid rotation is reviewed in light of recently published correspondence between Einstein and the mathematician Vladimir Varićak from the years 1909 to 1913.

  8. Interstellar Scattering and the Einstein Ring PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Preston, R. A.; Murphy, D. W.; Meier, D. L.; Jauncey, D. L.; Reynolds, J. E.; Tziomis, A. K.

    1995-01-01

    High frequency (22 GHz) data have been used two resolve two compact components of the strong gravitational lens PKS 1830-211. The two bright components are at opposite sides of a one arcsecond diameter Einstein ring.

  9. New exact perfect fluid solutions of Einstein's equations. II

    NASA Astrophysics Data System (ADS)

    Uggla, Claes; Rosquist, Kjell

    1990-12-01

    A family of new spatially homogeneous Bianchi type VIh perfect fluid solutions of the Einstein equations is presented. The fluid flow is orthogonal to the spatially homogeneous hypersurfaces, and the pressure is proportional to the energy density.

  10. Einstein's conversion from his static to an expanding universe

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Harry

    2014-02-01

    In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved universe. To counteract gravitational contraction he introduced the cosmological constant. In 1922 Alexander Friedman showed that Albert Einstein's fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaître, backed by observational evidence, concluded that our universe was expanding. Einstein impetuously rejected Friedman's as well as Lemaître's findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investigation follows Einstein on his hesitating path from a static to the expanding universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable.

  11. From the Einstein-Szilard Patent to Modern Magnetohydrodynamics.

    ERIC Educational Resources Information Center

    Povh, I. L.; Barinberg, A. D.

    1979-01-01

    Examines present-day and future prospects of the applications of modern magnetohydrodynamics in a number of countries. Explains how the electromagnetic pump, which was invented by Einstein and Leo Szilard, led to the development of applied magnetohydrodynamics. (HM)

  12. A comparative analysis of perspectives of Mileva Maric Einstein

    NASA Astrophysics Data System (ADS)

    Barnett, Carol C.

    This dissertation examines the controversy surrounding Mileva Maric Einstein and the allegations subsequent to the publication of love letters during the time that Mileva Maric and Albert Einstein were students and during the early years of their marriage. It also examines the role of women in science from a historical perspective. Chapter One surveys the history of women in science from antiquity to the late nineteenth century and the patterns of gender related and restricting practices such as education, publication, the problem of mentoring and the issue of the lack of historical recognition. Chapter Two provides a comparative analyses between the lives of Mileva Maric Einstein and Marie Sklodowska Curie. Both had very similar social and educational backgrounds yet Marie Curie was able to work and publish jointly with her husband and received (although belatedly) international recognition for her work. On the other hand, Mileva Maric Einstein was never able to complete her degree and lived a life of obscurity and unfulfilled professional dreams. Both highly educated and intelligent women, but with drastically different outcomes in their professional and personal lives. Chapter Three examines the one book devoted to the life of Mileva Maric Einstein, Im Schatten Albert Einsteins: Das Tragische Leben der Mileva Einstein-Maric (In The Shadow of Albert Einstein: The Tragic Life of Mileva Maric), by Desanka Trbuhovic-Gjuric, Paul Haupt Publishers, 1985. It addresses the subjective as well as constructive and destructive criticisms of the various critical camps and provides examples of the statements made by the author which prompted a controversy within the academic and scientific communities. Appropriate responses are provided from various members of the scientific community to reflect the diversity of opinion and the intensity of the debate. Chapter Four addresses the problem of historicity and various interpretations of evidence which might suggest that the role

  13. Nonequilibrium Bose-Einstein condensation of hot magnons

    SciTech Connect

    Vannucchi, Fabio Stucchi; Vasconcellos, Aurea Rosas; Luzzi, Roberto

    2010-10-01

    We present an analysis of the emergence of a nonequilibrium Bose-Einstein-type condensation of magnons in radio-frequency pumped magnetic thin films, which has recently been experimentally observed. A complete description of all the nonequilibrium processes involved is given. It is demonstrated that the phenomenon is another example of the emergence of Bose-Einstein-type condensation in nonequilibrium many-boson systems embedded in a thermal bath, a phenomenon evidenced decades ago by the renowned late Herbert Froehlich.

  14. Einstein's other gravity and the acceleration of the Universe

    SciTech Connect

    Linder, Eric V.

    2010-06-15

    Spacetime curvature plays the primary role in general relativity but Einstein later considered a theory where torsion was the central quantity. Just as the Einstein-Hilbert action in the Ricci curvature scalar R can be generalized to f(R) gravity, we consider extensions of teleparallel, or torsion scalar T, gravity to f(T) theories. The field equations are naturally second order, avoiding pathologies, and can give rise to cosmic acceleration with unique features.

  15. The Einstein Relation for RandomWalks on Graphs

    NASA Astrophysics Data System (ADS)

    Telcs, András

    2006-05-01

    This paper investigates the Einstein relation; the connection between the volume growth, the resistance growth and the expected time a random walk needs to leave a ball on a weighted graph. The Einstein relation is proved under different set of conditions. In the simplest case it is shown under the volume doubling and time comparison principles. This and the other set of conditions provide the basic framework for the study of (sub-) diffusive behavior of the random walks on weighted graphs.

  16. The Einstein Relation for Random Walks on Graphs

    NASA Astrophysics Data System (ADS)

    Telcs, András

    2006-02-01

    This paper investigates the Einstein relation; the connection between the volume growth, the resistance growth and the expected time a random walk needs to leave a ball on a weighted graph. The Einstein relation is proved under different set of conditions. In the simplest case it is shown under the volume doubling and time comparison principles. This and the other set of conditions provide the basic framework for the study of (sub-) diffusive behavior of the random walks on weighted graphs.

  17. Differential invariants and exact solutions of the Einstein equations

    NASA Astrophysics Data System (ADS)

    Lychagin, Valentin; Yumaguzhin, Valeriy

    2016-03-01

    In this paper (cf. Lychagin and Yumaguzhin, in Anal Math Phys, 2016) a class of totally geodesics solutions for the vacuum Einstein equations is introduced. It consists of Einstein metrics of signature (1,3) such that 2-dimensional distributions, defined by the Weyl tensor, are completely integrable and totally geodesic. The complete and explicit description of metrics from these class is given. It is shown that these metrics depend on two functions in one variable and one harmonic function.

  18. A complete public archive for the Einstein IPC

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1995-01-01

    This report documents progress made in the period 24 Sept. 1993 - 23 Sept. 1995 on the project described in our proposal 'A Complete Public Archive for the Einstein IPC' which was approved under the Astrophysics Data Program in 1992. We have completed most of the principal objectives of the original proposal; a NFE was recently approved so that costs for publications in press can be covered and we can complete the public record for the Einstein IPC database.

  19. Einstein's investigations of Galilean covariant electrodynamics prior to 1905

    NASA Astrophysics Data System (ADS)

    Norton, John D.

    2004-11-01

    Einstein learned from the magnet and conductor thought experiment how to use field transformation laws to extend the covariance of Maxwells electrodynamics. If he persisted in his use of this device, he would have found that the theory cleaves into two Galilean covariant parts, each with different field transformation laws. The tension between the two parts reflects a failure not mentioned by Einstein: that the relativity of motion manifested by observables in the magnet and conductor thought experiment does not extend to all observables in electrodynamics. An examination of Ritz's work shows that Einstein's early view could not have coincided with Ritz's on an emission theory of light, but only with that of a conveniently reconstructed Ritz. One Ritz-like emission theory, attributed by Pauli to Ritz, proves to be a natural extension of the Galilean covariant part of Maxwell's theory that happens also to accommodate the magnet and conductor thought experiment. Einstein's famous chasing a light beam thought experiment fails as an objection to an ether-based, electrodynamical theory of light. However it would allow Einstein to formulate his general objections to all emission theories of light in a very sharp form. Einstein found two well known experimental results of 18th and 19th century optics compelling (Fizeau's experiment, stellar aberration), while the accomplished Michelson-Morley experiment played no memorable role. I suggest they owe their importance to their providing a direct experimental grounding for Lorentz' local time, the precursor of Einstein's relativity of simultaneity, and doing it essentially independently of electrodynamical theory. I attribute Einstein's success to his determination to implement a principle of relativity in electrodynamics, but I urge that we not invest this stubbornness with any mystical prescience.

  20. Dynamic hyporheic exchange at intermediate timescales: testing the relative importance of evapotranspiration and flood pulses

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson W.; Maglio, Morgan M.

    2014-01-01

    Hyporheic fluxes influence ecological processes across a continuum of timescales. However, few studies have been able to characterize hyporheic fluxes and residence time distributions (RTDs) over timescales of days to years, during which evapotranspiration (ET) and seasonal flood pulses create unsteady forcing. Here we present a data-driven, particle-tracking piston model that characterizes hyporheic fluxes and RTDs based on measured vertical head differences. We used the model to test the relative influence of ET and seasonal flood pulses in the Everglades (FL, USA), in a manner applicable to other low-energy floodplains or broad, shallow streams. We found that over the multiyear timescale, flood pulses that drive relatively deep (∼1 m) flow paths had the dominant influence on hyporheic fluxes and residence times but that ET effects were discernible at shorter timescales (weeks to months) as a break in RTDs. Cumulative RTDs on either side of the break were generally well represented by lognormal functions, except for when ET was strong and none of the standard distributions applied to the shorter timescale. At the monthly timescale, ET increased hyporheic fluxes by 1–2 orders of magnitude; it also decreased 6 year mean residence times by 53–87%. Long, slow flow paths driven by flood pulses increased 6 year hyporheic fluxes by another 1–2 orders of magnitude, to a level comparable to that induced over the short term by shear flow in streams. Results suggest that models of intermediate-timescale processes should include at least two-storage zones with different RTDs, and that supporting field data collection occur over 3–4 years.

  1. Constraining differentiation processes and timescales from mineral-scale isotopic data

    NASA Astrophysics Data System (ADS)

    Davidson, J.; Charlier, B.; Morgan, D.

    2007-12-01

    The mechanisms by which magmas diversify en route to the surface and the timescales over which this differentiation occurs have received a great deal of attention over the past decade. Many magma systems appear to be characterised by crystal recycling and cannibalisation of progenitor products on short timescales. Single crystal isotopic data indicate that magmas contain crystal cargoes that have formed in different places and at different times, and have been aggregated shortly before, or during, emplacement/ eruption. Integration of isotopic zoning with textural features in crystals commonly reflects multiple recharge and mixing of different composition magmas. The fact that individual crystals from the same rock may have different isotopic zoning profiles further indicates that they do not share a common differentiation history. The c. 5000 cubic kilometer Fish Canyon Tuff, for example, exhibits extreme inter- and intra-crystal Sr isotopic diversity, despite being relatively homogeneous with respect to major and trace elements at the bulk rock scale. Such heterogeneity is more likely inherited from progenitor magma systems which have incubated in and interacted with the crust, rather than from mantle sources. The timescales over which the processes of contamination, recharge and mixing operate can be estimated from the compositional gradients in the crystals. The failure of small biotite grains in the Fish Canyon Tuff to isotopically equilibrate with the host magma requires entrainment and eruption within a timescale less than that required for diffusive equilibration - in this case a few thousand years. The common observation that crystal rims are sometimes not in isotopic equilibrium with the host glass is consistent with entrainment of crystals into the host melt shortly before eruption. The resolution of isotopic sampling is poor but timescales indicated are typically less than 1000 years. Trace element profiling constrains timescales better and can suggest

  2. The neural processing of hierarchical structure in music and speech at different timescales.

    PubMed

    Farbood, Morwaread M; Heeger, David J; Marcus, Gary; Hasson, Uri; Lerner, Yulia

    2015-01-01

    Music, like speech, is a complex auditory signal that contains structures at multiple timescales, and as such is a potentially powerful entry point into the question of how the brain integrates complex streams of information. Using an experimental design modeled after previous studies that used scrambled versions of a spoken story (Lerner et al., 2011) and a silent movie (Hasson et al., 2008), we investigate whether listeners perceive hierarchical structure in music beyond short (~6 s) time windows and whether there is cortical overlap between music and language processing at multiple timescales. Experienced pianists were presented with an extended musical excerpt scrambled at multiple timescales-by measure, phrase, and section-while measuring brain activity with functional magnetic resonance imaging (fMRI). The reliability of evoked activity, as quantified by inter-subject correlation of the fMRI responses, was measured. We found that response reliability depended systematically on musical structure coherence, revealing a topographically organized hierarchy of processing timescales. Early auditory areas (at the bottom of the hierarchy) responded reliably in all conditions. For brain areas at the top of the hierarchy, the original (unscrambled) excerpt evoked more reliable responses than any of the scrambled excerpts, indicating that these brain areas process long-timescale musical structures, on the order of minutes. The topography of processing timescales was analogous with that reported previously for speech, but the timescale gradients for music and speech overlapped with one another only partially, suggesting that temporally analogous structures-words/measures, sentences/musical phrases, paragraph/sections-are processed separately. PMID:26029037

  3. Timescales of quartz crystallization and the longevity of the Bishop giant magma body.

    PubMed

    Gualda, Guilherme A R; Pamukcu, Ayla S; Ghiorso, Mark S; Anderson, Alfred T; Sutton, Stephen R; Rivers, Mark L

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies. PMID:22666359

  4. Neural Substrates Related to Motor Memory with Multiple Timescales in Sensorimotor Adaptation

    PubMed Central

    Lv, Jinchi; Schweighofer, Nicolas; Imamizu, Hiroshi

    2015-01-01

    Recent computational and behavioral studies suggest that motor adaptation results from the update of multiple memories with different timescales. Here, we designed a model-based functional magnetic resonance imaging (fMRI) experiment in which subjects adapted to two opposing visuomotor rotations. A computational model of motor adaptation with multiple memories was fitted to the behavioral data to generate time-varying regressors of brain activity. We identified regional specificity to timescales: in particular, the activity in the inferior parietal region and in the anterior-medial cerebellum was associated with memories for intermediate and long timescales, respectively. A sparse singular value decomposition analysis of variability in specificities to timescales over the brain identified four components, two fast, one middle, and one slow, each associated with different brain networks. Finally, a multivariate decoding analysis showed that activity patterns in the anterior-medial cerebellum progressively represented the two rotations. Our results support the existence of brain regions associated with multiple timescales in adaptation and a role of the cerebellum in storing multiple internal models. PMID:26645916

  5. Stream solute tracer timescales changing with discharge and reach length confound process interpretation

    NASA Astrophysics Data System (ADS)

    Schmadel, Noah M.; Ward, Adam S.; Kurz, Marie J.; Fleckenstein, Jan H.; Zarnetske, Jay P.; Hannah, David M.; Blume, Theresa; Vieweg, Michael; Blaen, Phillip J.; Schmidt, Christian; Knapp, Julia L. A.; Klaar, Megan J.; Romeijn, Paul; Datry, Thibault; Keller, Toralf; Folegot, Silvia; Arricibita, Amaia I. Marruedo; Krause, Stefan

    2016-04-01

    Improved understanding of stream solute transport requires meaningful comparison of processes across a wide range of discharge conditions and spatial scales. At reach scales where solute tracer tests are commonly used to assess transport behavior, such comparison is still confounded due to the challenge of separating dispersive and transient storage processes from the influence of the advective timescale that varies with discharge and reach length. To better resolve interpretation of these processes from field-based tracer observations, we conducted recurrent conservative solute tracer tests along a 1 km study reach during a storm discharge period and further discretized the study reach into six segments of similar length but different channel morphologies. The resulting suite of data, spanning an order of magnitude in advective timescales, enabled us to (1) characterize relationships between tracer response and discharge in individual segments and (2) determine how combining the segments into longer reaches influences interpretation of dispersion and transient storage from tracer tests. We found that the advective timescale was the primary control on the shape of the observed tracer response. Most segments responded similarly to discharge, implying that the influence of morphologic heterogeneity was muted relative to advection. Comparison of tracer data across combined segments demonstrated that increased advective timescales could be misinterpreted as a change in dispersion or transient storage. Taken together, our results stress the importance of characterizing the influence of changing advective timescales on solute tracer responses before such reach-scale observations can be used to infer solute transport at larger network scales.

  6. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    SciTech Connect

    Gualda, Guilherme A.R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Jr. , Alfred T.; Sutton, Stephen R.; Rivers, Mark L.

    2013-04-08

    Supereruptions violently transfer huge amounts (100 s-1000 s km{sup 3}) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted {approx}760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  7. Time-scales of close-in exoplanet radio emission variability

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Fares, R.; Donati, J.-F.; Moutou, C.

    2015-07-01

    We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and τ Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetized hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is corotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of τ Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at τ Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.

  8. Neural Substrates Related to Motor Memory with Multiple Timescales in Sensorimotor Adaptation.

    PubMed

    Kim, Sungshin; Ogawa, Kenji; Lv, Jinchi; Schweighofer, Nicolas; Imamizu, Hiroshi

    2015-12-01

    Recent computational and behavioral studies suggest that motor adaptation results from the update of multiple memories with different timescales. Here, we designed a model-based functional magnetic resonance imaging (fMRI) experiment in which subjects adapted to two opposing visuomotor rotations. A computational model of motor adaptation with multiple memories was fitted to the behavioral data to generate time-varying regressors of brain activity. We identified regional specificity to timescales: in particular, the activity in the inferior parietal region and in the anterior-medial cerebellum was associated with memories for intermediate and long timescales, respectively. A sparse singular value decomposition analysis of variability in specificities to timescales over the brain identified four components, two fast, one middle, and one slow, each associated with different brain networks. Finally, a multivariate decoding analysis showed that activity patterns in the anterior-medial cerebellum progressively represented the two rotations. Our results support the existence of brain regions associated with multiple timescales in adaptation and a role of the cerebellum in storing multiple internal models. PMID:26645916

  9. Neutral Einstein metrics in four dimensions

    NASA Astrophysics Data System (ADS)

    Law, Peter R.

    1991-11-01

    In Matsushita [J. Math. Phys. 22, 979-982 (1981), ibid. 24, 36-40 (1983)], for curvature endomorphisms for the pseudo-Euclidean space R2,2, an analog of the Petrov classification as a basis for applications to neutral Einstein metrics on compact, orientable, four-dimensional manifolds is provided. This paper points out flaws in Matsushita's classification and, moreover, that an error in Chern's [``Pseudo-Riemannian geometry and the Gauss-Bonnet formula,'' Acad. Brasileira Ciencias 35, 17-26 (1963) and Shiing-Shen Chern: Selected Papers (Springer-Verlag, New York, 1978)] Gauss-Bonnet formula for pseudo-Riemannian geometry was incorporated in Matsushita's subsequent analysis. A self-contained account of the subject of the title is presented to correct these errors, including a discussion of the validity of an appropriate analog of the Thorpe-Hitchin inequality of the Riemannian case. When the inequality obtains in the neutral case, the Euler characteristic is nonpositive, in contradistinction to Matsushita's deductions.

  10. Gravity Probe B: Testing Einstein with Gyroscopes

    NASA Technical Reports Server (NTRS)

    Geveden, Rex D.; May, Todd

    2003-01-01

    Some 40 years in the making, NASA' s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta II in 2003. GP-B will test two extraordinary predictions from Einstein's General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.

  11. Gravity Probe B: Testing Einstein with Gyroscopes

    NASA Technical Reports Server (NTRS)

    Geveden, Rex D.; May, Todd

    2003-01-01

    Some 40 years in the making, NASA s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta I1 in 2003. GP-B will test two extraordinary predictions from Einstein s General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star- tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.

  12. Michelson-Morley in Einstein's elevators

    NASA Astrophysics Data System (ADS)

    Pierce, Fred; Pierce, Ayal

    2010-02-01

    Experiments are proposed in which a Michelson-Morley interferometer is placed in Einstein's thought experiments where elevators are subjected to varied accelerated fields. Unbeknownst to the observers inside the elevators, they are placed in different circumstances: on the surface of the Earth, in free fall, in space distant from any mass, and inside a rotating space station. By use of not one, but two objects, the observer will be challenged to determine the nature and shape of the accelerated field, if any, inside the elevator. It will be demonstrated that the nature of the accelerated field can be determined easily from inside the elevator by the motion of the two objects released by the observer. It will also be shown that, for the elevator on the space station which is generating an ``artificial gravity'' field by rotation, Michelson-Morley would have the same null result as on Earth. However, the Michelson-Morley experiment is adapted so that in addition to the two horizontal arms of the interferometer (parallel to the floor of the elevator) a vertical arm is added perpendicular to the floor facing towards the ceiling. Such a vertical arm added to the Michelson-Morley experiment adds a new dimension to examining each accelerated field, including gravity. )

  13. Results from an extensive Einstein stellar survey

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.; Fabbiano, G.; Giacconi, R.; Golub, L.; Gorenstein, P.; Harnden, F. R., Jr.; Cassinelli, J. P.; Haisch, B. M.; Johnson, H. M.; Linsky, J. L.

    1981-01-01

    The preliminary results of the Einstein Observatory stellar X-ray survey are presented. To date, 143 soft X-ray sources have been identified with stellar counterparts, leaving no doubt that stars in general constitute a pervasive class of low-luminosity galactic X-ray sources. Stars along the entire main sequence, of all luminosity classes, pre-main sequence stars as well as very evolved stars have been detected. Early type OB stars have X-ray luminosities in the range 10 to the 31st to 10 to the 34th ergs/s; late type stars show a somewhat lower range of X-ray emission levels, from 10 to the 26th to 10 to the 31st ergs/s. Late type main-sequence stars show little dependence of X-ray emission levels upon stellar effective temperature; similarly, the observations suggest weak, if any, dependence of X-ray luminosity upon effective gravity. Instead, the data show a broad range of emission levels (about three orders of magnitude) throughout the main sequence later than F0.

  14. EINSTEIN SSS Observations of Two Intermediate Polars

    NASA Astrophysics Data System (ADS)

    Singh, J.; Swank, J. H.

    1992-12-01

    We present the Einstein Solid State Spectrometer (SSS) observations of two Intermediate Polars, EX Hydrae and TV Columbae. These data have revealed a new soft X-ray component in the spectra of both the objects. The spectrum of EX Hya is modeled with two temperature components, ~ 9 keV and ~ 0.74 keV optically thin plasma in collisional ionization equilibrium. The variation in the spectrum in phase with the 67 minute pulsation can be interpreted as arising due to excess absorbing material covering 40% of the emission region at the minimum phase, a modification of the ``accretion curtain model''. The spectrum of TV Col also reveals an excess at soft energies above the previously accepted thermal model ( ~ 15 keV), with a patchy absorber. This excess can be modeled with two optically thin thermal components with kT ~ 0.18 and ~ 0.75 keV. The spectrum is found to vary with the phase of the ~ 4 day period found in the optical photometry of this source. There is also evidence for the 32 minute pulsation, interpreted as the white dwarf spin period. The variation in the spectrum due to the 32 minute pulsation will be compared to the variations found in EX Hya due to the 67 minute pulsations.

  15. Rotating trapped Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fetter, A. L.

    2008-01-01

    Trapped Bose-Einstein condensates (BECs) differ considerably from the standard textbook example of a uniform Bose gas. In an isotropic harmonic potential V( r) = ½ Mω2 r 2, the single-particle ground state introduces a new intrinsic scale of length [the ground-state size d = √ ℏ/( Mω)] and energy [the ground-state energy E 0 = frac{3} {2} ℏω]. When the trap rotates at a low angular velocity, the behavior of a single vortex illustrates the crucial role of discrete quantized vorticity. For more rapid rotation, the condensate contains a vortex array. The resulting centrifugal forces expand the condensate radially and shrink it axially; thus, the condensate becomes effectively two dimensional. If the external rotation speed approaches the frequency of the radial harmonic confining potential, the condensate enters the "lowest-Landau-level" regime, and a simple description again becomes possible. Eventually, the system is predicted to make a quantum phase transition to a highly correlated state analogous to the fractional quantum Hall states of electrons in a strong magnetic field.

  16. Unification of Einstein's Gravity with Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2010-02-01

    The four tetrad and six spin-connection Cartan 1-forms of Einstein's GeoMetroDynamic (GMD) field emerge from the eight virtual gluon macro-quantum coherent QCD post-inflation vacuum condensates that form in the inflationary phase transition. This joint emergence of gravity and the strong force is similar to the emergence of irrotational superflow with vortex defects in liquid helium below the Lambda Point. Repulsive dark energy is from the residual random virtual bosons that did not cohere in the moment of inflation. Similarly, attractive dark matter is from the residual random virtual fermion-antifermion pairs. Therefore, I predict that the LHC will not detect any on-mass-shell real particles that can explain φDM˜0.23. As first suggested by Abdus Salam (f-gravity) the low energy tail of the nuclear force can be explained as strong short-range Yukawa gravity. QCD's IR confinement and UV asymptotic freedom are elementary consequences in this simple model. )

  17. BOOK REVIEW: Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Jaksch, D.

    2003-09-01

    L Pitaevskii and S Stringari Oxford: Oxford University Press (2003) £55.50 (hardback), ISBN 0-19-850719-4 The Gross--Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose--Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid ^{4}He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state,\

  18. Guided Plasmaspheric Hiss Interactions with Superthermal Electrons. Part 1; Resonance Curves and Timescales

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.; Kozyra, J. U.

    1997-01-01

    Under the proper conditions, guided plasmaspheric hiss is shown to be more efficient than Coulomb collisions at scattering electrons in the superthermal energy range of 50 to 500 eV. Broadband, whistler mode hiss becomes guided by plasma density gradients, intensifying the wave energy densities and focusing the wave normal angles. These waves are shown to interact through Cherenkov (Landau) resonance with electrons below 500 eV, and the presented equatorial plane timescales for pitch angle, energy, and mixed diffusion are shown to be faster than Coulomb collision timescales for typical values at the inner edge of the plasmapause and in detached plasma regions. In the latter case, energy diffusion timescales of less than 100 s for small pitch angle electrons between 250 and 500 eV indicate that these waves have the potential to dramatically change the distribution function.

  19. Guided Plasmaspheric Hiss Interactions with Superthermal Electrons. 1; Resonance Curves and Timescales

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.; Kozyra, J. U.

    1999-01-01

    Under the proper conditions, guided plasmaspheric hiss is shown to be more efficient than Coulomb collisions at scattering electrons in the superthermal energy range of 50 to 500 eV. Broadband, whistler mode hiss becomes guided by plasma density gradients, intensifying the wave energy densities and focusing the wave normal angles. These waves are shown to interact through Cherenkov (Landau) resonance with electrons below 500 eV, and the presented equatorial plane timescales for pitch angle, energy, and mixed diffusion are shown to be faster than Coulomb collision timescales for typical values at the inner edge of the plasmapause and in detached plasma regions. In the latter case, energy diffusion timescales of less than 100 s for small pitch angle electrons between 250 and 500 eV indicate that these waves have the potential to dramatically change the distribution function.

  20. A Search for Short Timescale Microvariability in Active Galactic Nuclei in the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Clark, L. Lee

    2003-01-01

    We observed four AGNs (the type-1 Seyfert systems 3C249.1, NGC 6814 and Mrk 205, and the BL Lac object 3C371) using the High Speed Photometer on the Hubble Space Telescope to search for short timescale microvariability in the W. Continuous observations of 3 0 0 0 s duration were obtained for each system on several consecutive HST orbits using a 1 s sample time in a 1400 - 3000 2 bandpass. variability > 0.3 % (0 . 003 mag) was detected in any AGN on timescales shorter than 1500 s. The distribution of photon arrival times observed from each source was consistent with Poisson statistics. Because of HST optical problems, the limit on photometric variability at longer timescales is less precise. These results restrict models of supermassive black holes as the central engine of an AGN and the diskoseismology oscillations of any accretion disk around such a black hole.

  1. A Hierarchy of Timescales in Protein Dynamics is Linked to Enzyme Catalysis

    SciTech Connect

    Henzler-Wildman,K.; Lei, M.; Thai, V.; Jordan Kerns, S.; Karplus, M.; Kern, D.

    2007-01-01

    The synergy between structure and dynamics is essential to the function of biological macromolecules. Thermally driven dynamics on different timescales have been experimentally observed or simulated, and a direct link between micro- to milli-second domain motions and enzymatic function has been established. However, very little is understood about the connection of these functionally relevant, collective movements with local atomic fluctuations, which are much faster. Here we show that pico- to nano-second timescale atomic fluctuations in hinge regions of adenylate kinase facilitate the large-scale, slower lid motions that produce a catalytically competent state. The fast, local mobilities differ between a mesophilic and hyperthermophilic adenylate kinase, but are strikingly similar at temperatures at which enzymatic activity and free energy of folding are matched. The connection between different timescales and the corresponding amplitudes of motions in adenylate kinase and their linkage to catalytic function is likely to be a general characteristic of protein energy landscapes.

  2. Short timescale variability in the broadband emission of the blazars Mkn421 and Mkn501

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Carson, M. J.; Yaqoob, T.; Fegan, D. J.

    2000-09-01

    We analyse ASCA satellite X-ray data and Whipple Observatory TeV γ-ray data from the Blazars Mkn421 and Mkn501 for short timescale variability using the excess pair fraction method. We discuss the method and the data as well as EPF sensitivity to these data. We find that in these data sets, we can rule out an amplitude of variability greater than 10% on timescales less than 10 min from both sources and at both wavelengths at a confidence level of >99.7%. We discuss briefly the implications of low amplitudes of variability on short timescales for the beamed jet of relativistic particles probably producing these radiations and, we derive limits from the data on the local percentage change in both the lepton density and the magnetic field strength in these Blazar jets.

  3. Response of vegetation to drought time-scales across global land biomes

    NASA Astrophysics Data System (ADS)

    Vicente-Serrano, Sergio M.; Gouveia, Célia; Julio Camarero, Jesús; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I.; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo

    2013-01-01

    We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change.

  4. Response of vegetation to drought time-scales across global land biomes

    PubMed Central

    Vicente-Serrano, Sergio M.; Gouveia, Célia; Camarero, Jesús Julio; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I.; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo

    2013-01-01

    We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change. PMID:23248309

  5. Potential and timescales for oxygen depletion in coastal upwelling systems: A box-model analysis

    NASA Astrophysics Data System (ADS)

    Harrison, C. S.; Hales, B.; Siedlecki, S.; Samelson, R. M.

    2016-05-01

    A simple box model is used to examine oxygen depletion in an idealized ocean-margin upwelling system. Near-bottom oxygen depletion is controlled by a competition between flushing with oxygenated offshore source waters and respiration of particulate organic matter produced near the surface and retained near the bottom. Upwelling-supplied nutrients are consumed in the surface box, and some surface particles sink to the bottom where they respire, consuming oxygen. Steady states characterize the potential for hypoxic near-bottom oxygen depletion; this potential is greatest for faster sinking rates, and largely independent of production timescales except in that faster production allows faster sinking. Timescales for oxygen depletion depend on upwelling and productivity differently, however, as oxygen depletion can only be reached in meaningfully short times when productivity is rapid. Hypoxia thus requires fast production, to capture upwelled nutrients, and fast sinking, to deliver the respiration potential to model bottom waters. Combining timescales allows generalizations about tendencies toward hypoxia. If timescales of sinking are comparable to or smaller than the sum of those for respiration and flushing, the steady state will generally be hypoxic, and results indicate optimal timescales and conditions exist to generate hypoxia. For example, the timescale for approach to hypoxia lengthens with stronger upwelling, since surface particle and nutrient are shunted off-shelf, in turn reducing subsurface respiration and oxygen depletion. This suggests that if upwelling winds intensify with climate change the increased forcing could offer mitigation of coastal hypoxia, even as the oxygen levels in upwelled source waters decline.

  6. The neural processing of hierarchical structure in music and speech at different timescales

    PubMed Central

    Farbood, Morwaread M.; Heeger, David J.; Marcus, Gary; Hasson, Uri; Lerner, Yulia

    2015-01-01

    Music, like speech, is a complex auditory signal that contains structures at multiple timescales, and as such is a potentially powerful entry point into the question of how the brain integrates complex streams of information. Using an experimental design modeled after previous studies that used scrambled versions of a spoken story (Lerner et al., 2011) and a silent movie (Hasson et al., 2008), we investigate whether listeners perceive hierarchical structure in music beyond short (~6 s) time windows and whether there is cortical overlap between music and language processing at multiple timescales. Experienced pianists were presented with an extended musical excerpt scrambled at multiple timescales—by measure, phrase, and section—while measuring brain activity with functional magnetic resonance imaging (fMRI). The reliability of evoked activity, as quantified by inter-subject correlation of the fMRI responses, was measured. We found that response reliability depended systematically on musical structure coherence, revealing a topographically organized hierarchy of processing timescales. Early auditory areas (at the bottom of the hierarchy) responded reliably in all conditions. For brain areas at the top of the hierarchy, the original (unscrambled) excerpt evoked more reliable responses than any of the scrambled excerpts, indicating that these brain areas process long-timescale musical structures, on the order of minutes. The topography of processing timescales was analogous with that reported previously for speech, but the timescale gradients for music and speech overlapped with one another only partially, suggesting that temporally analogous structures—words/measures, sentences/musical phrases, paragraph/sections—are processed separately. PMID:26029037

  7. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    NASA Astrophysics Data System (ADS)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.

    2016-05-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  8. Constraining timescales of pre-eruptive events within large silicic volcanic centers

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Cooper, K. M.; Kent, A. J.; Costa Rodriguez, F.; Till, C. B.

    2015-12-01

    Large silicic volcanic centers produce catastrophic supervolcanic eruptions. As a result it is necessary to understand what's happening within these centers, and on what timescales, in order to anticipate and prepare for such eruptions. A widely accepted model for many rhyolitic volcanic systems is that of a long-lived mush from which melt is periodically extracted and erupted. However, what remains unclear are 1) the specific processes by which melt is amalgamated and extracted from this mush and 2) the timescales over which these occur. Processes occurring close to eruption likely include amalgamation (and potentially homogenization) of melt, melt extraction, crystallization of major phases, and final magma ascent. Numerical and geochemical models have been used to constrain timescales of mush rejuvenation, and contrast between short timescales for mush reactivation (e.g., <<1000 years, depending on the reservoir) and others demonstrating much longer timescales at super-solidus conditions (e.g., 100s of kyrs). Timescales calculated from intra-crystalline diffusion profiles suggest that many crystals spend very short amounts of time (decades to centuries) at near-solidus temperatures prior to eruption. At the Okataina Volcanic Center (OVC) in New Zealand, geochemical and isotopic data suggest that melts are extracted from a long-lived, heterogeneous mush prior to eruption. Despite this protracted existence, combined U-series ages and diffusion profiles in OVC zircon and plagioclase crystals suggest that crystallization often occurs within the final hundreds to thousands of years prior to eruption, and at most, a few percent of a crystal's total history is spent at above-solidus conditions. Within these brief amounts of time, diffusion techniques can be linked to specific pre-eruptive processes in order to constrain timescales of melt extraction from a mush (likely decades to centuries), intrusions of new melt and/or magma mixing (likely years to decades), and

  9. ON THE NATURE OF THE PROTOTYPE LUMINOUS BLUE VARIABLE AG CARINAE. II. WITNESSING A MASSIVE STAR EVOLVING CLOSE TO THE EDDINGTON AND BISTABILITY LIMITS

    SciTech Connect

    Groh, J. H.; Hillier, D. J.; Damineli, A.

    2011-07-20

    We show that the significantly different effective temperatures (T{sub eff}) achieved by the luminous blue variable AG Carinae during the consecutive visual minima of 1985-1990 (T{sub eff} {approx_equal} 22,800 K) and 2000-2001 (T{sub eff} {approx_equal} 17,000 K) place the star on different sides of the bistability limit, which occurs in line-driven stellar winds around T{sub eff} {approx} 21,000 K. Decisive evidence is provided by huge changes in the optical depth of the Lyman continuum in the inner wind as T{sub eff} changes during the S Dor cycle. These changes cause different Fe ionization structures in the inner wind. The bistability mechanism is also related to the different wind parameters during visual minima: the wind terminal velocity was 2-3 times higher and the mass-loss rate roughly two times smaller in 1985-1990 than in 2000-2003. We obtain a projected rotational velocity of 220 {+-} 50 km s{sup -1} during 1985-1990 which, combined with the high luminosity (L{sub *} = 1.5 x 10{sup 6} L{sub sun}), puts AG Car extremely close to the Eddington limit modified by rotation ({Omega}{Gamma} limit): for an inclination angle of 90{sup 0}, {Gamma}{sub {Omega}} {approx}> 1.0 for M{sub sun} {approx}< 60. Based on evolutionary models and mass budget, we obtain an initial mass of {approx}100 M{sub sun} and a current mass of {approx}60-70 M{sub sun} for AG Car. Therefore, AG Car is close to, if not at, the {Omega}{Gamma} limit during visual minimum. Assuming M = 70 M{sub sun}, we find that {Gamma}{sub {Omega}} decreases from 0.93 to 0.72 as AG Car expands toward visual maximum, suggesting that the star is not above the Eddington limit during maximum phases.

  10. Eddington-limited X-Ray Bursts as Distance Indicators. II. Possible Compositional Effects in Bursts from 4U 1636-536

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; Psaltis, Dimitrios; Muno, Michael P.; Chakrabarty, Deepto

    2006-03-01

    We analyzed 123 thermonuclear (type I) X-ray bursts observed by the Rossi X-Ray Timing Explorer (RXTE) from the low-mass X-ray binary 4U 1636-536. All but two of the 40 radius expansion bursts in this sample reached peak fluxes normally distributed about a mean of 6.4×10-8 ergs cm-2 s-1, with a standard deviation of 7.6%. The remaining two radius-expansion bursts reached peak fluxes a factor of 1.69+/-0.13 lower than this mean value; as a consequence, the overall variation in the peak flux of the radius-expansion bursts was a factor of ~2. This variation is comparable to the range of the Eddington limit between material with solar H fraction (X=0.7) and pure He. Such a variation may arise if, for the bright radius-expansion bursts, most of the accreted H is either eliminated by steady hot CNO burning or expelled in a radiatively driven wind. However, steady burning cannot exhaust the accreted H for solar composition material within the typical ~2 hr burst recurrence time, nor can it result in sufficient elemental stratification to allow selective ejection of the H only. An additional stratification mechanism appears to be required to separate the accreted elements and thus allow preferential ejection of the hydrogen. We found no evidence for a gap in the peak flux distribution between the radius-expansion and non-radius-expansion bursts, previously observed in smaller samples. Assuming that the faint radius-expansion bursts reached the Eddington limit for H-rich material (X~0.7), and the brighter bursts the limit for pure He (X=0), we estimate the distance to 4U 1636-536 (for a canonical neutron star with MNS=1.4 Msolar, RNS=10 km) to be 6.0+/-0.5 kpc, or for MNS=2 Msolar at most 7.1 kpc.

  11. Einstein@Home Finds an Elusive Pulsar

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Since the release of the second Fermi-LAT catalog in 2012, astronomers have been hunting for 3FGL J1906.6+0720, a gamma-ray source whose association couldn't be identified. Now, personal-computer time volunteered through the Einstein@Home project has resulted in the discovery of a pulsar that has been hiding from observers for years. A Blind Search: Identifying sources detected by Fermi-LAT can be tricky: the instrument's sky resolution is limited, so the position of the source can be hard to pinpoint. The gamma-ray source 3FGL J1906.6+0720 appeared in both the second and third Fermi-LAT source catalogs, but even after years of searching, no associated radio or X-ray source had been found. A team of researchers, led by Colin Clark of the Max Planck Institute for Gravitational Physics, suspected that the source might be a gamma-ray pulsar. To confirm this, however, they needed to detect pulsed emission — something inherently difficult given the low photon count and the uncertain position of the source. The team conducted a blind search for pulsations coming from the general direction of the gamma-ray source. Two things were needed for this search: clever data analysis and a lot of computing power. The data analysis algorithm was designed to be adaptive: it searched a 4-dimensional parameter space that included a safety margin, allowing the algorithm to wander if the source was at the edge of the parameter space. The computing power was contributed by tens of thousands of personal computers volunteered by participants in the Einstein@Home project, making much shorter work out of a search that would have required dozens of years on a single laptop. The sky region around the newly discovered pulsar. The dotted ellipse shows the 3FGL catalog 95% confidence region for the source. The data analysis algorithm was designed to search an area 50% larger (given by the dashed ellipse), but it was allowed to “walk away” within the gray shaded region if the source seemed to

  12. Studying planet populations with Einstein's blip.

    PubMed

    Dominik, Martin

    2010-08-13

    Although Einstein originally judged that 'there is no great chance of observing this phenomenon', the 'most curious effect' of the bending of starlight by the gravity of intervening foreground stars--now commonly referred to as 'gravitational microlensing'--has become one of the successfully applied techniques to detect planets orbiting stars other than the Sun, while being quite unlike any other. With more than 400 extra-solar planets known altogether, the discovery of a true sibling of our home planet seems to have become simply a question of time. However, in order to properly understand the origin of Earth, carrying all its various life forms, models of planet formation and orbital evolution need to be brought into agreement with the statistics of the full variety of planets like Earth and unlike Earth. Given the complementarity of the currently applied planet detection techniques, a comprehensive picture will only arise from a combination of their respective findings. Gravitational microlensing favours a range of orbital separations that covers planets whose orbital periods are too long to allow detection by other indirect techniques, but which are still too close to their host star to be detected by means of their emitted or reflected light. Rather than being limited to the Solar neighbourhood, a unique opportunity is provided for inferring a census of planets orbiting stars belonging to two distinct populations within the Milky Way, with a sensitivity not only reaching down to Earth mass, but even below, with ground-based observations. The capabilities of gravitational microlensing extend even to obtaining evidence of a planet orbiting a star in another galaxy. PMID:20603366

  13. The softest Einstein AGN (active galactic nuclei)

    SciTech Connect

    Cordova, F.A.; Kartje, J.; Mason, K.O.; Mittaz, J.P.D.; Chicago Univ., IL; University Coll., London . Mullard Space Science Lab.)

    1989-01-01

    We have undertaken a coarse spectral study to find the softest sources detected with the Imaging Proportional Counter (IPC) on the Einstein Observatory. Of the nearly 7700 IPC sources, 226 have color ratios that make them candidate ultrasoft'' sources; of these, 83 have small enough errors that we can say with confidence that they have a spectral component similar to those of the white dwarfs Sirius and HZ 43, nearby stars such as {alpha} Cen and Procyon, and typical polar'' cataclysmic variables. By means of catalog searches and ground-based optical and radio observations we have thus far identified 96 of the 226 candidate soft sources; 37 of them are active galactic nuclei (AGN). In the more selective subset of 83 sources, 47 have been identified, 12 of them with AGN. The list of 47 identifications is given in Cordova et al. For one QSO in our sample, E0132.8--411, we are able to fit the pulse-height data to a power-law model and obtain a best fit for the energy spectral index of 2. 2{sub {minus}0.4}{sup +0.6}. For the remainder of the AGN in the higher confidence sample we are able to infer on the basis of their x-ray colors that they have a similar spectral component. Two-thirds of the AGN are detected below 0.5 keV only, while the remainder evidence a flatter spectral component in addition to the ultra-soft component. 14 refs., 5 figs.

  14. Echoing Citizen Einstein in the East: Andrei Sakharov

    NASA Astrophysics Data System (ADS)

    Rhéaume, Charles

    2006-11-01

    As if a handing of the torch, Andrei Sakharov saw his dissidence acquire initial impetus from nuclear tests that it was clear were becoming out of control in the hands of an unscrupulous regime in 1955, the very year Einstein died. He had of course drawn from the latter's science for the realization of the Soviet H-bomb. From then on, however, it would be the humanistic views of Einstein that would lead his way. Not only was he not an anti-Semite like many in official circles in the Soviet Union at the time but through experiences in his young age and later in his work on the bomb where he had many Jewish colleagues, Sakharov had come to admire Jewish culture and particularly its inclination towards intellectual life. It was with a fully open mind then that he got acquainted with Einstein's ideas on how the great man saw the world. Sakharov would divulge his own vision of the world in an essay titled "Progress, Peaceful Coexistence and Intellectual Freedom" in 1968. The Albert Einstein Peace Prize he would be awarded in 1988 for his relentless advocacy of peace would come as a confirmation of the spiritual linkage between the two men. This paper scrutinizes traces of Einstein's thinking in Sakharov's own. It focuses particularly on their convergent understanding of the notion of world government.

  15. Upper limit on the central density of dark matter in the Eddington-inspired Born-Infeld (EiBI) gravity

    NASA Astrophysics Data System (ADS)

    Izmailov, Ramil; Potapov, Alexander A.; Filippov, Alexander I.; Ghosh, Mithun; Nandi, Kamal K.

    2015-03-01

    We investigate the stability of circular material orbits in the analytic galactic metric recently derived by Harko et al., Mod. Phys. Lett. A29, 1450049 (2014). It turns out that stability depends more strongly on the dark matter central density ρ0 than on other parameters of the solution. This property then yields an upper limit on ρ0 for each individual galaxy, which we call here ρ 0 upper, such that stable circular orbits are possible only when the constraint ρ 0<= ρ 0 upper is satisfied. This is our new result. To approximately quantify the upper limit, we consider as a familiar example our Milky Way galaxy that has a projected dark matter radius RDM 180 kpc and find that ρ 0 upper ˜ 2.37× 1011 M⊙ kpc-3. This limit turns out to be about four orders of magnitude larger than the latest data on central density ρ0 arising from the fit to the Navarro-Frenk-White (NFW) and Burkert density profiles. Such consistency indicates that the Eddington-inspired Born-Infeld (EiBI) solution could qualify as yet another viable alternative model for dark matter.

  16. Metal Accretion onto White Dwarfs. I. The Approximate Approach Based on Estimates of Diffusion Timescales

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.; Dufour, P.; Tremblay, P.-E.

    2015-06-01

    The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. Some important insights into the process may be derived using an approximate approach which combines static stellar models with estimates of diffusion timescales at the base of the outer convection zone or, in its absence, at the photosphere. Until recently, and to our knowledge, values of diffusion timescales in white dwarfs have all been obtained on the basis of the same physics as that developed initially by Paquette et al., including their diffusion coefficients and thermal diffusion coefficients. In view of the recent exciting discoveries of a plethora of metals (including some never seen before) polluting the atmospheres of an increasing number of cool white dwarfs, we felt that a new look at the estimates of settling timescales would be worthwhile. We thus provide improved estimates of diffusion timescales for all 27 elements from Li to Cu in the periodic table in a wide range of the surface gravity-effective temperature domain and for both DA and non-DA stars.

  17. Timescale of asteroid resurfacing by regolith convection resulting from the impact-induced global seismic shaking

    NASA Astrophysics Data System (ADS)

    Yamada, Tomoya M.; Ando, Kousuke; Morota, Tomokatsu; Katsuragi, Hiroaki

    2016-07-01

    A model for the asteroid resurfacing by regolith convection is built to estimate its timescale. In the model, regolith convection is driven by the impact-induced global seismic shaking. The model consists of three steps: (i) intermittent impact of meteoroids, (ii) impact-induced global vibration (seismic shaking), and (iii) vibration-induced regolith convection. In order to assess the feasibility of the resurfacing process driven by regolith convection, we estimate the resurfacing timescale as a function of the size of a target asteroid. In the estimate, a set of parameter values is assumed on the basis of previous works. However, some of them (e.g., seismic quality factor Q, seismic efficiency η, and seismic frequency f) are very uncertain. Although these parameter values might depend on asteroid size, we employ the standard values to estimate the representative behavior. To clarify the parameter dependences, we develop an approximated scaling form for the resurfacing timescale. According to the estimated result, we find that the regolith-convection-based resurfacing timescale is shorter than the mean collisional lifetime in most of the parameter uncertainty ranges. These parameter ranges are within those reported by previous works for small asteroids. This means that the regolith convection can be a possible mechanism for the asteroid resurfacing process.

  18. The origin of Total Solar Irradiance variability on timescales less than a day

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander; Krivova, Natalie; Schmutz, Werner; Solanki, Sami K.; Leng Yeo, Kok; Cameron, Robert; Beeck, Benjamin

    2016-07-01

    Total Solar Irradiance (TSI) varies on timescales from minutes to decades. It is generally accepted that variability on timescales of a day and longer is dominated by solar surface magnetic fields. For shorter time scales, several additional sources of variability have been proposed, including convection and oscillation. However, available simplified and highly parameterised models could not accurately explain the observed variability in high-cadence TSI records. We employed the high-cadence solar imagery from the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory and the SATIRE (Spectral And Total Irradiance Reconstruction) model of solar irradiance variability to recreate the magnetic component of TSI variability. The recent 3D simulations of solar near-surface convection with MURAM code have been used to calculate the TSI variability caused by convection. This allowed us to determine the threshold timescale between TSI variability caused by the magnetic field and convection. Our model successfully replicates the TSI measurements by the PICARD/PREMOS radiometer which span the period of July 2010 to February 2014 at 2-minute cadence. Hence, we demonstrate that solar magnetism and convection can account for TSI variability at all timescale it has ever been measured (sans the 5-minute component from p-modes).

  19. Anti-control of chaos of single time-scale brushless DC motor.

    PubMed

    Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng

    2006-09-15

    Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term. PMID:16893797

  20. A timescale decomposed threshold regression downscaling approach to forecasting South China early summer rainfall

    NASA Astrophysics Data System (ADS)

    Song, Linye; Duan, Wansuo; Li, Yun; Mao, Jiangyu

    2016-09-01

    A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR. The two models are developed based on the partial least squares (PLS) regression technique, linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration period 1915-84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation (PDO). On the interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall in the validation period 1985-2006, compared to other simpler approaches. This study suggests that the TSDTR approach, considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions.